├── .gitignore
├── Makefile
├── README.md
├── assets
├── aboer-color.png
├── by.pdf
├── by.png
├── by.svg
├── cc.pdf
├── cc.png
├── cc.svg
├── remix.pdf
├── remix.png
├── remix.svg
├── sa.pdf
├── sa.png
├── sa.svg
├── ti-color.png
└── ucarts-color.png
├── ic-config.sty
├── ic-derivations.tex
├── ic-envs.sty
├── ic-metadata.tex
├── ic-print-cover.tex
├── ic-print.tex
├── ic-screen.tex
├── ic-screen.xmpdata
├── ic.tex
├── include
├── preface.tex
├── summary-1.tex
├── summary-2.tex
├── summary-3.tex
├── summary-4.tex
├── summary-5.tex
├── summary-6.tex
├── summary-7.tex
├── summary-B.tex
└── summary-C.tex
├── normalize.css
├── skeleton.css
└── webpage-template.html
/.gitignore:
--------------------------------------------------------------------------------
1 | ## Core latex/pdflatex auxiliary files:
2 | *.aux
3 | *.lof
4 | *.log
5 | *.lot
6 | *.fls
7 | *.out
8 | *.toc
9 | *.prb
10 |
11 | ## Intermediate documents:
12 | *.dvi
13 | *-converted-to.*
14 | # these rules might exclude image files for figures etc.
15 | *.ps
16 | *.eps
17 | *.pdf
18 |
19 | ## Bibliography auxiliary files (bibtex/biblatex/biber):
20 | *.bbl
21 | *.bcf
22 | *.blg
23 | *-blx.aux
24 | *-blx.bib
25 | *.brf
26 | *.run.xml
27 |
28 | ## Build tool auxiliary files:
29 | *.fdb_latexmk
30 | *.synctex
31 | *.synctex.gz
32 | *.synctex.gz(busy)
33 | *.pdfsync
34 |
35 | ## Auxiliary and intermediate files from other packages:
36 |
37 | # algorithms
38 | *.alg
39 | *.loa
40 |
41 | # achemso
42 | acs-*.bib
43 |
44 | # amsthm
45 | *.thm
46 |
47 | # beamer
48 | *.nav
49 | *.snm
50 | *.vrb
51 |
52 | #(e)ledmac/(e)ledpar
53 | *.end
54 | *.[1-9]
55 | *.[1-9][0-9]
56 | *.[1-9][0-9][0-9]
57 | *.[1-9]R
58 | *.[1-9][0-9]R
59 | *.[1-9][0-9][0-9]R
60 | *.eledsec[1-9]
61 | *.eledsec[1-9]R
62 | *.eledsec[1-9][0-9]
63 | *.eledsec[1-9][0-9]R
64 | *.eledsec[1-9][0-9][0-9]
65 | *.eledsec[1-9][0-9][0-9]R
66 |
67 | # glossaries
68 | *.acn
69 | *.acr
70 | *.glg
71 | *.glo
72 | *.gls
73 |
74 | # gnuplottex
75 | *-gnuplottex-*
76 |
77 | # hyperref
78 | *.brf
79 |
80 | # knitr
81 | *-concordance.tex
82 | *.tikz
83 | *-tikzDictionary
84 |
85 | # listings
86 | *.lol
87 |
88 | # makeidx
89 | *.idx
90 | *.ilg
91 | *.ind
92 | *.ist
93 |
94 | # minitoc
95 | *.maf
96 | *.mtc
97 | *.mtc0
98 |
99 | # minted
100 | _minted*
101 | *.pyg
102 |
103 | # morewrites
104 | *.mw
105 |
106 | # nomencl
107 | *.nlo
108 |
109 | # theorem
110 | *.thm
111 |
112 | # sagetex
113 | *.sagetex.sage
114 | *.sagetex.py
115 | *.sagetex.scmd
116 |
117 | # sympy
118 | *.sout
119 | *.sympy
120 | sympy-plots-for-*.tex/
121 |
122 | # todonotes
123 | *.tdo
124 |
125 | # xindy
126 | *.xdy
127 |
128 | # WinEdt
129 | *.bak
130 | *.sav
131 |
132 | *~
133 | *#
134 | *.pcr
135 |
136 | # html etc. files
137 | *.html
138 | *.css
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | .PHONY: FORCE_MAKE
2 |
3 | all: ic-screen.pdf ic-print.pdf ic-print-cover.pdf index.html
4 |
5 | print: ic-print.pdf
6 |
7 | %.pdf: %.tex olprevision.tex FORCE_MAKE
8 | latexmk -dvi- -ps- -pdf $<
9 |
10 | index.html: README.md webpage-template.html ic-screen.pdf
11 | convert ic-screen.pdf[0] ic.png
12 | pandoc --template webpage-template.html -f markdown -t html -o index.html README.md
13 |
14 | clean:
15 | latexmk -c ic-screen.tex ic-print.tex ic-print-cover.tex
16 |
17 | olprevision.tex: FORCE_MAKE
18 | ../../misc/makeolprevision ../..
