├── In └── Files.rar ├── Pareto Chart.ipynb ├── Treemap.ipynb ├── Sankey Chart.ipynb └── Stacked Bar Plot.ipynb /In/Files.rar: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/samirsaci/visuals_analysis/HEAD/In/Files.rar -------------------------------------------------------------------------------- /Pareto Chart.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import pandas as pd\n", 12 | "import matplotlib.pyplot as plt" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "metadata": { 19 | "collapsed": true 20 | }, 21 | "outputs": [], 22 | "source": [ 23 | "pd.set_option('display.max_colwidth', 0)\n", 24 | "pd.set_option('display.max_columns', None)\n", 25 | "pd.options.display.max_seq_items = 2000" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 3, 31 | "metadata": {}, 32 | "outputs": [ 33 | { 34 | "data": { 35 | "text/html": [ 36 | "" 41 | ], 42 | "text/plain": [ 43 | "" 44 | ] 45 | }, 46 | "metadata": {}, 47 | "output_type": "display_data" 48 | } 49 | ], 50 | "source": [ 51 | "%%html\n", 52 | "" 57 | ] 58 | }, 59 | { 60 | "cell_type": "markdown", 61 | "metadata": {}, 62 | "source": [ 63 | "### Import Data" 64 | ] 65 | }, 66 | { 67 | "cell_type": "code", 68 | "execution_count": 21, 69 | "metadata": {}, 70 | "outputs": [ 71 | { 72 | "name": "stdout", 73 | "output_type": "stream", 74 | "text": [ 75 | "144,339 order lines\n" 76 | ] 77 | }, 78 | { 79 | "data": { 80 | "text/html": [ 81 | "
\n", 82 | "\n", 95 | "\n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | "
DATE FORMATORDER_NUMBERSKUBOX
02017-01-018352202907311.0
12017-01-018352203732721.0
22017-01-018352143621011.0
32017-01-018352152155151.0
42017-01-018352152879951.0
\n", 143 | "
" 144 | ], 145 | "text/plain": [ 146 | " DATE FORMAT ORDER_NUMBER SKU BOX\n", 147 | "0 2017-01-01 835220 290731 1.0\n", 148 | "1 2017-01-01 835220 373272 1.0\n", 149 | "2 2017-01-01 835214 362101 1.0\n", 150 | "3 2017-01-01 835215 215515 1.0\n", 151 | "4 2017-01-01 835215 287995 1.0" 152 | ] 153 | }, 154 | "execution_count": 21, 155 | "metadata": {}, 156 | "output_type": "execute_result" 157 | } 158 | ], 159 | "source": [ 160 | "# Import\n", 161 | "df = pd.read_excel('In/1-2017.xlsx')\n", 162 | "print(\"{:,} order lines\".format(len(df)))\n", 163 | "df.head()" 164 | ] 165 | }, 166 | { 167 | "cell_type": "markdown", 168 | "metadata": {}, 169 | "source": [ 170 | "### Processing" 171 | ] 172 | }, 173 | { 174 | "cell_type": "code", 175 | "execution_count": 3, 176 | "metadata": {}, 177 | "outputs": [ 178 | { 179 | "name": "stdout", 180 | "output_type": "stream", 181 | "text": [ 182 | "Pareto Analysis for 4,864 unique SKU\n" 183 | ] 184 | }, 185 | { 186 | "data": { 187 | "text/html": [ 188 | "
\n", 189 | "\n", 202 | "\n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | "
SKUBOXCumSum%CumSum%SKU
03598034810.04810.02.9116580.020559
12904784132.08942.05.4128980.041118
23666394104.013046.07.8971900.061678
33599584062.017108.010.3560580.082237
42535003879.020987.012.7041490.102796
\n", 256 | "
" 257 | ], 258 | "text/plain": [ 259 | " SKU BOX CumSum %CumSum %SKU\n", 260 | "0 359803 4810.0 4810.0 2.911658 0.020559\n", 261 | "1 290478 4132.0 8942.0 5.412898 0.041118\n", 262 | "2 366639 4104.0 13046.0 7.897190 0.061678\n", 263 | "3 359958 4062.0 17108.0 10.356058 0.082237\n", 264 | "4 253500 3879.0 20987.0 12.704149 0.102796" 265 | ] 266 | }, 267 | "execution_count": 3, 268 | "metadata": {}, 269 | "output_type": "execute_result" 270 | } 271 | ], 272 | "source": [ 273 | "# BOX/SKU\n", 274 | "df_par = pd.DataFrame(df.groupby(['SKU'])['BOX'].sum())\n", 275 | "df_par.columns = ['BOX']\n", 276 | "\n", 277 | "# Sort Values\n", 278 | "df_par.sort_values(['BOX'], ascending = False, inplace = True)\n", 279 | "df_par.reset_index(inplace = True)\n", 280 | "\n", 281 | "# Cumulative Sum \n", 282 | "df_par['CumSum'] = df_par['BOX'].cumsum()\n", 283 | "\n", 284 | "# % CumSum\n", 285 | "df_par['%CumSum'] = (100 * df_par['CumSum']/df_par['BOX'].sum())\n", 286 | "\n", 287 | "# % SKU\n", 288 | "df_par['%SKU'] = (100 * (df_par.index + 1).astype(float)/(df_par.index.max() + 1))\n", 289 | "\n", 290 | "# 80% Volume\n", 291 | "df_par80 = df_par[df_par['%CumSum'] > 80].copy()\n", 292 | "perc_sku80 = df_par[df_par['%CumSum'] > 80]['%SKU'].min()\n", 293 | "perc_sum80 = df_par[df_par['%CumSum'] > 80]['%CumSum'].min()\n", 294 | "\n", 295 | "# 20% SKU\n", 296 | "df_sku20 = df_par[df_par['%SKU'] > 20].copy()\n", 297 | "perc_sku20 = df_sku20['%SKU'].min()\n", 298 | "perc_sum20 = df_sku20['%CumSum'].min()\n", 299 | "\n", 300 | "# 5% SKU\n", 301 | "df_sku5 = df_par[df_par['%SKU'] > 5].copy()\n", 302 | "perc_sku5 = df_par[df_par['%SKU'] > 5]['%SKU'].min()\n", 303 | "perc_sum5 = df_par[df_par['%SKU'] > 5]['%CumSum'].min()\n", 304 | "\n", 305 | "print(\"Pareto Analysis for {:,} unique SKU\".format(len(df_par)))\n", 306 | "df_par.head()" 307 | ] 308 | }, 309 | { 310 | "cell_type": "markdown", 311 | "metadata": {}, 312 | "source": [ 313 | "### Pareto Chart Plot" 314 | ] 315 | }, 316 | { 317 | "cell_type": "code", 318 | "execution_count": 20, 319 | "metadata": {}, 320 | "outputs": [ 321 | { 322 | "data": { 323 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAHACAYAAADz8wYSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsT\nAAALEwEAmpwYAABWgElEQVR4nO3deZydZX3//9dnJplM9h1I2BL2hCCLEVARsVpXEAUS0NZGvrbY\n1qVWrbW2QMD6q7a2otWqVEW0VUgIRcBdFFFBNGyGLKwJEMi+77Ndvz/uM5Mzw0xmksw595lzXs/H\n436ccy/nPp975nAyb67rvq5IKSFJkiRJqn51eRcgSZIkSSoPA6AkSZIk1QgDoCRJkiTVCAOgJEmS\nJNUIA6AkSZIk1QgDoCRJkiTVCAOgJFW4iJgbEaloeSEiFkTEsWWs4WMRcV4Jznte4Zp+3d/n7ua9\nVkTEZyvtnIXrf39/1dTl3N/s8tnZFhG/j4iLSvF+pRQRr4yI70fExojYFRGPRMTfRER9l+NeHxEf\nyqlMSap4BkBJGhi2AC8vLB8FTgPuiojhZXr/jwHnleC87yg8viIijirB+Uvt7cAX8i6iF8vY+9m5\nGHgCmB8R5+Ra1X6IiHcCvyys/j/gzcBtwL+QXUvx3zOvBz5UzvokaSAZlHcBkqQ+aUkp/bbw/LcR\n8SzwK7I/hOcfyAkjYmhKaVd/FXgA7z8YuAT4OfBHwGXAv+ZVz4FIKT2Udw19sKPos0NE/Ax4DfBW\noOQtrwcrIg4HrgduSSldVrTrFxHxW+AHwF8C/5VHfZI00NgCKEkD0wOFxykRMTwivhgRj0XEzohY\nHhFfiohRxS8odAH8cERcFxHrgEWF7Y0R8a8R8VxE7Cl0rXtz0etWAOOBq4u6Ep5X2DcsIr4QEasj\nYnehe+Hr+3gNrwfGAZ8B7mNva2BxzXdHxC0R8c6IeDIitkbEDyPiiC7HfToiFkXE9ohYGRH/GxGH\n9fTGEfHmiGiLiKldtk8tbL+wsH5ORPyq8L5bI+LhiJhV/LMp7gIaESdHxI8K3RR3RMTSiHhfH34W\nDRHx+cLrNkfEf0ZEQ+Gc4wo/23d3qTUi4umI+Fwfzt8hpdQG7AQGdznfaRFxV+EztKnwMzy0sG9M\n4ef6rS6vuT0iHo+IYUW1Xh8Rawo13xsRZ3V5zXsiYkmhG+f6iPhlRJy8j5L/HGgEPtHNtfwQuJtC\ni19EzAU+Ahxd9Fn9Zl9/35JUCwyAkjQwTSk8rgaGAfXAPwJvAq4ka1HrrmXw74BJwLuADxa23QK8\nG/j/gAuA3wO3R8Rphf1vJ+uC+nX2diV8sLDvv4HLgU8VjnsO+H4fuxe+A1gH3AV8FzgtIk7q5riz\ngPeT/WF/BXAGWYtQsUMK9b+FLAwcA/y8S9fAYj8GXgDmdNn+bmBt4RpGAXcCT5N1nbwE+DYwZh/X\ndAfQCvwpWQvbfwIj93F8u48ARwB/Avwz2XV+CiCltBH4v0Jtxc4DpgLf6O3kETGosIyLiI+SfX6+\nV7R/IlmQGga8E/gA8GrgpxHRkFLaDLwHeFdROL6c7Oc9J6W0MyKGAD8DXkf2OXsb2e/3Z+1hPCLO\nBb5C9nN8E1l3znuB0fso/1zgDymlp3vYfxtwfERMAr4GfIfsv4v2z+on6cPvex/vL0nVJaXk4uLi\n4lLBCzAXWE/WbX8QcALwC2ArMKmb4wcBrwQScFTR9gQ82OXY1xa2v7rL9nuA+UXr64G5XY6ZBrSR\nBYD2bXXAo8CPe7mmocA24L8K64cCLcA1XY67myx8ji3a9qFCzUN7OHc9cHjhmHOLtq8APlu0/s/A\nciAK61F8DDCzcI6R+7iO4uMnFI4/ZT9/v4nsPr26om3/SNZKN66w/rrCz/qYomO+BSzs5dzfLJy/\neGkFPtLluE8Dm4FRRdvOKhz/jqJtXwXWAKcXjv9M0b73AE3A8V0+i08B/1ZY/yjwwH7+fJYB/7eP\n/W8r1PmywvpngRXdHLfP37eLi4tLrSy2AErSwDAeaC4sj5G1cF2aUloFEBHvioiHImJ74Zj2e7tO\n6HKeH3RZfx1Za8lvilqJBpG1ys3spaaXkf0R3dHSmLLuhfOB3loALwBGADcVXreGLOy9qBso8PuU\n0qai9SWFx8PbN0TEmwrdDbeQBcmVhV1dr7/YN4Cj2Tu4zWsK6zcU1p8CtgPfiYgLI2JML9e0kawF\n9CsRcWlEHNLL8cW+V/jZtbuVLCTPKKzfBTxDoQUrIkaStUreQO+Wkv2uXkbWqncV8KkuXUrPBH6S\nUtraviGldD9ZQCr+XX4E2EHWZXdl4VztXkfWNXl50ecIssFb2j9LDwOnR8TnIuLc9m6u/ST1sr+3\n37ck1QQDoCQNDFvI/oCfSdZVcErK7n8iIt5O1hp0HzALOJusOyZk904VW9NlfQJwGHvDZfsyFziy\nl5omAdtTSju7eY9hhS6BPXlH4bhFhfvLxpB1nzw+Il7a5djNXdabCo+NABHxMuB2skDyLrJuf2cX\nH9OdlHUpvJusCyuFx9+llBYX9m8C/pjsXrl5wLrIpiE4pofztZHd17iaLGysLtw/eHpPNRRZ28P6\npMK5E1lQmRMRAcwma+n8Th/OvTOltLCw3JNS+hRZF9p/K5yr/X26fjYobBtXdI3bybrFDgG+nlLa\nU3TsBLKfe9fP0uUUPksppZ8V1s8l+9mvj+x+1X2NZvs8WVDrSfu+Vfs4ptfftyTVCgOgJA0MLYU/\n4B9IKT1fCATtZgH3p5T+OqX0w0LLzaYeztO1lWQj2R/YL+tmOZt9WwWMaB8ApMihZKFjTzevISJG\nk93/dWjh/TcVlusKh3TXCrgvbye71+zSlNLtKRvxcnUfX/s14OLIRpq8iC6tQSml36aU3kh2399F\nZC2KPYaulNKylNLFheNfRxZAv7+PexHbdW0tbF8vDjU3kAWp15Ddu3Zbl5bR/bGULLBNKHqf7los\n239HQEfY/ivgIeCfovNAOxuBhXT/WWr/HxKklG5MKb20cO6/IwtiV+6j1l8Cp0TElB72v5WsdfSF\nfZyj3T5/35JUCwyAkjTwDQW6hq0/6eNr7yJrAdxe1ErUsRQd18SLW9N+TxYoL2nfUGhRuoR9Ty9w\nEVkL0hyyMFO8/AS4tKhlqi+GAs1dQnFfr/9Wsmu7iezfxJu6OyiltCuldAdZy9703k6aUmpOKf0c\n+A+y1rUxvbzkwi4h8SJgF9n9lO3nfI7s53MNWbfMgwkvMwrn31BYvx94Q6FrKdAR9qZQ+F1GRCNw\nI9mAKueQBb7iwXjuAo4Dnu3ms7SoawEppXUppa+STWeyr5/p18k+35/quiOyEWf/CPhm0e+/u89q\nuz79viWpmjkPoCQNfD8FvhQR/0j2h/ybyQZ36etrf0w22uNngMXAKLKJ5htTSv9QOG4Z8JaI+BHZ\nfXGPpZSWRsR3gS8WgsNTwF8AJ5G1EvXkHcCylNK3uu6IiHHAAuBVZAPR9PUaPhQR15F1I30F2Sic\nvUop7Y6I/wXeB3w3ZaNdttfyFrJRKm8DniW75/C9ZPMWvkhEvIRsAJKbyUYOHQv8PfBIykby3JeR\nZBOa/zdwMlmL2Je6ed3Xye6xXFm47r4YHhHtrblDyX62f0E2AE/7fYf/QfY7+3HhczCCbGCYRWS/\nD8gGUTkMeG3KRv18N3BPRLw7pfRNsm7IfwncHdnUGE+T3bt6JrA6pfS5iLiGrEvp3WQDC51Odl/i\nx3sqPqX0fERcAXy7MDLr18i6RL8a+BjZfYf/UvSSZcChhfoeBdanlFYUztXj71uSakbeo9C4uLi4\nuOx7oTAK6D7215MFj7VkI4MuYO8IjucXHZeA93fz+iFkrUpPkrWOrAZ+BLyl6JiXAr8lGwAkAecV\ntg8jm+pgDVkrzULgDfuotX20z0/0sH8IWXfQLxfW7yabALz4mPMKNcwo2vYxsgFYdpBNRXB81+ul\nhxEfybpqJuB1XbafSDZFxnOFa1tJNoXBuO7OSdaF8ttkwWd34ef4XYpGYu3hmhPwYeCLhWvfAnwJ\nGNLNsY1k99X9cx8/O9+k8wigu8gG0fk40NDl2NPJwu1OsvsuvwMcWtj3SrLRQ9/Z5TX/Vjj2iML6\naODzhZ9ZU+FndivwysL+88laCtcVfkaPFWqJPlzLK8mma9hUdD0LgOHd/IxuIPvvIZG1Dvb6+3Zx\ncXGplaV9KGRJkmpSRPwr2aAqx6TOI3FWnIh4M9kgLCeklJ7Mu568FEYY/QlwLHBWSqmv93wOqN+3\nJJWC9wBKkmpSRJxYGEH1r4AvVnIYiIjJEfFqsm6ZP6jl8AeQUmohG/yoBbijm4GIXmQg/b4lqZRs\nAZQk1aSIuJusq+ztwLtSSk37fkV+ImIu8E/Ag2SjnS7Pt6KBZyD9viWplAyAkiRJklQj7AIqSZIk\nSTWi6qaBmDBhQpoyZUreZUiSJElSLh544IH1KaWJ3e2rugA4ZcoUFi5c2PuBkiRJklSFIuKZnvbZ\nBbSGbbp5Hptunpd3GSU3//H5zH98ft5llM7CG7JFkiRJ6kXVtQCq71ZffTUAYy+dnXMlpXXtfdcC\nMOuEWTlXUiJ3fih7nHl5rmVIkiSp8tkCKEmSJEk1wgAoSZIkSTXCAChJkiRJNcIAKEmSJEk1wgAo\nSZIkSTXCAChJkiRJNSJSSnnX0K9mzpyZnAhekiRJUq2KiAdSSjO722cLoCRJkiTVCAOgJEmSJNUI\nA2ANW37RxSy/6OK8yyi52XfMZvYds/Muo3S+em62SJIkSb0YVM43i4hvAOcDa1NKMwrbxgE3A1OA\nFcDslNKmiAjg88CbgZ3Au1NKD5az3mq3e8mSvEsoi6Ubl+ZdQmmteiTvCiRJkjRAlLsF8JvAG7ts\n+zhwV0rpeOCuwjrAm4DjC8sVwJfLVKMkSZIkVaWytgCmlO6JiCldNl8InFd4fiNwN/D3he3fStkw\npb+NiDERMSmltKpM5UqSJEkqklKiLUFrW8qWlGhtzR5b2tpoa4OWtra9+wvHtLQm2lKipS3R1tb5\nsfgcxa978TFttCZobWujta3LYw/nbiu8d0cd+zqmy/t3usa2rtfX/v6JP3/VMXzwtcfn/avps7IG\nwB4cWhTqVgOHFp4fDjxXdNzKwjYDoCRJksqirS3R1NqWLS1tNLe2dQSKlm6DQhYOisNCW5cA1DVg\nFIeQno7pLpy8KMS0pY5Qsq9zt3WtfR/Bq1MAK+xXZ7uaW/MuYb9UQgDskFJKEbHfn6qIuIKsmyhH\nHXVUv9clSZKk0kopC1rNrYmmlra9S2srTS2pI4C1h7A9LZ1D2d7js32dtrW/ppttTV1e29TlvM2t\nBh7t20ALxZUQANe0d+2MiEnA2sL254Eji447orDtRVJK1wPXQzYRfCmLlSRJGshSoRWop9BTHKj2\ndLOtu+Pb1zuCWY8BK9HU0trlvVLH6zUwRMCguqAuInusyx7r25cI6usLjx3b6zof22lf968tPr7T\ne/RyTHtd7e9bX0enxxcf00MdhecvOnfRtQ2qq2PI4IE1sUIlBMDbgTnApwuP3yva/v6IuAk4C9ji\n/X/9a8ysWXmXUBYXH1/lU12cMSfvCiRJB6CltY1dza3Z0tT5cXdzK7ua2tjZ1JI9L6y379vTUyjr\noRWrfd+eQkhL/u/y/dJQX0fDoDoG1wcNg+oYVFfXKQT0FB4G1fcUNOqoD14UTgbV1XUEjJ4CSnEI\n2WcA6/SaOuoK5+94v25q7y5EdXfuurrI+1eigxCpjN8AEfFdsgFfJgBrgKuB24B5wFHAM2TTQGws\nTAPxRbJRQ3cCl6eUFvb2HjNnzkwLF/Z6mCRJUrdSSjS3po6wtbOpazDrEtoKz9uD2s72Y7vZv7Po\nPHYtfLHB9UFDfR2DB9V1hK6G4ucdQWzvviHdbOt6fKf99XUM6cPxHYGvvo7sz1Jp4IiIB1JKM7vb\nV+5RQN/Rw67XdnNsAt5X2ookSdJAklJiT0tbUatYFqp2N7+4Ba37INbGruaWovDW1rG/+DwD7Z6e\n/TWoLl4UgLoLRYOL9hW3gDXU1xceo0uIqu84Zkhx8OoubHUNdPV1tixJZVAJXUCVk12PLgZg6IyT\nc66ktBZvyK7z5PFVep0vPJQ9Tj493zokqRvtgW3Hnha2ty+7W9jR1MK23S3s2NPK9j3NbN/dwvbC\n8x17Wtm2pyV7TeHY4kBXLd0X6wKGNQyicXA9QxvqGDZ4EI0N9QwdXMfQwfUMbaincXA9wxrqs/XB\n9TQ21NM4qH5v61cPrWI9tYC1h7x6g5ZUswyANWzFJZcAMG3Z0pwrKa3L7rwMgEVzFuVcSYlcf172\nOHdLrmVIqi57WlqzcLZ7b3DbsaelUzDrbXv7voHY1XFwfWTBrBDEOj0Wglj782GFoNZ1/7CiENfd\neQbXh10LJZWdAVCSpCrS3NrGll3NHcvWXc0drW7dt8C1b9/b+rZ9d0tFj8jYUF/XKUxlAat926DC\nY12noNbeitY1qA1t6D7YDa4fWKP6SVJfGQAlSaowe1paO8JbcZjbsrOZrbtbOm/rctzOpsqbkHhw\nfTBiyCCGDxnEiPalseh5Yd/IxhcfM7whe94e1BoH1THIcCZJB8wAKElSCexubn1ReHtRcNvdTcjb\n1czu5vxb3+rrolNA6y6wZdvqGTFkMMOH1GcBriHbPrKwbUTjIIYMqs/7ciRJBQZASZL2IaXE1l0t\nbNzZxMYdTWzakT1u3Jk931DYtrlLiGtqySfE1QWMGjqY0YVlVONgRg3dG8xe1OLWZXv78yGDHPpe\nkqqRAVCSVFN2N7dmAa6wbNrZtI/1ZjbvbKKlzFMC1NfF3gBXFOZGDx3UKdi96JhhgxnRMMih9CVJ\nPTIASpIGrJQSW3e3sG7bHjZs31MIb81s3LGHjTua2bRzbwtde7gr1z1yg+ujmwDXeenaUjd6WPZ8\neEO9rW+SpJIwANawKbfckncJZXHT+TflXUJpXXF33hVI/SqlxLY9Wahbv20P67c3sW7bbtZvb2L9\n9j3Z9o7HprKMVjliyCDGDh/MuGENjBvewNjhDdnzEdnj2OENjB3W0CncNQ62C6UkqfIYAGtYtU8A\n365qJ4Bv5wTwGiB2N7eyduse1mzb3SXEZY/rtjexftse1m3fU9L75wbXB2MLQa49zI0vBLju1wc7\niIkkqWoYACVJByWlxMYdTazeups1W3ezesue7PmW3Xu3bd3N5p3NJXn/4Q31TBg5hAkjhmShrtAi\nN274YMYNH8K44YMZO6yB8cOHMHb4YEYMGWTLnCSpZhkAa9iqK68CYNInr825ktKae+/c7PEVc3Ot\no2Ru/2D2+NYv5FuHqtLu5lbWbN3Nmq2dQ13x87Vb9/R7N8yhg+uZOHIIE0Y0FB6HdDy2P584YggT\nRjYwrMF/yiRJ6iv/1axhm+fPB6o/AC54YgFQxQHwwRuzRwOg9lNbW2Ld9j2s3LSLFzbvXZ7fvJsX\nNu9i1ZZdbOrHVrtBdcEhI4dwyKhGDhk5pKPVLgtzDZ1C3vAh/vMkSVIp+C+sJFWpHXtaCoFuFy8U\nQl3H+pZdrN6ym+bW/pneYGTjIA4b1chhoxs5dFQjh41q5NDR2WP2fAjjhw+h3ukJJEnKlQFQkgao\nltY2Vm3ZzbMbd3ZaVhYe+6P1rr7Qatce6joC3ui92w4d1WiLnSRJA4T/YktShUopsXlnc+dwt2nv\n8xc276b1ICcoHze8gcljGpk8eiiTxwzl8DHZ4+QxjUweM5QJI2y1kySpmhgAJSlHrW2JFzbvYvn6\nHTyzYUdR2NvFyo072ban5YDP3VBf1xHk2pfDi9dHD2Vog9MbSJJUSwyAklRi7SFvxYYdrFi/g+Xr\nd/LMhh0s37CD5zbuPKj78A4dNYQjxw7jqHHDOHJc9njU+GEcOXYYh4wcQp2td5IkqYgBsIY1Tp+e\ndwllMW3ctLxLKK1Jp+Zdgci6a27Y0cRTa7fz1LodPLVuexb2DjLkDWuo7xTujhw7lKPGZ8+PGDuM\nxsG24EmSpL6LlPpnBLhKMXPmzLRw4cK8y5BUpVpa23hu0y6eWrudJ9dtLwS+LPRt2XVgg65MHDmE\nKeOHcfT44UwZXxT2xg1j/PAGJy2XJEn7JSIeSCnN7G6fLYCS1I3dza08tW47T6zZzhNrt/HU2kKr\n3oYdB9SaN2HEEKZOyELe1AnDmTJ+OEePH8aUCcMZ4QiakiSpTPyrQ1JNKw56j6/ZxhNrt/PEmm08\nu3En+zvA5rCGeo6dOIJjJw7n2IkjmDpxb9Ab2Ti4NBcgSZK0HwyANWzpSdm9cdOWLc25ktI65cZT\nAFg0Z1HOlZTI3NGFxy351lHhUkqs3baHJau2snTVVpau2saSF7awfP2O/Q56h41q5NhDhhfCXmE5\nZDiHjWq0u6YkSapoBkBJVaeppY0n124vBL2tLF2dBb6NO5r6fI4IOHrcMI47ZCQnHDqC4w7JlqkT\nhtuaJ0mSBiwDoKQBbVdTK0tWbeHR57ey6PktPPr8Fp5at73P9+lFwFHjhnF8IeidcOjIjrDnCJuS\nJKnaGAAlDRg79rSwZNVWFq3Mgt6jL2zhybXb+9yFc3hDPSdNGsW0SSOZNmkU0yaN4qTDRjKswa9C\nSZJUG/yrR1JF2rGnhUef39LRqrfo+S08vX4HfZ255oixQztC3vRC4Dty7DAnRpckSTXNACgpd61t\nicfXbOOR5zbzcGF5fM22PrXsRcCxE0cwY/IoZhw+mhmHj2bapFGMHup9epIkSV0ZACWV3aotu3j4\n2c08vHIzDz+7mUXPb2FnU2uvr6sLOO6QEcw4fDSnFMLe9EmjGO48epIkSX3iX0017LBrrsm7hLK4\n6uVX5V1CaZ1/Xd4V7NP2PS38YWWhZe/ZzTyycjNrtu7p9XURcMIhIznliM5hb2iDA7NIkiQdqEh9\nvaFmgJg5c2ZauHBh3mVINWvVll38bvlGfr9iIwtXbOKxNdv6dN/eoaOGcNqRYzjtyLGceuRoXnLE\nGEbYsidJkrTfIuKBlNLM7vb515WkA5ZS4ql1O/j9io38fvlGfrdiIys37er1dcMa6nnJEaM59cgx\nnF4IfYeNbixDxZIkSbXNAFjDNt08D4Cxl87OuZLSmv/4fABmnTAr50pKZOEN2ePMy0v+Vi2tbSxZ\ntbVTC9+GXiZXrws48bBRnHbkaE47cgynHjmG4w8ZSb2jcUqSJJWdAbCGrb76aqD6A+C1910LVHEA\nvPND2WMJAmBKiafX7+DXT6zn10+u57dPbWDbnpZ9vqZxcB1nHDWWl00Zx5lTx3HakWMcpEWSJKlC\n+FeZpE7WbdvDvU+t59dPrOc3T67nhS2793n86KGDedmULPC9bOo4ZkweTcOgujJVK0mSpP1hAJRq\n3K6mVu5fvoHfPLmeXz2xnmWrt+3z+MNGNXLm1CzsnTllHMcfMsLJ1SVJkgYIA6BUY9raEotf2Mo9\nT6zjV0+s48FnNtPU2tbj8SOHDOLsY8dzznETOOf4CRwzYTgRBj5JkqSByAAo1YBtu5v59RPr+fmy\ntdz9+DrWbet5Hr5BdcEZR43llYXAd+oRoxlUb5dOSZKkamAAlKpQ++Atv1i2lp8vW8vvV2ykubXn\nyfhOOHQE5xw3kXOOH89ZU8c7aIskSVKV8q88qUo0tbRx//IN3LV0Lb94bC3PbNjZ47Fjhw3m1SdM\n5NwTJnLOcRM4ZJRz8EmSJNWCSKnnVoGBaObMmWnhwoV5lyGVxY49Lfzy8XX8ZPFq7lq2lm27e56i\nYfqkUfzRSYfwmpMO4bQjxzgPnyRJUpWKiAdSSjO721d9LYAvPARzR3e/7/zr9s6VtvCGvfOndWfu\nlr3Pv3ourHqk++POmANv/cLe977+vJ7PecXdMPn07PntH4QHb+z+uEmnwnvvKaqlh+sBr6mGr+mX\nI97MX2z+M5pa2pgRT7NoyD9BDw1569/5EyaccFa2cvsH4YbKvKZq/D15TXd7TR21eE098pqy516T\n19QTr2nvc6+p53MWX9M+OLKDNEA9v3kXTS09j95ZbMKIhhJXI0mSpIHALqA1bPlFFwMw9dYFOVdS\nWrPvmA3AvAvm5VzJ/tnV1Mpdy9Zw+8MvcPdj63qcquGnw69kVONg1r3zJ5w8eZRTNEiSJNW42uoC\nqj7bvWRJ3iWUxdKNS/Muoc+aWtq45/F13P7IC/xs6Rp2NrV2e9zMo8fyxhmH8cfTD+Xo/3wKdsCh\nh++jS4IkSZKEAVDKXUqJh5/bzIIHV3LHI6vYsqu52+NmHD6KC14ymfNPnczhY4aWuUpJkiRVAwOg\nlJMXNu/i/x56ngUPruTpdTu6PebYicN566mHc/6pkzh24ogyVyhJkqRqYwCUymhXUys/WLSKBQ+u\n5L6nN9DdLbiHjxnKBadO5oJTJzF9kvf0SZIkqf8YAKUyeGz1Nr5z/zPc+tDz3c7VN7yhnjefMomL\nzjiCs6aOo845+iRJklQCBkCpRHY1tfL9Rav4zv3P8OCzm1+0PwLOOW4CF59xBK8/+VCGNfifoyRJ\nkkrLvzhr2JhZs/IuoSwuPv7isr5fb619R48fxqUvO5KLTj+Cw0b3MHP7/jhjzsGfQ5IkSTXBeQCl\nftDc2saPHl3NjfeuYOEzm160f3B98PqTD+OdZx7Fy48ZbxdPSZIklYzzAEolsn77Hr57/7P8z/3P\nsGbrnhftnzJ+GO848ygufukRTBgxJIcKJUmSpL0MgDVs16OLARg64+ScKymtxRuy6zx5fP9d5x9W\nbuab967gzkdW0dTa1mlfe2vfn5x5FGeXo7XvhYeyx8mnl/Z9JEmSNOAZAGvYiksuAWDasqU5V1Ja\nl915GQCL5iw6qPM0tbTxw0dXceO9K7od1GXiyCH8yVlH8c6zjuKQkf1wb19fXX9e9jh3S/neU5Ik\nSQOSAVDqxY49LXz3d8/y9V8vZ9WW3S/af/pRY3j3K6bwphmTaBhUl0OFkiRJUt8YAKUerN++hxvv\nXcG37nuGLbuaO+1rqK/j/JdMYs4rpnDqkWPyKVCSJEnaTwZAqYtnN+zkv3/1NPMWPseels73900Y\nMYR3nX007zzrKCaOdFAXSZIkDSwGQKlg+fod/OddT3Dbw8/T1mV2lKPHD+OKc4/h4jOOoHFwfT4F\nSpIkSQfJAKia98yGHXzhrie57eHnae2S/E45fDR/+epjeeOMw6h37j5JkiQNcAZA1aznNu7kP3/+\nBAsefHHwO+e4CfzVecfyimPHE2HwkyRJUnUwANawKbfckncJZXHT+Td1Wl+9ZTefv+tx5i9cSUuX\n4Peq4yfwodedwEuPHlvOEg/OFXfnXYEkSZIGCANgDav2CeDbtU8Av2VXM1/55VN849fLXzS4yyuO\nHc/f/vEJvGzKuDxKPDhOAC9JkqQ+qpgAGBF/C/w5kIBFwOXAJOAmYDzwAPCulFJTbkVqQNrT0sq3\n73uGL/7iSTbv7Dydw9nHjONvX3cCZx0zPqfqJEmSpPKpiAAYEYcDHwSmp5R2RcQ84DLgzcDnUko3\nRcRXgPcAX86x1Kqy6sqrAJj0yWtzrqQ0Ukrc8YdVzL13Ljv2tLJn50Ud+2YcPoqPv3Ea5xw/IccK\n+8ntH8we3/qFfOuQJElSxYuUUu9HlbqILAD+FjgV2ArcBvwn8L/AYSmlloh4OTA3pfSGfZ1r6NSh\n6bi5x3W776qXX8WsE2YBMP/x+Vx7X8/BZ9GcRR3PZ98xm6Ubl3Z73MXHX8zcV8wFYPGGxVx252U9\nnvOm82/q6I449965LHhiQbfHTRs3jXkXzOtYP+XGU3o8p9fUt2sC2Lb00xw5bijvOKeOLz/xgR6P\nGyjX1PF7mjs6e/+pR/V4zgF3TVTPZ89r8praeU1eU3e8Jq+pndfkNXXnQK8pIh5IKc3s7ri6Hs9Q\nRiml54HPAs8Cq4AtZF0+N6eUWgqHrQQO7+71EXFFRCyMiIXlqFcD01XnT+dnH341rz5xYt6lSJIk\nSbmolBbAscAC4FJgMzAfuIWsxe+4wjFHAj9MKc3Y17lmzpyZFi40B/bF0pOmATBtWc+tZgNFa1vi\nu797ls/+5LFO9/kNqguGnvj3QOf/01JVCi2AzN2Sbx2SJEmqCPtqAayIewCB1wHLU0rrACLiVuCV\nwJiIGFRoBTwCeD7HGlWhHnx2E//0f4+yZNXWTttfdfwErr5gOm//YU6FSZIkSRWmUgLgs8DZETEM\n2AW8FlgI/AK4hGwk0DnA93KrUBVn+54W/u1Hy/jWb5+huCH7iLFDufL86bx++qFO4i5JkiQVqYgA\nmFK6PyJuAR4EWoCHgOuB7wM3RcQ/F7Z9Pb8qVUl+tmQNV37vUVZt2d2xrXFwHX993nFcce4xNA6u\nz7E6SZIkqTJVRAAESCldDVzdZfPTwJk5lFMTGqdPz7uE/bZ2226uuX0J31+0qtP2806cyCcvnMGR\n44a96DXTxk0rV3n5mHRq3hVIkiRpgKiIQWD6k4PAVK8fLlrFJ/5vEZuKBnkZP7yBqy6YzltPnWx3\nT0mSJImBMQiM1KOtu5uZe/tibn2w8xhAl7z0CP7xzdMYO7whp8okSZKkgcUAqIp2/9Mb+PC8R3h+\n866ObZNHN/Kvl5zKOcdPyLEySZIkaeAxANawSp4HcE9LK//xk8e5/ldPdxrh822nTeaaC2cweujg\nPp/rlBtPAZwHUJIkSTIAquI8uXY77//Ogyxbva1j2+ihg/nnt83gglMn51iZJEmSNLAZAFVRFjyw\nkn+67VF2Nbd2bHvV8RP4t0tO5bDRjTlWJkmSJA18BkBVhJ1NLVz1vcXc8sDKjm0Ng+r4xJtO4s9e\nPoW6Okf4lCRJkg6WAVC5e2z1Nt73nQd5cu32jm3HTBzOl955BtMmjcqxMkmSJKm6GACVq+89/Dx/\nv+AP7G5u69h20emH88m3zWD4ED+ekiRJUn/yL2zlorUt8a8/XsZXf/l0x7bGwXVce+EMZr30CCd1\nlyRJkkrAAFjDDrvmmlzed8vOZj5400P88vF1HduOmTicr/zpSznh0JH9/n5Xvfyqfj9nRTn/urwr\nkCRJ0gARqXiStSowc+bMtHDhwrzLUA+eXLudP7/x96zYsLNj2x+ddAjXXXYaoxr7PrefJEmSpO5F\nxAMppZnd7bMFUGVz/9Mb+ItvLWTr7paObe9/zXH87R+fQL2jfEqSJEklZwCsYZtungfA2Etnl/y9\nvvfw8/zd/D/Q1JoN9jJ0cD2fnXUqb3nJpJK/9/zH5wMw64RZJX+vXCy8IXuceXm+dUiSJKniGQBr\n2OqrrwZKGwBTSnzll0/zmR8t69g2ceQQbnj3y5hx+OiSvW+xa++7FqjiAHjnh7JHA6AkSZJ6YQBU\nybS1Ja6+fTHf/u0zHduOO2QE37z8ZRwxdliOlUmSJEm1yQCokmhubePv5j/CbQ+/0LHt7GPG8dU/\nncnoYQ72IkmSJOXBAKh+t7u5lQ989yF+umRNx7a3njqZf5v1EoYMqs+xMkmSJKm2GQDVr3Y2tXDF\ntx7g10+u79j2J2cdxScvnEGdI31KkiRJuTIAqt9s293Mu2/4PQ88s6lj23tffQwff+NJRBj+JEmS\npLwZANUvdja1cHmX8Pd3bziRvz7vWMOfJEmSVCEipZR3Df1q5syZaeHChXmXUVN2N7fy/775e+59\nakPHtqsvmM7lr5yaY1WSJElSbYqIB1JKM7vbV1fuYlRdmlra+Kv/eaBT+LvyfMOfJEmSVIkMgDpg\nLa1tfPC7D/GLx9Z1bPu7N5zIe84x/EmSJEmVyABYw5ZfdDHLL7r4gF7b1pb42C1/4EeLV3ds+8Af\nHcf7XnNcf5XXb2bfMZvZd8zOu4zS+eq52SJJkiT1wkFgatjuJUsO+LWf+dEybn3o+Y71v3jVVD78\nxyf0R1n9bunGpXmXUFqrHsm7AkmSJA0QtgBqv33tV0/z1Xue7lh/x5lH8ok3T3O0T0mSJKnCGQC1\nX2576Hn++ft7W9T+ePqhfPLCGYY/SZIkaQAwAKrP7nl8HR+dv7e74cumjOU/33E6g+r9GEmSJEkD\ngX+5q0+Wrd7KX/3PA7S0ZfNGnnDoCL72Zy+jcXB9zpVJkiRJ6isDoHq1Yfse/vzGhexoagVg8uhG\nbvx/ZzJ62OCcK5MkSZK0PxwFtIaNmTWr12Oyid4fZOWmXQAMb6jnhsvPZNLooaUur99cfPyBTXUx\nYJwxJ+8KJEmSNEBESinvGvrVzJkz08KFC/MuoyqklPj7BX9g3sKVAETAf79rJq+bfmjOlUmSJEnq\nSUQ8kFKa2d0+u4CqR9+8d0VH+AP4+zeeZPiTJEmSBjADYA3b9ehidj26uNt9Dz67iU8VTfdw0RmH\n895zjylXaf1q8YbFLN7Q/XVWhRceyhZJkiSpF94DWMNWXHIJANOWLe20fdOOJj7wnYc6Rvw89YjR\n/H9vP2XAzvV32Z2XAbBozqKcKymR68/LHuduybUMSZIkVT5bANVJW1viw/Me5vnN2aAvoxoH8cV3\nnuF0D5IkSVIVMACqk//+1dP84rF1Hev/Pvs0jhw3LMeKJEmSJPUXA6A6LFu9lX//yeMd6+899xj+\n2EFfJEmSpKphABSQzff3kXmP0NTaBmT3/X30DSfmXJUkSZKk/mQAFABf/PkTLH5hKwBDBtXx77NP\nY3C9Hw9JkiSpmvgXvnjkuc186e6nOtY/9saTOO6QETlWJEmSJKkUnAaihk255RaaWlq5aN7DtBam\nfDhr6jguf8WUfAvrZzedf1PeJZTWFXfnXYEkSZIGCANgDRs642T+4/tLeGrdDgCGN9Tz2VmnUlc3\nMOf768nJ40/Ou4TSmnx63hVIkiRpgLALaA179PktfP3XyzvW/+n86U75IEmSJFUxA2CNamltY+EH\n/o73PzgfgFceN57LXnZkzlWVxtx75zL33rl5l1E6t38wWyRJkqReREop7xr61YzGoWn+lCnd7jvs\nmmsYe+lsADbdPI/VV1/d43mmLVva8Xz5RReze8mSbo8bM2sWkz55LQC7Hl3Miksu6fGcU265haEz\nsu6Iq668is3z53d7XOP06Uy9dUHH+tKTpvV4zgO9pt+//gJGPPtkt8cN1Gvq6fc0+x+yns6L5iwC\nquOaoOj3NHd09v43Te7xnAPumqjC3xNek9fkNfXEa/KawGvymrym7hzoNUXEAymlmd0dZwtgDXph\n8y7WbNuddxmSJEmSyqzqWgBnzpyZFi5cmHcZFe0vvrWQny5Zww9v+ygAxz66mIZB1fv/Ak658RRg\nbwtg1Sm0ADJ3S751SJIkqSLYAqgOv1i2lp8uWdNpWzWHP0mSJEl7+Zd/DWlubeOfv999/2JJkiRJ\n1c8AWEO+c/+zHXP+jRjiFJCSJElSrTEF1IgtO5v53M8e71h/32uOo3HR9BwrKp9p43oerakqTDo1\n7wokSZI0QBgAa8QXfv4Em3c2A3DkuKFc/sopNJ63oJdXVYd5F8zLu4TSeu89eVcgSZKkAcIuoDVg\n+fod3Hjvio71f3jTNBoH1+dXkCRJkqRcGABrwL//5DFa2rLpPs6cMo43zTgs54okSZIk5cEAWOUe\nfX4Ld/5hVcf6P7z5JCICgKUnTWPpSVV+fxzZPIDtcwFWpbmj984FKEmSJO2DAbDKffYnj3U8f/30\nQzn9qLE5ViNJkiQpTwbAKva75Ru5+7F1AETAR99wYs4VSZIkScqTAbBKpZT4tx8v61h/++mHc8Kh\nI3OsSJIkSVLe+hwAI+KQiJhatB4RcUVEXBcRF5SmPB2oux9fx+9XbAJgcH3wt687IeeKJEmSJOVt\nf1oAvwn8bdH6tcB/AW8E/i8i3t1/ZelgpJT44s+f7Fh/x5lHceS4YTlWJEmSJKkS7E8APAP4OUBE\n1AF/CXwipXQS8CngQwdTSESMiYhbImJZRCyNiJdHxLiI+GlEPFF4dASTPvjd8o088Mze1r+/Pu+4\nnCuSJEmSVAkG7cexo4ENhecvBcYB/1tY/znwkYOs5fPAj1JKl0REAzAM+ARwV0rp0xHxceDjwN8f\n5PtUvS/d/VTH80teegSHjW7s9rjDrrmmXCXl6qqXX5V3CaV1/nV5VyBJkqQBYn8C4EpgOvAr4C3A\nspTS84V9o4HdB1pERIwGzgXeDZBSagKaIuJC4LzCYTcCd2MA3KdHn9/CPY9nI3/WBbz33GN7PHbs\npbPLVVauZp0wK+8SSmvm5XlXIEmSpAFif7qAfgP414iYD3wMuL5o39nA0oOoYyqwDrghIh6KiK9F\nxHDg0JRS+yzmq4FDu3txYTCahRGxcN26dQdRxsD3X3fvvffvLS+ZzJQJw3OsRpIkSVIl6XMATCn9\nC/ABsiD2AeALRbvHAV87iDoGkd1j+OWU0unADrLunsXvn4DUQ23Xp5RmppRmTpw48SDKGNieWred\nHz66umP9r17dc+sfwKab57Hp5nmlLit38x+fz/zH5+ddRuksvCFbJEmSpF7sTxdQUkrfAr7Vzfa/\nPMg6VgIrU0r3F9ZvIQuAayJiUkppVURMAtYe5PtUta//ejmpEJFfc+JEpk8etc/jV199NVD9XUGv\nve9aoIq7gt75oezRrqCSJEnqxX5NBB8RQyLiryLi6xHxk4g4vrD90oiYdqBFpJRWA89FxImFTa8F\nlgC3A3MK2+YA3zvQ96h2m3c2ceuDKzvW39tL658kSZKk2tPnFsCIOAH4KdmALw+QDc4ysrD7VWQD\nw/zZQdTyAeB/CyOAPg1cThZQ50XEe4BngOpuqjoI3/3dc+xubgNg+qRRnDV1XM4VSZIkSao0+9MF\n9AvAs8AFwHagqWjfL4HPHEwhKaWHgZnd7HrtwZy3FjS3tvGt+1Z0rF/+yilERH4FSZIkSapI+xMA\nXwXMSiltjoj6LvvWAJP6ryztjx8vXs2qLdksHBNGNHDBqZNzrkiSJElSJdqfewB3A0N72Hc4sPmg\nq9EBueE3Kzqev/Oso2kc3DWfS5IkSdL+BcCfAp8oTNreLkXEELL7937Qr5WpTx55bjMPPLMJgMH1\nwZ+efVTOFUmSJEmqVPvTBfTvgN8AT5KFwQRcBZwMNAAX9Xt16tU3713R8fyCl0zmkJGNfX7ttGVL\nS1BR5Vk0Z1HeJZTW3C15VyBJkqQBYn8mgn8OOBX4CjAFeIrsvr/5wEsLUzmojLbsbOb7i1Z1rL/7\nlVPyK0aSJElSxdvfieA3AVcWlk4iYnhKaUd/Fabe3fbw8zS1ZFM/nHL4aF5yxJh8C5IkSZJU0frc\nAhgRd0fE0T3sOw+o8n52lSWlxHd/92zH+qUvO3K/z7H8ootZftHF/VlWRZp9x2xm31HFU0h+9dxs\nkSRJknqxPy2AI4FFEfHRlNL1ABHRSDb/3/uBBSWoTz1Y9PwWlq3eBkDj4Dreetr+T/2we8mS/i6r\nIi3dWOX3Oq56JO8KJEmSNEDszyigZwGfA74YET+MiAuBPwB/ArwzpVTFTSyV56bfP9fx/M2nTGJU\n4+Acq5EkSZI0EPS5BTCl1AJcHRE/An4OvB54BDgnpbS2RPWpG3taWrnzkRc61i+duf/dPyVJkiTV\nnv1pASQizgCuB3YBd5KNCvqPEdHTBPEqgV8+to6tu1sAOGLsUM6cOi7niiRJkiQNBPszCMxc4LfA\nSmBGSulC4BLgUuCRiHh5SSrUi3yvqPXvwtMmExE5ViNJkiRpoNifFsAPA+9PKb0ppfQCQErp/8gm\ngn8EuKcE9amL7Xta+NmSNR3rF552eI7VSJIkSRpI9mcU0JeklFZ03ZhS2gDMiojL+q0q9egni1ez\npzD330mHjeSEQ0ce8LnGzJrVX2VVtIuPr/KpLs6Yk3cFkiRJGiD2ZxCYFQARcRZwDjAO2Aj8OqV0\nf0rpppJUqE6+93Bx98+Da/2b9MlrD7acAWHuK+bmXUJpvfULeVcgSZKkAaLPATAihgPzgTcArcAG\nYDxQXxgZdFZKaWdJqhQA67fv4ddPru9Yv+DUSTlWI0mSJGmg2Z97AP8VeDlwGdCYUpoENBbWX042\nIbxK6Pt/WEVrWwLgZVPGcsTYYQd1vl2PLmbXo4v7o7SKtnjDYhZvqOLrfOGhbJEkSZJ6sT/3AF4M\n/H1KaX77hpRSGzA/IsYC1wIf6Of6VOSOR/qv+yfAiksuAWDasqUHfa5Kdtmd2e2pi+YsyrmSErn+\nvOxx7pZcy5AkSVLl258WwNHAcz3sew4YdfDlqCdrtu5m4TObAKivC94047CcK5IkSZI00OxPAHwE\n+KvoMulcYf2vCvtVIj9evLrj+VlTxzF+xJAcq5EkSZI0EO1PF9BPAD8ElkXE/wFrgEOAtwNTgDf1\ne3Xq8MNFewOgrX+SJEmSDsT+TAPx84g4A7gSmAVMAlYB9wMXpZSWlKZEbdi+h/uXbwAgAt5wsgFQ\nkiRJ0v7bnxZAUkqLyUb9VBn9dMkaCoN/MvPosRwyqjHfgiRJkiQNSPtzD6By8vNlazue2/onSZIk\n6UD12gIYEccArwcGAz9MKT0ZEa8F/gWYRjYC6JdTSv9Z0kprVFNLG78pmvz9NScd0m/nnnLLLf12\nrkp20/k35V1CaV1xd94VSJIkaYDYZwCMiFcDPwCGAC3AZyLicuCbwE+AnwOnANdFxM6U0tdLW27t\nWbhiIzuaWgE4atwwjpkwvN/OPXTGyf12rkp28vgqv87Jp+ddgSRJkgaI3rqAXgP8ChgDjAC+CtwA\nfCGldGFK6eMppbcAXwDeV8pCa9Xdj6/reH7eiRPpMguHJEmSJPVZbwHwJcDnU0rbU0otwKeBRrJW\nwWLfB44rQX017xdF9/+95sT+6/4JsOrKq1h15VX9es5KNPfeucy9d27eZZTO7R/MFkmSJKkXvQXA\nMcCGovX2m9G2dTluG9B/fRMFwMpNO3li7XYAGgbVcfYx4/v1/Jvnz2fz/Pn9es5KtOCJBSx4YkHe\nZZTOgzdmiyRJktSLvowCmvq4Tf3s7sf2dv88+5jxDG2oz7EaSZIkSQNdX+YB/JeI2Fh43n4D2r9G\nxKaiY8b1b1kCuPux4u6fE3OsRJIkSVI16C0A3gPUA8Xp45eF13VNJPf0Y101b09LK795cm/v2/P6\n+f4/SZIkSbVnnwEwpXRemepQFw89u5ldzdn0D0ePH8bUfpz+QZIkSVJt6ss9gMrBfU/tbf17xbET\ncqxEkiRJUrXoyz2AysF9T+8NgC8/tn9H/2zXOH16Sc5baaaNm5Z3CaU16dS8K5AkSdIAYQCsQLub\nW3n42c0d62dPLc0YO1NvreKpEYrMu2Be3iWU1nu9/VaSJEl9YxfQCvTgM5toam0D4NiJwzlkVGPO\nFUmSJEmqBgbAClSO7p+SJEmSao8BsAL9tjgAHlO6AWCWnjSNpSdV+f1xwCk3nsIpN56SdxmlM3d0\ntkiSJEm96PM9gBExBngVcCZwGNAIbAQeB36TUnq4BPXVnF1NrTz83OaO9bOOKc39f5IkSZJqT68B\nMCLOBT4AnA80AM8C64E9wOnA5cDwiHga+AbwpZTS1pJVXOUeem4Tza0JgOMPGcGEEUNyrkiSJElS\ntdhnF9CI+BlwG7AZeDswLqU0NaX0spTSOSmlGcBo4GTgv4ALgOURcX5Jq65iDxWN/jlzytj8CpEk\nSZJUdXprAfwh8LaU0vaeDkgpJWBZYflcRJwJ2G/xAD34zKaO56cfZQCUJEmS1H/2GQBTSv++vydM\nKf3uwMupbSklHiq6/+8MA6AkSZKkfnTAE8FHxGDgBCCAx1JKzf1WVY1asWEnG3c0ATB66GCOmTA8\n54okSZIkVZMDCoAR8UrgZmBIYdkaEZellH7dn8XVmoee3dv987Qjx1BXFyV9v8Ouuaak568UV738\nqrxLKK3zr8u7AkmSJA0QB9oC+F/AR1JKN0dEPfBvwFfJBoPRAXqwKACWo/vn2Etnl/w9KsGsE2bl\nXUJpzbw87wokSZI0QPQ2CuhtETG1m12TyAaIIaXUCtxV2KaD8OAzmzuen3H0mNzqkCRJklSdemsB\nfBB4ICKuB/65aDTQW4EfRsT/AsOAvwYWlK7M6rezqYVlq7PpEyOyLqCltunmeUD1twTOf3w+UMUt\ngQtvyB5tCZQkSVIv9tkCmFK6FngJcDjweES0/4X5AbJ7AF8HvAL4PPC+EtZZ9Zau2kZbNv87x0wY\nzsjGwSV/z9VXX83qq68u+fvk7dr7ruXa+67Nu4zSufND2SJJkiT1otd7AFNKK4F3RcTZwHUR8X7g\ngymlLwBfKHWBtWLJC1s6ns84fHSOlUiSJEmqVvtsASyWUvptSulssta+myPipog4snSl1ZbFL2zt\neH7y5FE5ViJJkiSpWvUaACPidRHxmYj4XES8E/gf4ETgKeCRiLgmIoaWutBq92hRC+DJk20BlCRJ\nktT/ehsF9CrgFmAk0Ap8CrgtpbQjpfSPwBnAdOCxQjjUAWhubePx1ds71m0BlCRJklQKvd0D+H7g\nz1NKtwBExJeAJyPiyJTScymlFcCsiHg18DngOyWttko9sWY7Ta1tABw+ZihjhjXkXJEkSZKkatRb\nF9BtwJSi9aOBAHYUH5RS+iXw0n6trIYs7tT909Y/SZIkSaXRWwvgR4BvR8QcYBdwCnBVSmlj1wNT\nSqkE9dWEzgPAlO/+v2nLlpbtvfK0aM6ivEsorblbej9GkiRJopcAmFK6LSKmAGcDDcDDKaXl5Sis\nlixZ5QigkiRJkkqvL/MAbgC+X4ZaalJKicfXbOtYP2nSyByrkSRJklTNehsF9F0RUb8/J4yI4yLi\nVQdXVu1Yt20Pm3c2AzBiyCAOH1O+GTWWX3Qxyy+6uGzvl5fZd8xm9h2z8y6jdL56brZIkiRJveit\nBfDDwCcj4tvALSmlR7o7KCLGA28ELgNeA/y/fq2yij2+Zu/0D8cdMoKIKNt7716ypGzvlaelG6v8\nXsdV3f5nKUmSJL1Ib/cAnh4RlwIfAP4xIrYDS4H1wB5gDDAVOArYRDZJ/F+mlJ4vZdHVpLj75wmH\njsixEkmSJEnVri/3AN4M3BwRxwKvI5v8/TBgOLAGuAf4DXB3Sqn5YIopdDddCDyfUjo/IqYCNwHj\ngQeAd6WUmg7mPSrNE2uLA6D3/0mSJEkqnV4DYLuU0lPAUyWsBeBvyFoY24fC/AzwuZTSTRHxFeA9\nwJdLXENZPbbaAChJkiSpPHqbCL5sIuII4C3A1wrrAfwRcEvhkBuBt+VSXImklHii6B5AA6AkSZKk\nUqqYAAhcB3wMaCusjwc2p5RaCusrgcO7e2FEXBERCyNi4bp160peaH9ZvXU32/ZklzeycRCHjhqS\nc0WSJEmSqlmfu4CWUkScD6xNKT0QEeft7+tTStcD1wPMnDkz9W91pVM8AuiJh44s6wigAGNmzSrr\n++Xl4uOrfKqLM+bkXYEkSZIGiIoIgMArgbdGxJuBRrJ7AD8PjImIQYVWwCOAqhpddPm6vQHw2Inl\nHwF00ievLft75mHuK+bmXUJpvfULeVcgSZKkAaIiuoCmlP4hpXRESmkK2VyCP08p/QnwC+CSwmFz\ngO/lVGJJPLNxZ8fzoycMy7ESSZIkSbWgIgLgPvw98OGIeJLsnsCv51xPv3p2w94AOGX88LK//65H\nF7Pr0cVlf99yW7xhMYs3VPF1vvBQtkiSJEm9qJQuoB1SSncDdxeePw2cmWc9pbRiw46O50eNK38L\n4IpLssbVacuWlv29y+myOy8DYNGcRTlXUiLXn5c9zt2SaxmSJEmqfJXeAli1WtsSz23c1bF+9Hi7\ngEqSJEkqLQNgTlZv3U1TazbjxfjhDYxsHJxzRZIkSZKqnQEwJ88Ud/+09U+SJElSGRgAc5L3ADCS\nJEmSao8BMCcrigJgHgPASJIkSao9BsCcPLtxbxdQB4CRJEmSVA4VNw1ErSgeATSvFsApt9ySy/uW\n203n35R3CaV1xd15VyBJkqQBwgCYk1Vb9gbAyWOG5lLD0Bkn5/K+5Xby+Cq/zsmn512BJEmSBgi7\ngOZgd3Mr67c3AVAXcMjIITlXJEmSJKkWGABzsHrL7o7nh41qZFB9Pr+GVVdexaorr8rlvctp7r1z\nmXvv3LzLKJ3bP5gtkiRJUi8MgDl4oaj756Scun8CbJ4/n83z5+f2/uWy4IkFLHhiQd5llM6DN2aL\nJEmS1AsDYA5Wbd7bAjhpdGOOlUiSJEmqJQbAHFTCADCSJEmSao8BMAfPF7UATrYFUJIkSVKZGABz\nsKpC7gGUJEmSVFsMgDkoHgV08mgDoCRJkqTycCL4HKzfvqfj+cQc5wBsnD49t/cup2njpuVdQmlN\nOjXvCiRJkjRAGADLrK0tsXFHU8f62OGDc6tl6q1VPDVCkXkXzMu7hNJ67z15VyBJkqQBwi6gZbZ5\nVzNtKXs+snEQQwbV51uQJEmSpJphACyzjTv2dv8cP7whx0okSZIk1RoDYJlt2L63++e4nAPg0pOm\nsfSkKr8/DjjlxlM45cZT8i6jdOaOzhZJkiSpFwbAMiu+/2/c8PwGgJEkSZJUewyAZbahKADaBVSS\nJElSORkAy6xTC+AIA6AkSZKk8jEAltlGWwAlSZIk5cQAWGYbdlTOIDCSJEmSaosBsMyKp4EwAEqS\nJEkqp0F5F1BriqeBGJ/zKKCHXXNNru9fLle9/Kq8Syit86/LuwJJkiQNEAbAMqukQWDGXjo71/cv\nl1knzMq7hNKaeXneFUiSJGmAsAtoGaWU2LTTQWAkSZIk5cMAWEZbd7fQ3JoAGNZQT+Pg+lzr2XTz\nPDbdPC/XGsph/uPzmf/4/LzLKJ2FN2SLJEmS1Au7gJbR5qLWv7HD8m/9W3311UD1dwW99r5rgSru\nCnrnh7JHu4JKkiSpF7YAltHmnc0dz8cOH5xjJZIkSZJqkQGwjDbv2hsAxwzNvwVQkiRJUm0xAJZR\ncRfQ0UNtAZQkSZJUXgbAMtpS1AI4epgBUJIkSVJ5GQDLaMvO4i6gBkBJkiRJ5WUALKNO9wDaAihJ\nkiSpzJwGoow276ysQWCmLVuadwllsWjOorxLKK25W/KuQJIkSQOELYBltGVX0SAwtgBKkiRJKjMD\nYBlt9h5ASZIkSTkyAJZR53sA8+8Cuvyii1l+0cV5l1Fys++Yzew7ZuddRul89dxskSRJknrhPYBl\ntLUoAI4amv+PfveSJXmXUBZLN1b5vY6rHsm7AkmSJA0QtgCW0c6m1o7nw4fkHwAlSZIk1RYDYJmk\nlNjR1NKxPmxwfY7VSJIkSapFBsAy2dXcSkrZ88bBdQyq90cvSZIkqbxMIWWyfc/e1r/hDXb/lCRJ\nklR+BsAy2bnH+/8kSZIk5cskUibFLYDDGirj/r8xs2blXUJZXHx8lU91ccacvCuQJEnSAGEALJPi\nEUBHVEgL4KRPXpt3CWUx9xVz8y6htN76hbwrkCRJ0gBhF9Ay6TQCaIUEQEmSJEm1xQBYJjs6DQJT\nGV1Adz26mF2PLs67jJJbvGExizdU8XW+8FC2SJIkSb2wKapMKnEQmBWXXALAtGVLc66ktC678zIA\nFs1ZlHMlJXL9ednj3C25liFJkqTKZwtgmWyvwBZASZIkSbXFAFgmO4vuAayUFkBJkiRJtcUAWCbb\nK7ALqCRJkqTaYgAsk04tgHYBlSRJkpQDA2CZ7ChqAXQaCEmSJEl5MACWSfE0EJUyEbwkSZKk2mIS\nKZNOE8FXSBfQKbfckncJZXHT+TflXUJpXXF33hVIkiRpgDAAlkkltgAOnXFy3iWUxcnjq/w6J5+e\ndwWSJEkaIOwCWiY7m/beAzi0QloAJUmSJNUWA2CZ7G4uCoCDKyMArrryKlZdeVXeZZTc3HvnMvfe\nuXmXUTq3fzBbJEmSpF5URACMiCMj4hcRsSQiFkfE3xS2j4uIn0bEE4XHsXnXeqB2N7d1PG+skAC4\nef58Ns+fn3cZJbfgiQUseGJB3mWUzoM3ZoskSZLUi4oIgEAL8JGU0nTgbOB9ETEd+DhwV0rpeOCu\nwvqAtKsCWwAlSZIk1ZaKCIAppVUppQcLz7cBS4HDgQuB9qaNG4G35VJgPyjuAlopLYCSJEmSaktF\nBMBiETEFOB24Hzg0pbSqsGs1cGgPr7kiIhZGxMJ169aVp9D9kFJiT8veLqBDBlXcj12SJElSDaio\nJBIRI4AFwIdSSluL96WUEpC6e11K6fqU0syU0syJEyeWodL9Uxz+GgbVUVcXOVYjSZIkqVZVTACM\niMFk4e9/U0q3FjaviYhJhf2TgLV51XcwdhVNAdFo658kSZKknFTEjOQREcDXgaUppf8o2nU7MAf4\ndOHxezmUd9B2t1TmHICN06fnXUJZTBs3Le8SSmvSqXlXIEmSpAGiIgIg8ErgXcCiiHi4sO0TZMFv\nXkS8B3gGmJ1PeQenEqeAAJh6axVPjVBk3gXz8i6htN57T94VSJIkaYCoiACYUvo10NONca8tZy2l\n0GkE0EGVEwAlSZIk1RZvSCuDXZ2mgPBHLkmSJCkfppEyKG4BHFJBXUCXnjSNpSdV+f1xwCk3nsIp\nN56SdxmlM3d0tkiSJEm9MACWwZ6iewCHVlAAlCRJklRbDIBlsNsuoJIkSZIqgGmkDIqngaikUUAl\nSZIk1RYDYBnsaiqaBsJRQCVJkiTlxABYBnYBlSRJklQJTCNl0Ny6twWwYZA/ckmSJEn5qIiJ4Ktd\nS1vqeD6ovnIC4GHXXJN3CWVx1cuvyruE0jr/urwrkCRJ0gBhACyD4hbAwXWRYyWdjb10dt4llMWs\nE2blXUJpzbw87wokSZI0QFROc1QVKw6AldQCKEmSJKm2mEbKoKW1uAto5bQAbrp5Hptunpd3GSU3\n//H5zH98ft5llM7CG7JFkiRJ6oVdQMuguSgADq6rnMy9+uqrgervCnrtfdcCVdwV9M4PZY92BZUk\nSVIvKieNVLGWtuIuoJXTAihJkiSpthgAy6C5tTJHAZUkSZJUW0wjZdBSoaOASpIkSaotBsAyqNR5\nACVJkiTVFtNIGXSaB9B7ACVJkiTlxABYBsXTQAy2BVCSJElSTpwGogw6jQJaQfcATlu2NO8SymLR\nnEV5l1Bac7fkXYEkSZIGCJujyqDZFkBJkiRJFcA0UgbOAyhJkiSpEhgAy6DTPIB1lfMjX37RxSy/\n6OK8yyi52XfMZvYds/Muo3S+em62SJIkSb3wHsAyaKnQUUB3L1mSdwllsXRjld/ruOqRvCuQJEnS\nAFE5zVFVzHkAJUmSJFUC00gZdO4CWjktgJIkSZJqiwGwDDp3AfVHLkmSJCkfppEy6NwF1BZASZIk\nSfkwAJZBc3ELYAWNAipJkiSptjgKaBm0tFZmC+CYWbPyLqEsLj6+yqe6OGNO3hVIkiRpgDAAlkGl\nTgQ/6ZPX5l1CWcx9xdy8Syitt34h7wokSZI0QNgfsQyKRwG1C6gkSZKkvJhGyqD4HsBKagHc9ehi\ndj26OO8ySm7xhsUs3lDF1/nCQ9kiSZIk9cIuoGVQfA9gJU0DseKSSwCYtmxpzpWU1mV3XgbAojmL\ncq6kRK4/L3ucuyXXMiRJklT5KieNVLHm4nsAnQhekiRJUk4MgCXW2pZIexsAqTcASpIkScqJAbDE\nOs0BWB9EGAAlSZIk5cMAWGItbUVzADoCqCRJkqQcmUhKrKVLC6AkSZIk5cUAWGLNFToCqCRJkqTa\n4zQQJdbSVplzAAJMueWWvEsoi5vOvynvEkrrirvzrkCSJEkDhAGwxIrnAKy0ewCHzjg57xLK4uTx\nVX6dk0/PuwJJkiQNEJWVSKpQ11FAJUmSJCkvBsAS6zQKaIXdA7jqyqtYdeVVeZdRcnPvncvce+fm\nXUbp3P7BbJEkSZJ6UVmJpAoVtwAOqrBJ4DfPn8/m+fPzLqPkFjyxgAVPLMi7jNJ58MZskSRJknph\nACyxFkcBlSRJklQhTCQlVsmjgEqSJEmqLQbAEus0D2CFjQIqSZIkqbaYSEqs0zQQtgBKkiRJypEB\nsMSaO3UB9cctSZIkKT9OBF9inQaBqbBRQBunT8+7hLKYNm5a3iWU1qRT865AkiRJA4QBsMRaWit3\nEJipt1bx1AhF5l0wL+8SSuu99+RdgSRJkgYI+ySWWHMFTwQvSZIkqbaYSEqsuWVvC2CldQGVJEmS\nVFsMgCXWUsGDwCw9aRpLT6ry++OAU248hVNuPCXvMkpn7uhskSRJknpRWYmkCrUliELD3+AKuwdQ\nkiRJUm1xEJgSe8eZR/GOM4+itS2RUur9BZIkSZJUIgbAMqmvC8AWQEmSJEn5sQuoJEmSJNUIA6Ak\nSZIk1QgDoCRJkiTVCO8BrGGHXXNN3iWUxVUvvyrvEkrr/OvyrkCSJEkDRFT6yJQR8Ubg80A98LWU\n0qf3dfzMmTPTwoULy1KbJEmSJFWaiHggpTSzu30V3QU0IuqBLwFvAqYD74iI6flWJUmSJEkDU0UH\nQOBM4MmU0tMppSbgJuDCnGuqGptunsemm+flXUbJzX98PvMfn593GaWz8IZskSRJknpR6fcAHg48\nV7S+Ejir60ERcQVwBcBRRx1VnsqqwOqrrwZg7KWzc66ktK6971oAZp0wK+dKSuTOD2WPMy/PtQxJ\nkiRVvkpvAeyTlNL1KaWZKaWZEydOzLscSZIkSapIlR4AnweOLFo/orBNkiRJkrSfKj0A/h44PiKm\nRkQDcBlwe841SZIkSdKAVNH3AKaUWiLi/cCPyaaB+EZKaXHOZUmSJEnSgFTRARAgpfQD4Ad51yFJ\nkiRJA12ldwGVJEmSJPWTSCnlXUO/ioh1wDN519GNCcD6vItQ1fLzpVLy86VS8zOmUvLzpVKq1M/X\n0SmlbqdHqLoAWKkiYmFKaWbedag6+flSKfn5Uqn5GVMp+flSKQ3Ez5ddQCVJkiSpRhgAJUmSJKlG\nGADL5/q8C1BV8/OlUvLzpVLzM6ZS8vOlUhpwny/vAZQkSZKkGmELoCRJkiTVCAOgJEmSJNUIA2CJ\nRcQbI+KxiHgyIj6edz0a+CLiyIj4RUQsiYjFEfE3he3jIuKnEfFE4XFs3rVq4IqI+oh4KCLuLKxP\njYj7C99lN0dEQ941amCKiDERcUtELIuIpRHxcr+/1F8i4m8L/zY+GhHfjYhGv790MCLiGxGxNiIe\nLdrW7XdWZL5Q+Kz9ISLOyK/ynhkASygi6oEvAW8CpgPviIjp+ValKtACfCSlNB04G3hf4XP1ceCu\nlNLxwF2FdelA/Q2wtGj9M8DnUkrHAZuA9+RSlarB54EfpZROAk4l+5z5/aWDFhGHAx8EZqaUZgD1\nwGX4/aWD803gjV229fSd9Sbg+MJyBfDlMtW4XwyApXUm8GRK6emUUhNwE3BhzjVpgEsprUopPVh4\nvo3sj6fDyT5bNxYOuxF4Wy4FasCLiCOAtwBfK6wH8EfALYVD/HzpgETEaOBc4OsAKaWmlNJm/P5S\n/xkEDI2IQcAwYBV+f+kgpJTuATZ22dzTd9aFwLdS5rfAmIiYVJZC94MBsLQOB54rWl9Z2Cb1i4iY\nApwO3A8cmlJaVdi1Gjg0r7o04F0HfAxoK6yPBzanlFoK636X6UBNBdYBNxS6GH8tIobj95f6QUrp\neeCzwLNkwW8L8AB+f6n/9fSdNSD+9jcASgNURIwAFgAfSiltLd6XsvldnONF+y0izgfWppQeyLsW\nVaVBwBnAl1NKpwM76NLd0+8vHajCfVgXkv2PhsnAcF7cdU/qVwPxO8sAWFrPA0cWrR9R2CYdlIgY\nTBb+/jeldGth85r2bgaFx7V51acB7ZXAWyNiBVm39T8iu2drTKFLFfhdpgO3EliZUrq/sH4LWSD0\n+0v94XXA8pTSupRSM3Ar2Xea31/qbz19Zw2Iv/0NgKX1e+D4wuhTDWQ3It+ec00a4Ar3Y30dWJpS\n+o+iXbcDcwrP5wDfK3dtGvhSSv+QUjoipTSF7Dvr5ymlPwF+AVxSOMzPlw5ISmk18FxEnFjY9Fpg\nCX5/qX88C5wdEcMK/1a2f778/lJ/6+k763bgzwqjgZ4NbCnqKloxImu1VKlExJvJ7qepB76RUvpU\nvhVpoIuIc4BfAYvYe4/WJ8juA5wHHAU8A8xOKXW9aVnqs4g4D/hoSun8iDiGrEVwHPAQ8KcppT05\nlqcBKiJOIxtgqAF4Gric7H9I+/2lgxYR1wCXko2Y/RDw52T3YPn9pQMSEd8FzgMmAGuAq4Hb6OY7\nq/A/Hr5I1vV4J3B5SmlhDmXvkwFQkiRJkmqEXUAlSZIkqUYYACVJkiSpRhgAJUmSJKlGGAAlSZIk\nqUYYACVJkiSpRhgAJUlVrTAf08MRMado29si4umIWBcRV3fzmqsi4kXztkbERyPirj6+7/CI+GRE\nPBYRuyJiTUT8MiLeU3TMeRGRImJGl9f+ZWH71RExpfD8/G7eY0Zh33l9qUmSJAOgJKnazSab/+s7\nABExAfgf4KvA+4APR8Tr2w+OiCOAvwU+3M25vgqc0cfAtQC4gmxOqDcDHwQeLTzvUUS8G/gv4NMp\npWv68D6SJPXZoLwLkCSpxD4IfDul1FxYPxt4JqX0GYCIeA3wx8BPCvs/DXwtpfRk1xOllLZFxALg\nA8DdPb1hRBwPvIFscuD5RbtuLkwU3NPr3gF8Hfh8Sukf+nh9kiT1mQFQklS1IuI44BXA+4s2NwC7\nitZ3FrYREWcDrwNO2MdpFwC3RcS4lNLGHo4ZU3hc3XVHSin1UOtFwLeAr6aU/nYf7y9J0gGzC6gk\nqZq9FtgBPFK07WHglIh4TURMBS4GFhZa5j4P/FNKaes+znkfMBh41T6OeazwvtdFxOsjorGXOt8C\n3EQWAN/Xy7GSJB0wA6AkqZq9FFiaUmpr35BSehr4FPBz4GlgMfBd4F1kLYHf2NcJU0qbgWeBM/dx\nzFbgL4ATgR8DWyPinoj4ix66gH4a+APwFz21EEqS1B8MgJKkanYYsL7rxpTStcBEYEpK6S1AI/Av\nwN8AgyLiK4URQhdFxDndnHd94dw9Sil9Fzga+H9krXsnANdTGIymi5+QhdV39/G6JEk6IAZASVI1\nawT2dLcjpbQ+pfRMYfUfgN+klO4B/hI4lSywfYps4JYhXV6+p3DufUopbUgp3ZBS+jPgSOAG4LKI\nOLXLoX8H3AxcHxEXdNnXUnis7+Yt6rscI0nSPhkAJUnVbCN7B2TpVkRMAf4a+Fhh02uA/00pbUop\n3QQM4cWDwowpnLvPCqOQfq6welKX3W3AnwG/IAucryzat6Gwv7sWx0mFx7X7U4skqXYZACVJ1ewx\nYGovx3wW+FJKaUXRtmEAEVFPFgA77tuLiDrgKODxnk4YESMjYmg3u44vPK7puiOl1ARcBCwB7oiI\nkwvbdwEPABd2c74LyUYafdGUFZIkdcdpICRJ1ew3wFURMTGltK7rzoh4Ndm8gHOKNv8S+FBELAH+\nCNhGFiTbnQiMKJy7JycCt0fEN4B7yaaaOA34R7JRSH/d3YsK8wy+uXDuH0fEK1JKzwJzgTsj4iay\nAWuagfOB9wJ/XTzIjSRJ+2ILoCSpmt1N1lXzjV13FFryrgP+IaW0o2jXl4G7gP8B3gS8I6VUfB/h\nG8lGD31oH+/7FPA1sgnmvw38gOzewm8Ar00p9XjPXkppLfB6svv7fhwR41NKPyCbKuIIskFkbqUQ\nXFNKX9lHHZIkdRKONi1JqmYR8XnguMJon/1xvvuA76eU/rk/zidJUjkZACVJVS0ijiC7X++0lFKP\n9+318VxnAT8CphbmA5QkaUCxC6gkqaqllFaSzcU3qbdj+2AcWbfLzf1wLkmSys4WQEmSJEmqEbYA\nSpIkSVKNMABKkiRJUo0wAEqSJElSjTAASpIkSVKNMABKkiRJUo34/wGE/rqj7kAtOwAAAABJRU5E\nrkJggg==\n", 324 | "text/plain": [ 325 | "
" 326 | ] 327 | }, 328 | "metadata": {}, 329 | "output_type": "display_data" 330 | } 331 | ], 332 | "source": [ 333 | "ax = df_par.plot(x='%SKU', y='%CumSum', figsize = (15,7), color = 'tab:blue', legend = False, linewidth=3)\n", 334 | "plt.xlabel('(%) SKU',fontsize=15)\n", 335 | "plt.ylabel('(%) Boxes',fontsize=15)\n", 336 | "plt.title('Pareto Analysis by Boxes Qty', fontsize = 15)\n", 337 | "# 5% SKU\n", 338 | "ax.axhline(perc_sum5 , color=\"tab:red\", linestyle=\"--\", linewidth = 2.0)\n", 339 | "ax.axvline(perc_sku5, color=\"tab:red\", linestyle=\"--\", linewidth = 2.0)\n", 340 | "# 80% Volume\n", 341 | "ax.axhline(perc_sum80 , color=\"tab:green\", linestyle=\"--\", linewidth = 2.0)\n", 342 | "ax.axvline(perc_sku80, color=\"tab:green\", linestyle=\"--\", linewidth = 2.0)\n", 343 | "# 20% SKU\n", 344 | "ax.axhline(perc_sum20 , color=\"tab:orange\", linestyle=\"--\", linewidth = 2.0)\n", 345 | "ax.axvline(perc_sku20, color=\"tab:orange\", linestyle=\"--\", linewidth = 2.0)\n", 346 | "plt.show()" 347 | ] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "execution_count": null, 352 | "metadata": { 353 | "collapsed": true 354 | }, 355 | "outputs": [], 356 | "source": [] 357 | } 358 | ], 359 | "metadata": { 360 | "kernelspec": { 361 | "display_name": "Python 3", 362 | "language": "python", 363 | "name": "python3" 364 | }, 365 | "language_info": { 366 | "codemirror_mode": { 367 | "name": "ipython", 368 | "version": 3 369 | }, 370 | "file_extension": ".py", 371 | "mimetype": "text/x-python", 372 | "name": "python", 373 | "nbconvert_exporter": "python", 374 | "pygments_lexer": "ipython3", 375 | "version": "3.6.1" 376 | } 377 | }, 378 | "nbformat": 4, 379 | "nbformat_minor": 2 380 | } 381 | -------------------------------------------------------------------------------- /Treemap.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import numpy as np\n", 12 | "import pandas as pd\n", 13 | "import squarify\n", 14 | "import matplotlib\n", 15 | "import matplotlib.pyplot as plt" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 166, 21 | "metadata": { 22 | "collapsed": true 23 | }, 24 | "outputs": [], 25 | "source": [ 26 | "pd.set_option('display.max_colwidth', 0)\n", 27 | "pd.set_option('display.max_columns', None)\n", 28 | "pd.options.display.max_seq_items = 2000" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 167, 34 | "metadata": {}, 35 | "outputs": [ 36 | { 37 | "data": { 38 | "text/html": [ 39 | "" 44 | ], 45 | "text/plain": [ 46 | "" 47 | ] 48 | }, 49 | "metadata": {}, 50 | "output_type": "display_data" 51 | } 52 | ], 53 | "source": [ 54 | "%%html\n", 55 | "" 60 | ] 61 | }, 62 | { 63 | "cell_type": "markdown", 64 | "metadata": {}, 65 | "source": [ 66 | "## Import Data\n", 67 | "### Replenishments number by locations" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": 4, 73 | "metadata": {}, 74 | "outputs": [ 75 | { 76 | "name": "stdout", 77 | "output_type": "stream", 78 | "text": [ 79 | "8,099 records\n" 80 | ] 81 | }, 82 | { 83 | "data": { 84 | "text/html": [ 85 | "
\n", 86 | "\n", 99 | "\n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | "
DAYSKULocationAlleyAlleyCellMaxMinWEEK-1WEEK-2WEEK-3WEEK-4WEEK-5Capacity
0FRI2354A0617402A06A061780.060.00.01.01.00.00.020
1FRI5028A0703503A07A07030.00.00.00.01.00.00.01
2FRI8972A0527401A05A0527120.090.01.02.00.01.00.030
3FRI10116A0742501A07A0742144.0108.00.01.00.00.00.036
4FRI11259A0608303A06A0608200.0150.01.03.02.00.00.050
\n", 201 | "
