├── .gitattributes ├── Data PreProcessing ├── Data PreProcessing.ipynb ├── Students_marks.csv └── data.csv ├── Frequency Distribution └── Frequency Distribution.ipynb ├── Inferential Stats ├── 1 way Anova.ipynb ├── 2 way Anova.ipynb ├── Central Limit Theorem.ipynb ├── Chi square.ipynb ├── Confidence Interval.ipynb ├── T-Test.ipynb ├── Z test.ipynb └── sampling.ipynb ├── Measure of Central Tendency └── Measure of central Tendency.ipynb ├── Measure of Dispersion └── Measure of Dispersion.ipynb ├── Measure of Shape └── Measure of Shape.ipynb └── README.md /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | -------------------------------------------------------------------------------- /Data PreProcessing/Data PreProcessing.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "6c811ddb", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np\n", 11 | "import pandas as pd\n", 12 | "from matplotlib import pyplot as plt" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 9, 18 | "id": "278a0f03", 19 | "metadata": {}, 20 | "outputs": [], 21 | "source": [ 22 | "data = pd.read_csv(\"Students_marks.csv\")" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 10, 28 | "id": "5ab8e338", 29 | "metadata": {}, 30 | "outputs": [ 31 | { 32 | "data": { 33 | "text/html": [ 34 | "
\n", 35 | "\n", 48 | "\n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | "
Roll No.NameData StructureMathematicsOperating System
01Avneet251917
12Jay232114
23Sadaf282321
34Prakash212725
45Sarita23229
\n", 102 | "
" 103 | ], 104 | "text/plain": [ 105 | " Roll No. Name Data Structure Mathematics Operating System\n", 106 | "0 1 Avneet 25 19 17\n", 107 | "1 2 Jay 23 21 14\n", 108 | "2 3 Sadaf 28 23 21\n", 109 | "3 4 Prakash 21 27 25\n", 110 | "4 5 Sarita 23 22 9" 111 | ] 112 | }, 113 | "execution_count": 10, 114 | "metadata": {}, 115 | "output_type": "execute_result" 116 | } 117 | ], 118 | "source": [ 119 | "data.head()" 120 | ] 121 | }, 122 | { 123 | "cell_type": "code", 124 | "execution_count": 11, 125 | "id": "8a521628", 126 | "metadata": {}, 127 | "outputs": [ 128 | { 129 | "data": { 130 | "text/html": [ 131 | "
\n", 132 | "\n", 145 | "\n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | "
Roll No.Data StructureMathematicsOperating System
count10.0000010.00000010.0000010.00000
mean5.5000040.70000023.1000019.90000
std3.0276552.4934923.604015.95259
min1.0000021.00000018.000009.00000
25%3.2500023.00000021.2500015.50000
50%5.5000024.00000022.5000021.50000
75%7.7500025.75000024.7500024.50000
max10.00000190.00000030.0000028.00000
\n", 214 | "
" 215 | ], 216 | "text/plain": [ 217 | " Roll No. Data Structure Mathematics Operating System\n", 218 | "count 10.00000 10.000000 10.00000 10.00000\n", 219 | "mean 5.50000 40.700000 23.10000 19.90000\n", 220 | "std 3.02765 52.493492 3.60401 5.95259\n", 221 | "min 1.00000 21.000000 18.00000 9.00000\n", 222 | "25% 3.25000 23.000000 21.25000 15.50000\n", 223 | "50% 5.50000 24.000000 22.50000 21.50000\n", 224 | "75% 7.75000 25.750000 24.75000 24.50000\n", 225 | "max 10.00000 190.000000 30.00000 28.00000" 226 | ] 227 | }, 228 | "execution_count": 11, 229 | "metadata": {}, 230 | "output_type": "execute_result" 231 | } 232 | ], 233 | "source": [ 234 | "data.describe()" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": 12, 240 | "id": "6c586532", 241 | "metadata": {}, 242 | "outputs": [ 243 | { 244 | "data": { 245 | "text/html": [ 246 | "
\n", 247 | "\n", 260 | "\n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | "
Roll No.NameData StructureMathematicsOperating System
01Avneet251917
12Jay232114
23Sadaf282321
34Prakash212725
45Sarita23229
56Vasudha1903028
67Ankur242422
78Laksh262523
89Aman231825
910Rajat242215
\n", 354 | "
" 355 | ], 356 | "text/plain": [ 357 | " Roll No. Name Data Structure Mathematics Operating System\n", 358 | "0 1 Avneet 25 19 17\n", 359 | "1 2 Jay 23 21 14\n", 360 | "2 3 Sadaf 28 23 21\n", 361 | "3 4 Prakash 21 27 25\n", 362 | "4 5 Sarita 23 22 9\n", 363 | "5 6 Vasudha 190 30 28\n", 364 | "6 7 Ankur 24 24 22\n", 365 | "7 8 Laksh 26 25 23\n", 366 | "8 9 Aman 23 18 25\n", 367 | "9 10 Rajat 24 22 15" 368 | ] 369 | }, 370 | "execution_count": 12, 371 | "metadata": {}, 372 | "output_type": "execute_result" 373 | } 374 | ], 375 | "source": [ 376 | "data" 377 | ] 378 | }, 379 | { 380 | "cell_type": "code", 381 | "execution_count": 13, 382 | "id": "333311d2", 383 | "metadata": {}, 384 | "outputs": [], 385 | "source": [ 386 | "data.drop(index = 5, axis = 1, inplace = True)" 387 | ] 388 | }, 389 | { 390 | "cell_type": "code", 391 | "execution_count": 14, 392 | "id": "854dc7d4", 393 | "metadata": {}, 394 | "outputs": [ 395 | { 396 | "data": { 397 | "text/html": [ 398 | "
\n", 399 | "\n", 412 | "\n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | "
Roll No.Data StructureMathematicsOperating System
count9.0000009.0000009.0000009.000000
mean5.44444424.11111122.33333319.000000
std3.2058972.0275882.8284275.545268
min1.00000021.00000018.0000009.000000
25%3.00000023.00000021.00000015.000000
50%5.00000024.00000022.00000021.000000
75%8.00000025.00000024.00000023.000000
max10.00000028.00000027.00000025.000000
\n", 481 | "
" 482 | ], 483 | "text/plain": [ 484 | " Roll No. Data Structure Mathematics Operating System\n", 485 | "count 9.000000 9.000000 9.000000 9.000000\n", 486 | "mean 5.444444 24.111111 22.333333 19.000000\n", 487 | "std 3.205897 2.027588 2.828427 5.545268\n", 488 | "min 1.000000 21.000000 18.000000 9.000000\n", 489 | "25% 3.000000 23.000000 21.000000 15.000000\n", 490 | "50% 5.000000 24.000000 22.000000 21.000000\n", 491 | "75% 8.000000 25.000000 24.000000 23.000000\n", 492 | "max 10.000000 28.000000 27.000000 25.000000" 493 | ] 494 | }, 495 | "execution_count": 14, 496 | "metadata": {}, 497 | "output_type": "execute_result" 498 | } 499 | ], 500 | "source": [ 501 | "data.describe()" 502 | ] 503 | }, 504 | { 505 | "cell_type": "code", 506 | "execution_count": 15, 507 | "id": "7beb46ac", 508 | "metadata": {}, 509 | "outputs": [ 510 | { 511 | "data": { 512 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNs0lEQVR4nOzdd1xT1/sH8E8SIIyETQBlylLEiaNi3Yp719nWUWtbi21tq632WxXtsLVaa5dt/Vm1WutexYkDtU5AcaEICoLK3nsk5/cHJhoBSTBwM57365WXJrm5eS5Jbp6c85xzeIwxBkIIIYQQHcTnOgBCCCGEkIaiRIYQQgghOosSGUIIIYToLEpkCCGEEKKzKJEhhBBCiM6iRIYQQgghOosSGUIIIYToLEpkCCGEEKKzKJEhhBBCiM6iRIYYnKSkJPB4PKxYsYLrUJCeno5XXnkFdnZ24PF4+OGHH7gOqVYbNmwAj8dDUlIS16GoJTQ0FDwej+swCCGNiBIZwgn5FyOPx8N///1X437GGFxdXcHj8TBs2DAOImwaH374IY4cOYIFCxZg06ZNGDRoUIP3FRsbi9DQUJ1LNuRKSkoQGhqKiIgIrkOpkzwJll+MjY1hb2+PoKAgfPbZZ0hOTm7wvh89eoTQ0FDExMRoLuDHkpKSMH36dHh5ecHU1BROTk7o2bMnFi9erLTdr7/+ig0bNmj8+dWhDTEQ3UKJDOGUqakptmzZUuP2U6dO4cGDBxAKhRxE1XROnDiBkSNHYu7cuXjttdfQsmXLBu8rNjYWS5Ys0elEZsmSJRpNZD7//HOUlpZqbH9ykyZNwqZNm7Bu3TosXLgQLVq0wA8//IBWrVph69atDdrno0ePsGTJEo0nMgkJCejQoQOOHDmCSZMm4eeff0ZISAjs7Ozw7bffKm2rDUmENsRAdIsR1wEQwzZkyBDs2LEDP/74I4yMnrwdt2zZgsDAQGRlZWnsuWQyGSoqKjS2P03IyMiAtbU112HoLSMjI6X3laZ07NgRr732mtJt9+/fR3BwMKZOnYpWrVqhXbt2Gn/ehli1ahWKiooQExMDd3d3pfsyMjIavN/i4mJYWFi8aHhNgjGGsrIymJmZcR0KaQTUIkM4NWnSJGRnZyM8PFxxW0VFBXbu3InJkyfX+pgVK1YgKCgIdnZ2MDMzQ2BgIHbu3FljOx6Ph9mzZ+Pvv/9G69atIRQKcfjw4Vr3yRjDW2+9BRMTE+zevRsAUFlZiSVLlsDHxwempqaws7PDyy+/rBRrXe7du4dx48bB1tYW5ubmeOmll3DgwAHF/fKuNcYYfvnlF0VXxfNs3boVgYGBEIvFsLS0RJs2bbB69WrF/saNGwcA6NOnj2J/8tYNHo+H0NDQGvv08PDAtGnTlG67efMm+vbtCzMzM7i4uODLL7+ETCarNaZDhw6hR48esLCwgFgsxtChQ3Hz5k2lbaZNmwaRSISHDx9i1KhREIlEcHBwwNy5cyGVSgFUd304ODgAAJYsWaKIXx5zWloapk+fDhcXFwiFQjg7O2PkyJH1tj7VViMjf1/s3bsXAQEBEAqFaN26dZ3vDVW5u7tjw4YNqKiowPLlyxW35+TkYO7cuWjTpg1EIhEsLS0xePBgXL16VbFNREQEOnfuDACYPn264vjlLRNnzpzBuHHj4ObmBqFQCFdXV3z44YcqtTbdvXsXLi4uNZIYAJBIJIr/e3h44ObNmzh16pTi+Xv37g3gyfv11KlTePfddyGRSODi4gKg+vX18PCose+66pM2b96MLl26wNzcHDY2NujZsyeOHj1abwx17a+2+i0PDw8MGzYMR44cQadOnWBmZobff/8dAJCXl4c5c+bA1dUVQqEQ3t7e+Pbbb+t8jxPtRy0yhFMeHh7o1q0b/vnnHwwePBhA9Zdjfn4+Jk6ciB9//LHGY1avXo0RI0bg1VdfRUVFBbZu3Ypx48YhLCwMQ4cOVdr2xIkT2L59O2bPng17e/taT7hSqRRvvPEGtm3bhj179ij2ERoaimXLluHNN99Ely5dUFBQgKioKFy+fBkDBgyo85jS09MRFBSEkpISvP/++7Czs8PGjRsxYsQI7Ny5E6NHj0bPnj2xadMmvP766xgwYACmTJny3L9TeHg4Jk2ahH79+im6A27duoWzZ8/igw8+QM+ePfH+++/jxx9/xGeffYZWrVoBgOJfVaWlpaFPnz6oqqrC/PnzYWFhgT/++KPWX7KbNm3C1KlTMXDgQHz77bcoKSnBmjVr8PLLL+PKlStKf2upVIqBAweia9euWLFiBY4dO4aVK1fCy8sLs2bNgoODA9asWYNZs2Zh9OjRGDNmDACgbdu2AICxY8fi5s2beO+99+Dh4YGMjAyEh4cjOTm51te0Pv/99x92796Nd999F2KxGD/++CPGjh2L5ORk2NnZqb0/uW7dusHLy0sp2b137x727t2LcePGwdPTE+np6fj999/Rq1cvxMbGolmzZmjVqhWWLl2KRYsW4a233kKPHj0AAEFBQQCAHTt2oKSkBLNmzYKdnR0uXbqEn376CQ8ePMCOHTueG5O7uzuOHTuGEydOoG/fvnVu98MPP+C9996DSCTC//73PwCAo6Oj0jbvvvsuHBwcsGjRIhQXF6v991myZAlCQ0MRFBSEpUuXwsTEBBcvXsSJEycQHBysUgyqiouLw6RJk/D2229j5syZ8PPzQ0lJCXr16oWHDx/i7bffhpubG86dO4cFCxYgNTVVa4vtST0YIRxYv349A8AiIyPZzz//zMRiMSspKWGMMTZu3DjWp08fxhhj7u7ubOjQoUqPlW8nV1FRwQICAljfvn2VbgfA+Hw+u3nzptLtiYmJDAD77rvvWGVlJZswYQIzMzNjR44cUdquXbt2NZ5bFXPmzGEA2JkzZxS3FRYWMk9PT+bh4cGkUqlSjCEhIfXu84MPPmCWlpasqqqqzm127NjBALCTJ0/WuA8AW7x4cY3b3d3d2dSpU2vEfvHiRcVtGRkZzMrKigFgiYmJiuOxtrZmM2fOVNpfWloas7KyUrp96tSpDABbunSp0rYdOnRggYGBiuuZmZm1xpmbm6t4vdS1ePFi9uxpDgAzMTFhCQkJituuXr3KALCffvrpuft7+r1Tl5EjRzIALD8/nzHGWFlZmdJrLt+PUChU+ptERkYyAGz9+vU19vnse54xxpYtW8Z4PB67f//+c2O+ceMGMzMzYwBY+/bt2QcffMD27t3LiouLa2zbunVr1qtXrxq3yz+vL7/8co334NSpU5m7u3uNxzz7t4+Pj2d8Pp+NHj26xt9DJpPVG0Ntr+XTscnfm4xVv68BsMOHDytt+8UXXzALCwt2584dpdvnz5/PBAIBS05OrrF/ov2oa4lwbvz48SgtLUVYWBgKCwsRFhZWZ7cSAKXWgdzcXOTn56NHjx64fPlyjW179eoFf3//WvdTUVGhaMk5ePAggoODle63trbGzZs3ER8fr9bxHDx4EF26dMHLL7+suE0kEuGtt95CUlISYmNj1dqfPJbi4mKVurVexMGDB/HSSy+hS5cuitscHBzw6quvKm0XHh6OvLw8TJo0CVlZWYqLQCBA165dcfLkyRr7fuedd5Su9+jRA/fu3as3JjMzM5iYmCAiIgK5ubkNPDJl/fv3h5eXl+J627ZtYWlpqVI89RGJRACAwsJCAIBQKASfX32qlUqlyM7Ohkgkgp+fX63v2do8/Z4vLi5GVlYWgoKCwBjDlStXnvvY1q1bIyYmBq+99hqSkpKwevVqjBo1Co6Ojli7dq1axzZz5kwIBAK1HiO3d+9eyGQyLFq0SPH3kGuMIfKenp4YOHCg0m07duxAjx49YGNjo/S+7d+/P6RSKU6fPq3xOEjjo64lwjkHBwf0798fW7ZsQUlJCaRSKV555ZU6tw8LC8OXX36JmJgYlJeXK26v7WTo6elZ536WLVuGoqIiHDp0SNEP/7SlS5di5MiR8PX1RUBAAAYNGoTXX39d0d1Rl/v376Nr1641bpd389y/fx8BAQHP3cez3n33XWzfvh2DBw9G8+bNERwcjPHjx7/QcO3a1BW7n5+f0nV5cldXV4WlpaXSdVNTU0UNjJyNjY1KiYlQKMS3336Ljz/+GI6OjnjppZcwbNgwTJkyBU5OTvU+vjZubm41blM1nvoUFRUBAMRiMYDqIvPVq1fj119/RWJioqIuCIDK3VjJyclYtGgR9u/fXyPG/Pz8eh/v6+uLTZs2QSqVIjY2FmFhYVi+fDneeusteHp6on///irF8bzPU33u3r0LPp9f5w8LTast1vj4eFy7dq3Ge1HuRYqfCXcokSFaYfLkyZg5cybS0tIwePDgOkfynDlzBiNGjEDPnj3x66+/wtnZGcbGxli/fn2tw7ifN0ph4MCBOHz4MJYvX47evXvD1NRU6f6ePXvi7t272LdvH44ePYr/+7//w6pVq/Dbb7/hzTfffKHjVZdEIkFMTAyOHDmCQ4cO4dChQ1i/fj2mTJmCjRs3Nni/T3+pqkNeGLlp06Zak4lnRwo19Fe83Jw5czB8+HDs3bsXR44cwcKFC7Fs2TKcOHECHTp0UHt/dcXDGHuhOAHgxo0bkEgkimTu66+/xsKFC/HGG2/giy++gK2tLfh8PubMmaNSgalUKsWAAQOQk5ODTz/9FC1btoSFhQUePnyIadOmqVWkKhAI0KZNG7Rp0wbdunVDnz598Pfff6ucyNT2eaqrNaWh7626qPs8tcUqk8kwYMAAfPLJJ7U+xtfXt+EBEs5QIkO0wujRo/H222/jwoUL2LZtW53b7dq1C6ampjhy5IjSHDPr169X+zlfeuklvPPOOxg2bBjGjRuHPXv21PgCtrW1xfTp0zF9+nQUFRWhZ8+eCA0NfW4i4+7ujri4uBq33759W3F/Q5iYmGD48OEYPnw4ZDIZ3n33Xfz+++9YuHAhvL29n9s8b2Njg7y8PKXbKioqkJqaWiP22rrSnj0eebeMRCJR+UuwPvV1L3h5eeHjjz/Gxx9/jPj4eLRv3x4rV67E5s2bNfL8mnD+/HncvXtXaWj2zp070adPH6xbt05p27y8PNjb2yuu13X8169fx507d7Bx40alovAX7Wbs1KkTACi9BxrSxVPbewuobt17mpeXF2QyGWJjY9G+ffs691dXDDY2NgCq/25P/9B59nmex8vLC0VFRRp7zxLtQDUyRCuIRCKsWbMGoaGhGD58eJ3bCQQC8Hg8pV9hSUlJ2Lt3b4Oet3///ti6dSsOHz6M119/XenXbXZ2do0Yvb29lbqzajNkyBBcunQJ58+fV9xWXFyMP/74Ax4eHg1qWn82Fj6fr+jikscjn9Ojti8VLy+vGv3/f/zxR41fs0OGDMGFCxdw6dIlxW2ZmZn4+++/lbYbOHAgLC0t8fXXX6OysrLG82VmZqp4ZE+Ym5vXGn9JSQnKyspqHI9YLK73tWhK9+/fx7Rp02BiYoJ58+YpbhcIBDVaenbs2IGHDx8q3VbX6ydvPXp6H4wxxdD7+pw5c6bW1+jgwYMAlLsNLSwsan3/PI+Xlxfy8/Nx7do1xW2pqanYs2eP0najRo0Cn8/H0qVLa7QiPX1sdcUgT56ffh8XFxer1SI5fvx4nD9/HkeOHKlxX15eHqqqqlTeF9Ee1CJDtMbUqVPr3Wbo0KH4/vvvMWjQIEyePBkZGRn45Zdf4O3trXQiVceoUaMU3TSWlpaK+Sb8/f3Ru3dvBAYGwtbWFlFRUdi5cydmz5793P3Nnz9fMZz8/fffh62tLTZu3IjExETs2rWrRqGjKt58803k5OSgb9++cHFxwf379/HTTz+hffv2itqb9u3bQyAQ4Ntvv0V+fj6EQiH69u0LiUSCN998E++88w7Gjh2LAQMG4OrVqzhy5IhSiwAAfPLJJ4qlEj744APF8Gt3d3elv6+lpSXWrFmD119/HR07dsTEiRPh4OCA5ORkHDhwAN27d8fPP/+s1jGamZnB398f27Ztg6+vL2xtbREQEICqqir069cP48ePh7+/P4yMjLBnzx6kp6dj4sSJav8tNeHy5cvYvHkzZDIZ8vLyEBkZiV27doHH42HTpk1KdVTDhg3D0qVLMX36dAQFBeH69ev4+++/0aJFC6V9enl5wdraGr/99hvEYjEsLCzQtWtXtGzZEl5eXpg7dy4ePnwIS0tL7Nq1S+V6nm+//RbR0dEYM2aMIq7Lly/jr7/+gq2tLebMmaPYNjAwEGvWrMGXX34Jb29vSCSS5w7ZBoCJEyfi008/xejRo/H+++8rhuH7+voqFTN7e3vjf//7H7744gv06NEDY8aMgVAoRGRkJJo1a4Zly5Y9N4bg4GC4ublhxowZmDdvHgQCAf7880/F+04V8+bNw/79+zFs2DBMmzYNgYGBKC4uxvXr17Fz504kJSXV+EwQHcDlkCliuJ4efv08tQ2/XrduHfPx8WFCoZC1bNmSrV+/vs5htrUNba5rCO2vv/7KALC5c+cyxhj78ssvWZcuXZi1tTUzMzNjLVu2ZF999RWrqKio9/ju3r3LXnnlFWZtbc1MTU1Zly5dWFhYWI3t6orxWTt37mTBwcFMIpEwExMT5ubmxt5++22WmpqqtN3atWtZixYtmEAgUBqKLZVK2aeffsrs7e2Zubk5GzhwIEtISKgx/Joxxq5du8Z69erFTE1NWfPmzdkXX3zB1q1bV2OIK2OMnTx5kg0cOJBZWVkxU1NT5uXlxaZNm8aioqIU20ydOpVZWFjUOKbaXrNz586xwMBAZmJiohiKnZWVxUJCQljLli2ZhYUFs7KyYl27dmXbt2+v9++mzvuitr/Fs+TvHfnFyMiI2drasq5du7IFCxbUOhS6rKyMffzxx8zZ2ZmZmZmx7t27s/Pnz7NevXrVGGa8b98+5u/vz4yMjJSGYsfGxrL+/fszkUjE7O3t2cyZMxVDxmsbrv20s2fPspCQEBYQEMCsrKyYsbExc3NzY9OmTWN3795V2jYtLY0NHTqUicViBkARX32f16NHj7KAgABmYmLC/Pz82ObNm+scLv3nn3+yDh06MKFQyGxsbFivXr1YeHh4vTEwxlh0dDTr2rWr4jPw/fff1zn8uq6pEwoLC9mCBQuYt7c3MzExYfb29iwoKIitWLFCpc820T48xjRQ3UYIIYQQwgGqkSGEEEKIzqJEhhBCCCE6ixIZQgghhOgsSmQIIYQQorMokSGEEEKIzqJEhhBCCCE6S+8nxJPJZHj06BHEYnGjrLBKCCGEEM1jjKGwsBDNmjV77kSiep/IPHr0CK6urlyHQQghhJAGSElJgYuLS533630iIxaLAVT/IeSr0RJCCCFEuxUUFMDV1VXxPV4XvU9k5N1JlpaWlMgQQgghOqa+shAq9iWEEEKIzqJEhhBCCCE6ixIZQgghhOgsSmQIIYQQorMokSGEEEKIzqJEhhBCCCE6ixIZQgghhOgsSmQIIYQQorMokSGEEEKIzqJEhhBCCCE6i9NEZtmyZejcuTPEYjEkEglGjRqFuLg4pW3S0tLw+uuvw8nJCRYWFujYsSN27drFUcSEEEII0SacJjKnTp1CSEgILly4gPDwcFRWViI4OBjFxcWKbaZMmYK4uDjs378f169fx5gxYzB+/HhcuXKFw8gJIYQQog14jDHGdRBymZmZkEgkOHXqFHr27AkAEIlEWLNmDV5//XXFdnZ2dvj222/x5ptv1rvPgoICWFlZIT8/nxaNJEpksuq3Pp///AXJCCGEND1Vv7+1qkYmPz8fAGBra6u4LSgoCNu2bUNOTg5kMhm2bt2KsrIy9O7du9Z9lJeXo6CgQOlCSG3e23oFgV+GI6uonOtQCCGENJDWJDIymQxz5sxB9+7dERAQoLh9+/btqKyshJ2dHYRCId5++23s2bMH3t7ete5n2bJlsLKyUlxcXV2b6hCIDikqr8Kh66nILanEpcQcrsMhhBDSQFqTyISEhODGjRvYunWr0u0LFy5EXl4ejh07hqioKHz00UcYP348rl+/Xut+FixYgPz8fMUlJSWlKcInOuZKci4e9yzhTnoht8EQQghpMCOuAwCA2bNnIywsDKdPn4aLi4vi9rt37+Lnn3/GjRs30Lp1awBAu3btcObMGfzyyy/47bffauxLKBRCKBQ2WexEN0Um5Sr+H59exGEkhBBCXgSniQxjDO+99x727NmDiIgIeHp6Kt1fUlICAODzlRuOBAIBZDJZk8VJ9E9U0pPuJGqRIYQQ3cVpIhMSEoItW7Zg3759EIvFSEtLAwBYWVnBzMwMLVu2hLe3N95++22sWLECdnZ22Lt3L8LDwxEWFsZl6ESHVUpluJKcp7iemFWMiioZTIy0pqeVEEKIijg9c69Zswb5+fno3bs3nJ2dFZdt27YBAIyNjXHw4EE4ODhg+PDhaNu2Lf766y9s3LgRQ4YM4TJ0osNiHxWgtFIKKzNjiIRGqJIxJGUX1/9AQgghWofzrqX6+Pj40Ey+RKMiH3crdXK3QXZxBWJS8nAnvRC+jmKOIyOEEKIuaksnBifqcaFvZ09b+DqKAAB3qOCXEEJ0klaMWiKkqTDGFC0ynT1sYPR4Vt94KvglhBCdRIkMMSiJWcXILq6AiREfAc2tUFQuBUAjlwghRFdR1xIxKPJupfYu1hAaCRRdS0nZJSivknIZGiGEkAagRIYYFEWhr4cNAMDJ0hRioRGkMobELBq5RAghuoYSGWJQou4/LvT1qF6YlMfjwZsKfgkhRGdRIkMMRmZhORKzisHjAR3dbBS3+0qqh10nUJ0MIYToHEpkiMGIvl/dreTnKIaVubHidh9qkSGEEJ1FiQwxGPKFIuXdSnLyifDuZFCLDCGE6BpKZIjBeLbQV06eyNynkUuEEKJzKJEhBqG4vAo3HxUAqNki42gphNi0euTSvUwauUQIIbqEEhliEGJS8iCVMTS3NkMzazOl+3g83pPuJSr4JYQQnUKJDDEIdXUrycknxoungl9CCNEplMgQgyCf0bfTM91Kcj4SapEhhBBdRIkM0XtVUhkuJ8tHLNXVIlOdyMRnUIsMIYToEkpkiN67lVqIkgopxKZGisnvniXvWrqfXYyyShq5RAghuoISGaL3FPUx7jbg83m1buMgFsLKzBgyBtzNpFYZQgjRFZTIEL0X9XhG386etdfHAPKRS1TwSwghuoYSGaLXGGO4lFj7jL7P8qEh2IQQonMokSF67X52CbKKymEi4KNNc6vnbusroTWXCCFE11AiQ/SavD6mrYsVTI0Fz932ycglapEhhBBdQYkM0Wv1zR/zNHnXUnJOCUoraOQSIYToAkpkiF6LlBf61jF/zNPsRSawNjcGo5FLhBCiMyiRIXoru6hcsQhkoHv9iQyPx1PMM0MFv4QQohsokSF6K+p+dbeSr6MI1uYmKj3GRz4Em2b4JYQQnUCJDNFbUUnybqX662PkFAW/1CJDCCE6gRIZorcuJak2f8zT5C0yNASbEEJ0AyUyRC+VVFTh5sN8AEAnFQp95eQtMim5NHKJEEJ0ASUyRC/FpOShSsbgbGWK5tZmKj/OXiSErYUJGAMSqE6GEEK0HiUyRC89PX8Mj1f7QpF18VHM8Et1MoQQou0okSF6KTJJ9fljniXvXrpDM/wSQojWo0SG6J0qqQyXHw+97uSueqGvHK2CTQghuoMSGaJ3bqcVorhCCrHQCH5OYrUfT6tgE0KI7qBEhugd+fwxgR42EPDVq48BnnQtPcgtRXF5lUZjI4QQolmUyBC9E3lf/fljnmZrYQJ7UfVMwDRyiRBCtBslMkSvMMYQmVjdItNJhfWV6uJDay4RQohOoESG6JWUnFJkFJbDWMBDO1frBu/Hl9ZcIoQQncBpIrNs2TJ07twZYrEYEokEo0aNQlxcnOL+pKQk8Hi8Wi87duzgMHKireTDrts0t4KpsaDB+6GCX0II0Q2cJjKnTp1CSEgILly4gPDwcFRWViI4OBjFxcUAAFdXV6SmpipdlixZApFIhMGDB3MZOtFSUffVXyiyNk8Wj6QWGUII0WZGXD754cOHla5v2LABEokE0dHR6NmzJwQCAZycnJS22bNnD8aPHw+RSNSUoRIdEfnUjL4vQj6778O8UhSVV0Ek5PSjQgghpA5aVSOTn1+9yJ+tbe1fQtHR0YiJicGMGTPq3Ed5eTkKCgqULsQw5BRXKEYZvUihLwDYWJjAXiQEAMRT9xIhhGgtrUlkZDIZ5syZg+7duyMgIKDWbdatW4dWrVohKCiozv0sW7YMVlZWiourq2tjhUy0TPTjYdc+EhFsLExeeH80wy8hhGg/rUlkQkJCcOPGDWzdurXW+0tLS7Fly5bntsYAwIIFC5Cfn6+4pKSkNEa4RAvJJ8J70W4lOUWdDK25RAghWksrOv5nz56NsLAwnD59Gi4uLrVus3PnTpSUlGDKlCnP3ZdQKIRQKGyMMImWu/QCC0XWxsdRvgo2tcgQQoi24jSRYYzhvffew549exAREQFPT886t123bh1GjBgBBweHJoyQ6IrSCiluPKyusXrREUtyT0YuUYsMIYRoK04TmZCQEGzZsgX79u2DWCxGWloaAMDKygpmZmaK7RISEnD69GkcPHiQq1CJlrv6IA+VUgZHSyFcbMzqf4AKfB/P7vsovwyFZZUQmxprZL+EEEI0h9MamTVr1iA/Px+9e/eGs7Oz4rJt2zal7f7880+4uLggODiYo0iJtnu6PobHU3+hyNpYmRtDIn48colm+CWEEK3EaSLDGKv1Mm3aNKXtvv76ayQnJ4PP15raZKJl5PPHdH7BYdfPou4lQgjRbpQZEJ0nlTFcvq+ZifCeRQW/hBCi3SiRITovLq0QhY9n323lbKnRffvSmkuEEKLVKJEhOk++vlJHdxsI+Jqpj5GjSfEIIUS7USJDdF5j1ccAgPfjkUtpBWXIL63U+P4JIYS8GEpkiE5jjCEyUbMz+j7NyswYTpamAIAEmuGXEEK0DiUyRKc9yC1FWkEZjPg8tHe1bpTnoIJfQgjRXpTIEJ0mr48JaG4FMxNBozwHFfwSQoj2okSG6DRFfYyG1leqDRX8EkKI9qJEhug0Ta94XRsfapEhhBCtRYkM0Vl5JRWKupVOjTBiSc5HUt0ik1FYjvwSGrlECCHahBIZorOiH8/m6+VgATuRsNGeR2xqDGer6pFLd2jkEiGEaBVKZIjOelIf03jdSnLUvUQIIdqJEhmisyKboD5GzldCBb+EEKKNKJEhOqmsUoprD/IANO6IJTnFKtjUtUQIIVqFEhmik649yEellMFBLISbrXmjPx9NikcIIdqJEhmik+TdSp09bMDjaXahyNrIa2QyC8uRV1LR6M9HCCFENZTIEJ2kmD/GvfHrYwBAJDRCc2szANQqQwgh2oQSGaJzZDKGqPtNN2JJ7kn3EtXJEEKItqBEhuicOxmFKCyrgoWJAK2cxU32vIqCX0pkCCFEa1AiQ3SOfP6Yju42MBI03VtYPsMvdS0RQoj2oESG6Jymro+RoyHYhBCifSiRITonMvHJiKWm5P24RSarqAI5xTRyiRBCtAElMkSnPMwrxaP8Mgj4PLR3s27S57YQGsHFRj5yiVplCCFEG1AiQ3SKvFspoJklzE2Mmvz5qeCXEEK0CyUyRKc05fpKtaEZfgkhRLtQIkN0SpRixeumrY+R85XQKtiEEKJNKJEhOiO/pBJxjxMIrlpknoxcohYZQgjRBpTIEJ1xOTkXjAEt7C1gLxJyEoO3RAQeD8gprkBWUTknMRBCCHmCEhmiM57Ux3DTrQQAZiYCGrlECCFahBIZojPk9TFcdSvJyetk4qnglxBCOEeJDNEJ5VVSxDzIA9C0C0XWxodm+CWEEK1BiQzRCdcf5KOiSgZ7kQk87Mw5jcWXhmATQojWoESG6AT5QpGd3G3B4/E4jeXpSfEYY5zGQgghho4SGaITorSg0FfOy6F65FJuSSWyimjNJUII4RIlMkTryWQMUferW2S6eHJbHwNUj1xys63u3qKlCgghhFuUyBCtl5BZhPzSSpibCODvbMl1OAAAH5rhlxBCtAIlMkTryeeP6eBmDSOBdrxlFQW/NMMvIYRwitNvhWXLlqFz584Qi8WQSCQYNWoU4uLiamx3/vx59O3bFxYWFrC0tETPnj1RWlrKQcSEC1FPFfpqC1oFmxBCtAOnicypU6cQEhKCCxcuIDw8HJWVlQgODkZxcbFim/Pnz2PQoEEIDg7GpUuXEBkZidmzZ4PP145f5qTxXUqsbpHhev6Ypz29CjaNXCKEEO4Ycfnkhw8fVrq+YcMGSCQSREdHo2fPngCADz/8EO+//z7mz5+v2M7Pz69J4yTceZRXiod5pRDweWjvZs11OApeDiLweUB+aSUyC8shsTTlOiRCdFJphRSmxnzOp1UgukurmjXy8/MBALa21b+8MzIycPHiRUgkEgQFBcHR0RG9evXCf//9V+c+ysvLUVBQoHQhuks+Wsnf2RIiIad5txJTYwHc7SwA0MR4hDRUeGw62oQewarwO1yHQnSY1iQyMpkMc+bMQffu3REQEAAAuHfvHgAgNDQUM2fOxOHDh9GxY0f069cP8fHxte5n2bJlsLKyUlxcXV2b7BiI5mnT/DHP8pHIu5eoToYQdZVUVGHxvhuokjGsP5eE0gop1yERHaU1iUxISAhu3LiBrVu3Km6TyWQAgLfffhvTp09Hhw4dsGrVKvj5+eHPP/+sdT8LFixAfn6+4pKSktIk8ZPGIZ/RV5vqY+R8ac0lQhrst4i7eJRfBgAoLKvCweupHEdEdJVWJDKzZ89GWFgYTp48CRcXF8Xtzs7OAAB/f3+l7Vu1aoXk5ORa9yUUCmFpaal0IbqpoKwSt9Oquwa1skWG1lwipEFSckrw2+nqFvfOjz/b2yLpRydpGE4TGcYYZs+ejT179uDEiRPw9PRUut/DwwPNmjWrMST7zp07cHd3b8pQCQcu388FY4CHnTkkYu0rppW3yNyhNZcIUcsXYbGoqJKhu7cdfprUEXwecCkpB3cz6UcBUR+niUxISAg2b96MLVu2QCwWIy0tDWlpaYo5Yng8HubNm4cff/wRO3fuREJCAhYuXIjbt29jxowZXIZOmoBi/hgt7FYCgBYOFuDzqpvF0wvKuQ6HEJ1w+k4mjsamQ8DnYfHw1nCyMkUfPwkAYDu1ypAG4DSRWbNmDfLz89G7d284OzsrLtu2bVNsM2fOHCxYsAAffvgh2rVrh+PHjyM8PBxeXl4cRk6agnxG385a2K0EAEIjATwUI5eoToaQ+lRKZVjy700AwJRu7opWzQmdqwdl7Lr8ABVVMs7iI7qJ0/GsqjbHz58/X2keGaL/yqukiEnJA6C9LTJAdZ3Mvaxi3EkvRE9fB67DIUSrbTyXhLuZxbCzMMGc/r6K2/u0lMBBLERmYTmO30rH4DbOHEZJdI1WFPsS8qwbDwtQXiWDrYUJWthbcB1OneS/KBNozSVCniujsAw/HKueNuOTQX6wMjNW3Gcs4OOVwOqBHlupe4moiRIZopUU88e422j1jJ8+jrQKNiGq+O5wHIrKq9DWxQrjAmvO7zWhU/Vtp+Mz8TCP1tIjqqNEhmglbZ4/5mnyVbDjac0lQup0JTkXO6IfAABCR7QGn1/zx4mHvQW6tbADY8COKGqVIaqjRIZoHZmMIfr+40JfT+1OZDztLSDg81BYXoW0gjKuwyFE68hkDKH7qwt8x3Z0QUe3uov3J3apbpXZEfUAUhn9MCCqoUSGaJ17WUXILamEqTEfrZtp94SG1SOXzAHQxHiE1Gbn5Qe4+iAfIqERPh30/AV/B7Z2gpWZMR7mleJMfGYTRUh0HSUyROvIu5U6uNrAWKD9b1HFUgVUJ0OIkoKySiw/fBsA8H4/73pXiTc1FmB0h+YAaKZfojrt/5YgBkfb5495FhX8ElK71cfikVVUgRYOFpgW5Fn/A/BkTpnw2HRkFdFEk6R+lMgQrROpWPFau+tj5HxpzSVCaohPL8TGc0kAgEXD/GFipNrXTStnS7RztUaVjGH35QeNGCHRF5TIEK2Sll+GlJxS8HlABzdrrsNRydNzydDIJUKqJztd8m8sqmQM/Vs5ovfjJQhUNfFxq8zWyBT6TJF6USJDtErU49FKrZwtITY1rmdr7eBhZwEjPg9F5VV4lE8jlwg5cjMd/yVkwcSIj0XD/NV+/PB2zWBuIsC9zGJFzRwhdaFEhmiVKB2ZP+ZpJkZ8eNrTmkuEAEBZpRRfHogFALzVowXcHo/qU4dIaIRhbauXKdgamazR+Ij+oUSGaJUnhb66k8gANHKJELk/Tt/Dg9xSOFma4t0+DV/cd2IXNwDAweupyC+t1FR4RA9pJJHJy8vTxG6IgSssq8St1AIAQCcdGbEk50MFv4TgQW4Jfo1IAAB8NrQVzE0avi5xB1dr+DqKUFYpw/6rjzQVItFDaicy3377LbZt26a4Pn78eNjZ2aF58+a4evWqRoMjhuVKch5kDHCzNYdjPfNNaBtqkSEEWHbwNsoqZejiaYvhbV9sBWsej4cJnatbZbZR9xJ5DrUTmd9++w2uro/H+YeHIzw8HIcOHcLgwYMxb948jQdIDIdioUgda40BnlpzKaMIMppanRigc3ezcOB6Kvg8IHR4a40s9jq6Q3OYCPi48bAANx7mayBKoo/UTmTS0tIUiUxYWBjGjx+P4OBgfPLJJ4iMjNR4gMRw6MpCkbVxt7OAsYCHkgoprdxLDE6VVIYl+6sLfF/t6g5/DS0tYmthguDWjgCo6JfUTe1ExsbGBikp1VNHHz58GP379wdQPW+AVCrVbHTEYFRUyXAlRZ7I6F6LjLHgycil+AzqXiKGZfOF+4hLL4S1uTE+DvbV6L4nPS763XflEUor6DuG1KR2IjNmzBhMnjwZAwYMQHZ2NgYPHgwAuHLlCry9vTUeIDEMNx/lo6xSBhtzY3g5iLgOp0GeLFVABb/EcGQXleP78DsAgLnBfrA2N9Ho/ru1sIOrrRkKy6tw8HqqRvdN9IPaicyqVaswe/Zs+Pv7Izw8HCJR9ZdOamoq3n33XY0HSAyDfP6YQHdbjfStc8FXQmsuEcOz4ugdFJRVwd/ZUtF6okl8Pg8TOlWXM9BCkqQ2ao+NKy0txdy5c2vc/uGHHyIhIUEjQRHDI58/poun7nUryckLfhMyqEWGGIbrD/IVtStLRraGgN84P0JeCXTF9+F3cCkpBwkZRfCW6GarLWkcarfIDB06FOXlNVckjYuLQ+/evTUREzEwjDFE3a9ukdGVhSJr46MYgk0jl4j+Y4xh8f4bYAwY2b5ZoxbpO1mZos/j9Zq2R1GrDFGmdiIjEokwevRoVFVVKW67desWevfujbFjx2o0OGIY7mUVI6e4AkIjPgKaWXEdToN52JnDRMBHaSWNXCL6b2/MQ1xOzoO5iQALBrdq9OeTz/S7K/oBKqpkjf58RHeoncjs3r0b+fn5ePXVV8EYw40bN9C7d29MmjQJq1evbowYiZ6Tzx/T3tUaJka6u2qGkYCPFg605hLRf0XlVVh28DYAYHZfbzhZNf4Eln38HCARC5FdXIHjt9Ib/fmI7lD7W8PMzAwHDhxAXFwcxo8fj379+mHKlCn4/vvvGyM+YgB0ef6YZ9HIJWIIfjoRj4zCcrjbmWPGy55N8pxGAj5eCXQBAGylol/yFJUSmYKCAqULn8/Htm3bcPHiRYwdOxYLFy5U3EeIuiJ1eEbfZ/k+LkKkpQqIvrqXWYQ//0sEACwa5g+hkaDJnnv849FLp+Mz8SC3pMmel2g3lRIZa2tr2NjYKF38/f3x4MED/Pbbb7CxsVFsQ4g6MgrKcD+7BDwe0NFd998/ihYZmhSP6KkvwmJRKWXo7eeAvi0lTfrcHvYW6NbCDowBO6IeNOlzE+2l0vDrkydPNnYcxEDJRyu1dLKEpakxx9G8uKeHYMtkDPxGGo5KCBeO30rHybhMGAt4WDTMn5M5nyZ2ccX5e9nYEZWC9/v5NNqQb6I7VEpkevXqBQCoqqrC119/jTfeeAMuLi6NGhgxDPJuJV1clqA27nYWMDHio6xShpTcErjbWXAdEiEaUV4lxdKw6vWU3njZEy04moF7YGsnWJkZ41F+Gc7EZ6K3X9O2ChHto1axr5GREb777julodeEvIgoPSr0BQABn6dYYoEKfok+WfdfIu5nl0AiFuK9vj6cxWFqLMDoDs0B0Ey/pJrao5b69u2LU6dONUYsxMAUlVfh5qN8APpR6Csn716iIdhEX6Tll+HnE9Uzty8Y0hIiodqTwmvUxC7VRb/hsenILKw5QSsxLGq/GwcPHoz58+fj+vXrCAwMhIWFctP5iBEjNBYc0W8xyXmQMcDFxgzOVmZch6MxvooZfimRIfph2aFbKKmQoqObNUa1b851OGjpZIn2rtaIScnD7ssP8HYvL65DIhxSO5GRLwxZ27wxPB4PUikts05U86Q+Rj+6leR8JNS1RPRHZFIO9sU8Ao8HLB0ZoDWLuk7s7IqYlDxsi0zBWz1baE1cpOmp3bUkk8nqvFASQ9QRdV9/5o95mrxF5m5mEaS05hLRYVIZw+J9NwEAEzu7IaC59iwhMqxdM5ibCHAvq1gxqSYxTLo7HzzRaZVSGS7fzwOgfy0yrrbmEBrxUV4lQ3IOTdpFdNc/l5IRm1oAS1MjzA325TocJSKhEYa3bQYAihW4iWFqUMVWcXExTp06heTkZFRUVCjd9/7772skMKLfYh8VoLRSCiszY3hzNIyzschHLsWmFuBOeiE87WkINtE9eSUVWHE0DgDw0QBf2ImEHEdU04QurtgWlYKD11OxeHhrWJnp/lxURH1qJzJXrlzBkCFDUFJSguLiYtja2iIrKwvm5uaQSCSUyBCVKJYlcLfRy0njfB2rE5n49EIMbO3EdTiEqO378DvIK6mEn6MYr73kznU4tergag0/RzHi0guxP+YhXu/mwXVIhANqdy19+OGHGD58OHJzc2FmZoYLFy7g/v37CAwMxIoVKxojRqKHFPPHeOpXt5IcLR5JdFnsowJsvnAfALB4hD+MBNpZhcDj8TChc/VQbFpI0nCp/e6MiYnBxx9/DD6fD4FAgPLycri6umL58uX47LPP1NrXsmXL0LlzZ4jFYkgkEowaNQpxcXFK2/Tu3Rs8Hk/p8s4776gbNtEijDFFoa++zOj7LMUQ7AxKZIhuYYwh9N+bkDFgaBtnBHnZcx3Sc43u0BwmAj5uPirAjYf5XIdDOKB2ImNsbAw+v/phEokEycnVRVZWVlZISVEvIz516hRCQkJw4cIFhIeHo7KyEsHBwSguLlbabubMmUhNTVVcli9frm7YRIskZZcgq6gCJkZ8rRoFoUnySfFo5BLRNWHXUnEpMQemxnx8NrQV1+HUy8bCBAMDqrtvqejXMKldI9OhQwdERkbCx8cHvXr1wqJFi5CVlYVNmzYhICBArX0dPnxY6fqGDRsgkUgQHR2Nnj17Km43NzeHk5N21RkwxnDqTiZ6+DjQomVqktfHtHexhtBIwHE0jcPVxhymxtVrLt3PLuZsXRpC1FFSUYWvD94CALzb2xvNrXVjosqJnV3x79VH2HflET4b0grmJtzOPEyaltotMl9//TWcnZ0BAF999RVsbGwwa9YsZGZm4o8//nihYPLzq5sFbW2V6yb+/vtv2NvbIyAgAAsWLEBJSd1DWsvLy1FQUKB0aQyz/7mCaesjseUS/QJQV1SSfs4f8zQ+nwdvmhiP6JhfT95Fan4ZXGzM8FbPFlyHo7JuLezgZmuOwvIqHLyexnU4pImpnch06tQJffr0AVDdtXT48GEUFBQgOjoa7dq1a3AgMpkMc+bMQffu3ZVadiZPnozNmzfj5MmTWLBgATZt2oTXXnutzv0sW7YMVlZWiourq2uDY3qeLo/nPll5NA65xRX1bE2eFqlnC0XWxVdCSxUQ3XE/uxh/nL4HAPh8qD9MjXWntZTPf1L0u426lwyO1pSih4SE4MaNG9i6davS7W+99RYGDhyINm3a4NVXX8Vff/2FPXv24O7du7XuZ8GCBcjPz1dc1K3bUdWrXd3Q0kmMvJJKfB9+p1GeQx9lFpYjMasYPB7Q0U1/W2SAp0YuUcEv0QFfhN1ChVSGHj72GNjaketw1PZKoAv4vOofSgn0mTMoKnck9u3bV6XtTpw4oXYQs2fPRlhYGE6fPg0XF5fnbtu1a1cAQEJCAry8ai4UJhQKIRQ2/sRNRgI+Fg9vjUlrL+Dvi/cxqYsb/JtZNvrz6rrox6OV/BzFsDLX78mr5AW/1CJDtF1EXAaO3UqHEZ+HxcP9dXLdIkdLU/RtKcGxWxnYHpWCz4Zof6Ey0QyVE5mIiAi4u7tj6NChMDbWzBcQYwzvvfce9uzZg4iICHh6etb7mJiYGABQ1OlwqZuXHYa2dcaBa6kI3X8T295+SSdPAE3JULqVgCdDsO9lFqNKKtPauTiIYauokmFpWCwAYGqQB7wfd4nqogmd3XDsVgZ2RT/A3GA/mBjRZ84QqJzIfPvtt1i/fj127NiBV199FW+88Ybao5SeFRISgi1btmDfvn0Qi8VIS6su0rKysoKZmRnu3r2LLVu2YMiQIbCzs8O1a9fw4YcfomfPnmjbtu0LPbemfDakFY7fSselpBz8ey0VI9o14zokrWYIhb5yza3NYGYsQGmlFEnZJYriX0K0ycZzSbiXWQx7kQk+6O/DdTgvpI+fAyRiITIKy3HsVjqGtOH+By9pfCqnq/PmzUNsbCz27t2LwsJCdO/eHV26dMFvv/3W4JFBa9asQX5+Pnr37g1nZ2fFZdu2bQAAExMTHDt2DMHBwWjZsiU+/vhjjB07Fv/++2+Dnq8xNLc2Q0hvbwDA1wduoaSiiuOItFdJRRVuPKp+rxhCiwyfz4MPdS8RLZZRUIbVx+MBAJ8MaglLU93u7jUS8DGuU3V5As30azjUbnfr1q0b1q5di9TUVISEhODPP/9Es2bNGpTMMMZqvUybNg0A4OrqilOnTiE7OxtlZWWIj4/H8uXLYWmpXbUoM3u2gKutGdIKyvDLyQSuw9FaMcl5kMoYmluboZmOzE/xonwktFQB0V7fHo5DUXkV2rlY4ZWOz69P1BXjO1WPXjoTn4kHubT6vCFocAfi5cuXcerUKdy6dQsBAQEaq5vRRabGAnw+1B8AsPZ0Iu5nF9fzCMMkr48xhG4lOXnB750MapEh2uVyci52XX4AAAgd0VpvFm91t7NAkJcdGAN2RD3gOhzSBNRKZB49eoSvv/4avr6+eOWVV2Bra4uLFy/iwoULMDMzjF/YdQn2d0QPH3tUSGX4IuwW1+FoJfn6Sp0MoFtJTrHmEnUtES0ikzGE7r8JABgX6IIOejYVgnxOmR1RKbREiAFQOZEZMmQIvLy8cPHiRXz33Xd48OABVqxYAX9//8aMT2fweNXDFo34PBy7lY6IuAyuQ9IqVVIZLt+Xj1jSr5Pm88hrZBKzilEplXEcDSHVdkSn4NqDfIiFRvhkUEuuw9G4ga2dYG1ujEf5ZTgdn8l1OKSRqZzIHD58GLa2tkhOTsaSJUvQpUsXdOzYscbFkHlLxJgW5AEAWPpvLCqq6ItL7lZqIYorpLA0NVLMeGsImlubwcJEgEopQ1IWdTkS7uWXVmL54TgAwAf9feAgbvx5t5qaqbEAozs0BwBsu0RFv/pO5eHXixcvbsw49Mb7/X2wN+YR7mUVY8O5RLzVs+akfYYoMulJt5K+9MWrgserXnPp6oN83EkvUsz2SwhXfjh2B9nFFfCWiDD18Q8vfTShsyvWn03CsVvpyCws18uEjVSjREbDLE2N8ekgP8zbeQ2rj8VjVPvmkFiach0W557UxxhOt5Kcj6P4cSJTiKGgeS0Id+6kF+Kv8/cBAIuH+8NYjydpbOlkifau1ohJycPuyw/wdi/6Uamv9PddzKGxHV3QztUaxRVSfHP4NtfhcI4xZlAz+j5LsVQBjVwiHGKMYcm/NyGVsceDExy4DqnRTVQsJJkCxqjoV19RItMI+HweloxoDQDYffkhoh8XuRqq5JwSZBaWw0TAR5vmVlyH0+R8FCOXaC4Zwp0jN9NwNiEbJkZ8LBxmGIM0hrdrBgsTAe5lFeNSYg7X4ZBGQolMI2nvao3xj2eYDN1/EzIDHgIob41p62IFU2MBx9E0PfkQ7MSsYioAJ5worZAqpoV4p2cLuNqacxxR07AQGmH442VjttFMv3qLEplGNG9gS4iFRrj+MB/bowz3QxSVZHjzxzytmZUpREIjVMkYkmiyRMKB30/fxcO8UjSzMsWsx0uqGAr5nDIHrqciv7SS42hIY9BIIpOXl6eJ3egdB7FQsQjb8iNxBvshuvQ4kTGk+WOeJh+5BFQXWxLSlB7klmBNxF0AwP+G+sPMxLBaRdu7WsPPUYzyKhn2xzzkOhzSCNROZL799lvFoo4AMH78eNjZ2aF58+a4evWqRoPTB1ODPOAtESGnuAI/HLvDdThNLruoHPcyq1shAt0NM5EBnlqqgOpkSBP76sAtlFfJ8FILWwxp48R1OE2Ox+MpWmX+uURFv/pI7UTmt99+g6tr9ZsiPDwc4eHhOHToEAYPHox58+ZpPEBdZyzgY/Hw6sK6v87fR1yaYf0ij3pc6OznKIa1uQnH0XCHliogXDibkIVDN9LA51Wvp8TjGc4cTk8b07E5TIz4iE0twI2H6i9wTLSb2olMWlqaIpEJCwvD+PHjERwcjE8++QSRkZEaD1Af9PBxwMDWjpDKqoc/GtIvgif1MYbbGgM8GblEXUukqVRKZVjyb/V6Sq+/5I6WTpYcR8Qda3MTDGpd3Rq1NTKZ42iIpqmdyNjY2CAlpbpw9fDhw+jfvz+A6jkKpFKpZqPTI58P9YfQiI9zd7Nx+EYa1+E0GUOeP+Zp8q6lpOwSlFfR54Q0vk3n7+NOehFszI3x0QA/rsPhnHxOmf0xj1BSUcVxNEST1E5kxowZg8mTJ2PAgAHIzs7G4MGDAQBXrlyBt7dhVcOrw9XWXDGz5JcHbqG0Qv+/zEorpLjxMB8Atcg4WZpCLDSCVMaQSGsukUaWVVSOVY9r8uYNbAkrc2OOI+LeSy3s4GZrjsLyKhy8bjg/Jg2B2onMqlWrMHv2bPj7+yM8PBwiUfUvzdTUVLz77rsaD1CfzOrlhWZWpniYV4rfTt3lOpxGF5OShyoZg7OVKZpbm3EdDqd4PJ5iJWwq+CWNbcWROBSWVSGguaWi0NXQ8flPin63XqLuJX2idiJz/vx5zJkzB6tXr0aHDh0Ut7/33nvw9fXVaHD6xsxEgP8NrS78/e3UXaTklHAcUeN6ev4YQy0yfBoV/JKmcO1BHrY9nrcqdHhrCAxokdb6vBLoAgGfh6j7uUigJUP0htqJTJ8+fZCTU3Oq5/z8fPTp00cjQemzIW2c0K2FHcqrZPj64C2uw2lUkffl9TGG3a0kRwW/pLHJZAyL998EY8DoDs0NdhLKujhamqKPnwQAzfSrT9ROZBhjtf66zs7OhoWFhUaC0mc8Hg+LR/hDwOfh0I00nE3I4jqkRiGVMVx+nMh0cqeTKfDU4pHUtUQayZ4rD3ElOQ8WJgLMH9yS63C0krzod9flh7RkiJ4wUnXDMWPGAKj+Ip42bRqEQqHiPqlUimvXriEoKEjzEeqhlk6WeP0ld2w4l4TQ/Tdx8IMeMBbo12oRt1ILUFReBbHQCH5OYq7D0QryrqWk7GKUVUoNct0p0ngKyyrxzeHbAID3+vnA0dKU44i0U28/B0jEQmQUluPYrXQMaePMdUjkBan87WllZQUrKyswxiAWixXXrays4OTkhLfeegubN29uzFj1yof9fWFrYYL4jCJsOn+f63A0Tl4fE+hhQ330j0nEQliaGkHGoJjtmBBN+elEAjILy+Fpb4Hp3T24DkdrGQn4GPd4Qd9/qOhXL6jcIrN+/XoAgIeHB+bOnUvdSC/IytwY8wb6YcHu61h17A5GtG8Ge5Gw/gfqiCf1MdStJFc9ckmM6Pu5iM8ohH8zw52gjGhWQkYR/vwvEQCwaJg/hEbU2vc8Ezq54ZeTd/FfQhZSckoMZjVwfaV2f8bixYspidGQ8Z1cEdDcEoVlVfjucBzX4WgMY+zJiCUDXl+pNk/WXKKCX6IZjDEsDYtFlYyhb0sJ+rSUcB2S1nOzM0d3bzswBuyIfsB1OOQFqZ3IpKen4/XXX0ezZs1gZGQEgUCgdCGqE/B5WDKiNQBge3QKrqbkcRuQhjzILUV6QTmMBTy0c7XmOhyt4iORj1yigl+iGcduZeD0nUyYCPhYNMyf63B0xoTObgCAHVEpkMoMZ9kYfaRy15LctGnTkJycjIULF8LZ2ZnmB3lBge62GNOhOXZfeYjQf29i1ztB4Ot4TUnk49aYNs2tqKD1GfKC34QMSmTIiyurlOKLsFgAwIwenvCwp9ZyVQX7O8La3Bip+WU4HZ+pGJZNdI/aicx///2HM2fOoH379o0QjmH6dHBLHLmZhivJedh95SFeCXThOqQXQusr1U3etXSfRi4RDVj3XyKSc0rgaCnE7D60RIw6TI0FGN2hOdafTcLWS8mUyOgwtbuWXF1dDWr15qbgaGmK9/r5AAC+OXQbhWWVHEf0YiKfmtGXKHMQC2FlZgwZA+5mUqsMabjU/FL8fCIBAPDZkFawEKr9u9TgTXzcvXT8VgYyCss4joY0lNqJzA8//ID58+cjKSmpEcIxXG9090QLewtkFZXjp8cnJ12UU1yh6DahQt+aeDweTYxHNOLrg7dRWilFJ3cbjGjXjOtwdJKfkxgd3KxRJWPYffkh1+GQBlI7kZkwYQIiIiLg5eUFsVgMW1tbpQtpGBMjPhYOry7U+/O/RJ2toYh+POzaRyKCjYUJx9FoJ1qqgLyoi/ey8e/VR+DxgNARralW8QXIZ/rdFplCvQ06Su22yB9++KERwiAA0MdPgn4tJTh+OwNL/r2Jv97oonMnqCjqVqqXr4RWwSYNVyWVYfH+mwCAyV3cENDciuOIdNuwts2w9N9YJGYV41JiDrq2sOM6JKImtROZqVOnNkYc5LGFw/xxJj4LZ+KzcOxWBgb4O3Idklrk9TG0UGTdFKtg0+q7pAH+uZSM22mFsDIzxsfBflyHo/MshEYY0b4Z/rmUgq2RKZTI6KAGLfBz9+5dfP7555g0aRIyMjIAAIcOHcLNmzc1Gpwh8rC3wJs9PAEAX4TFoqxSynFEqiurlOL6w3wANGLpeeRdS8k5JSit0J3Xl3Avt7gCK47eAQB8HFy9zAl5cfI5ZQ5eT0V+iW4PtjBEaicyp06dQps2bXDx4kXs3r0bRUXVzeNXr17F4sWLNR6gIQrp4w1HSyGSc0rwf2fucR2Oyq6m5KFSyuBoKYSLjRnX4Wgte5EJbMyNwWjkElHTyvA45JdWoqWTGJO7uHEdjt5o52KFlk5ilFfJsO8qFf3qGrUTmfnz5+PLL79EeHg4TEye/Bro27cvLly4oNHgDJWF0AifDWkFAPjl5F08yivlOCLVRD0u9O3kYatztT1NSb7mEkAFv0R1Nx/lY8vF6kUOQ0e0hpGgQQ3qpBY8Hg8THhf9/nOJin51jdqfhOvXr2P06NE1bpdIJMjKytJIUAQY0a4ZOnvYoLRSiq8P3uI6HJUo6mNo2HW9nqy5RC0ypH6MMYTuvwkZA4a1dcZLVMehcaM7NIeJER+3Ugtw42EB1+EQNaidyFhbWyM1NbXG7VeuXEHz5s01EhSp/oUQOqI1+Dwg7FoqLtzL5jqk55LKGKKTnrTIkOdTFPxSiwxRwf6rjxCZlAszY4GitZZolrW5CQYHOAEA/olM5jgaog61E5mJEyfi008/RVpaGng8HmQyGc6ePYu5c+diypQpau1r2bJl6Ny5M8RiMSQSCUaNGoW4uNpXgWaMYfDgweDxeNi7d6+6Yeuk1s2sMOlxP3jo/puokso4jqhucWmFKCyvgkhohFbOllyHo/UUi0fSyCVSj+LyKiw7eBsAENLHC82sqf6ssci7l/bHPEJJRRXH0RBVqZ3IfP3112jZsiVcXV1RVFQEf39/9OzZE0FBQfj888/V2tepU6cQEhKCCxcuIDw8HJWVlQgODkZxcXGNbX/44QeDrLuYG+wHKzNj3E4rxD+XtPdXQtT96m6lju42EOj4opdNQd61lJJTSidM8ly/nExAWkEZXG3N8GaPFlyHo9de8rSDu505isqrcOBazZ4Hop3UTmRMTEywdu1a3L17F2FhYdi8eTNu376NTZs2QSBQbwG8w4cPY9q0aWjdujXatWuHDRs2IDk5GdHR0UrbxcTEYOXKlfjzzz/VDVfn2ViYYG6wLwBgxdE7yCmu4Dii2ikWiqT6GJXYiYSwezx0VldncSaNLymrGP93JhEAsHCoPy0y2sj4fB7Gd3oy0y+pX5VUhhO30zmNocFl725ubhgyZAjGjx8PHx8fjQSTn189B8nTSx2UlJRg8uTJ+OWXX+Dk5FTvPsrLy1FQUKB00XWTurihpZMY+aWVWHm09q43LjHGEJlIM/qqy5tm+CXPkV1Ujg+2xaBCKkNPXwedmxxTV40LdIGAz0PU/VwkUNfvcxWVV2HmX1F4Y0MUdkU/4CwOlWb2/eijj1Te4ffff9+gQGQyGebMmYPu3bsjICBAcfuHH36IoKAgjBw5UqX9LFu2DEuWLGlQDNrKSMDHkhGtMeGPC9hyKRmTtGxa8od5pUgrKIMRn4f2rtZch6MzfB3FuJiYQwW/pIaEjEJM3xCJlJxSWJoaYfFwf4PsWueCxNIUfVtKEB6bjq2XUvD5MH+uQ9JKD/NKMWNDJG6nFcLUmA8LIXethSolMleuXFG6fvnyZVRVVcHPr3p67Dt37kAgECAwMLDBgYSEhODGjRv477//FLft378fJ06cqPH8z7NgwQKlxKugoACurq4NjktbdG1hh+HtmuHfq4+w5N+b2P52N605sUU97lYKaG4FMxNq+lbVkyHYlMiQJ/6Lz8Ksv6NRWFYFN1tz/DmtM7wcRFyHZVAmdnZFeGw6dl95iHmD/CA0ovPa066m5OHNv6KQWVgOB7EQ/zelE9px+CNWpUTm5MmTiv9///33EIvF2LhxI2xsqushcnNzMX36dPTo0aNBQcyePRthYWE4ffo0XFxcFLefOHECd+/ehbW1tdL2Y8eORY8ePRAREVFjX0KhEEKhsEFxaLsFg1viWGw6IpNysf/qI4xsrx3D3Wl9pYbxUay5RF1LpNo/l5Lx+d4bkMoYOrnb4I8pnWgZAg708nWAo6UQ6QXlOBabgaFtnbkOSWscvpGKOdtiUFYpQ0snMdZN64zmHI+kU7tGZuXKlVi2bJkiiQEAGxsbfPnll1i5cqVa+2KMYfbs2dizZw9OnDgBT09Ppfvnz5+Pa9euISYmRnEBgFWrVmH9+vXqhq7zmlmbIaSPFwDg64O3UFyuHaNdImnF6waRzyXzILdUa15Lwg2ZjGHZwVtYsPs6pDKGke2bYfObXSmJ4YiRgI9xgdUt+VtpThkA1d/Xv526i3c2X0ZZpQy9/Rywc1YQ50kM0IBEpqCgAJmZmTVuz8zMRGGhek3kISEh2Lx5M7Zs2QKxWIy0tDSkpaWhtLR6Sn4nJycEBAQoXYDqQuNnkx5D8WaPFnCzNUd6QTl+PpnAdTjIK6lQFKt2ohFLarG1MIG9iEYuGbqSiiq8szkav5+uXlftw/6++GFCexqhxDH56KX/ErKQklPCcTTcqqiSYf6u6/jmUPV8RtOCPPB/UzpBJFSpU6fRqZ3IjB49GtOnT8fu3bvx4MEDPHjwALt27cKMGTMwZswYtfa1Zs0a5Ofno3fv3nB2dlZctm3bpm5YBsPUWICFj4vP1p1JRGJWzTl3mlL04/WVvBwsYCfSzy69xqSYGI/qZAxSekEZJvx+AUdj02Ei4GP1xPb4oL+P1tS/GTI3O3O87G0PxoAdUYY7FDu/pBLT1l/CtqgU8HlA6HB/rVvrS+106rfffsPcuXMxefJkVFZWL3duZGSEGTNm4LvvvlNrXw1ZmIsW8wL6t5Kgp68DTt/JxJdhsVg3rTNnsSjmj6FupQbxdRTh/L1sqpMxQLGPCjBjYyRS88tga2GCP14PpO5ZLTOhsyv+S8jC9qgH+KC/r8FN9nk/uxjTN0TiXmYxLEwE+HlyR/RpKeE6rBrUTqnMzc3x66+/Ijs7G1euXMGVK1eQk5ODX3/9FRYWFo0RI3kGj8fD4uH+MOLzcPx2Bk7ezuAsliiqj3khtAq2YTpxOx2v/HYOqfll8HKwwJ53g+gzpIWCWzvC2twYaQVlOH2nZkmFPotMysGoX87iXmYxmlmZYuesIK1MYoAXmBDPwsICbdu2Rdu2bSmB4YCXgwhvvFxdJ7Q0LBblVdImj6GsUoprD6onMaQRSw3zZPFIapExBIwxrD+biDc3RqGkQoogLzvsntUd7nZ0DtVGQiMBxnSoHklrSEW/e688xKtrLyK3pBJtXaywN6S7Vq+hp3bXUp8+fZ7bf3vixIkXCoio7r2+3thz5SESs4qx/mwS3unl1aTPf/1hPiqkMjiIhXCzNW/S59YX8rlkHuaVoujxoptEP1VJZVgaFou/zt8HUD1XyRejAmCsRbUGpKaJXVzx59lEHL+VgYzCMkjEplyH1GgYY/jhWDxWH48HAAxq7YRVE9pr/fxgan+C2rdvj3bt2iku/v7+qKiowOXLl9GmTZvGiJHUQWxqjPmDWgIAfjoej/SCsiZ9/qfnj6HixIaxNjeBg7i6SJpm+NVfhWWVmLExCn+dvw8er3pOqGVj2lASowN8HcXo6GaNKhnDruiHXIfTaMoqpfhga4wiiXmnlxd+fbWj1icxQANaZFatWlXr7aGhoSgqoubxpja6Q3NsvngfV5Lz8M2h21g1oX2TPbd8Rt9O7tS3/yJ8HUXILCxHfHoROrhRF52+eZBbghkbohCXXj2V+w8TOmBQQP3rxhHtMbGzGy4n52FbZDLe6dVC7364ZReV461N0Yi+nwsjPg9fjQ7AhM5uXIelMo39HHjttdcMcnVqrvH5PIQObw0eD9hz5aGi+LaxyWRM8Vw0YunF0BBs/RWTkodRv5xDXHohHMRCbH+7GyUxOmhoW2dYmAiQlF2Ci4lNc45tKgkZhRj161lE38+FpakR/nqji04lMYAGE5nz58/D1FR/+w61WTtXa4x/PAtl6L83IZU1/hD1OxmFKCirgoWJAK2cxY3+fPpMXvB7h4Zg65WD11Mx4ffzyCoqR0snMfaFdEdbF2uuwyINYCE0woj2zQAA2yL1Z06ZswlZGP3rOaTklMLN1hy73+2OIG97rsNSm9pdS89OescYQ2pqKqKiorBw4UKNBUbUM2+QHw7eSMWNhwXYFpmCyV0bN6OWzx/T0d1GqyZG0kXygl+qkdEPjDGsOXUXyw/HAQD6tpTgx0kdqJBbx03o7IZ/LqXg4PVUhA5vDStzY65DeiH/XErGwr03UKUH63qp/Q1kaWkJKysrxcXW1ha9e/fGwYMHsXjx4saIkajAXiTEh/19AQDfHbmN/JLKRn0+xfwxVB/zwuRzyaTml6GgrHFfN9K4Kqpk+GTnNUUSMy3IA2u1aCp30nDtXKzQ0kmM8ioZ9sbobtHv0+t6VckYRrVvhr9n6va6Xmp/ujZs2NAIYRBNeL2bO/65lIz4jCKsOnYHoSNaN9pzRSlm9KXi1BdlZWasWGk3Pr0IgbRmlU7KK6nAO5ujceFeDvg8YPHw1pga5MF1WERDeDweJnZ2Rei/sfjnUjKmdHPXuaLfkooqzNkag6Ox6QCq1/V6v5+3zh3Hs9RukWnRogWys7Nr3J6Xl4cWLVpoJCjSMMYCviJ52XThPm6nFTTK8zzMK8XDvFII+Dy0d7NulOcwNPKCX+pe0k1JWcUY8+s5XLiXA5HQCOumdaYkRg+N6tAcJkZ83E4rxPWH+VyHoxZ9XtdL7UQmKSkJUmnNWWTLy8vx8KHuNrfpi+7e9hgc4ASpjCF0/81GWZtK3q0U0MwS5ibUZK4JPo/rZO7QDL8651JiDkb9ehb3sorR3NoMO2d1Qx8/7ZzKnbwYa3MTDH486myrDhX9xj4qwKhfzuL6w3zYWphgy8yuGNm+OddhaYzK30L79+9X/P/IkSOwsrJSXJdKpTh+/Dg8PDw0GhxpmM+GtMKJ2xm4cC8HB6+nYWhbZ43uXzF/DA271hjFUgUZ1CKjS3ZffoBPd11DpZShnYsV1k7tpNczv5LqhST3xTzC/phH+HxoK63/MXfidjre23IFxRVSeDlYYP20LnCz06+Z2FV+BUaNGgWgup9w6tSpSvcZGxvDw8MDK1eu1GhwpGFcbc0xq7cXfjgWj68OxKJvS4lGZ2d8ekZfohlPRi5Ri4wuYIxhVfgd/HgiAQAwOMAJ34/X/qncyYvr1sIOHnbmSMouQdi1VIzv5Mp1SLVijGHDuSR8ERYLGQO6e9vh11cDYWWm26OtaqNy15JMJoNMJoObmxsyMjIU12UyGcrLyxEXF4dhw4Y1ZqxEDe/08kJzazM8yi/DmogEje03v6QScY/rOKhFRnO8H9fIpBWUIb+URi5ps7JKKd7fGqNIYmb19sIvk3VjKnfy4ng8HsZ3rk5etHVOmSqpDIv338SSf6uTmImdXbFhehe9TGKABtTIJCYmwt5e9ybMMTSmxgJ8PrQVAOC30/eQklOikf1eTs4FY0ALewvYi4Qa2SepHrnkZFndJZFA3UtaK6uoHJPXXsC/Vx/BiM/D8lfa4tNBLcHn637BJFHdKx1dIODzEH0/V+sK9J9d1+uzIfq/rpfKR3b+/HmEhYUp3fbXX3/B09MTEokEb731FsrLyzUeIGm4QQFOCPKyQ0WVDF8eiNXIPuXdSp2oW0njqOBXu8WnF2LUL2dxOTmveir3GV20tluBNC6JpSn6tqwu6NamVpkHuSV4Zc15nLqTCVNjPta8Goi3enrpxcik51E5kVm6dClu3rypuH79+nXMmDED/fv3x/z58/Hvv/9i2bJljRIkaRgej4fQEa0h4PNw5GY6zsRnvvA+qdC38SiWKtCyX3gEOBOfiTG/nsOD3FK425ljT0h3BHlRy7Qhm/i4e2n3lYcor6o5krepPb2ul8TA1vVSOZGJiYlBv379FNe3bt2Krl27Yu3atfjoo4/w448/Yvv27Y0SJGk4X0cxpnRzBwCE7r+JSqmswfsqr5Ii5kEeAFoosjFQwa922nIxGdPWR6KwvAqdPWyw593u8HIQcR0W4VgvXwc4WZoip7gC4Y8nmOPKs+t67TWwdb1UTmRyc3Ph6OiouH7q1CkMHjxYcb1z585ISdGeJjbyxJz+vrCzMMHdzGJsPJfU4P3ceJiPiioZ7EUm8NCz4XvawIdaZLSKVMbw1YFYfLbnOqQyhtEdmmPzm7o9lTvRHCMBH+M6uQDgrnuJMYZfTibg3b8vo7xKhr4tJdg5KwjNrM04iYcrKicyjo6OSExMBABUVFTg8uXLeOmllxT3FxYWwthYPyuidZ2VmTE+GeQHAFh9LB6ZhQ2rZZIvFNnJ3Vbv+1y54COp/pWfUVje6GtlkecrqajCO5ujsfZM9TnvowG++H58OwiNaGQSeUJeI3UmPktjAypUJV/X67sj1et6Te9uuOt6qZzIDBkyBPPnz8eZM2ewYMECmJubo0ePHor7r127Bi8vr0YJkry4cYGuaOtihcLyKiw/fLtB+4iiQt9GJTY1RjOr6pFLd2jkEmfS8ssw/vfzCI9Nh4lR9VTu7/fTj6nciWa52prjZe/qWqkdUU3XKpNXUoEpf17EjugH4POApSNbY/Hw6npIQ6RyIvPFF1/AyMgIvXr1wtq1a7F27VqYmDxpYv3zzz8RHBzcKEGSF8fn8xTrMO2IfoCYlDy1Hi+TMUWLTBdPqo9pLNS9xK2bj/Ix6pezuPGwAHYWJvhHz6ZyJ5o34XHR7/aoB5DKNL8kzLNqW9drSjePRn9ebaZyG5S9vT1Onz6N/Px8iEQiCATKTaw7duyASEQFcNqso5sNxnZ0wa7LD7B4/03smRWk8vwXCZlFyC+thLmJAP7Olo0cqeHydRTh1J1MKvjlwLHYdLy/9QpKKqTwlojw59TOejeVO9G84NaOsDE3RlpBGU7dyUDflo71P6iBLiXm4K1NUcgrqURzazOsm9YJLZ3ofKz2DDlWVlY1khgAsLW1VWqhIdrp00F+EAmNcDUlDzsvP1D5cfL5Yzq4WcNIjydW4hq1yDQ9xhjW/ZeImZuiUFIhxcve9tg1K4iSGKISoZEAYzpWF/1uvdR43Uu7Lz/Aq/93AXkllWjnYoU9IUGUxDxG30gGRmJpivf7eQMAlh++jYIy1YpKo54q9CWN58lcMtQi0xSqpDIs3HcDX4TFgjFgUhc3rJ/eWW+ncieNQ969dPx2BjIKyzS6b8YYvj8ah4+2X0WllGFIGydsfasbLU76FEpkDNC0IE+0cLBAVlEFfjwWr9JjniwUSYlMY5KPXMoqKkducQXH0ei3grJKvLExCpsvJIPHA/43pBW+Hh2g11O5k8bh6yhGRzdrSGUMu6Ifamy/ta3r9fMkWtfrWfSJNUAmRnwsGuYPANhwLqnetX1S80vxILcUAj4P7d2smyBCw2UhNELzx3NAUPdS40nJKcEra87h9J1MmBkL8NtrgZjZswWNTCINNrGLGwBgW2QyGHvxol9a10t1lMgYqN5+EvRv5YgqGUPo/tjnfvDk3Ur+zpYGOUdBU5PP8Hsng7qXGsOV5FyM/vUs7qQXKaZyH9jaMKZyJ41naBtniIRGSMouwYV7OS+0L1rXSz2UyBiwhcNawcSIj/8SsnD0OVNs0/wxTUte8Kttq+rqg7BrjzDxjwvIKqpAK2dL7JvdHW1crLgOi+gBC6ERhrdrBqC6VaahaF0v9VEiY8Dc7SzwVo8WAIAvwmJRVln7wmeX5PPHUH1Mk5DXyVDXkubIp3KfveUKyqtk6NdSgp3vdIOzlWFN5U4al3whyYM30ho0O/fT63p18bCldb1URImMgXu3jxecLE3xILcUf5y+V+P+grJK3E4rAAAEUotMk5CPXEqgriWNqKiSYe6OJ1O5v9HdE39M6QQL6iYlGtbWxQotncSoqJJhb4zqRb+1reu16c0utK6XiiiRMXDmJkb4bGgrAMCvEQl4mFeqdP/l+7lgDPCwM6fhfk3EWzFyqQI5NHLpheQWV+D1dRex6/IDCPg8fDGyNRYN9zfYqdxJ4+LxeJj0uOj3n0uqFf3Sul4vjhIZguFtndHF0xZllTJ8ffCW0n2K+WOoW6nJWAiN4GJDI5deVGJWMcasOYeLiY+ncp/aCa8b+FTupPGNat8cJkZ83E4rxLUH+c/dNi2/DON+o3W9XhQlMgQ8Hg+hw1uDzwMOXEvFubtZivuezB9D3UpNyZcKfl/IhXvZGP3rWSRmFaO5tRl2zQpCbz8J12ERA2BlbowhAdWj4LZG1j3T742H1et63XxE63q9KEpkCADAv5klXu3qDgBYsj8WVVIZKqpkisUlqUWmafnIh2DTDL9q2xX9AK+vu1g9lburNfaEBMHPScx1WMSATOhc3b20P+Yhisuratx/LDYd438/j7SCMnhLRNgb0h2BNGt6g1EiQxQ+GuALa3NjxKUX4u+LybjxKB/lVTLYWpighb0F1+EZFF8JrbmkLpmMYcWROHy8o3oq96FtnLHtrZeotos0uZda2MLDzhzFFVIcuJ6quJ0xhv87c6/Gul6utrSu14vgNJFZtmwZOnfuDLFYDIlEglGjRiEuLk5pm7fffhteXl4wMzODg4MDRo4cidu3b3MUsX6zsTDB3GA/AMDKo3E4cjMNANDJ3Yb6bJuYomuJRi6ppKxSive2XsHPJ6uncg/p44WfJnWAqTEVTJKmx+PxFK0y2x53L8nX9frywC1a10vDOE1kTp06hZCQEFy4cAHh4eGorKxEcHAwiouLFdsEBgZi/fr1uHXrFo4cOQLGGIKDgyGV1j7nCXkxk7q4oZWzJQrKqhTDsbt4UpNnU/OWiMDjATnFFcgqKuc6HK2WWViOiX9cwIFrqTAW8PDdK20xbyBN5U64NTawOQR8HqLv5+Jyci6mb4ikdb0aCY9pYlEIDcnMzIREIsGpU6fQs2fPWre5du0a2rVrh4SEBHh5edW7z4KCAlhZWSE/Px+WlrTkuSouJeZg/O/nFdf3hnRHe1dr7gIyUD2Xn0RyTgm2zOxKM3vW4U56Iaavj8TDvFJYmRnjt9cC0c3LjuuwCAEAvPVXFI7GpsNYwEOllMHMWIAfJranJTFUpOr3t1alg/n51UPVbG1rbwEoLi7G+vXr4enpCVfX2tedKC8vR0FBgdKFqKeLpy1Gtq+eatvUmI/WzSgB5IJ8zaV4KvitVWp+KV5Zcw4P80rhYWeOPe8GURJDtMrELtXfU5VSBkdLIXa8Q+t6NQatSWRkMhnmzJmD7t27IyAgQOm+X3/9FSKRCCKRCIcOHUJ4eDhMTGqf8XDZsmWwsrJSXOpKeMjzfTakFQKaW2J6d09q/uSIfM0lKvit3bKDt1FQVoXWzSyx593uaEFTuRMt09PHAT187NHFwxZ7Q7ojoDmt69UYtKZradasWTh06BD+++8/uLi4KN2Xn5+PjIwMpKamYsWKFXj48CHOnj0LU9OaoxHKy8tRXv6kpqCgoACurq7UtUR0zp4rD/Dhtqvo4mGL7e904zocrSLv/uTxgH9nv0xfEIToIVW7lrRisZHZs2cjLCwMp0+frpHEAFC0rvj4+OCll16CjY0N9uzZg0mTJtXYVigUQigUNkXYhDQqH/kQ7IxCMMZo5NhjUhnD4v03AVQXp1MSQ4hh47TPgDGG2bNnY8+ePThx4gQ8PT1VegxjTKnVhRB95C0Rgc8D8koqkUkjlxS2XErGrdQCWJoaKaYLIIQYLk5bZEJCQrBlyxbs27cPYrEYaWnV85ZYWVnBzMwM9+7dw7Zt2xAcHAwHBwc8ePAA33zzDczMzDBkyBAuQyek0ZkaC+Bma46k7BLEpxfRxG6oXgRy5dHquaY+Dvaj1YEJIdy2yKxZswb5+fno3bs3nJ2dFZdt27YBAExNTXHmzBkMGTIE3t7emDBhAsRiMc6dOweJhNZNIfqPCn6VfR9+B3kllWjpJMarXd24DocQogU4bZGpr864WbNmOHjwYBNFQ4j28ZGIEB6bTmsuAYh9VIC/L94HACwe3hpGNJqOEAItGn5NCKmJVsGuxhhD6P6bkDFgaFtnmi+GEKJAiQwhWky+CnZ8RlG9LZj67N9rqbiUlANTYz4+G9KK63AIIVqEEhlCtJiXQ/XIpfzSSmQWGubIpZKKKnx94BYAIKS3N5pbm3EcESFEm1AiQ4gWMzUWwN3OAgAMtk7ml5MJSCsog6utGWb2bMF1OIQQLUOJDCFazkdS3b1kiCOX7mcXY+3pRADA50P9YWos4DgiQoi2oUSGEC2nKPjNMLxE5ouwW6iQytDDxx7B/o5ch0MI0UKUyBCi5eQFv4bWtRQRl4Fjt9JhxOdh8XB/WqKBEFIrSmQI0XK+T02KZygjlyqqZFj6bywAYFqQB7wfrztFCCHPokSGEC3XwsECAj4PhWVVSC8wjJFLG84l4l5WMexFQnzQ34frcAghWowSGUK0nNBIAHc7cwCGUfCbUVCG1cfiAQCfDvKD2NSY44gIIdqMEhlCdICvxHDWXPrm8G0UV0jR3tUaYzu6cB0OIUTLUSJDiA7wlc/wq+cFv9H3c7H78kMAwJIRrcHnU4EvIeT5KJEhRAcoVsHW4yHYMln1ekoAML6TC9q5WnMbECFEJ1AiQ4gOkI9cSkjX3zWXtkel4PrDfIiFRpg3sCXX4RBCdAQlMoToAE97CxjxeSgsr0JqfhnX4Whcfmkllh+JAwB80N8HDmIhxxERQnQFJTKE6AATIz487OVrLulf99IPx+4gp7gC3hIRpgZ5cB0OIUSHUCJDiI7Q14LfuLRC/HX+PgBg8XB/GAvotEQIUR2dMQjREd56OASbMYYl/96EVMYwsLUjevg4cB0SIUTHUCJDiI6Qt8jcydCfFpnDN9Jw7m42hEZ8fD7Un+twCCE6iBIZQnTEk5FL+rHmUmmFFF8euAUAeLuXF1xtzTmOiBCiiyiRIURHeNhVj1wqrpDikR6MXPrt1F08zCtFc2szzOrlxXU4hBAdRYkMITrCxIgPTz0ZuZSSU4LfTt0FAPxvaCuYmQg4jogQoqsokSFEh8i7l+J1PJH5+uAtlFfJ0K2FHQYHOHEdDiFEh1EiQ4gO8ZEX/OrwEOyzCVk4dCMNAj4Pi0f4g8ej9ZQIIQ1HiQwhOkTXW2QqpTLFekqvv+SOlk6WHEdECNF1lMgQokMUk+JlFEEm072RS5vO30d8RhFsLUzwYX9frsMhhOgBSmQI0SHudhYwFvBQUiHFw7xSrsNRS1ZROVYduwMAmDfQD1bmxhxHRAjRB5TIEKJDjAV8tLCXt8roVvfSd4fjUFhWhYDmlhjfyZXrcAgheoISGUJ0jC4W/F5NycP26BQAwJIRrSHgU4EvIUQzKJEhRMfIC351ZS4ZmYxh8f6bYAwY06E5At1tuQ6JEKJHKJEhRMfo2irYu688RExKHixMBJg/uCXX4RBC9AwlMoToGB/5mks6MHKpsKwS3xy6DQB4v58PJJamHEdECNE3lMgQomPcbc1hIuCjtFKKB7naPXLppxMJyCoqRwt7C0zv7sl1OIQQPUSJDCE6xkjARwsH7V9zKSGjCH/+lwgAWDjcHyZGdLohhGgenVkI0UGKgl8tHYLNGMOSf2+iSsbQr6UEffwkXIdECNFTlMgQooN8JNpd8HvsVgbOxGfBRMDHwmH+XIdDCNFjlMgQooN8tHgIdlmlFF+ExQIA3uzhCQ97C44jIoToM04TmWXLlqFz584Qi8WQSCQYNWoU4uLiFPfn5OTgvffeg5+fH8zMzODm5ob3338f+fn5HEZNCPfkQ7ATMoog1bKRS/935h6Sc0rgZGmKkD7eXIdDCNFznCYyp06dQkhICC5cuIDw8HBUVlYiODgYxcXFAIBHjx7h0aNHWLFiBW7cuIENGzbg8OHDmDFjBpdhE8I5dzsLmBjxUV4lw4PcEq7DUXiUV4pfTt4FACwY0hIWQiOOIyKE6DtOzzKHDx9Wur5hwwZIJBJER0ejZ8+eCAgIwK5duxT3e3l54auvvsJrr72GqqoqGBnRSZIYJgGfBy8HEW6lFuBOehHc7bSj++brg7dQWilFZw8bjGjXjOtwCCEGQKtqZORdRra2dU9hnp+fD0tLyzqTmPLychQUFChdCNFHvoo1l7SjTubCvWyEXUsFnweEjmgNHo/WUyKEND6tSWRkMhnmzJmD7t27IyAgoNZtsrKy8MUXX+Ctt96qcz/Lli2DlZWV4uLqSqvsEv0kH4IdrwWJTJVUhtD9NwEAk7u6oXUzK44jIoQYCq1JZEJCQnDjxg1s3bq11vsLCgowdOhQ+Pv7IzQ0tM79LFiwAPn5+YpLSkpKI0VMCLfkQ7C1YRXsfy4l43ZaIazMjPHxAD+uwyGEGBCtKDKZPXs2wsLCcPr0abi4uNS4v7CwEIMGDYJYLMaePXtgbGxc576EQiGEQmFjhkuIVpC3yNzNrB65JOBz05WTU1yBFUfvAADmBvvCxsKEkzgIIYaJ0xYZxhhmz56NPXv24MSJE/D0rLkWS0FBAYKDg2FiYoL9+/fD1JQWnSMEAFxtzSF8PHIpOYe7kUsrj8Yhv7QSLZ3EmNTFjbM4CCGGidNEJiQkBJs3b8aWLVsgFouRlpaGtLQ0lJZWL4QnT2KKi4uxbt06FBQUKLaRSqVchk4I5wR8Hrwl3Bb83niYjy2XkgEAS0a0hpFAa3qrCSEGgtOzzpo1a5Cfn4/evXvD2dlZcdm2bRsA4PLly7h48SKuX78Ob29vpW2o9oUQbgt+5espMQYMb9cMXVvYNXkMhBDCaY0MY8+fkbR37971bkOIIfNx5K7gd//VR4hMyoWZsQCfDWnZ5M9PCCGAFo1aIoSoz1fCzZpLxeVV+PrgLQDA7L7ecLYya9LnJ4QQOUpkCNFh8q6le5nFqJLKmux5fz6ZgPSCcrjZmmPGyzWL9AkhpKlQIkOIDnOxMYOZsQAVUhnuN9HIpcSsYqw7kwgAWDjMH6bGgiZ5XkIIqQ0lMoToMP5TI5eaquD3y7BYVEhl6OXrgP6tJE3ynIQQUhdKZAjRcU1Z8HvydgaO386AEZ+HRcP9aT0lQgjnKJEhRMf5NFHBb3mVFEvDYgEAb7zsCS8HUaM+HyGEqIISGUJ0nHwV7PhGbpFZfzYJiVnFcBAL8V5f70Z9LkIIURUlMoToOMXIpawiVDbSyKX0gjL8dDweADB/UEuITete74wQQpoSJTKE6Ljm1tUjlyqlDPezG2fk0jeHbqO4QooObtYY3aF5ozwHIYQ0BCUyhOg4Pp+nKPhtjJFLUUk52HPlIXi86vWU+Bytsk0IIbWhRIYQPfCk4FezdTJSGUPovzcBABM6uaKti7VG908IIS+KEhlC9IC84PdOhmZbZLZHpeDGwwKITY0wd6CfRvdNCCGaQIkMIXqgMVbBzi+pxHdH4gAAH/b3hb1IqLF9E0KIplAiQ4gekNfIJGYVa2zk0qpjd5BTXAFfRxFe7+aukX0SQoimUSJDiB5obm0GC5PqkUtJWcUvvL/baQXYdOE+AGDx8NYwFtCpghCinejsRIge4PF48HbUTMEvYwyh+29CKmMYHOCE7t72mgiREEIaBSUyhOgJX4l8zaUXq5M5eD0NF+7lQGjEx2dDWmkiNEIIaTSUyBCiJxQFvy8wcqm0QoqvDlSvpzSrtxdcbc01EhshhDQWSmQI0ROaWAV7TUQCHuWXobm1Gd7p5aWp0AghpNFQIkOInpC3yCRlFaOiSv2RSyk5Jfjt9D0AwOdDW8HUWKDR+AghpDFQIkOInnC2MoVYaIQqGUNiA0YufXkgFhVVMnT3tsOgAKdGiJAQQjSPEhlC9ET1yKWGFfyeic/EkZvpEPB5WDy8NXg8Wk+JEKIbKJEhRI/4StSf4bdSKsOSf6sLfKd0c1d0URFCiC6gRIYQPdKQgt+N55KQkFEEOwsTzOnv21ihEUJIo6BEhhA94iOfFE/FIdiZheVYfSweAPDJID9YmRk3WmyEENIYKJEhRI/IV8G+n12C8ippvdsvP3wbheVVaOtihXGBro0dHiGEaBwlMoToESfL6pFLUhVGLsWk5GFH9AMAQOiI1uDzqcCXEKJ7KJEhRI/weDyV6mRkMobF+28CAMZ2dEFHN5smiY8QQjSNEhlC9IxiqYLnjFzaefkBrqbkQSQ0wqeD/JoqNEII0ThKZAjRM4qC3zoSmYKySiw/fBsA8H4/b0gsTZssNkII0TRKZAjRM/KC3/g6upZ+PBaPrKIKtHCwwLQgz6YMjRBCNI4SGUL0jGLNpexilFUqj1xKyCjEhnNJAIBFw/xhYkSnAEKIbqOzGCF6RiIWwtLUCDIG3Mt8MnKJMYYl/8aiSsbQv5UjevtJOIySEEI0gxIZQvQMj8d7UvD71MR4R2PTcSY+CyZGfCwa5s9VeIQQolGUyBCih54t+C2rlOKLsOr1lN7q0QJuduacxUYIIZpEiQwhesj3mblk/jh9Dw9yS+FkaYp3+3hxGRohhGgUJTKE6KGn55J5mFeKXyMSAACfDW0FcxMjLkMjhBCN4jSRWbZsGTp37gyxWAyJRIJRo0YhLi5OaZs//vgDvXv3hqWlJXg8HvLy8rgJlhAdIp/d935OCRbvu4myShm6eNpieFtnjiMjhBDN4jSROXXqFEJCQnDhwgWEh4ejsrISwcHBKC5+MtKipKQEgwYNwmeffcZhpIToFgeRENbmxmAMOHYrHXweEDq8NXg8Wk+JEKJfOG1jPnz4sNL1DRs2QCKRIDo6Gj179gQAzJkzBwAQERHRxNERort4PB58JWJcSsoBALza1R3+zSw5jooQQjRPqzrL8/PzAQC2trYN3kd5eTnKy8sV1wsKCl44LkJ0kY+jCJeScmBtboyPg325DocQQhqF1hT7ymQyzJkzB927d0dAQECD97Ns2TJYWVkpLq6urhqMkhDdMbpDc7jZmuPr0W1gbW7CdTiEENIoeIwxxnUQADBr1iwcOnQI//33H1xcXGrcHxERgT59+iA3NxfW1tZ17qe2FhlXV1fk5+fD0pKa1gkhhBBdUFBQACsrq3q/v7Wia2n27NkICwvD6dOna01i1CEUCiEUCjUUGSGEEEK0GaeJDGMM7733Hvbs2YOIiAh4etJKvIQQQghRHaeJTEhICLZs2YJ9+/ZBLBYjLS0NAGBlZQUzMzMAQFpaGtLS0pCQUD2h1/Xr1yEWi+Hm5vZCRcGEEEII0X2c1sjUNafF+vXrMW3aNABAaGgolixZ8txtnkfVPjZCCCGEaA9Vv7+1pti3sVAiQwghhOgeVb+/tWb4NSGEEEKIuiiRIYQQQojOokSGEEIIITqLEhlCCCGE6CxKZAghhBCisyiRIYQQQojOokSGEEIIITqLEhlCCCGE6CxKZAghhBCis7Ri9evGJJ+4uKCggONICCGEEKIq+fd2fQsQ6H0iU1hYCABwdXXlOBJCCCGEqKuwsBBWVlZ13q/3ay3JZDI8evQIYrG4zkUqG6KgoACurq5ISUnR2zWc9P0Y9f34AP0/Rjo+3afvx0jH13CMMRQWFqJZs2bg8+uuhNH7Fhk+nw8XF5dG27+lpaVevjmfpu/HqO/HB+j/MdLx6T59P0Y6voZ5XkuMHBX7EkIIIURnUSJDCCGEEJ1FiUwDCYVCLF68GEKhkOtQGo2+H6O+Hx+g/8dIx6f79P0Y6fgan94X+xJCCCFEf1GLDCGEEEJ0FiUyhBBCCNFZlMgQQgghRGdRIkMM3oYNG2Btba3WY0pKSjB27FhYWlqCx+MhLy+vUWJTR0RERKPGMm3aNIwaNapR9q0puhCjqkJDQ9G+fXuuw2gUDfnMySUlJYHH4yEmJkajMZEXw+VnT+8TmfPnz0MgEGDo0KFch1InHo+HvXv3Nvnz6tpJPzMzE7NmzYKbmxuEQiGcnJwwcOBAnD17tslj2bhxI86cOYNz584hNTVVpUmbnjZt2jTweDzweDyYmJjA29sbS5cuRVVVVSNFrF0a67VcvXo1NmzYoLjeu3dvzJkz58WCfQG6cP5pKF07fzSUPr+Gck+fj4yNjeHp6YlPPvkEZWVlKu/j2c9efTSZkOr9zL7r1q3De++9h3Xr1uHRo0do1qwZ1yGRBho7diwqKiqwceNGtGjRAunp6Th+/Diys7ObPJa7d++iVatWCAgIaPA+Bg0ahPXr16O8vBwHDx5ESEgIjI2NsWDBAqXtKioqYGJi8qIhaxVNv5ZSqRQ8Hk/thLKxadv5p7KyEsbGxpzGoGu07TVsLPLzUWVlJaKjozF16lTweDx8++23Kj2e088e02OFhYVMJBKx27dvswkTJrCvvvpKcd+kSZPY+PHjlbavqKhgdnZ2bOPGjYwxxnr16sXee+89Nm/ePGZjY8McHR3Z4sWLlR6Tm5vLZsyYwezt7ZlYLGZ9+vRhMTExStvs3buXdejQgQmFQubp6clCQ0NZZWUlY4wxd3d3BkBxcXd31/wfog5Tp05lI0eOZIwxdujQIda9e3dmZWXFbG1t2dChQ1lCQoJi2z59+rCQkBClx2dkZDBjY2N27NixRo81NzeXAWARERHP3W7lypUsICCAmZubMxcXFzZr1ixWWFiotM369euZq6srMzMzY6NGjWIrVqxgVlZWivsTEhLYiBEjmEQiYRYWFqxTp04sPDxccX+vXr2UXrNevXqpfTxP/+3lBgwYwF566SXFfV9++SVzdnZmHh4ejDHG/vrrLxYYGMhEIhFzdHRkkyZNYunp6YrHnzx5kgFgubm5jDHGiouL2aBBg1hQUBDLzc1lWVlZbOLEiaxZs2bMzMyMBQQEsC1btijFsGPHDhYQEMBMTU2Zra0t69evHysqKlKK+bvvvmNOTk7M1taWvfvuu6yiokKtY1fltazvdVy/fj2zsrJi+/btY61atWICgYAlJiYq/V2nTp2q9DoBYImJiayqqoq98cYbzMPDg5mamjJfX1/2ww8/qHUMqnje+Uf+Wh07dowFBgYyMzMz1q1bN3b79m3FNosXL2bt2rVTXE9ISGCenp4sJCSEyWQy5u7uzlatWqX0nO3atVM6RwFgv/76Kxs+fDgzNzevcf56EbW9h+VUff3kMjIyWGBgIBs1ahQrKytjOTk5bPLkycze3p6Zmpoyb29v9ueffzLGGEtMTGQA2K5du1jv3r2ZmZkZa9u2LTt37pzGjk1Oldfw8OHDrH379szU1JT16dOHpaens4MHD7KWLVsysVjMJk2axIqLixWPq+9c25THJ1fbazlmzBjWoUMHxhhT6dzx7D7qO85nP5sNOY/K6XXX0vbt29GyZUv4+fnhtddew59//qlYDvzVV1/Fv//+i6KiIsX2R44cQUlJCUaPHq24bePGjbCwsMDFixexfPlyLF26FOHh4Yr7x40bh4yMDBw6dAjR0dHo2LEj+vXrh5ycHADAmTNnMGXKFHzwwQeIjY3F77//jg0bNuCrr74CAERGRgIA1q9fj9TUVMX1plZcXIyPPvoIUVFROH78OPh8PkaPHg2ZTAYAePPNN7FlyxaUl5crHrN582Y0b94cffv2bfT4RCIRRCIR9u7dqxTDs/h8Pn788UfcvHkTGzduxIkTJ/DJJ58o7r948SJmzJiB2bNnIyYmBn369MGXX36ptI+ioiIMGTIEx48fx5UrVzBo0CAMHz4cycnJAIDdu3dj5syZ6NatG1JTU7F7926NHKOZmRkqKioAAMePH0dcXBzCw8MRFhYGoPrX9BdffIGrV69i7969SEpKwrRp02rdV15eHgYMGACZTIbw8HBYW1ujrKwMgYGBOHDgAG7cuIG33noLr7/+Oi5dugQASE1NxaRJk/DGG2/g1q1biIiIwJgxYxSfGQA4efIk7t69i5MnT2Ljxo3YsGGDWs3JgGqvZX2vI1Bdp/Ttt9/i//7v/3Dz5k1IJBKl+1evXo1u3bph5syZSE1NRWpqKlxdXSGTyeDi4oIdO3YgNjYWixYtwmeffYbt27erdRz1ed75R+5///sfVq5ciaioKBgZGeGNN96odV/Xrl3Dyy+/jMmTJ+Pnn39WawHc0NBQjB49GtevX69z/5qmyusnl5KSgh49eiAgIAA7d+6EUCjEwoULERsbi0OHDuHWrVtYs2YN7O3tlR73v//9D3PnzkVMTAx8fX0xadIkjXfNqvIahoaG4ueff8a5c+eQkpKC8ePH44cffsCWLVtw4MABHD16FD/99JNi+/rOtU15fHW5ceMGzp07p2gJru/cUZv6jlP+2GPHjr34ebTBKZAOCAoKUvzSqqysZPb29uzkyZNK1//66y/F9pMmTWITJkxQXO/Vqxd7+eWXlfbZuXNn9umnnzLGGDtz5gyztLRkZWVlStt4eXmx33//nTHGWL9+/djXX3+tdP+mTZuYs7Oz4joAtmfPnhc72AZ43i+qzMxMBoBdv36dMcZYaWkps7GxYdu2bVNs07ZtWxYaGtoUoTLGGNu5cyezsbFhpqamLCgoiC1YsIBdvXr1uY/ZsWMHs7OzU1yfNGkSGzJkiNI2EyZMUPp1WJvWrVuzn376SXH9gw8+eKFfEE//7WUyGQsPD2dCoZDNnTuXTZ06lTk6OrLy8vLn7iMyMpIBUPzSlf9CvHXrFmvbti0bO3ZsvfsYOnQo+/jjjxljjEVHRzMALCkpqc6Y3d3dWVVVleK2cePGKX1mVKXua/ns67h+/XoGoEbr57Pv6V69erEPPvig3nhCQkLY2LFj1T6O53ne+efpFhm5AwcOMACstLSUMfakRebs2bPMxsaGrVixQmn/qrbIzJkzR6PHJfe888ezanv9rKys2O3bt5mrqyt7//33mUwmU9w/fPhwNn369Fr3JW+x+L//+z/FbTdv3lS89zVJ3ddw2bJlDAC7e/eu4ra3336bDRw4sM7nePZc25THJzd16lQmEAiYhYUFEwqFDADj8/ls586ddT7m6XOHfB/Pez/UdZxXrlx54fj1tkUmLi4Oly5dwqRJkwAARkZGmDBhAtatW6e4Pn78ePz9998AqrPHffv24dVXX1XaT9u2bZWuOzs7IyMjAwBw9epVFBUVwc7OTvErUyQSITExEXfv3lVss3TpUqX75b8QS0pKGvVvoI74+HhMmjQJLVq0gKWlJTw8PABA0QphamqK119/HX/++ScA4PLly7hx40adLQKNYezYsXj06BH279+PQYMGISIiAh07dlRqETh27Bj69euH5s2bQywW4/XXX0d2drbib33r1i107dpVab/dunVTul5UVIS5c+eiVatWsLa2hkgkwq1btxR/C00JCwuDSCSCqakpBg8ejAkTJiA0NBQA0KZNmxp1MdHR0Rg+fDjc3NwgFovRq1cvAKgR14ABA+Dt7Y1t27Yp7UMqleKLL75AmzZtYGtrC5FIhCNHjige365dO/Tr1w9t2rTBuHHjsHbtWuTm5irtu3Xr1hAIBIrrT38e1FHfa1nf6wgAJiYmNT6fqvrll18QGBgIBwcHiEQi/PHHHxp9fes7/8g9Hb+zszMAKP09k5OTMWDAACxatAgff/xxg2Lp1KlTgx73IlR5/UpLS9GjRw+MGTMGq1evVmplmjVrFrZu3Yr27dvjk08+wblz52o8R31/uxfVkNfQ0dER5ubmaNGihdJtT8dV37m2tv02xvE9q0+fPoiJicHFixcxdepUTJ8+HWPHjgVQ/7mjNqoepybobSKzbt06VFVVoVmzZjAyMoKRkRHWrFmDXbt2IT8/H0B199Lx48eRkZGBvXv3wszMDIMGDVLaz7OFcTweT9E0VlRUBGdnZ8TExChd4uLiMG/ePMU2S5YsUbr/+vXriI+Ph6mpaRP8JVQzfPhw5OTkYO3atbh48SIuXrwIAIquDqC6eyk8PBwPHjzA+vXr0bdvX7i7uzdpnKamphgwYAAWLlyIc+fOYdq0aVi8eDGA6ir4YcOGoW3btti1axeio6Pxyy+/1DiO+sydOxd79uzB119/jTNnziAmJgZt2rRRax+qkJ844uPjUVpaqujGBKD4V664uBgDBw6EpaUl/v77b0RGRmLPnj0Aah7b0KFDcfr0acTGxird/t1332H16tX49NNPcfLkScTExGDgwIGKxwsEAoSHh+PQoUPw9/fHTz/9BD8/PyQmJir28bzPg7rqei1VfR3NzMzU6mKR27p1K+bOnYsZM2bg6NGjiImJwfTp0zX6+qpy/gGU/57yY3n67+ng4IAuXbrgn3/+QUFBgdJz8Pn8Gt0clZWVNWJ59r3U2FR9/YRCIfr374+wsDA8fPhQaR+DBw/G/fv38eGHH+LRo0fo168f5s6dq7RNfX+7F9XQ17C+z4gq59qmOL5nWVhYwNvbG+3atcOff/6JixcvKpK2+s4dtVH1ODVBL0ctVVVV4a+//sLKlSsRHBysdN+oUaPwzz//4J133kFQUBBcXV2xbds2HDp0COPGjVOror9jx45IS0uDkZGRItusbZu4uDh4e3vXuR9jY2NIpVKVn1fTsrOzERcXh7Vr16JHjx4AgP/++6/Gdm3atEGnTp2wdu1abNmyBT///HNTh1qDv7+/Yuh6dHQ0ZDIZVq5cCT6/Okd/tu6hVatWig+U3IULF5Sunz17FtOmTVPUShUVFSEpKUnjsctPHKq4ffs2srOz8c0338DV1RUAEBUVVeu233zzDUQiEfr164eIiAj4+/sDqD6ukSNH4rXXXgNQfVK8c+eO4n6g+oTZvXt3dO/eHYsWLYK7uzv27NmDjz766EUOVSXy11KV11FVJiYmNT5bZ8+eRVBQEN59913FbfIWVE1Q5fzTsmVLlfZlZmaGsLAwDBkyBAMHDsTRo0chFosBVCc5qampim0LCgqUkk6uqPr68fl8bNq0CZMnT0afPn0QERGhNCLIwcEBU6dOxdSpU9GjRw/MmzcPK1asaJJj0ORr+DRVz7Vc4/P5+Oyzz/DRRx9h8uTJKp07nqbKccpbizXx3aeXiUxYWBhyc3MxY8aMGkPCxo4di3Xr1uGdd94BAEyePBm//fYb7ty5g5MnT6r1PP3790e3bt0watQoLF++HL6+vnj06BEOHDiA0aNHo1OnTli0aBGGDRsGNzc3vPLKK+Dz+bh69Spu3LihKDL18PDA8ePH0b17dwiFQtjY2GjmD6EiGxsb2NnZ4Y8//oCzszOSk5Mxf/78Wrd98803MXv2bFhYWCgVRTe27OxsjBs3Dm+88Qbatm0LsViMqKgoLF++HCNHjgQAeHt7o7KyEj/99BOGDx+Os2fP4rffflPaz/vvv4/u3btjxYoVGDlyJI4cOYLDhw8rbePj44Pdu3dj+PDh4PF4WLhwYaP+ElKFm5sbTExM8NNPP+Gdd97BjRs38MUXX9S5/YoVKyCVStG3b19ERESgZcuW8PHxwc6dO3Hu3DnY2Njg+++/R3p6uuJkdPHiRRw/fhzBwcGQSCS4ePEiMjMz0apVK40eS32vpSqvo6o8PDxw8eJFJCUlQSQSwdbWFj4+Pvjrr79w5MgReHp6YtOmTYiMjISnp6dGjk+V8893332n8v4sLCxw4MABDB48GIMHD8bhw4chEonQt29fbNiwAcOHD4e1tTUWLVqk1O3XFPLz82vMA2Jvb6/y6ycQCPD3339j0qRJiveqk5MTFi1ahMDAQLRu3Rrl5eUICwvT+PvweTT9Gsqpc67l2rhx4zBv3jz88ssv9Z47nqXKcUokEpiZmeHw4cNwcXGBqalpg4dw62XX0rp169C/f/9a/yhjx45FVFQUrl27BqC6eyk2NhbNmzdH9+7d1XoeHo+HgwcPomfPnpg+fTp8fX0xceJE3L9/H46OjgCAgQMHIiwsDEePHkXnzp3x0ksvYdWqVUpdMitXrkR4eDhcXV3RoUOHFzhy9chkMhgZGYHP52Pr1q2Ijo5GQEAAPvzwwzo/pJMmTYKRkREmTZrUpF1jIpEIXbt2xapVq9CzZ08EBARg4cKFmDlzpqJlqF27dvj+++/x7bffIiAgAH///TeWLVumtJ+XXnoJa9euxerVq9GuXTscPXoUn3/+udI233//PWxsbBAUFIThw4dj4MCB6NixY5Mda20cHBywYcMG7NixA/7+/vjmm2/q/XW6atUqjB8/Hn379sWdO3fw+eefo2PHjhg4cCB69+4NJycnpQnNLC0tcfr0aQwZMgS+vr74/PPPsXLlSgwePFijx1Lfa6nK66iquXPnQiAQwN/fHw4ODkhOTsbbb7+NMWPGYMKECejatSuys7OVWmdelDrnH1WJRCIcOnQIjDEMHToUxcXFWLBgAXr16oVhw4Zh6NChGDVqFLy8vDR1GCqJiIhAhw4dlC6bNm1S6/UzMjLCP//8g9atW6Nv377IyMiAiYkJFixYgLZt26Jnz54QCATYunVrkx1XY7yGANQ613LNyMgIs2fPxvLly/Hxxx8/99zxLFWO08jICD/++CN+//13NGvWTPGDtCF47NlOVmIwBg0aBG9vb7W6iJKSkuDl5YXIyEjOv9wJIYRoh0mTJkEgEGDz5s1N/tx62SJDni83NxdhYWGIiIhA//79VXpMZWUl0tLS8Pnnn+Oll16iJIYQQgiqqqoQGxuL8+fPo3Xr1pzEoJc1MuT53njjDURGRuLjjz9WuTnv7Nmz6NOnD3x9fbFz585GjpAQQoguuHHjBoKCgtCnTx9F7WlTo64lQgghhOgs6loihBBCiM6iRIYQQgghOosSGUIIIYToLEpkCCGEEKKzKJEhhDSa3r17Y86cOVyHQQjRY5TIEGJAMjMzMWvWLLi5uUEoFMLJyQkDBw7E2bNnFdvweDzF+lXaaNq0ac+dVVQVoaGh4PF4NYaLxsTEgMfjNcraWoSQxkGJDCEGZOzYsbhy5Qo2btyIO3fuYP/+/ejduzeys7O5Dq3JmZqaYt26dYiPj+c6FELIC6BEhhADkZeXhzNnzuDbb79Fnz594O7uji5dumDBggUYMWIEAChWcR89ejR4PJ7iem2tIHPmzEHv3r0V14uLizFlyhSIRCI4Oztj5cqVNWIoLy/H3Llz0bx5c1hYWKBr166IiIhQ3L9hwwZYW1vjyJEjaNWqFUQiEQYNGqRY5Tk0NBQbN27Evn37wOPxwOPxEBERgYqKCsyePRvOzs4wNTWFu7t7vesz+fn5oU+fPvjf//5X5zZSqRQzZsyAp6cnzMzM4Ofnh9WrVyttI//bfP3113B0dIS1tTWWLl2KqqoqzJs3D7a2tnBxccH69euVHpeSkoLx48fD2toatra2GDlyJLUEEdIAlMgQYiBEIhFEIhH27t2L8vLyWreJjIwEAKxfvx6pqamK66qYN28eTp06hX379uHo0aOIiIjA5cuXlbaZPXs2zp8/j61bt+LatWsYN24cBg0apNQqUlJSghUrVmDTpk04ffo0kpOTMXfuXADVi0COHz9ekdykpqYiKCgIP/74I/bv34/t27cjLi4Of//9tyIJe55vvvkGu3btQlRUVK33y2QyuLi4YMeOHYiNjcWiRYvw2WefYfv27UrbnThxAo8ePcLp06fx/fffY/HixRg2bBhsbGxw8eJFvPPOO3j77bfx4MEDANVLfgwcOBBisRhnzpzB2bNnFUlbRUWFyn9zQggARggxGDt37mQ2NjbM1NSUBQUFsQULFrCrV68qbQOA7dmzR+m2qVOnspEjRyrd9sEHH7BevXoxxhgrLCxkJiYmbPv27Yr7s7OzmZmZGfvggw8YY4zdv3+fCQQC9vDhQ6X99OvXjy1YsIAxxtj69esZAJaQkKC4/5dffmGOjo7PjeW9995jffv2ZTKZTKW/w+LFi1m7du0YY4xNnDiR9e3blzHG2JUrVxgAlpiYWOdjQ0JC2NixY5XicXd3Z1KpVHGbn58f69Gjh+J6VVUVs7CwYP/88w9jjLFNmzYxPz8/pXjLy8uZmZkZO3LkiErHQAipRi0yhBiQsWPH4tGjR9i/fz8GDRqEiIgIdOzYERs2bHih/d69excVFRXo2rWr4jZbW1v4+fkprl+/fh1SqRS+vr6K1iGRSIRTp07h7t27iu3Mzc3h5eWluO7s7IyMjIznPv+0adMQExMDPz8/vP/++zh69KjKsX/55Zc4c+ZMnY/55ZdfEBgYCAcHB4hEIvzxxx9ITk5W2qZ169bg85+cTh0dHdGmTRvFdYFAADs7O8VxXL16FQkJCRCLxYq/g62tLcrKypT+FoSQ+tGikYQYGFNTUwwYMAADBgzAwoUL8eabb2Lx4sWYNm1anY/h8/lgzyzLVllZqdbzFhUVQSAQIDo6GgKBQOk+kUik+L+xsbHSfTwer8ZzP6tjx45ITEzEoUOHcOzYMYwfPx79+/dXaYFTLy8vzJw5E/Pnz8e6deuU7tu6dSvmzp2LlStXolu3bhCLxfjuu+9w8eJFpe1qi7m222QyGYDqv0VgYCD+/vvvGvE4ODjUGzMh5AlKZAgxcP7+/krDrY2NjSGVSpW2cXBwwI0bN5Rui4mJUXxZe3l5wdjYGBcvXoSbmxsAIDc3F3fu3EGvXr0AAB06dIBUKkVGRgZ69OjR4HhNTExqxAcAlpaWmDBhAiZMmIBXXnkFgwYNQk5ODmxtbevd56JFi+Dl5YWtW7cq3X727FkEBQXh3XffVdymiRaTjh07Ytu2bZBIJLC0tHzh/RFiyKhriRADkZ2djb59+2Lz5s24du0aEhMTsWPHDixfvhwjR45UbOfh4YHjx48jLS0Nubm5AIC+ffsiKioKf/31F+Lj47F48WKlxEYkEmHGjBmYN28eTpw4gRs3bmDatGlK3S2+vr549dVXMWXKFOzevRuJiYm4dOkSli1bhgMHDqh8HB4eHrh27Rri4uKQlZWFyspKfP/99/jnn39w+/Zt3LlzBzt27ICTkxOsra1V2qejoyM++ugj/Pjjj0q3+/j4ICoqCkeOHMGdO3ewcOFCtQqg6/Lqq6/C3t4eI0eOxJkzZ5CYmIiIiAi8//77ioJgQohqKJEhxECIRCJ07doVq1atQs+ePREQEICFCxdi5syZ+PnnnxXbrVy5EuHh4XB1dUWHDh0AAAMHDsTChQvxySefoHPnzigsLMSUKVOU9v/dd9+hR48eGD58OPr374+XX34ZgYGBStusX78eU6ZMwccffww/Pz+MGjUKkZGRilYcVcycORN+fn7o1KkTHBwccPbsWYjFYixfvhydOnVC586dkZSUhIMHDyolUvWZO3euUhcXALz99tsYM2YMJkyY8P/t2bENAjEURMFP6iKcuwL3cS240+vHuTOIiRBErDRTxdNuzTlr7/22zvyqtVb3fVfvva7rqjFGrbXqnGOhgS89np/OZwCAP2WRAQBiCRkAIJaQAQBiCRkAIJaQAQBiCRkAIJaQAQBiCRkAIJaQAQBiCRkAIJaQAQBiCRkAINYLRXy5DV/4cDgAAAAASUVORK5CYII=\n", 