19 |
20 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Incompleteness and Computability
2 |
3 | 
4 |
5 | Textbook on Gödel's incompleteness theorems and computability
6 | theory, developed for Calgary's Logic III course, based on the Open
7 | Logic Project. Covers recursive function theory, arithmetization of
8 | syntax, the first and second incompleteness theorem, models of
9 | arithmetic, second-order logic, and the lambda calculus.
10 |
11 | This repository/directory only contains the LaTeX files and
12 | illustrations needed to typeset the textbook _Incompleteness
13 | and Computability_, which in turn requires the _[Open Logic
14 | Text](https://github.com/OpenLogicProject/OpenLogic/)_.
15 |
16 | You can [download the
17 | PDF](https://ic.openlogicproject.org/ic-screen.pdf) from the [Open
18 | Logic builds site](https://ic.openlogicproject.org/), or order a
19 | hardcopy from Amazon [[US](https://www.amazon.com/dp/1077323395)]
20 | [[CA](https://www.amazon.ca/dp/1077323395)]
21 | [[UK](https://www.amazon.co.uk/dp/1077323395)]
22 | [[DE](https://www.amazon.de/dp/1077323395)].
23 |
24 | To install and compile:
25 |
26 | - Download/install the _Open Logic Text_ from
27 | [GitHub](https://github.com/OpenLogicProject/OpenLogic/), including
28 | [photos](https://github.com/OpenLogicProject/photos) if you want those.
29 | - Navigate to the subdirectory `courses/`
30 | - Put the content of this repository into a subdirectory of it, say
31 | `courses/incompleteness-computability`.
32 |
33 | If you use `git`, this should do it:
34 | ```
35 | # git clone https://github.com/OpenLogicProject/OpenLogic.git
36 | # cd OpenLogic/courses
37 | # git clone https://github.com/rzach/incompleteness-computability.git
38 | # cd ../assets
39 | # git clone https://github.com/OpenLogicProject/portraits.git
40 | # git clone https://github.com/OpenLogicProject/photos.git
41 | ```
42 | Inside `courses/incompleteness-computability`, you can now compile:
43 | ```
44 | # pdflatex ic-screen
45 | ```
46 | or just `# make` if you have `latexmk` installed. (You'll also have to
47 | do `bibtex ic-screen` for the bibliography.)
48 |
49 | The file `ic-screen.tex` produces a color version of the text with
50 | smaller margins for screen reading. `ic-print` produces a
51 | black-and-white version designed for printing on Crown Quarto stock
52 | (without cover).
53 |
54 | The file loads `ic.tex`, which contains the actual material. It
55 | in turn includes other files, most of them from the `OpenLogic`
56 | repository. So you won't get a complete book unless you download into
57 | the right subdirectory of and compile from there.
58 |
59 | [](https://creativecommons.org/licenses/by/4.0/)
60 |
61 | _[Incompleteness and
62 | Computability](https://ic.openlogicproject.org/)_ by [Richard
63 | Zach](https://richardzach.org/) is licensed under a [Creative Commons
64 | Attribution 4.0 International
65 | License](https://creativecommons.org/licenses/by/4.0/).
66 |
--------------------------------------------------------------------------------
/assets/aboer-color.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/aboer-color.png
--------------------------------------------------------------------------------
/assets/by.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/by.pdf
--------------------------------------------------------------------------------
/assets/by.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/by.png
--------------------------------------------------------------------------------
/assets/by.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
21 |
--------------------------------------------------------------------------------
/assets/cc.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/cc.pdf
--------------------------------------------------------------------------------
/assets/cc.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/cc.png
--------------------------------------------------------------------------------
/assets/cc.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
28 |
--------------------------------------------------------------------------------
/assets/remix.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/remix.pdf
--------------------------------------------------------------------------------
/assets/remix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/remix.png
--------------------------------------------------------------------------------
/assets/remix.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
21 |
--------------------------------------------------------------------------------
/assets/sa.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/sa.pdf
--------------------------------------------------------------------------------
/assets/sa.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/sa.png
--------------------------------------------------------------------------------
/assets/sa.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
23 |
--------------------------------------------------------------------------------
/assets/ti-color.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/ti-color.png
--------------------------------------------------------------------------------
/assets/ucarts-color.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rzach/incompleteness-computability/11feb1021d69d6221d3c46490164f06b46f4ed2f/assets/ucarts-color.png
--------------------------------------------------------------------------------
/ic-config.sty:
--------------------------------------------------------------------------------
1 | % Configuration file for Logic II textbook
2 |
3 | % Let's be unpretentious and use A, B, C, etc. for formulas ...
