├── LICENSE
├── Session-01_07-08-23_Preprocessing-EDA
├── Housing.csv
├── NumpyAndPandas.ipynb
├── PreprocessingAndEDA.ipynb
└── train.csv
├── Session-02_14-08-23_Linear-Regression
├── 14th_August_2023.ipynb
└── 14th_August_2023.pdf
├── Session-03_01-09-23_MLE_Bayesian
├── ML_TA_31st_August.ipynb
├── Regularisation, Gaussian, MLE..pdf
└── auto-mpg.csv
├── Session-04_08-09-23_Bayes_LogisticRegression_KMeans_KNN
├── BankNote_Authentication.csv
├── ML_TASession4.ipynb
└── Naive Bayes, Logistic Regression, KNNs and KMeans.pptx
├── Session-05_19-09-23_PCA_and_Decision_Trees
├── PCA and Decision Trees.pptx
├── kernel_pca.ipynb
├── models.ipynb
├── pca.ipynb
└── titanic
│ ├── gender_submission.csv
│ ├── test.csv
│ └── train.csv
├── Session-06_14-10-23_DecisionTrees_RandomForests_Boosting
├── Boosting.ipynb
├── Boosting_hyperparameter_tuning.ipynb
├── DT_RF_Boosting.pptx
└── DecisionTreesRandomForest.ipynb
├── Session-07_30-10-23_ConstrainedOptimisation
└── Constrained_Optimization_KKT.pdf
├── Session-08_06-11-23_SVM
├── SVM.ipynb
└── Support Vector Machines.pdf
└── Session-09_20-11-23_NeuralNetworks_PyTorch
├── NeuralNetworks.pdf
└── pytorch-mnist-example.ipynb
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 sarthakharne
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/Session-01_07-08-23_Preprocessing-EDA/Housing.csv:
--------------------------------------------------------------------------------
1 | price,area,bedrooms,bathrooms,stories,mainroad,guestroom,basement,hotwaterheating,airconditioning,parking,prefarea,furnishingstatus
2 | 13300000,7420,4,2,3,yes,no,no,no,yes,2,yes,furnished
3 | 12250000,8960,4,4,4,yes,no,no,no,yes,3,no,furnished
4 | 12250000,9960,3,2,2,yes,no,yes,no,no,2,yes,semi-furnished
5 | 12215000,7500,4,2,2,yes,no,yes,no,yes,3,yes,furnished
6 | 11410000,7420,4,1,2,yes,yes,yes,no,yes,2,no,furnished
7 | 10850000,7500,3,3,1,yes,no,yes,no,yes,2,yes,semi-furnished
8 | 10150000,8580,4,3,4,yes,no,no,no,yes,2,yes,semi-furnished
9 | 10150000,16200,5,3,2,yes,no,no,no,no,0,no,unfurnished
10 | 9870000,8100,4,1,2,yes,yes,yes,no,yes,2,yes,furnished
11 | 9800000,5750,3,2,4,yes,yes,no,no,yes,1,yes,unfurnished
12 | 9800000,13200,3,1,2,yes,no,yes,no,yes,2,yes,furnished
13 | 9681000,6000,4,3,2,yes,yes,yes,yes,no,2,no,semi-furnished
14 | 9310000,6550,4,2,2,yes,no,no,no,yes,1,yes,semi-furnished
15 | 9240000,3500,4,2,2,yes,no,no,yes,no,2,no,furnished
16 | 9240000,7800,3,2,2,yes,no,no,no,no,0,yes,semi-furnished
17 | 9100000,6000,4,1,2,yes,no,yes,no,no,2,no,semi-furnished
18 | 9100000,6600,4,2,2,yes,yes,yes,no,yes,1,yes,unfurnished
19 | 8960000,8500,3,2,4,yes,no,no,no,yes,2,no,furnished
20 | 8890000,4600,3,2,2,yes,yes,no,no,yes,2,no,furnished
21 | 8855000,6420,3,2,2,yes,no,no,no,yes,1,yes,semi-furnished
22 | 8750000,4320,3,1,2,yes,no,yes,yes,no,2,no,semi-furnished
23 | 8680000,7155,3,2,1,yes,yes,yes,no,yes,2,no,unfurnished
24 | 8645000,8050,3,1,1,yes,yes,yes,no,yes,1,no,furnished
25 | 8645000,4560,3,2,2,yes,yes,yes,no,yes,1,no,furnished
26 | 8575000,8800,3,2,2,yes,no,no,no,yes,2,no,furnished
27 | 8540000,6540,4,2,2,yes,yes,yes,no,yes,2,yes,furnished
28 | 8463000,6000,3,2,4,yes,yes,yes,no,yes,0,yes,semi-furnished
29 | 8400000,8875,3,1,1,yes,no,no,no,no,1,no,semi-furnished
30 | 8400000,7950,5,2,2,yes,no,yes,yes,no,2,no,unfurnished
31 | 8400000,5500,4,2,2,yes,no,yes,no,yes,1,yes,semi-furnished
32 | 8400000,7475,3,2,4,yes,no,no,no,yes,2,no,unfurnished
33 | 8400000,7000,3,1,4,yes,no,no,no,yes,2,no,semi-furnished
34 | 8295000,4880,4,2,2,yes,no,no,no,yes,1,yes,furnished
35 | 8190000,5960,3,3,2,yes,yes,yes,no,no,1,no,unfurnished
36 | 8120000,6840,5,1,2,yes,yes,yes,no,yes,1,no,furnished
37 | 8080940,7000,3,2,4,yes,no,no,no,yes,2,no,furnished
38 | 8043000,7482,3,2,3,yes,no,no,yes,no,1,yes,furnished
39 | 7980000,9000,4,2,4,yes,no,no,no,yes,2,no,furnished
40 | 7962500,6000,3,1,4,yes,yes,no,no,yes,2,no,unfurnished
41 | 7910000,6000,4,2,4,yes,no,no,no,yes,1,no,semi-furnished
42 | 7875000,6550,3,1,2,yes,no,yes,no,yes,0,yes,furnished
43 | 7840000,6360,3,2,4,yes,no,no,no,yes,0,yes,furnished
44 | 7700000,6480,3,2,4,yes,no,no,no,yes,2,no,unfurnished
45 | 7700000,6000,4,2,4,yes,no,no,no,no,2,no,semi-furnished
46 | 7560000,6000,4,2,4,yes,no,no,no,yes,1,no,furnished
47 | 7560000,6000,3,2,3,yes,no,no,no,yes,0,no,semi-furnished
48 | 7525000,6000,3,2,4,yes,no,no,no,yes,1,no,furnished
49 | 7490000,6600,3,1,4,yes,no,no,no,yes,3,yes,furnished
50 | 7455000,4300,3,2,2,yes,no,yes,no,no,1,no,unfurnished
51 | 7420000,7440,3,2,1,yes,yes,yes,no,yes,0,yes,semi-furnished
52 | 7420000,7440,3,2,4,yes,no,no,no,no,1,yes,unfurnished
53 | 7420000,6325,3,1,4,yes,no,no,no,yes,1,no,unfurnished
54 | 7350000,6000,4,2,4,yes,yes,no,no,yes,1,no,furnished
55 | 7350000,5150,3,2,4,yes,no,no,no,yes,2,no,semi-furnished
56 | 7350000,6000,3,2,2,yes,yes,no,no,yes,1,no,semi-furnished
57 | 7350000,6000,3,1,2,yes,no,no,no,yes,1,no,unfurnished
58 | 7343000,11440,4,1,2,yes,no,yes,no,no,1,yes,semi-furnished
59 | 7245000,9000,4,2,4,yes,yes,no,no,yes,1,yes,furnished
60 | 7210000,7680,4,2,4,yes,yes,no,no,yes,1,no,semi-furnished
61 | 7210000,6000,3,2,4,yes,yes,no,no,yes,1,no,furnished
62 | 7140000,6000,3,2,2,yes,yes,no,no,no,1,no,semi-furnished
63 | 7070000,8880,2,1,1,yes,no,no,no,yes,1,no,semi-furnished
64 | 7070000,6240,4,2,2,yes,no,no,no,yes,1,no,furnished
65 | 7035000,6360,4,2,3,yes,no,no,no,yes,2,yes,furnished
66 | 7000000,11175,3,1,1,yes,no,yes,no,yes,1,yes,furnished
67 | 6930000,8880,3,2,2,yes,no,yes,no,yes,1,no,furnished
68 | 6930000,13200,2,1,1,yes,no,yes,yes,no,1,no,furnished
69 | 6895000,7700,3,2,1,yes,no,no,no,no,2,no,unfurnished
70 | 6860000,6000,3,1,1,yes,no,no,no,yes,1,no,furnished
71 | 6790000,12090,4,2,2,yes,no,no,no,no,2,yes,furnished
72 | 6790000,4000,3,2,2,yes,no,yes,no,yes,0,yes,semi-furnished
73 | 6755000,6000,4,2,4,yes,no,no,no,yes,0,no,unfurnished
74 | 6720000,5020,3,1,4,yes,no,no,no,yes,0,yes,unfurnished
75 | 6685000,6600,2,2,4,yes,no,yes,no,no,0,yes,furnished
76 | 6650000,4040,3,1,2,yes,no,yes,yes,no,1,no,furnished
77 | 6650000,4260,4,2,2,yes,no,no,yes,no,0,no,semi-furnished
78 | 6650000,6420,3,2,3,yes,no,no,no,yes,0,yes,furnished
79 | 6650000,6500,3,2,3,yes,no,no,no,yes,0,yes,furnished
80 | 6650000,5700,3,1,1,yes,yes,yes,no,yes,2,yes,furnished
81 | 6650000,6000,3,2,3,yes,yes,no,no,yes,0,no,furnished
82 | 6629000,6000,3,1,2,yes,no,no,yes,no,1,yes,semi-furnished
83 | 6615000,4000,3,2,2,yes,no,yes,no,yes,1,no,semi-furnished
84 | 6615000,10500,3,2,1,yes,no,yes,no,yes,1,yes,furnished
85 | 6580000,6000,3,2,4,yes,no,no,no,yes,0,no,semi-furnished
86 | 6510000,3760,3,1,2,yes,no,no,yes,no,2,no,semi-furnished
87 | 6510000,8250,3,2,3,yes,no,no,no,yes,0,no,furnished
88 | 6510000,6670,3,1,3,yes,no,yes,no,no,0,yes,unfurnished
89 | 6475000,3960,3,1,1,yes,no,yes,no,no,2,no,semi-furnished
90 | 6475000,7410,3,1,1,yes,yes,yes,no,yes,2,yes,unfurnished
91 | 6440000,8580,5,3,2,yes,no,no,no,no,2,no,furnished
92 | 6440000,5000,3,1,2,yes,no,no,no,yes,0,no,semi-furnished
93 | 6419000,6750,2,1,1,yes,yes,yes,no,no,2,yes,furnished
94 | 6405000,4800,3,2,4,yes,yes,no,no,yes,0,no,furnished
95 | 6300000,7200,3,2,1,yes,no,yes,no,yes,3,no,semi-furnished
96 | 6300000,6000,4,2,4,yes,no,no,no,no,1,no,semi-furnished
97 | 6300000,4100,3,2,3,yes,no,no,no,yes,2,no,semi-furnished
98 | 6300000,9000,3,1,1,yes,no,yes,no,no,1,yes,furnished
99 | 6300000,6400,3,1,1,yes,yes,yes,no,yes,1,yes,semi-furnished
100 | 6293000,6600,3,2,3,yes,no,no,no,yes,0,yes,unfurnished
101 | 6265000,6000,4,1,3,yes,yes,yes,no,no,0,yes,unfurnished
102 | 6230000,6600,3,2,1,yes,no,yes,no,yes,0,yes,unfurnished
103 | 6230000,5500,3,1,3,yes,no,no,no,no,1,yes,unfurnished
104 | 6195000,5500,3,2,4,yes,yes,no,no,yes,1,no,semi-furnished
105 | 6195000,6350,3,2,3,yes,yes,no,no,yes,0,no,furnished
106 | 6195000,5500,3,2,1,yes,yes,yes,no,no,2,yes,furnished
107 | 6160000,4500,3,1,4,yes,no,no,no,yes,0,no,unfurnished
108 | 6160000,5450,4,2,1,yes,no,yes,no,yes,0,yes,semi-furnished
109 | 6125000,6420,3,1,3,yes,no,yes,no,no,0,yes,unfurnished
110 | 6107500,3240,4,1,3,yes,no,no,no,no,1,no,semi-furnished
111 | 6090000,6615,4,2,2,yes,yes,no,yes,no,1,no,semi-furnished
112 | 6090000,6600,3,1,1,yes,yes,yes,no,no,2,yes,semi-furnished
113 | 6090000,8372,3,1,3,yes,no,no,no,yes,2,no,unfurnished
114 | 6083000,4300,6,2,2,yes,no,no,no,no,0,no,furnished
115 | 6083000,9620,3,1,1,yes,no,yes,no,no,2,yes,furnished
116 | 6020000,6800,2,1,1,yes,yes,yes,no,no,2,no,furnished
117 | 6020000,8000,3,1,1,yes,yes,yes,no,yes,2,yes,semi-furnished
118 | 6020000,6900,3,2,1,yes,yes,yes,no,no,0,yes,unfurnished
119 | 5950000,3700,4,1,2,yes,yes,no,no,yes,0,no,furnished
120 | 5950000,6420,3,1,1,yes,no,yes,no,yes,0,yes,furnished
121 | 5950000,7020,3,1,1,yes,no,yes,no,yes,2,yes,semi-furnished
122 | 5950000,6540,3,1,1,yes,yes,yes,no,no,2,yes,furnished
123 | 5950000,7231,3,1,2,yes,yes,yes,no,yes,0,yes,semi-furnished
124 | 5950000,6254,4,2,1,yes,no,yes,no,no,1,yes,semi-furnished
125 | 5950000,7320,4,2,2,yes,no,no,no,no,0,no,furnished
126 | 5950000,6525,3,2,4,yes,no,no,no,no,1,no,furnished
127 | 5943000,15600,3,1,1,yes,no,no,no,yes,2,no,semi-furnished
128 | 5880000,7160,3,1,1,yes,no,yes,no,no,2,yes,unfurnished
129 | 5880000,6500,3,2,3,yes,no,no,no,yes,0,no,unfurnished
130 | 5873000,5500,3,1,3,yes,yes,no,no,yes,1,no,furnished
131 | 5873000,11460,3,1,3,yes,no,no,no,no,2,yes,semi-furnished
132 | 5866000,4800,3,1,1,yes,yes,yes,no,no,0,no,unfurnished
133 | 5810000,5828,4,1,4,yes,yes,no,no,no,0,no,semi-furnished
134 | 5810000,5200,3,1,3,yes,no,no,no,yes,0,no,semi-furnished
135 | 5810000,4800,3,1,3,yes,no,no,no,yes,0,no,unfurnished
136 | 5803000,7000,3,1,1,yes,no,yes,no,no,2,yes,semi-furnished
137 | 5775000,6000,3,2,4,yes,no,no,no,yes,0,no,unfurnished
138 | 5740000,5400,4,2,2,yes,no,no,no,yes,2,no,unfurnished
139 | 5740000,4640,4,1,2,yes,no,no,no,no,1,no,semi-furnished
140 | 5740000,5000,3,1,3,yes,no,no,no,yes,0,no,semi-furnished
141 | 5740000,6360,3,1,1,yes,yes,yes,no,yes,2,yes,furnished
142 | 5740000,5800,3,2,4,yes,no,no,no,yes,0,no,unfurnished
143 | 5652500,6660,4,2,2,yes,yes,yes,no,no,1,yes,semi-furnished
144 | 5600000,10500,4,2,2,yes,no,no,no,no,1,no,semi-furnished
145 | 5600000,4800,5,2,3,no,no,yes,yes,no,0,no,unfurnished
146 | 5600000,4700,4,1,2,yes,yes,yes,no,yes,1,no,furnished
147 | 5600000,5000,3,1,4,yes,no,no,no,no,0,no,furnished
148 | 5600000,10500,2,1,1,yes,no,no,no,no,1,no,semi-furnished
149 | 5600000,5500,3,2,2,yes,no,no,no,no,1,no,semi-furnished
150 | 5600000,6360,3,1,3,yes,no,no,no,no,0,yes,semi-furnished
151 | 5600000,6600,4,2,1,yes,no,yes,no,no,0,yes,semi-furnished
152 | 5600000,5136,3,1,2,yes,yes,yes,no,yes,0,yes,unfurnished
153 | 5565000,4400,4,1,2,yes,no,no,no,yes,2,yes,semi-furnished
154 | 5565000,5400,5,1,2,yes,yes,yes,no,yes,0,yes,furnished
155 | 5530000,3300,3,3,2,yes,no,yes,no,no,0,no,semi-furnished
156 | 5530000,3650,3,2,2,yes,no,no,no,no,2,no,semi-furnished
157 | 5530000,6100,3,2,1,yes,no,yes,no,no,2,yes,furnished
158 | 5523000,6900,3,1,1,yes,yes,yes,no,no,0,yes,semi-furnished
159 | 5495000,2817,4,2,2,no,yes,yes,no,no,1,no,furnished
160 | 5495000,7980,3,1,1,yes,no,no,no,no,2,no,semi-furnished
161 | 5460000,3150,3,2,1,yes,yes,yes,no,yes,0,no,furnished
162 | 5460000,6210,4,1,4,yes,yes,no,no,yes,0,no,furnished
163 | 5460000,6100,3,1,3,yes,yes,no,no,yes,0,yes,semi-furnished
164 | 5460000,6600,4,2,2,yes,yes,yes,no,no,0,yes,semi-furnished
165 | 5425000,6825,3,1,1,yes,yes,yes,no,yes,0,yes,semi-furnished
166 | 5390000,6710,3,2,2,yes,yes,yes,no,no,1,yes,furnished
167 | 5383000,6450,3,2,1,yes,yes,yes,yes,no,0,no,unfurnished
168 | 5320000,7800,3,1,1,yes,no,yes,no,yes,2,yes,unfurnished
169 | 5285000,4600,2,2,1,yes,no,no,no,yes,2,no,semi-furnished
170 | 5250000,4260,4,1,2,yes,no,yes,no,yes,0,no,furnished
171 | 5250000,6540,4,2,2,no,no,no,no,yes,0,no,semi-furnished
172 | 5250000,5500,3,2,1,yes,no,yes,no,no,0,no,semi-furnished
173 | 5250000,10269,3,1,1,yes,no,no,no,no,1,yes,semi-furnished
174 | 5250000,8400,3,1,2,yes,yes,yes,no,yes,2,yes,unfurnished
175 | 5250000,5300,4,2,1,yes,no,no,no,yes,0,yes,unfurnished
176 | 5250000,3800,3,1,2,yes,yes,yes,no,no,1,yes,unfurnished
177 | 5250000,9800,4,2,2,yes,yes,no,no,no,2,no,semi-furnished
178 | 5250000,8520,3,1,1,yes,no,no,no,yes,2,no,furnished
179 | 5243000,6050,3,1,1,yes,no,yes,no,no,0,yes,semi-furnished
180 | 5229000,7085,3,1,1,yes,yes,yes,no,no,2,yes,semi-furnished
181 | 5215000,3180,3,2,2,yes,no,no,no,no,2,no,semi-furnished
182 | 5215000,4500,4,2,1,no,no,yes,no,yes,2,no,semi-furnished
183 | 5215000,7200,3,1,2,yes,yes,yes,no,no,1,yes,furnished
184 | 5145000,3410,3,1,2,no,no,no,no,yes,0,no,semi-furnished
185 | 5145000,7980,3,1,1,yes,no,no,no,no,1,yes,semi-furnished
186 | 5110000,3000,3,2,2,yes,yes,yes,no,no,0,no,furnished
187 | 5110000,3000,3,1,2,yes,no,yes,no,no,0,no,unfurnished
188 | 5110000,11410,2,1,2,yes,no,no,no,no,0,yes,furnished
189 | 5110000,6100,3,1,1,yes,no,yes,no,yes,0,yes,semi-furnished
190 | 5075000,5720,2,1,2,yes,no,no,no,yes,0,yes,unfurnished