" 202 | ], 203 | "text/plain": [ 204 | " DAY SKU Location Alley AlleyCell Max Min WEEK-1 WEEK-2 WEEK-3 \\\n", 205 | "0 FRI 2354 A0617402 A06 A0617 80.0 60.0 0.0 1.0 1.0 \n", 206 | "1 FRI 5028 A0703503 A07 A0703 0.0 0.0 0.0 0.0 1.0 \n", 207 | "2 FRI 8972 A0527401 A05 A0527 120.0 90.0 1.0 2.0 0.0 \n", 208 | "3 FRI 10116 A0742501 A07 A0742 144.0 108.0 0.0 1.0 0.0 \n", 209 | "4 FRI 11259 A0608303 A06 A0608 200.0 150.0 1.0 3.0 2.0 \n", 210 | "\n", 211 | " WEEK-4 WEEK-5 Capacity \n", 212 | "0 0.0 0.0 20 \n", 213 | "1 0.0 0.0 1 \n", 214 | "2 1.0 0.0 30 \n", 215 | "3 0.0 0.0 36 \n", 216 | "4 0.0 0.0 50 " 217 | ] 218 | }, 219 | "execution_count": 4, 220 | "metadata": {}, 221 | "output_type": "execute_result" 222 | } 223 | ], 224 | "source": [ 225 | "df_repl = pd.read_csv('In/Replenishment.csv', sep =',', index_col = 0)\n", 226 | "print('{:,} records'.format(len(df_repl)))\n", 227 | "df_repl.head()" 228 | ] 229 | }, 230 | { 231 | "cell_type": "markdown", 232 | "metadata": {}, 233 | "source": [ 234 | "## Plot Split of Replenishment\n", 235 | "### Process the Dataframe" 236 | ] 237 | }, 238 | { 239 | "cell_type": "code", 240 | "execution_count": 17, 241 | "metadata": {}, 242 | "outputs": [ 243 | { 244 | "name": "stdout", 245 | "output_type": "stream", 246 | "text": [ 247 | "4,325 records\n" 248 | ] 249 | }, 250 | { 251 | "data": { 252 | "text/html": [ 253 | "
\n", 254 | "\n", 267 | "\n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | "
AlleyWEEK-2
0A061.0
2A052.0
3A071.0
4A063.0
5A051.0
\n", 303 | "
" 304 | ], 305 | "text/plain": [ 306 | " Alley WEEK-2\n", 307 | "0 A06 1.0\n", 308 | "2 A05 2.0\n", 309 | "3 A07 1.0\n", 310 | "4 A06 3.0\n", 311 | "5 A05 1.0" 312 | ] 313 | }, 314 | "execution_count": 17, 315 | "metadata": {}, 316 | "output_type": "execute_result" 317 | } 318 | ], 319 | "source": [ 320 | "# Filter by Week Number\n", 321 | "wk = 'WEEK-2'\n", 322 | "df_plot = df_repl[df_repl[wk]>0][['Alley', wk]].copy()\n", 323 | "print('{:,} records'.format(len(df_plot)))\n", 324 | "df_plot.head()" 325 | ] 326 | }, 327 | { 328 | "cell_type": "code", 329 | "execution_count": 18, 330 | "metadata": {}, 331 | "outputs": [ 332 | { 333 | "name": "stdout", 334 | "output_type": "stream", 335 | "text": [ 336 | "['A06', 'A05', 'A07', 'A04', 'A02', 'R04', 'A08', 'A03', 'A01', 'R05', 'A09', 'A10', 'H02', 'B03', 'A11', 'R06']\n" 337 | ] 338 | } 339 | ], 340 | "source": [ 341 | "# Unique Alleys\n", 342 | "print(list(df_plot.Alley.unique()))\n", 343 | "dict_color = dict(zip(['A05', 'A06', 'A04', 'A07', 'A02', 'R04', 'A01', 'A08', \n", 344 | " 'R05', 'A03', 'A09', 'A10', 'H02', 'B03', 'A11', 'R06']\n", 345 | " , ['blue', 'red', 'yellow', 'orange', 'brown', 'cyan', 'tab:blue', 'tab:red', \n", 346 | " 'lightblue', 'tab:orange', 'grey', 'tab:green', 'purple', 'darkblue', 'white', 'magenta']))" 347 | ] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "execution_count": 19, 352 | "metadata": {}, 353 | "outputs": [ 354 | { 355 | "data": { 356 | "text/html": [ 357 | "
\n", 358 | "\n", 371 | "\n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | "
AlleyWEEK-2%LABEL
0A01127.00.57A01\\n0.57%
1A021238.05.52A02\\n5.52%
2A031077.04.80A03\\n4.8%
3A043020.013.46A04\\n13.46%
4A05899.04.01A05\\n4.01%
\n", 419 | "
" 420 | ], 421 | "text/plain": [ 422 | " Alley WEEK-2 % LABEL\n", 423 | "0 A01 127.0 0.57 A01\\n0.57%\n", 424 | "1 A02 1238.0 5.52 A02\\n5.52%\n", 425 | "2 A03 1077.0 4.80 A03\\n4.8%\n", 426 | "3 A04 3020.0 13.46 A04\\n13.46%\n", 427 | "4 A05 899.0 4.01 A05\\n4.01%" 428 | ] 429 | }, 430 | "execution_count": 19, 431 | "metadata": {}, 432 | "output_type": "execute_result" 433 | } 434 | ], 435 | "source": [ 436 | "# Processing\n", 437 | "df_plot = pd.DataFrame(df_plot.groupby(['Alley'])[wk].sum())\n", 438 | "df_plot['%'] = (100*df_plot[wk]/df_plot[wk].sum()).round(2)\n", 439 | "df_plot.reset_index(inplace = True)\n", 440 | "df_plot['LABEL'] = df_plot[['Alley','%']].apply(lambda t: t['Alley'] +'\\n' + str(t['%']) + '%', axis = 1)\n", 441 | "df_plot.head()" 442 | ] 443 | }, 444 | { 445 | "cell_type": "code", 446 | "execution_count": 22, 447 | "metadata": {}, 448 | "outputs": [ 449 | { 450 | "data": { 451 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHjCAYAAADPD3DWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsT\nAAALEwEAmpwYAABQhElEQVR4nO3dd3yV1eHH8c/J3iGDvQlDkI1URFQUGbWKWMHiAK2idRVHrbPQ\nuuqqWq2r9WctLnC0gtUqFBQRBxSUJbISwt7ZO/fe8/vjudkDkCQX8nzfvPLKvec5z73neRKSb845\nz3OMtRYRERERNwoKdANEREREAkVBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FI\nXMcY8w9jzEMBem9jjHnVGJNpjFnexO/dIMdtjDnDGLPxCOr9wRjzxrG+n1sZYy43xiw4gnp1nmdj\nzL3GmP9r+NYdG2PMSGPMzkrP040x5wayTeJeCkIScP4fgvuNMdGVyqYZYxYHsFmNZQQwGuhgrf1J\n9Y3GmKuMMV5jTJ4xJscYs9oYc37TN7Nu1tovrLW9At2OI2WM6WKMscaYkEC3pTp/IPD5v965xpiN\nxphfAlhr37TWjjmW17fW/tFaO61hWluVP9RPN8asM8bkG2N2GmPeNcb0a4z3E2ksCkJyvAgGbgl0\nI46WMSb4KHfpDKRba/PrqfO1tTYGaAG8AMwxxrT4cS2U40U9QWy3/+sdB9wFvGyM6dN0LfvRnsH5\nPzsdSAR6AnOBnwWwTSJHTUFIjhdPAHfU9gu/tr/ojTGLjTHT/I+vMsZ8aYx52hiTZYxJM8YM95fv\n8Pc2XVntZZONMf/1/xX+uTGmc6XXPsm/LcP/F/ollbb9wxjzojHmP8aYfODsWtrbzhjzgX//LcaY\na/3l1wD/B5zm7wG4v74TYq31Aa8D0UAP/2uEG2P+ZIzZbozZZ4x5yRgT6d820v9X+b3GmIP+nrbL\n63p9Y8z5xphV/nP2lTGmf6Vt6caYO4wxa4wx2caYt40xEZXfp1Ldu4wxuyr1aIyq9DZhxpjX/Nu+\nN8acUu09fut/j3xjzCvGmNbGmI/99RcaYxIq1R/mb2eWv6dsZKVti40xD/q/D3KNMQuMMcn+zUv8\nn7P85/00Y0x3/9c923+u3q7jHJV9711njNltjNljjLmj0vYgY8zdxphUY8whY8w7xpjEavteY4zZ\nDnxa19cCwDrmAplAH//379JK73Vype/LfcaYe2tpb6gxZrYx5p/GmDBTadisUnuu9H//HDTG3Fdp\n30hjzCzjDNv+YIy5s/LXudr79ABuAi611n5qrS221hb4e7Ee9dep83tV5HiiICTHixXAYuCOw9Sr\ny6nAGiAJeAuYAwwFugNXAM8ZY2Iq1b8ceBBIBlYBbwIYZ3juv/7XaAVMBl4wVf9Cvwx4GIgFllLT\nHGAn0A6YCPzRGHOOtfYV4Hr8PT7W2t/Xd0DG6W36JVAKbPMXP4rzl/dA/7G1B2ZW2q2N/5jaA1cC\nfzPG1BjGMsYMAv4O/ArnnP0V+MAYE16p2iXAOKAr0B+4qpbX6QXcDAy11sYCY4H0SlXG+89HC+AD\n4LlqL3ExzlBhT+AC4GPgXqAlzs+n6f73aQ98BDyE0/twB/BPY0zLSq91Gc75agWEUfG9dKb/cwv/\nef8a52u/AEgAOgB/qX5s1ZyNE0bHAHeZivksvwYmAGfhfL0zgeer7XsW0Bvn3NTJH6ouwjlXa6tt\niwUWAp/436c7sKhanUicHpli4BJrbUkdbzUC6AWMAmYaY3r7y38PdAG64XxNrqinuaOAndba+ua5\nHe57VeS4oCAkx5OZwK+r/XI7Ulutta9aa73A20BH4AH/X6oLgBKcH8ZlPrLWLrHWFgP34fTSdATO\nxxm6etVa67HWfgf8E5hUad951tovrbU+a21R5Ub4X+N04C5rbZG1dhVOL9DUoziWYcaYLKAI+BNw\nhbV2vzHGANcBt1lrM6y1ucAfccJaZTP8x/05Tni4hJquA/5qrV1mrfVaa2fh/AIdVqnOs9ba3dba\nDODfOL/QqvMC4Tg9GKHW2nRrbWql7Uuttf/xf11eBwZU2/8v1tp91tpdwBfAMmvtd/7z+j4wyF/v\nCuA//tfyWWv/ixOez6v0Wq9aazdZawuBd+pob5lSnGHKdv6vU22BtrL7rbX51tq1wKvApf7y64H7\nrLU7/d9LfwAmmqrDYH/w71tYx2u383+9D+KEkSnW2uqT0c8H9lprn/S3N9dau6zS9jickJQK/NJ/\nvus7lkJr7WpgNRVfk0uAP1prM621O4Fn63mNJGBPXRuP4ntVJOAUhOS4Ya1dB3wI3P0jdt9X6XGh\n//Wql1XuEdpR6X3zgAycv7Q7A6f6h1+y/L+gLsfpaamxby3aAWU/+Mtsw/lr+Eh9Y61tgdNb8QFw\nhr+8JRAFrKzUtk/85WUyq80/2uZvU3Wdgd9UO86O1erurfS4gKrnDwBr7RbgVpwAsN8YM8cYU99r\nRFQLCdW/RnV9zToDk6q1dwTQ9mjaW8mdgAGW+4fsrq6nLlT9mlc+p52B9yu16QeccNi6jn1rs9ta\n28Jam2itHWitnVNLnY44Iacuw3B67R61h19Ju67z1K5aW+tr9yGqnvvqjuR7VeS4oCAkx5vfA9dS\nNTiU/WKPqlRWOZj8GB3LHviHzBKB3Tg//D/3/2Iq+4ix1t5Qad/6ftHsBhL9QxllOgG7jraB/oB2\nAzDFP5R1ECccnFypbfH+ibZlEkylq+/87727lpffATxc7TijrLWzf0Q737LWjsAJBRZ47Ghf4wjs\nAF6v1t7osvkoh2tijQJr91prr7XWtsMZHnzBGNO95q7lOlZ6XPmc7gB+Wq1dEf4erjrf/0fYgTNk\nVZcFwCPAImNM63rq1WcPzjBhmY51VcQZlutgKs35quZIvldFjgsKQnJc8fcwvI1/boi/7ABOkLjC\nGBPs/+s95Rjf6jxjzAhjTBjOfJFvrLU7cHqkehpjpvgnnoYaY4ZWmkdxuPbvAL4CHjHGRBhnAvI1\nwI+6n45/WOr/gJnWmTz9MvC0MaYVOHNnjDHV557c758oewbOkMq7tbz0y8D1xphTjSPaGPOzagHu\nsIwxvYwx5/jnFhXh/PLzHd1RHpE3gAuMMWP93wMRxpm03eGwe8IBf5vKg4QxZlKlfTNxwkp97Z5h\njIkyxpyMMw+pbHL1S8DDxj/Z3hjT0hhz4dEd2hH5EGhrjLnVPwk51hhzauUK1trHcea2LTIVE8WP\nxjvAPcaYBP+crJvrqmit3YxzReNs/9chzP81mWyMufsovldFAk5BSI5HD+BcKVXZtcBvcbrkT8YJ\nG8fiLZzepwxgCP6Jof4hrTE4cxl24wwjPIYzD+ZIXYoz6XQ3zjyX31trFx5DW/+ME9z641xevQX4\nxhiTgzOBtvJk6L04v9h340wAv95au6H6C1prV+Cc0+f89bdQy2ToIxCOMyn2oP+9WwH3/IjXqZc/\nYF6IM5H6AE4PyW85gp9h1toCnMntX/qHaYbhTKRfZozJwxl+vMVam1bPy3yOc44WAX/yzzsD5xLy\nD4AFxphc4BucifsNyv99ORpnQvleYDO1XLForX0QZ8L0QuO/eu0oPIAzyX8rzvfVezjzxuoyHef7\n53kgC2fo7iKc+WRw+O9VkeOCOfxwsoicCIxzOfkb1toj6SWRI2CM6YITDEKttZ4AN6dJGWNuACZb\na88KdFtEGpN6hEREBGNMW2PM6f7L+HsBv8Hp0RRp1o67W86LiEhAhOHcT6orzlDXHJx5QCLNmobG\nRERExLU0NCYiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAk\nIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQi\nIiKuFXI0lUNDQ2xQUHBjteW4Y4zBWhvoZojUwQD6/nSLIILw4Qt0M0ROKCUlJQettS3rq3NUQSgo\nKJjieyKOrVUnkJTXk5k6dWqgmyFSq9dee420tBsC3QxpIt26vUhqWmqgmyFyQjGYbYero6ExERER\ncS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFx\nLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEt\nBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0F\nIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUh\nERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSER\nERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIRER\nEXEtBSEREZE6BBPMQAbSl75cwAVkkVW+bRaz6OH/N4tZ5eUllHAd19GTnpzESfyTfwag5XKkFIRE\nRETqEEkkq1jFOtaRSCLP8zwAGWRwP/ezjGUsZzn3cz+ZZALwMA/TilZsYhPrWc9ZnBXIQ5DDUBAS\nERE5AqdxGrvYBcB85jOa0SSSSAIJjGY0n/AJAH/n79zDPQAEEUQyyQFrsxyegpCIiMhhePGyiEWM\nZzwAu9hFRzqWb+9AB3axq3zobAYzGMxgJjGJfewLRJPlCCkIiYiI1KGQQgYykDa0YR/7GM3oeut7\n8LCTnQxnON/yLadxGndwRxO1Vn4MBSEREZE6lM0R2sY2LLZ8jlB72rODHeX1drKT9rQniSSiiOLn\n/ByASUziW74NSNvlyCgIiYiIHEYUUTzLszzJk3jwMJaxLGABmf5/C1jAWMZiMFzABSxmMQCLWEQf\n+gS28VKvkEA3QERE5EQwiEH0pz+zmc0UpjCDGQxlKAAzmUkiiQA8xmNMYQq3cistacmrvBrIZsth\nKAiJiIjUIY+8Ks//zb/LH1/t/1ddZzqzhCWN3jZpGBoaExEREddSEBIRERHXUhASERFXupqraUUr\n+tK3vCyDDEYzmh70YDSjy+8WXdk2tjGYwQxkICdzMi/xEgC55DKw0r9kkrmVWwH4C3+hL305j/Mo\noQSApSzlNm5r/AOVeikIiYiIK13FVeV3gy7zKI8yilFsZjOjGMWjPFpjv7a05Wu+ZhWrWMYyHuVR\ndrObWGJZVelfZzqXX0b/Jm+yhjUMZzjzmY/F8iAPMoMZTXKsUjcFIRERcaUzObP8Sq8y85jHlVwJ\nwJVcyVzm1tgvjDDCCQegmGJ8+GrU2cQm9rOfMzgDAIullFIKKCCUUN7gDX7KT2u8vzQ9XTUmDeqH\nH37g7bff5qabbqJly5YArFq1iiVLnCsozjzzTAYOHAjAunXrWLJkCdZaevbsyejR9d+xVUSkse1j\nH21pC1B+N+na7GAHP+NnbGELT/AE7WhXZfsc5vALfoHBAHAzNzOMYZzMyZzO6VzIhcxnfuMejBwR\n9QhJg1q3bh2dOnVi3bp1ABQUFLB48WKmTZvGtddey+LFiyksLKSgoIAFCxZw5ZVXctNNN5GXl0da\nWlqAWy8iUsH4/9WmIx1Zwxq2sIVZzKoRmOYwh0u5tPz5FKbwHd/xBm/wNE8znel8zMdMZCK3cVut\nvUrSNBSEpMEUFxezfft2xo8fXx6EUlNTSUlJISoqisjISFJSUtiyZQuZmZkkJSURHR0NQLdu3Vi/\nfn0gmy8iQmtas4c9AOxhD61oVW/9drSjL335gi/Ky1azGg8ehjCkRv3d7GY5y5nABJ7kSd7mbVrQ\ngkUsatgDkSOmICQNZuPGjXTv3p3k5GQiIyPZvXs3OTk5xMXFldeJi4sjJyeHxMREDh48SGZmJl6v\nlw0bNpCTkxPA1ouIwHjGM4tZAMxiFhdyYY06O9lJIYUAZJLJUpbSi17l22czu0pvUGUzmMEDPAA4\nC7oaDEEEUUBBQx+KHCEFIWkwa9eupW9f5zLUvn37snbt2jrrRkZGcv755/Pee+/x6quv0qJFC4yp\nvQtaRKQxXMqlnMZpbGQjHejAK7zC3dzNf/kvPejBQhZyN3cDsIIVTGMaAD/wA6dyKgMYwFmcxR3c\nQT/6lb/uO7xTaxD6ju8AGMxgAC7jMvrRjy/5knGMa+zDlTposrQ0iIKCArZu3cr+/fsBsNYCMHr0\naNLT08vr5eTk0KVLFwB69epFr17OX1ErVqxQEBKRJjWb2bWW1zZMdQqn8H/8HwCjGc0a1tT5umnU\nPt9xEIN4hVfKn9/q/yeBpSAkDWL9+vUMGDCACy64oLzs1VdfJTY2ltTUVAoLnW7k1NRURo0aBUBe\nXh4xMTEUFhbyv//9j0mTJgWk7SIi4l4KQtIg1q1bx+mnn16lrHfv3qxbt44zzzyTv/3tbwCcddZZ\nREVFAfDJJ5+wd+/e8vLk5OSmbbSIiLiegpA0iKuuuqpG2bBhw8ofDx48uMb2iRMnNmaTREREDkuT\npUVERMS1FIRERETEtTQ0Joc1d+5cNm3aRHR0NDfddBPgXCX23nvvkZWVRYsWLZg0aRKRkZFV9svK\nymLOnDlYa/H5fPzkJz9h6NChQN3LayxbtowVK1YQHx/P5MmTCQkJYdu2bfzwww+MG6fLS0VEpGGp\nR0gOa+DAgVxxxRVVypYuXUrXrl2ZPn06Xbt2ZenSpTX2i4mJYdq0adxwww1MmzaNpUuXkpOTU+/y\nGmvWrOGGG26gY8eOpKamYq1lyZIlnHnmmU1yrCIi4i4KQnJYXbp0qdHbs3HjxvLFUwcOHMiGDRtq\n7BcSEkJIiNPp6PV6y+8tdLjlNXw+H6WlpQQFBbFmzRq6d+9efqWZiIhIQ9LQmPwoeXl5xMbGAk7P\nT15eXq31srOzefPNN8nIyGDMmDHExcURGhpavrxGXFwcGzZswOv1AvCTn/yE//u//6Nly5Z06tSJ\n2bNnM2XKlCY7LhERcRcFITlmxpg67wodHx/PjTfeSE5ODnPmzKFPnz7ExMSUL69hjKFjx45kZGQA\nMGDAAAYMGADA4sWLOfXUU9m8eTOrV68mPj6eMWPGEBSkjkwREWkY+o0iP0pMTAy5ubkA5Obmlg9z\n1SUuLo5WrVqxbds2wFle49prr2XatGkkJSWRlJRUpX5OTg67du2id+/efP3110yaNImIiAi2bt3a\nOAckIiKupCAkP0qvXr1YtWoVAKtWrSpfM6yy7OxsSktLASgsLGT79u3ld48uG0orW16j+g0XP/vs\nM84++2yA8tcwxpQ/FhERaQgaGpPDeu+990hPT6egoIAnn3ySs88+mxEjRvDuu+/y3XffER8fX75O\n2K5du1ixYgUXXnghBw8eZP78+RhjsNYyfPhwWrduDdS/vMaePXsAaNeuHQD9+vXjxRdfJC4ursYy\nHiIiIsfClF3JcyTCw8Nt8T0Rjdic40vK68lMnTo10M0QqdVrr71GWtoNgW6GNJFu3V4kNS010M0Q\nOaEYzEpr7Sn11TkuhsbmbijF3J/DhoPe8rJZq0ro8Zc8evwlj1mrSsrLx72Rz4CX8jj5hTyu/7AQ\nr+/Ig5yIiIhIZcdFEJq9rpQRnYKZvdaZ/5FRaLn/82KWTYtm+bRo7v+8mMxCJ/C8MymK1dfHsO6G\naA4UWN5d7wlk00VEROQEFvAglFdiWbrdyyvjI5jzvRNq5m/xMLpbCImRhoRIw+huIXyyxdkWF+5c\npu3xQYkXar9oW0REROTwAh6E5m3wMC4lhJ5JwSRFGlbu9rIr10fH+IqmdYgLYleur/z52DfyafWn\nXGLDYGIfzfcWERGRHyfgQWj2ulIm9w0FYHLfEGavO/zl0fOviGbPb2Ip9sKnW72HrS8iIiJSm4B2\np2QUWj7d6mHtfi8G8FpnqOuxcyNYnF4x92dnjo+RXao2NSLEcGGvEOZtLGV0inqFRERE5OgFNEG8\nt76UKf1D+esFFQt6nvWPfNrHGRakeconSC9I8/DIuRHklVhyiy1tY4Pw+CwfbfZwRieFIBEREflx\nApoiZq8r5a7Tw6uUXdw7hNlrS5lxZjhDX3buPjzzzHASIw378nyMn1NAsQd8Fs7uEsz1p4QGouki\nIiLSDAQ0CH12Zc31qaafWhGMrh4UVmVb65gg/ndtTKO3S0RERNxB40oichy5E2jjfxwETAC6+J+v\nABb5H48Cym4W+zKQC/iArsBFHAfXgYjICUJBSESOI6HA7f7HG4GPgRuAAuC/wC3+bc8AfYAoYAoQ\nAVjgNWANMLDJWiwiJzb92SQix6kioOxCio1AD5zgE+V/vNG/rWz9Qx+g22mIyNEJaI+Q12c55eV8\n2scG8eFlUVW2bc/2ceXcQrKKLF4fPHpuOOf1COXL7R5u+KiIsGCYfXEkPZKCySqyXPJuAZ9cEUWQ\n0b2mRU5cpcBTgAdnuOtX/vJsoEWlevH+sjIvAzuAXkD/Rm+liDQfAe0RemZZCb2Ta2/CQ0uKuaRP\nKN/9KoY5EyO58aMiAJ78uoT/XB7Fn8dF8NKK0vK6954RrhAkcsIrGxq7E7gGmIMz5HU41wIzcALU\nlkZrnYg0PwELQjtzfHy02cO0wWG1bjdATrHzAzC7yNIu1mlqaDAUlFoKSp3HqRk+dtRyw0UROdF1\nAfL9H/FAVqVt2f6yykKBk4Hvm6BtItJcBCw93PpJEY+fG0FuSe1/7f1hZDhj3ijgL8tLyC+1LJzi\nXGp/z4hwpr5fRGQovH5RJHcsKOKhs8NrfQ0ROZHtx5n3E4Uz5PUxzqRpgE3AeUCx/yMOZ37QBpwr\nx0REjkxAgtCHm0ppFW0Y0i64ylIalc1eV8pVA0L5zfBwvt7hYcr7hay7MZqBbYL5ZpoTipZs89A2\nJggL/OK9AkKDDE+OCad1jOaAi5yYyuYIlZmM03EdBZwLPOsvH+0vywVexRkSs0B3YFhTNVZEmoGA\nBKEvt3v5YKOH/2zOpcjjDIFd8a9C3vh5xVIbr3xXyieXOxOoT+sYQpHHcrDA0iramQdkreWhJcXM\nmRjFrz8u5PFzI0jP8vHsshIeHhVR6/uKyPHu8Xq2/cT/UVksFZfUi4gcvYB0nTxybgQ7b48l/dZY\n5kyM5JyuIVVCEECneMOirU5v0Q8HvBR5oGVUxWTo11aXcl6PEBIjDQWlEGScj4LDL14vIiIiAhxn\nN1Sc+VkRp7QLZnyvUJ4cE8G1/y7i6W9KMMA/JkRi/FeFFZRa/rG6lAVXOD1Gtw8L47y3CggLhreq\nBSoRERGRugQ8CI3sElJ+xdcDZ1cMafVpGcyXV9dciwwgKtRUWafsjM4hrL1Ba5CJiIjI0Ql4EBIR\nt3gHWA/EAHf4ywqAN4BMIAG4AmcSdGVbgA8qPT8AXA70rVQ2F/gf8LD/+VLgG/9rXonzo24rsBYY\n3xAHIyLNhC6vEpEmcgowrVrZpzhXet3l//xZLft1x7nJ4u3A9Tj3C+pZafsOoLDaPt/563fGudTe\nAgtxrjwTEamgICQiTaQbNXt71lOxivwpHP5miGuAk4CyG7H6gI+An1WrZ/3bSnF+zH3r36/6+4uI\n2ykIiUgA5eLcDBGcS+FzD1N/FVVXlv8SZxX6uGr1Tgf+gjPk1gVn2Gz4MbVURJonzRESkeOE8X/U\nJQfYi3OXaXCW2ViDM1xW3RD/B8B/gRE4d51eibN46/no70ARAf0kEJGAisUJOPg/13f152qcCdLB\n/ue7gYPAY8AfcYbBHq22TzbOHKK+wBKcydgRaGFWESmjHiERCaA+wArgHP/nPvXUXQX8tNLz3sDv\nKz2/D7i72j7zgTH+x2V3WzVAyY9rrog0OwpCItJE3gRScVaTfwgnoJyNc/n8/3CGrKb46+7Aufx9\nkv95Bs7q892O4v12+T938H8ehLOOWbz/fUVEFIREpMlcXkf5r2op6+j/KJMIzDjM6z9c7Xl74JJK\nz8/wf4iIVNAcIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEt\n3UdIROQEEG7DSemWEuhmiJxY0g5fRUFIROQEUGyKeeI/SwPdDJETysUntTtsHQ2NiYiIiGspCImI\niIhrKQiJiIiIaykIiYiIiGspCImIiIhrKQiJiIiIaykIiYiIiGspCImIiIhrKQiJiIiIaykIiYiI\niGspCImIiIhrKQiJiIiIaykIiYiIiGspCImIiIhrKQiJiIiIaykIiYiIiGspCImIiIhrhQS6ASIi\nIserSX060KnnSXi9Xlq178gtj/+F6Lh4AD57/x3ee+kZACZefwtnX3QJADOnXEzmgX2ERUQ4z1+Z\nQ3xScmAOQA5LQUhERKQOYRERPDl3IQB/uesWPn7rH0y8/hZyszJ55/mnePy9jzHG8NuLxzH0nDHE\nxLcA4JYnnqd7vwEBbLkcKQ2NiYiIHIGeg4aQsW8vAKuWLmbA8DOJbZFATHwLBgw/k++++CzALZQf\nQz1CIiIih+H1eln79VJGTbwUgIx9e0lu2658e1KbtuUhCeD5e28jKDiIYWN+xsQbbsUY0+RtliOj\nICQiIlKHkqIifjPhXDL27aV9Sg/6Dz/zsPvc8qfnSGrdlsK8PJ6YPo3P573HyAmTmqC18mNoaExE\nRKQOZXOEXvp0OVjLJ2++CkBi6zYc3LO7vN6hvXtIbN0GgKTWbQGIjIlhxPkXsXnNd03fcDliCkIi\nIiKHER4ZxdX3PcgH//grXo+HgSNGsvrLz8nLziIvO4vVX37OwBEj8Xo85GQeAsBTWsrKxQvp1POk\nALde6qOhMRERkSPQrU8/OvfszRcfzWXkhROZeOOt3DXpPAAm3XgbsS0SKCoo4MFrLsPj8eDzeel/\n2hmcO+nyALdc6qMgJCIiUoc3v91S5fm9L71W/njUxZcy6uJLq2yPiIriiX/Nb5K2ScNQEKpHcFAQ\nr7322uErioiIyAlJQageXp+PD0PDAt0MkVqdX1oS6CaIiJzwNFlaREREXEs9QiIiIsD15/yEyOgY\ngoKDCA4O4fF/flJlu7WWvz88g2+XfEpYRCS/fuRpup3cn/27dvL4r6/G+nx4PB7Ou+Jqxk6eSmlJ\nMY/e+EsO7dvDuEuvZNxlVwHw4ozfMnbyFLqd3D8ARynVKQiJiIj43f/au8QlJNW67dsln7Jn21ae\nm/8lm1d/y9/uv4dH3/mIhJateGTOvwkNC6cwP5/bLjiboWePIfX71fQe8hN+/qvp3HfphYy77CrS\nN3yPz+dVCDqOaGhMRETkCPxv0XzOunAixhh6DhxCfk42mfv3ERoWRmhYOACekmKs9QEQHBJKcWEh\nXk8pFgvA7Gce59LpdwbsGKQmBSERERHAGMMD11zKb38+lgVvv1Fje831xdpxyL++2ME9u7ht/Ciu\nO/sUJky7icTWbRgw/Ez279rBPb84n59dcTX/+3Q+3fr0K78DtRwfNDQmIiICPPTWXJJatyX70EHu\nv3oy7bt15+Shw45o3+S27Xn6g0Vk7NvLYzdfzWljz6dFcktue/IFwLnL9IPTLuPu51/l1Uf+wME9\nuxg5YSJDzxnbmIckR0A9QiIiIlSsERaflMyp545jS7U1wmquL7abpGq9O4mt29CpRy9+WLGsSvkn\ns2dx1oUT2bR6JdGxsdz+9Et88Pe/NtKRyNFQEJIGtTA3lz4bN5BWXFxeNjc7m3FpqYxLS2VudnZ5\n+Uc5OVy4dSsTtm7luh07yPR4AtFkERGKCgoozMsrf7z6y89rrBE29JwxfD7vPay1bFq1kqjYOBJa\ntebQ3t0UFxUCkJedxQ8r/0e7rinl++VlZ7Fy8X8ZOWESxUWFmKAgjDGUFBc13QFKnTQ0Jg3qP7k5\nDI6M5KPcHH4d3pIsr5cXDh3knc5dMMCkbemcHRNDdFAQj+zfx7+7dCUhJIQ/7d/Pm1mZ3JzcMtCH\nICIulHXoAI/ffA0AXq+HM86/iEFnnM38Oc7qAmMnT2XwWaP4dskibhoznPCISG7649MA7EzdzD8e\newBjDNZaxl99PZ179S5/7XdfeJqLf3ULQUFBDBwxkk/e/Ae3jT+Hsb+Y0vQHKjUoCEmDyff5+Law\nkH907MSNO3fy6+SWfJmfz2lR0bQIDgbgtKholubnMyY2FgsUWEsLa8nz+egUFhHYAxAR12rTsTNP\nzVtYo3zs5Knlj40xXDvzkRp1Bpx+Fk9/sKjO1/7lPfeXPw4Lj2Dm3+ccY2ulISkISYP5NC+XEdHR\ndAkLo0VwMN8XFbHPU0rb0IpvszYhIezzlBJqDDNbt2ZC+lYijaFzWBgzWrcOYOtFRMSNNEdIGsx/\ncnI4LzYOgJ/GxfJRTk6ddUutZU5WFv/s3IXPU7rTKzyclzMONVVTRUREAPUISQPJ8npZVlDApuJi\nDODzl/+mZSuWFxSU19vr8fCTqCg2FDmTBDuFOYvajouNUxASEZEmpyAkDWJBbi4XxMVzf5uKS0mn\nbt9G65AQvirIJ9vrBeCrgnxua9mSEusjtbiYDI+HRH+dbv5QJCIi0lQUhKRB/Ccnh2uSEquUjY51\nhseuT0rikm3pANyQlOSfOB3MjcnJTN2xnRAM7UJD+GOlO7aKiIg0BQUhaRD/6NSpRtmUhIpgdHF8\nixrbJ7dIYHKLhMZsloiISL00WVpERERcS0FIREREXEtBSERERFxLc4TkqOwpLeWePXs46PVggEta\ntKgyF6jM8oJ8Htm/H4+1JAQH81qnzmwtKeb23RULFu4sLeXXSclMTUzkyQP7+SIvn5MiwnnUP2n6\ng+xssrxepibWfH0REZGGoCAkRyXEGO5s1Yo+ERHk+7xMTE/ntKhouoeHl9fJ8Xp5YN8+/tahI+1C\nQznkX0y1a1g473fpCoDXWkambmFUbCy5Xi/ri4qY27UrM/buYVNxEZ1Cw3g/J5u/degYkOMUERF3\n0NCYHJWWISH0iXDWBIsOCqZbeDj7q60a/1FODqNjYmkXGgpAUkjNvP1NQQGdQsNoHxpKkAGPtVhr\nKfJZQjC8mpHB5S0SCDWm8Q9KRERcS0FIfrRdpSX8UFRE/4iqi6Wml5aQ4/Ny5fZtTEzfyrzs7Br7\n/icnh/PinOU4ooOCOTM6hp9vSyc5JJjY4GDWFBVybmxskxyHiIi4l4bG5EfJ9/m4Zdcu7mnVmhj/\nyvJlvNbyfVERf+/YiWKfj0u3b2NAZCRd/HeOLrGWz/LzuK1ly/J9rklK4pqkJABm7N3Dr5Nb8l5W\nFl8W5NMrPJzrk5Kb7uBERMQ11CMkR63UWm7dtYvz4+IZXUuvTeuQUE6PjiYqKIiEkBBOiYpiQ3FR\n+fYv8vLoEx5Oci1DZuuLirBAl7Aw5ufm8nS79mwvKSW9pKQxD0lERFxKQUiOirWWGXv30C08jKvq\nuJrrnJgYvi0sxGMthT4fawoLSQmrmEz9n9yKYbHq/nLwANOTk/FYixcLQJCBIp+v1voiIiLHQkNj\nclS+LSzkg5wceoaFc1H6VgBuTW7JHk8p4CybkRIezojoaCakbyUImBjfgh7+q8oKfD6+ys/nD63b\n1Hjthbm5nBwRQasQZ5L1SeERXLh1Kz3Dwzmp2jwkERGRhqAgJEdlSFQU63uddNh61yQmcU1iUo3y\nqKAgvu7Rs9Z9zo2NrTJB+s5WrX58Q0VERI6AhsZERETEtdQjJCJyAggJDeO3540IdDNEmh0FIRGR\nE4CntISpaVMD3QyRY/Jat9dIS01tujc8gpvyamhMREREXEtBSERERFxLQUhERJq9h3m4yvPv+I6P\n+AgADx7e5V2e4Rle5mUyyQQglVT+yl95gRf4K38ljbQmb7crBAfDwIHQty9ccAFkZVVsmzULevRw\nPmbNqrnv+PHOfsdAQUhERFztW74lgghu4RaGMYyFLAQgiigu5VJu5EYmMIH3eT/ALW2mIiNh1SpY\ntw4SE+H5553yjAy4/35YtgyWL3ceZ2ZW7Pevf0FMzDG/vYKQiIi42kY2MpCBAPShD2mkYbG0pS1x\nOHfBb0UrSinFgyeALXWB006DXbucx/Pnw+jRTjhKSHAef/KJsy0vD556Cn73u2N+S101JiIizZ4H\nDy/yYvnzQgrpRS8AcsgpDzzBBBNBBAUUEE10ef31rKctbQnRr83G4/XCokVwzTXO8127oGPHiu0d\nOlSEpBkz4De/gaioY35bfUXrEQacX6rFPkVETnQhhHADN5Q//47v2M3uI9p3P/tZyEKmMKWxmudu\nhYXOHKFdu6B3b6fnpz6rVkFqKjz9NKSnH/PbKwjVowRIfVCT4+T4lDKjW6CbINIsxBFHDjnEE48X\nL0UUEYXT05BNNnOYw0VcRCK1LzQtx6hsjlBBAYwd68wRmj4d2reHxYsr6u3cCSNHwtdfw4oV0KUL\neDywf79TXrnuUTiqIBRkDCmvJ/+oNxIRETke9aIXq1hFRzqynvV0pSsGQyGFvMVbnMu5dKJToJvZ\n/EVFwbPPwoQJcOONTii6996KCdILFsAjjzhzhm7w9+6lp8P55//oEARHGYR81vKgi1YBn1FUFOgm\niIhIIxvEIN7nfZ7hGSKJZCITAVjOcjLI4HP/P4ApTCGGY79SSeowaBD07w+zZ8OUKc5coKFDnW0z\nZzohqIFpaExERJq9+7ivyvNB/n8AoYRyCZfU2Ocs/z9pZHl5VZ//+98Vj6++2vmoS5cuzmX3x0CX\nz4uIiIhrKQiJiIiIaykIiYiIiGtpjpCIiDQb2WTzPu+TRx4GwxCGMIxhVepYLB/zMZvZTCihTGAC\n7WjHVrbyCZ+U1zvIQSYykd705p/8k33soyc9OZdzAficz2lFK3rTu0mP8URWUFAAvXo5N0+cNg3u\nvrtqhZdeci6fDw52ls/429+gTx/473+duiUlEBYGTzwB55wDxcVw4YXOpfU33uh8AFx3HVx//RG1\nST1CIiLSbAQRxBjGcDM3M41pLGc5+9lfpc5mNpNBBtOZzgVcUL74ale6coP/35VcSSihpJDCXvYS\nQgg3ciO72U0RReSSyy52KQQdBR8+Dh48CB9/DOvXO1eGrV9ftdJll8Hatc59he68E26/3SlPTnYm\nUa9d6yy+OsV/c8v582HECFizBl5/3SlbvdoJWoMHH1G7FIRERKTZiCWWdrQDIJxwWtKSXHKr1NnI\nRgYwAIOhIx3Lg01l61lPD3oQRhjBBOPBgw8fXrwYDJ/xGSMZ2VSH1SzsYhehoaHQrZvTqzN5Msyb\nV7VSXFzF4/x8MMZ5PGgQtHO+rpx8snM36uJiCA11bsRYWgrWOttnzIAHHzzidikIiYhIs5RJJnvY\nQ3vaVymvvLYYVNxZurJ1rKMvfQFoSUuiiOKv/JVe9CKDDCy2PHDJkckhh5CQSjNyKq8dVtnzz0NK\nitMj9OyzNbf/859Ob094uLMcR3o6DBvm3I36gw+cbe2O/GujOUIiItLsFFPMO7zDOMYRwdHdCDiX\nXPazn+50Ly/7KT8tf/wWb3E+57OEJexlLymkMIQhDdZ217vpJufjrbfgoYecobAy338Pd93l3GUa\nICTEqQdOr9DYsU4v0+23w/btAPGHezv1CImISLPixcs7vEM/+tGHPjW2V+8Bqt5D9D3fcxInEUxw\njX03sIG2tKWEEjLI4BIuYT3rKUELdB9OHHF4PJ6Kgp07nfXE6jJ5MsydW7X+RRfBa685PUbVvfAC\nTJ0K33wD8fHw9tsAbQ7XLgUhERFpNiyWecwjmWSGM7zWOr3oxWpWY7HsYAfhhBNLbPn2taylH/1q\n7OfFyzd8w+mcjgcPBmf+StncIalfO9pRWloKW7c6V3/NmQPjx1ettHlzxeOPPoIePZzHWVnws5/B\no4/C6afXfPHMTPjwQycIFRRAUFDZ/KLD5hwNjYmISLOxne2sYQ2taMWLvAjAKEaRTTYAQxlKD3qw\nmc08y7OEEsqFXFi+fyaZ5JBDZzrXeO3lLGcAAwgjjNa0ppRSXuAFetCDSCKb5gBPYMEEk5yczN6x\nY52ruq6+2pn4PHMmnHKKE4qeew4WLnQmQSckVAyLPfccbNkCDzzgfIAzPNaqlfP4gQfgvvucAFS2\ngn2/fgCHDtcuY8tmWR+B8PBw+2r37oev2EzMKCoi9cG0QDdDpFYpM7qRlnZDoJshTaRbtxeZmjY1\n0M0QOSavdXuNtNTUpntDY1Zaa0+pr4qGxkRERMS1FIRERETEtRSERERExLU0WVrkBOWzwXTr9mKg\nmyFNJMgXzGvdXgt0M0SOiQ0Lo1ttl743kiOZ5asgJHKCCjJeomZGBboZIvIjFTxQQGpTThx2IVO2\nREc9NDQmIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIi\nIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIi\nrqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKu\npSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6l\nICQiIiKupSAkIiIirqUgJCIiIq6lICQiIiKupSAkIiIirqUgJCIiIq6lICQNau4KMJfDht0VZbOW\nQI/bnY9ZS5yy3EIYeE/FR/Kv4NbXA9NmERFxr5BAN0Cal9lfwYhezuf7J0JGHtz/L1jxEBgDQ+6D\n8UMgIRpWPVKx35D74OenBK7dIiLiTuoRkgaTVwRLN8Er18Kcb5yy+WtgdD9IjHHCz+h+8Mnqqvtt\n2gP7c+CMk5q+zSIi4m4KQtJg5q2Ecf2hZ1tIioGVW2FXJnRMrKjTIdEpq2zO1/CLYU6PkYiISFNS\nEJIGM/srmHya83jyMOf5kZjzNVw6vPHaJSIiUhfNEZIGkZEHn66HtTucnh2vz/n82GRY/ENFvZ0Z\nMLJ3xfPV28DjgyFdm77NIiIiCkLSIN5bDlNGwF+vqSg760FonwAL1kJmvlO2YC088ouKOrO/hktP\na9q2ioiIlFEQkgYx+yu464KqZRcPdYLOjAkwdIZTNvMiZ+J0mXe+gf/c2WTNFBERqUJBSBrEZ7+r\nWTZ9XMXjq0fWvl/anxujNSIiIkdGk6VFRETEtRSEREQCJGdlDuuuWkfx7uLysvQ/pbP+hvVse3pb\nlbolB0pIfSCVTXduYvsL2/F5fE3dXHGBuXPnYoxhw4YN5WXjxo2jRYsWnH/++VXqPvfcc3Tv3h1j\nDAcPHmzqpjYYBSE5as98An3vgpPvhD9/XHudxeudpTNOvtOZNF3m6Y+dsr53waXPQVGJU37589D/\nbrj37Yq6D73vLNkh0lxlLcsiqmcUWcuyysuSz0umw3UdatTd+85eksYk0fPxngRHBZO5JLNGHZFj\nNXv2bEaMGMHs2bPLy37729/y+us110A6/fTTWbhwIZ07d27KJjY4BSE5Kut2wMufwfIHYPUj8OF3\nsGVv1TpZ+XDjq/DBb+D7x+Hd6U75rgx4dr6z3Ma6x5xL7Od8DWu2Q2QYrHkU/pcG2QWwJxOWpcIE\nLbshzZS3yEvBpgLaX92e7GXZ5eUxfWIIiqj6o9laS/4P+cQPjQcgYUQCud/mNml7pfnLy8tj6dKl\nvPLKK8yZM6e8fNSoUcTGxtaoP2jQILp06dKELWwcCkJyVH7YDaemQFQ4hATDWb3hX/+rWuetr+Dn\nQ6FTsvO8VXzFNo8XCkuczwXF0C4BQoOdMp8PSr0QHAQz34P7L2664xJparnf5hLTL4bwNuEExwRT\nmF5YZ11vnpfgqGBMsHP79ZCEEEozS5uqqeIS8+bNY9y4cfTs2ZOkpCRWrlwZ6CY1CQUhOSp9O8AX\nG+FQrhNk/rMKdmRUrbNpr3PfoJEPOYupvvaFU94+Ee74GXSaDm1vgvgoGNMfereHlnEw+D64YJDT\nw+SzMFg3WZRmLHtZNi1ObQFAi1NbkPVNVkDbIzJ79mwmT54MwOTJk6sMjzVnunxejkrv9s79gsY8\nCtHhMLCz04NTmcfrrDO26F4oLIXTfg/DujthZ95K2PpnaBEFk56FN5bCFSPgz1Mq9r/gT86NGR+e\nC6u3w+i+cO05TXmUIo3Lk+ch74c8inYWAc7Ql8HQ5hdtMLUsuhccE4y3wIv1WkywwZPpITQhtKmb\nLc1YRkYGn376KWvXrsUYg9frxRjDE088Uev3ZHOiHiE5ateMhJUPw5KZzoryPdtU3d4hEcb2h+gI\nSI6FM09yAs3CddC1pROIQkOc4bOvNlfdd94KZ7mNvCJI3Q/vTHfuWl1QjEizkbMihxbDW9DryV70\nerIXJz11EqEtQynYVFBrfWMM0SdFk/0/Zy5R5tJMYgfVnLMh8mO99957TJkyhW3btpGens6OHTvo\n2rUrX3zxRaCb1ugUhOSo7ffP69x+0JkfdFm1BVMvHAJLN1XMA1qWCr3bQack+GaLU2YtLPreKS9T\n6oE/fwJ3nu/MGSr7G8TrgxJPkxyaSJPI/iabuMFxVcriT4kn+5ts0v6Yxo4XdpC3Po8Nt20gd60z\nKbrNJW04NP8Qm+7chDfPS8KZCYFoujRTs2fP5qKLLqpSdvHFFzN79mzOOOMMJk2axKJFi+jQoQPz\n588H4Nlnn6VDhw7s3LmT/v37M23atEA0/ZhpaEyO2sXPOHOEQkPg+augRTS8tNDZdv25zvDZuP7O\n5fBBQTBtJPTt6Gyf+BNnLlBIMAzqDNdVGvJ6/r9w5RnOROz+naCgBPrdBecNdN5DpLnoenfNCXBJ\no5Pq3SesVRgpv09prCaJy3322Wc1yqZPn17vPtOnTz9snROBsdYeceXw8HD7avfujdic48uMoiJS\nH0wLdDNEapUyoxtRM6MC3QwR+ZEKHiggNTU10M1o1owxK6219d6IRUNjIiIi4loKQiIiIuJaCkIi\nIg1s5ys7+eHXP7D5vorLIrOXZ7P53s2s++U6CrfWffPEg/MPsvnezWy+bzM7XtyBr8RZUyxvfR5b\nfr+FLTO2kPZwGsX7nEspD/33EJvv20z6U+nl64/lb8pnz1t7GvEI5UTn9XoZNGhQjfXDAF566SX6\n9evHwIEDGTFiBOvXrwcgPT2dyMhIBg4cyMCBA7n++usBKC4uZty4cfTt25cXXnih/HWuu+46vv32\n26Y5oGOgICQi0sASRiTQ5TddqpSFdwin0687EdWz7nldpZmlHPrvIVL+kEKPh3tgfbZ8+Y3ds3bT\n4Vcd6P5gd+KHxXPggwMAZH2dRfcHuxPVPYq8tXlYaznwwQFajm/ZaMcnJ75nnnmG3r1717rtsssu\nY+3ataxatYo777yT22+/vXxbSkoKq1atYtWqVbz00ksAzJ8/nxEjRrBmzZryNclWr16N1+tl8ODB\njX8wx0hBSESkgUX3iiY4OrhKWUS7CMLbhh92X+uz+Ep8WK/FllhCEvwX9xrwFTo9Pr5CX0U5YL3O\nPibYkPVVFjH9YgiJ0UXBUrudO3fy0Ucf1Xm5e1xcxa0d8vPzD3tDxdDQUAoKCigtLaXsAqwZM2bw\n4IMP1rvf8UJBSETkOBGaEEryuGQ2/WYTG27dQFBkELF9nRsntv9le7Y9tY0Nt20g66ssWv7M6fFJ\nHJVI2oNplB4qJapHFFlLs0gaVf+l+OJut956K48//jhBQXVHgOeff56UlBTuvPNOnn322fLyrVu3\nMmjQIM4666zymy2OHj2a9PR0hg0bxvTp0/nggw8YPHgw7dq1q+vljyv6k0FE5DjhzfeS+10uPZ/o\nSXBUMNuf307WV1m0GN6CQwsO0fn2zkSlRHHgPwfYO3sv7a9uT8LpCSSc7txccf+8/SSdm0Tu2lyy\nvswiNDGUNpPbYIKa9xIJcuQ+/PBDWrVqxZAhQ1i8eHGd9W666SZuuukm3nrrLR566CFmzZpF27Zt\n2b59e/mCrBMmTOD7778nLi6Ot956C4DS0lLGjh3LvHnzuP3229m+fTtTp05l/PjxTXSER089QiIi\nx4m87/MITQ4lJC4EE2KIOyWOgi0FeHI8FG4vJCrFmV8Uf2o8BVuqLsdRmllKYVohcUPiOPjJQTre\n2JHgqGDy1+cH4lDkOPXll1/ywQcf0KVLFyZPnsynn37KFVdcUWf9yZMnM3fuXADCw8NJSnJ6G4cM\nGUJKSgqbNm2qUv+FF15g6tSpfPPNN8THx/P222/z5JNPNtrxNAQFIRGR40RoUiiFqYX4in1Ya8lf\nn09423CCo4PxFfoo3utcKZa3Lq/GfKN9/9pHq4taAWBL/DfKNZRfdSYC8Mgjj7Bz507S09OZM2cO\n55xzDm+88UaVOps3V1zt+NFHH9GjRw8ADhw4gNfrBSAtLY3NmzfTrVu38rqZmZl8+OGHTJ06lYKC\nAoKCgjDGUFhY91WSxwMNjYmINLAdL+4gf0M+njwPG27bQKsJrQiJCWH3G7vx5npJfzqdyE6RdLmj\nC6WZpex6dRddbu9CVEoUcUPj2PL7LZhgQ0SnCBJGJmCCDe1/2Z7tz23HGENQVBAdrulQ/n6F25xf\nNJFdIgGIHxbPlt9tITQxlOTzkgNyDuTEMnPmTE455RTGjx/Pc889x8KFCwkNDSUhIYFZs2YBsGTJ\nEmbOnEloaChBQUG89NJLJCYmlr/GAw88wH333UdQUBBjx47l+eefp1+/fuWX2R+vtMRGPbTEhhzP\ntMSGyIlNS2w0Pi2xISIiIlIPBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIRER\nEXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxreNi0dUVOTk8vXMnT6Sk0C7cWVF5SVYWcw8e\nBGBCcjJntmhBsc/Hszt3sq+khCBjGBwTw+TWrQPZdBERETmBHRdB6KucHHpFRvJVdjYTW7Uiz+vl\nXwcO8FC3bhjgvrQ0hsTGEmIM5yUlcXJ0NB5r+WN6OqtycxkYGxvoQxAREZETUMCHxop8PjYVFHBt\nu3Z8k5MDwJq8PPpFRxMTHEx0cDD9oqNZnZdHeFAQJ0dHAxBiDF0iI8nweALZfBERETmBBTwIrczN\npX9MDG3Dw4kJDmZrYSGZpaUkhoaW10kMDSWztLTKfvleL9/m5tLXH4xEREREjlbAg9BX2dmcFhcH\nwLC4OL7Kzj7sPl5reW7nTsYmJtIqLKyxmygiIiLNVEDnCOV5vazPz2dHcTEG8FmLASa3bs0P+fnl\n9TJKS+ldqefnlT17aBMezk+Tkpq+0SIiItJsBDQILc/JYUR8PNe0a1de9mB6OgkhIazNzyff6wVg\nbX4+v/BfHfbO/v0UeL1Ma9s2IG0WERGR5iOgQeir7GwuSE6uUjY0Npavc3KYkJzMjLQ0AC5q2ZKY\n4GAOlZYy7+BB2oWFcZ9/25jERM5OSGjytouIiMiJL6BB6HddutQoG1dpuGtktYCTFBrKm336NHaz\nRERExCUCPllaREREJFAUhERERMS1FIRERETEtZp0jtAtmzcTERREEBBsDA9161Zl+/r8fJ7asYOW\n/pspDo2L4+ctW3KotJQXd+0i2+PBGMM5LVqUzyWavW8fq/Py6BwRwQ3t2wOwNCuLXK9Xl9eLiIhI\nvZp8svTvOncmNqTut+0VFcVvO3WqUhYEXN66NV0jIyn0evnd1q30jYkhMSSE9KIiHk1J4eXdu9le\nVESbsDCWZGVxZ+fOjXwkIiIicqI7IYbGEkJD6RoZCUBkcDDtwsLILC3F4Nxl2lpLsc9HiDF8dOgQ\nYxITCTEmsI0WERGR416T9ggZ4NHt2wEYlZDAObXc/2dLYSH3pKbSIiSEy1u3pkNERJXtB0pK2FZU\nREpkJJHBwQyIieHetDROjo4mMiiILYWFXNSyZVMcjoiIiJzgmjQIzezShcTQULI9Hh7dto22YWFV\nls7oEhHBMz16EBEUxKrcXJ7auZOnuncv317k8/HnnTuZ0qYNUcHBAFyQnFx+U8aXd+9mYsuWfJaZ\nydr8fDqGhysUiYiISJ2adGisbEX5+JAQTomNJa2wsMr2qOBgIoKcJg2MjcVrLbkeDwAea/nzjh2c\nHh/PUP8irZWlFxZigbbh4SzLyWF6hw7sLylhb3Fx4x6UiIiInLCaLAgV+XwU+tcOK/L5WJufX2PY\nK8vjwVoLQGphIdZaYoKDsdby8u7dtA8P57w6rgR798ABJrVsiddafP4yYwzF/tcTERERqa7JhsZy\nPB6e3rEDAC8wPC6OATExLMzIAODcxESW5+SwMDOTYCA0KIibO3TAGMPGggKWZmfTMTyce1JTAfhF\nq1YMjI0FYEVODt0iIkjw9zh1Dg/nrtRUOoWH07la2BIREREp02RBqFVYGI+kpNQoPzcxsfzxmMRE\nxlR6XqZXVFS9a4ydEhfHKZWGyy5v04bLj7G9IiIi0vydEJfPi4iIiDQGBSERERFxLQUhERERcS0F\nIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUh\nERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxrZBAN+B4Fh7iI2VGt0A3Q6R2\nIVDwQEGgWyEiP1JYeBgpKSmBbobrKQjVo9gTRGpqWqCbISLSYFJSupGWlhroZrhGt24ppKbp90ig\nmCOoo6ExERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIRER\nEXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERER\ncS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFx\nLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEt\nBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0F\nIREREXEtBSGRJjJ3LhgDGzZUlM2aBT16OB+zZtXcZ/x46Nu3yZooEkBzAQNU+g/CLKCH/6Pyf5CR\nQC9goP9jfxO0r3may5Gf9RLgOqAncBLwz6ZpYqNTEBJpIrNnw4gRzmeAjAy4/35YtgyWL3ceZ2ZW\n1P/XvyAmJjBtFWl6s4ER/s8AGcD9wDJguf9xpf8gvAms8n+0aqpGNjtHc9YfxjnTm4D1wFlN2tLG\noyAk0gTy8mDpUnjlFZgzxymbPx9Gj4bEREhIcB5/8klF/aeegt/9LnBtFmk6ecBS4BXA/x+E+cBo\nIBFI8D/+JCCta66O9qz/HbjH/zgISG6yljYuBSGRJjBvHowbBz17QlISrFwJu3ZBx44VdTp0cMoA\nZsyA3/wGoqIC016RpjUPGIcz6JIErAR2AZX+g9DBX1bmlzjDYg8Ctkla2dwczVnP8j+fAQwGJgH7\nmqqhjUxBSKQJzJ4Nkyc7jydPrhgeq82qVZCaChdd1CRNEzkOzAb8/0GYTMVATV3eBNYCX/g/Xm+8\npjVjR3PWPcBOYDjwLXAacEejtq7phAS6ASLNXUYGfPoprF3rTJb2ep3Pjz0GixdX1Nu5E0aOhK+/\nhhUroEsX8Hhg/36nvHJdkeYjA/gUJ9gYwOv//BiwuFK9nTiTpAHa+z/HApfhzGaZ2vhNbUaO9qwn\nAVHAz/3lk3CG1JoD9QiJNLL33oMpU2DbNkhPhx07oGtXaN8eFixwJkhnZjqPx46FG26A3budukuX\nOsNpCkHSfL0HTAG2AenADqArTthZgDNVN9P/eCxO38RB/76lwIeALq08Wkd71g1wARUhaRHQpykb\n3IjUIyTSyGbPhrvuqlp28cVO+YwZMHSoUzZzpjNxWsRdZgPV/oNwsb98BuD/D8JMnCm8+Ti/mktx\n+jHOBa5tkpY2J0d71sHpLZoC3Aq0BF5t9FY2DWPtkU8yCw8Pt692796IzTm+zCgqIjU1LdDNEBFp\nMCkp3UhLSw10M1yjW7cUUtP0eyRQDKy01p5SXx0NjYmIiIhrKQiJiIiIaykIiRyDq6+GVq2qLoMx\nYwb07w8DB8KYMc7E57rk5Dj3D7r55oqykhK47jpnkvRJJ8E//fex/8tfnPc57zynDjiTqW+7rcEP\nS6SReYFBwPm1bCsGfgF0B07FmcoLcAg4G4gBbq5WfxzOhOkXKpVfh3Oht5Sp76wvwbk/UAjOROrK\ntgNjgN44E6TT/eWXA/2BeyvVfQhn2Y4TiYKQyDG46qqKu0GX+e1vYc0a535A558PDzxQ9/4zZsCZ\nZ1Yte/hhJ1xt2gTr18NZ/vvYv/mm87rDhzt3pbYWHnzQeQ2RE8szOL9Wa/MKzj2NtwC3UTGlNwLn\n5ol/qlZ/Ps4iEWuouJ/Qapxf+4MbrsnNQH1nvRPwD5ybEVQ3Ffgt8APOjQpa4ZztSP/n/wHZwB6c\npTkmNGCbm4KCkMgxOPPMmld6xcVVPM7Pd+4ZVJuVK2HfPqfXqLK//x3u8d/HPigIkv33sbcWSkuh\noABCQ+GNN+CnP9WVZnKi2Ql8BEyrY/s84Er/44k4F2pbIBon8ERUqx8KFOBcRVZ28c8MnNAkZQ53\n1rvg9O5UDwXrcW5YMNr/PAbnfkKhQCHgwznzwThXmN3fkI1uIgpCIo3gvvuc5TPefLP2HiGfz1lC\n40/V/rjNynI+z5gBgwfDpElOWAJn+GzYMNi+HU4/HV59FW66qVEPQ6QR3Ao8Tt2/fiov8hACxOMM\ni9VlNM5gzTBgOvABTk9Qu2NvajNyK/Wf9bpsAlrg3EhxEE7PkBenZ6klzpm+AKf/zseJ2QenICTS\nCB5+2Llx4uWXw3PP1dz+wgvOXJ8OHaqWezzOHaaHD4dvv4XTToM7/PexnzIFvvvO6Ql6+mmYPh0+\n/hgmTnTmCfl8jX9cIsfmQ5yBlSEN+JohwFvAdzj3O/4z8BvgdpwepQ8a8L1OTMdy1j04i5j8CWcI\nLA1nCA2cM70K52yX9cE9DFwCvHwM7W1qCkIijejyyysmO1f29ddOQOrSxQk6r70Gd9/tLMgaFQU/\n99/HftIkJxBVtns3LF8OEybAk0/C229DixawaFEjH4zIMfsSJ5h0wVnd6lPgimp12uPc5xicX8PZ\nOAs8HIkXcGa0fIPTk/Q28OQxtbg5OJKzXpcOOEvbdsOJnBOoOQV9Hk7IygNSgXdwJlwXHFOrm46C\nkEgD27y54vG8ec6VX9W9+aYzxJWe7gyPTZ0Kjz7qzCe64IKKJTUWLYI+1e5jP2NGxXBbYaGzT1CQ\nM3dI5Pj2CM5slXRgDnAO8Ea1OuOBWf7H7/nr1DHRropMnL6PqTi/goP8+xUea6NPeEdy1usyFGfl\n+QP+559SdWmNUpyeoTtxznTZV8oLlPz4JjcpBSGRY3Dppc7w1caNzjDXK684PTt9+zqX0C9YAM88\n49RdsQKm1TVTsZLHHoM//MHZ//XXnV6fMt9953we7B+Iv+wy6NcPvvwSxo1r0EMTaUIzqRjCugZn\nTlB34Cng0Ur1uuAMef0Dp69ifaVtDwD34fxaG4szoNMPZ1EIqU3ls/4/nDP6LvAr4GR/eTDOsNgo\nnLNpqbqgyfM4U9ujcCZbF/jrDcGZW3Qi0BIb9dASGyLS3GiJjaalJTYCS0tsiIiIiNRDQUhERERc\nS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxL\nQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtB\nSERERFxLQUhERERcK+RoKhtjmFFU1FhtEREREWlSRxWErLV4Jz3b4I0o2PQ1B95/mHbTXiQ0qSMA\neWsXkf31HADiT5tMTL9RAGQueY38dZ/iK8qj0+3vNXhbKgt+d3qjvr6IiIgE1nExNJb/wxLCO/Qh\nf/0SALyFuWR/+RZtpjxFm6lPk/3lW3iL8gCISvkJbaY+FcjmioiISDMR8CDkKymkeOf3JP30FvI3\nOEGoaOu3RHQZRHBkLMERMUR0GURR2koAwtufREhMYiCbLCIiIs1EwINQweZviOg6hNDE9gRHxFK8\ndwue3EMExyWX1wmOTcKTeyiArRQREZHmKPBB6IclRPc+E4Co3mdSsP7zALdIRERE3OKoJks3NG9h\nLkXb1lByIB0wYH2AIWHkVRRtX1tRL/cQEZ36BaqZIiIi0kwFNAgVbPyS6JPPJmnczeVle9+6m+DY\nJArTvyufIF2Y/h0tzroyUM0UERGRZiqgQSj/h8+JP3VilbKonsPJX/85LYb/gr2zbgOgxfDJBEfG\nApD52d/JX/85trSYnc9fScyAMbQYcXmTt11EREROfAENQm0ufaRGWdwp48sfx/QfU2N7wtlXk3D2\n1Y3aLhEREXGHgE+WFhEREQkUBSERERFxLQUhERERca0mnSNUmLaSjEV/A5+PmAFjiB82qcr2vLUL\nyfzs7wTHJgEQO/h8YgeMpWjbGjI+fbm8XumhnbQcfydRPU/jwL+foPTANiJThpLgv7Is66s5hCV3\nJqrnaU13cCIiInLCabIgZH1eMv77Iq1+8RAhsUnsmXUbkd1PJSy5U5V60b3PIHH0DVXKIjr3p90v\n/wI49x7a/bdrieg6iJL9WwkKCafd1c+xb87v8BXn4ystpmT3RloMn9xUhyYiIiInqCYbGivZs4mQ\nFm0JbdEGExxKdO8zKdz8zVG/TsHGL4noNoSg0AhMUAg+TzHW+rA+D5ggsr94g3hdTi8iIiJHoMl6\nhDy5hwiJa1n+PDg2mZI9G2vUK9j4FUU7vic0oR0Jo66tsg84K9XHDZ0AQGhyR4Ij49nzj1uIOfls\nPJl7sNYS3qZ7ox6LiIiINA8BvY9QdZHdf0J077MwIaHkrvqYgx89TZtL/1i+3ZOXQemBdCK7Di4v\nSzz3uvLH+9+7n8SxN5P91duU7N9KRJeBxA4c16THICIiIieOJhsaC4lNwpNzoPy5N/cgwTFJVeoE\nR8ZhQkIB52aKJXu3VNlesOELonqehgmumd8KNn9DWJvu2NIiSrP20HLC3RRs/BJfaVEjHI2IiIg0\nB00WhMLa9sSTuZvSrL1Ybyn5PywhsvupVep48jLKHxduWUZoUscq2/PXLyG691k1Xtt6PeSsmEfc\nqRdjPcWA8W/wgdfT4MciIiIizUOTDY2ZoGASR1/P/ndmgvUR0280YS07k/XFG4S16UFUj1PJXfkB\nhZuXQ1AQQZGxJP/s1vL9Pdn78OYeILxT3xqvnfvtR8T0HUVQaAShLbtiPcXsfuUmIlNOISgipqkO\nUURERE4wxlp7xJXDw8Nt29v+1YjNOb4Evzud1NS0QDdDRKTBpKR0Iy0tNdDNcI1u3VJITdPvkUAx\nsNJae0q9dY4mCBljDgDbjrVhIiIiIk2gs7W2ZX0VjioIiYiIiDQnWmtMREREXEtBSERERFxLQUhE\nRERcS0FIREREXEtBSERERFxLQUhERERcS0FIREREXEtBSERERFxLQUhERERc6/8Bi0vLpw941S4A\nAAAASUVORK5CYII=\n", 452 | "text/plain": [ 453 | "
" 454 | ] 455 | }, 456 | "metadata": {}, 457 | "output_type": "display_data" 458 | } 459 | ], 460 | "source": [ 461 | "# Plot\n", 462 | "plt.figure(figsize=(10, 8))\n", 463 | "tree_map = squarify.plot(sizes = df_plot[wk], color = df_plot['Alley'].map(dict_color)\n", 464 | " , label = df_plot['LABEL']\n", 465 | " , edgecolor=\"#222222\", text_kwargs={'fontsize':10})\n", 466 | "plt.axis('on')\n", 467 | "plt.title('Number of Replenishments per Picking Cell' +'\\n', fontsize=12)\n", 468 | "tree_map.axes.xaxis.set_visible(False)\n", 469 | "tree_map.axes.yaxis.set_visible(False)\n", 470 | "plt.show()" 471 | ] 472 | } 473 | ], 474 | "metadata": { 475 | "kernelspec": { 476 | "display_name": "Python 3", 477 | "language": "python", 478 | "name": "python3" 479 | }, 480 | "language_info": { 481 | "codemirror_mode": { 482 | "name": "ipython", 483 | "version": 3 484 | }, 485 | "file_extension": ".py", 486 | "mimetype": "text/x-python", 487 | "name": "python", 488 | "nbconvert_exporter": "python", 489 | "pygments_lexer": "ipython3", 490 | "version": "3.6.1" 491 | } 492 | }, 493 | "nbformat": 4, 494 | "nbformat_minor": 2 495 | } 496 | -------------------------------------------------------------------------------- /Sankey Chart.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import pandas as pd\n", 12 | "import numpy as np\n", 13 | "import matplotlib.pyplot as plt\n", 14 | "from pySankey.sankey import sankey" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 2, 20 | "metadata": { 21 | "collapsed": true 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "pd.set_option('display.max_colwidth', 0)\n", 26 | "pd.set_option('display.max_columns', None)\n", 27 | "pd.options.display.max_seq_items = 2000" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 3, 33 | "metadata": {}, 34 | "outputs": [ 35 | { 36 | "data": { 37 | "text/html": [ 38 | "" 43 | ], 44 | "text/plain": [ 45 | "" 46 | ] 47 | }, 48 | "metadata": {}, 49 | "output_type": "display_data" 50 | } 51 | ], 52 | "source": [ 53 | "%%html\n", 54 | "" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": 4, 64 | "metadata": { 65 | "collapsed": true 66 | }, 67 | "outputs": [], 68 | "source": [ 69 | "colors = {\n", 70 | " \"INDIA\": \"#f71b1b\",\n", 71 | " \"BRAZIL\": \"#1b7ef7\",\n", 72 | " \"JAPAN\": \"#f3f71b\",\n", 73 | " \"GERMANY\": \"#12e23f\",\n", 74 | " \"USA\": \"#f78c1b\"\n", 75 | "}" 76 | ] 77 | }, 78 | { 79 | "cell_type": "markdown", 80 | "metadata": { 81 | "collapsed": true 82 | }, 83 | "source": [ 84 | "## Import Data" 85 | ] 86 | }, 87 | { 88 | "cell_type": "markdown", 89 | "metadata": {}, 90 | "source": [ 91 | "### Production Quantity by From/To" 92 | ] 93 | }, 94 | { 95 | "cell_type": "code", 96 | "execution_count": 5, 97 | "metadata": {}, 98 | "outputs": [ 99 | { 100 | "name": "stdout", 101 | "output_type": "stream", 102 | "text": [ 103 | "25 lines\n" 104 | ] 105 | } 106 | ], 107 | "source": [ 108 | "# Production Quantity\n", 109 | "df_prod = pd.read_csv('In/Sankey data.csv', index_col = 0, sep = ',')\n", 110 | "print('{:,} lines'.format(len(df_prod)))" 111 | ] 112 | }, 113 | { 114 | "cell_type": "markdown", 115 | "metadata": {}, 116 | "source": [ 117 | "## Process Data Frame\n", 118 | "### Color mapping" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "execution_count": 6, 124 | "metadata": { 125 | "collapsed": true 126 | }, 127 | "outputs": [], 128 | "source": [ 129 | "colors = {\n", 130 | " \"INDIA\": \"#f71b1b\",\n", 131 | " \"BRAZIL\": \"#1b7ef7\",\n", 132 | " \"JAPAN\": \"#f3f71b\",\n", 133 | " \"GERMANY\": \"#12e23f\",\n", 134 | " \"USA\": \"#f78c1b\"\n", 135 | "}" 136 | ] 137 | }, 138 | { 139 | "cell_type": "markdown", 140 | "metadata": {}, 141 | "source": [ 142 | "### Build the plot" 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": 7, 148 | "metadata": {}, 149 | "outputs": [ 150 | { 151 | "data": { 152 | "text/html": [ 153 | "
\n", 154 | "\n", 167 | "\n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | "
indexsourcetargetunits
012JAPANJAPAN1500000.0
115BRAZILUSA1250000.0
218BRAZILBRAZIL145000.0
320INDIAUSA1550000.0
421INDIAGERMANY90000.0
\n", 215 | "
" 216 | ], 217 | "text/plain": [ 218 | " index source target units\n", 219 | "0 12 JAPAN JAPAN 1500000.0\n", 220 | "1 15 BRAZIL USA 1250000.0\n", 221 | "2 18 BRAZIL BRAZIL 145000.0 \n", 222 | "3 20 INDIA USA 1550000.0\n", 223 | "4 21 INDIA GERMANY 90000.0 " 224 | ] 225 | }, 226 | "execution_count": 7, 227 | "metadata": {}, 228 | "output_type": "execute_result" 229 | } 230 | ], 231 | "source": [ 232 | "# Keeping only positive values\n", 233 | "df_plot = df_prod[df_prod['units']>0].reset_index()\n", 234 | "df_plot.head()" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": 8, 240 | "metadata": {}, 241 | "outputs": [ 242 | { 243 | "data": { 244 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAFkCAYAAACekPyRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsT\nAAALEwEAmpwYAABpZUlEQVR4nO3dd3hkZ3k3/u99znT1ttJKI21x7zY2NjbGXgNrGxw6wYSSEPyG\nhEDaS0jIj4DtQBISQsqbUAMJwQETIHTcy7rghg3r3tZbtKNV79L0Offvj3PO6ujsjOrMStr5fq7r\nueb0c2YkjZ77qaKqICIiIiKi6mSs9QMQEREREdHaYUBARERERFTFGBAQEREREVUxBgRERERERFWM\nAQERERERURVjQEBEREREVMUYEBDRPCKyU0R2i4iKyD0icq+I/EJE/kxEgp7jtorIM2W+900issNZ\n/r6IpN31cl//aBKRzc7n+HMReVREYp59bSKyy/m8H3c+86dE5EsiEi3T/a8Rkf0i8vVyXK/I9f9C\nRD5Rget+QUQmROR9ZbreVhG5UUTu8/w8PiYibeW4PhHRRiWch4CI/JxM890AgqqaF5EWAN8EUADw\nBlW1nOMaVXViCdf6uqpuXcJ96wFMq/PFJCL7AbxPVXet4D1cB2Crqr6v1PWPFhH5FIB2Vf2AiPwW\ngO+oasp3jALYqap3iEgtgMcAfE9VP16mZ7gOvs9jhdfZAd/PU0TCsP+fpFdz7RL32+Xc7+urvE4X\ngIcBfFBVf+Js2w7gHgCfU9V/Xt2TLnr/rwPYr6rXVfI+REQrwRoCIlqUqo4CeB+AywC8x7N9osz3\nmapkZr3S119AHMAh5xn+yx8M+KnqDICfArjyKDzbqqlqphLBQJn9NYB73WAAAFR1L4BPr90jERGt\nDwwIiGhJVHUAwK0Afh0AROROp5nLVmf9TSLyoLP9dhG5UEROAvDPADqcZjHfFZHznSZJ+0Xko852\ny1kecEqyvS4UkZtF5EkR+ScRMUXkVPcazr0vFJHnnNJkiMjVsAOYK53rf7zY9UXkShF5wGk+cquI\nnOBs/4DzfN8WkS+LyC+d5kaRUp+PiPymiDzkXOv7ItLubP8kgNcBeJ/zLCct8SMPAsiV+ryca58g\nIrc493xARF7neZ4255kfEZHvAmjz7Pt7b1Mc5z3Oa54ldtOxn4vI3c71f73Ez3On97Nf6LmKvJd7\nROQJETlxkc/iBBH5iYj8SkRuEJGYiLxFRIZFZJ+IvN25/n0i0i8iO30/GwPAWwDcVuTaXwPwJee4\noIh81nnmB0TkH5xtzc7P1q252ub7/etx94vIb4nIHSLyvIhc5Oz/I9jBnfs7cI2IfNL5ffxXEfmW\nc/zkUt8TEVFZqSoTExPTvARgBwAFEPBt/ycAz3jWFXYzFAAYgt0sBgDeBOA6z7X2F7l+FsBrnfXP\nOq9fd89z1vfDbqokACIAHgfwgWLXhR0A7PKsXwe7qYn3voevD2A7gBkAJzrr7wHwnPuenfP7ADTB\nLjx5CsBvlPi8XuW8/zZn/S8B3Fnsvgt85ur5PDqde3+01OcFIOA87/ucbccDmAJwnLP+HQBfdpbr\nAbzg/TwA7HLP9XzWO5zlbc61TnDWXw7g7gV+noc/+yU8l/teLnbWv+A+Z4nPZZeTgs7P4WYAf+Ps\n+78AbvMc+zYAv13kGu3O57tzkZ/BJwDcAcB00q0APuHs2wpAfb/D3t+/rc493uGs/xmAWxf6HXC2\nPQkgBqDB+b1Z0ntiYmJiKmdiDQERLcdC3xljAH5HRBoB/ATAZxa51qyq3gEAqvrRBY77ntrSAL4H\n4J3LeN6F/AaAR1T1BWf9RgBbAFzkOeZhVR1Xu8/EU7AzysX8JoCfquqws/6fAF4tIj3LfKbPicg9\nAL4P4PMA/tGzz/95XQA7qPlvZ9se2G3k3y0iJuwScXffFIBblvEc7wLwqKq+6Jz/C9iZ1aUo+Vye\nY2ZU9X5n+QmU/lxdP1LVnPNz+Bbmfge+CeBSEel01t8O4H+X+JzF/CaAb6hqQVULAL4B4LeXeQ33\nc17K+wKAO1Q1qaqTqvpplP89EREtigEBES3HVgB7SuzbCaALdunw/wDYvMi1Jpd4z3HP8ugSrrtU\ncQBuBh5OBnDc2e6a8iynAYSWci3PcrzIsQv5iKpeqqqvUNW/cZ7J5f+84gDGVTXvu28cdvOgAIAR\nz76xZTyH//1AVX++jHNLPZdrqZ+rq+jvgKoOArgTwHtEpBVA3gl+/IZhf35dS3h2/89xWT9Dz/2X\n8r4A3891Ge+JiKhsGBAQ0ZKIyGYAl6N0aWVeVT8Iu1R0CHZziHJo9iy3Auh3lrMAwp59jcu87kHM\nb1dvwm4elFj+I86/lmd5Jddazj2bRCTgu28CdkY273umFt/5C31+/vcDETm3DM+1UqV+BwC7FP+9\nsGt8vl3sZKdm4Xuwf3/nEZEPi8g1zmqxn6P73FnnePcza1zWO1ieRd8TEVE5MSAgokWJSDPsZjC7\nANxQ4rCfioip9gg6j8Bugw0A07DbSMPpQNm9zNtfLbYo7A7NbgbpAIBWEdnkdBq9wnfeNICYc+4P\nilz3RgDnicjx7n2caz6wzOcD7ODn9U6JLgD8FoC7VLV3Bddaqodh19a8Czg8hOYFAL7p1Cx8H3am\n0h1u9Srf+fsAnO7svxTOz8gx77MRkVdirsnQYj/Pks+1ivf6VqdzrwG76ZE3k/xDAD0AroHd5r+U\njwO4SETe4G4QkXMA/AnsfgOA/XN8j9gd1w3Y/Ur+09k3BCAJ5zOD3VF8OdzfxxoRWeyz+CGW9p6I\niMpjrTsxMDExra8Eu+nPbtgdJO8BcC+ARwF8DPa8BO5xdzrHPAS7KcY/ws5M7wJwH4CznOMCAO4C\n8CCA7wI4zbl+2jm22TnuowAGYHduvQZ2hjYN4FMAbofdhv+fAZieZ/gM7M6y33OOmwDwr86+4wE8\n7dz3o/7rO8dcDuDnznu8FXOdaN/lHDcA4IMAPuA5910lPrf3OJ/Fvc6zux2sP+k595tFzmtzPgeF\n3Wn6j3z7Ty32eTn7joPdyfZe57N/ne+6NwH4BYAfAfiq8xyfdPafDLtD6z0A/tR5vt0AzvV9Nnc7\n14mX+HnuhN1MzPvZF30u33v5MoDzPef+fZHP5gvOvn+E3TZ/N+y+CTHfcV8F8C9L+N3ugd3Z+ufO\nZ3kTnN9TZ38QwN85z/wAgH/A/N/5D8MOdn4Eu9Nw2vkMmp2fvTr7ejzv8xvOuRc67/UR2L9f/9fz\ne1HsvS/pPTExMTGVI3FiMiIi2tBE5O9gdz7/xVo/S7kci++JiNYvNhkiIqINSey5H4IAzjlWMs7H\n4nsiovWPNQRERLQhicgB2CMpXaeeGYg3smPxPRHR+seAgIiIiIioirHJEBERERFRFWNAQERERERU\nxRgQEBERERFVMQYERERERERVjAEBEREREVEVY0BARERERFTFGBAQEREREVUxBgRERERERFWMAQER\nERERURVjQEBEREREVMUYEBARERERVTEGBEREREREVYwBARERERFRFWNAQERERERUxRgQEBERERFV\nMQYERERERHTMEpGdIrJbRFRE7hGRL4vIfhHZJyI1nuPe6By3X0SuF5E2EdnlnPe4s/yYiPybiGzy\nnPdeEXlORDIisqvI/W8XkS8epbe7IqKqa/0MREREdBSk43EBEIBdIGh6kuF7dZf9272v4jnGn8Tz\nKr7t/n3LTfBdhzaOLwOILOP46Ugi0ViOG4vIDgB3Awiqal5ErgPwlwC+qKp/4Dtuh6pe59mmAHaq\n6h0iEgDwVwDeBeACVR10jnkfgE+ratx33zYAzwCwAHSqaqEc76fcAmv9AERERBudJ6MdLJECRZYD\nnuRdD8HONIWcFPQshzzHh3znucums2x61t0gwACgnoQFXv3c7VJiP4rs9x9bat9CxxV7HpZmbkwx\nAMvJENdV6kEc/wDgoyLyP6p6/1JOcIKJjwO4EsDfAnj/Iqe8DcBHAHwFwA4Ad678cSuHAQERER1T\nnMx5qEgK+5aDnld3Wwx2ZjzqSWFP8l/Hm2FX2KWAxTLb3mV/Kbe/9NubYbeWsFxsPQcg49vGTDSt\ntfX2O3gLgBYAXxORs1Q1vZSTVFVF5L8AXC8i/0dVrQUOfy3s2oS3ALgaDAiIiIhs6Xg8ADvjHXZe\n3eWwZ5t3vdZJNbAz6f6Mu3sNN8MOHJlJhvPqZrzd5ibepifWEpKbAc8ASHm2EdHG838BPAXgUwA+\nuozz9gNoANAKYKjYASLSDmBIVbMiciOAz4vI76tqfnWPXH4MCIiIaEFOiXsYcxlv/6u7HAZQDzvj\nXue8xmBn4mNOco8zMT9z7c1Qe0vM3bbmFuymBt5X//IsgGlnmYhoUao6LSLXALhZRL67jFOX0n/l\nbQC+4yz/BMDXALwGwK3Le8rKY0BARHSMSsfjJuZK0GMLLNd7kj8z75bEF2sOAxzZQdTNpLvJ8i1P\nOcssUSeidcHpLPxVAP8Bu8ZgKbYCmAQwssAxbwRwtdMpGQCSAN4BBgRERLQQpzQ+iCNL4oulBsxl\n5N1MvJvcjLybEXcz8sVK390Mex7zM/N5AONYXidAIqKN6KMAngDwcdijEZUkIgLgtwD8oFT/ARHp\nALBHVT/s2XY1gC+KyO+paq5sT14GDAiIiFbBKYX3tnn3t4v3NqmpwfyMew3ml8TXOMe6zWm8TWnc\nzLx3+MZCkZSH3aF0FGw6Q0S0JKo6IyLvB3AXFggIPMOONgP4iwUu+XYAP/Ntuxn29/xOADet6oHL\njAEBER3T0vG4gSNHmXFfI0W2h2F/YbspViR5S+9DmJ9595bEA/PHZFcUb0rjpmkAE2BzGiKishGR\nnQA+66zeKSLPAbgCwJtF5JOq+mMAUNVdIvJvnvPaALj9Cj4nIuOwa2QfAvByzxwE7wXwMQBtzsRk\nX4Q9x8FeEbnNM/fAX8MutPmCiPyhe9/1gBOTEdFR4TSFccdH96fQAtu8wzt62797O7J6O7d6R6xx\nx2z3D80IzM+0+5vRuMf6O7EWaxPPUnjaKIoNceqfIKzYccW2l1rHErb5t/u3AUcGxYvNjUAbw8VY\nfB4Lr7JNTEYLY0BAtIE5pd/+2UX9KbDAeqDIqzeZmMuYezPZxcZz947J7t3mzeQDR46LXiyDDhyZ\nSXePKTYMZGGB7fySo6PBP2uv4MjZfIst+1/9QetCk4YVm8xrocy6v7O322fE33fEu83yrOdRvGbL\nP+pTse3+/e77dP9G/TVspb4n/J9Fse20fimAeyOJRHKtH4TmY0CwiHQ8PoHlzZSXBvDhRY+i9cCb\n0Vyo1MzwbSv1z95NZpF9xTLtxc4pdVzAd467T7D8WUf9GW+geCbCTf7Sde9rsYmS/GO1e5eJjoZi\nf3ul/k69GfTVBKsFzE0GlgeQdZaznu0ZZznt2Zd11rOe/fkFUqHIuj8TX2y7FUkk+A+fiIpiH4LF\n1WF5pQ4x2D3PaeNYqGp6qfuWWqLn31/qeDe5/8wzRfbxnzttZN7Attiy9xWYK0n2/u6L73reztYZ\nT0p7UsrzmoI9DKC77Gbes56U8y3nfMs5ADlmtonWPxG5GHbb/gjmCtt+CODfne3vhv0d8qzntA4A\nn1HVr4vInQBeCeAAgH4AjbD/R39IVR8WkSjsjsOvAHCvql5e5Bn+E/bMxQ8CeJ2qpjz7boc9MtEH\nPdu2AfhPAJcC+LCqft6z7/sAXg1gN+y+Dh8F0Angu6r6bueYvwXwewB+oqq/WfKzYQ3BwtLx+HKb\nHJgAbqzQ4xARrQW3/8diCThydCTvNbw1a+4sv2nYmXJ/mgUw46QMjszguyXs3tcMgGwkkeAwqUQ0\nj4hcAeArAK5Q1eecbWcAuAfAb6rqT0Xk6wACqvoez3nvAwBV/bqzvh/Ap1X1q876VwBcrqpbPec8\nC+AkAKep6rOe7a0AngeQUtW47/naADwD+/uz09MR2d2fh/2debqqHvBs36WqOzzvZzeAnap6l7Pt\nRAB/rKq/v9DnwxoCIqJjl7fkvVjfERPF2297m8SYsEvc07Az6VOwM+zTmMuwz8CeoMfN4PtL5P2l\n9FmWqFcPZ0ABoHgfB/8yiiwX64RarFMyrX/WWvQfEBED9sg/f+0GAwCgqk+KyL/Crukr5fZFLv9j\nAL8jIq2q6k5SNgggAeAPAHgz4h8A8L8AXl/kOm8D8BHYQcsOAHf69j8A+/v43wEcUfMAHH4/3wDw\nDyJynjNHwicA/Nki74EBARHROrRYSbz73e1vRuMthTdg/5NLws6wj8HOxE/DzrxPYS5zX6z5jLdZ\nTf5YzcAv0jHfbVKwUJOmhbb5+yoU68+w0AAApVKp/kilnsHfp6JY36dS/aNQ4hh/n6tir6Uy8ysZ\nMeiY/P2rNg+eHXnlx+67yNizNbTUU6ZHu3c1luHWLwOwDcBt/h2qem2pk5wag+tUdf8C1w5grlDE\n6/8BuFFE/kJVJ535C14O4EcoHhC8FnZTorcAuBpHBgQWgGsA7BaRa1T1ayWe5xMAXgDwXhHZA2C/\nqvYv8PyH3wQREa1csYydP1PmZiq9I6oA89vCezNdbml8CvY/Grf5jJuJn/Ts9yZv85tUJJHIV+Yt\nz+eUAPtHqFpKKjWylfvqHanKHbnKOyyte453m+nbXmwkLf/Pajkd893Ay/uzW6yjfqlXd3mxvkXL\nXS71utT35/6OFhY4xr+t1DFEhxVMmKFs8Zl9S1jOoC4LOc557VvCsTuduQQA4GQA15U6UERMAJcB\neH+RmYd/BmAAdib+HwG8GcAPMBcwe6/TDmBIVbMiciOAz4vI76vqvO9wVX1RRP4/2HMi3Kyqh/zX\nUtWEiPwLgE/Dbj70rkXfMRgQENGxb6HRZYotC45sQgPPq7/E1W0Ok4KdSXfbv7uZeTcj727zN6nx\nlsSnAWQWKo33ZL6DRV6DABoAtAAIpuPxAOYyzt7MtLvuzqjsn6TNO6ysd+jYMOYPRevNyBcboadc\nI1wVa9a0nG2KuZF+2DGfqHod/v4RkXMBfA5AK4BbVPVPnV23u30InBqCYj7qTEZ2BoBfAfhz/wGq\naonI5wF8WET+GXap/7tRPIP+NgDfcZZ/AuBrAF4D4NYix/4/AG8F8CUAbyzxfH8L4EMAHlDV6RLH\nzMOAgIiOFn9zlmLNGYpt95biFsuo+/mbNLgjwbht2b0l6W5G3FvaXmzoR3dISe/Y7W7nWbcGoFhJ\ntzfzXQN7qnt/ZvuIuRzS8XixknBvZn6xzLc/410ss+0NfBYaKrbYqxsEeX8eRETr1V7ntQvAPgBQ\n1ccA7BCR/4YdFBxBVd9X4nqfVdWvisjZAB4G8DsA/rXIcf8B4K8AfBzAM04NQLHrvRHA1SLifpcm\nAbwDRQICVVUR+W0AT4jIu0s895SIjAEYLvH8R2BAQLRxlcrklUr+jHKpbd42xkDp5gHuM/hfS7VF\n9k9w5M9wpzE/8+3dv9AMw/7PA5gb8caAnYl2m4oEYQ8T5zYX8e7zNx0p1tQCnm3F7u9/Dm/VsD9T\nvVCG2/vqLdkuNnoPUTVhJ+KNbO2+vX4JYD+AK2F3Ll4yEdkCAN6RfVyqultE/h3AH4rIv6lv6E6n\n78A3YA9purXE9TtgDzX6Yc+2qwF8UUR+r0hTJKjqXhH5cwD/ArsD86oxIKiMc9f6AWhR/na/xZoy\nLOW8UsegxDFLGUljobbG/nbH/teF2guX2u7f7w515p94rFiG1Vui7J7jP99/D5dgrgR8ofdbqjR8\nqU1Fih2XL7GPqFQwXWpfsb/PpexDkeu6y6X+Rv1/q8WWS/Ees5xM9WLfY6W2LfW8xZ6n1N/mQgUV\ntE5ZphSSUTmiDf0CltTcZTGqWhCRDwL4qojcp6pPAYCIdAE4EcBTC5x+mfP69RL7PwvgdwFcBeCn\nJfY/vEDH3rfD7m/gdTPsWuWdAG4qcd4XYDcdenWJ/cvCeQgWscJ5CB6v0ONQ+S32T7VYyXCx4/wZ\n32L/rKwix3qv592+UOZ2sXstFigstI1otYrVEJXatpTtxfoTlAp4vev+YH8pAbdirkZq3iy/KD0L\nsPe4fJFzis0onCuy7m+KtljSJWwrVetULND3fj+tJMhGkdelfPcUW8axOqoVrS0ReRWAT8LuMxWB\nnWf7DuzM9R8DeD/s74NfeE7bAuDzRSYm+7Kq/qNz3f+C3eb/6wAuhF0w/JiqvsZ3/3c5998Ge2Ky\nL8Iu5d8L4FXu3APOUKjvh93k559gjzx0NoC7VPWtnuttAfCkqtb77rML9uRoBwD8rTuHwoKfDQOC\nhXFiMiJax/x9MFayDCxeW6KeY4EjM9PeTLWb2fXO5Jv3rXtn+82j+KzA3nV/prrYerHlYhn6komZ\nUCKqVmwyRER0pIX6WpRaXkrJ+FJLuf3PUuyZ3NJsfwbbnbl33uy9KD7Tr7vPvY7/1Zu595Z2l1q3\nmKkmItp4GBAQ0VKUagu92PpS9y1lv7/ZCBZ4hW+9VPvmUvf2N//wZnoLOLJ021uy7S3VTmN+5rxY\nh2p/BnuhzLc3s87MNxHREojITtht+c8CcC/s1hwdsGf//QCAX4c9EpDblCfg7P8ZgD9xZvz1Xu/j\nAN6tqqf6tu8qcvuTADQB6AFwhfc+qrpDRD4HezhSAfBfqrrorMKVwICgMl621g9AS+bvQ1Aqg7VQ\np76ibWBxZMa11PHFjiu1rdi6v610MQt1+FuobTVQvP2y28zCv75QKtasw83clhp9yJvp9t6z4Fsv\n1UykVBOSUm2/2XSEaA3Fr00L7LbdUV/yz6Hhn3zOnRuD1rcvw/75LtV04vpI42pvqqq3i8gfA7gb\nwGtUNS8irbBn9P2gqv6TM8nYp1V1BwCIyDYAz8KeZ+DrvkteDuAUETlDVZ/03WuHuywizQCeB/AZ\nVR0CcIP/Pqr6ERFpARBYq2AAYEBQKUdldlBatcVKj/3HFQsG3OMX6shYbJ///sWu7W4X37K7z9/R\nsVRGOo+5piFu6bVbcu1uT2KuGYm3pNs7Jn/Od42i7cGZmSYiJ2MfA1APe7bZOme5HvZ8HG2wJ9Br\nAFALe0SVGtiZRX9HZ/93H1B8hCZ+96x/McyNRLcU5Zqp+AiqOiIiLwI4vsT+fSLyFIDz4AkIRORk\nAI/Bnj/mHQC8AcFHfJf5OwBjsCcKW9cYEFTGE2v9AFQ1FmrT7paalWrfvpIOpsU6l3qvj3Q87g86\nis3Mm/SkWRwZoBRr9+5NOQYeRGsjfm06ALsJRLMnbQLQDbuZxSbYmX234ML9W3UnGnTn1/CPwjSO\n5WUWaeNZN9/bInISgFNhZ9pLCQBI+La9A8C3YI/g8/sAPuHucCY7c69/EYBrAOxU1UyZHrtiGBAQ\nbWyK9fcP1DvbcBB2KUoT5s86bPjWgfnDIQJH1qx4gxdNx+Nu51hvgDHrvM44adZ59QYj/hmL3dcM\ngwyiw6X79QDaPWmbk7pgT+7nLcF3Z8/2BvMDWEeZPyKPO0UkAOBMAF8B8INiBzmzEO+BPSSp11mq\n+lcikgDwjyJytqru9p0bAPAlADeq6p1lfv6KYEBAROXmzShUijc4CMDOoLRgLsAwPcmdJblUE4TD\nNSTpeNwbXMx40jSAKQCTzr6Uk5LFXiOJxHoL0oiOEL82HYGdwe+C3eHxRNhjrnfCrl3MY+7vyVvb\n17cWz0tUJm4fghjsYOCrsEvyAaDN6RjcBDsAfp+qTrknisipcFqBqOqAiNwN4GoAu333+CPYNWY7\nK/g+yooBARFtRG7NiDskZrm4QUQUdrtms0gS577eJlXeZlNGOh53+2W4wYQ3oBh31mdhBxFurcas\nZ5m1FVQ28WvTtZjL+G8FcAqA7QBaYf8uu7+7boZ/DOuv5pGorFQ1KSJfAvC/IvKHzuZhZ+QfA8A3\nAXxeRH6qqlln/68DuEpELnPWN8P+m/oL97oi0g3gOgB/pqqDR+GtlAUDAiKiOW6QsVpuqaobWHTD\n/r41nVe3bbW3iZQ3qNB0PO42eZr0pAkAI5hrDjVbZJnBRJVymvq0ws6gbIPdJOIUZ5tb2i+Yq81i\nST9VOzcgNr0bVdUSkT+FPYPw1QBucHadoarnu8eJSAeAQyJynqo+6mz+FwDPwB5RyT2uxbnu6FIf\nTEQuBtCrqr3LflcrwICAiKj83Mz+Smsv3H9QQdidNOOYG2bRba/tDSjEc47lBBNujcQEgFHYpb4T\nmN+/whtQJCOJRKWbelGZOJn/Ltgl/cfDzvyfDHuUngLs3xNm/IlKcGoB3gHgMVWdEpk/wKCq9onI\nN2A3/7lBRE4H8JLvmAERedi5zqMichWANwI4zzd3wRuc168v4xFfC2AXAAYERERVyp2FeCVDGLsj\nTLlDPm7D3FjtBubmbvAe7zZ1SmJ+8yY3jTnb/E2b3OUUgCxrJionfm26AXbG/yTYwyCeBrudP2D/\nDJOwf0Zja/KAleEGuW6tmndEtFKvtL6tyc/IMzEZYHcqVtjfkX0ArhaR9wL4GOb6ELxVVcdgj0D0\nnIj0wx4q9wUR+Y47mpCIXAO7/80HRGQGwLtgN7v7ki/AaAPwKf99nOZJnwSww76cfM9zzqmwA4Kj\nQlT5/b2QdDzuthVeKhPAjRV6HCKiSnIzX/7k9p3w10oAc82jCpgLEPz9Jiac11Idsd1lBhU4PKzn\nNgAnADgbwDmwh/IswP6s3ZqdjTDnjRugBjF/crEA5v8+HdEXB/b7dX8/3DlR3NesZ9kdtjgPjmy0\n3n0G9shzS1WWiclocQwIFsGAgIhoSbylud7+Et5X9/vUP9qTmwEE5ne09o7y5G0G5R0udqFhZDdE\nx9j4tekw7NL/UwFcBOAMzB/dZxr2e1pv3GGFQ04KYG6WcG+77GnYnenHnDQCYBj2z9P9Waf8KXF9\npJwDBhDRAthkiIiIymE1zZxcbnAQgD1DaSPmj/DkNntyS5T9pcuAZ54LZ7QndyhZtzbCbeLkHVbW\nnRyv1ER4bjo8zv5q+lvEr01HYTf9OQ12AHCK59mTsPt8rIdgJgi7T0IEdobfDejczP4kgCHYcw70\nATiEuUz/OJwMf+L6CEseidY5BgRERLReeIeTLQfvBHj1mD9Bnn/OCje48E+O550Yzz+0rBtwuDUU\n3snyDpd0Z4xQ5unW05qeajm9Y2/j9pNfH2nuzBnBQtYMiSVGsiDmdM4IFjKBsJU1QlbODIayRkgz\nZtjKmiEra4asnBHUvBFQFbcipWzc/iZRzJXwu9unYWf098MebWUAwCDsEv6JxPWRjdBkiYiWgE2G\nFsEmQ0REVIRbSn7EzNsKGCkzEpsJ1dZPh+qaUoFovSgEUBHVggErDwgUUECgMv+iAABVCCCAQpxl\nBdQyTM1LwMobppU3glbBMK28BKycEbAKzr6cGbRyRtDKG0ErZwQKOSOkWTOEtBkJpgMRM2uGkDcC\n+YwZFgDZUCE7UJebPticGkvUZ6dGO5KDY8eN7xnZnByYhR0guc2ACp5ld90qsu5tGlYs+feBfUeI\n1hYDgkUwICAiosVkjFBgNNrSNBZpbpkIN7bljUAIAAy1LFML2bL8s1WF2AGCGLDEDhT0iFeFmGqI\nCYVhwAIUEtBCIZJPpyL5VDqaT6XChUwuXMhmA5rPy/xJ9lDkdd5TOK+lRouRIvv9y8X2eZuBAUfO\nLO5/Pm+TrWLPTuvRcbgSl8JEw5LPmI58JNFYuQciF5sMERERLZMCmA7VxUYjLc3D0baOZDDWAAAC\nVdMq5EKFbKrsNxWBneWHWjAVgBQM0yyIaTp7VSESLmSStbmZyfrM1ERNbna2Ljs9G7ayG6F5z0JB\nRLHlUufSepVBABksp/9NXcWeheZhQEBERLQEBTGMsUhz/Ui0tXUs0tyRM4JhADC1kK9IAOBjiWEW\nDDOoEAGgAkU0n5quy05P1GWnp2pzM7O12ZlkQAsbdYI5LbFMxwqGbesWAwIiIqISMkYoMBJrbRmO\ntrVPhhtancw4AlY+W8kgQEWMgpgBSwzTLfkPFbLpxtREf0NmcrwuOz1Tn52aNcB2v0S0egwIiIiI\nPFJmJDQSbW0erGnvnAnWNgGAqFoBK5+pVMc7FTHyRiCosIcRMtQq1OZmJhozE2N12emphszkTMjK\nbYRmP0S0ATEgICKiqpcMRMPD0bbWwVj7Zrc/gKFWoVK1AL7mPwhY+VxjemKoOT022pCZnKrLTSfZ\nuoKIjhYGBEREVJVmA7HIUGxT61BsU2cqEK0DAEOtivQHcGoAQm4AELRymZbUaH9TZnysIT05WZOf\nTTMAIKK1woCAiIiqRsqMhIZjba0DNR1dyUCsHqhQp2CB5CUQtMQwnXvkmtNjA82psZGmzPhkLJ/K\nlPV+RESrwICAiIiOaVkjaA5H21oGajq6pkN1zUBlgoCCYQYKYgbhjABUm50Zb02NDDVlxifqstOz\nrAEgovWKAQERER1z8mIaI9HW5oGajs2T4YY2hUjZ+wQIJCfBkIrdETiaT800p8cONqXHx5oy49Om\nWht1+E8iqjIMCIiI6JigAMbDTfX9NZs3j0ZbOi0xDIFaQSuXgZZnXHtLDNOdhVig2pCZHGlLDQ82\np8bGo4V0thz3ICI62hgQEBHRhpYyI6GBmo5N/TWbe7JmKApAg1YuG7DyZSmhLxhmsCBmALA7A7cn\nB3tbUyPDzemxKdYCENGxgAEBERFtOAUxjKHopub+2s1dU6H6VsDuuFuuJkF5IxByOwTH8smptuRw\nf0t6dKwuy+FAiejYw4CAiIg2jMlQfc2h2s7O4WhbpyVGQFStUCGbBlbdJEjyxtyoQLW5mfFNyaH+\ntuTwKJsCEdGxjgEBERGta3kxjcGa9rZEbXyLO19A0MplAlY+t8pLS86Y6xRcl50ebU8O9remRsYi\nhcxqr01EtGEwICAionVpKlgX66vr6hyOtsUtMcxyTRrmaQ6kDZnJkfbk4EBramQsZOXyZXhsIqIN\nhwEBERGtGwUxjMFYe0tfbdeW2WBNA3C4NmBVzXa8HYPrstNjHcmBQ23J4VEGAUREDAiIiGgdmA3E\nIom6eOdgrL3bEiNQjjkDPBOFIZpPTXfMDiQ2JYdG2CeAiGg+BgRERLQmFMBopKXxYF13z2S4oQ1Y\nfd8AFTFyRjAMAKFCNtWV7Nu/aXZoqDY/my7TYxMRHXMYEBAR0VGVF9MYqOloO1jXvS1jhmsEqqsc\nKehw52BDrXx7cvDA5tn+gYbM5AyHCCUiWhwDAiIiOiqSgWg4URvvHKjp6LHECJhaWFUnYW+ToPrs\n1EjnzKG+ttTwqKlWWWYlJiKqFgwIiIioYhTAeKSp/mBtd894pKkdWF2zIKdJUAiAhArZVHw2sbdj\ndmCI/QKIiFaOAQEREZWdAhiKbWo5ULdlezIYq19tsyB3lCBRtTYlh/o2z/YfasxMTLNJEBHR6pUl\nIBCRnQA+C+AsAPcCeA7AFbC/+E9X1VnnuDcC+CsAjQD+C8C/AfgugEsBPAFgHEAdgAcB/JWqDjnn\nvRfAxwFsA/Cgqu7w3f92AHtU9YPleD9ERLQyeTGN/prNmw7WdW/PmqHoakYLUhFxOghLJJ+e2Taz\nb3/77OBIUPOFMj82EVFVK0tAoKq3i8gfA7gbwGtUNS8i1wH4SwCfAfAHznE/FpEpADtU9Trn9B0i\nogA+oqp3iEgAdtDwiIhcoKqDqnqDiJgAPl0kGGgDcDaAM0Xkw6rKfxREREdZ1ggGEnXxzr7arq0F\nMYOmFnIrDQQO1wZAtS01fKhrpq+vITPJ2gAiogqpdJOhfwDwURH5H1W9fyknOMHExwFcCeBvAbx/\nkVPeBuAjAL4CYAeAO1f+uEREtBzJQDTcW9fTPVjT3q0QI2DlsyFrBYGAQLJGKAxAwoVMcsvMgRc7\nZgeGOHEYEVHlVToguAVAC4CvichZqrqkcaBVVUXkvwBcLyL/R1WtBQ5/LYB3AXgLgKvBgICIqOKm\ng7WxA/VbtoxEWzsBu6OwLPxdXZQlhpk3AiEA2pIeHeia7ks0ZcanWBtARHT0HI1Oxf8XwFMAPgXg\no8s4bz+ABgCtAIaKHSAi7QCGVDUrIjcC+LyI/L6qskSJiKgCJkP1Nfvrt24djzR1ANCQlU1Dl99R\nOG8Egs7Qo7n4dGJP10xfP0cKIiJaGxUPCFR1WkSuAXCziHx3GacaSzjmbQC+4yz/BMDXALwGwK3L\ne0oiIlrIRLihdl/9tu2T4Ya2VYwYJDkzGFaIRPOp6e7pg/vbk4MjplrLrlkgIqLyOSrDjjqdhb8K\n4D9g1xgsxVYAkwBGFjjmjQCudjolA0ASwDvAgICIaNUUwHi4qX5/w9btU6H6FicQWHb/AGfugDAA\nNKXHB7qnDx5ksyAiovXjaM5D8FHYQ4t+HPZoRCWJiAD4LQA/KNV/QEQ6YA81+mHPtqsBfFFEfk9V\nVzTpDRFRtVMAo5GWxv0NW7fPBGubBGqtJBCwxAjkjUDQUCvfNdO3t2um71Asn8pU4JGJiGgVjlpA\noKozIvJ+AHdhgYDAM+xoM4C/WOCSbwfwM9+2mwHUANgJ4KZVPTARURUaizTV723YfvxMsLZJdGWB\ngNs/IGjlMtsm9z3bNdM3ENACmwUREa1T5Z6YDADuFBF3YrI3i8gnVfXHAKCqu0Tk3zzntcGemAwA\nPici4wDqATwE4OWqOugc914AHwPQJiK7AHwR9hwHe0XkNs/cA38NIA/gCyLyh+59iYhoYePhxrq9\nDduPmw7Vtaw0EHD6BxjRfGqmZ7p3b/vs4IgBXdHMxEREdPSI8rt6Qel4vIDldZwzAdxYocchIiqr\niVBD7b6Gw52FrWAht9wmPYc7Ctdnp0Z7pnr3t6RHJ9g/gIiO0I134hJY2LTkMyTykYRZwScix9Hs\nQ0BEROvEVKgutq9+2/bxSFP7SjoLq4jkjGAEAFrSo/09U70HGrJTs5V5WiIiqiQGBEREVWQmWBPd\n27B921ikefMKAwEjZwTDAtX25GDvlqkDvewoTES0sTEgICKqAikzEtrXsG3rUGxTHACWO4+AJxCw\nNs/27++Z6j3IicSIiI4NDAiIiI5hOSNgHqjf0t1X27VNIcZyZxZ2AwFDLatrpm9vz3RvIlzIclhn\nIqJjCAMCIqJjUEEMSdTGN/fW95xQEDMQtHIZKTGvSzGWGGbeCIQMtQrd0wf3dE8f7AtZuXwln5mI\niNYGAwIiomOIAuiv2dy2r2HbiTkjGAlY+WzIWno/ATcQMLWQ75nqfaF75uChoJUvLH4mERFtVAwI\niIiOAQpgJNrauLdh+4mpQLTO1EJ+OR2GPU2DCj1TvS90Tx88FFQGAkRE1YABARHRBuedXdhQq7DS\nQCA+ndjTM92bCFk5BgJERFWEAQER0QY1Hm6s29ew7bipUH2LYHmzC7vzCIiq1TXTt3fL1IGD7CNA\nRFSdGBAQEW0wk6H6mr0N249zZhde1lwChwMBqG6e7d+/ZepAb6SQ4ahBRERVjAEBEdEGMRWsi+1r\nWPHswpI1QxEA2p4c7N06uf8A5xEgIiKAAQER0bo3E6yJ7mvYtm000uLOLrysScVyZjCiEGlOj/Uf\nN/HS3pp8Ml3BxyUiog2GAQER0To1HayN7W/YunU00rIZWP7swnkjECqIGajPTo0cN/HSnsbs5EzF\nHpaIiDYsBgREROvMZKi+Zn/91m3jkaZ2AMuuESgYZiAvgVAsn5zaPrn3hdbUyIRU7nGJiGiDY0BA\nRLROjIcb6/bXb93m6Sy8rEDAnVQsaOXSJ008//jm2f5hBgJERLQYBgRERGtIAYxHmur31W/bPh2q\na1lBZ+F5swtvm9z3bHwm0W+qteRAgoiIqhsDAiKiNeDMLNx0oH7LtplgbdNy5xEA5k8q1j198MWe\n6d6+oMXZhYmIaHkYEBARHUUWRAZqOlp763uOS5uRGtFVBQJWfCbxUs9Ub4KTihER0UoxICAiOgpy\nRsDsq+3qSNTGt7vNe1YQCLiTilmds4f2bZk80Bu2sgwEiIhoVRgQEBFVUMqMhBJ18a7+ms1bLDHM\ngJXPrSIQ0I7ZgQNbp/Yf4OzCRERULgwIiIgqYDpYG+2t7+kZibZ2KUSCVi4TsPLLmhnYDQTgzi48\ntb83mk9nKvTIRERUpRgQEBGVidtR+GBdd89UqL4VgAatXEZUlzXij9tHQKDanhzs3TJ1oDeWTzEQ\nICKiimBAQES0SjkJmP21mzf11XZty5jh6EpGDALmBQLW5tn+fT1TvYloIb2sWgUiIqLlYkBARLRC\ns4FYJFEX7xqMtXdbYpimFpbdPwCYm0fAUMvqmunb2zPdmwgXsuwjQERERwUDAiKiZVAAo5GWhkRd\nfMtEuLENAFbSPwCYFwgUuqcPvtg9ffAQhw8lIqKjjQEBEdESZI1gYKCmY1NfbVdPxgzXODMKp2HH\nCMtSMMxgQcxAwMrntkwdeCE+kzjECcWIiGitMCAgIipBAUyGG+oStfGu0WhLp0Jkpc2CACBvBEKW\nGGa4kElum9733ObZ/mFTLavMj01ERLQsDAiIiHxyEjAHajraDtV2bkkForVY4WhBDsmZwbBCpCY3\nO9kz1bt3U2poTMr90ERERCvEgICIyDEZqq85VNvZORTdFFcRYyWzCbs8cwigMTMxtGXqwP7GzMQ0\nAwEiIlpvGBAQUVVz+ga09dds7k4FonWA3UlYLF1RUx63o7BAdVNyKNEz3dtbm5tdUVBBRER0NDAg\nIKKqY0FkJNra2F+zuXMi0tju9A1YcW0AMNc/IGDlsz3TvS92zhzqjxQyHDqUiIjWPQYERFQ1ZoI1\n0f6azR2Dsfa4W4oftHIZ6PJHCgIACCRrhMIAJJZPTnVPH9y/KTk0Yqq1susRERGtAQYERHRMyxrB\nwGCsvbW/ZnN3MhirB4CAlc+upjbAbRYEQFvSowPx6cRB9g8gIqKNigEBER1z8mIaw7G2loFYx+bJ\ncEMrADHUWlWTIGCuWZCphVx8OrGna6avP1pIL3tCMiIiovWEAQERHRPcfgGDNe2bxyLN7QoxRNUK\nFbIZrGDyMJeKGDkjGAaAmtzsZNdM34H25OAo5w8gIqJjBQMCItqwFMB4uKl+sKa9fSTa2lkQMyBQ\nDVj5lc4ZcFjeCAQtMQKGWoX25OCBrpm+Q/XZ6WSZHp2IiGjdYEBARBuKBZHxSFP9UGzTptFIS4fb\nlj9o5bKmVVjVqD7e2oBYPjnVNdPX2z47OBzQAmsDiIjomMWAgIjWvYIYMhZpbhyKbto0Fm3uKIgZ\nAFbfOdjl9g0QVWtTcijRNdOXaMhOza7+yYmIiNY/BgREtC7lxTRGIy2Nw7G29rFIc7slhoky1QQA\n80YKQk1udqJz9lBiU3JoJGjlC6t+eCIiog2EAUFlnLfWD0CLUidZnuVSyfId513HIq+6xHX/vqU8\nV7HzNrSUGQmNRZubhqNt7ZPhhhaFGE6fgGzAyq9+NB+B5IxgWCESsPLZ+EzipY6ZgYHa/Gy6DI9P\nRETrkIi8D8DHAGwDcI+qXu5sfxeATzqH/TWAewH8PwBNAHIATADfVdXP+673SufYuKr2H433UGkM\nCCpjZq0fgBYlvuTf5z8uUOQcA0AeQBZA2klJAClnOQX7C8Wf8s65AdhfNqaz7G4L+rYHPMd6zwn6\nzi0WIPiXS71Pw/Pqvj8L84Mfawnb/MHSghTAZKihdjTa0jwSbe1IBaJ1ACCqVtDKZVc8YZiP20FY\noNqcHhvomB041JoameC8AURExz5V/bqIAMCn3WDA2f4tEQk5yzeIyN2wA4AvAICI7ADwrwA+77vk\nOwBMAni7s3/DY0BQGc+t9QPQUWNgfsY9CCDqvArm10K4xxsApgGMARh2Uj+AUQATAEac5bFIIrGk\n5ivpeNx9jlJBhPtsgSIp6NnnvoYAhAFEnORf9qeQsy/kpACK13KgIIYxHaytmQo1NE6Ha5ssGAGB\noiEzaTWmx/OWGFAYYomEVAy1RNSCoZbYSUVgiaEWDIWUztIXDDNQEDMIALFccmrzbP/B9uTgSMjK\n5ZfymRIRUdU5H8CH3BVV3SUi3/QeICIGgOMAfAV2YMCAgIgOl4gvt017EEA9gFYAZ8LORANAAXbG\n2QBgpOPxcQADABIADgIYhB0wDAMYjCQSaQCIJBIrfY6KSMfjbg1GqK+2M/Ifp7//xIN13WdOhBsv\nKoh5YtDKSSSfnorlk/3RfKoQzmeMkJU1YrmkGc2nAnZKmuFCxozkM4FIIRUI5zNmyMqaoULODFpZ\nM1jIGQLAEoFCFCIoiGkUxAgAkFAhm25Ojw03ZiamwlauADs4aoX9GfuTBbvmZsm1G0REdMw5AODP\nRORDqjoLAKr6Gd8xFwPYBeB259guVe07uo9ZfgwIiNaG23xooXHtBXamugvAdtgl8Qo7AwsAgXQ8\nPgk7WNgL4CXYAcMg7GBhTZquxa9NC67Z0wbgDACvBPAK2AGPAfv97oWd8V4VUQtBKyexXDIWKmRb\nooWUUZOdnTpu8qV7L99/2+OXH7htwlTLrdmIAqgBUAs7EKt1UszZHgPQ4BwHHFmzA8w1pTKd9Tzm\nAopiywwsiIg2lj8A8B0AbxaRHwD4uqre4zvmbQA+q6oJEXkOwK8D+Oej+5jlx4CAaP1S2P0TsrCb\nGBUTAtAD4ETYwYObEQ2k4/FZAPsBvOCkQ7CDh9FIIlHWzGr82nQzgFMAvAzAJQDanOfIwW5nWe6a\ni4iK0ZQ1w8ia4VkA3wJwF4Dnb/v8uWrX4i5fOh4X2J9p1EkRz7I3xQA0AqiDHUjUOakWcwGGibmf\nh4W5PhtuszHBXPCQL7LMuQ+IiI4OBQBVvVNEegD8BoB3A7hbRP5dVX8XONxcaJOqJpzzvgXgajAg\nIKI15gYMU0X2BWAHCydhLnNqAMin4/EDAJ6HHSgkYFeTLilQiF+bFgCbAJwM4FzYNQCbMJfpnYAd\nfJRbFPbIDwo7QPpf2KM8PJ24PlKWoUKd959x0sRKr+MEFkHYgYFbOxHzpRrYQUUj7KCiEXM1GA2w\na4QszK9tcDuzm5hr5uRNBdjBF4MJIqL5MphrnusVhl1wBQBwmgp9FcBXReRSAHeJyN+p6l7YBV7n\nisgu5/AogJeLSI+q9lb06SuMAQHRsSsPO1DwBwsm7Az8VgC/hrlRj1LpePwFAE8A2AM7SOg7/po9\nFuxmSyfB7nD1cgDNmOs/MYXKBACAnWlucJZHAfw3gJ8DeD5xfWTdZnqdwMIN1iZWco10PB7AXODg\nT7WwA4gmJzXCDiTcfikhzPWNUJRu7uQPKNjhmoiOVQcBtIpInap6a923AfgJAIjIF1X1g+4OVb1H\nREYx93/o7QAuUdUB9xgReRZ2tfQ/VPoNVBIDAqLqU4A9NK6/j0EQwIk5CZybDEYjqUAsNhusqf/y\nbR8wXmw6IfVs8ymzLzUeN7O3cftQ1gxXqgOVwM7U1jjrAwC+DzsIeClxfaRq2uVHEolSAd2i0vF4\nCHOBg/vqpnrYAZ0bSDQ4qR52aZd/fg63eZO3mVOppk7rNkgjoqr3MOwR/T4C4DoAEJE4gB0APuEc\n81oROV9VH3H2Xwr7e+05ETEB9HiDAccPwYCAiDayvJjGdKiuZjpUVzcRbmyaDtU15Yyg23lZTCuf\nb8qM45KD99RedvDuOguiAhzfX7N5+rnmk8efbTll8oWmE2f2NmxPWoa52O1KCcLOnJqwM5zPALgD\nwGMAeqspCCiXSCLh1k6ML+c8Z/hab62Ef7kWdjDRiPmBhNv8KYQjJ/LzztvhNl0r1RGbQQURVYSq\n5kTkjQD+SUSuhl3rnATwh6rq9nP7ewCfFRELc00z36yqKWeOgpNE5BpV/RoAiMi5AN4I4FQR+b6q\nvvVov69yEVX+r11IOh5f7mghJoAbK/Q4RCuWMUKB6VBdzWywpmYqXN84E6xtyJjhGJxMm0At0yrk\nDbUWbI8vaiGSTwcihXRQoAoICoapvXXdU0+3nDb6TOtpU0+1nD41Fm1ZqPmJ2ynXbbN/P+z+ALsT\n10eWXSJO64OnmVOpfhNRzPWRqMf8ztjuqE8RzJ/0zsvb9Mkdccs7dGyxIWX5T45ovejGO3EJLGxa\n8hkS+UhixaVNtHQMCBaxwoDgzgo9DpWPW3ppLbLszWRsiD8WCyLJYCwyG6yJzQRra6ZC9U2zwZr6\nvBEICVQVsuTM/1IZVkGi9lwBATUMNdSS0UhL6umWU0eebDtz4qnW01MH67oj6swRALva9nYAjwB4\nLnF9hG3XCcDhDtnFRndyt7lBg9scyjuMrFub4QYkEcyV8rl/z8BczQUwv0kUMPc3v9Crv7M3ES0F\nA4J1i02GFjcNuwRrqZIAbq7Qs1D5GJibVdedqde77K5HYP/8vRkLb+AAzC+19LaxzsMe8cXbzrps\n8mIayWAsOhuoiSaDsdhMqLYhGYjVuqX+AoVCxFCrYGohHypkU+W8v5dlmDpr1OZmg7V2tauqBKx8\n5IL+h497Rf9DMFStgOZHMkbokUghfevWqQMPhqzc/qXOxEzVw+mQnXLSqjm1Fu6M2hEsPPt2BEd2\n4HZrNqKe42PO8UEcWZjg/V6AZ9nbdAqY+y7xBiv+5C+c8G4nIiob1hAQLZGTsSiWmfBOelUHu421\n22nT32HTLWEE5tpUu4FD1nnNwPmHnxfTSAWikVQgGkkHIpFkIBZLBmO1qUC0JmcEI06JPwCIqFqm\nlq/Uf7kKhhkoiBl0VrU2NzPRkhodbsqMj9dnpmYNqDs7s9vOPAu7n8DPATwNoLfc8yMQVZJn3oqw\n7zXoWXbXQ75jvAGGP1DxX897jQDmApFiyctbE+ISzzbxJf+13O8qb82KNyApdf9i6yhxjH8/Flmm\njYw1BOsWAwKioyQdjwcxFyA0FsRomAw1bJoO1W0viNkDoMPQQrsBbcsaoWg6EA5ZYgZMqwAVaNYI\nac4IasEwcxaMvAFdy9J1cQKAAJxMRySfnmnKjI80p8fGmtLjkwEtLNY5NIC58fYVdu3aLwA8ALtj\ncR8DBKpmzpwfBuy/FdN5DcRys2bXTF+kLTkcieWTkUg+HQoVsuFwIRMJWrlQwMqHAlY+aKgVNtQK\nmVoImVoImloIimrQUCtoqGUK7GWBBqAIBzQfMtQKiWrQtPJBgQYDViEgsAKiGrSvYZnOuSZUDVOt\ngKhlGFBTVA1DLUOghkBNUUsMVRGoIWqJ2AUXhsASsbfbSSECtUs2VAVQ+1goYO+Du9/lfDGI+zL3\nReGPf2g9kYjV0PDayUJXS//ST2FAcFQwICAqs/i16QDmOkvWe16bAcRhj+m/CfZsvu7swoAzg62o\nlW1OjxU6Zgd0U3LIaE2NhDtmByKbZ/tr2pLD0ab0WDRaSAUsmAqx2+8XxNScGSxkjVAhZwQtSNn/\nKUreCAQsuw+AApBYLjnVlBkfacxMTDRmJqaCVn61AUoIdoDgln5Owe5s/ACAJyOJBDsb01ETvzZt\nYn7JfqlmhaWaHPqbKLm1Av7ag1LXdmsC3JJ7byl9qdoAoHiNgPtaarlUbcNCJf9LKfUvVQPgL/1f\nSs2AAvagBvarOg+vAkANteaFBbQ+nRf4xTv+IvYZ6xTzuaWewoDgKGEfAiIA8WvTBub/E3Zfi3Vu\ndDs2uk2BGgC0wM7wNzj7vW19vf0Lsp40hiL9ClQMjEZbMRptxdMlnjeWmzXi04lI5+yhSPvsYLRn\n6kBN93Siti01HGvJjEUt2OVvpmVJQUzNmKF8xgwXLMNc0n9MSwyzYJhBtSMLFShqcrOTTenx4cbM\nxGRDZnJ6CTUAy5UFMOxZDwO4EsDrAUg6Hn8RwN0AfgngRfY/qE5ORt1tTuNtXhMpsd2dk8H9u/X2\nCYhiLuPuPc/9DvD3DfBmaL0ZavfV20fA2+zG3w+g2LI7alLOdy55qBjO6/zt/DLYGCzDWPwgWhMM\nCBYRvzY9geV1Ks4DuKkyT0Nl5HYqdjP+7jCG/g7D7rK3nW2xIQ9zTpqEndGvqGSwxnqh+aTkC80n\nJf37QoWMdE33ReIziUjnzKHYcRN76rZM9da1JwdqA1bBUIgasMSCoRkzVEgHIlbWDJuWGO77klAh\nm2pMTQw3ZCYn6rNT03XZ6aSBo16dmAEw6CwLgM0APgCn/0E6Hn8Idg3C7kgiMXKUn40W4TR3cQNq\nf2m5vx+OO8eBd/hRN+Mew5El7cU69/sz6e7oQW4JuHeEIG/ybk/DbrrGjrtEVFUYECyuDsv7xxAC\nCys2gjzsDKc/U7HhZc2w7mvcntrXuD0Fz8RUohbaUsN13VMHmzbP9tdvn3wpvHXyQE33dG+4PTmU\niuWTo7HcbCaST08GtTCFMo3yUiZuEyK32VAAwEUALoVde7APwG2w+yC8xL4HK+OUvrsZ9Khn2V9T\n5m0S583E12L+KDz+INubafcO9+nPsPvnFrAAzMIe9Y2l5kREZcaAoDKya/0AVPUMzI1+FASQVzHM\noVj76FCsfReAJwDsA7D/D3/5LyN/+Kt/bQGwBcA2AKcDOAV2X4eCc60C7AzZLNZH8JQH4K0VaAXw\nu7BrECbT8fjdsGsPnookEpk1eL6jyimNd9uo+ycC8667ndq9k4J5h9cM48ihLd1MvJuB9842XCxl\nYQeTzLgTEW0QDAiINjYTc5m+IOyMslviehB2h9ynABwAsD9xfWTmyEv8OYA/H4GdwX4MwPcAIB2P\nRwH0wA4UTgFwFuyAQZ175ADMYH3UJEw7CbBLqN8E4M0ACk7TorsA/DKSSEysydOV4JTIeyfd8k/C\n5aZaFJ/d15uZB47suwI4ndWddQvz58VgJp6IiBgQEG0ABua3oQbmSu7zAPYDeMFJCQCHAAwlro+s\nqulaJJFIAXjeSbcBQDoeD8MOEI6HHSCcBaATdkbShJ2pnIYdLKyVNIABZ9kEcD6AiwFoOh5/AvbE\ngY9EEoll9fVwMu/eDqj+dvDetvFRzGXe/bPouqX1EdhBnH8WXZe/SY0/E++uTwOYwPqouSEiog2I\nAQHR2nM7OHtHRXFLet2JywZgT961D3bJ/wCAPgCjiesjRy0j6DS/cYOPmwAgHY/XAtgO4AQALwNw\nDuwMMZz3UPH+CArAEsMoiHk4WYZhFMQ0LTFyBTELFiRgauEVBnSHBTGGz3ztofu7XvXMj45/U//z\nzScr5mpavCPSuKX17sgzBRQfdcY7woybgfe2hfcntocnIqJ1gwEBUeW4Q5n6xy33zlYcwFx7+IOw\nS/f3A+gHMAR7lJ2Jo5npX65IIjED4In4teknAfyoY6Y/cN2D123tmeo9qTEz8bJYPnmOYRW2qxhQ\niJkzA8mshNKWYYolhmGJYaiIYYkhTqY+UBDTLIhpWoZhOpl6wxLDPJxgrzvnGRYMEwBkbiQkLTYm\nuTurM1RRk5vtvOjQAxdcdOgB7avtmr0nfsnwA52vHE/Ud7ujzLg/J5bAExHRMY0Tky0ifm3aLRFc\nKhPAjRV6HDq6/LOE+lMA80dIcX9PDGd/BvYwpBMARmFn7vtgj7U/Dnt40lHYpcWGL5kLLLvrAd82\n/z7/s5q+7QHMnxzJP0mSdz1YZF/As+5O4gQUmdSoOTUaOGXs2dhpI0/VnDn8ZEN8JhFVCAQqyUC0\nkAzECirGXG59LkOvzgREeni786XlWXfvuTKqiOWTwWghHQCAQ7Wd03d0vyZxT8+OkYGazRwggIio\nTF5hPvDOj0f+hhOTrUMMCBaxwoAgUaHHofIT37J/siFvB8w87LbxeU/KYa6jpnuMt2Ont0Onifnt\nwr0JWP4Mn/Btc8db978n73vzv0fvkJD+SZL8w0X6x34vNrHSktRmp80zh5+oP3voV40vG/rVps2z\n/bWWGGqoJbOBWC5tRvIVmG15cZ7gQAHsa9g2cUfPaxP3xS8ZHYu25I/+AxERHTsYEKxfDAgWscKA\n4J4KPQ6Vz0KZWrfE33vsUpeLvfqPK7WvajVkJgJnD+2uP2foV01nDe9u2zQ7XKNil/3PBGuzOTN0\n1Nvai1qoyc2GwlbWtCD6XMspo3f0vPbQ/V0Xj82GajnXCBHRMjEgWL/Yh6AyDq31AxBtJJPhxvw9\n3TvG7uneMQbgpZbUSPCcoV81vLz/kdZzhne31aXHolBF1gwVksFYzhKz4oGUioGZUF12BnZwcMLY\nC82njD7T+qHdn9dftr9s4NatVxx6pOP8yYIRYFBHREQbGgMCIlp3RqOtuTu27By5Y8vOEVHrueMn\n9sTOHXis6RX9D206buKlJnEqV2YDNbmMGS5UunmRioGpcEMGAEwrLy8bfKzjvIFHO2aDsdyu7ssO\n3r5l59CephOSFX0IIiKiCmFAQETrmoqBF5tOTL7YdGLy26f8Rl8sN2ucPbS74fyBR5rPHXy0vSU9\nFgWAjBEqzAZrsirGYpdclYIR0IlwUxoAQoWMedXenx531d6fHtdX2zV169YrDt7V85qRiUgT+xsQ\nEdGGwT4Ei+AoQ0TrW8/UgcgF/Q81vypxf8f2yZeaAIEFQ2dCNdm8ETw6fQ9UUZOfDUYKmYAlhj7R\neubQLduu7Hug86IJNikiIrKxD8H6xRoCItrQeuu3pHvrtxz67klXH2rITATO73+k8aJDP9909tDj\nmwLWtCGqMhusyVa0aZEIZoO1udlgbc7Qgpwx8uSms4d3t88Ga7K397y295Ztrxs8WN+TrszNiYiI\nVocBAREdMybDjfnbt14+cvvWy0dMK//sOUO/qn/FoYdaLux/cHNLZiyqAFKBWC5VwWFNLTF1Itx4\nuEnRm/f86Pg3v/Sj459vOmn0Z9uvStwXf9Vo1gyz1oCIiNYNNhlaBJsMEW18ohZOGH8xdnHffa2X\nJO7tbEuN1ABAyozmk4FortKdkkUt1GWnwwHNG+lANHd392WJn22/qn9/w7ZURW9MRLSOsMnQ+sUa\nAiI65qkYeKH5pOQLzSf1/scZ/6d328Te6Kv67mu9NHFPZ8fMQC0ApAOR/GwgVpHgwDtKUbCQNV6/\n76Ztr99707aXGo8b/+lxv3ZwV/eOEdYaEBHRWmENwSJYQ0B0bOue6o1c3Hd/y46DuzrjM4l6KJAK\nHIWaA1XU5aZDIStnJgPR3G1bLj/w0+PeMNBf25mp3E2JiNYOawjWLwYEi2BAQFQ9Omf6wpf13t32\n6t47uzqSg7UKIBmI5dIV7HMA2H0N6nIzIYXg8bYzB390/JsP/qLj5ZOVHkKViOhoYkCwfrHJEBGR\n41BtV+abp74n8c1T35M4fvzF2I6Dd7dddnBXvDljz3UwE6zNZs1wodz3zZrhwqgZTh0eoWjo8faR\nWGvyx8e9Yf+tW68cmgnVlf2eRERELtYQLII1BETVTdTCaaNP117We/emi/vu66rJJYOAymSoIV2x\nOQZUEcungtF8KpAzA9Z9XZckfnjCmxMvNR7PTshEtGGxhmD9Yg0BEdECVAw81XrGzFOtZ8x8/uwP\n7T138LGGnQdu7zh/4JHOYCFnZM1gYSZYW94ZkkWQDMZyyWAsF7ByxmUH7+p5de9dPc+0nDryvye+\n7cDDmy+YYHMiIiIqFwYERERLZBkmfrH5/MlfbD5/MpabffGSxL0tV+67OX78xJ5mKJAMlr+/Qd4I\nWmORlpSohRPHn2/+xIN/1TpY0z77g+Pfsu+2rVcMZwKRozMbMxERHbPYZGgRbDJERIvpnOkLv/bA\nHZt2Hri9uzk9FlUIpkJ1mbwRLH9mXRU1+WQwkk8FUsFY7qZtrzvw4+PedGgk1pYr+72IiMqITYbW\nLwYEi2BAQERLJWrhjJEn667Yd2vHRYce6AoVsmbWDBWmg7XZSoxSFCpkzLrsTMgyDH1w84V93zvx\n7QdfaD4pWfYbERGVAQOC9YtNhoiIykTFwBNtZ00/0XbWdDSXfOnSxD0tv7b3pz3bJvc1QoGpUF0m\nZ4bKVmuQNcOF0Wg4ZVp5ufDQA10XHfp5/NnmU0f+5+Sr9z/Wfi6HLSUioiVhQEBEVAGpYMy6Zdvr\nhm/Z9rrh4yb2RF+39+bNlx28u7s+Nx3OGuXtiFwwAjoeaU6LWjhp/PmW6x/4ZGtv3Zap75z0jr33\nxC8dtQwWsBERUWlsMrQINhkionIJFTJy6cF7Wq7a+7PuEyZebFZUaG4DVdTlZkKhQsYcjbYmv3fi\n2/besu11Q1kzzC98IlozbDK0frGGgIjoKMmaYb196+Ujt2+9fKRn6kDk9Xtv6nhN7x09LenRaMYI\nFWbK1ddABNOhuiy0FrFcMvS7j3/l9Hc/+83sT457474fHv/mfk50RkREXqwhWARrCIiokkKFjFzW\ne3frm1760ZYtUwcaFILJUH3ZJz0L59NmbW4mlDVDhTu27Oz9wQlv6TtU25Up5z2IiBbCGoL1izUE\nRERrKGuG9dZtVw7fuu3K4ZNHn615854fxi869ECnqXljNlCTSwei+XLcJxOIFDKBSCpYyBqv33vT\nttftu3nrY+3nDnzvxLcffLLtzOly3IOIiDYmBgREROvEcy2nzH6m5ZTnGzITL71u783tv7b3J1ub\n06PRgpjWVKg+U45OyDkzZI1GW1KGFuRlg7/sOG/w0c3767dMfv+Et+3f1b1jtNw1E0REtP4t+t9F\nRHaKyG4RURG5R0TuF5E9IvINEYmIyHtF5DkRyYjILs/+fxE58r+XiHxcRJ4psn1XkdQvImkR2eS/\nj3PO50RkQEQGReTvy/KJEBGtsclwY/7bp/xG32++7oaf/80FH//l880njTVnxqPN6dGoaeXLMqGB\nJaaOR5rSo+HmVOfModo/eewfz7rhpve88p3P3thVm51mFT0RURVZtIZAVW8XkT8GcDeA16hqXkRa\nAbwA4IOq+k8iYgL4tKruAAAR2QbgWQC/AvB13yUvB3CKiJyhqk/67rXDXRaRZgDPA/iMqg4BuMF/\nH1X9iIi0AAio6p8t980TEa1nlmHiga5Xjj/Q9crxbRN7o2998fvxSxL3xANaMGYCNdlMILL6zsEi\nmA7VZwEgkk8F3vvMN05+5/PfPnFX947eHx7/5kP7G7alVn0PIiJa11ZU/6yqIwBeBHB8if37ADwF\n4DzvdhE5GcBjAB4G8A7faR/xrf8dgDEAf7uSZyQiOpbsa9ye+tzL//TF33z9DffdePJvPA8RtKRH\norXZ6RDKNDhEOhDNj0ZbU8lANPfaA3ds+bc7P3TR5+7+k7MvSdzTXK6aCSIiWn9W1IdARE4CcCrs\nTPtC1074tr0DwLcAHADw+wA+4e5Q1cc8178IwDUAdqoqR8EgInJMhhvz/33qexP/c9LVfZcdvLv1\nbS/879b4TKK+IIZOhhrS5ehnkDeC1pgz0dlxEy81/fkjf9cyGarP/Gz7r+2/edvrBsaiLWXp6ExE\nROvDcgOCO0UkAOBMAF8B8INiB4nI2QD2APiCb9dZqvpXIpIA8I8icraq7vadGwDwJQA3quqdy3w+\nIqKqkDNDetvWK4Zv37Jz+Kzhx+vf/vx3e84Z3t1ezmFLVQxMhRsyABDJpwPvevZbJ139/LdPfKTj\ngv4fHf+mxFOtp0+Xa7ZlIiJaO8sNCNw+BDHYwcBXYZfkA0Cb09m3CcA2AO9T1Sn3RBE5FcATAKCq\nAyJyN4CrAez23eOPAHQD2LnMZyMiqjoqBnZvOmdq96ZzntoyuX/PO57/Tver+u6Lm1owpoJ1mZwZ\nsspxn3Qgkk8HInnTyssF/Q9tvrD/wc6+2q7pHx33pv1391w2kgzWlOU+RER09K20D0ESdin+b4tI\njbN52Onsew6AnwH4vIiEPKf9OoCr3BGEYGf6f917XRHpBnAdgP9PVQdX8mxERNXqQMPW9GfP/7MX\n33/Ff9z/k+1veClcyARaUiPRcD5dtlGDCkZAxyPN6dFwc6o1ORL74ONfOONbP3vXJR995O9POHX0\n6RpRxgVERBvNauYhKAAQ2DPzHqaqloj8KYC9sGsAbnB2naGq57vHiUgHgEMicp6qPups/hcAzwD4\nsue4Fue6o0t9MBG5GECvqvYu+10REW1wI7G23JfO/uD+/z71PQff8NJPOt6854fbW1Mj0WQgmk8G\nYjlIGfoHi2AmVJsFahGwcsYliXu6dyR29Ryq6Zz+2fbX996xZefwTKhu9aMgERFRxa2ohsCZX+Ad\nAB7zNgtyqWofgG/Abv4DETkdwEu+YwbgGW1IRK4C8EYAv6s6r4jpDU5ajtcC2L7Mc4iIjikzobrC\njae8q++9r7/h/i+c/cEnZ0K12Zb0aKwuO1W2kYkAuxOyW2vQnB6N/s6TXz3tmz979yV/8dDfnHTm\n8ON1rDUgIlrfFq0hEJGdAD7rrN4pIgogBqAPwNUi8l4AH8NcH4K3quoY7BGInhORfgBtAF4Qke+4\nowmJyDUAegB8QERmALwLQBrAl2R+6VUbgE/576OqO0TkkwB22JeT73nOORXArmV/GkREx6CsGdaf\nHvfGoZu2XTX0qr77mt/+wne3bZ/Y26hi6ESoIWMZZnmiAxHMBmtzs8HanGnl5aJDP++6uO/++GBN\n++wtW6/ovavnNcMjsbZcWe5FRERlI1rGUqJjUfzadAHAcj4kE8CNFXocIqKyOG3kqdq3vfC/PS8f\neKTDgEo5OyDPo4pYPhmMFtIBhejTLaeO3Lrtyr77uy4ey5ph/gMiqiKvMB9458cjf2OdYj631FMk\n8pEEZ04/ClbTh4CIiDaop1tPn3m69fRnNs0O7nnri9/vvPzAbVvqc9PhlBnNJwPR8vQzAAARJIM1\nuWSwJidq4eSx51pOG3267cO/+rf8/V0X99229fKBp1tOm+HwpUREa4c1BItgDQERVYNoLmlcsf+W\nTW998QfbWtKjsZwErOlQXaZSGfVgIWvU5abDAmAk2pq8bcvlB+/c8pqhgZrN2YrckIjWHGsI1i8G\nBItgQEBE1UTUwoWHHmx62wvf23Ly2PMtKsBUqD6TN4KV6Rmsimg+FYgVUkEFsLdh+/gdW3b23Ru/\nZHQi0sQZkYmOIQwI1i82GSIiosNUDDzQ9crxB7peOb5tYm/0TS/9qPPSg/d0h6wpM2VGyjdsqUsE\nqWAsnwrG8qIW4tOJ+t994stNv/PEV/SZllNH7tzy2v77uy4e5cRnRESVwxqCRbCGgIiqXSw3a+zc\nf1vbm1768db25GCtJaKToYaMJWUanagIQwtSm50JBTRvFMTU3ZvOGbir59UDD3ZeOM7OyEQbE2sI\n1i/WEBAR0YKSwRrrRye8ZfDHx79p8GWDv6x/40s/jr9s8LEOQ1VmgjXZTCBS9gnILDF1KtyQAQDT\nyss5g7/sOHfwsY6sEbQe7Xh5/z3dlw79ouPlEwwOiIhWjwEBEREtiYqBxzrOm3qs47xnNs0O7rlq\n7087rth/65bm9Gi0IKY1FaqvSCfkghHQiUhTGgACVs64sP+BrosOPRDPGQFr96ZzBu/pvnTg4Y4L\nJlLBGJsVERGtAAMCIiJatqGa9ux/nnFN7zdO+62DFx16oPGqvT/rPn3kqTZRxWwwlksHohXpEJw3\ngtZ4uDkN2DUH5w482vHygV90FAxTn2g9c+ie7ksHH9x84fhsqLbstRZERMcqBgRERLRiBSOg98Uv\nGb8vfsn4ptnB0JX7b2m/Yv8tPc3p0aglhk6F6ivW18Bbc2BaeTlz+PFN5wz9quOP8C/6TMupI/fG\nLxl4ePMF45wdmYhoYexUvAh2KiYiWh7DKuD8gUcar9r70/jZQ7s3GaqSDERzqUA0X9YRikrfX2pz\nM6Gg5g0AOFgbn/p518UDD3W+YnRP4/FJToJGtDbYqXj9Yg0BERGVlWWYeKjzwomHOi+caE0OB3ce\nuH3TFftv7W5NDdcAotPB2mzODFWsvb9lzHVIhipaUyOxq5//9olXP/9tTIXqM49svmDgwc4LR361\n6ZxJdkomImINwaJYQ0BEtHqiFk4dfab28v23dVzcd19XuJANFMSwpkN12UoOXzqPKkJW1qzNzYQU\ngoIRsJ5qOW34oc4Lhx9rP3eiv7Yzc1Seg6hKsYZg/WINARERVZyKgadbT595uvX0PZ8/50MvXXTo\ngaYr9t3adcbIk20CS1JmtPyTnvmJIGuGC2NmOAXY/Q7OGHmq7ezh3e0CYCTamny0/bzBX3S8fOzx\ntrOmOGoREVULBgRERHRUZc2w7uq+bGxX92VjLamR4GsO3Nm288Bt3Z2z/bUAMBuoyaXNcMX7GxSM\ngE56mhZFc8ngFftv3Xb5/lu3qgj2NJ4w9mDnK4Z+2X7u+N6G7Sn2PSCiYxWbDC2CTYaIiI6O48df\njF3We1fbjsQ98YbMRASAzgRrc1kzfNSHEDW0IDW5ZDBoZU1AkAzGsk+1nDb6y/ZzRx9vO2syURdP\nM0AgWh42GVq/WENARETrwp6mE5J7mk448NUzf+fA6SNP1b26965Nr+z7eVdzeiwCqEyF6jN5I3hU\nmvFYYup0qC7rrgcLWeO8wcc6zh94pAOATIfqMk+2njHiBAhT7H9ARBsZAwIiIlpXVAw82Xbm9JNt\nZ07/2zkf3nvu4GP1r+69q+P8/oc3h6wpw4KBmVBt9mgFBwCQM0PWhBlK2w9od05+xaGHOi869GAn\noDIRbkw/2Xbm8ONtZ40/3XLaNGsQiGgjYUBARETrVsEI6CObL5h8ZPMFk6FC5oULDz3YdEni3vaX\nDT7WEbSmDQUwHazL5M2jFxy4nZMPN2VSRbiQMS9O3Bd/VeK+bgBIBaK5F5pOHNu96ayxZ1pOm3qu\n+eTZghFgG10iWpcYEBAR0YaQNcN6T/eOsXu6d4yFCpnnzht4tPHSg7s2nTf4aEd9bjoEAJWe46Ao\nEWQCkUImEDkcIAStnHHayFNtZw/tbrdE1BJT9zdsmXy87ayR55pPmX6u+eTpsWhL/qg+JxFRCQwI\niIhow8maYX2g65XjD3S9cty08i+cN/howyUH7207f+DhzXXpmTCgmA3UZDNmuHA0ZkeeRwQ5M2Tl\nzNDhfgWGVZD4VKLu+Ik9TZYYalgqU+H6zJ7G48efaj19/IWmE2eebz5pJhms4VCnRHTUMSAgIqIN\nrWAE9OHNr5h4ePMrJgyr8OI5Q7+qf+Whn7dd0P9QR3NmLCpQpM1oPhmI5taqXb9lmDobqs3NojYH\n4HA/hDOHn9j0sqFfdlhiqKglI9G22eebTpx4pvW0ib0N22dfajxulkECEVUaAwIiIjpmWIaJxzrO\nm3qs47wp0T946biJl2IX9D/cfHHf/R3d070NAFCQgDUTrMmuaZt+fz8EAFBFLDcbuvDQg52vPPTz\nLksMNS1LxqJNqf312yafaz55cl/Dttk9jcfPDsfasuy0TETlwoCAiIiOSSqGO5Rp8punvifRkhoJ\nXtD/cNMr++5vP3306VbTKhgCxcxaNS3yE0E6EM2nA9G5vgWqCOcz5hm+moSMGckfrItPvdh0wsSB\n+q3Jg3Xdyf0NW1OT4Ub2SyCiZWNAQEREVWE02pq7aftVQzdtv2oonE8bLxv6Zf0F/Q+3njf46KaW\n9FhUAeQlYM2ude2Bl7/DMgCoIqB5o2f6YMPxEy+1KASWCEy1ZCZYkz9U25nc17B9Zl/DtlSiLp7u\nrevJjkeaCk6NggFAlpiAuYk51bfsffUvl+I9ZjXR1xpHbrRSeQQLAeSXU7U1XbGHoXk4U/EiOFMx\nEdGxr3uqN3Lu4GONr+h/cNPJo8+1mFoQAypJM5pLBaJ5iIjaNQiic1UJ/m3edcDJuLrHC3ReRloW\n+Neic3le8Ww7fB2BWqLzXlUsywpqTiL5tBEuZE1DC6piWKZVQMEw8xPhxsnB2Kbxvtqu4f7azolD\nNZ0Texu3j/XW90xZYmYBFADkAOSd5QIAy/NqlVhX33qpfVpifSlp7mNYeJ3WNwvASOL6CH9m6wwD\ngkUwICAiWrcE9neu4STT9+rfLpifKS363R4o5IxTxp6tOWfwl3UXDDzS2DnTFxXAgqqmAtFs1gxl\nDahlqFUQVcvUQsGAZR1eVqtgqGWZlr1sasES+3jLUMsSVTXUsgxYKqqWoZYasCxDPev+/WpZAlVD\nLV1h8bgJIAIgCiCMuUy54bweAnAQQC+APgCjAEYAjAEYjyQShSLXJKJjBAOCRTAgICJaNTdTbi6w\n7K77S4+9BPObvBQApH0p5UlJJ6UAzDqvWQAZ59WfcsW2/+obZ9fU5WZOBfAyABcD6MBcUDHp3Hcj\nM2AHCxHYwYIB+7NVzAVVIwAGASQwFzBMAphw0iSA6UgiwUwF0QbEgGARDAiIqAq5Je+lUgB2JtFb\n0u4mtwDbzUgK7Iy1P5M+67zOOGnaWc/AzmBnPCldZHs2cX1kTUqt0/F4K4BTAZwH4CIArbDfewH2\n+0itxXNVkAAIwQ4WwgCCmAvI3P+PpvM6CTt4GAEw7qRR2D/jWcz9vN3lZCSRYEdoojXGgGARDAiI\naIMxYGfYzSKvpUrhD7eJx1zGLgUnw4a5zNu08zrlpCTml8z7S+rTANKJ6yPH7Dj66XhcAGwCcBqA\nlwM4F0A77MyygbnPrBr+2QrsYMGb3N89b78C9/fN/X0swA7yvAGj+3vnpjTmam0ysPs5uH0dvMvV\n8DlvZArgF5FEYqPXqh1zOMoQEdHac5vCeDPuxZK/Q6b4zjdgZ5bckvdpT5p0kpuRd5vSeEvu3eUs\nO/0tjdNEZtBJdwFAOh5vBnAigDMAXADgONg/swDsz3kadgb2WKOYy7Qvh7dGKgagDkc2KfM3F3P7\ng7jBJjsXbwDW2bjE+hRkJh1f6inTtZFEYwUfiRwMCIiIls/bWdXfBt67LjhydBVgfqbGHYLPzYz7\nm1RMYS5Dv1hGPrVWzWhoTiSRGAPwkJP+PR2PRwAcD+AU2AHC6bCb3rhBnfuzPmZrUhahmCvlp2NZ\n5HAN5VLVVepRaD4GBER0LPKPLlNs3b/PbW6wlM6sWcw1i3Gb1Xjbw3vbSvub0KQw1zzC3Zdhifyx\ny2ke8ZSTvus0M9oMu+bgFNidlU/A3O9ZAXO/V/y9IKKKY0BARJXkbcpiFFkvtc1N/iYy8Ly6TQbE\ndx1g/kgy3gy4m9wOre5rynO8t+OqvzNrGnZzmmotyaUycJoZHXLSfQCQjscDAHoAbAdwJoCznHX3\nd9ytSZgFS9KJqMwYEBBtDN624ktNxWYkXcq2Yu1y/aWU/vbrpZ4tCzvz4h3W8fAoMZif0fZn3L1D\nQ2ZQYkhI3zFZADmWttNG44y0s9dJdwBAOh4PAogD2AK7BuEM2H0T3HkEApjrM5ICaxOIaIUYECxu\nGstrw5aHPUY1rW+r+cfpzQwXu54scBx824ot+zPYwPxZQy3Mn0k072zL4cgRN9wMeQ5zM5B6x1t3\n1zOe7f6RO9z1nOce3uvlPMfN28aMOdHKRRKJHIB9TtoFHB7VqBV2kLAN9vCnJwDowlzwHoD99+wG\nCqzRIqIFMSBYROL6SONyjo9fmz4H9igJtP75S75LrRdLwPxSdG+zFv+rd78/ldpX8LwqM9ZEBBxu\nbjTspEfd7U6To3bYgUEcwMmwA4UezA0169YGeoeHZbBARJyHgIiI6FiVjscNAG2wa67bAXTD7szc\nA6ATcyNhuf123BpDt9aQmQQqG+sVeKf1cVg4ZcmnSG0kYS5+GK0WawiIiIiOUZFEwsLcPAnzOMFC\nM+xAoR12gBB3UgfskZDcWkx3rgAL85sdZsFaBqINjwEBERFRFXKChREnPe3f7wQMjbD7LLQ4qQt2\noLDJsy2E+bMEu8P65hdIRLSOMCAgIiKiIzgBw5iTSnImXmtwUqMnNcGugWj27K+H3c/O28/KyzsM\nMTA3eIJi4T5anKl4A5BC0YE2aB1gQLCImXR8AssbZagA4OHKPA0REdE6s2eZxxcAzMLADEwkYSBt\nJ0nDQMZZz0CQhIEkTMzCRBYGchDJwUAegjwE9jKcdQPMbK5/LbDDQlp3GBAsrg7LK3UIADhYoWch\nIiLa2EzY9QT18zcv5R8tqwA2vHeu9QNQccbihxARERER0bGKAQERERERURVjQEBEREREVMUYEBAR\nERERVTEGBEREREREVYwBARERERFRFWNAQERERERUxRgQEBERERFVMQYERERERERVjAEBEREREVEV\nY0BARERERFTFGBAQEREREVUxBgRERERERFWMAQERERERURVjQEBEREREVMUYEBARERERVTEGBERE\nREREVYwBARERERFRFWNAQERERERUxRgQEBERERFVMQYERERERERVjAEBEREREVEVY0BARERERFTF\nGBAQEREREVUxBgRERERERFWMAQERERERURVjQEBEREREVMUYEBARERERVTEGBERERER0zBKRV4vI\nLhFREXlcRK707Pu4iDxT5JxvisiEiBxwzv2ViNwiIls9x0REZEpErvad+xYR2S0iORE527O9x7nW\nhIj8qDLvdmUYEBARERHRMUtV71LVHc7qR1T1Fs/uywGcIiJn+M55N4DdAG5wzn0ZgBEA3/Qc9noA\neQDv8J37AwB/DEAA/IeIBJztvc61dqvqm8rx3sqFAQERERERVR0RORnAYwAehi9T76eqCuB/AFwk\nIvXO5rcA+EMArxOR2iKnfQ3AVgB/Xq5nrhQGBERERERUjd4B4FsAbsQiAYEjCEAB5EUk6qx/G8As\ngDcWOb4fwB8A+ISInFqWJ64QBgREREREVI3OUtVHYZf8H+9t7+8nIiEAHwBws6omAVwF4Meqmgfw\nXZQIKFT1mwBuht10aN3mu9ftgxERERERVYJTYv8EAKjqAIC7AVxd5ND3isguAPcD6AXwXmf76wG4\nHYO/BeBKT1Miv98DcDyAPynLw1fAqgIC9tomIiIiog3o1wFc5eQfdwHodrb53aCqO1T1fFX9gKqO\niUgMwGUAfuac+9fOsUU7CqvqIIAPAfiUiBxf7jdSDqsKCNhrm4iIiIg2oDOcTP4OJw95KYDtInLe\nEs79NQAfc89V1UsB/CeK1zAAAFT1fwD8DHZH43WnIk2G2GubiIiIiNYjETkdwEvebU6zoUXzrY43\nA7jFt+2HAHaKSOMC5/0+gFOW+pxHU6X6ELDXNhERERGtN8cB+B6AN4jIue5GEbkGQA+AD4jIJ0Xk\nmwDOht2H4D89x/0tgCsBfNqzzQTwSQAhALtE5LcA/DOA94nIJ93jVHUYdn8Crdi7WyGxC+hXeRER\nBbBTVe9w1v9XVd8mIh0A+gCcq6q7PcfvAnC/qv6l02v7xwAKqnqViLwdQEhVvyUiXwDQqapv9py7\nA8AOVb1ORH4AYDOAi1TVEpFdniZMZTGTjhewvB+cATuYISIiIqI57wRgLeN4qY0kzNXcUETqVHVa\nRGoAzMDOk/5yNdc8FpW9hoC9tomIiIhonbjZeT0HdkDwwho+y7oVqMA13V7blznrm2G39/8L33E3\nqOpfejf4em0DdudhwO61fYP/Rqo6KCIfAvCfHF2IiIiIiHwOichDACIAPqCqM2v9QOtRJQKCM1T1\nfHfFaTZ0SETOcyZ/WIjba/t/POd/EXYNwxEBAWD32naaGX0N67BNFhERERGtDVVdSl/WqlfWJkPs\ntU1EREREtLGUMyBgr20iIiIiog1mxaMMVUuvbY4yRERERFQWR32UIVqa1dQQsNc2EREREdEGt5pO\nxey1TURERES0wa04IGCvbSIiIiKija/sE5MREREREdHGwYCAiIiIiKiKMSAgIiIiIqpiDAiIiIiI\niKoYAwIiIiIioirGgICIiIiIqIoxICAiIiIiqmIMCIiIiIiIqhgDAiIiIiKiKsaAgIiIiIioijEg\nICIiIiKqYgwIiIiIiIiqGAMCIiIiIqIqxoCAiIiIiKiKMSAgIiIiIqpiDAiIiIiIiKoYAwIiIiIi\noirGgICIiIiIqIoxICAiIiIiqmIMCIiIiIiIqhgDAiIiIiKiKsaAgIiIiIioijEgICIiIiKqYgwI\niIiIiIiqGAMCIiIiIqIqxoCAiIiIiKiKMSAgIiIiIqpiDAiIiIiIiKoYAwIiIiIioirGgICIiIiI\nqIoxICAiIiIiqmIMCIiIiIiIqhgDAiIiIiKiKsaAgIiIiIioigXW+gE2gGkAdcs4Pg+gu0LPQkRE\nRLRR5QGYyzh+ulIPQvOJqq71MxARERER0RphkyEiIiIioirGgICIiIiIqIoxICAiIiIiqmIMCIiI\niIiIqhgDAiIiIiKiKsaAgIiIiIioijEgICIiIiKqYgwIiIiIiIiqGAMCIiIiIqIqxoCAiIiIiKiK\nMSAgIiIiIqpiDAiIiIiIiKoYAwIiIiIioirGgICIiIiIqIoxICAiIiIiqmIMCIiIiIiIqhgDAiIi\nIiKiKsaAgIiIiIioijEgICIiIiKqYgwIiIiIiIiq2P8PWL58L8cSrowAAAAASUVORK5CYII=\n", 245 | "text/plain": [ 246 | "
" 247 | ] 248 | }, 249 | "metadata": {}, 250 | "output_type": "display_data" 251 | } 252 | ], 253 | "source": [ 254 | "# Plot\n", 255 | "sankey(\n", 256 | " left = df_plot[\"source\"], right = df_plot[\"target\"], \n", 257 | " leftWeight= df_plot[\"units\"], rightWeight = df_plot[\"units\"], fontsize=12, colorDict=colors\n", 258 | ")\n", 259 | "plt.gcf().set_size_inches((12,6))\n", 260 | "plt.title('Distribution of Production by Country')\n", 261 | "plt.show()" 262 | ] 263 | } 264 | ], 265 | "metadata": { 266 | "kernelspec": { 267 | "display_name": "Python 3", 268 | "language": "python", 269 | "name": "python3" 270 | }, 271 | "language_info": { 272 | "codemirror_mode": { 273 | "name": "ipython", 274 | "version": 3 275 | }, 276 | "file_extension": ".py", 277 | "mimetype": "text/x-python", 278 | "name": "python", 279 | "nbconvert_exporter": "python", 280 | "pygments_lexer": "ipython3", 281 | "version": "3.6.1" 282 | } 283 | }, 284 | "nbformat": 4, 285 | "nbformat_minor": 2 286 | } 287 | -------------------------------------------------------------------------------- /Stacked Bar Plot.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 30, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import pandas as pd\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import datetime\n", 14 | "random.seed(1447)" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 2, 20 | "metadata": { 21 | "collapsed": true 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "pd.set_option('display.max_colwidth', 0)\n", 26 | "pd.set_option('display.max_columns', None)\n", 27 | "pd.options.display.max_seq_items = 2000" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 3, 33 | "metadata": {}, 34 | "outputs": [ 35 | { 36 | "data": { 37 | "text/html": [ 38 | "" 43 | ], 44 | "text/plain": [ 45 | "" 46 | ] 47 | }, 48 | "metadata": {}, 49 | "output_type": "display_data" 50 | } 51 | ], 52 | "source": [ 53 | "%%html\n", 54 | "" 59 | ] 60 | }, 61 | { 62 | "cell_type": "markdown", 63 | "metadata": {}, 64 | "source": [ 65 | "## Parameters\n", 66 | "### Shipments Data" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": 25, 72 | "metadata": {}, 73 | "outputs": [ 74 | { 75 | "name": "stdout", 76 | "output_type": "stream", 77 | "text": [ 78 | "10,000 lines\n" 79 | ] 80 | }, 81 | { 82 | "data": { 83 | "text/html": [ 84 | "
\n", 85 | "\n", 98 | "\n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | "
TestOrder TimeOrder DateCityStore#ShipmentOrder AmountTransmission OnTimeTransmissionStart PickPack...Store ArrivalStore Arrival DateDelivery OnTimeDelivery TimeExtraction TimeLast StatusReason CodeLateIs LateLT
012021-05-02 17:00:00.0000002021-05-02CITY1CITY1/ST52021-05-02/CITY1/ST5/12759False2021-05-03 17:00:00.0000002021-05-04 07:00:00.000000...2021-05-06 16:36:04.5523002021-05-06False2021-05-07 16:30:00.0000002021-05-11 10:00:00Delivery TimeMultiLateTrue4.979167
122021-05-09 12:00:00.0000002021-05-09CITY2CITY2/ST92021-05-09/CITY2/ST9/21503True2021-05-09 13:19:07.4901002021-05-10 07:00:00.000000...2021-05-12 16:19:07.9386472021-05-12True2021-05-12 16:19:07.9386472021-05-11 10:00:00TakeoffNaNOnTimeFalse3.179953
232021-05-02 14:00:00.0000002021-05-02CITY2CITY2/ST12021-05-02/CITY2/ST1/35140True2021-05-02 15:32:13.2228382021-05-03 07:00:00.000000...2021-05-05 14:46:07.5744112021-05-05True2021-05-05 14:46:07.5744112021-05-11 10:00:00Delivery TimeNaNOnTimeFalse3.032032
342021-05-11 11:00:00.0000002021-05-11CITY4CITY4/ST32021-05-11/CITY4/ST3/41677True2021-05-11 12:01:04.1666192021-05-12 07:00:00.000000...2021-05-14 15:46:42.4184812021-05-14True2021-05-14 15:46:42.4184812021-05-11 10:00:00OpenNaNOnTimeFalse3.199102
452021-05-08 10:00:00.0000002021-05-08CITY4CITY4/ST12021-05-08/CITY4/ST1/54158True2021-05-08 10:56:14.0625002021-05-09 07:00:00.000000...2021-05-11 16:00:59.0032112021-05-11True2021-05-11 16:00:59.0032112021-05-11 10:00:00Start ClearanceNaNOnTimeFalse3.250683
\n", 248 | "

5 rows × 35 columns

\n", 249 | "
" 250 | ], 251 | "text/plain": [ 252 | " Test Order Time Order Date City Store \\\n", 253 | "0 1 2021-05-02 17:00:00.000000 2021-05-02 CITY1 CITY1/ST5 \n", 254 | "1 2 2021-05-09 12:00:00.000000 2021-05-09 CITY2 CITY2/ST9 \n", 255 | "2 3 2021-05-02 14:00:00.000000 2021-05-02 CITY2 CITY2/ST1 \n", 256 | "3 4 2021-05-11 11:00:00.000000 2021-05-11 CITY4 CITY4/ST3 \n", 257 | "4 5 2021-05-08 10:00:00.000000 2021-05-08 CITY4 CITY4/ST1 \n", 258 | "\n", 259 | " #Shipment Order Amount Transmission OnTime \\\n", 260 | "0 2021-05-02/CITY1/ST5/1 2759 False \n", 261 | "1 2021-05-09/CITY2/ST9/2 1503 True \n", 262 | "2 2021-05-02/CITY2/ST1/3 5140 True \n", 263 | "3 2021-05-11/CITY4/ST3/4 1677 True \n", 264 | "4 2021-05-08/CITY4/ST1/5 4158 True \n", 265 | "\n", 266 | " Transmission Start PickPack ... \\\n", 267 | "0 2021-05-03 17:00:00.000000 2021-05-04 07:00:00.000000 ... \n", 268 | "1 2021-05-09 13:19:07.490100 2021-05-10 07:00:00.000000 ... \n", 269 | "2 2021-05-02 15:32:13.222838 2021-05-03 07:00:00.000000 ... \n", 270 | "3 2021-05-11 12:01:04.166619 2021-05-12 07:00:00.000000 ... \n", 271 | "4 2021-05-08 10:56:14.062500 2021-05-09 07:00:00.000000 ... \n", 272 | "\n", 273 | " Store Arrival Store Arrival Date Delivery OnTime \\\n", 274 | "0 2021-05-06 16:36:04.552300 2021-05-06 False \n", 275 | "1 2021-05-12 16:19:07.938647 2021-05-12 True \n", 276 | "2 2021-05-05 14:46:07.574411 2021-05-05 True \n", 277 | "3 2021-05-14 15:46:42.418481 2021-05-14 True \n", 278 | "4 2021-05-11 16:00:59.003211 2021-05-11 True \n", 279 | "\n", 280 | " Delivery Time Extraction Time Last Status \\\n", 281 | "0 2021-05-07 16:30:00.000000 2021-05-11 10:00:00 Delivery Time \n", 282 | "1 2021-05-12 16:19:07.938647 2021-05-11 10:00:00 Takeoff \n", 283 | "2 2021-05-05 14:46:07.574411 2021-05-11 10:00:00 Delivery Time \n", 284 | "3 2021-05-14 15:46:42.418481 2021-05-11 10:00:00 Open \n", 285 | "4 2021-05-11 16:00:59.003211 2021-05-11 10:00:00 Start Clearance \n", 286 | "\n", 287 | " Reason Code Late Is Late LT \n", 288 | "0 Multi Late True 4.979167 \n", 289 | "1 NaN OnTime False 3.179953 \n", 290 | "2 NaN OnTime False 3.032032 \n", 291 | "3 NaN OnTime False 3.199102 \n", 292 | "4 NaN OnTime False 3.250683 \n", 293 | "\n", 294 | "[5 rows x 35 columns]" 295 | ] 296 | }, 297 | "execution_count": 25, 298 | "metadata": {}, 299 | "output_type": "execute_result" 300 | } 301 | ], 302 | "source": [ 303 | "df_rep = pd.read_csv('In/stacked_bar.csv', sep=',', index_col = 0)\n", 304 | "print('{:,} lines'.format(len(df_rep)))\n", 305 | "df_rep.head()" 306 | ] 307 | }, 308 | { 309 | "cell_type": "code", 310 | "execution_count": 14, 311 | "metadata": { 312 | "collapsed": true 313 | }, 314 | "outputs": [], 315 | "source": [ 316 | "# PARAMS\n", 317 | "EXTRACTION_DAY = '2021-05-11'\n", 318 | "EXTRACTION_DATE = '{} 10:00:00'.format(EXTRACTION_DAY)\n", 319 | "EXTRACTION_DAY = pd.to_datetime(EXTRACTION_DAY).date()" 320 | ] 321 | }, 322 | { 323 | "cell_type": "code", 324 | "execution_count": 22, 325 | "metadata": {}, 326 | "outputs": [ 327 | { 328 | "data": { 329 | "text/html": [ 330 | "