4 |
5 | \ollatinformulas
6 |
7 | % ... and use bold italic instead of Fraktur for structures
8 |
9 | \DeclareMathAlphabet{\mathbi}{OT1}{pplx}{b}{it}
10 |
11 | \DeclareDocumentCommand \Struct { m }{\applytofirst{\mathbi}{#1}}
12 |
13 | % - `\TMblank` - symbol for a blank
14 | \DeclareDocumentMacro \TMblank {\sqcup}
15 |
16 | % - `\TMstroke` - single stroke symbol on tape
17 | \DeclareDocumentMacro \TMstroke {I}
18 |
19 |
20 | % I think I like ``countable'' and ``uncountable'' better?
21 |
22 | \settexttoken{enumerable}{countable}{countable}
23 |
24 | \settexttoken{nonenumerable}*{uncountable}{uncountable}
25 |
26 | \settexttoken{denumerable}{countably infinite}{countably infinite}
27 |
28 | % Biconditional, verum are defined symbols
29 |
30 | \tagtrue{defIff,defTrue}
31 | \tagfalse{prvIff,prvTrue}
32 |
33 | % I'll leave cases for conditional, universal quantifier as exercises
34 |
35 | \tagtrue{probAnd,probIf,probAll}
36 |
37 | % Which proof system? Not sure yet, let's use natural deduction for
38 | % now. prfND is on by default, we just have to supress includion of
39 | % the sequent calculus.
40 |
41 | \tagfalse{prfSC,prfAX,prfTab}
42 |
--------------------------------------------------------------------------------
/ic-derivations.tex:
--------------------------------------------------------------------------------
1 |
2 | \chapter{Derivations in Arithmetic Theories}
3 |
4 | When we showed that all general recursive functions are representable
5 | in~$\Th{Q}$, and in the proofs of the incompleteness theorems, we
6 | claimed that various things are provable in $\Th{Q}$ and~$\Th{PA}$. The
7 | proofs of these claims, however, just gave the arguments informally
8 | without exhibiting actual derivations in natural deduction. We provide
9 | some of these derivations in this capter.
10 |
11 | For instance, in \olref[inc][req][bre]{lem:q-proves-add} we proved
12 | that, for all $n$ and $m \in \Nat$, $\Th{Q} \Proves (\num{n} +
13 | \num{m}) = \num{n+m}$. We did this by induction on $m$.
14 |
15 | \begin{proof}[Proof of {\olref[inc][req][bre]{lem:q-proves-add}}]
16 | Base case: $m = 0$. Then what has to be proved is that, for all $n$,
17 | $\Th{Q} \Proves \num{n} + \num{0} = \num{n+0}$. Since $\num{0}$ is
18 | just $\Obj 0$ and $\num{n+0}$ is $\num{n}$, this amounts to showing
19 | that $\Th{Q} \Proves (\num{n} + \Obj 0) = \num{n}$. The derivation
20 | \begin{prooftree}
21 | \AxiomC{$\lforall[x][(x + \Obj 0) = x]$}
22 | \RightLabel{\Elim\lforall}
23 | \UnaryInfC{$(\num{n} + \Obj 0) = \num{n}$}
24 | \end{prooftree}
25 | is a natural deduction derivation of $(\num{n} + \Obj 0) = \num{n}$
26 | with one undischarged assumption, and that undischarged assumption is
27 | an axiom of~$\Th{Q}$.
28 |
29 | Inductive step: Suppose that, for any $n$, $\Th{Q} \Proves (\num{n} +
30 | \num{m}) = \num{n+m}$ (say, by a derivation $\delta_{n,m}$). We have
31 | to show that also $\Th{Q} \Proves (\num{n} + \num{m+1}) =
32 | \num{n+m+1}$. Note that $\num{m+1} \ident \num{m}'$, and that
33 | $\num{n+m+1} \ident \num{n+m}'$. So we are looking for a derivation of
34 | $(\num{n} + \num{m}') = \num{n+m}'$ from the axioms of~$\Th{Q}$. Our
35 | derivation may use the derivation $\delta_{n,m}$ which exists by inductive
36 | hypothesis.
37 | \begin{prooftree}
38 | \AxiomC{}
39 | \RightLabel{$\delta_{n,m}$}
40 | \DeduceC{$(\num{n} + \num{m}) = \num{n+m}$}
41 | \AxiomC{$\lforall[x][\lforall[y][(x+y') = (x+y)']]$}
42 | \RightLabel{\Elim\lforall}
43 | \UnaryInfC{$\lforall[y][(\num{n}+y') = (\num{n}+y)']$}
44 | \RightLabel{\Elim\lforall}
45 | \UnaryInfC{$(\num{n}+\num{m}') = (\num{n}+\num{m})'$}
46 | \RightLabel{\Elim=}
47 | \BinaryInfC{$(\num{n}+\num{m}') = \num{n+m}'$}
48 | \end{prooftree}
49 | In the last $\Elim=$ inference, we replace the subterm $\num{n} +
50 | \num{m}$ of the right side $(\num{n} + \num{m})'$ of the right premise
51 | by the term $\num{n+m}$.