191 | 5040000,3540,2,1,1,no,yes,yes,no,no,0,no,semi-furnished
192 | 5040000,7600,4,1,2,yes,no,no,no,yes,2,no,furnished
193 | 5040000,10700,3,1,2,yes,yes,yes,no,no,0,no,semi-furnished
194 | 5040000,6600,3,1,1,yes,yes,yes,no,no,0,yes,furnished
195 | 5033000,4800,2,1,1,yes,yes,yes,no,no,0,no,semi-furnished
196 | 5005000,8150,3,2,1,yes,yes,yes,no,no,0,no,semi-furnished
197 | 4970000,4410,4,3,2,yes,no,yes,no,no,2,no,semi-furnished
198 | 4970000,7686,3,1,1,yes,yes,yes,yes,no,0,no,semi-furnished
199 | 4956000,2800,3,2,2,no,no,yes,no,yes,1,no,semi-furnished
200 | 4935000,5948,3,1,2,yes,no,no,no,yes,0,no,semi-furnished
201 | 4907000,4200,3,1,2,yes,no,no,no,no,1,no,furnished
202 | 4900000,4520,3,1,2,yes,no,yes,no,yes,0,no,semi-furnished
203 | 4900000,4095,3,1,2,no,yes,yes,no,yes,0,no,semi-furnished
204 | 4900000,4120,2,1,1,yes,no,yes,no,no,1,no,semi-furnished
205 | 4900000,5400,4,1,2,yes,no,no,no,no,0,no,semi-furnished
206 | 4900000,4770,3,1,1,yes,yes,yes,no,no,0,no,semi-furnished
207 | 4900000,6300,3,1,1,yes,no,no,no,yes,2,no,semi-furnished
208 | 4900000,5800,2,1,1,yes,yes,yes,no,yes,0,no,semi-furnished
209 | 4900000,3000,3,1,2,yes,no,yes,no,yes,0,no,semi-furnished
210 | 4900000,2970,3,1,3,yes,no,no,no,no,0,no,semi-furnished
211 | 4900000,6720,3,1,1,yes,no,no,no,no,0,no,unfurnished
212 | 4900000,4646,3,1,2,yes,yes,yes,no,no,2,no,semi-furnished
213 | 4900000,12900,3,1,1,yes,no,no,no,no,2,no,furnished
214 | 4893000,3420,4,2,2,yes,no,yes,no,yes,2,no,semi-furnished
215 | 4893000,4995,4,2,1,yes,no,yes,no,no,0,no,semi-furnished
216 | 4865000,4350,2,1,1,yes,no,yes,no,no,0,no,unfurnished
217 | 4830000,4160,3,1,3,yes,no,no,no,no,0,no,unfurnished
218 | 4830000,6040,3,1,1,yes,no,no,no,no,2,yes,semi-furnished
219 | 4830000,6862,3,1,2,yes,no,no,no,yes,2,yes,furnished
220 | 4830000,4815,2,1,1,yes,no,no,no,yes,0,yes,semi-furnished
221 | 4795000,7000,3,1,2,yes,no,yes,no,no,0,no,unfurnished
222 | 4795000,8100,4,1,4,yes,no,yes,no,yes,2,no,semi-furnished
223 | 4767000,3420,4,2,2,yes,no,no,no,no,0,no,semi-furnished
224 | 4760000,9166,2,1,1,yes,no,yes,no,yes,2,no,semi-furnished
225 | 4760000,6321,3,1,2,yes,no,yes,no,yes,1,no,furnished
226 | 4760000,10240,2,1,1,yes,no,no,no,yes,2,yes,unfurnished
227 | 4753000,6440,2,1,1,yes,no,no,no,yes,3,no,semi-furnished
228 | 4690000,5170,3,1,4,yes,no,no,no,yes,0,no,semi-furnished
229 | 4690000,6000,2,1,1,yes,no,yes,no,yes,1,no,furnished
230 | 4690000,3630,3,1,2,yes,no,no,no,no,2,no,semi-furnished
231 | 4690000,9667,4,2,2,yes,yes,yes,no,no,1,no,semi-furnished
232 | 4690000,5400,2,1,2,yes,no,no,no,no,0,yes,semi-furnished
233 | 4690000,4320,3,1,1,yes,no,no,no,no,0,yes,semi-furnished
234 | 4655000,3745,3,1,2,yes,no,yes,no,no,0,no,furnished
235 | 4620000,4160,3,1,1,yes,yes,yes,no,yes,0,no,unfurnished
236 | 4620000,3880,3,2,2,yes,no,yes,no,no,2,no,semi-furnished
237 | 4620000,5680,3,1,2,yes,yes,no,no,yes,1,no,semi-furnished
238 | 4620000,2870,2,1,2,yes,yes,yes,no,no,0,yes,semi-furnished
239 | 4620000,5010,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
240 | 4613000,4510,4,2,2,yes,no,yes,no,no,0,no,semi-furnished
241 | 4585000,4000,3,1,2,yes,no,no,no,no,1,no,furnished
242 | 4585000,3840,3,1,2,yes,no,no,no,no,1,yes,semi-furnished
243 | 4550000,3760,3,1,1,yes,no,no,no,no,2,no,semi-furnished
244 | 4550000,3640,3,1,2,yes,no,no,no,yes,0,no,furnished
245 | 4550000,2550,3,1,2,yes,no,yes,no,no,0,no,furnished
246 | 4550000,5320,3,1,2,yes,yes,yes,no,no,0,yes,semi-furnished
247 | 4550000,5360,3,1,2,yes,no,no,no,no,2,yes,unfurnished
248 | 4550000,3520,3,1,1,yes,no,no,no,no,0,yes,semi-furnished
249 | 4550000,8400,4,1,4,yes,no,no,no,no,3,no,unfurnished
250 | 4543000,4100,2,2,1,yes,yes,yes,no,no,0,no,semi-furnished
251 | 4543000,4990,4,2,2,yes,yes,yes,no,no,0,yes,furnished
252 | 4515000,3510,3,1,3,yes,no,no,no,no,0,no,semi-furnished
253 | 4515000,3450,3,1,2,yes,no,yes,no,no,1,no,semi-furnished
254 | 4515000,9860,3,1,1,yes,no,no,no,no,0,no,semi-furnished
255 | 4515000,3520,2,1,2,yes,no,no,no,no,0,yes,furnished
256 | 4480000,4510,4,1,2,yes,no,no,no,yes,2,no,semi-furnished
257 | 4480000,5885,2,1,1,yes,no,no,no,yes,1,no,unfurnished
258 | 4480000,4000,3,1,2,yes,no,no,no,no,2,no,furnished
259 | 4480000,8250,3,1,1,yes,no,no,no,no,0,no,furnished
260 | 4480000,4040,3,1,2,yes,no,no,no,no,1,no,semi-furnished
261 | 4473000,6360,2,1,1,yes,no,yes,no,yes,1,no,furnished
262 | 4473000,3162,3,1,2,yes,no,no,no,yes,1,no,furnished
263 | 4473000,3510,3,1,2,yes,no,no,no,no,0,no,semi-furnished
264 | 4445000,3750,2,1,1,yes,yes,yes,no,no,0,no,semi-furnished
265 | 4410000,3968,3,1,2,no,no,no,no,no,0,no,semi-furnished
266 | 4410000,4900,2,1,2,yes,no,yes,no,no,0,no,semi-furnished
267 | 4403000,2880,3,1,2,yes,no,no,no,no,0,yes,semi-furnished
268 | 4403000,4880,3,1,1,yes,no,no,no,no,2,yes,unfurnished
269 | 4403000,4920,3,1,2,yes,no,no,no,no,1,no,semi-furnished
270 | 4382000,4950,4,1,2,yes,no,no,no,yes,0,no,semi-furnished
271 | 4375000,3900,3,1,2,yes,no,no,no,no,0,no,unfurnished
272 | 4340000,4500,3,2,3,yes,no,no,yes,no,1,no,furnished
273 | 4340000,1905,5,1,2,no,no,yes,no,no,0,no,semi-furnished
274 | 4340000,4075,3,1,1,yes,yes,yes,no,no,2,no,semi-furnished
275 | 4340000,3500,4,1,2,yes,no,no,no,no,2,no,furnished
276 | 4340000,6450,4,1,2,yes,no,no,no,no,0,no,semi-furnished
277 | 4319000,4032,2,1,1,yes,no,yes,no,no,0,no,furnished
278 | 4305000,4400,2,1,1,yes,no,no,no,no,1,no,semi-furnished
279 | 4305000,10360,2,1,1,yes,no,no,no,no,1,yes,semi-furnished
280 | 4277000,3400,3,1,2,yes,no,yes,no,no,2,yes,semi-furnished
281 | 4270000,6360,2,1,1,yes,no,no,no,no,0,no,furnished
282 | 4270000,6360,2,1,2,yes,no,no,no,no,0,no,unfurnished
283 | 4270000,4500,2,1,1,yes,no,no,no,yes,2,no,furnished
284 | 4270000,2175,3,1,2,no,yes,yes,no,yes,0,no,unfurnished
285 | 4270000,4360,4,1,2,yes,no,no,no,no,0,no,furnished
286 | 4270000,7770,2,1,1,yes,no,no,no,no,1,no,furnished
287 | 4235000,6650,3,1,2,yes,yes,no,no,no,0,no,semi-furnished
288 | 4235000,2787,3,1,1,yes,no,yes,no,no,0,yes,furnished
289 | 4200000,5500,3,1,2,yes,no,no,no,yes,0,no,unfurnished
290 | 4200000,5040,3,1,2,yes,no,yes,no,yes,0,no,unfurnished
291 | 4200000,5850,2,1,1,yes,yes,yes,no,no,2,no,semi-furnished
292 | 4200000,2610,4,3,2,no,no,no,no,no,0,no,semi-furnished
293 | 4200000,2953,3,1,2,yes,no,yes,no,yes,0,no,unfurnished
294 | 4200000,2747,4,2,2,no,no,no,no,no,0,no,semi-furnished
295 | 4200000,4410,2,1,1,no,no,no,no,no,1,no,unfurnished
296 | 4200000,4000,4,2,2,no,no,no,no,no,0,no,semi-furnished
297 | 4200000,2325,3,1,2,no,no,no,no,no,0,no,semi-furnished
298 | 4200000,4600,3,2,2,yes,no,no,no,yes,1,no,semi-furnished
299 | 4200000,3640,3,2,2,yes,no,yes,no,no,0,no,unfurnished
300 | 4200000,5800,3,1,1,yes,no,no,yes,no,2,no,semi-furnished
301 | 4200000,7000,3,1,1,yes,no,no,no,no,3,no,furnished
302 | 4200000,4079,3,1,3,yes,no,no,no,no,0,no,semi-furnished
303 | 4200000,3520,3,1,2,yes,no,no,no,no,0,yes,semi-furnished
304 | 4200000,2145,3,1,3,yes,no,no,no,no,1,yes,unfurnished
305 | 4200000,4500,3,1,1,yes,no,yes,no,no,0,no,furnished
306 | 4193000,8250,3,1,1,yes,no,yes,no,no,3,no,semi-furnished
307 | 4193000,3450,3,1,2,yes,no,no,no,no,1,no,semi-furnished
308 | 4165000,4840,3,1,2,yes,no,no,no,no,1,no,semi-furnished
309 | 4165000,4080,3,1,2,yes,no,no,no,no,2,no,semi-furnished
310 | 4165000,4046,3,1,2,yes,no,yes,no,no,1,no,semi-furnished
311 | 4130000,4632,4,1,2,yes,no,no,no,yes,0,no,semi-furnished
312 | 4130000,5985,3,1,1,yes,no,yes,no,no,0,no,semi-furnished
313 | 4123000,6060,2,1,1,yes,no,yes,no,no,1,no,semi-furnished
314 | 4098500,3600,3,1,1,yes,no,yes,no,yes,0,yes,furnished
315 | 4095000,3680,3,2,2,yes,no,no,no,no,0,no,semi-furnished
316 | 4095000,4040,2,1,2,yes,no,no,no,no,1,no,semi-furnished
317 | 4095000,5600,2,1,1,yes,no,no,no,yes,0,no,semi-furnished
318 | 4060000,5900,4,2,2,no,no,yes,no,no,1,no,unfurnished
319 | 4060000,4992,3,2,2,yes,no,no,no,no,2,no,unfurnished
320 | 4060000,4340,3,1,1,yes,no,no,no,no,0,no,semi-furnished
321 | 4060000,3000,4,1,3,yes,no,yes,no,yes,2,no,semi-furnished
322 | 4060000,4320,3,1,2,yes,no,no,no,no,2,yes,furnished
323 | 4025000,3630,3,2,2,yes,no,no,yes,no,2,no,semi-furnished
324 | 4025000,3460,3,2,1,yes,no,yes,no,yes,1,no,furnished
325 | 4025000,5400,3,1,1,yes,no,no,no,no,3,no,semi-furnished
326 | 4007500,4500,3,1,2,no,no,yes,no,yes,0,no,semi-furnished
327 | 4007500,3460,4,1,2,yes,no,no,no,yes,0,no,semi-furnished
328 | 3990000,4100,4,1,1,no,no,yes,no,no,0,no,unfurnished
329 | 3990000,6480,3,1,2,no,no,no,no,yes,1,no,semi-furnished
330 | 3990000,4500,3,2,2,no,no,yes,no,yes,0,no,semi-furnished
331 | 3990000,3960,3,1,2,yes,no,no,no,no,0,no,furnished
332 | 3990000,4050,2,1,2,yes,yes,yes,no,no,0,yes,unfurnished
333 | 3920000,7260,3,2,1,yes,yes,yes,no,no,3,no,furnished
334 | 3920000,5500,4,1,2,yes,yes,yes,no,no,0,no,semi-furnished
335 | 3920000,3000,3,1,2,yes,no,no,no,no,0,no,semi-furnished
336 | 3920000,3290,2,1,1,yes,no,no,yes,no,1,no,furnished
337 | 3920000,3816,2,1,1,yes,no,yes,no,yes,2,no,furnished
338 | 3920000,8080,3,1,1,yes,no,no,no,yes,2,no,semi-furnished
339 | 3920000,2145,4,2,1,yes,no,yes,no,no,0,yes,unfurnished
340 | 3885000,3780,2,1,2,yes,yes,yes,no,no,0,no,semi-furnished
341 | 3885000,3180,4,2,2,yes,no,no,no,no,0,no,furnished
342 | 3850000,5300,5,2,2,yes,no,no,no,no,0,no,semi-furnished
343 | 3850000,3180,2,2,1,yes,no,yes,no,no,2,no,semi-furnished
344 | 3850000,7152,3,1,2,yes,no,no,no,yes,0,no,furnished
345 | 3850000,4080,2,1,1,yes,no,no,no,no,0,no,semi-furnished
346 | 3850000,3850,2,1,1,yes,no,no,no,no,0,no,semi-furnished
347 | 3850000,2015,3,1,2,yes,no,yes,no,no,0,yes,semi-furnished
348 | 3850000,2176,2,1,2,yes,yes,no,no,no,0,yes,semi-furnished
349 | 3836000,3350,3,1,2,yes,no,no,no,no,0,no,unfurnished
350 | 3815000,3150,2,2,1,no,no,yes,no,no,0,no,semi-furnished
351 | 3780000,4820,3,1,2,yes,no,no,no,no,0,no,semi-furnished
352 | 3780000,3420,2,1,2,yes,no,no,yes,no,1,no,semi-furnished
353 | 3780000,3600,2,1,1,yes,no,no,no,no,0,no,semi-furnished
354 | 3780000,5830,2,1,1,yes,no,no,no,no,2,no,unfurnished
355 | 3780000,2856,3,1,3,yes,no,no,no,no,0,yes,furnished
356 | 3780000,8400,2,1,1,yes,no,no,no,no,1,no,furnished
357 | 3773000,8250,3,1,1,yes,no,no,no,no,2,no,furnished
358 | 3773000,2520,5,2,1,no,no,yes,no,yes,1,no,furnished
359 | 3773000,6930,4,1,2,no,no,no,no,no,1,no,furnished
360 | 3745000,3480,2,1,1,yes,no,no,no,no,0,yes,semi-furnished
361 | 3710000,3600,3,1,1,yes,no,no,no,no,1,no,unfurnished
362 | 3710000,4040,2,1,1,yes,no,no,no,no,0,no,semi-furnished
363 | 3710000,6020,3,1,1,yes,no,no,no,no,0,no,semi-furnished
364 | 3710000,4050,2,1,1,yes,no,no,no,no,0,no,furnished
365 | 3710000,3584,2,1,1,yes,no,no,yes,no,0,no,semi-furnished
366 | 3703000,3120,3,1,2,no,no,yes,yes,no,0,no,semi-furnished
367 | 3703000,5450,2,1,1,yes,no,no,no,no,0,no,furnished
368 | 3675000,3630,2,1,1,yes,no,yes,no,no,0,no,furnished
369 | 3675000,3630,2,1,1,yes,no,no,no,yes,0,no,unfurnished
370 | 3675000,5640,2,1,1,no,no,no,no,no,0,no,semi-furnished
371 | 3675000,3600,2,1,1,yes,no,no,no,no,0,no,furnished
372 | 3640000,4280,2,1,1,yes,no,no,no,yes,2,no,semi-furnished
373 | 3640000,3570,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
374 | 3640000,3180,3,1,2,no,no,yes,no,no,0,no,semi-furnished
375 | 3640000,3000,2,1,2,yes,no,no,no,yes,0,no,furnished
376 | 3640000,3520,2,2,1,yes,no,yes,no,no,0,no,semi-furnished
377 | 3640000,5960,3,1,2,yes,yes,yes,no,no,0,no,unfurnished
378 | 3640000,4130,3,2,2,yes,no,no,no,no,2,no,semi-furnished
379 | 3640000,2850,3,2,2,no,no,yes,no,no,0,yes,unfurnished
380 | 3640000,2275,3,1,3,yes,no,no,yes,yes,0,yes,semi-furnished
381 | 3633000,3520,3,1,1,yes,no,no,no,no,2,yes,unfurnished
382 | 3605000,4500,2,1,1,yes,no,no,no,no,0,no,semi-furnished
383 | 3605000,4000,2,1,1,yes,no,no,no,no,0,yes,semi-furnished
384 | 3570000,3150,3,1,2,yes,no,yes,no,no,0,no,furnished
385 | 3570000,4500,4,2,2,yes,no,yes,no,no,2,no,furnished
386 | 3570000,4500,2,1,1,no,no,no,no,no,0,no,furnished
387 | 3570000,3640,2,1,1,yes,no,no,no,no,0,no,unfurnished
388 | 3535000,3850,3,1,1,yes,no,no,no,no,2,no,unfurnished
389 | 3500000,4240,3,1,2,yes,no,no,no,yes,0,no,semi-furnished
390 | 3500000,3650,3,1,2,yes,no,no,no,no,0,no,unfurnished
391 | 3500000,4600,4,1,2,yes,no,no,no,no,0,no,semi-furnished
392 | 3500000,2135,3,2,2,no,no,no,no,no,0,no,unfurnished
393 | 3500000,3036,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
394 | 3500000,3990,3,1,2,yes,no,no,no,no,0,no,semi-furnished
395 | 3500000,7424,3,1,1,no,no,no,no,no,0,no,unfurnished
396 | 3500000,3480,3,1,1,no,no,no,no,yes,0,no,unfurnished
397 | 3500000,3600,6,1,2,yes,no,no,no,no,1,no,unfurnished
398 | 3500000,3640,2,1,1,yes,no,no,no,no,1,no,semi-furnished
399 | 3500000,5900,2,1,1,yes,no,no,no,no,1,no,furnished
400 | 3500000,3120,3,1,2,yes,no,no,no,no,1,no,unfurnished
401 | 3500000,7350,2,1,1,yes,no,no,no,no,1,no,semi-furnished
402 | 3500000,3512,2,1,1,yes,no,no,no,no,1,yes,unfurnished
403 | 3500000,9500,3,1,2,yes,no,no,no,no,3,yes,unfurnished
404 | 3500000,5880,2,1,1,yes,no,no,no,no,0,no,unfurnished
405 | 3500000,12944,3,1,1,yes,no,no,no,no,0,no,unfurnished