513 | "text/plain": [ 514 | "
" 515 | ] 516 | }, 517 | "metadata": {}, 518 | "output_type": "display_data" 519 | } 520 | ], 521 | "source": [ 522 | "plt.plot(data[\"Name\"], data[\"Data Structure\"])\n", 523 | "plt.title(\"Marks of students in Data Structure\")\n", 524 | "plt.xlabel(\"Students Name\")\n", 525 | "plt.ylabel(\"Students Marks\")\n", 526 | "plt.show()" 527 | ] 528 | }, 529 | { 530 | "cell_type": "code", 531 | "execution_count": null, 532 | "id": "11598e89", 533 | "metadata": {}, 534 | "outputs": [], 535 | "source": [] 536 | } 537 | ], 538 | "metadata": { 539 | "kernelspec": { 540 | "display_name": "Python 3 (ipykernel)", 541 | "language": "python", 542 | "name": "python3" 543 | }, 544 | "language_info": { 545 | "codemirror_mode": { 546 | "name": "ipython", 547 | "version": 3 548 | }, 549 | "file_extension": ".py", 550 | "mimetype": "text/x-python", 551 | "name": "python", 552 | "nbconvert_exporter": "python", 553 | "pygments_lexer": "ipython3", 554 | "version": "3.11.1" 555 | } 556 | }, 557 | "nbformat": 4, 558 | "nbformat_minor": 5 559 | } 560 | -------------------------------------------------------------------------------- /Data PreProcessing/Students_marks.csv: -------------------------------------------------------------------------------- 1 | Roll No.,Name,Gender,Data Structure,Mathematics,Operating System,Average marks,Ranking 2 | 1,Avneet ,F,25,19,17,20.33,Good 3 | 2,Jay,M,23,21,14,19.33,Okay 4 | 3,Sadaf ,F,28,23,21,24,Good 5 | 4,Prakash,M,21,27,28,25.33,Very Good 6 | 5,Sarita,F,23,22,9,18,Okay 7 | 6,Vasudha,F,190,30,28,82.66,Very Good 8 | 7,Ankur,M,24,24,22,23.33,Good 9 | 8,Laksh,M,26,25,27,26,Very Good 10 | 9,Aman,M,23,18,25,22,Good 11 | 10,Rajat,M,24,22,15,20.33,Good 12 | -------------------------------------------------------------------------------- /Inferential Stats/1 way Anova.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "0b714302", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "from scipy.stats import f_oneway" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "id": "d478a556", 16 | "metadata": {}, 17 | "source": [ 18 | "Performance when each of the engine with different types of oil is applied" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 3, 24 | "id": "404662ec", 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "performance1 = [89, 89, 88, 78, 79]\n", 29 | "performance2 = [93, 92, 94, 89, 88]\n", 30 | "performance3 = [89, 88, 89, 93, 90]\n", 31 | "performance4 = [81, 78, 81, 92, 82]" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 4, 37 | "id": "7bcd5b60", 38 | "metadata": {}, 39 | "outputs": [], 40 | "source": [ 41 | "alpha = 0.05" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 5, 47 | "id": "97b31724", 48 | "metadata": {}, 49 | "outputs": [], 50 | "source": [ 51 | "stat, pvalue = f_oneway(performance1, performance2, performance3, performance4)" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": 6, 57 | "id": "4fc90cd7", 58 | "metadata": {}, 59 | "outputs": [ 60 | { 61 | "data": { 62 | "text/plain": [ 63 | "(4.625000000000002, 0.01633645983978022)" 64 | ] 65 | }, 66 | "execution_count": 6, 67 | "metadata": {}, 68 | "output_type": "execute_result" 69 | } 70 | ], 71 | "source": [ 72 | "stat, pvalue" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": 7, 78 | "id": "10af033d", 79 | "metadata": {}, 80 | "outputs": [ 81 | { 82 | "name": "stdout", 83 | "output_type": "stream", 84 | "text": [ 85 | "Reject the null Hypothesis\n" 86 | ] 87 | } 88 | ], 89 | "source": [ 90 | "if(pvalue\n", 50 | "\n", 63 | "\n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | "
FertilizerWateringheight
0dailydaily14
1dailydaily16
2dailydaily15
3dailydaily15
4dailydaily16
5dailydaily13
6dailydaily12
7dailydaily11
8dailydaily14
9dailydaily15
10dailydaily16
11dailydaily16
12dailydaily17
13dailydaily18
14dailydaily14
15weeklyweekly13
16weeklyweekly14
17weeklyweekly14
18weeklyweekly14
19weeklyweekly15
20weeklyweekly16
21weeklyweekly16
22weeklyweekly17
23weeklyweekly18
24weeklyweekly14
25weeklyweekly13
26weeklyweekly14
27weeklyweekly14
28weeklyweekly14
29weeklyweekly15
\n", 255 | "" 256 | ], 257 | "text/plain": [ 258 | " Fertilizer Watering height\n", 259 | "0 daily daily 14\n", 260 | "1 daily daily 16\n", 261 | "2 daily daily 15\n", 262 | "3 daily daily 15\n", 263 | "4 daily daily 16\n", 264 | "5 daily daily 13\n", 265 | "6 daily daily 12\n", 266 | "7 daily daily 11\n", 267 | "8 daily daily 14\n", 268 | "9 daily daily 15\n", 269 | "10 daily daily 16\n", 270 | "11 daily daily 16\n", 271 | "12 daily daily 17\n", 272 | "13 daily daily 18\n", 273 | "14 daily daily 14\n", 274 | "15 weekly weekly 13\n", 275 | "16 weekly weekly 14\n", 276 | "17 weekly weekly 14\n", 277 | "18 weekly weekly 14\n", 278 | "19 weekly weekly 15\n", 279 | "20 weekly weekly 16\n", 280 | "21 weekly weekly 16\n", 281 | "22 weekly weekly 17\n", 282 | "23 weekly weekly 18\n", 283 | "24 weekly weekly 14\n", 284 | "25 weekly weekly 13\n", 285 | "26 weekly weekly 14\n", 286 | "27 weekly weekly 14\n", 287 | "28 weekly weekly 14\n", 288 | "29 weekly weekly 15" 289 | ] 290 | }, 291 | "execution_count": 5, 292 | "metadata": {}, 293 | "output_type": "execute_result" 294 | } 295 | ], 296 | "source": [ 297 | "dataframe" 298 | ] 299 | }, 300 | { 301 | "cell_type": "code", 302 | "execution_count": 6, 303 | "id": "1e8e9f32", 304 | "metadata": { 305 | "scrolled": true 306 | }, 307 | "outputs": [ 308 | { 309 | "name": "stdout", 310 | "output_type": "stream", 311 | "text": [ 312 | " df sum_sq mean_sq F PR(>F)\n", 313 | "Fertilizer 1.0 0.033333 0.033333 0.012069 0.913305\n", 314 | "Watering 1.0 0.000369 0.000369 0.000133 0.990865\n", 315 | "Fertilizer:Watering 1.0 0.040866 0.040866 0.014796 0.904053\n", 316 | "Residual 28.0 77.333333 2.761905 NaN NaN\n" 317 | ] 318 | } 319 | ], 320 | "source": [ 321 | "model = ols('height ~ Fertilizer + Watering + Fertilizer : Watering', data=dataframe).fit()\n", 322 | "\n", 323 | "result = sm.stats.anova_lm(model, type=2)\n", 324 | "\n", 325 | "print(result)" 326 | ] 327 | }, 328 | { 329 | "cell_type": "code", 330 | "execution_count": 7, 331 | "id": "df431b57", 332 | "metadata": {}, 333 | "outputs": [], 334 | "source": [ 335 | "model = ols('height ~ Fertilizer + Watering + Fertilizer : Watering', data=dataframe)" 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "execution_count": null, 341 | "id": "7b2c4b74", 342 | "metadata": {}, 343 | "outputs": [], 344 | "source": [] 345 | }, 346 | { 347 | "cell_type": "markdown", 348 | "id": "84203d6d", 349 | "metadata": {}, 350 | "source": [] 351 | } 352 | ], 353 | "metadata": { 354 | "kernelspec": { 355 | "display_name": "Python 3 (ipykernel)", 356 | "language": "python", 357 | "name": "python3" 358 | }, 359 | "language_info": { 360 | "codemirror_mode": { 361 | "name": "ipython", 362 | "version": 3 363 | }, 364 | "file_extension": ".py", 365 | "mimetype": "text/x-python", 366 | "name": "python", 367 | "nbconvert_exporter": "python", 368 | "pygments_lexer": "ipython3", 369 | "version": "3.11.1" 370 | } 371 | }, 372 | "nbformat": 4, 373 | "nbformat_minor": 5 374 | } 375 | -------------------------------------------------------------------------------- /Inferential Stats/Chi square.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "id": "02740abc", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "from scipy.stats import chisquare" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 4, 16 | "id": "71b74700", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "chi_square, pvalue =chisquare([48,24,24])" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 5, 26 | "id": "84c64655", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "text/plain": [ 32 | "(12.0, 0.002478752176666357)" 33 | ] 34 | }, 35 | "execution_count": 5, 36 | "metadata": {}, 37 | "output_type": "execute_result" 38 | } 39 | ], 40 | "source": [ 41 | "chi_square, pvalue" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 6, 47 | "id": "6a2a14fc", 48 | "metadata": {}, 49 | "outputs": [], 50 | "source": [ 51 | "alpha = 0.01" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": 7, 57 | "id": "50878e4d", 58 | "metadata": {}, 59 | "outputs": [ 60 | { 61 | "name": "stdout", 62 | "output_type": "stream", 63 | "text": [ 64 | "Dependent (reject H0)\n" 65 | ] 66 | } 67 | ], 68 | "source": [ 69 | "if (pvalue < alpha):\n", 70 | " print('Dependent (reject H0)')\n", 71 | "else:\n", 72 | " print('Independent (H0 holds true)')" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": 8, 78 | "id": "45ae954c", 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "chi_square, pvalue =chisquare([5,9,13,7,6])" 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": 9, 88 | "id": "3f39a87a", 89 | "metadata": {}, 90 | "outputs": [ 91 | { 92 | "data": { 93 | "text/plain": [ 94 | "(5.0, 0.2872974951836458)" 95 | ] 96 | }, 97 | "execution_count": 9, 98 | "metadata": {}, 99 | "output_type": "execute_result" 100 | } 101 | ], 102 | "source": [ 103 | "chi_square, pvalue " 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": 10, 109 | "id": "ab7d9ec5", 110 | "metadata": {}, 111 | "outputs": [], 112 | "source": [ 113 | "alpha = 0.05" 114 | ] 115 | }, 116 | { 117 | "cell_type": "code", 118 | "execution_count": 11, 119 | "id": "aaa915fe", 120 | "metadata": {}, 121 | "outputs": [ 122 | { 123 | "name": "stdout", 124 | "output_type": "stream", 125 | "text": [ 126 | "Independent (H0 holds true)\n" 127 | ] 128 | } 129 | ], 130 | "source": [ 131 | "if (pvalue < alpha):\n", 132 | " print('Dependent (reject H0)')\n", 133 | "else:\n", 134 | " print('Independent (H0 holds true)')" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": 12, 140 | "id": "fbc6caf9", 141 | "metadata": {}, 142 | "outputs": [], 143 | "source": [ 144 | "from scipy.stats import chi2_contingency" 145 | ] 146 | }, 147 | { 148 | "cell_type": "code", 149 | "execution_count": 13, 150 | "id": "0b7dab21", 151 | "metadata": {}, 152 | "outputs": [], 153 | "source": [ 154 | "data = [[207,282,241],[234,242,232]]" 155 | ] 156 | }, 157 | { 158 | "cell_type": "code", 159 | "execution_count": 14, 160 | "id": "30162d0c", 161 | "metadata": {}, 162 | "outputs": [], 163 | "source": [ 164 | "stat, pvalue,dof,exp_freq =chi2_contingency(data)" 165 | ] 166 | }, 167 | { 168 | "cell_type": "code", 169 | "execution_count": 16, 170 | "id": "e182b164", 171 | "metadata": { 172 | "scrolled": true 173 | }, 174 | "outputs": [ 175 | { 176 | "data": { 177 | "text/plain": [ 178 | "(4.542228269825232,\n", 179 | " 0.10319714047309392,\n", 180 | " 2,\n", 181 | " array([[223.87343533, 266.00834492, 240.11821975],\n", 182 | " [217.12656467, 257.99165508, 232.88178025]]))" 183 | ] 184 | }, 185 | "execution_count": 16, 186 | "metadata": {}, 187 | "output_type": "execute_result" 188 | } 189 | ], 190 | "source": [ 191 | "stat, pvalue,dof,exp_freq" 192 | ] 193 | }, 194 | { 195 | "cell_type": "code", 196 | "execution_count": 15, 197 | "id": "d6d97824", 198 | "metadata": {}, 199 | "outputs": [], 200 | "source": [ 201 | "outlook_data = [[2,3],[4,0],[3,2]]" 202 | ] 203 | }, 204 | { 205 | "cell_type": "code", 206 | "execution_count": 16, 207 | "id": "2e80f782", 208 | "metadata": {}, 209 | "outputs": [ 210 | { 211 | "data": { 212 | "text/plain": [ 213 | "Chi2ContingencyResult(statistic=3.546666666666666, pvalue=0.16976615743981124, dof=2, expected_freq=array([[3.21428571, 1.78571429],\n", 214 | " [2.57142857, 1.42857143],\n", 215 | " [3.21428571, 1.78571429]]))" 216 | ] 217 | }, 218 | "execution_count": 16, 219 | "metadata": {}, 220 | "output_type": "execute_result" 221 | } 222 | ], 223 | "source": [ 224 | "chi2_contingency(outlook_data)" 225 | ] 226 | }, 227 | { 228 | "cell_type": "code", 229 | "execution_count": 18, 230 | "id": "5ae0c20a", 231 | "metadata": {}, 232 | "outputs": [], 233 | "source": [ 234 | "wind_data = [[3,3],[6,2]]" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": 19, 240 | "id": "56b6f970", 241 | "metadata": {}, 242 | "outputs": [ 243 | { 244 | "data": { 245 | "text/plain": [ 246 | "Chi2ContingencyResult(statistic=0.16203703703703703, pvalue=0.687287949348002, dof=1, expected_freq=array([[3.85714286, 2.14285714],\n", 247 | " [5.14285714, 2.85714286]]))" 248 | ] 249 | }, 250 | "execution_count": 19, 251 | "metadata": {}, 252 | "output_type": "execute_result" 253 | } 254 | ], 255 | "source": [ 256 | "chi2_contingency(wind_data)" 257 | ] 258 | }, 259 | { 260 | "cell_type": "code", 261 | "execution_count": 20, 262 | "id": "be05bdc3", 263 | "metadata": {}, 264 | "outputs": [], 265 | "source": [ 266 | "obs = [3,3,6,2]\n", 267 | "exp = [3.85714286, 2.14285714, 5.14285714, 2.85714286]" 268 | ] 269 | }, 270 | { 271 | "cell_type": "code", 272 | "execution_count": 26, 273 | "id": "0f835729", 274 | "metadata": {}, 275 | "outputs": [ 276 | { 277 | "data": { 278 | "text/plain": [ 279 | "Power_divergenceResult(statistic=0.9333333396938274, pvalue=0.8173771570701455)" 280 | ] 281 | }, 282 | "execution_count": 26, 283 | "metadata": {}, 284 | "output_type": "execute_result" 285 | } 286 | ], 287 | "source": [ 288 | "chisquare (obs, exp)" 289 | ] 290 | }, 291 | { 292 | "cell_type": "code", 293 | "execution_count": null, 294 | "id": "84d19fd6", 295 | "metadata": {}, 296 | "outputs": [], 297 | "source": [] 298 | } 299 | ], 300 | "metadata": { 301 | "kernelspec": { 302 | "display_name": "Python 3 (ipykernel)", 303 | "language": "python", 304 | "name": "python3" 305 | }, 306 | "language_info": { 307 | "codemirror_mode": { 308 | "name": "ipython", 309 | "version": 3 310 | }, 311 | "file_extension": ".py", 312 | "mimetype": "text/x-python", 313 | "name": "python", 314 | "nbconvert_exporter": "python", 315 | "pygments_lexer": "ipython3", 316 | "version": "3.11.1" 317 | } 318 | }, 319 | "nbformat": 4, 320 | "nbformat_minor": 5 321 | } 322 | -------------------------------------------------------------------------------- /Inferential Stats/Confidence Interval.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "11154bb4", 6 | "metadata": {}, 7 | "source": [ 8 | "Calculate the 90% confidence Intervals of the data set of size(n=20) using the t Distribution using the t.interval() function and passing the alpha parameter to 0.90 in the python." 