52 | \end{proof}
53 |
54 | In \olref[inc][req][min]{lem:less-zero}, we showed that $\Th{Q} \Proves
55 | \lforall[x][\lnot x < \Obj 0]$. What does an actual derivation look like?
56 |
57 | \begin{proof}[Proof of {\olref[inc][req][min]{lem:less-zero}}]
58 | To prove a universal claim like this, we use $\Intro\lforall$, which
59 | requires a derivation of $\lnot a < \Obj 0$. Looking at axiom $!Q_8$,
60 | this means proving $\lnot \exists z (z' + a) = \Obj 0$. Specifically,
61 | if we had a proof of the latter, $!Q_8$ would allow us to prove the
62 | former (recall that $A \liff B$ is short for $(A \lif B) \land (B \lif
63 | A)$.
64 | \begin{prooftree}\footnotesize
65 | \AxiomC{$\lnot\lexists[z][(z' + a) = \Obj 0]$}
66 | \AxiomC{$\lforall[x][\lforall[y][(x < y \liff \lexists[z][(z' + x) = y])]]$}
67 | \RightLabel{\Elim\lforall}
68 | \UnaryInfC{$\lforall[y][(a < y \liff \lexists[z][(z' + a) = y])]$}
69 | \RightLabel{\Elim\lforall}
70 | \UnaryInfC{$a < \Obj 0 \liff \lexists[z][(z' + a) = \Obj 0]$}
71 | \RightLabel{\Elim\land}
72 | \UnaryInfC{$a < \Obj 0 \lif \lexists[z][(z' + a) = \Obj 0]$}
73 | \AxiomC{$\Discharge{a < \Obj 0}{1}$}
74 | \RightLabel{\Elim\lif}
75 | \BinaryInfC{$\lexists[z][(z' + a) = \Obj 0]$}
76 | \RightLabel{\Elim\lnot}
77 | \insertBetweenHyps{\hskip -3em}
78 | \BinaryInfC{$\lfalse$}
79 | \DischargeRule{\Intro\lnot}{1}
80 | \UnaryInfC{$\lnot a<\Obj 0$}
81 | \end{prooftree}
82 | This is a derivation of $\lnot a<\Obj 0$ from $\lnot\lexists[z][(z' +
83 | a) = \Obj 0]$ (and~$!Q_8$); let's call it~$\delta_1$.
84 |
85 | Now how do we prove $\lnot\lexists[z][(z' + a) = \Obj 0]$ from the
86 | axioms of~$\Th{Q}$? To prove a negated claim like this, we'd need a
87 | derivation of the form
88 | \begin{prooftree}
89 | \AxiomC{$\Discharge{\lexists[z][(z' + a) = \Obj 0]}{2}$}
90 | \DeduceC{$\lfalse$}
91 | \DischargeRule{\Intro\lnot}{2}
92 | \UnaryInfC{$\lnot\lexists[z][(z' + a) = \Obj 0]$}
93 | \end{prooftree}
94 | To get a contradiction from an existential claim, we introduce a
95 | constant~$b$ for the existentially quantified variable~$z$ and use
96 | \Elim\lexists:
97 | \begin{prooftree}
98 | \AxiomC{$\Discharge{\lexists[z][(z' + a) = \Obj 0]}{2}$}
99 | \AxiomC{$\Discharge{(b'+a) = \Obj 0}{3}$}
100 | \RightLabel{$\delta_2$}
101 | \DeduceC{$\lfalse$}
102 | \DischargeRule{\Elim\exists}{3}
103 | \BinaryInfC{$\lfalse$}
104 | \DischargeRule{\Intro\lnot}{2}
105 | \UnaryInfC{$\lnot\lexists[z][(z' + a) = \Obj 0]$}
106 | \end{prooftree}
107 | Now the task is to fill in $\delta_2$, i.e., prove $\lfalse$ from
108 | $(b'+a) = \Obj 0$ and the axioms of~$\Th{Q}$. $Q_2$ says that $\Obj 0$
109 | can't be the successor of some number, so one way of doing that would
110 | be to show that $(b' + a)$ is equal to the successor of some number.