406 | 3493000,4900,3,1,2,no,no,no,no,no,0,no,unfurnished
407 | 3465000,3060,3,1,1,yes,no,no,no,no,0,no,unfurnished
408 | 3465000,5320,2,1,1,yes,no,no,no,no,1,yes,unfurnished
409 | 3465000,2145,3,1,3,yes,no,no,no,no,0,yes,furnished
410 | 3430000,4000,2,1,1,yes,no,no,no,no,0,no,unfurnished
411 | 3430000,3185,2,1,1,yes,no,no,no,no,2,no,unfurnished
412 | 3430000,3850,3,1,1,yes,no,no,no,no,0,no,unfurnished
413 | 3430000,2145,3,1,3,yes,no,no,no,no,0,yes,furnished
414 | 3430000,2610,3,1,2,yes,no,yes,no,no,0,yes,unfurnished
415 | 3430000,1950,3,2,2,yes,no,yes,no,no,0,yes,unfurnished
416 | 3423000,4040,2,1,1,yes,no,no,no,no,0,no,unfurnished
417 | 3395000,4785,3,1,2,yes,yes,yes,no,yes,1,no,furnished
418 | 3395000,3450,3,1,1,yes,no,yes,no,no,2,no,unfurnished
419 | 3395000,3640,2,1,1,yes,no,no,no,no,0,no,furnished
420 | 3360000,3500,4,1,2,yes,no,no,no,yes,2,no,unfurnished
421 | 3360000,4960,4,1,3,no,no,no,no,no,0,no,semi-furnished
422 | 3360000,4120,2,1,2,yes,no,no,no,no,0,no,unfurnished
423 | 3360000,4750,2,1,1,yes,no,no,no,no,0,no,unfurnished
424 | 3360000,3720,2,1,1,no,no,no,no,yes,0,no,unfurnished
425 | 3360000,3750,3,1,1,yes,no,no,no,no,0,no,unfurnished
426 | 3360000,3100,3,1,2,no,no,yes,no,no,0,no,semi-furnished
427 | 3360000,3185,2,1,1,yes,no,yes,no,no,2,no,furnished
428 | 3353000,2700,3,1,1,no,no,no,no,no,0,no,furnished
429 | 3332000,2145,3,1,2,yes,no,yes,no,no,0,yes,furnished
430 | 3325000,4040,2,1,1,yes,no,no,no,no,1,no,unfurnished
431 | 3325000,4775,4,1,2,yes,no,no,no,no,0,no,unfurnished
432 | 3290000,2500,2,1,1,no,no,no,no,yes,0,no,unfurnished
433 | 3290000,3180,4,1,2,yes,no,yes,no,yes,0,no,unfurnished
434 | 3290000,6060,3,1,1,yes,yes,yes,no,no,0,no,furnished
435 | 3290000,3480,4,1,2,no,no,no,no,no,1,no,semi-furnished
436 | 3290000,3792,4,1,2,yes,no,no,no,no,0,no,semi-furnished
437 | 3290000,4040,2,1,1,yes,no,no,no,no,0,no,unfurnished
438 | 3290000,2145,3,1,2,yes,no,yes,no,no,0,yes,furnished
439 | 3290000,5880,3,1,1,yes,no,no,no,no,1,no,unfurnished
440 | 3255000,4500,2,1,1,no,no,no,no,no,0,no,semi-furnished
441 | 3255000,3930,2,1,1,no,no,no,no,no,0,no,unfurnished
442 | 3234000,3640,4,1,2,yes,no,yes,no,no,0,no,unfurnished
443 | 3220000,4370,3,1,2,yes,no,no,no,no,0,no,unfurnished
444 | 3220000,2684,2,1,1,yes,no,no,no,yes,1,no,unfurnished
445 | 3220000,4320,3,1,1,no,no,no,no,no,1,no,unfurnished
446 | 3220000,3120,3,1,2,no,no,no,no,no,0,no,furnished
447 | 3150000,3450,1,1,1,yes,no,no,no,no,0,no,furnished
448 | 3150000,3986,2,2,1,no,yes,yes,no,no,1,no,unfurnished
449 | 3150000,3500,2,1,1,no,no,yes,no,no,0,no,semi-furnished
450 | 3150000,4095,2,1,1,yes,no,no,no,no,2,no,semi-furnished
451 | 3150000,1650,3,1,2,no,no,yes,no,no,0,no,unfurnished
452 | 3150000,3450,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
453 | 3150000,6750,2,1,1,yes,no,no,no,no,0,no,semi-furnished
454 | 3150000,9000,3,1,2,yes,no,no,no,no,2,no,semi-furnished
455 | 3150000,3069,2,1,1,yes,no,no,no,no,1,no,unfurnished
456 | 3143000,4500,3,1,2,yes,no,no,no,yes,0,no,unfurnished
457 | 3129000,5495,3,1,1,yes,no,yes,no,no,0,no,unfurnished
458 | 3118850,2398,3,1,1,yes,no,no,no,no,0,yes,semi-furnished
459 | 3115000,3000,3,1,1,no,no,no,no,yes,0,no,unfurnished
460 | 3115000,3850,3,1,2,yes,no,no,no,no,0,no,unfurnished
461 | 3115000,3500,2,1,1,yes,no,no,no,no,0,no,unfurnished
462 | 3087000,8100,2,1,1,yes,no,no,no,no,1,no,unfurnished
463 | 3080000,4960,2,1,1,yes,no,yes,no,yes,0,no,unfurnished
464 | 3080000,2160,3,1,2,no,no,yes,no,no,0,no,semi-furnished
465 | 3080000,3090,2,1,1,yes,yes,yes,no,no,0,no,unfurnished
466 | 3080000,4500,2,1,2,yes,no,no,yes,no,1,no,semi-furnished
467 | 3045000,3800,2,1,1,yes,no,no,no,no,0,no,unfurnished
468 | 3010000,3090,3,1,2,no,no,no,no,no,0,no,semi-furnished
469 | 3010000,3240,3,1,2,yes,no,no,no,no,2,no,semi-furnished
470 | 3010000,2835,2,1,1,yes,no,no,no,no,0,no,semi-furnished
471 | 3010000,4600,2,1,1,yes,no,no,no,no,0,no,furnished
472 | 3010000,5076,3,1,1,no,no,no,no,no,0,no,unfurnished
473 | 3010000,3750,3,1,2,yes,no,no,no,no,0,no,unfurnished
474 | 3010000,3630,4,1,2,yes,no,no,no,no,3,no,semi-furnished
475 | 3003000,8050,2,1,1,yes,no,no,no,no,0,no,unfurnished
476 | 2975000,4352,4,1,2,no,no,no,no,no,1,no,unfurnished
477 | 2961000,3000,2,1,2,yes,no,no,no,no,0,no,semi-furnished
478 | 2940000,5850,3,1,2,yes,no,yes,no,no,1,no,unfurnished
479 | 2940000,4960,2,1,1,yes,no,no,no,no,0,no,unfurnished
480 | 2940000,3600,3,1,2,no,no,no,no,no,1,no,unfurnished
481 | 2940000,3660,4,1,2,no,no,no,no,no,0,no,unfurnished
482 | 2940000,3480,3,1,2,no,no,no,no,no,1,no,semi-furnished
483 | 2940000,2700,2,1,1,no,no,no,no,no,0,no,furnished
484 | 2940000,3150,3,1,2,no,no,no,no,no,0,no,unfurnished
485 | 2940000,6615,3,1,2,yes,no,no,no,no,0,no,semi-furnished
486 | 2870000,3040,2,1,1,no,no,no,no,no,0,no,unfurnished
487 | 2870000,3630,2,1,1,yes,no,no,no,no,0,no,unfurnished
488 | 2870000,6000,2,1,1,yes,no,no,no,no,0,no,semi-furnished
489 | 2870000,5400,4,1,2,yes,no,no,no,no,0,no,unfurnished
490 | 2852500,5200,4,1,3,yes,no,no,no,no,0,no,unfurnished
491 | 2835000,3300,3,1,2,no,no,no,no,no,1,no,semi-furnished
492 | 2835000,4350,3,1,2,no,no,no,yes,no,1,no,unfurnished
493 | 2835000,2640,2,1,1,no,no,no,no,no,1,no,furnished
494 | 2800000,2650,3,1,2,yes,no,yes,no,no,1,no,unfurnished
495 | 2800000,3960,3,1,1,yes,no,no,no,no,0,no,furnished
496 | 2730000,6800,2,1,1,yes,no,no,no,no,0,no,unfurnished
497 | 2730000,4000,3,1,2,yes,no,no,no,no,1,no,unfurnished
498 | 2695000,4000,2,1,1,yes,no,no,no,no,0,no,unfurnished
499 | 2660000,3934,2,1,1,yes,no,no,no,no,0,no,unfurnished
500 | 2660000,2000,2,1,2,yes,no,no,no,no,0,no,semi-furnished
501 | 2660000,3630,3,3,2,no,yes,no,no,no,0,no,unfurnished
502 | 2660000,2800,3,1,1,yes,no,no,no,no,0,no,unfurnished
503 | 2660000,2430,3,1,1,no,no,no,no,no,0,no,unfurnished
504 | 2660000,3480,2,1,1,yes,no,no,no,no,1,no,semi-furnished
505 | 2660000,4000,3,1,1,yes,no,no,no,no,0,no,semi-furnished
506 | 2653000,3185,2,1,1,yes,no,no,no,yes,0,no,unfurnished
507 | 2653000,4000,3,1,2,yes,no,no,no,yes,0,no,unfurnished
508 | 2604000,2910,2,1,1,no,no,no,no,no,0,no,unfurnished
509 | 2590000,3600,2,1,1,yes,no,no,no,no,0,no,unfurnished
510 | 2590000,4400,2,1,1,yes,no,no,no,no,0,no,unfurnished
511 | 2590000,3600,2,2,2,yes,no,yes,no,no,1,no,furnished
512 | 2520000,2880,3,1,1,no,no,no,no,no,0,no,unfurnished
513 | 2520000,3180,3,1,1,no,no,no,no,no,0,no,unfurnished
514 | 2520000,3000,2,1,2,yes,no,no,no,no,0,no,furnished
515 | 2485000,4400,3,1,2,yes,no,no,no,no,0,no,unfurnished
516 | 2485000,3000,3,1,2,no,no,no,no,no,0,no,semi-furnished
517 | 2450000,3210,3,1,2,yes,no,yes,no,no,0,no,unfurnished
518 | 2450000,3240,2,1,1,no,yes,no,no,no,1,no,unfurnished
519 | 2450000,3000,2,1,1,yes,no,no,no,no,1,no,unfurnished
520 | 2450000,3500,2,1,1,yes,yes,no,no,no,0,no,unfurnished
521 | 2450000,4840,2,1,2,yes,no,no,no,no,0,no,unfurnished
522 | 2450000,7700,2,1,1,yes,no,no,no,no,0,no,unfurnished
523 | 2408000,3635,2,1,1,no,no,no,no,no,0,no,unfurnished
524 | 2380000,2475,3,1,2,yes,no,no,no,no,0,no,furnished
525 | 2380000,2787,4,2,2,yes,no,no,no,no,0,no,furnished
526 | 2380000,3264,2,1,1,yes,no,no,no,no,0,no,unfurnished
527 | 2345000,3640,2,1,1,yes,no,no,no,no,0,no,unfurnished
528 | 2310000,3180,2,1,1,yes,no,no,no,no,0,no,unfurnished
529 | 2275000,1836,2,1,1,no,no,yes,no,no,0,no,semi-furnished
530 | 2275000,3970,1,1,1,no,no,no,no,no,0,no,unfurnished
531 | 2275000,3970,3,1,2,yes,no,yes,no,no,0,no,unfurnished
532 | 2240000,1950,3,1,1,no,no,no,yes,no,0,no,unfurnished
533 | 2233000,5300,3,1,1,no,no,no,no,yes,0,yes,unfurnished
534 | 2135000,3000,2,1,1,no,no,no,no,no,0,no,unfurnished
535 | 2100000,2400,3,1,2,yes,no,no,no,no,0,no,unfurnished
536 | 2100000,3000,4,1,2,yes,no,no,no,no,0,no,unfurnished
537 | 2100000,3360,2,1,1,yes,no,no,no,no,1,no,unfurnished
538 | 1960000,3420,5,1,2,no,no,no,no,no,0,no,unfurnished
539 | 1890000,1700,3,1,2,yes,no,no,no,no,0,no,unfurnished
540 | 1890000,3649,2,1,1,yes,no,no,no,no,0,no,unfurnished
541 | 1855000,2990,2,1,1,no,no,no,no,no,1,no,unfurnished
542 | 1820000,3000,2,1,1,yes,no,yes,no,no,2,no,unfurnished
543 | 1767150,2400,3,1,1,no,no,no,no,no,0,no,semi-furnished
544 | 1750000,3620,2,1,1,yes,no,no,no,no,0,no,unfurnished
545 | 1750000,2910,3,1,1,no,no,no,no,no,0,no,furnished
546 | 1750000,3850,3,1,2,yes,no,no,no,no,0,no,unfurnished
547 |
--------------------------------------------------------------------------------
/Session-02_14-08-23_Linear-Regression/14th_August_2023.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-02_14-08-23_Linear-Regression/14th_August_2023.pdf
--------------------------------------------------------------------------------
/Session-03_01-09-23_MLE_Bayesian/Regularisation, Gaussian, MLE..pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-03_01-09-23_MLE_Bayesian/Regularisation, Gaussian, MLE..pdf
--------------------------------------------------------------------------------
/Session-03_01-09-23_MLE_Bayesian/auto-mpg.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,model-year
2 | 18,8,307,130,3504,12,70
3 | 15,8,350,165,3693,11.5,70
4 | 18,8,318,150,3436,11,70
5 | 16,8,304,150,3433,12,70
6 | 17,8,302,140,3449,10.5,70
7 | 15,8,429,198,4341,10,70
8 | 14,8,454,220,4354,9,70
9 | 14,8,440,215,4312,8.5,70
10 | 14,8,455,225,4425,10,70
11 | 15,8,390,190,3850,8.5,70
12 | 15,8,383,170,3563,10,70
13 | 14,8,340,160,3609,8,70
14 | 15,8,400,150,3761,9.5,70
15 | 14,8,455,225,3086,10,70
16 | 24,4,113,95,2372,15,70
17 | 22,6,198,95,2833,15.5,70
18 | 18,6,199,97,2774,15.5,70
19 | 21,6,200,85,2587,16,70
20 | 27,4,97,88,2130,14.5,70
21 | 26,4,97,46,1835,20.5,70
22 | 25,4,110,87,2672,17.5,70
23 | 24,4,107,90,2430,14.5,70
24 | 25,4,104,95,2375,17.5,70
25 | 26,4,121,113,2234,12.5,70
26 | 21,6,199,90,2648,15,70
27 | 10,8,360,215,4615,14,70
28 | 10,8,307,200,4376,15,70
29 | 11,8,318,210,4382,13.5,70
30 | 9,8,304,193,4732,18.5,70
31 | 27,4,97,88,2130,14.5,71
32 | 28,4,140,90,2264,15.5,71
33 | 25,4,113,95,2228,14,71
34 | 25,4,98,,2046,19,71
35 | 19,6,232,100,2634,13,71
36 | 16,6,225,105,3439,15.5,71
37 | 17,6,250,100,3329,15.5,71
38 | 19,6,250,88,3302,15.5,71
39 | 18,6,232,100,3288,15.5,71
40 | 14,8,350,165,4209,12,71
41 | 14,8,400,175,4464,11.5,71
42 | 14,8,351,153,4154,13.5,71
43 | 14,8,318,150,4096,13,71
44 | 12,8,383,180,4955,11.5,71
45 | 13,8,400,170,4746,12,71
46 | 13,8,400,175,5140,12,71
47 | 18,6,258,110,2962,13.5,71
48 | 22,4,140,72,2408,19,71
49 | 19,6,250,100,3282,15,71
50 | 18,6,250,88,3139,14.5,71
51 | 23,4,122,86,2220,14,71
52 | 28,4,116,90,2123,14,71
53 | 30,4,79,70,2074,19.5,71
54 | 30,4,88,76,2065,14.5,71
55 | 31,4,71,65,1773,19,71
56 | 35,4,72,69,1613,18,71
57 | 27,4,97,60,1834,19,71
58 | 26,4,91,70,1955,20.5,71
59 | 24,4,113,95,2278,15.5,72
60 | 25,4,97.5,80,2126,17,72
61 | 23,4,97,54,2254,23.5,72
62 | 20,4,140,90,2408,19.5,72
63 | 21,4,122,86,2226,16.5,72
64 | 13,8,350,165,4274,12,72
65 | 14,8,400,175,4385,12,72
66 | 15,8,318,150,4135,13.5,72
67 | 14,8,351,153,4129,13,72
68 | 17,8,304,150,3672,11.5,72
69 | 11,8,429,208,4633,11,72
70 | 13,8,350,155,4502,13.5,72
71 | 12,8,350,160,4456,13.5,72
72 | 13,8,400,190,4422,12.5,72
73 | 19,3,70,97,2330,13.5,72
74 | 15,8,304,150,3892,12.5,72
75 | 13,8,307,130,4098,14,72
76 | 13,8,302,140,4294,16,72
77 | 14,8,318,150,4077,14,72
78 | 18,4,121,112,2933,14.5,72
79 | 22,4,121,76,2511,18,72
80 | 21,4,120,87,2979,19.5,72
81 | 26,4,96,69,2189,18,72
82 | 22,4,122,86,2395,16,72
83 | 28,4,97,92,2288,17,72
84 | 23,4,120,97,2506,14.5,72
85 | 28,4,98,80,2164,15,72
86 | 27,4,97,88,2100,16.5,72
87 | 13,8,350,175,4100,13,73
88 | 14,8,304,150,3672,11.5,73
89 | 13,8,350,145,3988,13,73
90 | 14,8,302,137,4042,14.5,73
91 | 15,8,318,150,3777,12.5,73
92 | 12,8,429,198,4952,11.5,73
93 | 13,8,400,150,4464,12,73
94 | 13,8,351,158,4363,13,73
95 | 14,8,318,150,4237,14.5,73
96 | 13,8,440,215,4735,11,73
97 | 12,8,455,225,4951,11,73
98 | 13,8,360,175,3821,11,73
99 | 18,6,225,105,3121,16.5,73
100 | 16,6,250,100,3278,18,73
101 | 18,6,232,100,2945,16,73
102 | 18,6,250,88,3021,16.5,73
103 | 23,6,198,95,2904,16,73
104 | 26,4,97,46,1950,21,73
105 | 11,8,400,150,4997,14,73
106 | 12,8,400,167,4906,12.5,73
107 | 13,8,360,170,4654,13,73
108 | 12,8,350,180,4499,12.5,73
109 | 18,6,232,100,2789,15,73
110 | 20,4,97,88,2279,19,73
111 | 21,4,140,72,2401,19.5,73
112 | 22,4,108,94,2379,16.5,73
113 | 18,3,70,90,2124,13.5,73
114 | 19,4,122,85,2310,18.5,73
115 | 21,6,155,107,2472,14,73
116 | 26,4,98,90,2265,15.5,73
117 | 15,8,350,145,4082,13,73
118 | 16,8,400,230,4278,9.5,73
119 | 29,4,68,49,1867,19.5,73
120 | 24,4,116,75,2158,15.5,73
121 | 20,4,114,91,2582,14,73
122 | 19,4,121,112,2868,15.5,73
123 | 15,8,318,150,3399,11,73
124 | 24,4,121,110,2660,14,73
125 | 20,6,156,122,2807,13.5,73
126 | 11,8,350,180,3664,11,73
127 | 20,6,198,95,3102,16.5,74
128 | 21,6,200,,2875,17,74
129 | 19,6,232,100,2901,16,74
130 | 15,6,250,100,3336,17,74
131 | 31,4,79,67,1950,19,74
132 | 26,4,122,80,2451,16.5,74
133 | 32,4,71,65,1836,21,74
134 | 25,4,140,75,2542,17,74
135 | 16,6,250,100,3781,17,74
