├── README.md └── materials └── loca_plot_150dpi.png /README.md: -------------------------------------------------------------------------------- 1 | # Learning-based NLOS Detection and Uncertainty Prediction of GNSS Observations with Transformer-Enhanced LSTM Network 2 | 3 | Data and Code will be published after 01.07.2023. 4 | 5 |
6 | 7 | ## Online Trajectory Estimation with NLOS Exclusion using different ML/DL Models 8 | Full_Trajectory 9 | Vehicle Localization in Urban Area in Düsseldorf with NLOS Exclusion. The GNSS Positioning-Velocity-Timing (PVT) solution is shown in blue. Figure a) presents the estimated trajectory without NLOS exclusion and the solution by fusing GNSS observations and LiDAR odometry in a tight coupling. Figures b) and c) illustrate the estimated trajectories with NLOS exclusion using different learning models. 10 | 11 | In this experiment, we infer our proposed network alongside other ML/DL models to identify the NLOS observations. The models are pre-trained with datasets from the cites of Hong Kong and Aachen. We choose the raw data from another measurement campaign in the city of Düsseldorf, which presents data Out-Of-Distribution for the pre-trained models. 12 | 13 |
14 | -------------------------------------------------------------------------------- /materials/loca_plot_150dpi.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rwth-irt/DeepNLOSDetection/2187b9c9aaf25bab5d5ad7414641fe36d294b3b3/materials/loca_plot_150dpi.png --------------------------------------------------------------------------------