111 | Since that expression itself is a sum, the axioms for addition must
112 | come into play. If $\eq[a][\Obj 0]$, $Q_5$ would tell us that $\eq[(b'
113 | + a)][b']$, i.e., $b' + a$ is the successor of some number, namely
114 | of~$b$. On the other hand, if $\eq[a][c']$ for some $c$, then
115 | $\eq[(b'+a)][(b'+c')]$ by \Elim\eq, and $\eq[(b'+c')][(b'+c)']$
116 | by~$Q_6$. So again, $b'+a$ is the successor of a number---in this
117 | case, $b'+c$. So the strategy is to divide the task into these two
118 | cases. We also have to verify that $\Th{Q}$ proves that one of these
119 | cases holds, i.e., $\Th{Q} \Proves a = 0 \lor \lexists[y][(a = y')]$,
120 | but this follows directly from $Q_3$ by \Elim\lforall. Here are the
121 | two cases:
122 |
123 | Case 1: Prove $\lfalse$ from $\eq[a][\Obj 0]$ and $\eq[(b'+a)][\Obj
124 | 0]$ (and axioms $Q_2$, $Q_5$):
125 | \begin{prooftree}\footnotesize
126 | \AxiomC{$\lforall[x][\lnot \Obj 0 = x']$}
127 | \RightLabel{\Elim\lforall}
128 | \UnaryInfC{$\lnot \Obj 0 = b'$}
129 | \AxiomC{$\lforall[x][(x+\Obj 0) = x]$}
130 | \RightLabel{\Elim\lforall}
131 | \UnaryInfC{$(b' + \Obj 0) = b'$}
132 | \AxiomC{$a = \Obj 0$}
133 | \AxiomC{$(b'+a) = \Obj 0$}
134 | \RightLabel{\Elim=}
135 | \BinaryInfC{$(b' + \Obj 0) = \Obj 0$}
136 | \doubleLine
137 | \UnaryInfC{$\Obj 0 = (b' + \Obj 0)$}
138 | \insertBetweenHyps{\hskip -.5em}
139 | \RightLabel{\Elim=}
140 | \BinaryInfC{$\Obj 0 = b'$}
141 | \RightLabel{\Elim\lnot}
142 | \BinaryInfC{$\lfalse$}
143 | \end{prooftree}
144 | Call this derivation~$\delta_3$. (We've abbreviated the derivation of
145 | $\Obj 0 = (b' + \Obj 0)$ from $(b' + \Obj 0) = \Obj 0$ by a double
146 | inference line.)
147 |
148 | Case 2: Prove $\lfalse$ from $\lexists[y][a = y']$ and
149 | $\eq[(b'+a)][\Obj 0]$ (and axioms $Q_2$, $Q_6$). We first show how to
150 | derive $\lfalse$ from $\eq[a][c']$ and $\eq[(b'+a)][\Obj 0]$.
151 | \begin{prooftree}\footnotesize
152 | \AxiomC{$\lforall[x][\lnot \Obj 0 = x']$}
153 | \RightLabel{\Elim\lforall}
154 | \UnaryInfC{$\lnot \Obj 0 = (b'+c)'$}
155 | \AxiomC{$a = c'$}
156 | \AxiomC{$(b'+a) = \Obj 0$}
157 | \RightLabel{\Elim=}
158 | \insertBetweenHyps{\hskip -.3em}
159 | \BinaryInfC{$\Obj (b'+c') = \Obj 0$}
160 | \AxiomC{$\lforall[x][\lforall[y][(x+y') = (x+y)']]$}
161 | \RightLabel{\Elim\lforall}
162 | \UnaryInfC{$\lforall[y][(b'+y') = (b'+y)']$}
163 | \RightLabel{\Elim\lforall}
164 | \UnaryInfC{$(b' + c') = (b'+c)'$}
165 | \RightLabel{\Elim=}
166 | \insertBetweenHyps{\hskip .5em}
167 | \BinaryInfC{$\Obj 0 = (b' + c)'$}
168 | \RightLabel{\Elim\lnot}
169 | \insertBetweenHyps{\hskip -.5em}
170 | \BinaryInfC{$\lfalse$}
171 | \end{prooftree}
172 | Call this $\delta_4$. We get the required derivation $\delta_5$ by
173 | applying $\Elim\lexists$ and discharging the assumption $\eq[a][c']$:
174 | \begin{prooftree}
175 | \AxiomC{$\lexists[y][a=y']$}
176 | \AxiomC{$\Discharge{a = c'}{6} \quad \eq[(b'+a)][\Obj 0]$}
177 | \RightLabel{$\delta_4$}
178 | \DeduceC{$\lfalse$}
179 | \DischargeRule{\Elim\exists}{6}
180 | \BinaryInfC{$\lfalse$}
181 | \end{prooftree}
182 |
183 |
184 | Putting everything together, the full proof looks like this:
185 | \begin{prooftree}\footnotesize
186 | \AxiomC{$\Discharge{\lexists[z][(z' + a) = \Obj 0]}{2}$}
187 | \AxiomC{$\begin{gathered}