136 | 16,6,258,110,3632,18,74
137 | 18,6,225,105,3613,16.5,74
138 | 16,8,302,140,4141,14,74
139 | 13,8,350,150,4699,14.5,74
140 | 14,8,318,150,4457,13.5,74
141 | 14,8,302,140,4638,16,74
142 | 14,8,304,150,4257,15.5,74
143 | 29,4,98,83,2219,16.5,74
144 | 26,4,79,67,1963,15.5,74
145 | 26,4,97,78,2300,14.5,74
146 | 31,4,76,52,1649,16.5,74
147 | 32,4,83,61,2003,19,74
148 | 28,4,90,75,2125,14.5,74
149 | 24,4,90,75,2108,15.5,74
150 | 26,4,116,75,2246,14,74
151 | 24,4,120,97,2489,15,74
152 | 26,4,108,93,2391,15.5,74
153 | 31,4,79,67,2000,16,74
154 | 19,6,225,95,3264,16,75
155 | 18,6,250,105,3459,16,75
156 | 15,6,250,72,3432,21,75
157 | 15,6,250,72,3158,19.5,75
158 | 16,8,400,170,4668,11.5,75
159 | 15,8,350,145,4440,14,75
160 | 16,8,318,150,4498,14.5,75
161 | 14,8,351,148,4657,13.5,75
162 | 17,6,231,110,3907,21,75
163 | 16,6,250,105,3897,18.5,75
164 | 15,6,258,110,3730,19,75
165 | 18,6,225,95,3785,19,75
166 | 21,6,231,110,3039,15,75
167 | 20,8,262,110,3221,13.5,75
168 | 13,8,302,129,3169,12,75
169 | 29,4,97,75,2171,16,75
170 | 23,4,140,83,2639,17,75
171 | 20,6,232,100,2914,16,75
172 | 23,4,140,78,2592,18.5,75
173 | 24,4,134,96,2702,13.5,75
174 | 25,4,90,71,2223,16.5,75
175 | 24,4,119,97,2545,17,75
176 | 18,6,171,97,2984,14.5,75
177 | 29,4,90,70,1937,14,75
178 | 19,6,232,90,3211,17,75
179 | 23,4,115,95,2694,15,75
180 | 23,4,120,88,2957,17,75
181 | 22,4,121,98,2945,14.5,75
182 | 25,4,121,115,2671,13.5,75
183 | 33,4,91,53,1795,17.5,75
184 | 28,4,107,86,2464,15.5,76
185 | 25,4,116,81,2220,16.9,76
186 | 25,4,140,92,2572,14.9,76
187 | 26,4,98,79,2255,17.7,76
188 | 27,4,101,83,2202,15.3,76
189 | 17.5,8,305,140,4215,13,76
190 | 16,8,318,150,4190,13,76
191 | 15.5,8,304,120,3962,13.9,76
192 | 14.5,8,351,152,4215,12.8,76
193 | 22,6,225,100,3233,15.4,76
194 | 22,6,250,105,3353,14.5,76
195 | 24,6,200,81,3012,17.6,76
196 | 22.5,6,232,90,3085,17.6,76
197 | 29,4,85,52,2035,22.2,76
198 | 24.5,4,98,60,2164,22.1,76
199 | 29,4,90,70,1937,14.2,76
200 | 33,4,91,53,1795,17.4,76
201 | 20,6,225,100,3651,17.7,76
202 | 18,6,250,78,3574,21,76
203 | 18.5,6,250,110,3645,16.2,76
204 | 17.5,6,258,95,3193,17.8,76
205 | 29.5,4,97,71,1825,12.2,76
206 | 32,4,85,70,1990,17,76
207 | 28,4,97,75,2155,16.4,76
208 | 26.5,4,140,72,2565,13.6,76
209 | 20,4,130,102,3150,15.7,76
210 | 13,8,318,150,3940,13.2,76
211 | 19,4,120,88,3270,21.9,76
212 | 19,6,156,108,2930,15.5,76
213 | 16.5,6,168,120,3820,16.7,76
214 | 16.5,8,350,180,4380,12.1,76
215 | 13,8,350,145,4055,12,76
216 | 13,8,302,130,3870,15,76
217 | 13,8,318,150,3755,14,76
218 | 31.5,4,98,68,2045,18.5,77
219 | 30,4,111,80,2155,14.8,77
220 | 36,4,79,58,1825,18.6,77
221 | 25.5,4,122,96,2300,15.5,77
222 | 33.5,4,85,70,1945,16.8,77
223 | 17.5,8,305,145,3880,12.5,77
224 | 17,8,260,110,4060,19,77
225 | 15.5,8,318,145,4140,13.7,77
226 | 15,8,302,130,4295,14.9,77
227 | 17.5,6,250,110,3520,16.4,77
228 | 20.5,6,231,105,3425,16.9,77
229 | 19,6,225,100,3630,17.7,77
230 | 18.5,6,250,98,3525,19,77
231 | 16,8,400,180,4220,11.1,77
232 | 15.5,8,350,170,4165,11.4,77
233 | 15.5,8,400,190,4325,12.2,77
234 | 16,8,351,149,4335,14.5,77
235 | 29,4,97,78,1940,14.5,77
236 | 24.5,4,151,88,2740,16,77
237 | 26,4,97,75,2265,18.2,77
238 | 25.5,4,140,89,2755,15.8,77
239 | 30.5,4,98,63,2051,17,77
240 | 33.5,4,98,83,2075,15.9,77
241 | 30,4,97,67,1985,16.4,77
242 | 30.5,4,97,78,2190,14.1,77
243 | 22,6,146,97,2815,14.5,77
244 | 21.5,4,121,110,2600,12.8,77
245 | 21.5,3,80,110,2720,13.5,77
246 | 43.1,4,90,48,1985,21.5,78
247 | 36.1,4,98,66,1800,14.4,78
248 | 32.8,4,78,52,1985,19.4,78
249 | 39.4,4,85,70,2070,18.6,78
250 | 36.1,4,91,60,1800,16.4,78
251 | 19.9,8,260,110,3365,15.5,78
252 | 19.4,8,318,140,3735,13.2,78
253 | 20.2,8,302,139,3570,12.8,78
254 | 19.2,6,231,105,3535,19.2,78
255 | 20.5,6,200,95,3155,18.2,78
256 | 20.2,6,200,85,2965,15.8,78
257 | 25.1,4,140,88,2720,15.4,78
258 | 20.5,6,225,100,3430,17.2,78
259 | 19.4,6,232,90,3210,17.2,78
260 | 20.6,6,231,105,3380,15.8,78
261 | 20.8,6,200,85,3070,16.7,78
262 | 18.6,6,225,110,3620,18.7,78
263 | 18.1,6,258,120,3410,15.1,78
264 | 19.2,8,305,145,3425,13.2,78
265 | 17.7,6,231,165,3445,13.4,78
266 | 18.1,8,302,139,3205,11.2,78
267 | 17.5,8,318,140,4080,13.7,78
268 | 30,4,98,68,2155,16.5,78
269 | 27.5,4,134,95,2560,14.2,78
270 | 27.2,4,119,97,2300,14.7,78
271 | 30.9,4,105,75,2230,14.5,78
272 | 21.1,4,134,95,2515,14.8,78
273 | 23.2,4,156,105,2745,16.7,78
274 | 23.8,4,151,85,2855,17.6,78
275 | 23.9,4,119,97,2405,14.9,78
276 | 20.3,5,131,103,2830,15.9,78
277 | 17,6,163,125,3140,13.6,78
278 | 21.6,4,121,115,2795,15.7,78
279 | 16.2,6,163,133,3410,15.8,78
280 | 31.5,4,89,71,1990,14.9,78
281 | 29.5,4,98,68,2135,16.6,78
282 | 21.5,6,231,115,3245,15.4,79
283 | 19.8,6,200,85,2990,18.2,79
284 | 22.3,4,140,88,2890,17.3,79
285 | 20.2,6,232,90,3265,18.2,79
286 | 20.6,6,225,110,3360,16.6,79
287 | 17,8,305,130,3840,15.4,79
288 | 17.6,8,302,129,3725,13.4,79
289 | 16.5,8,351,138,3955,13.2,79
290 | 18.2,8,318,135,3830,15.2,79
291 | 16.9,8,350,155,4360,14.9,79
292 | 15.5,8,351,142,4054,14.3,79
293 | 19.2,8,267,125,3605,15,79
294 | 18.5,8,360,150,3940,13,79
295 | 31.9,4,89,71,1925,14,79
296 | 34.1,4,86,65,1975,15.2,79
297 | 35.7,4,98,80,1915,14.4,79
298 | 27.4,4,121,80,2670,15,79
299 | 25.4,5,183,77,3530,20.1,79
300 | 23,8,350,125,3900,17.4,79
301 | 27.2,4,141,71,3190,24.8,79
302 | 23.9,8,260,90,3420,22.2,79
303 | 34.2,4,105,70,2200,13.2,79
304 | 34.5,4,105,70,2150,14.9,79
305 | 31.8,4,85,65,2020,19.2,79
306 | 37.3,4,91,69,2130,14.7,79
307 | 28.4,4,151,90,2670,16,79
308 | 28.8,6,173,115,2595,11.3,79
309 | 26.8,6,173,115,2700,12.9,79
310 | 33.5,4,151,90,2556,13.2,79
311 | 41.5,4,98,76,2144,14.7,80
312 | 38.1,4,89,60,1968,18.8,80
313 | 32.1,4,98,70,2120,15.5,80
314 | 37.2,4,86,65,2019,16.4,80
315 | 28,4,151,90,2678,16.5,80
316 | 26.4,4,140,88,2870,18.1,80
317 | 24.3,4,151,90,3003,20.1,80
318 | 19.1,6,225,90,3381,18.7,80
319 | 34.3,4,97,78,2188,15.8,80
320 | 29.8,4,134,90,2711,15.5,80
321 | 31.3,4,120,75,2542,17.5,80
322 | 37,4,119,92,2434,15,80
323 | 32.2,4,108,75,2265,15.2,80
324 | 46.6,4,86,65,2110,17.9,80
325 | 27.9,4,156,105,2800,14.4,80
326 | 40.8,4,85,65,2110,19.2,80
327 | 44.3,4,90,48,2085,21.7,80
328 | 43.4,4,90,48,2335,23.7,80
329 | 36.4,5,121,67,2950,19.9,80
330 | 30,4,146,67,3250,21.8,80
331 | 44.6,4,91,67,1850,13.8,80
332 | 40.9,4,85,67,1835,17.3,80
333 | 33.8,4,97,67,2145,18,80
334 | 29.8,4,89,62,1845,15.3,80
335 | 32.7,6,168,132,2910,11.4,80
336 | 23.7,3,70,100,2420,12.5,80
337 | 35,4,122,88,2500,15.1,80
338 | 23.6,4,140,80,2905,14.3,80
339 | 32.4,4,107,72,2290,17,80
340 | 27.2,4,135,84,2490,15.7,81
341 | 26.6,4,151,84,2635,16.4,81
342 | 25.8,4,156,92,2620,14.4,81
343 | 23.5,6,173,110,2725,12.6,81
344 | 30,4,135,84,2385,12.9,81
345 | 39.1,4,79,58,1755,16.9,81
346 | 39,4,86,64,1875,16.4,81
347 | 35.1,4,81,60,1760,16.1,81
348 | 32.3,4,97,67,2065,17.8,81
349 | 37,4,85,65,1975,19.4,81
350 | 37.7,4,89,62,2050,17.3,81
351 | 34.1,4,91,68,1985,16,81
352 | 34.7,4,105,63,2215,14.9,81
353 | 34.4,4,98,65,2045,16.2,81
354 | 29.9,4,98,65,2380,20.7,81
355 | 33,4,105,74,2190,14.2,81
356 | 34.5,4,100,75,2320,15.8,81
357 | 33.7,4,107,75,2210,14.4,81
358 | 32.4,4,108,75,2350,16.8,81
359 | 32.9,4,119,100,2615,14.8,81
360 | 31.6,4,120,74,2635,18.3,81
361 | 28.1,4,141,80,3230,20.4,81
362 | 30.7,6,145,76,3160,19.6,81
363 | 25.4,6,168,116,2900,12.6,81
364 | 24.2,6,146,120,2930,13.8,81
365 | 22.4,6,231,110,3415,15.8,81
366 | 26.6,8,350,105,3725,19,81
367 | 20.2,6,200,88,3060,17.1,81
368 | 17.6,6,225,85,3465,16.6,81
369 | 28,4,112,88,2605,19.6,82
370 | 27,4,112,88,2640,18.6,82
371 | 34,4,112,88,2395,18,82
372 | 31,4,112,85,2575,16.2,82
373 | 29,4,135,84,2525,16,82
374 | 27,4,151,90,2735,18,82
375 | 24,4,140,92,2865,16.4,82
376 | 23,4,151,85,3035,20.5,82
377 | 36,4,105,74,1980,15.3,82
378 | 37,4,91,68,2025,18.2,82
379 | 31,4,91,68,1970,17.6,82
380 | 38,4,105,63,2125,14.7,82
381 | 36,4,98,70,2125,17.3,82
382 | 36,4,120,88,2160,14.5,82
383 | 36,4,107,75,2205,14.5,82
384 | 34,4,108,70,2245,16.9,82
385 | 38,4,91,67,1965,15,82
386 | 32,4,91,67,1965,15.7,82
387 | 38,4,91,67,1995,16.2,82
388 | 25,6,181,110,2945,16.4,82
389 | 38,6,262,85,3015,17,82
390 | 26,4,156,92,2585,14.5,82
391 | 22,6,232,112,2835,14.7,82
392 | 32,4,144,96,2665,13.9,82
393 | 36,4,135,84,2370,13,82
394 | 27,4,151,90,2950,17.3,82
395 | 27,4,140,86,2790,15.6,82
396 | 44,4,97,52,2130,24.6,82
397 | 32,4,135,84,2295,11.6,82
398 | 28,4,120,79,2625,18.6,82
399 | 31,4,119,82,2720,19.4,82
400 |
--------------------------------------------------------------------------------
/Session-04_08-09-23_Bayes_LogisticRegression_KMeans_KNN/Naive Bayes, Logistic Regression, KNNs and KMeans.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-04_08-09-23_Bayes_LogisticRegression_KMeans_KNN/Naive Bayes, Logistic Regression, KNNs and KMeans.pptx
--------------------------------------------------------------------------------
/Session-05_19-09-23_PCA_and_Decision_Trees/PCA and Decision Trees.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-05_19-09-23_PCA_and_Decision_Trees/PCA and Decision Trees.pptx
--------------------------------------------------------------------------------
/Session-05_19-09-23_PCA_and_Decision_Trees/titanic/gender_submission.csv:
--------------------------------------------------------------------------------
1 | PassengerId,Survived
2 | 892,0
3 | 893,1
4 | 894,0
5 | 895,0
6 | 896,1
7 | 897,0
8 | 898,1
9 | 899,0
10 | 900,1
11 | 901,0
12 | 902,0
13 | 903,0
14 | 904,1
15 | 905,0
16 | 906,1
17 | 907,1
18 | 908,0
19 | 909,0
20 | 910,1
21 | 911,1
22 | 912,0
23 | 913,0
24 | 914,1
25 | 915,0
26 | 916,1
27 | 917,0
28 | 918,1
29 | 919,0
30 | 920,0
31 | 921,0
32 | 922,0
33 | 923,0
34 | 924,1
35 | 925,1
36 | 926,0
37 | 927,0
38 | 928,1
39 | 929,1
40 | 930,0
41 | 931,0
42 | 932,0
43 | 933,0
44 | 934,0
45 | 935,1
46 | 936,1
47 | 937,0
48 | 938,0
49 | 939,0
50 | 940,1
51 | 941,1
52 | 942,0
53 | 943,0
54 | 944,1
55 | 945,1
56 | 946,0
57 | 947,0
58 | 948,0
59 | 949,0
60 | 950,0
61 | 951,1
62 | 952,0
63 | 953,0
64 | 954,0
65 | 955,1
66 | 956,0
67 | 957,1
68 | 958,1
69 | 959,0
70 | 960,0
71 | 961,1
72 | 962,1
73 | 963,0
74 | 964,1
75 | 965,0
76 | 966,1
77 | 967,0
78 | 968,0
79 | 969,1
80 | 970,0
81 | 971,1
82 | 972,0
83 | 973,0
84 | 974,0
85 | 975,0
86 | 976,0
87 | 977,0
88 | 978,1
89 | 979,1
90 | 980,1
91 | 981,0
92 | 982,1
93 | 983,0
94 | 984,1
95 | 985,0
96 | 986,0
97 | 987,0
98 | 988,1
99 | 989,0
100 | 990,1
101 | 991,0
102 | 992,1
103 | 993,0
104 | 994,0
105 | 995,0
106 | 996,1
107 | 997,0
108 | 998,0
109 | 999,0
110 | 1000,0
111 | 1001,0
112 | 1002,0
113 | 1003,1
114 | 1004,1
115 | 1005,1
116 | 1006,1
117 | 1007,0
118 | 1008,0
119 | 1009,1
120 | 1010,0
121 | 1011,1
122 | 1012,1
123 | 1013,0
124 | 1014,1
125 | 1015,0
126 | 1016,0
127 | 1017,1
128 | 1018,0
129 | 1019,1
130 | 1020,0
131 | 1021,0
132 | 1022,0
133 | 1023,0
134 | 1024,1
135 | 1025,0
136 | 1026,0
137 | 1027,0
138 | 1028,0
139 | 1029,0
140 | 1030,1
141 | 1031,0
142 | 1032,1
143 | 1033,1
144 | 1034,0
145 | 1035,0
146 | 1036,0
147 | 1037,0
148 | 1038,0
149 | 1039,0
150 | 1040,0
151 | 1041,0
152 | 1042,1
153 | 1043,0
154 | 1044,0
155 | 1045,1
156 | 1046,0
157 | 1047,0
158 | 1048,1
159 | 1049,1
160 | 1050,0
161 | 1051,1
162 | 1052,1
163 | 1053,0
164 | 1054,1
165 | 1055,0
166 | 1056,0
167 | 1057,1
168 | 1058,0
169 | 1059,0
170 | 1060,1
171 | 1061,1
172 | 1062,0
173 | 1063,0
174 | 1064,0
175 | 1065,0
176 | 1066,0
177 | 1067,1
178 | 1068,1
179 | 1069,0
180 | 1070,1
181 | 1071,1
182 | 1072,0
183 | 1073,0
184 | 1074,1
185 | 1075,0
186 | 1076,1
187 | 1077,0
188 | 1078,1
189 | 1079,0
190 | 1080,1
191 | 1081,0
192 | 1082,0
193 | 1083,0
194 | 1084,0
195 | 1085,0
196 | 1086,0
197 | 1087,0
198 | 1088,0
199 | 1089,1
200 | 1090,0
201 | 1091,1
202 | 1092,1
203 | 1093,0
204 | 1094,0
205 | 1095,1
206 | 1096,0
207 | 1097,0
208 | 1098,1
209 | 1099,0
210 | 1100,1
211 | 1101,0
212 | 1102,0
213 | 1103,0
214 | 1104,0
215 | 1105,1
216 | 1106,1
217 | 1107,0
218 | 1108,1
219 | 1109,0
220 | 1110,1
221 | 1111,0
222 | 1112,1
223 | 1113,0
224 | 1114,1
225 | 1115,0
226 | 1116,1
227 | 1117,1
228 | 1118,0
229 | 1119,1
230 | 1120,0
231 | 1121,0
232 | 1122,0
233 | 1123,1
234 | 1124,0
235 | 1125,0
236 | 1126,0
237 | 1127,0
238 | 1128,0
239 | 1129,0
240 | 1130,1
241 | 1131,1
242 | 1132,1
243 | 1133,1
244 | 1134,0
245 | 1135,0
246 | 1136,0
247 | 1137,0
248 | 1138,1
249 | 1139,0
250 | 1140,1
251 | 1141,1
252 | 1142,1
253 | 1143,0
254 | 1144,0
255 | 1145,0
256 | 1146,0
257 | 1147,0
258 | 1148,0
259 | 1149,0
260 | 1150,1
261 | 1151,0
262 | 1152,0
263 | 1153,0
264 | 1154,1
265 | 1155,1
266 | 1156,0
267 | 1157,0
268 | 1158,0
269 | 1159,0
270 | 1160,1
271 | 1161,0
272 | 1162,0
273 | 1163,0
274 | 1164,1
275 | 1165,1
276 | 1166,0
277 | 1167,1
278 | 1168,0
279 | 1169,0
280 | 1170,0
281 | 1171,0
282 | 1172,1
283 | 1173,0
284 | 1174,1
285 | 1175,1
286 | 1176,1
287 | 1177,0
288 | 1178,0
289 | 1179,0
290 | 1180,0
291 | 1181,0
292 | 1182,0
293 | 1183,1
294 | 1184,0
295 | 1185,0
296 | 1186,0
297 | 1187,0
298 | 1188,1