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "id": "e3b00d78", 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "import numpy as np \n", 19 | "import scipy.stats as st " 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": 2, 25 | "id": "36f06ed1", 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "gfg_data = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3, \n", 30 | " 3, 4, 4, 5, 5, 5, 6, 7, 8, 10] " 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 3, 36 | "id": "1180a155", 37 | "metadata": { 38 | "scrolled": true 39 | }, 40 | "outputs": [ 41 | { 42 | "data": { 43 | "text/plain": [ 44 | "(2.962098014195961, 4.837901985804038)" 45 | ] 46 | }, 47 | "execution_count": 3, 48 | "metadata": {}, 49 | "output_type": "execute_result" 50 | } 51 | ], 52 | "source": [ 53 | "st.t.interval(confidence = 0.90, df = len(gfg_data)-1,loc = np.mean(gfg_data), scale=st.sem(gfg_data))" 54 | ] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "execution_count": 4, 59 | "id": "f2c1c83f", 60 | "metadata": {}, 61 | "outputs": [ 62 | { 63 | "data": { 64 | "text/plain": [ 65 | "3.9" 66 | ] 67 | }, 68 | "execution_count": 4, 69 | "metadata": {}, 70 | "output_type": "execute_result" 71 | } 72 | ], 73 | "source": [ 74 | "np.mean(gfg_data)" 75 | ] 76 | }, 77 | { 78 | "cell_type": "markdown", 79 | "id": "3ddcc3c9", 80 | "metadata": {}, 81 | "source": [ 82 | "Calculate the 90% confidence Intervals of the random data set of size(n=100) using the norm Distribution using the norm.interval() function and passing the alpha parameter to 0.90 in the python." 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": 5, 88 | "id": "846a0514", 89 | "metadata": {}, 90 | "outputs": [], 91 | "source": [ 92 | "np.random.seed(0)\n", 93 | "gfg_data = np.random.randint(5, 10, 100) " 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "execution_count": 6, 99 | "id": "d6efa71a", 100 | "metadata": {}, 101 | "outputs": [ 102 | { 103 | "data": { 104 | "text/plain": [ 105 | "(6.722821921612098, 7.197178078387902)" 106 | ] 107 | }, 108 | "execution_count": 6, 109 | "metadata": {}, 110 | "output_type": "execute_result" 111 | } 112 | ], 113 | "source": [ 114 | "st.norm.interval(confidence = 0.90,loc = np.mean(gfg_data), scale=st.sem(gfg_data))" 115 | ] 116 | }, 117 | { 118 | "cell_type": "code", 119 | "execution_count": 11, 120 | "id": "a75092a1", 121 | "metadata": {}, 122 | "outputs": [ 123 | { 124 | "data": { 125 | "text/plain": [ 126 | "6.96" 127 | ] 128 | }, 129 | "execution_count": 11, 130 | "metadata": {}, 131 | "output_type": "execute_result" 132 | } 133 | ], 134 | "source": [ 135 | "np.mean(gfg_data)" 136 | ] 137 | } 138 | ], 139 | "metadata": { 140 | "kernelspec": { 141 | "display_name": "Python 3 (ipykernel)", 142 | "language": "python", 143 | "name": "python3" 144 | }, 145 | "language_info": { 146 | "codemirror_mode": { 147 | "name": "ipython", 148 | "version": 3 149 | }, 150 | "file_extension": ".py", 151 | "mimetype": "text/x-python", 152 | "name": "python", 153 | "nbconvert_exporter": "python", 154 | "pygments_lexer": "ipython3", 155 | "version": "3.11.1" 156 | } 157 | }, 158 | "nbformat": 4, 159 | "nbformat_minor": 5 160 | } 161 | -------------------------------------------------------------------------------- /Inferential Stats/T-Test.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "d2ad7b54", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np\n", 11 | "from numpy.random import randn\n", 12 | "import scipy.stats as stats" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "id": "ed11d353", 19 | "metadata": {}, 20 | "outputs": [], 21 | "source": [ 22 | "sample_mean = 140\n", 23 | "sample_sd = 20\n", 24 | "data = sample_sd*randn(30)+sample_mean" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": 3, 30 | "id": "238d1909", 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "alpha = 0.05" 35 | ] 36 | }, 37 | { 38 | "cell_type": "code", 39 | "execution_count": 4, 40 | "id": "c9564642", 41 | "metadata": {}, 42 | "outputs": [ 43 | { 44 | "name": "stdout", 45 | "output_type": "stream", 46 | "text": [ 47 | "mean=139.89 stdv=20.96\n" 48 | ] 49 | } 50 | ], 51 | "source": [ 52 | "print('mean=%.2f stdv=%.2f' % (np.mean(data), np.std(data)))" 53 | ] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "execution_count": 5, 58 | "id": "1b60b72e", 59 | "metadata": {}, 60 | "outputs": [], 61 | "source": [ 62 | "t_statistic, p_value = stats.ttest_1samp(a=data, popmean=100)" 63 | ] 64 | }, 65 | { 66 | "cell_type": "code", 67 | "execution_count": 6, 68 | "id": "dee96c94", 69 | "metadata": {}, 70 | "outputs": [ 71 | { 72 | "data": { 73 | "text/plain": [ 74 | "(10.250576729298452, 3.753118701693896e-11)" 75 | ] 76 | }, 77 | "execution_count": 6, 78 | "metadata": {}, 79 | "output_type": "execute_result" 80 | } 81 | ], 82 | "source": [ 83 | "t_statistic, p_value" 84 | ] 85 | }, 86 | { 87 | "cell_type": "code", 88 | "execution_count": 7, 89 | "id": "19c3ff8c", 90 | "metadata": { 91 | "scrolled": true 92 | }, 93 | "outputs": [ 94 | { 95 | "name": "stdout", 96 | "output_type": "stream", 97 | "text": [ 98 | "Reject Null Hypothesis\n" 99 | ] 100 | } 101 | ], 102 | "source": [ 103 | "if(p_value < alpha):\n", 104 | " print(\"Reject Null Hypothesis\")\n", 105 | "else:\n", 106 | " print(\"Fail to Reject NUll Hypothesis\")" 107 | ] 108 | }, 109 | { 110 | "cell_type": "code", 111 | "execution_count": 15, 112 | "id": "2065dfc1", 113 | "metadata": {}, 114 | "outputs": [], 115 | "source": [ 116 | "sample_mean = 24\n", 117 | "sample_sd = 0.7\n", 118 | "data2 = sample_sd*randn(20)+sample_mean" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "execution_count": 16, 124 | "id": "e9e3b150", 125 | "metadata": { 126 | "scrolled": false 127 | }, 128 | "outputs": [ 129 | { 130 | "name": "stdout", 131 | "output_type": "stream", 132 | "text": [ 133 | "mean=23.83 stdv=0.81\n" 134 | ] 135 | } 136 | ], 137 | "source": [ 138 | "print('mean=%.2f stdv=%.2f' % (np.mean(data2), np.std(data2)))" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": 17, 144 | "id": "d3026729", 145 | "metadata": {}, 146 | "outputs": [], 147 | "source": [ 148 | "t_statistic, p_value = stats.ttest_1samp(a=data2, popmean=25)" 149 | ] 150 | }, 151 | { 152 | "cell_type": "code", 153 | "execution_count": 18, 154 | "id": "dda7be32", 155 | "metadata": {}, 156 | "outputs": [ 157 | { 158 | "data": { 159 | "text/plain": [ 160 | "(-6.303910919091638, 4.738238730383527e-06)" 161 | ] 162 | }, 163 | "execution_count": 18, 164 | "metadata": {}, 165 | "output_type": "execute_result" 166 | } 167 | ], 168 | "source": [ 169 | "t_statistic, p_value" 170 | ] 171 | }, 172 | { 173 | "cell_type": "code", 174 | "execution_count": 12, 175 | "id": "1dadcb05", 176 | "metadata": {}, 177 | "outputs": [ 178 | { 179 | "name": "stdout", 180 | "output_type": "stream", 181 | "text": [ 182 | "Reject Null Hypothesis\n" 183 | ] 184 | } 185 | ], 186 | "source": [ 187 | "if(p_value < alpha):\n", 188 | " print(\"Reject Null Hypothesis\")\n", 189 | "else:\n", 190 | " print(\"Fail to Reject NUll Hypothesis\")" 191 | ] 192 | }, 193 | { 194 | "cell_type": "code", 195 | "execution_count": null, 196 | "id": "fb3be60f", 197 | "metadata": {}, 198 | "outputs": [], 199 | "source": [] 200 | } 201 | ], 202 | "metadata": { 203 | "kernelspec": { 204 | "display_name": "Python 3 (ipykernel)", 205 | "language": "python", 206 | "name": "python3" 207 | }, 208 | "language_info": { 209 | "codemirror_mode": { 210 | "name": "ipython", 211 | "version": 3 212 | }, 213 | "file_extension": ".py", 214 | "mimetype": "text/x-python", 215 | "name": "python", 216 | "nbconvert_exporter": "python", 217 | "pygments_lexer": "ipython3", 218 | "version": "3.11.1" 219 | } 220 | }, 221 | "nbformat": 4, 222 | "nbformat_minor": 5 223 | } 224 | -------------------------------------------------------------------------------- /Inferential Stats/Z test.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 89, 6 | "id": "5af96aa2", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import math\n", 11 | "import numpy as np\n", 12 | "import scipy" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 88, 18 | "id": "6bfc3f54", 19 | "metadata": {}, 20 | "outputs": [], 21 | "source": [ 22 | "alpha = 0.05" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 87, 28 | "id": "bc95ebe3", 29 | "metadata": {}, 30 | "outputs": [], 31 | "source": [ 32 | "def z_test(n, sample_mean,null_mean, sd,alternative):\n", 33 | " z_score = (sample_mean-null_mean)/(sd/math.sqrt(n))\n", 34 | " p_value = scipy.stats.norm.sf(z_score)\n", 35 | " print(z_score)\n", 36 | " print(p_value)\n", 37 | " if(alternative == \"larger\" or alternative == \"smaller\"):\n", 38 | " if(p_value < alpha):\n", 39 | " print(\"Reject Null Hypothesis\")\n", 40 | " else:\n", 41 | " print(\"Fail to Reject NUll Hypothesis\")\n", 42 | " elif(alternative == \"two-sided\"):\n", 43 | " if(p_value < alpha/2):\n", 44 | " print(\"Reject Null Hypothesis\")\n", 45 | " else:\n", 46 | " print(\"Fail to Reject NUll Hypothesis\")" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": 84, 52 | "id": "75b8dcea", 53 | "metadata": {}, 54 | "outputs": [ 55 | { 56 | "name": "stdout", 57 | "output_type": "stream", 58 | "text": [ 59 | "4.714045207910317\n", 60 | "1.2142337364879197e-06\n", 61 | "Reject Null Hypothesis\n" 62 | ] 63 | } 64 | ], 65 | "source": [ 66 | "z_test(50,110, 100,15, \"larger\")" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": 36, 72 | "id": "afe4e1d5", 73 | "metadata": { 74 | "scrolled": true 75 | }, 76 | "outputs": [], 77 | "source": [ 78 | "mean_iq = 90\n", 79 | "sd_iq = 20/math.sqrt(81)\n", 80 | "data2 = sd_iq*randn(81)+mean_iq" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": 85, 86 | "id": "1f43eeac", 87 | "metadata": {}, 88 | "outputs": [ 89 | { 90 | "name": "stdout", 91 | "output_type": "stream", 92 | "text": [ 93 | "3.5999999999999996\n", 94 | "0.00015910859015753396\n", 95 | "Reject Null Hypothesis\n" 96 | ] 97 | } 98 | ], 99 | "source": [ 100 | "z_test(81,90,82,20,\"larger\")" 101 | ] 102 | }, 103 | { 104 | "cell_type": "code", 105 | "execution_count": 38, 106 | "id": "c6bbea08", 107 | "metadata": {}, 108 | "outputs": [], 109 | "source": [ 110 | " ztest_score, p_value = ztest(data2,value = null_mean, alternative='larger')" 111 | ] 112 | }, 113 | { 114 | "cell_type": "code", 115 | "execution_count": 39, 116 | "id": "6a95ea9f", 117 | "metadata": {}, 118 | "outputs": [ 119 | { 120 | "name": "stdout", 121 | "output_type": "stream", 122 | "text": [ 123 | "Reject Null Hypothesis\n" 124 | ] 125 | } 126 | ], 127 | "source": [ 128 | "if(p_value < alpha):\n", 129 | " print(\"Reject Null Hypothesis\")\n", 130 | "else:\n", 131 | " print(\"Fail to Reject NUll Hypothesis\")" 132 | ] 133 | } 134 | ], 135 | "metadata": { 136 | "kernelspec": { 137 | "display_name": "Python 3 (ipykernel)", 138 | "language": "python", 139 | "name": "python3" 140 | }, 141 | "language_info": { 142 | "codemirror_mode": { 143 | "name": "ipython", 144 | "version": 3 145 | }, 146 | "file_extension": ".py", 147 | "mimetype": "text/x-python", 148 | "name": "python", 149 | "nbconvert_exporter": "python", 150 | "pygments_lexer": "ipython3", 151 | "version": "3.11.1" 152 | } 153 | }, 154 | "nbformat": 4, 155 | "nbformat_minor": 5 156 | } 157 | -------------------------------------------------------------------------------- /Measure of Central Tendency/Measure of central Tendency.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "ff8c0258", 6 | "metadata": {}, 7 | "source": [ 8 | "The mean (or average), the median, and the mode are usually the initial things data analysts look at in any sample data when trying to find the information about the data." 9 | ] 10 | }, 11 | { 12 | "cell_type": "markdown", 13 | "id": "f94b730e", 14 | "metadata": {}, 15 | "source": [ 16 | "# Mean" 17 | ] 18 | }, 19 | { 20 | "cell_type": "markdown", 21 | "id": "c5b6394d", 22 | "metadata": {}, 23 | "source": [ 24 | "Mean is average for a given set of data.\n", 25 | "\n", 26 | "To calculate the arithmetic mean of a set of data we must first add up (sum) all of the data values\n", 27 | "(x) and then divide the result by the number of values (n)." 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 58, 33 | "id": "1c24685e", 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "import pandas as pd\n", 38 | "import numpy as np\n", 39 | "import seaborn as sns\n", 40 | "import statistics" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": 41, 46 | "id": "272583c8", 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "data = [1, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8]" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": 46, 56 | "id": "6b2f57ac", 57 | "metadata": {}, 58 | "outputs": [ 59 | { 60 | "data": { 61 | "text/plain": [ 62 | "62" 63 | ] 64 | }, 65 | "execution_count": 46, 66 | "metadata": {}, 67 | "output_type": "execute_result" 68 | } 69 | ], 70 | "source": [ 71 | "1+2+3+4+4+4+4+5+6+7+7+7+8" 72 | ] 73 | }, 74 | { 75 | "cell_type": "code", 76 | "execution_count": 47, 77 | "id": "41cb2d79", 78 | "metadata": {}, 79 | "outputs": [ 80 | { 81 | "data": { 82 | "text/plain": [ 83 | "4.769230769230769" 84 | ] 85 | }, 86 | "execution_count": 47, 87 | "metadata": {}, 88 | "output_type": "execute_result" 89 | } 90 | ], 91 | "source": [ 92 | "62/13" 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "execution_count": 43, 98 | "id": "fbbd597e", 99 | "metadata": {}, 100 | "outputs": [ 101 | { 102 | "data": { 103 | "text/plain": [ 104 | "4.769230769230769" 105 | ] 106 | }, 107 | "execution_count": 43, 108 | "metadata": {}, 109 | "output_type": "execute_result" 110 | } 111 | ], 112 | "source": [ 113 | "statistics.mean(data)" 114 | ] 115 | }, 116 | { 117 | "cell_type": "code", 118 | "execution_count": 3, 119 | "id": "9a32bfc9", 120 | "metadata": {}, 121 | "outputs": [], 122 | "source": [ 123 | "df = sns.load_dataset(\"mpg\")" 124 | ] 125 | }, 126 | { 127 | "cell_type": "code", 128 | "execution_count": 4, 129 | "id": "4abbf356", 130 | "metadata": {}, 131 | "outputs": [ 132 | { 133 | "data": { 134 | "text/html": [ 135 | "
\n", 136 | "\n", 149 | "\n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearoriginname
018.08307.0130.0350412.070usachevrolet chevelle malibu
115.08350.0165.0369311.570usabuick skylark 320
\n", 191 | "
" 192 | ], 193 | "text/plain": [ 194 | " mpg cylinders displacement horsepower weight acceleration \\\n", 195 | "0 18.0 8 307.0 130.0 3504 12.0 \n", 196 | "1 15.0 8 350.0 165.0 3693 11.5 \n", 197 | "\n", 198 | " model_year origin name \n", 199 | "0 70 usa chevrolet chevelle malibu \n", 200 | "1 70 usa buick skylark 320 " 201 | ] 202 | }, 203 | "execution_count": 4, 204 | "metadata": {}, 205 | "output_type": "execute_result" 206 | } 207 | ], 208 | "source": [ 209 | "df.head(2)" 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "execution_count": 5, 215 | "id": "1b158e47", 216 | "metadata": {}, 217 | "outputs": [ 218 | { 219 | "data": { 220 | "text/plain": [ 221 | "2970.424623115578" 222 | ] 223 | }, 224 | "execution_count": 5, 225 | "metadata": {}, 226 | "output_type": "execute_result" 227 | } 228 | ], 229 | "source": [ 230 | "df[\"weight\"].mean()" 231 | ] 232 | }, 233 | { 234 | "cell_type": "code", 235 | "execution_count": 6, 236 | "id": "aa911757", 237 | "metadata": {}, 238 | "outputs": [ 239 | { 240 | "data": { 241 | "text/plain": [ 242 | "15.568090452261307" 243 | ] 244 | }, 245 | "execution_count": 6, 246 | "metadata": {}, 247 | "output_type": "execute_result" 248 | } 249 | ], 250 | "source": [ 251 | "df[\"acceleration\"].mean()" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": 8, 257 | "id": "f10b70cd", 258 | "metadata": {}, 259 | "outputs": [ 260 | { 261 | "data": { 262 | "text/plain": [ 263 | "193.42587939698493" 264 | ] 265 | }, 266 | "execution_count": 8, 267 | "metadata": {}, 268 | "output_type": "execute_result" 269 | } 270 | ], 271 | "source": [ 272 | "df[\"displacement\"].mean()" 273 | ] 274 | }, 275 | { 276 | "cell_type": "code", 277 | "execution_count": 9, 278 | "id": "0422c22f", 279 | "metadata": { 280 | "scrolled": false 281 | }, 282 | "outputs": [ 283 | { 284 | "name": "stderr", 285 | "output_type": "stream", 286 | "text": [ 287 | "C:\\Users\\GFG19189\\AppData\\Local\\Temp\\ipykernel_12056\\3698961737.py:1: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.\n", 288 | " df.mean()\n" 289 | ] 290 | }, 291 | { 292 | "data": { 293 | "text/plain": [ 294 | "mpg 23.514573\n", 295 | "cylinders 5.454774\n", 296 | "displacement 193.425879\n", 297 | "horsepower 104.469388\n", 298 | "weight 2970.424623\n", 299 | "acceleration 15.568090\n", 300 | "model_year 76.010050\n", 301 | "dtype: float64" 302 | ] 303 | }, 304 | "execution_count": 9, 305 | "metadata": {}, 306 | "output_type": "execute_result" 307 | } 308 | ], 309 | "source": [ 310 | "df.mean()" 311 | ] 312 | }, 313 | { 314 | "cell_type": "markdown", 315 | "id": "505395a1", 316 | "metadata": {}, 317 | "source": [ 318 | "# Median" 319 | ] 320 | }, 321 | { 322 | "cell_type": "markdown", 323 | "id": "a1b303b1", 324 | "metadata": {}, 325 | "source": [ 326 | "When the values in a set of data are arranged in ascending or descending order, then the value of the middle term in that set is known as the median of the set.