\n", 331 | "\n", 344 | "\n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | "
Last StatusOrder DateDelivery TimeEnd ClearanceLeaving AirportOpenOrder TimePickpackStart ClearanceStart PickPackTakeoff
02021-05-01531.00.00.00.00.00.00.00.00.0
12021-05-02506.00.00.00.00.00.00.00.00.0
22021-05-03508.00.00.00.00.00.00.00.00.0
32021-05-04523.00.01.00.00.00.00.00.00.0
42021-05-05516.00.06.00.00.00.00.00.00.0
\n", 428 | "
" 429 | ], 430 | "text/plain": [ 431 | "Last Status Order Date Delivery Time End Clearance Leaving Airport Open \\\n", 432 | "0 2021-05-01 531.0 0.0 0.0 0.0 \n", 433 | "1 2021-05-02 506.0 0.0 0.0 0.0 \n", 434 | "2 2021-05-03 508.0 0.0 0.0 0.0 \n", 435 | "3 2021-05-04 523.0 0.0 1.0 0.0 \n", 436 | "4 2021-05-05 516.0 0.0 6.0 0.0 \n", 437 | "\n", 438 | "Last Status Order Time Pickpack Start Clearance Start PickPack Takeoff \n", 439 | "0 0.0 0.0 0.0 0.0 0.0 \n", 440 | "1 0.0 0.0 0.0 0.0 0.0 \n", 441 | "2 0.0 0.0 0.0 0.0 0.0 \n", 442 | "3 0.0 0.0 0.0 0.0 0.0 \n", 443 | "4 0.0 0.0 0.0 0.0 0.0 " 444 | ] 445 | }, 446 | "execution_count": 22, 447 | "metadata": {}, 448 | "output_type": "execute_result" 449 | } 450 | ], 451 | "source": [ 452 | "# Group by date\n", 453 | "df_stat = pd.DataFrame(df_rep.groupby(['Order Date', 'Last Status'])['#Shipment'].nunique())\n", 454 | "df_stat.columns = ['#Shipments']\n", 455 | "df_stat = pd.pivot_table(df_stat.reset_index(), index = 'Order Date', columns = 'Last Status', \n", 456 | " values = '#Shipments', aggfunc = np.sum).fillna(0)\n", 457 | "\n", 458 | "df_plot = df_stat.reset_index()\n", 459 | "df_plot['Order Date'] = pd.to_datetime(df_plot['Order Date']).dt.date\n", 460 | "df_plot = df_plot[df_plot['Order Date']<=EXTRACTION_DAY]\n", 461 | "df_plot.head()" 462 | ] 463 | }, 464 | { 465 | "cell_type": "markdown", 466 | "metadata": {}, 467 | "source": [ 468 | "### Plot Number of Shipments per status" 469 | ] 470 | }, 471 | { 472 | "cell_type": "code", 473 | "execution_count": 29, 474 | "metadata": {}, 475 | "outputs": [ 476 | { 477 | "data": { 478 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAI3CAYAAADHkkVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsT\nAAALEwEAmpwYAABkE0lEQVR4nO3dd5wcdf348debVEIAkdBbaFISIKQAoQaQ8hPFLyCC1KgQiiAK\noiIoQVFpIkWQohBQiAgICIoElE6AFEkktFAChJJCT4OUz++P2Ts2lys74W537/b1fDz2cbczszPv\nfe/c3Lz3M5/5REoJSZIkSVLtWqbSAUiSJEmSKsvCUJIkSZJqnIWhJEmSJNU4C0NJkiRJqnEWhpIk\nSZJU4ywMJUmSJKnGWRhKUhWJiCkR8YPPuowkSVIeFoaSVCYRsUpEXF4o7D6OiGkR8e+I2CPnqgYB\nl7dFjG0hIlJEfK0N1z+ksI1eOV/Xu/C6gW0VWzWLiOER8fRSvva0iBgTER9GxIyIuDMi+jZYJgrb\neDMi5kbEAxHRp2h+74j4Y0S8XJj/ckT8OiKWbbCeiyNibETMi4gpOWLcJSLGFV73ckQc28j7Tw0e\nb5ew3mERcX9EvF94Te9Gljk9Ih6NiNkR4YDRktoFC0NJKp9bgW2AbwNfAL4M3A2snGclKaUZKaU5\nrR+eyiUiulZ4+10+4yqGkH05sT2wG7AAuC8iPl+0zA+BU4ATyb7MmA7cGxHLF+ZvCnQCjgP6FJY7\nAri4wbaWAa4Dri81uIhYH/gn8BiwNfBr4NKIOKDBos8DaxQ9tihh9T2AUcDwZpbpBvwNuKjUmCWp\n4lJKPnz48OGjjR/A54AEfLGF5aYAZwBXAh8CU4FTG1nmB0XPE3AC8A9gDvAqcFjR/N6FZQ4GHgTm\nAv8FtgT6kp08zwYeAdZvsK2vAOOAecArwC+BrqXGW5ifih5TCtPXAe4A3i3E/BxwcDN52QL4d2Eb\ns4AJwK5F7634MaLwmr2Bh4H3Ctu5B9isQd6KHw8Upo8A7mqw/eHA0y3F00z8DwC/By4AZgBjCtM3\nL3xuH5EVTiOB1YteNwK4q5DjaYVtXQssW7RMN7ICZFrhc3oc2LFo/pDC+/sS8CTwSWF/afj+h36G\n/bsnsBD4SuF5AG8Bpxcts2zhfR7TzHqOB95pYt4P6vafEuI5F5jcYNofgNFNfaZL8Z4HFvLWu5ll\nvgakz3Ls8OHDh49yPWwxlKTymFV47BsR3VtY9vvA/4D+ZCe450XE4BZecxbwd6AfcBVwfSOXSJ5V\nWN/WwPtkRcilwOlkLZndgUvqFo6IvYAbgN+Rteh8i+xE91c54h1U+Hk0WYtM3fPLyVpedi2s+3uF\nmJpyI1mhsU3hPQ4nK4JeB+pagfoUtnFS4flyZAXTNmTF0QfAnUWtddsUfu5deN3+zWy/1HiacxhZ\nwbQTcERErAE8BDxdWM8XyQqsOyKi+P/zLsBWwO5k73VPsjzXOQ84iOzz2Zrss/hXYf3FziUrMDcl\nK8p/w+ItZjcBRMSIPJdsFixP1rL3XuH5+sDqZC1rAKSU5hbe7/bNrGeFonV8FoOLt11wDzCwQWvp\nBoVLXV+JiL9ExAatsG1Japc6VzoASaoFKaUFETEUuBoYFhH/BR4Fbk4pPdFg8VEppd8Vfr80Ir5L\nVhSMbmYTf0spXVn4/ZcRsStZsXVY0TIXppT+CRARvwHuBH6aUrq/MO13ZEVgndOB81NK1xaevxQR\nPwL+HBGnppTq+k41GW9KaUZEALyfUiruv7UecGtKaULh+SvNvLe65S9IKT1XeP5i3YyIeLfw6/SU\n0sy66SmlW4tXEBHfJGvh24asdXRGYdY7DWIrRZPxNOOVlNIpRfH8HJiQUvpR0bQjyFo3B5K17kHW\nEvfNlNIs4OnCZ/DHiDitMP844KiU0j8K6ziW7PLO75AVgnWGp5Tqi6WImAUsaOS9vwW8VML7KXYx\n8BSf7qOrF35Oa7DcNGCtxlYQEeuRtQo2/OJhaawO3NfItjsDvcje4xPAULLW6lXJcvVYRPRJKb3T\nCjFIUrtii6EklUmhUFmT7PLMu8laTh6PiJ80WHRig+dvkp24Nqdh0Tia7DLFptZbd8L+vwbTlouI\nHoXnA4DTI2JW3YOspWw5Pj3xX9p4LwbOiIjREXF2RAxoYfkLgT9ExH8KN/bYtIXliYgNI+LGiHgp\nIj4svL9lgHVbem0JcsdDdklusQHAzg3y+3ph3oZFy00sFIV1RgNdC8tsCHQh+5IBgJTSQhr//MeW\nECMppdNSSruXsixARFwI7AgcUNh2bhGxGvAv4F7gtzlfO6vocUWpr0sp3Z1S+mtKaWJK6T6yPr/L\nAEcW1vuTButujf1GkqqWhaEklVFKaV5K6d6U0s9TStsDfwSGN7gZyfyGL6N1jtfF603NTFum6OdZ\nZJdK1j22BDbm09a2huuoW0+z8aaU/kh2ueG1ZDfieSwihjez/HCyQud2soJ6YkR8q7ltkPXNWwU4\nBtiW7DLLBWRFVXMWkV3yWWyxm7UsZTyzGzxfhqx/Yb8Gj40LsX9WDe+G2XD7n1lE/Bb4BrBbSunl\noll1rZCrNXjJakXz6taxOnA/2SW1hxe1RJeqX9HjZ0Xbb2zbC4CZNKJQfE8iyz/AFQ3W/WbOuCSp\nXbEwlKTKeobs8raW+h22ZLtGnj/7Gdc5Htg0pfRiI48FOdYzn+zuk4tJKU1NKV2VUvo62Qn9sOZW\nklKanFK6JKW0D1lBfVRh1ieFn/XbiIiVyfrS/SqldF9K6VmyfnDFXSiWeF3BDLI+d8X65YinVOPJ\n+kW+2kh+PypabouIWK7o+XaF2F8qPD4BdqibGRGdyPrYPdPC9j+hkc+lVBFxMZ8Whc81mP0KWXG2\nR9Hy3cn6Vz5WNG0NshvzPAt8I+d+BUCDvE0vTB5dvO2CPYCxKaWGX2QUx7cp2WWmpJTe/Qz7vCS1\nO/YxlKQyKBQqNwPXkF16+RFZP7IfAv9OKX34GTexf0SMITvJ/hpZH79tP+M6fw7cFRGvAn8la23p\nC2yTUvphjvVMAXaPiAeBj1NK7xWKiruBF8huOLI3TRQyhXHtLiDL3xSylp8dyfqIQXYX1gTsExF3\nkt119T2ylqGjI+J1sn5t5xfeQ53phWX3KtxsZV5K6QPgP8APCy2AD5HdlGYHsjuulhJPqS4juynP\nTRFxLllBugHwdeCUouKwM3BNoU/imsA5wNUppdmFeH4PnBsRM8kKsu8XYmpprMspwHoR0R94Dfgo\npfRxRPya7DNu8nLSiLgMOBz4P+C9QqsfwKyU0qyUUoqIi4CfRMRzZJ/zGWQ3YLqxsI41yfbXN8n6\nw/Yq9EcFmFF3WWpEbER2U541ga4R0a+wzDMppbrivqErgBMKMVxJ9vkNJStk697DBWT9bF8ju/T5\np2SXSV/X1PsuvG51skupv1CYtHlEfA54LaX0bmGZdYHPk901l6KYX2xwWbAkVY9K3hLVhw8fPmrl\nQTakwK+AMWRFyxxgMllftc8XLTeFoqEoCtMeAH7X1DJ8OlzFv8gKndeAI4vm9y4sM7Bo2hK32icr\nzhLQs2janmRDPswhu3HLWOCEnPF+pfBe5/PpcBWXFqbNIyuI/gKs1UTuupIVE1OAj8kKiauAFYqW\n+SlZS88iPh2uYjeyyxPnFX7uRVaYDC163VGFfC2kMFxFYfrwwvo+ICuwfkVhaINS4mnkPSyWk6Lp\nGwO3FPaJuWR3Cb2UwpAgfDpcxc/ICtlZZIVLjwb71kVkfSg/punhKno1sk/Wbbt+uIrCNqe0sD83\nHOqi7jG8aJkoyuM8sqFS+hbNH9rMeno3yF2zyzQR4y5krbIfkxXMxzaY/5fCZ/cJ8AbZOKObl/C3\nPLyJeIr3qxFNLDOk0sciHz58+GjqESnlvZRfklRNIiIBB6aUbql0LGpdETGCrKD7cqVjkSR1bPYx\nlCRJkqQaZ2EoSZIkSTXOS0klSZIkqcbZYihJkiRJNa6mhqvo1atX6t27d6XDkCRJkqSKGDdu3MyU\n0ioNp9dUYdi7d2/Gjh1b6TAkSZIkqSIK4xMvwUtJJUmSJKnGWRhKkiRJUo2zMJQkSZKkGldTfQzr\nzJ8/n6lTpzJv3rxKhyJJkiRJra579+6svfbadOnSpaTla7IwnDp1Kssvvzy9e/cmIiodjiRJkiS1\nmpQS77zzDlOnTmX99dcv6TU1eSnpvHnzWHnllS0KJUmSJHU4EcHKK6+c6wrJmiwMAYtCSZIkSR1W\n3nqnZgtDSZIkSVLGwhBYZ731iIhWe6yz3notbrNTp07069ePPn36sNVWW/Gb3/yGRYsWNfuaKVOm\n0LdvXwDGjh3Ld7/73VZ5/y2555576NevH/369aNnz55ssskm9OvXjyOOOIIrrriC66+/vixxLK01\n11mzVT/fNddZs8Vt9uzZs83eT2vnfObMmXTp0oUrrrhiself+tKXeP/991ttO8Vuv/12nnnmmTZZ\nN0DvddZp1c+89zrrtLjNqVOn8tWvfpWNN96YDTfckJNOOolPPvmkzd5ja+i97tqtm6d1125xm58l\nT0OGDGHs2LFL9V5/+ctf1h/H6o6//fr145JLLuGoo45q0/1xafVee/XW/XzWXr3Fbdblpm/fvhx4\n4IHMmTOnpP83bXnMGzFiBCeccEKbrb/O2mu27nFj7TVbPm788pe/pE+fPmy55Zb069ePJ554AoCL\nLrqIOXPm5H4PI0aM4M0332xy/gUXXMCmm25Kv379GDRoUP3/ks/yt9We9e7dyv8relfXZz506FDW\nX399+vXrR//+/Rk9ejTQ8v/3oUOHcssttywxfciQIWyyySZstdVW7LDDDjz//PO54y3HvrbuWq17\n3rfuWs2f973zzjv1/1NWX3111lprrfrnDf+/NZXbvC655BI222wzDj30UD7++GO++MUv0q9fP266\n6abPtN6avPlMQ1Nfe40bx7/eaus7pH/LB4Zll12Wp556CoDp06dzyCGH8OGHH3LWWWeVtI2BAwcy\ncODAzxImAAsWLKBz5+Z3g7322ou99toLyP6gL7jgglbZdrm8NfUtBozo22rrGzf06VZb19I49thj\nW3V9N998M9tttx0jR45cbN3//Oc/l1g2pURKiWWWWfrvlBYsWMDtt9/Ol7/8ZTbffPOlXk9zXp06\nlflXXdlq6+sy7Jhm56eU2H///TnuuOO44447WLhwIcOGDeP000/n/PPPb7U4Wturr7/BwvtParX1\nddr14mbn58lTKcemlixcuJBOnToBcPrpp3P66acDWRFTd/ytZq++MY10ZuutL86a1uIyxf+bDj30\nUK644gpOPvnkdnXMX1pvvDWV43e6qtXWd/nDw5qdP3r0aO666y7Gjx9Pt27dmDlzZv1J5EUXXcRh\nhx1Gjx49St7ewoULGTFiBH379mXNNZc8kb3iiiu49957efLJJ1lhhRX48MMPue222/K9qRa0xt9t\nOb366lRSar3/FRHN/68o92cOcP755/O1r32NUaNGccwxxzBx4sRG/7+X6oYbbmDgwIFcddVVnHrq\nqfz9739f6nW1ldfffIs7vrFpq63vqyOfa3b+yiuvXH/cHD58OD179uQHP/hBq22/MZdffjn33Xcf\na6+9No8//jhAq/xfs8WwCqy66qpcddVV/O53vyOlxMKFCzn11FMZNGgQW265JVdeueRB64EHHuDL\nX/4yixYtonfv3ot987Pxxhszbdo0ZsyYwQEHHMCgQYMYNGgQjz76KJDttIcffjg77LADhx9+ODvv\nvPNiO9OOO+7IhAkTSop9+PDhXHDBBUBWNH7/+99n4MCBbLbZZowZM4b999+fjTfemDPOOKP+NX/+\n85/ZZptt6NevH8cccwwLFy5ciqy1Py+99BJ77703AwYMYKedduK557IDzZ133sm2227L1ltvzRe/\n+EWmTZvW7OfaMOc/+tGP2GabbfjCF77Aww8/DMCcOXP4+te/zuabb85+++3Htttu2+Q3dCNHjuQ3\nv/kNb7zxBlOnTq2f3rt3b2bOnMmUKVPYZJNNOOKII+jbty+vv/46PXv25Pvf/z59+vRh9913Z8aM\nGUB2UNpuu+3Ycsst2W+//Xjvvffq4/ze977HwIEDOffcc/n73//OqaeeSr9+/XjppZdaPdfl9p//\n/Ifu3bvzzW9+E8haXX77299yzTXXcPnll/PVr36VIUOGsPHGGy/25U9Tfws9e/bk9NNPZ6uttmK7\n7bZj2rSWT+jbg+byNGfOHEaMGMG+++7Lbrvtxu67787cuXM5+OCD2Wyzzdhvv/2YO3du/bpGjRrF\n4MGD6d+/PwceeCCzZs0Csv32Rz/6Ef379+fmm28uKa7ib7B79uzJqaeeSp8+ffjiF7/Ik08+yZAh\nQ9hggw3qT4BKOUZ3BDvttBMvvvhi/f8bgFmzZvHNb36TLbbYgi233JJbb711sdfMnDmTwYMH849/\n/IMHHniAnXfemX322YdNNtmEY489tv7KmOOOO46BAwfSp08fzjzz0+p3zJgxbL/99my11VZss802\nfPTRR4ut/x//+AeDBw9m5syZbfzu295bb71Fr1696NatGwC9evVizTXX5JJLLuHNN99k1113Zddd\ndwWazlfx/j5y5EjGjh3LoYceSr9+/Rb7ewH41a9+xe9//3tWWGEFAFZYYQWOPPLIJeJq6m/r5z//\nOYMGDaJv374MGzaMlBKw+PH94osvbvR/GmTnC9/61rfq/54uueSS+m1ef/31bLnllmy11VYcfvjh\nAE2ew7Rn5f7Mi+288868+OKL9euo+xtqLPfFfvrTnzJ06NAlztXq1jdlyhR22mkn+vfvT//+/Xns\nscfqlzn33HPZYost2Gqrrfjxj3+82OsXLVrE0KFDFzs/7EiuvvpqBg0axFZbbcUBBxzQaGtwcW7P\nP//8+v8pxZ/3hRdeSN++fenbty8XXXQRkDUQvPzyy/y///f/OPfccznssMMYM2ZMq5xTWRhWiQ02\n2ICFCxcyffp0/vjHP7LiiisyZswYxowZw9VXX80rr7zS6OuWWWYZvvrVr9Z/6/fEE0+w3nrrsdpq\nq3HSSSfx/e9/nzFjxnDrrbdy1FFH1b/umWee4b777mPkyJF8+9vfZsSIEQC88MILzJs3j6222mqp\n3kfXrl0ZO3Ysxx57LF/96le57LLLePrppxkxYgTvvPMOzz77LDfddBOPPvooTz31FJ06deKGG25Y\nqm21N8OGDePSSy9l3LhxXHDBBRx//PFAVog//vjj/Pe//+Xggw/mvPPOa/ZzbWjBggU8+eSTXHTR\nRfVFx+WXX85KK63EM888wy9+8QvGjRvXaEyvv/46b731Fttssw1f//rXm7wEYfLkyRx//PFMmjSJ\n9dZbj9mzZzNw4EAmTZrELrvsUr/dI444gnPPPZeJEyeyxRZbLFYEffLJJ4wdO5bTTz+dfffdl/PP\nP5+nnnqKDTfccOmTWiUmTZrEgAEDFpu2wgorsO6669Z/PrfeeisTJ07k5ptvZuzYsc3+LcyePZvt\nttuOCRMmsPPOO3P11VdX4m21uubyVHfCMn78eG655RYefPBBfv/739OjRw+effZZzjrrrPr9eObM\nmZx99tncd999jB8/noEDB3LhhRfWr3PllVdm/PjxHHzwwbljnD17NrvtthuTJk1i+eWX54wzzuDe\ne+/ltttu42c/+xlArmN0e7VgwQLuvvtutthii8Wm/+IXv2DFFVfkf//7HxMnTmS33Xarnzdt2jT2\n2Wcffv7zn7PPPvsA8OSTT3LppZfyzDPP8NJLL/G3v/0NyC6nGzt2LBMnTuTBBx9k4sSJfPLJJxx0\n0EFcfPHFTJgwgfvuu49ll122fv233XYb55xzDv/85z/p1atXGbLQtvbcc09ef/11vvCFL3D88cfz\n4IMPAvDd736XNddck/vvv5/7778faDxfder298MOO4yBAwdyww038NRTTy2Wuw8//JCPPvqIDTbY\noNmYmvvbOuGEExgzZgxPP/00c+fO5a677qp/Xd3x/ZRTTmn0f1qd5557jnvuuYcnn3ySs846i/nz\n5zNp0iTOPvts/vOf/zBhwgQuvji78qC5c5j2qpyfeUN33nnnEn/PTeW+zqmnnsqMGTO49tpr66++\naLi+VVddlXvvvZfx48dz00031V92fvfdd3PHHXfwxBNPMGHCBH74wx/Wv3bBggUceuihbLzxxpx9\n9tlLkcnqt//++zNmzBgmTJjAZpttxh//+MfF5hfn9t///jeTJ0/mySef5KmnnmLcuHE89NBDjBs3\njmuvvZYnnniCxx9/nKuvvpr//ve/XHHFFfX7y49+9CP+8Ic/sNNOO7XKOVX7ae+vIaNGjWLixIn1\n1yB/8MEHTJ48mS984QuNLn/QQQfx85//nG9+85v85S9/4aCDDgLgvvvuW6zfzIcfflj/zd++++5b\nfwA58MAD+cUvfsH555/PNddcw9ChQ5c69n333ReALbbYgj59+rDGGmsAWeH7+uuv88gjjzBu3DgG\nDRoEwNy5c1l11VWXenvtxaxZs3jsscc48MAD66d9/PHHQNbn6qCDDuKtt97ik08+qR9rpqnPtaH9\n998fgAEDBjBlyhQAHnnkEU46KbtEsG/fvmy55ZaNvvamm27i61//OgAHH3ww3/rWtzjllFOWWG69\n9dZju+22q3++zDLL1Mdz2GGHsf/++/PBBx/w/vvvs8suuwBw5JFHLvZ+m4q/Fuyxxx6svPLKQPZ5\nPfLII3Tu3LnJv4WuXbvWt9AMGDCAe++9tzKBV8Aee+zB5z//eQAeeuih+pOMLbfcsn4/fvzxx3nm\nmWfYYYcdgOykdPDgwfXr+Cz7WteuXdl7772B7DjWrVs3unTpwhZbbFH/99XUMbrUcaKq2dy5c+nX\nrx+QtRh++9vfXqwF4L777uMvf/lL/fOVVloJgPnz57P77rtz2WWX1R8DALbZZpv6YuQb3/gGjzzy\nCF/72tf461//ylVXXcWCBQt46623eOaZZ4gI1lhjjfq/ibqWLcham8eOHcuoUaMWm96e9ezZk3Hj\nxvHwww9z//33c9BBB3HOOec0+j+4sXzV/T205rG1ub+t+++/n/POO485c+bw7rvv0qdPH77yla8s\nEUNT/9MA9tlnH7p160a3bt1YddVVmTZtGv/5z3848MAD64v9ur//ps5h2rI/a1urxGd+6qmncvbZ\nZ7PKKqssUZw0lXvIvgTadtttueqqxS+vPvTQQ1l22WXp3bs3l156KfPnz+eEE06o/4LzhRdeALLP\n75vf/Gb9pbHF6z7mmGP4+te/Xn95f0f09NNPc8YZZ/D+++8za9as+i5ZsGRuR40axahRo9h6662B\n7Jxx8uTJzJo1i/3224/lllsOyM4fHn744frl2oKFYZV4+eWX6dSpE6uuuiopJS699NLFdiKg/qSk\nocGDB/Piiy8yY8YMbr/99vpm+UWLFvH444/TvXv3JV5Tt5MB9OjRgz322IM77riDv/71r022LpWi\n7vKIZZZZpv73uucLFiwgpcSRRx7Jr3/966XeRnu0aNEiPve5zzV6/feJJ57IySefzL777ssDDzzA\n8OHDgaY/14bq8typUycWLFiQK66RI0fy9ttv17dUvfnmm0yePJmNN954seWK95fGRLR8O+SW1tGe\nbb755kt0Jv/www957bXX6Ny58xL5iYhm/xa6dOlS/5ql+VyrVXN52mijjRg/fnxJ+0lKiT322IOR\nI0c2Ov+z7GvFuS8+jtUdw+q239gxuiMo7mOYR+fOnRkwYAD33HPPYoVhY/v+K6+8wgUXXMCYMWNY\naaWVGDp0aIvjbG244Ya8/PLLvPDCCx2qv2OnTp0YMmQIQ4YMYYsttuC6665bokhoKV+l7O8rrLAC\nPXv25OWXX2621bCpv6158+Zx/PHHM3bsWNZZZx2GDx/eZAxN/U8DFjsvaOnY1tw5THtWrs+8Tl0f\nw7wGDRrEuHHjePfddxcr6ur6GNYZPnw4q622GhMmTGDRokUlfV7bb789999/P6ecckqH+3zrDB06\nlNtvv52tttqKESNG8MADD9TPa5jblBKnnXYaxxyzeB/Vhi245eClpFVgxowZHHvssZxwwglEBHvt\ntRe///3vmT9/PpBd3jl79uwmXx8R7Lfffpx88slsttlm9S0Te+65J5deemn9cs39sz/qqKP47ne/\ny6BBg+q/AW4Lu+++O7fccgvTp08H4N133+XVV19ts+1VixVWWIH111+/vs9TSqm+H+cHH3zAWmut\nBcB1111X/5qmPtdS7LDDDvz1r38FssuG//e//y2xzAsvvMCsWbN44403mDJlClOmTOG0005r8mS7\n2KJFi+pP8G+88UZ23HFHVlxxRVZaaaX6fo5/+tOfFjtBLLb88ssv0XeoPdt9992ZM2dO/R3+Fi5c\nyCmnnMLQoUPp0aMH9957L++++y5z587l9ttvZ4cddqjJv4WW8tTQzjvvzI033ghk377WXUq13Xbb\n8eijj9Zffjp79uz6b6nLIe8xuiPZY489uOyyy+qf1/UjjgiuueYannvuOc4999z6+U8++SSvvPIK\nixYt4qabbmLHHXfkww8/ZLnllmPFFVdk2rRp3H333QBssskmvPXWW4wZMwaAjz76qL5wWG+99bj1\n1ls54ogjmDRpUrnebpt6/vnnmTx5cv3zp556ivUKdzUvPkY2la/GNHdsPe200/jOd77Dhx9+CGSt\nEg3vcN3U31ZdUdKrVy9mzZrV7F0Vm/qf1pTddtuNm2++mXfeeQfIjoWQ7xymvSj3Z96SpnIPsPfe\ne/PjH/+YffbZp9n1f/DBB6yxxhoss8wy/OlPf6rvi7jHHntw7bXX1vetK173t7/9bb70pS/x9a9/\nvcN88dnQRx99xBprrMH8+fOX6DLVMLd77bUX11xzTf1VfW+88QbTp09np5124vbbb2fOnDnMnj2b\n2267jZ122qlN47bFEFh73XVLupNonvW1pO5ynfnz59O5c2cOP/xwTj75ZCAr0qZMmUL//v1JKbHK\nKqtw++23N7u+gw46iEGDBtX3FYTsVrbf+c532HLLLVmwYAE777zzEkMS1BkwYAArrLBC/U0h2srm\nm2/O2WefzZ577smiRYvo0qULl112Wf2BsS2ssfYarXon0TXWXqPFZebMmcPaa3966/6TTz6ZG264\ngeOOO46zzz6b+fPnc/DBB7PVVlsxfPhwDjzwQFZaaSV22223xfoqNfa5luL444/nyCOPZPPNN2fT\nTTelT58+rLjiiostM3LkSPbbb7/Fph1wwAEcdNBB9X2pmrLccsvx5JNPcvbZZ7PqqqvW90287rrr\nOPbYY5kzZw4bbLAB1157baOvP/jggzn66KO55JJLuOWWW1q9n+F6a6/d4p1E866vORHBbbfdxvHH\nH88vfvELFi1axJe+9CV+9atfMXLkSLbZZhsOOOAApk6dWt8nBCj730JD662zVot3Es27vuY0l6fG\nHHfccXzzm99ks802Y7PNNqvvn7jKKqswYsQIvvGNb9Rfkn322Wc3ebl9a1uaY/TSWG+t1Uq6k2ie\n9X1WZ5xxBt/5znfo27cvnTp14swzz6y/nL1Tp06MHDmSfffdl+WXX57NN9+cQYMGccIJJ/Diiy+y\n6667st9++7HMMsuw9dZbs+mmm7LOOuvUX7bYtWtXbrrpJk488UTmzp3Lsssuy3333Ve/7U033ZQb\nbriBAw88kDvvvLPVjxtrrbF2i3cSzbu+5syaNYsTTzyR999/n86dO7PRRhvVX1o2bNgw9t577/p+\nRI3lqzFDhw7l2GOPZdlll2X06NGL9Tk77rjjmDVrFoMGDaJLly506dJlia4Dzf1tHX300fTt25fV\nV1+9/nLfxjT3P60xffr04fTTT2eXXXahU6dObL311owYMSLXOczSWm+9tVu8k2je9TWn3J95S5rK\nfZ0DDzyQjz76iH333bfJO5kef/zxHHDAAVx//fXsvffe9a2Ze++9N0899RQDBw6ka9euSxzrTz75\nZD744AMOP/xwbrjhhs90t/OG1llzjRbvJJp3fXnVXS66yiqrsO222y5RXDfM7SGHHFJ/2XbPnj35\n85//TP/+/Rk6dCjbbLMNkP3vacvLSAGi7q5StWDgwIGp7qYPm222WaXDqSpvvvkmQ4YM4bnnnmvV\nP05VxsKFC5k/fz7du3fnpZde4otf/CLPP/88Xbt2bZX19+zZs/6bLTVvxIgRjB07lt/97neVDkUq\nqwceeIALLrhgsZuUSJLKq7G6JyLGpZSWuC7fFkNx/fXXc/rpp3PhhRdaFHYQc+bMYdddd2X+/Pmk\nlLj88stbrSiUJElSx2OLoSRJkiR1QLYYSpLUSiZOmMAnhRvNVJOuXbqw5VKOOStJUkMWhpIkNeOT\n+fPZ6PPVd0v1F99tfogHSZLysDCUJKkZEdVZhJUwfKgkSSWzMJQkqRkpwSo9yzeMSKlmzOrY415K\nksrLW1ACa6y9LhHRao811m55HMNOnTrRr1+/+sc555yTK+bevXszc+bMJabPmjWLY445hg033JAB\nAwYwZMgQnnjiCSAbYkCSJEmSGrLFEHj7jddZ78etN87Sq+d8ucVlll12WZ566qlW22ado446ivXX\nX5/JkyezzDLL8Morr/DMM8+06jYWLlxIp06dWnWdkiRJLfFmUFLbsTCsMr179+bII4/kzjvvZP78\n+dx8881suummvPPOO3zjG9/gjTfeYPDgwTQ2zMhLL73EE088wQ033FA/HuH666/P+uuvv8Sy559/\nPn/961/5+OOP2W+//TjrrLMA+L//+z9ef/115s2bx0knncSwYcOArLXxmGOO4b777uOyyy7jP//5\nD3feeSdz585l++2358orryQiGDJkCNtuuy33338/77//Pn/84x/ZaaedWLhwIT/60Y/417/+xTLL\nLMPRRx/NiSeeyLhx4zj55JOZNWsWvXr1YsSIEayxxhptmGFJktReeTMoqe14KWmFzJ07d7FLSW+6\n6ab6eb169WL8+PEcd9xxXHDBBQCcddZZ7LjjjkyaNIn99tuP1157bYl1Tpo0iX79+rXYmjdq1Cgm\nT57Mk08+yVNPPcW4ceN46KGHALjmmmsYN24cY8eO5ZJLLuGdd94BYPbs2Wy77bZMmDCBHXfckRNO\nOIExY8bw9NNPM3fuXO6669MW1wULFvDkk09y0UUX1RecV111FVOmTOGpp55i4sSJHHroocyfP58T\nTzyRW265hXHjxvGtb32L008//bMlVpIkSVJuthhWSHOXku6///4ADBgwgL/97W8APPTQQ/W/77PP\nPqy00kpLve1Ro0YxatQott56ayDrlzh58mR23nlnLrnkEm677TYAXn/9dSZPnszKK69Mp06dOOCA\nA+rXcf/993PeeecxZ84c3n33Xfr06cNXvvKVJeKfMmUKAPfddx/HHnssnTtnu9znP/95nn76aZ5+\n+mn22GMPILtE1dZCSZIkVcrEiRP45JMqvFy5axe23LJtL1e2MKxC3bp1A7Ib1CxYsKDk1/Xp04cJ\nEya02AcwpcRpp53GMcccs9j0Bx54gPvuu4/Ro0fTo0cPhgwZwrx52aUR3bt3r1/nvHnzOP744xk7\ndizrrLMOw4cPr18uT/wpJfr06cPo0aNLfo+SJElSW/nkk/kM2GTVSoexhHHPT2/zbXgpaTux8847\nc+ONNwJw991389577y2xzIYbbsjAgQM588wz6/sgTpkyhX/84x+LLbfXXntxzTXXMGvWLADeeOMN\npk+fzgcffMBKK61Ejx49eO6553j88ccbjaWuCOzVqxezZs3illtuaTH+PfbYgyuvvLK+UHz33XfZ\nZJNNmDFjRn1hOH/+fCZNmlRKOiRJkiS1IlsMgdXXWqekO4nmWV9L6voY1tl7772bHbLizDPP5Bvf\n+AZ9+vRh++23Z911Gx8S4w9/+AOnnHIKG220Ecsuuyy9evXi/PPPX2yZPffck2effZbBgwcD2Y1l\n/vznP7P33ntzxRVXsNlmm7HJJpuw3XbbNbqNz33ucxx99NH07duX1VdfnUGDBrX4fo866iheeOEF\nttxyS7p06cLRRx/NCSecwC233MJ3v/tdPvjgAxYsWMD3vvc9+vTp0+L6JEmSJLWeaOzulh3VwIED\n09ixY3n22WfZbLPNKh2OJKkdGDt2bNUOcD9w4MBKhyGV1dixY6v2rqT+PXYMY8eOrdpLSZdmH2us\n7omIcSmlJVbmpaSSJEmSVOO8lHQpTZw4kU8++aTSYSyha9eubLnllpUOQ5IkSVI7UrOFYUqJiFjq\n13/yySesv3n1FWCvPDOx0iFIkiRJqrC8XQZrsjDs3r0777zzDiuvvPJnKg4lSdLiJk6YwCfzq3AM\nsC5d2HKrth0DTJKqRUqJd955h+7dS++TW5OF4dprr83UqVOZMWPGUq9j5syZMPn5VoyqdcycOZNn\nn3220mFIUocxc+ZMPv5oUaXDWMJHH79blcf7N996i1WW61LpMJbw5sz5dOnatdJhLGHq1KksXLiw\n0mEsoVOnTqy99tqVDmMJM2fOJOZW3/41c/b8qvx7VH4zZ87k2U4fVzqMJcyc+VHufax79+65/o5r\n8q6krSEiuHH8662yrtZ0SP91cjcbS5KaFhEcv9NVlQ5jCZc/PKwqj/cRwR3f2LTSYSzhqyOfM185\nmK98qjVfyi8iWHj/SZUOYwmddr241fYx70oqqcNac501iYiqe6y5zpqVTo0kSVJJLAwltXuf5bLw\ntlStcVlIS5Kkhmqyj6GkjmXBxwuq9tLuavTW1LcYMKJvpcNYwrihT1c6BEmSapYthpIkSZJU4ywM\nJUmSJKnGWRhKkiRJUo2zj6Ek1ZjO3TpXZX++zt38lyRJUqX4X1iSaow365EkSQ15KakkSZLUAfXu\nvU7FhyJq7NG7t18EViNbDCVJkqQO6NVXp5LSlZUOYwkRx1Q6BDXCFkNJkiRJqnEWhpIkSZJU4ywM\npSq0znrrVfz6/8Ye66y3XqVTI0mSpDZgH0OpCk197TXvGilJkqSyKVthGBHDgTMbTJ6WUlq9MD8K\n84cBKwFPAN9JKU0qWsdKwCXAvoVJfwdOTCm936bB6zNbZ731mPraa5UOYwlrr7sur7/6aqXDkFTF\nunTuxuUPD6t0GEvo0rlbpUOQJHUg5W4xfB4YUvR8YdHvPwROAYYWlvsZcG9EbJJS+qiwzI3AusDe\nhed/AP4EfKXtQlZrsAVMUns1f8HHDBjRt9JhLGHc0KcrHYIkqQMpd2G4IKX0dsOJhdbC7wHnpJRu\nLUw7EpgOHAJcGRGbkRWEO6aURheWOQZ4uFA8Pl+m9yBJkiRJHUq5bz6zQUS8GRGvRMRfImKDwvT1\ngdWBUXULppTmAg8B2xcmDQZmAY8Vre9RYHbRMpIkSZKknMpZGD5Bdpno3sDRZIXgYxGxcuF3gGkN\nXjOtaN7qwIyUUqqbWfh9etEyS4iIYRExNiLGzpgxozXehyRJkiR1KGW7lDSldHfx84h4HHgZOBJ4\nvA23exVwFcDAgQNTC4tLkiRJUs2p2DiGKaVZwCRgY6Cu3+FqDRZbrWje28Aqhf6IQH3fxFWLlpEk\nSZIk5VSxcQwjojuwKXA/8ApZcbcHMKZo/k7AqYWXjAZ6kvU1rOtnOBhYjsX7HUqSpArp1qUTXx35\nXKXDWEK3Lp0qHYIkVbVyjmN4AXAn8BpZK99PyYq661JKKSIuAn4SEc8BLwBnkN1s5kaAlNKzEfEv\nsjuU1g0odSVwl3cklSSpOnw8fyHH73RVpcNYQjWORSmp+vTo3oVOu15c6TCW0KN7lzbfRjlbDNcG\nRgK9gBlk/Qq3SynVjS5+HrAscBmfDnC/Z9EYhpANXXEpcE/h+d+BE9o+dEmSJEkd3Zx585l/1ZWV\nDmMJXYYd0+bbKOfNZw5uYX4ChhceTS3zHnBYqwYmSZIkSTWuYjefkSRJkiRVBwtDSZIkSapxFoaS\nJEmSVOMsDCVJkiSpxlkYSpIkSVKNszCUJEmSpBpnYShJkiRJNc7CUJIkSZJqnIWhJEmSJNU4C0NJ\nkiRJqnEWhpIkSZJU4ywMJUmSJKnGWRhKkiRJUo2zMJQkSZKkGmdhKEmSJEk1zsJQkiRJkmqchaEk\nSZIk1TgLQ0mSJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCS\nJEmSapyFoSRJkiTVOAtDSZIkSapxFoaSJEmSVOMsDCVJkiSpxlkYSpIkSVKN61zpACRJqmadu3Vm\n3NCnKx3GEjp381+4JKn1+F9FkqRmLPh4ATeOf73SYSzhkP7rVDoESVIH4qWkkiRJklTjLAwlSZIk\nqcZZGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyFoSRJkiTVOAtDSZIkSapxFoaSJEmS\nVOMsDCVJkiSpxlkYSpIkSVKNszCUJEmSpBpnYShJkiRJNc7CUJIkSZJqnIWhJEmSJNU4C0NJkiRJ\nqnEWhpIkSZJU4ywMJUmSJKnGWRhKkiRJUo2zMJQkSZKkGmdhKEmSJEk1zsJQkiRJkmqchaEkSZIk\n1TgLQ0mSJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmS\napyFoSRJkiTVOAtDSZIkSapxFoaSJEmSVOMsDCVJkiSpxlWsMIyI0yIiRcTviqZFRAyPiDcjYm5E\nPBARfRq8bqWI+FNEfFB4/CkiPlf2NyBJkiRJHURFCsOI2A4YBkxsMOuHwCnAicAgYDpwb0QsX7TM\njUB/YO/Coz/wp7aOWZIkSZI6qrIXhhGxInAD8C3gvaLpAXwPOCeldGtK6WngSGB54JDCMpuRFYPD\nUkqjU0qjgWOAL0fEJmV9I5IkSZLUQVSixfAq4JaU0v0Npq8PrA6MqpuQUpoLPARsX5g0GJgFPFb0\nukeB2UXLSJIkSZJy6FzOjUXE0cBGwGGNzF698HNag+nTgLWKlpmRUkp1M1NKKSKmF72+4TaHkV22\nyrrrrrv0wUuSJElSB1W2FsPCpZ6/Ag5JKc0v13ZTSlellAamlAaussoq5dqsJEmSJLUb5byUdDDQ\nC5gUEQsiYgGwC3B84fd3Csut1uB1qwFvF35/G1il0B8RqO+buGrRMpIkSZKkHMpZGN4ObAH0K3qM\nBf5S+P0FsuJuj7oXRER3YCc+7VM4GuhJVmTWGQwsx+L9DiVJkiRJJSpbH8OU0vvA+8XTImI28G7h\nDqRExEXATyLiObJC8Qyym83cWFjHsxHxL+DKQt9BgCuBu1JKz5fhbUiSJElSh1PWm8+U4DxgWeAy\nYCXgCWDPlNJHRcscAlwK3FN4/nfghHIGKUmSJEkdSUULw5TSkAbPEzC88GjqNe/R+F1NJUmSJElL\noRLjGEqSJEmSqoiFoSRJkiTVuJIKw4jYJSK2LXo+NCIeiYgrI6Jn24UnSZIkSWprpbYYXgSsDvUD\n1V8JTCQbKuL8NolMkiRJklQWpRaGGwH/K/x+AHBvSul44GjgK20RmCRJkiSpPEotDBcBnQq/7w78\nq/D728DKrR2UJEmSJKl8Si0MxwA/jYjDgZ2AuwvTewNvtUFckiRJkqQyKbUw/D7QD/gd8MuU0kuF\n6QcCo9sgLkmSJElSmZQ0wH1K6X/Alo3M+gGwoFUjkiRJkiSVVanDVfwnIj7XyKyuwKhWjUiSJEmS\nVFalXko6hKwIbKg7WZ9DSZIkSVI71eylpBHRv+jplhHxbtHzTsBewBttEZgkSZIkqTxa6mM4FkiF\nR2OXjM4FTmztoCRJkiRJ5dNSYbg+EMDLwDbAjKJ5nwDTU0oL2yg2SZIkSVIZNFsYppReLfxaal9E\nSZIkSVI7U9JwFQARsTawM7AqDQrFlNKFrRyXJEmSJKlMSioMI+JQ4BqyMQtnkPU5rJMAC0NJkiRJ\naqdKbTH8OfAb4Kf2KZQkSZKkjqXUvoOrAX+wKJQkSZKkjqfUwvCfwLZtGYgkSZIkqTJKvZT0XuDc\niOgD/A+YXzwzpfS31g5MkiRJklQepRaGVxZ+/qSReQno1DrhSJIkSZLKraTCMKXkOIaSJEmS1EFZ\n8EmSJElSjSupMIzM8RExKSLmRMQGhek/joivt22IkiRJkqS2VGqL4UnAGcBVQBRNfwM4obWDkiRJ\nkiSVT6mF4bHA0Smli4EFRdPHA31aPSpJkiRJUtmUWhiuBzzdyPT5wLKtF44kSZIkqdxKLQxfBvo3\nMv1LwDOtF44kSZIkqdxKHcfwAuB3EdGDrI/h4Ig4HPgh8K22Ck6SJEmS1PZKHcfw2ojoDPwK6AH8\nCXgT+G5K6aY2jE+SJEmS1MZKbTEkpXQ1cHVE9AKWSSlNb7uwJEmSJEnlUnJhWCelNLMtApEkSZIk\nVUZJhWFErAQMB3YFVqXBTWtSSqu2emSSJEmSpLIotcXwerLxCq8DpgGpzSKSJEmSJJVVqYXhEGCX\nlNL4NoxFkiRJklQBpY5j+FKOZSVJkiRJ7Uipxd5JwK8jYquI6NSWAUmSJEmSyqvUS0lfBJYFxgNE\nxGIzU0oWi5IkSZLUTpVaGI4EVgS+izefkSRJkqQOpdTCcCCwTUrp6bYMRpIkSZJUfqX2MXwGWKEt\nA5EkSZIkVUapheEZwIUR8cWIWC0iPl/8aMsAJUmSJEltq9RLSf9Z+DmKxfsXRuG5N5+RJEmSpHaq\n1MJw1zaNQpIkSZJUMSUVhimlB9s6EEmSJElSZZTaYkhErAEcB2xemPQs8PuU0pttEZgkSZIkqTxK\nuvlMROwBvAQcBMwpPA4EXoyIPdsuPEmSJElSWyu1xfAS4A/ASSml+pvPRMTFwMXAZm0QmyRJkiSp\nDEodrqI38LviorDgMmC9Vo1IkiRJklRWpRaGY4EtGpm+BfDf1gtHkiRJklRupV5Kejnw24jYGHi8\nMG07spvR/Dgi+tctmFIa37ohSpIkSZLaUqmF4Q2Fn79qZh442L0kSZIktTulFobrt2kUkiRJkqSK\nKXWA+1fbOhBJkiRJUmU0WRhGxP7AnSml+YXfm5RS+lurRyZJkiRJKovmWgxvAVYHphd+b4r9CiVJ\nkiSpHWuyMEwpLdPY75IkSZKkjsWCT5IkSZJqXKl3JSUi1gZ2BlalQUGZUrqwleOSJEmSJJVJSYVh\nRBwKXAMsAGaQ9SuskwALQ0mSJElqp0ptMfw58BvgpymlhW0YjyRJkiSpzErtY7ga8AeLQkmSJEnq\neEotDP8JbNuWgUiSJEmSKqOlAe7r3AucGxF9gP8B84uXLWWA+4j4DnAM0LswaRJwdkrpH4X5AZwJ\nDANWAp4AvpNSmlS0jpWAS4B9C5P+DpyYUnq/pe1LkiRJkhrX0gD3Df2kkWmlDnA/FfgRMJmspfJI\n4PaIGJBSmgj8EDgFGAo8D/wMuDciNkkpfVRYx43AusDehed/AP4EfKWE7UuSJEmSGlHSAPetIaV0\nR4NJp0fEccDgiPgf8D3gnJTSrQARcSQwHTgEuDIiNiMrCHdMKY0uLHMM8HCheHy+NeOVJEn5denc\njcsfHlbpMJbQpXO3SocgSVWt5HEMW1NEdAIOBHoCjwHrA6sDo+qWSSnNjYiHgO2BK4HBwKzC8nUe\nBWYXlrEwlCSpwuYv+JgBI/pWOowljBv6dKVDkKSq1myrYERsFRG7Nph2aES8HBHTI+KKiOha6sYi\nYouImAV8DFwB7JdS+h9ZUQgwrcFLphXNWx2YkVKqH0Ox8Pv0omUa2+awiBgbEWNnzJhRaqiSJEmS\nVDNaulz0bGDHuicRsTlwLVk/wZHAoWT9Bkv1PNCP7A6nvweui4g2/VoxpXRVSmlgSmngKqus0pab\nkiRJkqR2qaXCsD9Fl3cCBwPPpJT2SimdRNYv8KBSN5ZS+iSl9GJKaVxK6TTgKeD7wNuFRVZr8JLV\niua9DaxSuHspUH8n01WLlpEkSZIk5dRSYbgy8GbR852BO4ueP0B2l9DPsv1uwCtkxd0edTMiojuw\nE5/2KRxN1idxcNHrBwPLsXi/Q0mSJElSDi3dfGYGsBbweuGGMQOAC4rmdwUWlbKhiDgH+AfwOrA8\n2d1GhwD7pJRSRFwE/CQingNeAM4gu9nMjQAppWcj4l9kdyitu93ZlcBd3pFUkiRJkpZeS4XhA8CZ\nhcHpv1aYdn/R/M2BKSVua3Xgz4WfHwATgf+XUrqnMP88YFngMj4d4H7PojEMISsmLwXqXvN34IQS\nty9JkiRJakRLheFPgfuAF4GFwHdTSrOL5h8O/LuUDaWUhrYwPwHDC4+mlnkPOKyU7UmSJEmSStNs\nYZhSmhIRmwJ9yIaKeLPBImcCU9sqOEmSpI6sW5dOfHXkc5UOYwndunSqdAiSyqzFAe5TSguACU3M\na3S6JEmSWvbx/IUcv9NVlQ5jCZc/PKzlhSR1KC3dlVSSJEmS1MFZGEqSJElSjbMwlCRJkqQa12Rh\nGBHXRMTyhd93jogW+yNKkiRJktqf5loMDwOWK/x+P/D5tg9HkiRJklRuzbUCTgFOjIhRQACDI+K9\nxhZMKT3UBrFJkiRJksqgucLwVOAPwGlAAm5rYrkEONiNJEmSJLVTTRaGKaU7gDsi4nPAu2SD3E8v\nU1ySJEmSpDIpZYD79yNiV2ByYbB7SZIkSVIHUtKdRlNKD0ZEt4g4Atic7PLRZ4AbU0oft2WAkiRJ\nkqS2VdI4hhGxOfACcCGwLbAd8FvghYjYrO3CkyRJkiS1tVIHuL8YeApYN6W0U0ppJ2BdYAJwUduE\nJkmSJEkqh1IHrd8BGJRS+rBuQkrpw4g4HXi8TSKTJEmSJJVFqS2G84DPNTJ9xcI8SZIkSVI7VWph\neCdwdUTsEBGdCo8dgSuBv7ddeJIkSZKktlZqYXgSMBl4mKyFcB7wINkNab7XJpFJkiRJksqi1OEq\n3ge+GhEbAXV3IX02pfRiWwUmSZIkSSqPUm8+A0ChELQYlCRJkqQOpNRLSSVJkiRJHZSFoSRJkiTV\nOAtDSZIkSapxLRaGEdE5Io6PiDXLEZAkSZIkqbxaLAxTSguA84EubR+OJEmSJKncSr2U9HGgf1sG\nIkmSJEmqjFKHq7ga+E1ErAeMA2YXz0wpjW/twCRJkiRJ5VFqYXhj4eeFjcxLQKfWCUeSJEmSVG6l\nFobrt2kUkiRJkqSKKakwTCm92taBSJIkSZIqo+RxDCPi/0XEXRHxTESsU5h2VETs3nbhSZIkSZLa\nWkmFYUQcCvwVmEx2WWnd0BWdgB+2TWiSJEmSpHIotcXwh8DRKaXvAwuKpj8O9GvtoCRJkiRJ5VNq\nYbgxMLqR6bOAFVovHEmSJElSuZVaGL4JfKGR6TsDL7VeOJIkSZKkciu1MLwKuCQidig8XycijgTO\nA37fJpFJkiRJksqi1OEqzouIFYF7ge7A/cDHwAUppcvaMD5JkiRJUhsrdYB7UkqnR8Qvgc3JWhqf\nSSnNarPIJEmSJEllUXJhWJCAeYXfF7ZyLJIkSZKkCih1HMNuEXER8C4wAZgIvBsRF0dE9zaMT5Ik\nSZLUxkptMfw9sCdwFJ8OWzEY+DWwPPCt1g9NkiRJklQOpRaGBwL7p5TuLZr2ckRMB27FwlCSJEmS\n2q1Sh6uYDbzRyPQ3gLmtF44kSZIkqdxKLQwvBc6MiGXrJhR+/2lhniRJkiSpnWryUtKI+HuDSUOA\nNyJiYuH5FoXXL9c2oUmSJEmSyqG5PobvNHh+a4Pnr7RyLJIkSZKkCmiyMEwpfbOcgUiSJEmSKqPU\nPoaSJEmSpA6qpOEqImIlYDiwK7AqDQrKlNKqrR6ZJEmSJKksSh3H8HqgD3AdMA1IbRaRJEmSJKms\nSi0MhwC7pJTGt2EskiRJkqQKKLWP4Us5lpUkSZIktSOlthieBPw6In4APJ1SWtiGMUmSpHaqU7dO\njBv6dKXDWEKnbp0qHYIkVbVSC8MXgWWB8QARsdjMlJJHW0mSxMKPF7Lej++qdBhLePWcL1c6BEmq\naqUWhiOBFYHv4s1nJEmSJKlDKbUwHAhsk1KqvmtDJEmSJEmfSak3lHkGWKEtA5EkSZIkVUapheEZ\nwIUR8cWIWC0iPl/8aMsAJUmSJEltq9RLSf9Z+DmKxfsXRuG5N5+RJEmSpHaq1MJw1zaNQpIkSZJU\nMSUVhimlB9s6EEmSJElSZZRUGEZE/+bmp5TGt044kiSpPevUtXtVjhnYqWv3SoegVtC9Sye+OvK5\nSoexhO5d7FWl9q/US0nHkvUlLB7ZvrivoX8NkiSJhZ/M48bxr1c6jCUc0n+dSoegVjBv/kJSurLS\nYSwh4phKhyB9ZqUWhus3eN4F2Bo4HTitVSOSJEmSJJVVqX0MX21k8osR8QFwJnB3q0YlSZIkSSqb\nUscxbMorQL9SFoyI0yJiTER8GBEzIuLOiOjbYJmIiOER8WZEzI2IByKiT4NlVoqIP0XEB4XHnyLi\nc5/xfUiSJElSzSqpMGw4oH1ErFwo6n4NPF/itoYAlwPbA7sBC4D7IuLzRcv8EDgFOBEYBEwH7o2I\n5YuWuRHoD+xdePQH/lRiDJIkSZKkBkrtYziTxW82A9mNaF4HDiplBSmlvRZ7ccThwAfADsCdERHA\n94BzUkq3FpY5kqw4PAS4MiI2IysGd0wpjS4scwzwcERsklIqtUiVJEmSJBUs7QD3i4AZwIsppQVL\nue3lyVos3ys8Xx9YHRhVt0BKaW5EPETWynglMBiYBTxWtJ5HgdmFZZYoDCNiGDAMYN11113KUCVJ\nkiSp46rkAPcXA08BowvPVy/8nNZguWnAWkXLzEgp1bdeppRSREwvev1iUkpXAVcBDBw4sGGrpyRJ\nkiTVvGYLwwb9/5qUUno3z0Yj4kJgR7JLQhfmea0kSZIkqXW11GLYWN/ChlIJ66kXEb8FDgZ2TSm9\nXDTr7cLP1YDXiqavVjTvbWCViIi6VsNC38RVi5aRJEmSJOXQUkHXsG9hsb2Bk8juLlqSiLiY7GY1\nu6aUnmsw+xWy4m4PYExh+e7ATsCphWVGAz3J+hrW9TMcDCzH4v0OJUmSJEklarYwbKxvYURsDZxP\nVrBdCfyilA1FxGXA4cD/Ae9FRF2fwFkppVmFvoIXAT+JiOeAF4AzyG42c2Mhnmcj4l9kdygdVnj9\nlcBd3pFUkiRJkpZOyQPcR8T6EXEj8CTwDrB5Sum7KaUZJa7ieLI7kf4beKvo8YOiZc4DfgtcBowF\n1gD2TCl9VLTMIcAE4J7CYwJZwSlJkiRJWgot9g2MiJWBnwHHkg0NsX1KaUzeDaWUooRlEjC88Ghq\nmfeAw/JuX5IkSZLUuGZbDCPidOAlYBfgqyml3ZamKJQkSZIkVa+WWgx/AcwFpgLHR8TxjS2UUtq3\ntQOTJEmSJJVHS4Xh9bQ8XIUkSZKkKtOjR1cijql0GEvo0aNrpUNQI1q6K+nQMsUhSZIkqTUtKHlU\nufKq1rhqXMkD00uSJElqP+Z8soiF959U6TCW0GnXiysdghpR8nAVkiRJkqSOycJQkiRJkmqchaEk\nSZIk1TgLQ0mSJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCS\nJEmSapyFoSRJkiTVOAtDSZIkSapxFoaSJEmSVOMsDCVJkiSpxlkYSpIkSVKNszCUJEmSpBpnYShJ\nkiRJNc7CUJIkSZJqnIWhJEmSJNU4C0NJkiRJqnEWhpIkSZJU4ywMJUmSJKnGWRhKkiRJUo2zMJQk\nSZKkGmdhKEmSJEk1zsJQkiRJkmqchaEkSZIk1TgLQ0mSJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqS\nJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyFoSRJkiTVOAtDSZIkSapxFoaSJEmSVOMsDCVJ\nkiSpxlkYSpIkSVKNszCUJEmSpBpnYShJkiRJNc7CUJIkSZJqnIWhJEmSJNU4C0NJkiRJqnEWhpIk\nSZJU4ywMJUmSJKnGWRhKkiRJUo2zMJQkSZKkGmdhKEmSJEk1zsJQkiRJkmqchaEkSZIk1TgLQ0mS\nJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyFoSRJ\nkiTVuLIWhhGxc0T8PSLeiIgUEUMbzI+IGB4Rb0bE3Ih4ICL6NFhmpYj4U0R8UHj8KSI+V873IUmS\nJEkdSblbDHsCTwMnAXMbmf9D4BTgRGAQMB24NyKWL1rmRqA/sHfh0R/4UxvGLEmSJEkdWudybiyl\n9E/gnwARMaJ4XkQE8D3gnJTSrYVpR5IVh4cAV0bEZmTF4I4ppdGFZY4BHo6ITVJKz5fprUiSJElS\nh1FNfQzXB1YHRtVNSCnNBR4Cti9MGgzMAh4ret2jwOyiZSRJkiRJOVRTYbh64ee0BtOnFc1bHZiR\nUkp1Mwu/Ty9aZjERMSwixkbE2BkzZrRyyJIkSZLU/lVTYdgmUkpXpZQGppQGrrLKKpUOR5IkSZKq\nTjUVhm8Xfq7WYPpqRfPeBlYp9EcE6vsmrlq0jCRJkiQph2oqDF8hK+72qJsQEd2Bnfi0T+Fosjub\nDi563WBgORbvdyhJkiRJKlFZ70oaET2BjQpPlwHWjYh+wLsppdci4iLgJxHxHPACcAbZzWZuBEgp\nPRsR/yK7Q+mwwnquBO7yjqSSJEmStHTK3WI4EPhv4bEscFbh958X5p8H/Ba4DBgLrAHsmVL6qGgd\nhwATgHsKjwnA4eUIXpIkSZI6onKPY/gAEM3MT8DwwqOpZd4DDmvl0CRJkiSpZlVTH0NJkiRJUgVY\nGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyFoSRJkiTVOAtDSZIkSapxFoaSJEmSVOMs\nDCVJkiSpxlkYSpIkSVKNszCUJEmSpBpnYShJkiRJNc7CUJIkSZJqnIWhJEmSJNU4C0NJkiRJqnEW\nhpIkSZJU4ywMJUmSJKnGWRhKkiRJUo2zMJQkSZKkGmdhKEmSJEk1zsJQkiRJkmqchaEkSZIk1TgL\nQ0mSJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqSJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyF\noSRJkiTVOAtDSZIkSapxFoaSJEmSVOMsDCVJkiSpxlkYSpIkSVKNszCUJEmSpBpnYShJkiRJNc7C\nUJIkSZJqnIWhJEmSJNU4C0NJkiRJqnEWhpIkSZJU4ywMJUmSJKnGWRhKkiRJUo2zMJQkSZKkGmdh\nKEmSJEk1zsJQkiRJkmqchaEkSZIk1TgLQ0mSJEmqcRaGkiRJklTjLAwlSZIkqcZZGEqSJElSjbMw\nlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyFoSRJkiTVOAtDSZIkSapxnSsdgCRJklSKHj26EnFMpcNY\nQo8eXSsdgvSZWRhKkiSpXZgz5xPSmZWOYklx1ieVDkH6zCwMJUmSKqRr565c/vCwSoexhK6dbQGT\nao2FoSRJUoV8ssAWMEnVwZvPSJIkSVKNszCUJEmSpBrnpaSSJEkV0qPrMsRZiyodxhJ6dLXtQKo1\nFoaSJEkVMueTRaz347sqHcYSXj3ny5UOQVKZ+XWQJEmSJNU4C0NJkiRJqnHttjCMiOMj4pWImBcR\n4yJip0rHJEmSJEntUbssDCPiIOBi4FfA1sBjwN0RsW5FA5MkSZKkdqhdFobAycCIlNLVKaVnU0on\nAm8Bx1U4LkmSJElqdyKlVOkYcomIrsAc4BsppZuLpl8G9E0p7dJg+WHAsMLTTYDnyxVrDr2AmZUO\noh0xX/mYr3zMVz7mKx/zlY/5ysd85WO+8jFf+VVrztZLKa3ScGJ7HK6iF9AJmNZg+jTgiw0XTild\nBVxVhriWWkSMTSkNrHQc7YX5ysd85WO+8jFf+ZivfMxXPuYrH/OVj/nKr73lrL1eSipJkiRJaiXt\nsTCcCSwEVmswfTXg7fKHI0mSJEntW7srDFNKnwDjgD0azNqD7O6k7VFVX+pahcxXPuYrH/OVj/nK\nx3zlY77yMV/5mK98zFd+7Spn7e7mM1A/XMWfgOOBR4FjgW8DfVJKr1YyNkmSJElqb9rjzWdIKd0U\nESsDZwBrAE8DX7IolCRJkqT82mWLoSRJkiSp9bS7PoaSJEmSpNZlYShJkiRJNa5d9jHsqCKiM7Bm\nSum1SseijiMi1gK6pZRernQs7UFE/AK4JKU0o9KxtAcRsQrwfkppfqVjqWYR0R34CrAu8CpwV0pp\nXmWjUnsWEcsBmwCTUkofR8SywH5kX/r/J6X0ZkUDrEKFnA0guz/FIuBlYHyyX1WjImJjYHtg9cKk\nt4HHUkqTKxeV2pIthtWlD/BKpYOoFpH5cUSMiYhREfF/DeavFhELKxRe1YmIFSLiLxHxRkTcEBHd\nIuIK4HVgckQ8EhErVjrOahERn2/ksTLwI2CjummVjrNaRMSwiOhW+D0i4icR8R7ZicL7EXFhRPg/\npSAiRkTEfoXf1weeA64Djiv8fKYwXUBEDKh0DO1JRAwiO7aPBZ6NiI3IhvK6Cvg9MCkitq1giFUl\nIpaJiPOA6cD9wI3ATcAY4JWI+Eol46s2EbFiRNwBPA/8DhhWePwOeC4ibo+IFSoZY3sTEctFxM6V\njqMl/hNXNfsB8BPgP8BLwMiI+GWDZaLsUVWvXwFbAecAawJ/BXYAdgJ2BVYiK3qUmdHIYzrZlRSP\nADML05T5PVD3xcIwsr/NX5HtWz8BvkU2hJAy+wAvFH7/DfA/YPWU0kbAamQn8RdVJrSqNCYiJkfE\njyJi1UoH0w78GvgHsAHwF+Busju0r1R43EX296nMr4AvAwcBe5Ed438MbA5cD9wcEXtWLryqcymw\nIbBTSmn5lNKGhcfyZOcUGxSWUek2IvtSoqp5V9IyioiWLuXrCqyRUupUjniqXUQ8B/wspfTXwvP+\nZP/sbkwp/SAiVgPeNF+ZiHgNODKldH9ErAlMBfZNKd1VmL8P8JuU0qaVjLNaRMQbwHjgQrJLiiD7\nouE+4CgKrfcppQcrEmCViYhFZIXN9Ih4EhiZUvpt0fyjgBNTSltVLMgqEhFzycbWfTkipgL/l1Ia\nWzR/c+DhlNLKFQuyihT2rz+TXW7bg+xYf1VK6Z6KBlalCq3126WUni+05M8Gtk8pPVmY3wd4yP0r\nExFvAgellB4uPF+LrBW/V+Ey3J8C/y+ltH0l46wWEfE+sFdK6Ykm5g8G7k4pfa6ccbVnEbEV2WXL\nVX3Oah/D8lqD7JupF5qYvxZwUvnCqXrrAk/WPUkpjY+IXYH7I6ITWcuYPrUq8CJASunNwolp8b72\nNLBOJQKrUlsC15K1dh2eUnobICIS8GRK6ZlKBlel6r5JXB/4d4N5/wF+i+o8B2xL1ofpA7JWnGKf\n49N8KvMD4BiyVp2jgbsLX3j9Ebg2pTS1ksFVodTg54KieQvxippiPYE3ip6/DXQn+7t8G7iVrAVR\nn2ru+OSxq4GO0rXJwrC8ngYmppQua2xm4dsEC8NPzSQrDqfUTSh8O7obWXP8ahWKq1q9A/Qi63cC\ncAfwftH8nsDHZY6paqWU3gH2jYiTgLERcUJK6fYKh1XtvhwRHwDzyPanYsvyacursstHL4iIaWSX\nsV0cEScCz5LdMORispNRFUkpzQVGACMKrV7DgO8BP4uIf6WU7AuWGQucFhHDgW+Tdbf4LjC0MP+7\nZOccyvwPOAz4eeH5wcCsui8EybpW+f/xU3cCf4yIo1NKjxfPiIjtgCuBv1cksuo1l6x7wH+bmL8+\ncG7ZollKFobl9SjwhWbmzwIeKlMs7cEjwP40yElK6bmI2J12cK12mf0PGEThoJRSOqTB/AFkrRgq\nklK6OCIeIuvDuk+l46lyfyz6fVfgsaLng8lOTgWklP5cuHnR38lOOjsBo4oW+TtwciViq1JLtECk\nlCYBJ0XED4EDyS7xVuYnZP0KjyDrC70rcE3hi4gErEB2Wa4yPwP+ERFfJftia1uyFuo6e9P0CX0t\nOhEYCTwWER/xaX/7Vci+FLynsIw+9RTwTkqp0S/8Co0/VV8Y2sdQVSsitgQGpJSubWJ+H+BrKaWz\nyhtZdYqIXsCilNK7TczfB5iXUmp4CaCov435JcBuwB4ppRcrHFK7EhFfBubbJ2xxhTsB70X2bfEy\nwFvAo97ufXHFfVgrHUt7UThmbQo8n1KaVRgS5VCy1vt7U0rPVzTAKlM4Mf860A24J6V0b4VDqnoR\nsSnZl37Fw1WMTin5JXMDEfEToGtKaXgT89cBfp5S+mZZA8vJwlCSJFVURBwJ/CWl5OV8klQhFoZl\nFhEBfJElBwx9FPi3g6wuznzlY77yMV/5mK98zJfakvtXPuar9UTESsBXUkrXVzoWtS4LwzIq3B75\nLrK7IT4LTCvMWg3YjOz65H1TSm80uoIaY77yMV/5mK98zFc+5is/T9xL5/6Vj/lqXe1l6IVq0l6K\naQvDMoqIO8g6hB/e8LbbEbE22VAWH6aU/q8C4VUd85WP+crHfOVjvvIxX/l44p6P+1c+5iufiFi3\nhUX6AHdZGJauvRTTFoZlFBGzgB1TSk81MX9rsgGPG94GviaZr3zMVz7mKx/zlY/5yscT93zcv/Ix\nX/kUbgbVXIEQQKr2IqecOkox7XAV5TUX+Hwz8z9fWEYZ85WP+crHfOVjvvIxX/nsTnbivsQg9iml\nqRFxCvBw+cOqWu5f+ZivfD4AziS7jLsxmwB/Kl847cIUSiimyxPK0lum0gHUmL8A10fEwRGxct3E\niFg5Ig4GrgVurFh01cd85WO+8jFf+ZivfMxXPp645+P+lY/5yue/wLIppXGNPYBJZIWOPvUB8H1g\nmyYeh1UutNLZYlhep5Dl/Dqgc0QsLEzvBCwgGzz6B028thaZr3zMVz7mKx/zlY/5yqfuxP0HZGPw\nvQPZiTuwB3AenrgXc//Kx3zlMxLo0cz8twHHkF5cfTHd2MyIWEA7KKbtY1gBEbECMIDF77o2LqX0\nYeWiql7mKx/zlY/5ysd85WO+ShMRXYGLgW+RncA3duJ+UkppfmUirE7uX/mYL7WViDga6JFSuriJ\n+asBx6aUqrqgtjCssEKn+jdTSosqHUt7YL7yMV/5mK98zFc+5qtlnrgvPfevfMxXPuarNtjHsPKe\nAXpXOoh2xHzlY77yMV/5mK98zFcLUkofppTuTymNJLvZzIMWhSVz/8rHfOVjvnKKiLUjol3VWu0q\n2A6q6q83rjLmKx/zlY/5ysd85WO+8vFENB/3r3zMVz7mK792dwyzMJQkSdXIE1FJ7Vm7O4ZZGFbe\nr4B3Kx1EO2K+8jFf+ZivfMxXPuZLbcn9Kx/zlY/5qgHefEaSJFWdiDgN+H1K6f1KxyJJebXHY5iF\nYQVFxErAkcDGwFvAdSml1ysbVfUyX/mYr3zMVz7mKx/zpbbk/pWP+crHfNUOC8Myiog3gS1SSu9E\nxPrAY2SX804CNiUbTHS7lNJzFQyzapivfMxXPuYrH/OVj/n6bDwRbZ77Vz7mKx/z9dm112OYhWEZ\nRcQiYPWU0vSIGEk2TtOXU0qzI6I7cAswN6V0YEUDrRLmKx/zlY/5ysd85WO+8vFENB/3r3zMVz7m\nK7+Ocgzz5jOVsy3wi5TSbICU0jzgF8B2FY2qepmvfMxXPuYrH/OVj/lq2epAp8LvvwKeAzZIKe0G\nbAA8QpYzLcn9Kx/zlY/5Kk2HOIZZGJZfXRNtN2B6g3nTgFXKG07VM1/5mK98zFc+5isf87V0PBEt\njftXPuYrH/O19NrtMczCsPwejIiJwIpkTcvF1gVmlj+kqma+8jFf+ZivfMxXPuYrH09E83H/ysd8\n5WO+8mv3x7DOlQ6gxpzV4PlHDZ5/BXi4TLG0B+YrH/OVj/nKx3zlY77yezAiFvDpiejTRfM8EV2c\n+1c+5isf87V02v0xzJvPSJKkioqIMxtMejyldE/R/POBtVNK3yhvZJLUso5yDLMwrJCI6AT0Kjyd\nmVJaWMl4qp35ysd85WO+8jFf+ZgvtSX3r3zMVz7mq7bYx7DMImK/iHgUmAO8WXjMiYhHI+L/Khpc\nFTJf+ZivfMxXPuYrH/O1dCKiU0SsVnh0avkVtcn9Kx/zlY/5Wnrt+RhmYVhGEXEMcBPwDHAoMKTw\nOJRsnJO/RMTRlYqv2pivfMxXPuYrH/OVj/nKzxPR0rl/5WO+8jFfS6cjHMO8lLSMIuJF4JyU0h+a\nmH8UcFpKacPyRladzFc+5isf85WP+crHfOVTOBG9FLgOuIfsDn4AqwF7AkcAJ6aUrq5MhNXF/Ssf\n85WP+cqvoxzDLAzLKCLmAv1SSs83MX9T4L8ppWXLG1l1Ml/5mK98zFc+5isf85WPJ6L5uH/lY77y\nMV/5dZRjmJeSltck4Lhm5h9TWEYZ85WP+crHfOVjvvIxX/msRfO3v38EWLNMsbQH7l/5mK98zFd+\nHeIYZothGUXELsA/gDeAUSzezLwH2U71pZSSY8NgvvIyX/mYr3zMVz7mK5+IGAs8klL6XhPzfwvs\nlFIaWNbAqpT7Vz7mKx/zlV9HOYZZGJZZRPQm+xZmO2D1wuS3gdHAFSmlKZWJrDqZr3zMVz7mKx/z\nlY/5Kp0novm5f+VjvvIxX/l0lGOYhaEkSao4T0QltWcd4RhmH8MKi4jLI6JXy0sKzFde5isf85WP\n+crHfDUvpTQlpfSjlNIuKaVNCo9dUko/bg8nVJXm/pWP+crHfLWsIxzDLAwr7zBghUoH0Y6Yr3zM\nVz7mKx/zlY/5ysET0dzcv/IxX/mYr5za4zHMwrDyotIBtDPmKx/zlY/5ysd85WO+8vFENB/3r3zM\nVz7mK792dwyzMJQkSdXIE1FJ7Vm7O4Z1rnQAtS6ltHylY2hPzFc+5isf85WP+crHfKktuX/lY77y\nMV+1wRbDKhIRnSNi3UrH0V6Yr3zMVz7mKx/zlY/5allKafmU0suVjqM9cv/Kx3zlY75K0x6PYRaG\n1aUP8Eqlg2hHzFc+5isf85WP+crHfOXgiWhu7l/5mK98zFdO7eUYZmEoSZKqnSeiktqzdnEMs49h\nGUVES83JXcsSSDthvvIxX/mYr3zMVz7mS23J/Ssf85WP+apdFobltQZwPfBCE/PXAk4qXzhVz3zl\nY77yMV/5mK98zFcOnojm5v6Vj/nKx3zl1FGOYRaG5fU0MDGldFljMyNiK/xDK2a+8jFf+ZivfMxX\nPuYrH09E83H/ysd85WO+8usQxzALw/J6FPhCM/NnAQ+VKZb2wHzlY77yMV/5mK98zFc+nojm4/6V\nj/nKx3zl1yGOYZFSqnQMkiSphkXERWTnJI2eOEXEhsAfUkq7ljUwSSpBRzmGWRhKkiRJUo1zuIoq\nEhHLtIcxTqqF+crHfOVjvvIxX/mYL7Ul9698zFc+5qvjsjAso4joHhFXRMSMiHghIho2N69COxjj\npFzMVz7mKx/zlY/5ysd8tS5PRBfn/pWP+crHfLW+9nIMszAsr58BXy78vAY4IyL+HBHFn0NUJLLq\nZL7yMV/5mK98zFc+5isHT0Rzc//Kx3zlY75y6ijHMPsYllFEvASckFK6u/B8PeBuYCJwCNlO82ZK\nqVPloqwe5isf85WP+crHfOVjvvKJiF8BRwC/BFYETgHuAY5IKS2KiNWAt1JKfqGN+1de5isf85Vf\nRzmGVXVwHdAawLN1T1JKrwK7AlsAfwG6VCiuamW+8jFf+ZivfMxXPuYrn4OAo1NKv08pnQMMBPoD\nNxa1UvhN9qfcv/IxX/mYr/w6xDHMwrC83gI2Kp6QUpoG7E72x3Z9JYKqYuYrH/OVj/nKx3zlY77y\n8UQ0H/evfMxXPuYrvw5xDLMwLK/7yZrgF5NSehvYDVi77BFVN/OVj/nKx3zlY77yMV/5eCKaj/tX\nPuYrH/OVX4c4hnWudAA15hfApo3NSCm9FRG7AHuWN6SqZr7yMV/5mK98zFc+5iufuhPR+4onppTe\njojdgAcrElX1cv/Kx3zlY77y6xDHMG8+I0mSKqpwc4tNU0r3NDF/DWDPlNJ15Y1MklrWUY5hFoZl\nFhHLkX2jsD2wemHy28CjwMiU0uxKxVaNzFc+5isf85WP+crHfKktuX/lY77yMV+1ycKwjCJic+Be\nYHngIWBaYdZqwE7AR2TfJjxTmQiri/nKx3zlY77yMV/5mK/8PBEtnftXPuYrH/O1dDrCMczCsIwi\n4n5gOnBkSmleg3ndgRHAaimlXSsQXtUxX/mYr3zMVz7mKx/zlY8novm4f+VjvvIxX/l1lGOYhWEZ\nRcQcYGBTO0VE9AWeTCn1KG9k1cl85WO+8jFf+ZivfMxXPp6I5uP+lY/5ysd85ddRjmEOV1Fe7wFf\naGb+xoVllDFf+ZivfMxXPuYrH/OVz7bAWQ1PqAAK084uLKOM+1c+5isf85VfhziGOVxFeV0NXBcR\nvyZrbi5uZt4D+BHw2wrFVo3MVz7mKx/zlY/5ysd85VN3ItrUZVaeiC7O/Ssf85WP+cqvQxzDvJS0\nzCLiR8BJZJ1S65IfZJ1TL0opnVep2KqR+crHfOVjvvIxX/mYr9JFxHDg+0CzJ6IppZ9XJMAq5P6V\nj/nKx3zl01GOYRaGFRIR61N0x6KU0iuVjKfama98zFc+5isf85WP+SqNJ6JLx/0rH/OVj/kqXUc4\nhlkYSpKkquGJqKT2rD0fw7z5TJlFxOciYp+I2D4iosG85SLiZ5WKrRqZr3zMVz7mKx/zlY/5Wjop\npVdSSqMLj3ZzQlVu7l/5mK98zNfSa8/HMFsMyygi+gD3AauQFeXjgQNSSq8W5q8GvJlS6lS5KKuH\n+crHfOVjvvIxX/mYr/wi4nPADmQ3aBidik5QIhs4+pRq759TLu5f+ZivfMzX0ukIxzBbDMvr18Bo\nYEVgLeBl4NGI2LiiUVUv85WP+crHfOVjvvIxXzkUTkSfBe4AHgHGRMR6RYv0BM6sRGxVyv0rH/OV\nj/nKqaMcw2wxLKOImA7smlKaVDTtQuAgYFfgA/wGpp75ysd85WO+8jFf+ZivfCLi78AC4HBgBeBi\nYHuyHE62hWJx7l/5mK98zFd+HeUY5jiG5dWNT+9SBEBK6eTCtdsPAIdUIqgqZr7yMV/5mK98zFc+\n5iuf7chOoGYDs4GvF05EH4iIuhNRfcr9Kx/zlY/5yq9DHMMsDMvreWAgDQa/TCl9PyKWIWt+1qfM\nVz7mKx/zlY/5ysd85eOJaD7uX/mYr3zMV34d4hhmH8Pyug34RmMzUkonAX8mG+9EGfOVj/nKx3zl\nY77yMV/51J2ILial9H3gZjwRbcj9Kx/zlY/5yq9DHMPsYyhJkioqIk4Ddk4p/b8m5l8GHJdS8gtt\nSVWnoxzDLAwlSZIkqcZVddUqSZIkSWp7FoaSJEmSVOMsDCVJNS0i1o6IOyJickS8FBEXR0TXEl/7\nQEQsccOBHNseHhFvRMRThe3/LSI2L+F1QyNizaXdriRJDVkYSpJqVuFW4n8Dbk8pbQx8AegJ/LKR\nZT/zEE8R0djgxr9NKfUrbP8m4D8RsUoLqxoKWBhKklqNhaEkqZbtBsxLKV0LkFJaCHwf+FZE9Ci0\nzP09Iv4D/Dsilo2Iv0TEsxFxG7Bs3YoiYs+IGB0R4yPi5ojoWZg+JSLOjYjxwIHNBZNSugkYRWHM\nq4j4WUSMiYinI+KqyHyN7LboNxRaGpeNiAER8WBEjIuIeyJijdZPlSSpI7MwlCTVsj7AuOIJKaUP\ngdeAjQqT+gNfSyntAhwHzEkpbQacCQwAiIhewBnAF1NK/YGxwMlFq30npdQ/pfSXEmIaD2xa+P13\nKaVBKaW+ZEXol1NKtxTWf2hKqR+wALi0EOMA4BoaafGUJKk5n/myGEmSOrh7U0rvFn7fGbgEIKU0\nMSImFqZvB2wOPJpdnUpXYHTROm7Ksb3igaN3jYgfAj2AzwOTgDsbLL8J0Be4t7DtTsBbObYnSZKF\noSSppj0DfK14QkSsAKwLvEjWWji7hPUEWQH5jSbml7KOOlsDYyOiO3A5MDCl9HpEDAe6N7HtSSml\nwTm2IUnSYryUVJJUy/4N9IiII6D+5jC/AUaklOY0svxDfNr/ry+wZWH648AOEbFRYd5yEfGFvMFE\nxAHAnsBIPi0CZxb6KxYXsB8Byxd+fx5YJSIGF9bRJSL65N22JKm2WRhKkmpWSikB+wEHRsRk4AVg\nHvCTJl7ye6BnRDwL/JxC/8SU0gyyO4WOLFxeOppP+wm25Pt1w1UAhwG7pZRmpJTeB64GngbuAcYU\nvWYEcEVEPEV26ejXgHMjYgLwFLB9iduWJAmAyP4nSpIkSZJqlS2GkiRJklTjLAwlSZIkqcZZGEqS\nJElSjbMwlCRJkqQaZ2EoSZIkSTXOwlCSJEmSapyFoSRJkiTVuP8PeL5oyB+rcPcAAAAASUVORK5C\nYII=\n", 479 | "text/plain": [ 480 | "
" 481 | ] 482 | }, 483 | "metadata": {}, 484 | "output_type": "display_data" 485 | } 486 | ], 487 | "source": [ 488 | "ax = df_plot.reset_index().plot.bar(figsize=(15, 8), edgecolor='black', x = 'Order Date',\n", 489 | " y=df_stat.columns\n", 490 | " , legend= True, fontsize = 14, stacked = True, colormap='Paired')\n", 491 | "plt.ylabel('Number of Shipments', fontsize = 14)\n", 492 | "plt.title('Shipments status report: {}'.format(EXTRACTION_DAY), fontsize = 14)\n", 493 | "ax.legend(ncol=8)\n", 494 | "plt.show()" 495 | ] 496 | } 497 | ], 498 | "metadata": { 499 | "kernelspec": { 500 | "display_name": "Python 3", 501 | "language": "python", 502 | "name": "python3" 503 | }, 504 | "language_info": { 505 | "codemirror_mode": { 506 | "name": "ipython", 507 | "version": 3 508 | }, 509 | "file_extension": ".py", 510 | "mimetype": "text/x-python", 511 | "name": "python", 512 | "nbconvert_exporter": "python", 513 | "pygments_lexer": "ipython3", 514 | "version": "3.6.1" 515 | } 516 | }, 517 | "nbformat": 4, 518 | "nbformat_minor": 2 519 | } 520 | --------------------------------------------------------------------------------