299 | 1189,0
300 | 1190,0
301 | 1191,0
302 | 1192,0
303 | 1193,0
304 | 1194,0
305 | 1195,0
306 | 1196,1
307 | 1197,1
308 | 1198,0
309 | 1199,0
310 | 1200,0
311 | 1201,1
312 | 1202,0
313 | 1203,0
314 | 1204,0
315 | 1205,1
316 | 1206,1
317 | 1207,1
318 | 1208,0
319 | 1209,0
320 | 1210,0
321 | 1211,0
322 | 1212,0
323 | 1213,0
324 | 1214,0
325 | 1215,0
326 | 1216,1
327 | 1217,0
328 | 1218,1
329 | 1219,0
330 | 1220,0
331 | 1221,0
332 | 1222,1
333 | 1223,0
334 | 1224,0
335 | 1225,1
336 | 1226,0
337 | 1227,0
338 | 1228,0
339 | 1229,0
340 | 1230,0
341 | 1231,0
342 | 1232,0
343 | 1233,0
344 | 1234,0
345 | 1235,1
346 | 1236,0
347 | 1237,1
348 | 1238,0
349 | 1239,1
350 | 1240,0
351 | 1241,1
352 | 1242,1
353 | 1243,0
354 | 1244,0
355 | 1245,0
356 | 1246,1
357 | 1247,0
358 | 1248,1
359 | 1249,0
360 | 1250,0
361 | 1251,1
362 | 1252,0
363 | 1253,1
364 | 1254,1
365 | 1255,0
366 | 1256,1
367 | 1257,1
368 | 1258,0
369 | 1259,1
370 | 1260,1
371 | 1261,0
372 | 1262,0
373 | 1263,1
374 | 1264,0
375 | 1265,0
376 | 1266,1
377 | 1267,1
378 | 1268,1
379 | 1269,0
380 | 1270,0
381 | 1271,0
382 | 1272,0
383 | 1273,0
384 | 1274,1
385 | 1275,1
386 | 1276,0
387 | 1277,1
388 | 1278,0
389 | 1279,0
390 | 1280,0
391 | 1281,0
392 | 1282,0
393 | 1283,1
394 | 1284,0
395 | 1285,0
396 | 1286,0
397 | 1287,1
398 | 1288,0
399 | 1289,1
400 | 1290,0
401 | 1291,0
402 | 1292,1
403 | 1293,0
404 | 1294,1
405 | 1295,0
406 | 1296,0
407 | 1297,0
408 | 1298,0
409 | 1299,0
410 | 1300,1
411 | 1301,1
412 | 1302,1
413 | 1303,1
414 | 1304,1
415 | 1305,0
416 | 1306,1
417 | 1307,0
418 | 1308,0
419 | 1309,0
420 |
--------------------------------------------------------------------------------
/Session-05_19-09-23_PCA_and_Decision_Trees/titanic/test.csv:
--------------------------------------------------------------------------------
1 | PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
2 | 892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q
3 | 893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S
4 | 894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q
5 | 895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S
6 | 896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S
7 | 897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S
8 | 898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q
9 | 899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S
10 | 900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C
11 | 901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S
12 | 902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S
13 | 903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S
14 | 904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S
15 | 905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S
16 | 906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S
17 | 907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C
18 | 908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q
19 | 909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C
20 | 910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S
21 | 911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C
22 | 912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C
23 | 913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S
24 | 914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S
25 | 915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C
26 | 916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C
27 | 917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S
28 | 918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C
29 | 919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C
30 | 920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S
31 | 921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C
32 | 922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S
33 | 923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S
34 | 924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S
35 | 925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S
36 | 926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C
37 | 927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C
38 | 928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S
39 | 929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S
40 | 930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S
41 | 931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S
42 | 932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C
43 | 933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S
44 | 934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S
45 | 935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S
46 | 936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S
47 | 937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S
48 | 938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C
49 | 939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q
50 | 940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C
51 | 941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S
52 | 942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S
53 | 943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C
54 | 944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S
55 | 945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S
56 | 946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C
57 | 947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q
58 | 948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S
59 | 949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S
60 | 950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S
61 | 951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C
62 | 952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S
63 | 953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S
64 | 954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S
65 | 955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q
66 | 956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C
67 | 957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S
68 | 958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q
69 | 959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S
70 | 960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C
71 | 961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S
72 | 962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q
73 | 963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S
74 | 964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S
75 | 965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C
76 | 966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C
77 | 967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C
78 | 968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S
79 | 969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S
80 | 970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S
81 | 971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q
82 | 972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C
83 | 973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S
84 | 974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S
85 | 975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S
86 | 976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q
87 | 977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C
88 | 978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q
89 | 979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S
90 | 980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q
91 | 981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S
92 | 982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S
93 | 983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S
94 | 984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S
95 | 985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S
96 | 986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C
97 | 987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S
98 | 988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S
99 | 989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S
100 | 990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S
101 | 991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S
102 | 992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C
103 | 993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S
104 | 994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q
105 | 995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S
106 | 996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C
107 | 997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S
108 | 998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q
109 | 999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q
110 | 1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S
111 | 1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S
112 | 1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C
113 | 1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q
114 | 1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C
115 | 1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q
116 | 1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S
117 | 1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C
118 | 1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C
119 | 1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S
120 | 1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C
121 | 1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S
122 | 1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S
123 | 1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q
124 | 1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C
125 | 1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S
126 | 1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q
127 | 1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S
128 | 1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S
129 | 1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q
130 | 1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S
131 | 1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S
132 | 1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S
133 | 1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C
134 | 1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S
135 | 1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C
136 | 1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S
137 | 1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S
138 | 1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C
139 | 1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S
140 | 1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S
141 | 1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S
142 | 1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S
143 | 1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S
144 | 1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C
145 | 1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S
146 | 1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S
147 | 1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S
148 | 1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S
149 | 1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S
150 | 1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S
151 | 1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S
152 | 1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C
153 | 1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C
154 | 1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S
155 | 1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S
156 | 1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S
157 | 1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S
158 | 1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S
159 | 1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S
160 | 1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S
161 | 1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S
162 | 1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q
163 | 1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C
164 | 1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S
165 | 1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S
166 | 1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S
167 | 1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S
168 | 1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C
169 | 1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S
170 | 1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C
171 | 1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S
172 | 1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S
173 | 1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C
174 | 1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S
175 | 1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C
176 | 1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S
177 | 1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S