\n", 327 | "\n", 328 | "The median is a better measure of the middle when there are extreme measures in the data set." 329 | ] 330 | }, 331 | { 332 | "cell_type": "code", 333 | "execution_count": 48, 334 | "id": "ebbe0612", 335 | "metadata": {}, 336 | "outputs": [ 337 | { 338 | "data": { 339 | "text/plain": [ 340 | "[1, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8]" 341 | ] 342 | }, 343 | "execution_count": 48, 344 | "metadata": {}, 345 | "output_type": "execute_result" 346 | } 347 | ], 348 | "source": [ 349 | "data" 350 | ] 351 | }, 352 | { 353 | "cell_type": "markdown", 354 | "id": "ee4b75de", 355 | "metadata": {}, 356 | "source": [ 357 | "median = 4" 358 | ] 359 | }, 360 | { 361 | "cell_type": "code", 362 | "execution_count": 49, 363 | "id": "36fb2b5f", 364 | "metadata": {}, 365 | "outputs": [ 366 | { 367 | "data": { 368 | "text/plain": [ 369 | "4" 370 | ] 371 | }, 372 | "execution_count": 49, 373 | "metadata": {}, 374 | "output_type": "execute_result" 375 | } 376 | ], 377 | "source": [ 378 | "statistics.median(data)" 379 | ] 380 | }, 381 | { 382 | "cell_type": "code", 383 | "execution_count": 11, 384 | "id": "98aee804", 385 | "metadata": {}, 386 | "outputs": [ 387 | { 388 | "data": { 389 | "text/plain": [ 390 | "2803.5" 391 | ] 392 | }, 393 | "execution_count": 11, 394 | "metadata": {}, 395 | "output_type": "execute_result" 396 | } 397 | ], 398 | "source": [ 399 | "df[\"weight\"].median()" 400 | ] 401 | }, 402 | { 403 | "cell_type": "code", 404 | "execution_count": 12, 405 | "id": "e53b87d7", 406 | "metadata": {}, 407 | "outputs": [ 408 | { 409 | "data": { 410 | "text/plain": [ 411 | "93.5" 412 | ] 413 | }, 414 | "execution_count": 12, 415 | "metadata": {}, 416 | "output_type": "execute_result" 417 | } 418 | ], 419 | "source": [ 420 | "df[\"horsepower\"].median()" 421 | ] 422 | }, 423 | { 424 | "cell_type": "code", 425 | "execution_count": 13, 426 | "id": "0bc4e059", 427 | "metadata": {}, 428 | "outputs": [ 429 | { 430 | "data": { 431 | "text/plain": [ 432 | "15.5" 433 | ] 434 | }, 435 | "execution_count": 13, 436 | "metadata": {}, 437 | "output_type": "execute_result" 438 | } 439 | ], 440 | "source": [ 441 | "df[\"acceleration\"].median()" 442 | ] 443 | }, 444 | { 445 | "cell_type": "code", 446 | "execution_count": 14, 447 | "id": "c3a47baa", 448 | "metadata": { 449 | "scrolled": true 450 | }, 451 | "outputs": [ 452 | { 453 | "name": "stderr", 454 | "output_type": "stream", 455 | "text": [ 456 | "C:\\Users\\GFG19189\\AppData\\Local\\Temp\\ipykernel_12056\\530051474.py:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.\n", 457 | " df.median()\n" 458 | ] 459 | }, 460 | { 461 | "data": { 462 | "text/plain": [ 463 | "mpg 23.0\n", 464 | "cylinders 4.0\n", 465 | "displacement 148.5\n", 466 | "horsepower 93.5\n", 467 | "weight 2803.5\n", 468 | "acceleration 15.5\n", 469 | "model_year 76.0\n", 470 | "dtype: float64" 471 | ] 472 | }, 473 | "execution_count": 14, 474 | "metadata": {}, 475 | "output_type": "execute_result" 476 | } 477 | ], 478 | "source": [ 479 | "df.median()" 480 | ] 481 | }, 482 | { 483 | "cell_type": "markdown", 484 | "id": "37744fa2", 485 | "metadata": {}, 486 | "source": [ 487 | "The median uses the position rather than the specific value of each data entry.\n", 488 | "If the extreme values of a data set change, the median usually does not change.\n", 489 | "\n", 490 | "This is why the median is often used as the average for house prices. If one mansion costing several million dollars sells in a community of much-lower-priced\n", 491 | "homes, the median selling price for houses in the community would be affected\n", 492 | "very little, if at all." 493 | ] 494 | }, 495 | { 496 | "cell_type": "markdown", 497 | "id": "7eeb19ef", 498 | "metadata": {}, 499 | "source": [ 500 | "# Mode" 501 | ] 502 | }, 503 | { 504 | "cell_type": "markdown", 505 | "id": "6896cb16", 506 | "metadata": {}, 507 | "source": [ 508 | "The mode of a data set is the value that occurs most frequently." 509 | ] 510 | }, 511 | { 512 | "cell_type": "code", 513 | "execution_count": 42, 514 | "id": "4c11555f", 515 | "metadata": {}, 516 | "outputs": [ 517 | { 518 | "data": { 519 | "text/plain": [ 520 | "[1, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8]" 521 | ] 522 | }, 523 | "execution_count": 42, 524 | "metadata": {}, 525 | "output_type": "execute_result" 526 | } 527 | ], 528 | "source": [ 529 | "data " 530 | ] 531 | }, 532 | { 533 | "cell_type": "code", 534 | "execution_count": 40, 535 | "id": "a4de4859", 536 | "metadata": {}, 537 | "outputs": [ 538 | { 539 | "data": { 540 | "text/plain": [ 541 | "4" 542 | ] 543 | }, 544 | "execution_count": 40, 545 | "metadata": {}, 546 | "output_type": "execute_result" 547 | } 548 | ], 549 | "source": [ 550 | "statistics.mode(data)" 551 | ] 552 | }, 553 | { 554 | "cell_type": "code", 555 | "execution_count": 17, 556 | "id": "ea401955", 557 | "metadata": {}, 558 | "outputs": [ 559 | { 560 | "data": { 561 | "text/plain": [ 562 | "0 4\n", 563 | "Name: cylinders, dtype: int64" 564 | ] 565 | }, 566 | "execution_count": 17, 567 | "metadata": {}, 568 | "output_type": "execute_result" 569 | } 570 | ], 571 | "source": [ 572 | "df[\"cylinders\"].mode()" 573 | ] 574 | }, 575 | { 576 | "cell_type": "code", 577 | "execution_count": 51, 578 | "id": "fea0bddb", 579 | "metadata": { 580 | "scrolled": true 581 | }, 582 | "outputs": [ 583 | { 584 | "data": { 585 | "text/html": [ 586 | "
\n", 587 | "\n", 600 | "\n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearoriginname
013.04.097.0150.0198514.573.0usaford pinto
1NaNNaNNaNNaN2130NaNNaNNaNNaN
\n", 642 | "
" 643 | ], 644 | "text/plain": [ 645 | " mpg cylinders displacement horsepower weight acceleration \\\n", 646 | "0 13.0 4.0 97.0 150.0 1985 14.5 \n", 647 | "1 NaN NaN NaN NaN 2130 NaN \n", 648 | "\n", 649 | " model_year origin name \n", 650 | "0 73.0 usa ford pinto \n", 651 | "1 NaN NaN NaN " 652 | ] 653 | }, 654 | "execution_count": 51, 655 | "metadata": {}, 656 | "output_type": "execute_result" 657 | } 658 | ], 659 | "source": [ 660 | "df.mode(axis = 0, dropna = False)" 661 | ] 662 | }, 663 | { 664 | "cell_type": "code", 665 | "execution_count": 35, 666 | "id": "e46f3549", 667 | "metadata": { 668 | "scrolled": true 669 | }, 670 | "outputs": [ 671 | { 672 | "data": { 673 | "text/plain": [ 674 | "1" 675 | ] 676 | }, 677 | "execution_count": 35, 678 | "metadata": {}, 679 | "output_type": "execute_result" 680 | } 681 | ], 682 | "source": [ 683 | "len(df[df[\"cylinders\"]==4])" 684 | ] 685 | }, 686 | { 687 | "cell_type": "markdown", 688 | "id": "721a301c", 689 | "metadata": {}, 690 | "source": [ 691 | " Changing just one number in a data set can change the mode dramatically" 692 | ] 693 | }, 694 | { 695 | "cell_type": "code", 696 | "execution_count": 52, 697 | "id": "5bb08b58", 698 | "metadata": {}, 699 | "outputs": [ 700 | { 701 | "data": { 702 | "text/plain": [ 703 | "4" 704 | ] 705 | }, 706 | "execution_count": 52, 707 | "metadata": {}, 708 | "output_type": "execute_result" 709 | } 710 | ], 711 | "source": [ 712 | "len(df[df[\"weight\"]==1985])" 713 | ] 714 | }, 715 | { 716 | "cell_type": "code", 717 | "execution_count": 53, 718 | "id": "7bcfb506", 719 | "metadata": {}, 720 | "outputs": [ 721 | { 722 | "data": { 723 | "text/plain": [ 724 | "4" 725 | ] 726 | }, 727 | "execution_count": 53, 728 | "metadata": {}, 729 | "output_type": "execute_result" 730 | } 731 | ], 732 | "source": [ 733 | "len(df[df[\"weight\"]==2130])" 734 | ] 735 | }, 736 | { 737 | "cell_type": "code", 738 | "execution_count": 56, 739 | "id": "a9241e9e", 740 | "metadata": {}, 741 | "outputs": [ 742 | { 743 | "data": { 744 | "text/html": [ 745 | "
\n", 746 | "\n", 759 | "\n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_year
count398.000000398.000000398.000000392.000000398.000000398.000000398.000000
mean23.5145735.454774193.425879104.4693882970.42462315.56809076.010050
std7.8159841.701004104.26983838.491160846.8417742.7576893.697627
min9.0000003.00000068.00000046.0000001613.0000008.00000070.000000
25%17.5000004.000000104.25000075.0000002223.75000013.82500073.000000
50%23.0000004.000000148.50000093.5000002803.50000015.50000076.000000
75%29.0000008.000000262.000000126.0000003608.00000017.17500079.000000
max46.6000008.000000455.000000230.0000005140.00000024.80000082.000000
\n", 855 | "
" 856 | ], 857 | "text/plain": [ 858 | " mpg cylinders displacement horsepower weight \\\n", 859 | "count 398.000000 398.000000 398.000000 392.000000 398.000000 \n", 860 | "mean 23.514573 5.454774 193.425879 104.469388 2970.424623 \n", 861 | "std 7.815984 1.701004 104.269838 38.491160 846.841774 \n", 862 | "min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n", 863 | "25% 17.500000 4.000000 104.250000 75.000000 2223.750000 \n", 864 | "50% 23.000000 4.000000 148.500000 93.500000 2803.500000 \n", 865 | "75% 29.000000 8.000000 262.000000 126.000000 3608.000000 \n", 866 | "max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n", 867 | "\n", 868 | " acceleration model_year \n", 869 | "count 398.000000 398.000000 \n", 870 | "mean 15.568090 76.010050 \n", 871 | "std 2.757689 3.697627 \n", 872 | "min 8.000000 70.000000 \n", 873 | "25% 13.825000 73.000000 \n", 874 | "50% 15.500000 76.000000 \n", 875 | "75% 17.175000 79.000000 \n", 876 | "max 24.800000 82.000000 " 877 | ] 878 | }, 879 | "execution_count": 56, 880 | "metadata": {}, 881 | "output_type": "execute_result" 882 | } 883 | ], 884 | "source": [ 885 | "df.describe()" 886 | ] 887 | }, 888 | { 889 | "cell_type": "code", 890 | "execution_count": null, 891 | "id": "d97c9fec", 892 | "metadata": {}, 893 | "outputs": [], 894 | "source": [] 895 | } 896 | ], 897 | "metadata": { 898 | "kernelspec": { 899 | "display_name": "Python 3 (ipykernel)", 900 | "language": "python", 901 | "name": "python3" 902 | }, 903 | "language_info": { 904 | "codemirror_mode": { 905 | "name": "ipython", 906 | "version": 3 907 | }, 908 | "file_extension": ".py", 909 | "mimetype": "text/x-python", 910 | "name": "python", 911 | "nbconvert_exporter": "python", 912 | "pygments_lexer": "ipython3", 913 | "version": "3.11.1" 914 | } 915 | }, 916 | "nbformat": 4, 917 | "nbformat_minor": 5 918 | } 919 | -------------------------------------------------------------------------------- /Measure of Dispersion/Measure of Dispersion.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "142b7ea6", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import statistics\n", 12 | "import seaborn as sns" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 3, 18 | "id": "95ddd3a4", 19 | "metadata": {}, 20 | "outputs": [], 21 | "source": [ 22 | "data1 = [45,42,42,41,40]\n", 23 | "data2 =[54,48,42,33,33]" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": 4, 29 | "id": "04fd00a7", 30 | "metadata": {}, 31 | "outputs": [ 32 | { 33 | "data": { 34 | "text/plain": [ 35 | "42" 36 | ] 37 | }, 38 | "execution_count": 4, 39 | "metadata": {}, 40 | "output_type": "execute_result" 41 | } 42 | ], 43 | "source": [ 44 | "statistics.mean(data1)" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": 5, 50 | "id": "0d142bc2", 51 | "metadata": {}, 52 | "outputs": [ 53 | { 54 | "data": { 55 | "text/plain": [ 56 | "42" 57 | ] 58 | }, 59 | "execution_count": 5, 60 | "metadata": {}, 61 | "output_type": "execute_result" 62 | } 63 | ], 64 | "source": [ 65 | "statistics.mean(data2)" 66 | ] 67 | }, 68 | { 69 | "cell_type": "code", 70 | "execution_count": 6, 71 | "id": "c75178ff", 72 | "metadata": {}, 73 | "outputs": [ 74 | { 75 | "data": { 76 | "text/plain": [ 77 | "3.5" 78 | ] 79 | }, 80 | "execution_count": 6, 81 | "metadata": {}, 82 | "output_type": "execute_result" 83 | } 84 | ], 85 | "source": [ 86 | "statistics.variance(data1)" 87 | ] 88 | }, 89 | { 90 | "cell_type": "code", 91 | "execution_count": 7, 92 | "id": "9f0068be", 93 | "metadata": {}, 94 | "outputs": [ 95 | { 96 | "data": { 97 | "text/plain": [ 98 | "1.6733200530681511" 99 | ] 100 | }, 101 | "execution_count": 7, 102 | "metadata": {}, 103 | "output_type": "execute_result" 104 | } 105 | ], 106 | "source": [ 107 | "statistics.pstdev(data1)" 108 | ] 109 | }, 110 | { 111 | "cell_type": "code", 112 | "execution_count": 8, 113 | "id": "8334e792", 114 | "metadata": {}, 115 | "outputs": [], 116 | "source": [ 117 | "df = sns.load_dataset(\"mpg\")" 118 | ] 119 | }, 120 | { 121 | "cell_type": "code", 122 | "execution_count": 9, 123 | "id": "bff64009", 124 | "metadata": { 125 | "scrolled": true 126 | }, 127 | "outputs": [ 128 | { 129 | "data": { 130 | "text/html": [ 131 | "
\n", 132 | "\n", 145 | "\n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearoriginname
018.08307.0130.0350412.070usachevrolet chevelle malibu
115.08350.0165.0369311.570usabuick skylark 320
218.08318.0150.0343611.070usaplymouth satellite
316.08304.0150.0343312.070usaamc rebel sst
417.08302.0140.0344910.570usaford torino
\n", 223 | "
" 224 | ], 225 | "text/plain": [ 226 | " mpg cylinders displacement horsepower weight acceleration \\\n", 227 | "0 18.0 8 307.0 130.0 3504 12.0 \n", 228 | "1 15.0 8 350.0 165.0 3693 11.5 \n", 229 | "2 18.0 8 318.0 150.0 3436 11.0 \n", 230 | "3 16.0 8 304.0 150.0 3433 12.0 \n", 231 | "4 17.0 8 302.0 140.0 3449 10.5 \n", 232 | "\n", 233 | " model_year origin name \n", 234 | "0 70 usa chevrolet chevelle malibu \n", 235 | "1 70 usa buick skylark 320 \n", 236 | "2 70 usa plymouth satellite \n", 237 | "3 70 usa amc rebel sst \n", 238 | "4 70 usa ford torino " 239 | ] 240 | }, 241 | "execution_count": 9, 242 | "metadata": {}, 243 | "output_type": "execute_result" 244 | } 245 | ], 246 | "source": [ 247 | "df.head()" 248 | ] 249 | }, 250 | { 251 | "cell_type": "code", 252 | "execution_count": 10, 253 | "id": "eadf7b26", 254 | "metadata": {}, 255 | "outputs": [], 256 | "source": [ 257 | "data = [1, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8]" 258 | ] 259 | }, 260 | { 261 | "cell_type": "code", 262 | "execution_count": 11, 263 | "id": "a1754a55", 264 | "metadata": {}, 265 | "outputs": [ 266 | { 267 | "data": { 268 | "text/plain": [ 269 | "7" 270 | ] 271 | }, 272 | "execution_count": 11, 273 | "metadata": {}, 274 | "output_type": "execute_result" 275 | } 276 | ], 277 | "source": [ 278 | "8-1" 279 | ] 280 | }, 281 | { 282 | "cell_type": "code", 283 | "execution_count": 12, 284 | "id": "2511f30f", 285 | "metadata": {}, 286 | "outputs": [ 287 | { 288 | "data": { 289 | "text/plain": [ 290 | "4.769230769230769" 291 | ] 292 | }, 293 | "execution_count": 12, 294 | "metadata": {}, 295 | "output_type": "execute_result" 296 | } 297 | ], 298 | "source": [ 299 | "statistics.mean(data)" 300 | ] 301 | }, 302 | { 303 | "cell_type": "code", 304 | "execution_count": 13, 305 | "id": "f82a663e", 306 | "metadata": {}, 307 | "outputs": [ 308 | { 309 | "data": { 310 | "text/plain": [ 311 | "2.0438969623979113" 312 | ] 313 | }, 314 | "execution_count": 13, 315 | "metadata": {}, 316 | "output_type": "execute_result" 317 | } 318 | ], 319 | "source": [ 320 | "statistics.pstdev(data)" 321 | ] 322 | }, 323 | { 324 | "cell_type": "code", 325 | "execution_count": 14, 326 | "id": "575f8bd3", 327 | "metadata": { 328 | "scrolled": true 329 | }, 330 | "outputs": [ 331 | { 332 | "data": { 333 | "text/plain": [ 334 | "37.6" 335 | ] 336 | }, 337 | "execution_count": 14, 338 | "metadata": {}, 339 | "output_type": "execute_result" 340 | } 341 | ], 342 | "source": [ 343 | "df[\"mpg\"].max()-df[\"mpg\"].min()" 344 | ] 345 | }, 346 | { 347 | "cell_type": "code", 348 | "execution_count": 15, 349 | "id": "2fabd3b2", 350 | "metadata": { 351 | "scrolled": true 352 | }, 353 | "outputs": [ 354 | { 355 | "data": { 356 | "text/plain": [ 357 | "3527" 358 | ] 359 | }, 360 | "execution_count": 15, 361 | "metadata": {}, 362 | "output_type": "execute_result" 363 | } 364 | ], 365 | "source": [ 366 | "df[\"weight\"].max()-df[\"weight\"].min()" 367 | ] 368 | }, 369 | { 370 | "cell_type": "code", 371 | "execution_count": 16, 372 | "id": "e18187df", 373 | "metadata": {}, 374 | "outputs": [ 375 | { 376 | "data": { 377 | "text/plain": [ 378 | "61.0896107742744" 379 | ] 380 | }, 381 | "execution_count": 16, 382 | "metadata": {}, 383 | "output_type": "execute_result" 384 | } 385 | ], 386 | "source": [ 387 | "statistics.variance(df[\"mpg\"])" 388 | ] 389 | }, 390 | { 391 | "cell_type": "code", 392 | "execution_count": 17, 393 | "id": "34ee0060", 394 | "metadata": {}, 395 | "outputs": [ 396 | { 397 | "data": { 398 | "text/plain": [ 399 | "7.806159061274432" 400 | ] 401 | }, 402 | "execution_count": 17, 403 | "metadata": {}, 404 | "output_type": "execute_result" 405 | } 406 | ], 407 | "source": [ 408 | "statistics.pstdev(df[\"mpg\"])" 409 | ] 410 | }, 411 | { 412 | "cell_type": "code", 413 | "execution_count": 18, 414 | "id": "b144a54e", 415 | "metadata": {}, 416 | "outputs": [ 417 | { 418 | "data": { 419 | "text/html": [ 420 | "
\n", 421 | "\n", 434 | "\n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_year
count398.000000398.000000398.000000392.000000398.000000398.000000398.000000
mean23.5145735.454774193.425879104.4693882970.42462315.56809076.010050
std7.8159841.701004104.26983838.491160846.8417742.7576893.697627
min9.0000003.00000068.00000046.0000001613.0000008.00000070.000000
25%17.5000004.000000104.25000075.0000002223.75000013.82500073.000000
50%23.0000004.000000148.50000093.5000002803.50000015.50000076.000000
75%29.0000008.000000262.000000126.0000003608.00000017.17500079.000000
max46.6000008.000000455.000000230.0000005140.00000024.80000082.000000
\n", 530 | "