188 | \lforall[x][(x = 0 \lor {}]\\
189 | \lexists[y][(a = y')])
190 | \end{gathered}$}
191 | \RightLabel{\Elim\lforall}
192 | \UnaryInfC{$\begin{gathered}a = 0 \lor {}\\
193 | \lexists[y][(a = y')]
194 | \end{gathered}$}
195 | \AxiomC{$\begin{gathered}[b]
196 | \Discharge{a = \Obj 0}{7} \\
197 | \Discharge{(b'+a) = \Obj 0}{3}
198 | \end{gathered}$}
199 | \RightLabel{$\delta_3$}
200 | \DeduceC{$\lfalse$}
201 | \AxiomC{$\begin{gathered}[b]
202 | \Discharge{\lexists[y][a=y']}{7} \\
203 | \Discharge{(b'+a) = \Obj 0}{3}
204 | \end{gathered}$\quad}
205 | \RightLabel{$\delta_5$}
206 | \DeduceC{$\lfalse$}
207 | \DischargeRule{\Elim\lor}{7}
208 | \insertBetweenHyps{\hskip -.5em}
209 | \TrinaryInfC{$\lfalse$}
210 | \RightSubproofLabel{$\delta_2$}
211 | \DischargeRule{\Elim\exists}{3}
212 | \BinaryInfC{$\lfalse$}
213 | \DischargeRule{\Intro\lnot}{2}
214 | \UnaryInfC{$\lnot\lexists[z][(z' + a) = \Obj 0]$}
215 | \RightLabel{$\delta_1$}
216 | \DeduceC{$\lnot a<\Obj 0$}
217 | \RightLabel{\Intro\lforall}
218 | \UnaryInfC{$\lforall[x][\lnot x < \Obj 0]$}
219 | \end{prooftree}
220 | \end{proof}
221 |
222 | In the proof of \olref[inc][inp][ros]{thm:rosser}, we defined
223 | $\ORProv(y)$ as \[\lexists[x][(\OPrf(x, y) \land \lforall[z][(z < x
224 | \lif \lnot \ORefut(z, y))])].\] $\OPrf(x,y)$ is the formula
225 | representing the proof relation of~$\Th{T}$ (a consistent,
226 | axiomatizable extension of~$\Th{Q}$) in $\Th{Q}$, and $\ORefut(z, y)$
227 | is the formula representing the refutation relation. That means that
228 | if $n$ is the G\"odel number of a proof of~$!A$, then $\Th{Q} \Proves
229 | \OPrf(\num{n}, \gn{!A})$, and otherwise $\Th{Q} \Proves
230 | \lnot\OPrf(\num{n}, \gn{!A})$. Similarly, if $n$ is the G\"odel number
231 | of a proof of $\lnot !A$, then $\Th{Q} \Proves \ORefut(\num{n},
232 | \gn{!A})$, and otherwise $\Th{Q} \Proves \lnot\ORefut(\num{n},
233 | \gn{!A})$. We use the Diagonal Lemma to find a sentence $!R$ such that
234 | $\Th{Q} \Proves !R \liff \lnot \ORProv(\gn{!R})$. Rosser's Theorem
235 | states that $\Th{T} \Proves/ !R$ and $\Th{T} \Proves/ \lnot !R$. Both
236 | claims were proved indirectly: we show that if $\Th{T} \Proves !R$,
237 | $\Th{T}$ is inconsistent, i.e., $\Th{T} \Proves \lfalse$, and the same
238 | if $\Th{T} \Proves \lnot !R$.
239 |
240 | \begin{proof}[Proof of {\olref[inc][inp][ros]{thm:rosser}}]
241 | First we prove something things about~$<$. By
242 | \olref[inc][req][min]{lem:less-nsucc}, we know that $\Th{Q} \Proves
243 | \lforall[x][(x < \num {n+1} \lif (\eq[x][\Obj 0] \lor \dots \lor
244 | \eq[x][\num n]))]$ for every~$n$. So of course also (if $n>1$),
245 | $\Th{Q} \Proves \lforall[x][(x < \num {n} \lif (\eq[x][\Obj 0] \lor
246 | \dots \lor \eq[x][\num{n-1}]))]$. We can use this to derive
247 | $\eq[a][\Obj 0] \lor \dots \lor \eq[a][\num{n-1}]$ from $a < \num{n}$:
248 | \begin{prooftree}
249 | \AxiomC{$a < \num{n}$}
250 | \AxiomC{}
251 | \DeduceC{$\lforall[x][(x < \num{n} \lif (x = \num{0} \lor
252 | \dots \lor x = \num{n-1}))]$}
253 | \RightLabel{\Elim\forall}
254 | \UnaryInfC{$a < \num{n} \lif (a = \num{0} \lor
255 | \dots \lor a = \num{n-1})$}
256 | \RightLabel{\Elim\lif}
257 | \BinaryInfC{$a = \num{0} \lor \dots \lor a = \num{n-1}$}
258 | \end{prooftree}
259 | Let's call this derivation $\lambda_1$.