178 | 1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S
179 | 1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C
180 | 1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S
181 | 1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C
182 | 1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S
183 | 1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C
184 | 1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S
185 | 1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q
186 | 1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C
187 | 1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S
188 | 1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S
189 | 1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S
190 | 1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S
191 | 1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S
192 | 1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S
193 | 1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S
194 | 1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S
195 | 1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q
196 | 1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S
197 | 1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S
198 | 1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C
199 | 1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S
200 | 1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S
201 | 1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S
202 | 1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q
203 | 1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S
204 | 1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C
205 | 1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S
206 | 1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S
207 | 1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C
208 | 1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q
209 | 1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S
210 | 1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C
211 | 1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S
212 | 1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S
213 | 1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S
214 | 1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S
215 | 1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S
216 | 1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S
217 | 1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S
218 | 1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q
219 | 1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S
220 | 1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C
221 | 1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S
222 | 1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C
223 | 1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S
224 | 1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S
225 | 1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S
226 | 1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C
227 | 1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C
228 | 1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S
229 | 1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q
230 | 1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S
231 | 1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S
232 | 1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S
233 | 1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S
234 | 1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S
235 | 1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q
236 | 1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C
237 | 1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S
238 | 1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C
239 | 1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C
240 | 1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S
241 | 1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C
242 | 1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C
243 | 1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S
244 | 1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C
245 | 1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S
246 | 1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S
247 | 1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S
248 | 1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S
249 | 1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S
250 | 1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S
251 | 1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C
252 | 1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S
253 | 1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S
254 | 1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C
255 | 1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S
256 | 1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S
257 | 1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S
258 | 1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q
259 | 1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S
260 | 1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S
261 | 1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S
262 | 1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S
263 | 1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S
264 | 1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S
265 | 1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S
266 | 1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C
267 | 1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S
268 | 1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S
269 | 1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S
270 | 1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S
271 | 1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S
272 | 1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C
273 | 1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q
274 | 1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C
275 | 1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q
276 | 1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C
277 | 1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S
278 | 1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S
279 | 1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S
280 | 1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S
281 | 1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S
282 | 1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S
283 | 1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S
284 | 1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q
285 | 1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C
286 | 1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S
287 | 1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S
288 | 1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S
289 | 1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S
290 | 1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C
291 | 1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S
292 | 1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S
293 | 1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q
294 | 1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C
295 | 1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S
296 | 1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S
297 | 1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S
298 | 1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C
299 | 1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C
300 | 1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S
301 | 1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S
302 | 1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S
303 | 1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C
304 | 1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S
305 | 1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S
306 | 1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q
307 | 1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S
308 | 1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S
309 | 1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S
310 | 1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S
311 | 1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S
312 | 1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S
313 | 1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C
314 | 1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S
315 | 1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q
316 | 1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C
317 | 1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q
318 | 1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C
319 | 1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S
320 | 1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S
321 | 1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S
322 | 1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S
323 | 1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C
324 | 1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S
325 | 1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S
326 | 1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S
327 | 1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S
328 | 1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S
329 | 1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C
330 | 1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S
331 | 1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S
332 | 1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S
333 | 1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C
334 | 1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C
335 | 1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C
336 | 1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S
337 | 1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S
338 | 1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S
339 | 1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C
340 | 1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S
341 | 1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C
342 | 1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S
343 | 1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S
344 | 1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S
345 | 1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C
346 | 1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S
347 | 1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S
348 | 1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S
349 | 1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C
350 | 1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S
351 | 1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S
352 | 1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C
353 | 1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S
354 | 1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S
355 | 1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S
356 | 1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S
357 | 1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S
358 | 1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S
359 | 1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S
360 | 1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q
361 | 1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S
362 | 1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S
363 | 1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C
364 | 1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S
365 | 1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S
366 | 1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C
367 | 1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S
368 | 1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C
369 | 1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S
370 | 1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C
371 | 1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C
372 | 1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S
373 | 1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C
374 | 1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S
375 | 1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S
376 | 1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S
377 | 1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C
378 | 1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S
379 | 1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S
380 | 1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S
381 | 1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S
382 | 1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q
383 | 1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q
384 | 1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S
385 | 1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S
386 | 1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S