" 531 | ], 532 | "text/plain": [ 533 | " mpg cylinders displacement horsepower weight \\\n", 534 | "count 398.000000 398.000000 398.000000 392.000000 398.000000 \n", 535 | "mean 23.514573 5.454774 193.425879 104.469388 2970.424623 \n", 536 | "std 7.815984 1.701004 104.269838 38.491160 846.841774 \n", 537 | "min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n", 538 | "25% 17.500000 4.000000 104.250000 75.000000 2223.750000 \n", 539 | "50% 23.000000 4.000000 148.500000 93.500000 2803.500000 \n", 540 | "75% 29.000000 8.000000 262.000000 126.000000 3608.000000 \n", 541 | "max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n", 542 | "\n", 543 | " acceleration model_year \n", 544 | "count 398.000000 398.000000 \n", 545 | "mean 15.568090 76.010050 \n", 546 | "std 2.757689 3.697627 \n", 547 | "min 8.000000 70.000000 \n", 548 | "25% 13.825000 73.000000 \n", 549 | "50% 15.500000 76.000000 \n", 550 | "75% 17.175000 79.000000 \n", 551 | "max 24.800000 82.000000 " 552 | ] 553 | }, 554 | "execution_count": 18, 555 | "metadata": {}, 556 | "output_type": "execute_result" 557 | } 558 | ], 559 | "source": [ 560 | "df.describe()" 561 | ] 562 | }, 563 | { 564 | "cell_type": "code", 565 | "execution_count": 19, 566 | "id": "c407205d", 567 | "metadata": {}, 568 | "outputs": [ 569 | { 570 | "data": { 571 | "text/plain": [ 572 | "0.3319711187745463" 573 | ] 574 | }, 575 | "execution_count": 19, 576 | "metadata": {}, 577 | "output_type": "execute_result" 578 | } 579 | ], 580 | "source": [ 581 | "statistics.pstdev(df[\"mpg\"])/statistics.mean(df[\"mpg\"])" 582 | ] 583 | }, 584 | { 585 | "cell_type": "code", 586 | "execution_count": 20, 587 | "id": "c9700a5c", 588 | "metadata": {}, 589 | "outputs": [ 590 | { 591 | "data": { 592 | "text/plain": [ 593 | "0.2847327708429478" 594 | ] 595 | }, 596 | "execution_count": 20, 597 | "metadata": {}, 598 | "output_type": "execute_result" 599 | } 600 | ], 601 | "source": [ 602 | "statistics.pstdev(df[\"weight\"])/statistics.mean(df[\"weight\"])" 603 | ] 604 | }, 605 | { 606 | "cell_type": "code", 607 | "execution_count": 22, 608 | "id": "1e1d5ffb", 609 | "metadata": {}, 610 | "outputs": [ 611 | { 612 | "data": { 613 | "text/html": [ 614 | "
\n", 615 | "\n", 628 | "\n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_year
count398.000000398.000000398.000000392.000000398.000000398.000000398.000000
mean23.5145735.454774193.425879104.4693882970.42462315.56809076.010050
std7.8159841.701004104.26983838.491160846.8417742.7576893.697627
min9.0000003.00000068.00000046.0000001613.0000008.00000070.000000
25%17.5000004.000000104.25000075.0000002223.75000013.82500073.000000
50%23.0000004.000000148.50000093.5000002803.50000015.50000076.000000
75%29.0000008.000000262.000000126.0000003608.00000017.17500079.000000
max46.6000008.000000455.000000230.0000005140.00000024.80000082.000000
\n", 724 | "
" 725 | ], 726 | "text/plain": [ 727 | " mpg cylinders displacement horsepower weight \\\n", 728 | "count 398.000000 398.000000 398.000000 392.000000 398.000000 \n", 729 | "mean 23.514573 5.454774 193.425879 104.469388 2970.424623 \n", 730 | "std 7.815984 1.701004 104.269838 38.491160 846.841774 \n", 731 | "min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n", 732 | "25% 17.500000 4.000000 104.250000 75.000000 2223.750000 \n", 733 | "50% 23.000000 4.000000 148.500000 93.500000 2803.500000 \n", 734 | "75% 29.000000 8.000000 262.000000 126.000000 3608.000000 \n", 735 | "max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n", 736 | "\n", 737 | " acceleration model_year \n", 738 | "count 398.000000 398.000000 \n", 739 | "mean 15.568090 76.010050 \n", 740 | "std 2.757689 3.697627 \n", 741 | "min 8.000000 70.000000 \n", 742 | "25% 13.825000 73.000000 \n", 743 | "50% 15.500000 76.000000 \n", 744 | "75% 17.175000 79.000000 \n", 745 | "max 24.800000 82.000000 " 746 | ] 747 | }, 748 | "execution_count": 22, 749 | "metadata": {}, 750 | "output_type": "execute_result" 751 | } 752 | ], 753 | "source": [ 754 | "df.describe()" 755 | ] 756 | }, 757 | { 758 | "cell_type": "code", 759 | "execution_count": 25, 760 | "id": "de1108c8", 761 | "metadata": {}, 762 | "outputs": [ 763 | { 764 | "data": { 765 | "text/plain": [ 766 | "0.03984095364447979" 767 | ] 768 | }, 769 | "execution_count": 25, 770 | "metadata": {}, 771 | "output_type": "execute_result" 772 | } 773 | ], 774 | "source": [ 775 | "statistics.pstdev(data1)/statistics.mean(data1)" 776 | ] 777 | }, 778 | { 779 | "cell_type": "code", 780 | "execution_count": 26, 781 | "id": "e74acab0", 782 | "metadata": {}, 783 | "outputs": [ 784 | { 785 | "data": { 786 | "text/plain": [ 787 | "0.19691498217271744" 788 | ] 789 | }, 790 | "execution_count": 26, 791 | "metadata": {}, 792 | "output_type": "execute_result" 793 | } 794 | ], 795 | "source": [ 796 | "statistics.pstdev(data2)/statistics.mean(data2)" 797 | ] 798 | } 799 | ], 800 | "metadata": { 801 | "kernelspec": { 802 | "display_name": "Python 3 (ipykernel)", 803 | "language": "python", 804 | "name": "python3" 805 | }, 806 | "language_info": { 807 | "codemirror_mode": { 808 | "name": "ipython", 809 | "version": 3 810 | }, 811 | "file_extension": ".py", 812 | "mimetype": "text/x-python", 813 | "name": "python", 814 | "nbconvert_exporter": "python", 815 | "pygments_lexer": "ipython3", 816 | "version": "3.11.1" 817 | } 818 | }, 819 | "nbformat": 4, 820 | "nbformat_minor": 5 821 | } 822 | -------------------------------------------------------------------------------- /Measure of Shape/Measure of Shape.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "fcd711f3", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import seaborn as sns" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 3, 17 | "id": "ffac47a7", 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "df = sns.load_dataset(\"mpg\")" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": 4, 27 | "id": "5e87c097", 28 | "metadata": {}, 29 | "outputs": [ 30 | { 31 | "data": { 32 | "text/html": [ 33 | "
\n", 34 | "\n", 47 | "\n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearoriginname
018.08307.0130.0350412.070usachevrolet chevelle malibu
115.08350.0165.0369311.570usabuick skylark 320
218.08318.0150.0343611.070usaplymouth satellite
316.08304.0150.0343312.070usaamc rebel sst
417.08302.0140.0344910.570usaford torino
\n", 125 | "
" 126 | ], 127 | "text/plain": [ 128 | " mpg cylinders displacement horsepower weight acceleration \\\n", 129 | "0 18.0 8 307.0 130.0 3504 12.0 \n", 130 | "1 15.0 8 350.0 165.0 3693 11.5 \n", 131 | "2 18.0 8 318.0 150.0 3436 11.0 \n", 132 | "3 16.0 8 304.0 150.0 3433 12.0 \n", 133 | "4 17.0 8 302.0 140.0 3449 10.5 \n", 134 | "\n", 135 | " model_year origin name \n", 136 | "0 70 usa chevrolet chevelle malibu \n", 137 | "1 70 usa buick skylark 320 \n", 138 | "2 70 usa plymouth satellite \n", 139 | "3 70 usa amc rebel sst \n", 140 | "4 70 usa ford torino " 141 | ] 142 | }, 143 | "execution_count": 4, 144 | "metadata": {}, 145 | "output_type": "execute_result" 146 | } 147 | ], 148 | "source": [ 149 | "df.head()" 150 | ] 151 | }, 152 | { 153 | "cell_type": "code", 154 | "execution_count": 5, 155 | "id": "ec1df159", 156 | "metadata": {}, 157 | "outputs": [ 158 | { 159 | "name": "stderr", 160 | "output_type": "stream", 161 | "text": [ 162 | "C:\\Users\\GFG19189\\AppData\\Local\\Temp\\ipykernel_5308\\1665899112.py:1: FutureWarning: The default value of numeric_only in DataFrame.skew is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.\n", 163 | " df.skew()\n" 164 | ] 165 | }, 166 | { 167 | "data": { 168 | "text/plain": [ 169 | "mpg 0.457066\n", 170 | "cylinders 0.526922\n", 171 | "displacement 0.719645\n", 172 | "horsepower 1.087326\n", 173 | "weight 0.531063\n", 174 | "acceleration 0.278777\n", 175 | "model_year 0.011535\n", 176 | "dtype: float64" 177 | ] 178 | }, 179 | "execution_count": 5, 180 | "metadata": {}, 181 | "output_type": "execute_result" 182 | } 183 | ], 184 | "source": [ 185 | "df.skew()" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 6, 191 | "id": "08d2f9b4", 192 | "metadata": {}, 193 | "outputs": [], 194 | "source": [ 195 | "df[\"horsepower\"]= df[\"horsepower\"]**(1/3)" 196 | ] 197 | }, 198 | { 199 | "cell_type": "code", 200 | "execution_count": 7, 201 | "id": "7ba7e304", 202 | "metadata": {}, 203 | "outputs": [ 204 | { 205 | "data": { 206 | "text/plain": [ 207 | "0.6132504951168221" 208 | ] 209 | }, 210 | "execution_count": 7, 211 | "metadata": {}, 212 | "output_type": "execute_result" 213 | } 214 | ], 215 | "source": [ 216 | "df[\"horsepower\"].skew()" 217 | ] 218 | }, 219 | { 220 | "cell_type": "code", 221 | "execution_count": 12, 222 | "id": "bf4043fe", 223 | "metadata": {}, 224 | "outputs": [ 225 | { 226 | "data": { 227 | "text/plain": [ 228 | "" 229 | ] 230 | }, 231 | "execution_count": 12, 232 | "metadata": {}, 233 | "output_type": "execute_result" 234 | }, 235 | { 236 | "data": { 237 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGpCAYAAABxrBcAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABETklEQVR4nO3deXxU5aH/8e/sM1kmIUAyhIQAopCwSqgQUUSkROW6VOzt4l5rr954b4FeF/qzrrel2iraFsXWBa1VRNuKioqIgiLgEmQRFBWQRCFBJAtkJcn5/UHn3EwyCZkkJJOTz/v1Oi/IM2fO85z9e9axGYZhCAAAwCLs3d0AAACAzkS4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAluLs7gYcLw0NDdq7d6/i4+Nls9m6uzkAAKANDMPQoUOHlJqaKru9fedgLBtu9u7dq/T09O5uBgAAaIfCwkKlpaW167uWDTfx8fGSjk4cv9/fza0BAABtUV5ervT0dHM/3h6WDTfBS1F+v59wAwBAD9ORW0q4oRgAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4aaHGnzz8u5uAgAAUYlwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALCWicHP77bfLZrOFdCNGjDA/r66uVl5envr27au4uDjNmjVLxcXFIcMoKCjQzJkzFRMTo+TkZN1www2qq6sL6Wf16tUaP368PB6Phg0bpsWLF7d/DAEAQK8S8ZmbkSNHat++fWa3du1a87M5c+bopZde0nPPPac1a9Zo7969uuiii8zP6+vrNXPmTNXW1mrdunV64okntHjxYt16661mP7t379bMmTN15plnatOmTZo9e7Z++tOfasWKFR0cVQAA0Bs4I/6C06lAINCsvKysTI8++qiefvppTZs2TZL0+OOPKzMzUxs2bNCkSZP0+uuva/v27XrjjTeUkpKicePG6a677tJNN92k22+/XW63W4sWLdKQIUN07733SpIyMzO1du1aLViwQLm5uS22q6amRjU1Nebf5eXlkY4aAACwgIjP3Hz++edKTU3V0KFDdckll6igoECSlJ+fryNHjmj69OlmvyNGjNCgQYO0fv16SdL69es1evRopaSkmP3k5uaqvLxc27ZtM/tpPIxgP8FhtGT+/PlKSEgwu/T09EhHDQAAWEBE4WbixIlavHixXnvtNT300EPavXu3Tj/9dB06dEhFRUVyu91KTEwM+U5KSoqKiookSUVFRSHBJvh58LPW+ikvL1dVVVWLbZs3b57KysrMrrCwMJJRAwAAFhHRZalzzjnH/P+YMWM0ceJEZWRkaOnSpfL5fJ3euEh4PB55PJ5ubQMAAOh+HXoUPDExUSeddJK++OILBQIB1dbWqrS0NKSf4uJi8x6dQCDQ7Omp4N/H6sfv93d7gAIAANGvQ+Hm8OHD2rlzpwYMGKDs7Gy5XC6tWrXK/HzHjh0qKChQTk6OJCknJ0dbt27V/v37zX5Wrlwpv9+vrKwss5/Gwwj2ExwGeg9+HBQA0B4RhZv/+Z//0Zo1a/Tll19q3bp1+t73vieHw6Ef/ehHSkhI0NVXX625c+fqrbfeUn5+vq666irl5ORo0qRJkqQZM2YoKytLl112mTZv3qwVK1bolltuUV5ennlJ6dprr9WuXbt044036tNPP9WDDz6opUuXas6cOZ0/9gAAwHIiuufmq6++0o9+9CN9++236t+/v0477TRt2LBB/fv3lyQtWLBAdrtds2bNUk1NjXJzc/Xggw+a33c4HHr55Zd13XXXKScnR7Gxsbriiit05513mv0MGTJEy5cv15w5c/TAAw8oLS1NjzzySKuPgQMAAATZDMMwursRx0N5ebkSEhJUVlYmv9/f3c3pdINvXq4vfzuzu5txXPWGcQQAhOqM/Te/LQUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcIMehV8KBwAcC+Gmi7BTBgCgaxBuAACApRBugCjAmT0A6DyEGwAAYCmEGwAAYCmEG/QKXPb5P0wLAFZHuAGiCMEDADqOcAMAACyFcHOccAQOAED3INwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwgIjziDgCIdoQb9BoEM6YBgN6BcAMAACyFcIOIcfR/fDBdAaBzEG4AAIClEG4AAIClEG7E5YD2YJoBAKIV4QYAAFgK4QYAAFgK4QZAr8SlVcC6CDcAgC5HuMTx1CvDDSsVAADW1SvDDQAcb4NvXs6BFNBNen24YeMDAIC19PpwAwAArIVwg07DWTD0FizrQHQj3CAEG20AQE9HuAEAAJZCuEGPwVklAEBbEG4AAIClEG4AdJumZ+M4OwegMxBuAACApRBuAHQrztYA6GyEGwAAYCmEmx6AI1sAANqOcIMWEaqA5lgvgOhHuEGr2JADAHoawg0AALAUwk0PEe1nUDrSvmgfNwBAz0K4AcIgcKG3YFmHFRFuAACApXQo3Pz2t7+VzWbT7NmzzbLq6mrl5eWpb9++iouL06xZs1RcXBzyvYKCAs2cOVMxMTFKTk7WDTfcoLq6upB+Vq9erfHjx8vj8WjYsGFavHhxR5oKAAB6iXaHmw8++EAPP/ywxowZE1I+Z84cvfTSS3ruuee0Zs0a7d27VxdddJH5eX19vWbOnKna2lqtW7dOTzzxhBYvXqxbb73V7Gf37t2aOXOmzjzzTG3atEmzZ8/WT3/6U61YsaK9zQUAAL1Eu8LN4cOHdckll+gvf/mL+vTpY5aXlZXp0Ucf1X333adp06YpOztbjz/+uNatW6cNGzZIkl5//XVt375dTz31lMaNG6dzzjlHd911lxYuXKja2lpJ0qJFizRkyBDde++9yszM1PXXX6+LL75YCxYs6IRRBgAAVtaucJOXl6eZM2dq+vTpIeX5+fk6cuRISPmIESM0aNAgrV+/XpK0fv16jR49WikpKWY/ubm5Ki8v17Zt28x+mg47NzfXHEY4NTU1Ki8vD+kAAEDv44z0C0uWLNHGjRv1wQcfNPusqKhIbrdbiYmJIeUpKSkqKioy+2kcbIKfBz9rrZ/y8nJVVVXJ5/M1q3v+/Pm64447Ih0dAABgMRGduSksLNTPf/5z/e1vf5PX6z1ebWqXefPmqayszOwKCwu7u0kAAKAbRBRu8vPztX//fo0fP15Op1NOp1Nr1qzRH/7wBzmdTqWkpKi2tlalpaUh3ysuLlYgEJAkBQKBZk9PBf8+Vj9+vz/sWRtJ8ng88vv9IR0AAOh9Igo3Z511lrZu3apNmzaZ3YQJE3TJJZeY/3e5XFq1apX5nR07dqigoEA5OTmSpJycHG3dulX79+83+1m5cqX8fr+ysrLMfhoPI9hPcBgAAAAtiSjcxMfHa9SoUSFdbGys+vbtq1GjRikhIUFXX3215s6dq7feekv5+fm66qqrlJOTo0mTJkmSZsyYoaysLF122WXavHmzVqxYoVtuuUV5eXnyeDySpGuvvVa7du3SjTfeqE8//VQPPvigli5dqjlz5nT+FABgebyFN/oxj9CZIr6h+FgWLFggu92uWbNmqaamRrm5uXrwwQfNzx0Oh15++WVdd911ysnJUWxsrK644grdeeedZj9DhgzR8uXLNWfOHD3wwANKS0vTI488otzc3M5uLgAAsJgOh5vVq1eH/O31erVw4UItXLiwxe9kZGTolVdeaXW4U6dO1UcffdTR5gEAgF6G35ZCh3E6GQAQTQg3AADAUgg3AADAUgg3/8KlFQAArIFwAwA4rpoePHIwieONcAOg12HnClgb4QYAAFgK4QYAZzIAWArhBlHJyjtbK48bAEQDwk0L2AEBANAzEW4AQBzQAFZCuAF6OXbqAKyGcAMAACyFcAMAACzF8uFm1G0rursJAACgC1k+3KDjuuKeDO77AAB0FsINAACwFMINgB6Js30AWkK4AboBO2ZrYX4C0YVwA3QTdojoSixv6E0INwAAwFIINwAAwFIINwB6rN5+qaW3jz/QEsINAACwFMINAACwFMINAHSC7rpEZPVLU1YfPxwfhBsAAGAphBsAAGAphBsAAGAphBsAAHoZq9/L1OvCjdVnKAAAvV2vCzcAAA70YG29KtywMqM3YXnvvaw87608bug8vSrcAEBv1tnBgKCBaEW4AdqBjToARC/CDQCg1+JAxZoINwDQg7AzBo6NcAMg6rADtw7mJboD4QYAAFgK4QYAAFgK4QYAAFgK4SbKDL55OdeoAQDoAMINejzCIACgMcINAACwFMINAKBT9LazqL1tfHsSwg2AqMIOA0BHEW4AAIClEG4AdBhnW6JPW+YJ8w1WRbgBYAnsqAEEEW4AAIClEG4AC2vv2QzOggDoyQg3ACytNwS13jCOQCQINxbCBg4AAMINejgCHQCgKcIN0EkIWgAQHQg3rWBnBXQ/1kMAkSLcAIDFERDR2xBuAADoRXpD2I0o3Dz00EMaM2aM/H6//H6/cnJy9Oqrr5qfV1dXKy8vT3379lVcXJxmzZql4uLikGEUFBRo5syZiomJUXJysm644QbV1dWF9LN69WqNHz9eHo9Hw4YN0+LFi9s/hgAAoFeJKNykpaXpt7/9rfLz8/Xhhx9q2rRpuuCCC7Rt2zZJ0pw5c/TSSy/pueee05o1a7R3715ddNFF5vfr6+s1c+ZM1dbWat26dXriiSe0ePFi3XrrrWY/u3fv1syZM3XmmWdq06ZNmj17tn76059qxYoVnTTKAACgLXrqWR5nJD2fd955IX//+te/1kMPPaQNGzYoLS1Njz76qJ5++mlNmzZNkvT4448rMzNTGzZs0KRJk/T6669r+/bteuONN5SSkqJx48bprrvu0k033aTbb79dbrdbixYt0pAhQ3TvvfdKkjIzM7V27VotWLBAubm5LbatpqZGNTU15t/l5eWRjBoAAOhkg29eri9/O7PL6233PTf19fVasmSJKioqlJOTo/z8fB05ckTTp083+xkxYoQGDRqk9evXS5LWr1+v0aNHKyUlxewnNzdX5eXl5tmf9evXhwwj2E9wGC2ZP3++EhISzC49Pb29owYAAHqwiMPN1q1bFRcXJ4/Ho2uvvVb//Oc/lZWVpaKiIrndbiUmJob0n5KSoqKiIklSUVFRSLAJfh78rLV+ysvLVVVV1WK75s2bp7KyMrMrLCyMdNQARKinnrLG8cMygWgQ0WUpSRo+fLg2bdqksrIyPf/887riiiu0Zs2a49G2iHg8Hnk8nu5uBprorlOSAIDeK+IzN263W8OGDVN2drbmz5+vsWPH6oEHHlAgEFBtba1KS0tD+i8uLlYgEJAkBQKBZk9PBf8+Vj9+v18+ny/S5loaR0iIRiyXALpbh99z09DQoJqaGmVnZ8vlcmnVqlXmZzt27FBBQYFycnIkSTk5Odq6dav2799v9rNy5Ur5/X5lZWWZ/TQeRrCf4DAARD8CDoDu3A5EFG7mzZunt99+W19++aW2bt2qefPmafXq1brkkkuUkJCgq6++WnPnztVbb72l/Px8XXXVVcrJydGkSZMkSTNmzFBWVpYuu+wybd68WStWrNAtt9yivLw885LStddeq127dunGG2/Up59+qgcffFBLly7VnDlzOn/sAQCwuN54sBHRPTf79+/X5Zdfrn379ikhIUFjxozRihUr9N3vfleStGDBAtntds2aNUs1NTXKzc3Vgw8+aH7f4XDo5Zdf1nXXXaecnBzFxsbqiiuu0J133mn2M2TIEC1fvlxz5szRAw88oLS0ND3yyCOtPgYOAEC04F7D7hdRuHn00Udb/dzr9WrhwoVauHBhi/1kZGTolVdeaXU4U6dO1UcffRRJ0wBTd29Yurt+ANGlO7cJvfGsjcRvSwEAAIsh3ACdqLceJQE9Cetp2/Tk6US4AQC0qifv5NA7EW4AAIClEG4AAMBx15VnAAk3QAdwuh4Aog/hBgAQMYI9ohnhBgAAdIvjFZIJNxHgSAUAgOhHuAGALsRBEnD8EW4AAC0ijKEnItwAQJTpSKAgjPQczKvwRt22osPDINwAAHo9goa1EG4AtBk7AAA9AeEGANBrENB7B8JNB7Gi9F7M+9YxfdBRkSxDLG89Q1fNJ8LNccBKBgBA9yHcdDOCEACgs7BPOYpwAwBAFyOEHF+EGwAALIDA9H8INxFi4UFvxbIPoKcg3ABtxM4dgJVZaRtHuAHQZbp642mljXVXYHrBKgg3AADLIaj1boQbAABgKYQbAABgKYQbHDctnRbmdDEA4Hgi3AAA0AU4sOs6hBugETY+ANDzEW4AHHeERgBdiXADHGfs2AGgaxFuOgE7LwCwDrbpPR/hBgCATkZA6l6Emx6us1ag3rgi9sZxBtqL9QU9CeEGsAB2PEDPFC3rbrS0o7MQbtCrWW2FBoBo1xXbXcINAACwFMINAACwFMINAABtxKXsnoFwAwBAD0TQahnhBohybMC6T2+c9r1xnNH9Onu5I9ygS7HhBNAbse3rWoSbXooVDQBgVYQboAmCH44Xlq2eg3nVsxFuAABAh0RbGCTcwBRtCyeA7sG2AD0d4cZi2ChZh9XmpdXGB+hKrD+RIdwA6BZsrNFeLDvRJRrnB+EGALpZNO4cepOeOP17Ypu7EuEGQFjRtvGMtvYAiF6EG6AN2LECQM9BuAEAWBIHJb0X4aYLddWK1tZ6WPGP6mnToae1FzjeWCe61uCbl3fqND8e849wA/RAbMyB46/xesY617MQbgAAgKUQbgAAaAPO3vQchBuLY2UErIF1ufdgXndcROFm/vz5+s53vqP4+HglJyfrwgsv1I4dO0L6qa6uVl5envr27au4uDjNmjVLxcXFIf0UFBRo5syZiomJUXJysm644QbV1dWF9LN69WqNHz9eHo9Hw4YN0+LFi9s3hgAAoFeJKNysWbNGeXl52rBhg1auXKkjR45oxowZqqioMPuZM2eOXnrpJT333HNas2aN9u7dq4suusj8vL6+XjNnzlRtba3WrVunJ554QosXL9att95q9rN7927NnDlTZ555pjZt2qTZs2frpz/9qVasWNEJoxw9SOdA20Tbk4YAopszkp5fe+21kL8XL16s5ORk5efna8qUKSorK9Ojjz6qp59+WtOmTZMkPf7448rMzNSGDRs0adIkvf7669q+fbveeOMNpaSkaNy4cbrrrrt000036fbbb5fb7daiRYs0ZMgQ3XvvvZKkzMxMrV27VgsWLFBubm4njToAoDchvPYeHbrnpqysTJKUlJQkScrPz9eRI0c0ffp0s58RI0Zo0KBBWr9+vSRp/fr1Gj16tFJSUsx+cnNzVV5erm3btpn9NB5GsJ/gMMKpqalReXl5SAcAAHqfdoebhoYGzZ49W5MnT9aoUaMkSUVFRXK73UpMTAzpNyUlRUVFRWY/jYNN8PPgZ631U15erqqqqrDtmT9/vhISEswuPT29vaMG9EgclR7FdAC6X3evh+0ON3l5efr444+1ZMmSzmxPu82bN09lZWVmV1hY2N1NAoBjamkn0N07B0SP7l4Wurv+9mhXuLn++uv18ssv66233lJaWppZHggEVFtbq9LS0pD+i4uLFQgEzH6aPj0V/PtY/fj9fvl8vrBt8ng88vv9IR3Q0/XEjQoQTViHOldr0zOapnVE4cYwDF1//fX65z//qTfffFNDhgwJ+Tw7O1sul0urVq0yy3bs2KGCggLl5ORIknJycrR161bt37/f7GflypXy+/3Kysoy+2k8jGA/wWGgY6JpATxeomUco6UdaD/mIdDzRPS0VF5enp5++mktW7ZM8fHx5j0yCQkJ8vl8SkhI0NVXX625c+cqKSlJfr9f//Vf/6WcnBxNmjRJkjRjxgxlZWXpsssu0z333KOioiLdcsstysvLk8fjkSRde+21+tOf/qQbb7xRP/nJT/Tmm29q6dKlWr6cjQwQbdj5A4g2EZ25eeihh1RWVqapU6dqwIABZvfss8+a/SxYsED/9m//plmzZmnKlCkKBAL6xz/+YX7ucDj08ssvy+FwKCcnR5deeqkuv/xy3XnnnWY/Q4YM0fLly7Vy5UqNHTtW9957rx555BEeAwcACyMoo7NEdObGMIxj9uP1erVw4UItXLiwxX4yMjL0yiuvtDqcqVOn6qOPPoqkeQAAAPy2FAAAsBbCDQAAsBTCDXAM3AcAAD0L4QYAgHZqevDDwVB0INwAXYANHmBdrN/Rh3ADwDLYyQCQCDcAELW45AG0D+EGQI/DTh5Aawg3vQA7AgBAb0K4AQAgSnAw2jkINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN70Eb70EAPQWhBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGApEYebt99+W+edd55SU1Nls9n0wgsvhHxuGIZuvfVWDRgwQD6fT9OnT9fnn38e0s/Bgwd1ySWXyO/3KzExUVdffbUOHz4c0s+WLVt0+umny+v1Kj09Xffcc0/kYwcAAHqdiMNNRUWFxo4dq4ULF4b9/J577tEf/vAHLVq0SO+9955iY2OVm5ur6upqs59LLrlE27Zt08qVK/Xyyy/r7bff1s9+9jPz8/Lycs2YMUMZGRnKz8/X7373O91+++3685//3I5RBAAAvYkz0i+cc845Ouecc8J+ZhiG7r//ft1yyy264IILJElPPvmkUlJS9MILL+iHP/yhPvnkE7322mv64IMPNGHCBEnSH//4R5177rn6/e9/r9TUVP3tb39TbW2tHnvsMbndbo0cOVKbNm3SfffdFxKCGqupqVFNTY35d3l5eaSjBgAALKBT77nZvXu3ioqKNH36dLMsISFBEydO1Pr16yVJ69evV2JiohlsJGn69Omy2+167733zH6mTJkit9tt9pObm6sdO3aopKQkbN3z589XQkKC2aWnp3fmqAEAgB6iU8NNUVGRJCklJSWkPCUlxfysqKhIycnJIZ87nU4lJSWF9BNuGI3raGrevHkqKyszu8LCwo6PEAAA6HEiviwVrTwejzweT3c3AwAAdLNOPXMTCAQkScXFxSHlxcXF5meBQED79+8P+byurk4HDx4M6SfcMBrXAQAAEE6nhpshQ4YoEAho1apVZll5ebnee+895eTkSJJycnJUWlqq/Px8s58333xTDQ0NmjhxotnP22+/rSNHjpj9rFy5UsOHD1efPn06s8kAAMBiIg43hw8f1qZNm7Rp0yZJR28i3rRpkwoKCmSz2TR79mz97//+r1588UVt3bpVl19+uVJTU3XhhRdKkjIzM3X22Wfrmmuu0fvvv693331X119/vX74wx8qNTVVkvTjH/9YbrdbV199tbZt26Znn31WDzzwgObOndtpIw4AAKwp4ntuPvzwQ5155pnm38HAccUVV2jx4sW68cYbVVFRoZ/97GcqLS3Vaaedptdee01er9f8zt/+9jddf/31Ouuss2S32zVr1iz94Q9/MD9PSEjQ66+/rry8PGVnZ6tfv3669dZbW3wMHAAAICjicDN16lQZhtHi5zabTXfeeafuvPPOFvtJSkrS008/3Wo9Y8aM0TvvvBNp8wAAQC/Hb0sBAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLiepws3DhQg0ePFher1cTJ07U+++/391NAgAAUS5qw82zzz6ruXPn6rbbbtPGjRs1duxY5ebmav/+/d3dNAAAEMWiNtzcd999uuaaa3TVVVcpKytLixYtUkxMjB577LHubhoAAIhizu5uQDi1tbXKz8/XvHnzzDK73a7p06dr/fr1Yb9TU1Ojmpoa8++ysjJJUkNNpcrLy83/B7VW1rg82suONS7dVXY8x7m3TMOeNF2P5zj3lmnYk6br8Rzn3jINe9J0PZ7j3FqZYRhqNyMKff3114YkY926dSHlN9xwg3HKKaeE/c5tt91mSKKjo6Ojo6OzQFdYWNjuHBG1l6UiNW/ePJWVlZndnj17JEnbtm1r1u/27dspC1MWbe3piWXR1h6rlEVbe3piWbS1pyeWRVt7rFIWrnz79u1KTU0N229bROVlqX79+snhcKi4uDikvLi4WIFAIOx3PB6PPB5Ps3K/39+sLD4+nrIwZdHWnp5YFm3tsUpZtLWnJ5ZFW3t6Ylm0tccqZeHKBw4cKLu9/edfovLMjdvtVnZ2tlatWmWWNTQ0aNWqVcrJyenGlgEAgGgXlWduJGnu3Lm64oorNGHCBJ1yyim6//77VVFRoauuuqq7mwYAAKJY1IabH/zgB/rmm2906623qqioSOPGjdNrr72mlJSUNn3f4/Hotttuk9/v1//7f/9PdXV1kiSn00lZmLJoa09PLIu29lilLNra0xPLoq09PbEs2tpjlbJw5U6nM+xtJpGwGUZHnrUCAACILlF5zw0AAEB7EW4AAIClEG4AAIClEG4AAICl9Lpww/3TAABYW9Q+Ch6pAwcO6LHHHtP69etVVFQkSQoEAjr11FN15ZVXqn///pKOPiK+efNmJSYm6qGHHtLatWu1b98+2e12DR06VBdeeKGuvPJKORyO7hwdAADQTpZ4FPyDDz5Qbm6uYmJiNH36dCUlJemFF17Q4cOHVVFRoSNHjig5OVkOh0MFBQVyOp2qq6uTzWaTx+NRdXW1/H6/Bg4cqH379ikrK0uvvfZa2NdEv//++2aAamhokMfj0dlnn63s7Gw9//zzKisr02233aYzzjhDtbW1+uabb3TkyBGVl5fL5XJp8uTJuuGGG3TiiSe2OD7BOvbt2yfp6Bubp02bpsmTJ+vJJ5/U+vXr9eKLLyo5OVkul0t+v1/x8fH68ssvFR8fr2uuuUY/+clPWhx+bW2tXnjhBXM8SktL5fF4dMEFF+iMM87Qfffdp48++kj5+fnq37+/bDabampqVF9fr/r6evn9fl100UVasGBBp9ZRXV2tqqoqHTlyRJLUt29fnX/++Ro7dqx27typ6upqLVq0SEOGDJHdbld5ebkMw1B1dbWcTqdGjRqlW265RWeddVZbFx30QHV1ddq2bVvIQUxWVpbKyspUU1OjgoICLV++XP3795fD4dCBAwdUWlqqrVu3Kj4+Xueff77OPfdcBQIBrV27Vh9//LGWLFmi7373uyorK9OOHTt05MgRlZSUyOfz6bzzztO0adNaraOqqko1NTXKz89XYmKiLr30Uk2ZMkUul0tFRUX6+uuv9de//lUXX3yxvv32W61bt06GYejrr7+W2+3WjBkzlJWV1al1vP766+a613S88/PzdejQIf3iF7/QNddco6+++krFxcU6dOiQvvzyS9XX1+vkk0/WFVdcoVNOOSWkjieeeEInnHDCMadtS3UcOHBAu3btUn19vTIzM3XhhRfqrLPOCpkfTz31lFJTU+Xz+eRwONS3b19t375dffr0UV5eHm+qxzFZItxMmjRJY8eO1aJFi/T555/r9NNP1/79+83P7Xa7GhoaWvy+zWaT03n0JNagQYNUW1uradOmKSUlRZWVlVq0aJHS09NVVFSkqqoq2Wy2Zpe3vF6vqqurW21nMFRJR19S+Ne//jUkrCQlJemrr75SRUWFHA6H6uvrQ74fCATMDXo4LpdLdXV1MgxDw4YN01/+8pdmgSghIUEFBQWqq6uT3+9XWVlZyLiEq7cpt9ut2tpapaSk6KmnntIZZ5zR6XVEyu/3q7y8XJJ06qmn6tlnnzU31lu3btUbb7whr9crr9ergwcPqqKiQnv27JHb7dakSZN0zTXXKDs7W0888YQ+/PBDvfLKK8rKytKRI0d08OBBVVVV6fDhw/J6vTr11FP1/e9/XxMnTtTXX38dto6amhrV1NToiy++UExMjC688EJdddVVre5QKyoqdODAAXk8Hk2ZMkWnnXZaSB0d3Um0Nt4tBfPKykp98803kqQTTjhBP/zhDzVr1qxOraO0tFQHDhxQQ0OD0tLSdPrpp+viiy9utuz2799f3377rb799tuQF4BJR5f9YChuq+Tk5JDtxLG0p45x48Zp06ZNUVVH//79zXnaVhdeeKFeeOGF41rHmDFjtGXLlhY/b7wdv/baa/XQQw/pwIEDqqmp0a9+9Sv9x3/8hw4cOKA9e/Zo3759+uijj1RVVaVRo0ZpypQpmjx5covLbXCb/sknnyguLk5XXnmlfvSjH8nlcrVYR1lZmbZu3aqqqip95zvf0bnnnquRI0e2GAS7IgB3RZBvTx3H2rZt3bpVa9euVUZGhgzD0PDhw/X9739fCQkJES1DIdr9e+JRxOv1Gp988omxbNkyY+LEiUZsbKyRmZlp9OvXL+Tn010uV7OfVLfZbEZsbGy3/Jx7fHx8q5/bbLYO1xEIBDq1zeHa1Jl1eDwesw6v13vM/tvST1u7zhxWS11ycvJxr2PMmDHHfby7oo6uWHZb6oLbCqfTeVyGL8lwOBzHvQ6n0xnRd4L9httWdla7bDabYbPZDLfb3aH5OWjQoIi/E+lyO3bs2IjruPDCCyPqf9y4cRH1H+m8kSLf7nRFHa11Ho/HCAQCxvbt29udCywRbgYPHmw88cQTEa1gdru902ZEW+rojKDStLv++uvNDWSwGzp0aKfXE8nGt6u6cIE0kp2h3W6PaJ4EQ5fH42nX/G9L53K5jvtOItLxdjqdht1uj2gZaE8dDoej2bLclnoi3QhHOk9sNlvEy397xqOz6wg3nm2tIzjvWqvD4XA0q6M949HactIZ27JIQnV79wmRbBO6IgBHWk97gnx76rDZbBHNj+985zvGjBkz2p0LLBFu/vSnPxkej8eIjY013G634fP5jOeff95YtmxZh1eOY60o3/ve947r8H/xi1+02P+jjz4acR0xMTHNyn796193avjqrDpaW9mCK2RHj/7a00W6EWzPRrMzNzQOh6NdR2LdUUek0+RY61/T5WPUqFER15uSkhJRu9qzUx42bFin1hFuh9v0TPax5nGfPn3Medu0P5/P16wOh8MRcR3BaRuuDr/fH3aZak9AbW35aFqHw+Ew4uLiIhp2a0Ew3HLbFQG4K4J8e7ZtrX3H4/EYDofDiI+PNxITE424uLh25wJLhBvDMIwlS5YYiYmJYReq/v37H3OCOxwOIyEhwTjrrLOO2a/P5wtZOSJZsfr27dviwn3mmWe22r6mZcGNT7COmJgYw+VymXWE684777x2LXSNx8PhcJh1d2Ydjbuzzz77mGdimg7L7/cbkydPbvO8k469UwnX+f3+Vj9vutFPT0+PuI5jXbJsOk9a20nExcWFXU4j3REFz5Z1dh2N52NCQoIhhd8hjB49utX2hfvM5XKFzPPgMFqah8GzYcG/zzzzzFbnX/DMWeMzicFLHy2tI03rOPnkk1td1ttbR+NpOG7cuDatT43nRXCZGjlyZLN++/fvb9hstpBl4Ze//OUx67DZbCF1BC9lhKsj3M72nHPOadMOuPH0PfHEE1tcbt1ud9jlNpKzMZKMtLS0VusIN60jGb507G1VVwT5zqijtcuJHo/H+Oqrr4w5c+aYZaeffnq7MoFlwo1hGMbbb79tXH755cbw4cONJ5980qitrTVuv/124/bbbzcSEhKM0aNHhyx8drvd/NtmsxlTp041NmzYEPHMktRqoGi6EthsNmPgwIHNPmsazpquLG098xGsI9yOpWkgavz/xkcHLdUVLB83bpxhs9nCbsw6WkfTrq1HE+PHjzeKi4sNm83WYjiw2+0hO7tgoGztSK1xO88//3xz5Wyp/Q6HI2RHFAzM4eZvcDiNhzV16tRjBqJIdhLBadF4Ot59991hl8GW2mWz2cwNX2Zm5nGrIzge4c5MBINP43k5YcKENi0bjb8T7v+tdZGekYr06Dd46e941tF4+WprXR05Q9nW7zae/235jsPhaPVgNTi8xtvNpKQkQwq/I/b5fM1C1P3339+m9a9xHcHtf7g6gtvDxtuEX/3qVyGftTZdpLYF4K4I8h2to/G2Ldz20+fzGe+++65xxx13GDabzfj3f/9348c//nG78oAlnpZqr7vvvlt33323SkpKJB19ako6+uRTVlaW8vPzjzmMsWPH6u9//7s++ugjbdu2TePGjdOyZcuUnJyssWPH6o477tCOHTskHb3b3263m4+hJyUl6dtvvz1mHQMHDtQ111yjqqoqXXfddXr11Ve1dOlSXXzxxaqurtbDDz+szz77rN112Gw2ZWRk6LrrrlNJSYnmz5+v/Px8rV69WpmZmXI4HLr55pu1efNmGYYhh8Mhm83WqXX4fD55PB5lZWXpiy++UGlpqWJjYxUIBDRkyBBJ0saNG/XWW28pMzNTWVlZ2rdvn37wgx+osLBQNptN/fv3V1JSkj777LNWn45ric/nU1VV1TH7a/xUWqTa+qRYpE+UBZddwzCO+XRgU20db7vdLuPoAdFxqyOo8WsajiUpKUkXXnihioqKtGjRIl1yySX64IMPNG7cOCUmJqq8vFxxcXGqqKhQUlKSJk2apIsuukgjRozQmjVr9OGHH+rvf/+7HA6HkpOTZbfbFRMTo+3bt8vv9ystLU2DBw9WTk6O9u3bp+nTp+vSSy/V+++/r3HjxikhIUH79++X3W5XaWmp+vXrp+zsbJ133nmaMWOGHn/8cb3//vt68cUXZbfb1bdvXzmdTvn9fh04cEBxcXHKyMjQiBEjOrWO+vp69enTx5xGLY13TEyMJk2apKqqKuXn52vfvn0aOHCgUlJSdNJJJyknJ0czZszQwoULtXTpUn300UfKysqSzWaTw+FQfHz8MadtsI7q6mp98cUXKi4u1kknnaRBgwZp6NChysnJ0YgRI/Tmm2/qmWee0RtvvKEJEybojTfeUGlpqZxOp+x2u1JSUpSYmKitW7e2eVkKLk+GYYR90jWcxk+2RjL8top0+E6nUw0NDRGtc43X0baur5E+rdeeOo61bQs+vdy3b1999dVX7X7nXK8ON0Gff/659uzZ02xnKilkB5yVlaXKykodPnxYQ4cOlcfjCfsunKb27NmjVatWyefzSTr6SHd2drb8fr/27NmjFStWaMmSJbr44otVX18vn8+nU045RXFxcaqsrNT48ePNFWfLli0aO3ZsyIq0ZcsWjR49Wg0NDbLZbLr77ruVnZ0dUsfrr7+uZ555psU6RowYYT4O3xnjUVdXp5iYmIjq2Ldvn+655x4999xzKioqatPOPbiBdbvdSk9P18iRI3Xuuedq8uTJKi4u1qRJk/Tf//3feumllzRz5kwlJCTo0KFD6tOnjw4ePKiEhARNnjxZ06ZNM8dj06ZNWrZsmfr06aOEhAS53W4lJSXpvffeU3x8vPr376/U1FTl5OSYdfz85z/Xiy++aNaxb98+ORwOFRcXKxAIaMKECfrud7/b4g7V4XBo6NCh+uKLLxQbGxuy0S8uLm7XTmLJkiVauXKlzjjjDElHX2DZlvFOTk7WhAkTVFVVpU2bNmnXrl3KyMgIGe/21vHRRx+Z72iaMGGCKisrtW/fPu3du1cDBw5UamqqBg4c2KnLFXquhoYGrVixQsuWLdPWrVt14oknKiMjwwxcjUOdz+fTqFGjZBiGvvrqKx0+fFiZmZkaNmyYRo8e3eJyaxiGSkpKVF1dra+//lqBQEDjx4/XWWed1WIdDQ0N+vzzz1VeXq5BgwYpNTVVY8aMaTEISkffz3Q8A3BXBPnExESVlZW1KdA23rYNGTJEO3fuDLtta7yNvvLKKzVjxgzV19crKSlJJ598cruXHcJNCwoLC3Xbbbfpjjvu0C9+8QtJUn19vaqrq5WXl6e7775blZWVko4elc6dO1e/+tWvlJeXp/Xr18vpdCo1NVXffPONHA6HduzYofj4eMXGxmr16tUqLy9XbW2tAoGA/H6/CgoKVFFRYQYUu93e5gTd9KghJibG3OGPHDlSSUlJKi8v1759+1RVVaWYmBgNHDhQpaWl2rlzp8rLy1VfX2/W2/iIwmazyWazhSRym82m2NhYZWZmKj09XbNnz9bSpUu1d+9eSdLs2bO1efNmPfnkk/J6vTrhhBP09ttva8+ePaqvrw85u9TSOETKZrOpT58+amhoaPUljOj53n//fS1ZskTvvPOOvvrqK9XU1IS8qyp4Vi1Y5vF4lJCQoJSUFI0dO1Y/+MEPdMopp6ikpERLlixRbGyszjvvPC1ZssSsI/jOj2CZ3W6Xz+fTpZdeqoKCAklHj0ANw9DAgQO1YcMG1dXVKS0tTYWFhfrwww+1du1aDRo0SMOHD9e6detUVVUlu92uzMxMDRgwQB9//LGqqqrkcDiUnZ2tJUuWhAT6Z555RldddVXI2atgWWlpqS699FLFxcVp0KBB2r9/v7766itJUkJCgjIyMlRcXKyCggJ9++23+uyzz1RbW6uysjIdPHjQfCdUQkKCYmNjtX//fvPMWnDH2qdPH6WlpWnq1Kn62c9+pldffVU1NTWSjr735vPPP1d+fr5SUlL04Ycf6vPPP9eWLVvM9Tg4b4JH4XFxcSoqKlJtba35QtDgdsXtdptnRBsaGuRwOMwjdpvNJpfLpdTUVM2YMUNXX311qy9BBSTCTYs2b96s8ePHa+PGjTr55JP5Tap2sNvtstlsHX5hX+PgEzxtarPZFB8fr9raWjU0NKi2tlZS6ClPt9stSeallODnTqdTXq9XSUlJOvHEE3XppZdq1qxZKikp0b333qu4uDj9x3/8h+69916zDfX19brooov02GOPSZLi4+PlcDh01VVXmZcv+/Xrp6qqKgUCAa1YsUJut1sZGRn69NNP9fHHH2vLli3q27evhg8frs2bN6uystI8qklPT9fOnTtVWVkpl8ul7OzssC9Ne/PNN5WbmxsSfFetWqUpU6bonHPOUWlpqQKBgAYMGKCDBw/qyy+/VGVlpVJTU9W3b18VFRVp+/btOnjwoBoaGlRdXa2Kigpz+nm9XrlcLlVWVprh0+v1yuFwyOfzqX///powYYLuuOMOPf/88yopKZFhGPrZz36mrVu36v3331dcXJw2btyozz77THv27DGXgcOHD5sh2ufzyeVyqaKiQvX19eb8Cf4bDNqNyyS163JjuOVo4sSJmj9/vs466yzZbLaoXM9jYmLMA6iguLg4HT58uMvb0vRSQvASpc/na9bGruD1es2X74ULtcGz8FlZWTr55JOVk5MTEmglhYTahoYGM8A2DrWxsbGaOnWq0tLSVFBQYB7sGYahhoYGc/lOTk7WkiVLtGPHDpWXlys7O1uBQMAMtQ6HQ5MnT5bP59PmzZtVW1urd999V36/X88//3yLIbZx2T333KNdu3aZIbZfv35msA2+VToQCGjgwIHasmWLXn31VRUVFclut8vtduvw4cMhobahoUFVVVVmqB0wYICGDRum3NxcJScnSzoaYoOhNhhoX3jhBXm9Xo0aNUqvvPKKVq5cqQMHDighIUFxcXHNQm1ycrIKCwtVUlJiblOcTqfcbrcZYIOh1ufzKT09vXNCbLvu1LGAZcuWGcuWLTN++ctfGhdffLFx6qmnGiNGjDBGjBhhDBw40Lx5MdxjzW19qqi1/sPdjd/0SZ64uLhm/c2aNatNdQa7SJ4saDqcpjetSpE/wth0fJrWEe7x99bqaMtTRG3tgu9jsdlsRkZGhvHiiy+a47xp06bj8m6ijnbR2KbGXVtvrO/sLnhTbvCGdZvNZsTFxRknnHCC4ff7jfj4eMPv9xvZ2dnG4MGDjbi4uJCbr++4446ww2zL9A+3fnfFe7Q6uhw1vdmzI8OSjm7Tmt58HW4ahnugoOk635nLudvtNmw2m3HaaacZb775pjnedrvdWLt2bbfPi3DbtO54xUW4rvH868i2vz2dzWYzbrjhhnbv43ttuAm34+7KrmmQkY7epd905p5zzjkhZcd6DLnxd6Xmd+OHCzLh2tK0n2DX0Y1B02GGW4lbe8y8tRUsuNEKPh3hcrkMl8tl7uyCT8zFxcUZPp/P8Hq9RkpKitG/f3/D6XSGPDE1YsSIZsPvyM6urd/tii5cvY03+J1Vj8/naza/WnvstnG7mk6vcG0eMGBAs+9E+ghvZ0y7cF24l0yGW8+C7+YK90TWxIkTQ/4Ot+ynpqYes52RPu3Vme8rCjc/WnqRW2tBqPE0dDqdIS+eaxxqHQ6HMWHCBGPEiBFGfHy8ERcXZ8THxxvjxo0zhg0b1uxpwnCvjmhp/WhaFu2htrX1vKPbnsbj6fV62xRq3W73MadPYmKi4XK5DK/Xa3i9XiM2Nta4//7727WP77XhJjU11XjhhReM1NRUIykpyeyCZcEQES5MhNtIRbpQh1vBn3nmmWZlTR9RDncmqbUFu2lQCLexafqIbXB8gkc8jct/+ctfNuu36YY8khUn3LRs7+vo+/XrZz6uaPvXu0GO94vlOjKe4cpiYmKaPWbauDv77LOPOS2C4a5xeePpFOmGrTPfUB0u3LR0lBpuGjRte/BsYLALTr/g58GA29r0aGmadGRHFW544caztTe29unT55jzLdy627QLdzYt+HbncMNs6zamLV24YQWX+6Z1h9vWNl0GvF5vs+XR6/VGdagdPHhws2E1nm/hlovW6mvtTHt71/OOHNg0fT+S1HKoDVfedB/lcDiM5ORkIxAIGIFAwBg+fHi79vFHL2r3QtnZ2crPz1d2drb69u1rdsGyxMRESTL/bSwpKalZmRHhtfrgjXkOh0N2u10Oh0N79uxRv379zLb069ev2XCD9yEcS/B7wcfcm9bbWFlZWbOy4H0sTev/zW9+E/K3zWbTzp07zWvRNptNs2fPlsfjkdvtPuZTLOEeD47kEUnjX9fYPR6Ppk2bpsTERHm9XsXGxsrtdsvtdoe0LfjDlo05nc5m7QzX7o48kRPukeZw9480NDTIMIwW71Nat27dMetqOv2cTmfIfDQMo9k0CF6XDz5S3ljw3qXO0Np0bVp3uBvCmy6Pwadjgl3j+z9s/3pdQfB+iuC9PsEbVIP3FUhHX7fQVL9+/SIbuVbaabPZ5Pf75fV6FRMTo5iYGPl8PvNR7XBqamqazbemDh06dMy2hHtNQ0NDg44cORJ2mOHuofnP//zPkPXo7LPPVnJyslJSUsxpG064YQXX+aZ1B+/7ak3w3q9gfcGnJYOvpwhyOp3NHiEOtv1Ywm1j27p9D/cQyO9+97tm7Wg8vNra2mbtakt9jftpfC9Q4889Hk/Id+x2u1wuV9jpEG5f1xbhHlEP9/i23W5vtt2RZN4HFGT86+m1gwcPmvcNtkevvaH4nXfeUUVFhWJjY/Xee++Z5aNGjVJsbKzeeecdFRYWKj09XQ0NDVq3bp2++OILTZ06VW+99VbITVgnn3yynn32WZWXlyshIaFZWBg5cqS2bdsWtmzgwIGqrq5W//79NXr0aPN9NZI0YcIEeb1eLVu2TA0NDTrppJP08MMP65133jFDyltvvaWCggLt3LnT3Cl6PB7ZbDbV1NSotrbW7Df45Eh1dbUMw2j3u1qCYSIxMVFut1sbN27UhAkTzAX8ww8/1MMPP6ynnnpKkpSenq6PP/641V80l5q/J8HlcumCCy7Qn/70JyUkJITcSOn1evWb3/xGCxYsMMfD6XRq+PDh2r59e8hNquHaH/ws+AveDodDgUDAvFkvPT1dhYWFId8bMGCA9u3bF+HUCl+/zWZTv379dPjwYXPnbrfblZaWpo8//rjF73bXDaVN3X333br55pvNvy+55BKtWLFCMTEx5tNEHd20NH0XSEfeL9TUqaeeqvPPP1+PP/64nE6nhg0bpkOHDqmkpES7d++W3W6X3++X2+1WbGysdu/eLZvNpsrKymYHCOHmSeMyn88nn8+nhIQEVVZWmjuRE044QZMmTdLvf/97HTp0qNl4xcbGqqKiotXxaPzuoePFZrOpqKhIgUDALNuyZYvmzp2rd999Vx6PR2VlZR262bstggeB0tH19tChQyHbjOB67Xa7zXdwBaeN1+vVkSNHNHLkSG3evNkcZp8+fZodAEb6a/GNBZfZYN02m01//OMfddNNN5lP29psNk2ZMkVr1qxp55RorvE2rWnIae8wbDabLrvsMj355JOSpOHDh6u4uNgcj7aE0WNpuvzabDYNHDgwJBS73e52bXd7bbiBNdx999369a9/3aYj2Ja4XC5ddNFFmjlzph577DG5XC4NHTpU1dXV2rt3rzZu3CibzaaYmBjFxsYqLS1NGzdulHT0yLTp2adAINAsyDUui4uLk9/vV3x8vMrLy+X3+yUdDbzDhw/Xn//85xZfitjay/A8Ho8Z6oJnfux2u5xOp/mEWWfsgMLt7Hbu3Kn58+fr3XffVV1dnfbv36/y8vLjtsNzuVwaO3asGhoaVFhYKJfLpX79+umEE04w30UVGxur2NhYuVwuJSYmqn///po0aZKmTJliTvOmSkpK9Mknn5h/JyQkKDU11SyrrKzUF198oaSkJBUWFqpv376aNWuW1q5da34nJiZG48eP19q1a1VWVqYhQ4Zo0KBBqq6uDtlpNi57++239dJLL8lut8vj8Wjw4MGaPHmynn/+eTNMNS4bMGCA7rrrLiUnJ2vXrl3at2+fMjIyVFtbG7IjiIuL086dO7Vr1y6VlJTo0KFDstlsGjBggFJSUmSz2VRSUqJdu3bJ5/OpX79+GjZsmKSjO/m0tDRJUkZGhgoKCsydUEZGRtij/127dqmyslJut1s7d+40l8O0tDTFxMRo27Ztys/P1+eff66YmBideOKJstlsOnz4sKqrq+VyuTR8+HC5XC59/PHHWrFihbZu3dopT1wOHTpUl156qdavX689e/bI6XQqPj5eBw8eNANs41Dr8/n08ccfmweMbQm18fHxOnTokBISElRbWyufz6epU6eaB7cNDQ2qrKzUgQMHzOGFe/lduLLGZ57C9e90OjslcDSer43X8y1btigvL0/vvvuuDMOQ3+9XaWlph+trzOVy6ec//7m2b99ulo0ZM0bz58+PeFiEG1jC7t27tXHjRu3YsUMHDx5UUlKSeYRcWlrarCz4mOL48eNDXtrYVF1dXchpU6fTqZiYGLOsrq5Oe/fulc/n06FDh+T1ejVixAjt2bMn5DsDBw7Unj17dOTIEaWkpCgmJkb19fUhG8zGZZs2bdLf//531dfXm0erAwcO1KRJk7R8+XLzMlewbMuWLbr88svVp08fVVRUmJ/HxsaaR1rS0bMpFRUVOnLkiCorK3Xw4EG53W55PB7169dPdrtdBw8eNMNQv379zNP+/fr1k8vlimi+VFdX68iRI3K5XCEBNPjI+aFDh7Rr1y7t3LlTdrtdQ4cOld1uV3FxsXnWJiMjQx6PR7t27VJdXZ0yMjI0atQoXtzXS5SXlys/P1+7du3Sp59+qoKCApWVlYUEWEkhoTYxMVGDBg1SZmamhgwZYr4UsqmSkhLt3bs3JMBK/xdq8/PztWPHDg0fPtwMtQcPHlRmZqYZYIOCoXb58uXmNqWlUPvyyy/rr3/9q/r27aszzzxTb7zxRtgQ27gsGGYlmYE2qHGwLSkp0Y4dO8zLReXl5XI6naqvr1dcXJwZanfu3KmSkhLFxMRo6NChys3NNc+kNB5uMNS2Fmh37NihAQMGKCYmplmotdls+sc//qEdO3aourpaSUlJOvXUU+Xz+fTpp5+qqqpKLpdLo0eP1owZMzp0Obgxwg0sq7Cw0HwBo3T0SKvxSxl7alm0tacry2bPnq0DBw6YZwe+//3va/ny5ebl1+HDh5sv0KytrdWQIUNCXqrZW8qko6E6IyNDEyZM0LPPPmuWRUsb21K2cuVKNTQ0KD09XXv37pXH49Hq1avNnwA5fPhwSBCPj49XYWFhVJYF33ZeUVGhyspK87JVJMMMvvD1eJZ1RVvCDS85OVnffPONeQZv5MiRuuGGGzRt2jS1S7tuQwZ6gOC7aoJd4/fX9OSyaGtPV5UtW7bsuD0NQ0dHF32d3W43Vq1a1a7tP2du0GO9+OKLeu+99/TZZ5+ZP/1w8OBBHTp0SFVVVaqurm72tEa4t772xLJoa09XlEX6Y4NS+Jsre1tZS6KpjW0tc7vdze4rCfdDjNFe1pJoamN3lNntdk2cODHkktuJJ56o119/XZEi3KDHanp9GEDv4/V6m71qIdrLrDQunV22dOlSXXfddebfTqfzmE/ahtNr33ODnm/AgAFKSkoyuxdeeEGpqanm3+FuILRKWbS1pyvKmr6zw/av3xBC7xbuJtdoL2tJNLWxu8oCgYAOHz5sduHew9YWhBv0WC29gDH4d7iXUlmlLNra0xVlTQOPYRgaPHhws/7QezgcDiUkJMjv94e8EDXayux2u/lju8EnDx0OR1S1sTvLgtvs1NRU1dXVhRy0DhgwoF3LBpel0GO98847YV/AGCwL/mK41+vVp59+KpfLZb6UMZrLdu3apcGDB8vr9Wrnzp3NyqKhjd1RdvjwYb311lvm/E5LS9M555yjv/zlL5KOPvLf9KV34V6qSVn0tSdcWbgX7DV9IeqIESMUExOjkpIS1dbWmi9EjbayPXv2yO/3q7a2VvHx8c3KoqGN3VkWPHCZMGGCkpOT9corr5jzeMKECXrkkUcUKcINAACwFC5LAQAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAAS/n/MkRgqpqSwnoAAAAASUVORK5CYII=\n", 238 | "text/plain": [ 239 | "
" 240 | ] 241 | }, 242 | "metadata": {}, 243 | "output_type": "display_data" 244 | } 245 | ], 246 | "source": [ 247 | "df[\"weight\"].plot(kind = \"bar\")" 248 | ] 249 | }, 250 | { 251 | "cell_type": "code", 252 | "execution_count": 9, 253 | "id": "c6029939", 254 | "metadata": {}, 255 | "outputs": [ 256 | { 257 | "name": "stderr", 258 | "output_type": "stream", 259 | "text": [ 260 | "C:\\Users\\GFG19189\\AppData\\Local\\Temp\\ipykernel_5308\\615572439.py:1: FutureWarning: The default value of numeric_only in DataFrame.kurt is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.\n", 261 | " df.kurtosis()\n" 262 | ] 263 | }, 264 | { 265 | "data": { 266 | "text/plain": [ 267 | "mpg -0.510781\n", 268 | "cylinders -1.376662\n", 269 | "displacement -0.746597\n", 270 | "horsepower -0.211118\n", 271 | "weight -0.785529\n", 272 | "acceleration 0.419497\n", 273 | "model_year -1.181232\n", 274 | "dtype: float64" 275 | ] 276 | }, 277 | "execution_count": 9, 278 | "metadata": {}, 279 | "output_type": "execute_result" 280 | } 281 | ], 282 | "source": [ 283 | "df.kurtosis()" 284 | ] 285 | } 286 | ], 287 | "metadata": { 288 | "kernelspec": { 289 | "display_name": "Python 3 (ipykernel)", 290 | "language": "python", 291 | "name": "python3" 292 | }, 293 | "language_info": { 294 | "codemirror_mode": { 295 | "name": "ipython", 296 | "version": 3 297 | }, 298 | "file_extension": ".py", 299 | "mimetype": "text/x-python", 300 | "name": "python", 301 | "nbconvert_exporter": "python", 302 | "pygments_lexer": "ipython3", 303 | "version": "3.11.1" 304 | } 305 | }, 306 | "nbformat": 4, 307 | "nbformat_minor": 5 308 | } 309 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Statistics Course 2 | 3 | ## Overview 4 | 5 | Welcome to the Statistics course! Throughout this course, you will learn essential statistical tools that are widely used in data analysis and decision-making processes. 6 | 7 | ## Course Content 8 | 9 | This course consists of the following modules: 10 | 11 | 1. **Data Preprocessing:** Explore the steps involved in data preprocessing. 12 | 13 | 2. **Frequency Distribution:** Learn how to create and analyze frequency distributions to summarize categorical and numerical data. 14 | 15 | 3. **Measure of Central Tendency:** Understand various measures of central tendency, such as mean, median, and mode, to describe the central value of a dataset. 16 | 17 | 4. **Measure of Shape:** Explore different measures of shape, like skewness and kurtosis, to understand the distribution of data. 18 | 19 | 5. **Measure of Dispersion:** Learn about measures of dispersion, such as range, variance, and standard deviation, to assess the spread of data. 20 | 21 | 6. **Inferential Statistics:** Dive into inferential statistics, covering topics like sampling techniques, the central limit theorem, confidence intervals, hypothesis testing (Z-test and T-test), Chi-Square test, one-way ANOVA, and two-way ANOVA. 22 | 23 | ## Requirements 24 | 25 | Before you begin the course, ensure you have the following: 26 | 27 | - Basic understanding of mathematics and algebra. 28 | - Familiarity with programming fundamentals, preferably using Python. 29 | 30 | 31 | ## Support 32 | 33 | If you have any questions or encounter any challenges while working through the course content or code files, feel free to reach out to us through linkedin[www.linkedin.com/in/sakshi-singhal-bb0b3213a]. 34 | 35 | 36 | --------------------------------------------------------------------------------