260 |
261 | Now, to show that $\Th{T} \Proves/ !R$, we assume that $\Th{T}
262 | \Proves !R$ (with a derivation~$\delta$) and show that $\Th{T}$ then
263 | would be inconsistent. Let $n$ be the G\"odel number
264 | of~$\delta$. Since $\OPrf$ represents the proof relation in~$\Th{Q}$,
265 | there is a derivation~$\delta_1$ of $\OPrf(\num{n},
266 | \gn{!R})$. Furthermore, no $k < n$ is the G\"odel number of a
267 | refutation of~$!R$ since $\Th{T}$ is assumed to be consistent, so for
268 | each $k < n$, $\Th{Q} \Proves \lnot \ORefut(\num{k}, \gn{!R})$; let
269 | $\rho_k$ be the corresponding derivation. We get a derivation of
270 | $\ORProv(\gn{!R})$:
271 | \begin{prooftree}\footnotesize
272 | \AxiomC{}
273 | \RightLabel{$\delta_1$}
274 | \DeduceC{$\OPrf(\num{n}, \gn{!R})$}
275 |
276 | \AxiomC{$\Discharge{a < \num{n}}{1}$}
277 | \RightLabel{$\lambda_1$}
278 | \DeduceC{$\begin{gathered}[b]
279 | a= \num{0} \lor \dots {} \\
280 | {} \lor a = \num{n-1}
281 | \end{gathered}$}
282 | \AxiomC{$\dots$}
283 |
284 | \AxiomC{$\Discharge{a=\num{k}}{2}$}
285 | \AxiomC{}
286 | \RightLabel{$\rho_k$}
287 | \DeduceC{$\lnot \ORefut(\num{k}, \gn{!R})$}
288 | \RightLabel{\Elim=}
289 | \BinaryInfC{$\lnot \ORefut(a, \gn{!R})$}
290 | \AxiomC{$\dots$}
291 | \DischargeRule{$\Elim\lor^*$}{2}
292 | \doubleLine
293 | \insertBetweenHyps{\hskip -1pt}
294 | \QuaternaryInfC{$\lnot \ORefut(a, \gn{!R})$}
295 | \DischargeRule{\Intro\lif}{1}
296 | \UnaryInfC{$a < \num{n} \lif \lnot \ORefut(a, \gn{!R})$}
297 | \RightLabel{\Intro\lforall}
298 | \UnaryInfC{$\lforall[z][(z < \num{n} \lif \lnot \ORefut(z, \gn{!R}))]$}
299 |
300 | \insertBetweenHyps{\hskip -5pt}
301 | \RightLabel{\Intro\land}
302 | \BinaryInfC{$\OPrf(\num{n}, \gn{!R}) \land \lforall[z][(z < \num{n} \lif \lnot \ORefut(\num{z}, \gn{!R}))]$}
303 | \RightLabel{\Intro\lexists}
304 | \UnaryInfC{$\lexists[x][(\OPrf(x, \gn{!R}) \land \lforall[z][(z < x \lif \lnot \ORefut(z, \gn{!R}))])]$}
305 | \end{prooftree}
306 | (We abbreviate multiple applications of $\Elim\lor$ by $\Elim\lor^*$
307 | above.) We've shown that if $\Th{T} \Proves !R$ there would be a
308 | derivation of~$\ORProv(\gn{!R})$. Then, since $\Th{T} \Proves R \liff
309 | \lnot \ORProv(\gn{!R})$, also $\Th{T} \Proves \ORProv(\gn{!R}) \lif
310 | \lnot R$, we'd have $\Th{T} \Proves \lnot !R$ and $\Th{T}$ would be
311 | inconsistent.