387 | 1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S
388 | 1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S
389 | 1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S
390 | 1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q
391 | 1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S
392 | 1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S
393 | 1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S
394 | 1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S
395 | 1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S
396 | 1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S
397 | 1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S
398 | 1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q
399 | 1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C
400 | 1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S
401 | 1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q
402 | 1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S
403 | 1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S
404 | 1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C
405 | 1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S
406 | 1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C
407 | 1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C
408 | 1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S
409 | 1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C
410 | 1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q
411 | 1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S
412 | 1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q
413 | 1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q
414 | 1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S
415 | 1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S
416 | 1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C
417 | 1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S
418 | 1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S
419 | 1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C
420 |
--------------------------------------------------------------------------------
/Session-06_14-10-23_DecisionTrees_RandomForests_Boosting/Boosting_hyperparameter_tuning.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "knwYV1QmCuEU"
7 | },
8 | "source": [
9 | "# Installing Dependencies"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 1,
15 | "metadata": {
16 | "colab": {
17 | "base_uri": "https://localhost:8080/"
18 | },
19 | "id": "tnwsW6x9w1QO",
20 | "outputId": "fad3ad0d-f838-4cfe-e95c-f8295d5fd365"
21 | },
22 | "outputs": [
23 | {
24 | "name": "stdout",
25 | "output_type": "stream",
26 | "text": [
27 | "Requirement already satisfied: catboost in c:\\users\\abhin\\anaconda3\\lib\\site-packages (1.2.2)\n",
28 | "Requirement already satisfied: plotly in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (5.6.0)\n",
29 | "Requirement already satisfied: six in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (1.16.0)\n",
30 | "Requirement already satisfied: pandas>=0.24 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (1.4.2)\n",
31 | "Requirement already satisfied: graphviz in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (0.20.1)\n",
32 | "Requirement already satisfied: numpy>=1.16.0 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (1.21.5)\n",
33 | "Requirement already satisfied: scipy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (1.7.3)\n",
34 | "Requirement already satisfied: matplotlib in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from catboost) (3.5.1)\n",
35 | "Requirement already satisfied: python-dateutil>=2.8.1 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from pandas>=0.24->catboost) (2.8.2)\n",
36 | "Requirement already satisfied: pytz>=2020.1 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from pandas>=0.24->catboost) (2021.3)\n",
37 | "Requirement already satisfied: pyparsing>=2.2.1 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from matplotlib->catboost) (3.0.4)\n",
38 | "Requirement already satisfied: cycler>=0.10 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from matplotlib->catboost) (0.11.0)\n",
39 | "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from matplotlib->catboost) (4.25.0)"
40 | ]
41 | },
42 | {
43 | "name": "stderr",
44 | "output_type": "stream",
45 | "text": [
46 | "WARNING: You are using pip version 22.0.4; however, version 23.2.1 is available.\n",
47 | "You should consider upgrading via the 'C:\\Users\\abhin\\anaconda3\\python.exe -m pip install --upgrade pip' command.\n"
48 | ]
49 | },
50 | {
51 | "name": "stdout",
52 | "output_type": "stream",
53 | "text": [
54 | "\n",
55 | "Requirement already satisfied: pillow>=6.2.0 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from matplotlib->catboost) (9.0.1)\n",
56 | "Requirement already satisfied: packaging>=20.0 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from matplotlib->catboost) (21.3)\n",
57 | "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from matplotlib->catboost) (1.3.2)\n",
58 | "Requirement already satisfied: tenacity>=6.2.0 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from plotly->catboost) (8.0.1)\n",
59 | "Requirement already satisfied: lightgbm in c:\\users\\abhin\\anaconda3\\lib\\site-packages (4.1.0)\n",
60 | "Requirement already satisfied: numpy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from lightgbm) (1.21.5)\n",
61 | "Requirement already satisfied: scipy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from lightgbm) (1.7.3)\n"
62 | ]
63 | },
64 | {
65 | "name": "stderr",
66 | "output_type": "stream",
67 | "text": [
68 | "WARNING: You are using pip version 22.0.4; however, version 23.2.1 is available.\n",
69 | "You should consider upgrading via the 'C:\\Users\\abhin\\anaconda3\\python.exe -m pip install --upgrade pip' command.\n"
70 | ]
71 | },
72 | {
73 | "name": "stdout",
74 | "output_type": "stream",
75 | "text": [
76 | "Requirement already satisfied: xgboost in c:\\users\\abhin\\anaconda3\\lib\\site-packages (2.0.0)\n",
77 | "Requirement already satisfied: scipy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from xgboost) (1.7.3)\n",
78 | "Requirement already satisfied: numpy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from xgboost) (1.21.5)\n"
79 | ]
80 | },
81 | {
82 | "name": "stderr",
83 | "output_type": "stream",
84 | "text": [
85 | "WARNING: You are using pip version 22.0.4; however, version 23.2.1 is available.\n",
86 | "You should consider upgrading via the 'C:\\Users\\abhin\\anaconda3\\python.exe -m pip install --upgrade pip' command.\n"
87 | ]
88 | },
89 | {
90 | "name": "stdout",
91 | "output_type": "stream",
92 | "text": [
93 | "Collecting hyperopt\n",
94 | " Downloading hyperopt-0.2.7-py2.py3-none-any.whl (1.6 MB)\n",
95 | " ---------------------------------------- 1.6/1.6 MB 3.7 MB/s eta 0:00:00\n",
96 | "Requirement already satisfied: networkx>=2.2 in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (2.7.1)\n",
97 | "Collecting py4j\n",
98 | " Downloading py4j-0.10.9.7-py2.py3-none-any.whl (200 kB)\n",
99 | " -------------------------------------- 200.5/200.5 KB 4.0 MB/s eta 0:00:00\n",
100 | "Requirement already satisfied: six in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (1.16.0)\n",
101 | "Requirement already satisfied: numpy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (1.21.5)\n",
102 | "Requirement already satisfied: scipy in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (1.7.3)\n"
103 | ]
104 | },
105 | {
106 | "name": "stderr",
107 | "output_type": "stream",
108 | "text": [
109 | "WARNING: You are using pip version 22.0.4; however, version 23.2.1 is available.\n",
110 | "You should consider upgrading via the 'C:\\Users\\abhin\\anaconda3\\python.exe -m pip install --upgrade pip' command.\n"
111 | ]
112 | },
113 | {
114 | "name": "stdout",
115 | "output_type": "stream",
116 | "text": [
117 | "Requirement already satisfied: future in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (0.18.2)\n",
118 | "Requirement already satisfied: cloudpickle in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (2.0.0)\n",
119 | "Requirement already satisfied: tqdm in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from hyperopt) (4.64.0)\n",
120 | "Requirement already satisfied: colorama in c:\\users\\abhin\\anaconda3\\lib\\site-packages (from tqdm->hyperopt) (0.4.6)\n",
121 | "Installing collected packages: py4j, hyperopt\n",
122 | "Successfully installed hyperopt-0.2.7 py4j-0.10.9.7\n"
123 | ]
124 | }
125 | ],
126 | "source": [
127 | "!pip install catboost\n",
128 | "!pip install lightgbm\n",
129 | "!pip install xgboost\n",
130 | "!pip install hyperopt"
131 | ]
132 | },
133 | {
134 | "cell_type": "markdown",
135 | "metadata": {},
136 | "source": [
137 | "# Importing Dependencies"
138 | ]
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": 2,
143 | "metadata": {
144 | "id": "sp9bGvxdqiOw"
145 | },
146 | "outputs": [],
147 | "source": [
148 | "import numpy as np\n",
149 | "import pandas as pd\n",
150 | "import matplotlib.pyplot as plt\n",
151 | "import seaborn as sns\n",
152 | "import time\n",
153 | "\n",
154 | "import scipy.stats as stats\n",
155 | "from sklearn import metrics\n",
156 | "from sklearn.preprocessing import LabelEncoder\n",
157 | "from sklearn.model_selection import train_test_split\n",
158 | "from sklearn.model_selection import RepeatedStratifiedKFold\n",
159 | "from sklearn.model_selection import cross_val_score\n",
160 | "from sklearn.ensemble import AdaBoostClassifier\n",
161 | "from sklearn.ensemble import GradientBoostingClassifier\n",
162 | "from catboost import CatBoostClassifier\n",
163 | "from lightgbm import LGBMClassifier\n",
164 | "from xgboost import XGBClassifier\n",
165 | "from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n",
166 | "from sklearn.tree import DecisionTreeClassifier\n",
167 | "from sklearn.metrics import accuracy_score\n",
168 | "from hyperopt.pyll import scope\n",
169 | "import warnings\n",
170 | "# Filter out the FutureWarning related to is_sparse\n",
171 | "warnings.filterwarnings(\"ignore\", category=FutureWarning, module=\"xgboost\")"
172 | ]
173 | },
174 | {
175 | "cell_type": "markdown",
176 | "metadata": {
177 | "id": "ByCnDDmkDayW"
178 | },
179 | "source": [
180 | "# Loading Dataset\n",
181 | "(Unbalanced) Wine Dataset\n",
182 | "You can download it from: https://archive.ics.uci.edu/dataset/109/wine"
183 | ]
184 | },
185 | {
186 | "cell_type": "code",
187 | "execution_count": 3,
188 | "metadata": {
189 | "id": "23mGy-W6DZLy"
190 | },
191 | "outputs": [],
192 | "source": [
193 | "wine_df = pd.read_csv('wine.data', header=None)"
194 | ]
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": 4,
199 | "metadata": {
200 | "id": "C0N1S4LWDnbw"
201 | },
202 | "outputs": [],
203 | "source": [
204 | "X = wine_df.iloc[:, 1:]\n",
205 | "y = wine_df.iloc[:, 0]"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": 5,
211 | "metadata": {
212 | "id": "omlj8qxkDoM1"
213 | },
214 | "outputs": [],
215 | "source": [
216 | "le = LabelEncoder()\n",
217 | "y = le.fit_transform(y)"
218 | ]
219 | },
220 | {
221 | "cell_type": "code",
222 | "execution_count": 6,
223 | "metadata": {
224 | "id": "bEtKdQvTEsAR"
225 | },
226 | "outputs": [],
227 | "source": [
228 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
229 | ]
230 | },
231 | {
232 | "cell_type": "markdown",
233 | "metadata": {},
234 | "source": [
235 | "# Training, Hyperparameter tuning and comparison"
236 | ]
237 | },
238 | {
239 | "cell_type": "code",
240 | "execution_count": 9,
241 | "metadata": {
242 | "colab": {
243 | "base_uri": "https://localhost:8080/"
244 | },
245 | "id": "vcZuN-z4CdXh",
246 | "outputId": "ee31c32a-6b6b-467e-f741-153da73f7c60"
247 | },
248 | "outputs": [
249 | {
250 | "name": "stdout",
251 | "output_type": "stream",
252 | "text": [
253 | "100%|██████████| 50/50 [00:18<00:00, 2.65trial/s, best loss: -1.0] \n",
254 | "Best hyperparameters for AdaBoost:\n",
255 | "{'n_estimators': 200.0, 'learning_rate': 0.06659352635164861, 'max_depth': 4.0, 'max_features': 'sqrt', 'min_samples_leaf': 3.0, 'min_samples_split': 2.0, 'random_state': 42}\n",
256 | "100%|██████████| 50/50 [00:44<00:00, 1.12trial/s, best loss: -1.0] \n",
257 | "Best hyperparameters for GradBoost:\n",
258 | "{'criterion': 'friedman_mse', 'max_features': 'sqrt', 'n_estimators': 100, 'learning_rate': 0.04102652661864284, 'max_depth': 3, 'min_samples_split': 7, 'min_samples_leaf': 7, 'min_weight_fraction_leaf': 0.0, 'min_impurity_decrease': 1.0, 'ccp_alpha': 0.0, 'random_state': 42}\n",
259 | "100%|██████████| 50/50 [02:17<00:00, 2.75s/trial, best loss: -1.0]\n",
260 | "Best hyperparameters for CatBoost:\n",
261 | "{'n_estimators': 550, 'learning_rate': 0.0479901225935416, 'min_child_samples': 1, 'max_depth': 6, 'reg_lambda': 3.3766279624518107, 'silent': True, 'random_state': 42}\n",