312 |
313 | Now let's show that $\Th{T} \Proves/ \lnot !R$. Again, suppose it
314 | did. Then there is a derivation $\rho$ of $\lnot !R$ with G\"odel
315 | number $m$---a refutation of~$!R$---and so $\Th{Q} \Proves
316 | \ORefut(\num{m}, \gn{!R})$ by a derivation~$\rho_1$. Since we assume
317 | $\Th{T}$ is consistent, $\Th{T} \Proves/ !R$. So for all $k$, $k$ is
318 | not a G\"odel number of a derivation of~$!R$, and hence $\Th{Q} \Proves \lnot
319 | \OPrf(\num{k}, \gn{!R})$ by a derivation~$\pi_k$. So we have:
320 |
321 | \begin{prooftree}\footnotesize
322 | \AxiomC{}
323 | \RightLabel{$\lambda_2$}
324 | \DeduceC{$\begin{gathered}[b] a = \num{0} \lor \dots \lor\\
325 | a = \num{m} \lor \num{m} < a\end{gathered}$}
326 | \AxiomC{$\dots$}
327 | \AxiomC{$\begin{gathered}\Discharge{\OPrf(a, \gn{!R})}{1}\\
328 | \Discharge{a = \num{k}}{2}\end{gathered}$}
329 | \RightLabel{$\pi_k'$}
330 | \DeduceC{$\lfalse$}
331 | \RightLabel{$\lfalse_I$}
332 | \UnaryInfC{$\num{m} .label-body {
283 | display: inline-block;
284 | margin-left: .5rem;
285 | font-weight: normal; }
286 |
287 |
288 | /* Lists
289 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
290 | ul {
291 | list-style: circle inside; }
292 | ol {
293 | list-style: decimal inside; }
294 | ol, ul {
295 | padding-left: 0;
296 | margin-top: 0; }
297 | ul ul,
298 | ul ol,
299 | ol ol,
300 | ol ul {
301 | margin: 1.5rem 0 1.5rem 3rem;
302 | font-size: 90%; }
303 | li {
304 | margin-bottom: 1rem; }
305 |
306 |
307 | /* Code
308 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
309 | code {
310 | padding: .2rem .5rem;
311 | margin: 0 .2rem;
312 | font-size: 90%;
313 | white-space: nowrap;
314 | background: #F1F1F1;
315 | border: 1px solid #E1E1E1;
316 | border-radius: 4px; }
317 | pre > code {
318 | display: block;
319 | padding: 1rem 1.5rem;
320 | white-space: pre; }
321 |
322 |
323 | /* Tables
324 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
325 | th,
326 | td {
327 | padding: 12px 15px;
328 | text-align: left;
329 | border-bottom: 1px solid #E1E1E1; }
330 | th:first-child,
331 | td:first-child {
332 | padding-left: 0; }
333 | th:last-child,
334 | td:last-child {
335 | padding-right: 0; }
336 |
337 |
338 | /* Spacing
339 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
340 | button,
341 | .button {
342 | margin-bottom: 1rem; }
343 | input,
344 | textarea,
345 | select,
346 | fieldset {
347 | margin-bottom: 1.5rem; }
348 | pre,
349 | blockquote,
350 | dl,
351 | figure,
352 | table,
353 | p,
354 | ul,
355 | ol,
356 | form {
357 | margin-bottom: 2.5rem; }
358 |
359 |
360 | /* Utilities
361 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
362 | .u-full-width {
363 | width: 100%;
364 | box-sizing: border-box; }
365 | .u-max-full-width {
366 | max-width: 100%;
367 | box-sizing: border-box; }
368 | .u-pull-right {
369 | float: right; }
370 | .u-pull-left {
371 | float: left; }
372 |
373 |
374 | /* Misc
375 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
376 | hr {
377 | margin-top: 3rem;
378 | margin-bottom: 3.5rem;
379 | border-width: 0;
380 | border-top: 1px solid #E1E1E1; }
381 |
382 |
383 | /* Clearing
384 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
385 |
386 | /* Self Clearing Goodness */
387 | .container:after,
388 | .row:after,
389 | .u-cf {
390 | content: "";
391 | display: table;
392 | clear: both; }
393 |
394 |
395 | /* Media Queries
396 | –––––––––––––––––––––––––––––––––––––––––––––––––– */
397 | /*
398 | Note: The best way to structure the use of media queries is to create the queries
399 | near the relevant code. For example, if you wanted to change the styles for buttons
400 | on small devices, paste the mobile query code up in the buttons section and style it
401 | there.
402 | */
403 |
404 |
405 | /* Larger than mobile */
406 | @media (min-width: 400px) {}
407 |
408 | /* Larger than phablet (also point when grid becomes active) */
409 | @media (min-width: 550px) {}
410 |
411 | /* Larger than tablet */
412 | @media (min-width: 750px) {}
413 |
414 | /* Larger than desktop */
415 | @media (min-width: 1000px) {}
416 |
417 | /* Larger than Desktop HD */
418 | @media (min-width: 1200px) {}
419 |
--------------------------------------------------------------------------------
/webpage-template.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
7 |
8 | Incompleteness and Computability
9 |
11 |
12 |
13 |
15 |
16 |
17 |
19 |
20 |
21 |
23 |
24 |
25 |
26 |
30 |
31 |
34 |
35 |
36 |
37 |
38 |
40 |
41 |
42 |
43 | $body$
44 |
45 |
46 |
47 |
48 |
50 |
51 |
52 |
--------------------------------------------------------------------------------