262 | "100%|██████████| 50/50 [00:01<00:00, 29.11trial/s, best loss: -0.9722222222222222]\n",
263 | "Best hyperparameters for LightGBM:\n",
264 | "{'class_weight': 'balanced', 'boosting_type': 'gbdt', 'num_leaves': 55, 'learning_rate': 0.04496177447997528, 'min_child_samples': 10, 'reg_alpha': 0.3916912792044354, 'reg_lambda': 1.4941077467431771, 'colsample_by_tree': 0.379259630420579, 'verbosity': -1, 'random_state': 42}\n",
265 | "100%|██████████| 50/50 [00:21<00:00, 2.35trial/s, best loss: -1.0] \n",
266 | "Best hyperparameters for XGBoost:\n",
267 | "{'booster': 'gbtree', 'learning_rate': 0.011777426690454684, 'gamma': 2, 'max_depth': 4, 'min_child_weight': 1, 'colsample_bytree': 0.6642423404208758, 'colsample_bylevel': 0.8389604376670141, 'colsample_bynode': 0.46801910869053165, 'reg_alpha': 1.3842922617481603, 'reg_lambda': 0.25127542856871243, 'random_state': 42}\n"
268 | ]
269 | }
270 | ],
271 | "source": [
272 | "best_hyperparams = {\n",
273 | " 'AdaBoost': {},\n",
274 | " 'GradBoost': {},\n",
275 | " 'CatBoost': {},\n",
276 | " 'LightGBM': {},\n",
277 | " 'XGBoost': {}\n",
278 | "}\n",
279 | "\n",
280 | "# Define the hyperparameter search space for each algorithm\n",
281 | "\n",
282 | "def optimize_adaboost(params):\n",
283 | " estimator_params = params['estimator']\n",
284 | " estimator_new = DecisionTreeClassifier(**estimator_params)\n",
285 | "\n",
286 | " clf = AdaBoostClassifier(base_estimator=estimator_new, n_estimators=params['n_estimators'], learning_rate=params['learning_rate'], random_state=params['random_state'])\n",
287 | " clf.fit(X_train, y_train)\n",
288 | " y_pred = clf.predict(X_test)\n",
289 | " return -accuracy_score(y_test, y_pred)\n",
290 | "\n",
291 | "def optimize_gradientboost(params):\n",
292 | " clf = GradientBoostingClassifier(**params)\n",
293 | " clf.fit(X_train, y_train)\n",
294 | " y_pred = clf.predict(X_test)\n",
295 | " return -accuracy_score(y_test, y_pred)\n",
296 | "\n",
297 | "def optimize_catboost(params):\n",
298 | " clf = CatBoostClassifier(**params)\n",
299 | " clf.fit(X_train, y_train)\n",
300 | " y_pred = clf.predict(X_test)\n",
301 | " return -accuracy_score(y_test, y_pred)\n",
302 | "\n",
303 | "def optimize_lightgbm(params):\n",
304 | " clf = LGBMClassifier(**params)\n",
305 | " clf.fit(X_train, y_train)\n",
306 | " y_pred = clf.predict(X_test)\n",
307 | " return -accuracy_score(y_test, y_pred)\n",
308 | "\n",
309 | "def optimize_xgboost(params):\n",
310 | " clf = XGBClassifier(**params)\n",
311 | " clf.fit(X_train, y_train)\n",
312 | " y_pred = clf.predict(X_test)\n",
313 | " return -accuracy_score(y_test, y_pred)\n",
314 | "\n",
315 | "# Define the hyperparameter search space for each algorithm\n",
316 | "\n",
317 | "max_features_choices = [None, 'sqrt', 'log2']\n",
318 | "space_adaboost = {\n",
319 | " 'n_estimators': 1 + scope.int(hp.quniform('n_estimators', 5, 1500, 50)),\n",
320 | " 'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.1)),\n",
321 | " 'estimator': {\n",
322 | " 'max_depth': scope.int(hp.quniform('max_depth', 1, 6, 1)), # Decision tree depth\n",
323 | " 'min_samples_split': scope.int(hp.quniform('min_samples_split', 2, 8, 2)), # Min samples required to split\n",
324 | " 'min_samples_leaf': scope.int(hp.quniform('min_samples_leaf', 1, 5, 1)), # Min samples required in a leaf node\n",
325 | " 'max_features': hp.choice('max_features', max_features_choices),\n",
326 | " },\n",
327 | " 'random_state': 42\n",
328 | "}\n",
329 | "\n",
330 | "criterion_choices = ['friedman_mse', 'squared_error']\n",
331 | "max_features_choices = [None, 'sqrt', 'log2']\n",
332 | "space_gradientboost = {\n",
333 | " 'criterion': hp.choice('criterion', criterion_choices),\n",
334 | " 'max_features': hp.choice('max_features', max_features_choices),\n",
335 | " 'n_estimators': 1 + scope.int(hp.quniform('n_estimators', 5, 1500, 50)),\n",
336 | " 'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.1)),\n",
337 | " 'max_depth': scope.int(hp.quniform('max_depth', 1, 6, 1)),\n",
338 | " 'min_samples_split': scope.int(hp.quniform('min_samples_split', 2, 10, 1)),\n",
339 | " 'min_samples_leaf': scope.int(hp.quniform('min_samples_leaf', 1, 10, 1)),\n",
340 | " 'min_weight_fraction_leaf': hp.quniform('min_weight_fraction_leaf', 0.0, 0.5, 0.1),\n",
341 | " 'min_impurity_decrease': hp.quniform('min_impurity_decrease', 0.0, 5, 1),\n",
342 | " 'ccp_alpha': hp.quniform('ccp_alpha', 0.0, 5, 1),\n",
343 | " 'random_state': 42\n",
344 | "}\n",
345 | "\n",
346 | "space_catboost = {\n",
347 | " 'n_estimators': 1 + scope.int(hp.quniform('n_estimators', 5, 1500, 50)),\n",
348 | " 'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.1)),\n",
349 | " 'min_child_samples': scope.int(hp.quniform('min_child_samples', 1, 10, 1)),\n",
350 | " 'max_depth': scope.int(hp.quniform('max_depth', 1, 10, 1)),\n",
351 | " 'reg_lambda': hp.uniform('reg_lambda', 0.0, 5.0),\n",
352 | " 'silent': True\n",
353 | "}\n",
354 | "\n",
355 | "class_weight_choices = ['balanced']\n",
356 | "boosting_type_choices = ['gbdt', 'dart', 'goss']\n",
357 | "space_lightgbm = {\n",
358 | " 'class_weight': hp.choice('class_weight', class_weight_choices), \n",
359 | " 'boosting_type': hp.choice('boosting_type', boosting_type_choices),\n",
360 | " 'num_leaves': scope.int(hp.quniform('num_leaves', 30, 100, 5)),\n",
361 | " 'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.1)),\n",
362 | " 'min_child_samples': scope.int(hp.quniform('min_child_samples', 10, 200, 10)),\n",
363 | " 'reg_alpha': hp.uniform('reg_alpha', 0.0, 2.0),\n",
364 | " 'reg_lambda': hp.uniform('reg_lambda', 0.0, 5.0),\n",
365 | " 'colsample_bytree': hp.uniform('colsample_by_tree', 0.1, 1.0),\n",
366 | " 'verbosity': -1,\n",
367 | " 'random_state': 42\n",
368 | "}\n",
369 | "\n",
370 | "booster_choices = ['gbtree', 'dart']\n",
371 | "space_xgboost = {\n",
372 | " 'booster': hp.choice('booster', booster_choices),\n",
373 | " 'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.1)),\n",
374 | " 'gamma': scope.int(hp.quniform('gamma', 0, 10, 1)),\n",
375 | " 'max_depth': scope.int(hp.quniform('max_depth', 1, 6, 1)),\n",
376 | " 'min_child_weight': scope.int(hp.quniform('min_child_weight', 0, 6, 1)),\n",
377 | " 'colsample_bytree': hp.uniform('colsample_bytree', 0.1, 1.0),\n",
378 | " 'colsample_bylevel': hp.uniform('colsample_bylevel', 0.1, 1.0),\n",
379 | " 'colsample_bynode': hp.uniform('colsample_bynode', 0.1, 1.0),\n",
380 | " 'reg_alpha': hp.uniform('reg_alpha', 0.0, 2.0),\n",
381 | " 'reg_lambda': hp.uniform('reg_lambda', 0.0, 5.0),\n",
382 | " 'verbosity': 0,\n",
383 | " 'random_state': 42\n",
384 | "}\n",
385 | "\n",
386 | "# Define optimization functions and algorithm names\n",
387 | "optimizers = [\n",
388 | " (optimize_adaboost, space_adaboost, 'AdaBoost'),\n",
389 | " (optimize_gradientboost, space_gradientboost, 'GradBoost'),\n",
390 | " (optimize_catboost, space_catboost, 'CatBoost'),\n",
391 | " (optimize_lightgbm, space_lightgbm, 'LightGBM'),\n",
392 | " (optimize_xgboost, space_xgboost, 'XGBoost')\n",
393 | "]\n",
394 | "\n",
395 | "\n",
396 | "# Performing hyperparameter tuning for each algorithm\n",
397 | "\n",
398 | "rstate=np.random.default_rng(42)\n",
399 | "\n",
400 | "for optimize_fn, space, algorithm_name in optimizers:\n",
401 | " if algorithm_name == 'AdaBoost':\n",
402 | " trials = Trials()\n",
403 | " best = fmin(fn=optimize_fn, space=space, algo=tpe.suggest, max_evals=50, trials=trials, rstate=rstate)\n",
404 | " \n",
405 | " # Map the choice labels\n",
406 | " max_features_label = max_features_choices[best['max_features']]\n",
407 | "\n",
408 | " # Store the best AdaBoost hyperparameters\n",
409 | " best_hyperparams[algorithm_name] = {\n",
410 | " 'n_estimators': best['n_estimators'],\n",
411 | " 'learning_rate': best['learning_rate'],\n",
412 | " 'max_depth': best['max_depth'],\n",
413 | " 'max_features': max_features_label,\n",
414 | " 'min_samples_leaf': best['min_samples_leaf'],\n",
415 | " 'min_samples_split': best['min_samples_split'],\n",
416 | " 'random_state': 42\n",
417 | " }\n",
418 | "\n",
419 | " print(f\"Best hyperparameters for {algorithm_name}:\")\n",
420 | " print(best_hyperparams[algorithm_name])\n",
421 | "\n",
422 | " if algorithm_name == 'GradBoost':\n",
423 | " trials = Trials()\n",
424 | " best = fmin(fn=optimize_fn, space=space, algo=tpe.suggest, max_evals=50, trials=trials, rstate=rstate)\n",
425 | "\n",
426 | "\n",
427 | " # Map the choice labels \n",
428 | " criterion_label = criterion_choices[best['criterion']]\n",
429 | " max_features_label = max_features_choices[best['max_features']]\n",
430 | "\n",
431 | " # Store the best GradBoost hyperparameters\n",
432 | " best_hyperparams[algorithm_name] = {\n",
433 | " 'criterion': criterion_label,\n",
434 | " 'max_features': max_features_label,\n",
435 | " 'n_estimators': int(best['n_estimators']),\n",
436 | " 'learning_rate': best['learning_rate'],\n",
437 | " 'max_depth': int(best['max_depth']),\n",
438 | " 'min_samples_split': int(best['min_samples_split']),\n",
439 | " 'min_samples_leaf': int(best['min_samples_leaf']),\n",
440 | " 'min_weight_fraction_leaf': best['min_weight_fraction_leaf'],\n",
441 | " 'min_impurity_decrease': best['min_impurity_decrease'],\n",
442 | " 'ccp_alpha': best['ccp_alpha'],\n",
443 | " 'random_state': 42\n",
444 | " }\n",
445 | "\n",
446 | " print(f\"Best hyperparameters for {algorithm_name}:\")\n",
447 | " print(best_hyperparams[algorithm_name]) \n",
448 | " \n",
449 | " if algorithm_name == 'CatBoost':\n",
450 | " trials = Trials()\n",
451 | " best = fmin(fn=optimize_fn, space=space, algo=tpe.suggest, max_evals=50, trials=trials, rstate=rstate)\n",
452 | " \n",
453 | " # Store the best CatBoost hyperparameters\n",
454 | " best_hyperparams[algorithm_name] = {\n",
455 | " 'n_estimators': int(best['n_estimators']),\n",
456 | " 'learning_rate': best['learning_rate'],\n",
457 | " 'min_child_samples': int(best['min_child_samples']),\n",
458 | " 'max_depth': int(best['max_depth']),\n",
459 | " 'reg_lambda': best['reg_lambda'],\n",
460 | " 'silent': True,\n",
461 | " 'random_state': 42\n",
462 | " }\n",
463 | "\n",
464 | " print(f\"Best hyperparameters for {algorithm_name}:\")\n",
465 | " print(best_hyperparams[algorithm_name])\n",
466 | "\n",
467 | " if algorithm_name == 'LightGBM':\n",
468 | " trials = Trials()\n",
469 | " best = fmin(fn=optimize_fn, space=space, algo=tpe.suggest, max_evals=50, trials=trials, rstate=rstate)\n",
470 | " \n",
471 | " # Map the choice labels\n",
472 | " class_weight_label = class_weight_choices[best['class_weight']]\n",
473 | " boosting_type_label = boosting_type_choices[best['boosting_type']]\n",
474 | "\n",
475 | " # Store the best LightGBM hyperparameters\n",
476 | " best_hyperparams[algorithm_name] = {\n",
477 | " 'class_weight': class_weight_label,\n",
478 | " 'boosting_type': boosting_type_label,\n",
479 | " 'num_leaves': int(best['num_leaves']),\n",
480 | " 'learning_rate': best['learning_rate'],\n",
481 | " 'min_child_samples': int(best['min_child_samples']),\n",
482 | " 'reg_alpha': best['reg_alpha'],\n",
483 | " 'reg_lambda': best['reg_lambda'],\n",
484 | " 'colsample_by_tree': best['colsample_by_tree'],\n",
485 | " 'verbosity': -1,\n",
486 | " 'random_state': 42\n",
487 | " }\n",
488 | "\n",
489 | " print(f\"Best hyperparameters for {algorithm_name}:\")\n",
490 | " print(best_hyperparams[algorithm_name])\n",
491 | "\n",
492 | " if algorithm_name == 'XGBoost':\n",
493 | " trials = Trials()\n",
494 | " best = fmin(fn=optimize_fn, space=space, algo=tpe.suggest, max_evals=50, trials=trials, rstate=rstate)\n",
495 | " \n",
496 | " # Map the choice labels\n",
497 | " booster_label = booster_choices[best['booster']] \n",
498 | " \n",
499 | " # Store the best XGBoost hyperparameters\n",
500 | " best_hyperparams[algorithm_name] = {\n",
501 | " 'booster': booster_label,\n",
502 | " 'learning_rate': best['learning_rate'],\n",
503 | " 'gamma': int(best['gamma']),\n",
504 | " 'max_depth': int(best['max_depth']),\n",
505 | " 'min_child_weight': int(best['min_child_weight']),\n",
506 | " 'colsample_bytree': best['colsample_bytree'],\n",
507 | " 'colsample_bylevel': best['colsample_bylevel'],\n",
508 | " 'colsample_bynode': best['colsample_bynode'], \n",
509 | " 'reg_alpha': best['reg_alpha'],\n",
510 | " 'reg_lambda': best['reg_lambda'], \n",
511 | " 'random_state': 42\n",
512 | " }\n",
513 | "\n",
514 | " print(f\"Best hyperparameters for {algorithm_name}:\")\n",
515 | " print(best_hyperparams[algorithm_name])"
516 | ]
517 | },
518 | {
519 | "cell_type": "code",
520 | "execution_count": 10,
521 | "metadata": {},
522 | "outputs": [
523 | {
524 | "data": {
525 | "text/plain": [
526 | "{'n_estimators': 200.0,\n",
527 | " 'learning_rate': 0.06659352635164861,\n",
528 | " 'max_depth': 4.0,\n",
529 | " 'max_features': 'sqrt',\n",
530 | " 'min_samples_leaf': 3.0,\n",
531 | " 'min_samples_split': 2.0,\n",
532 | " 'random_state': 42}"
533 | ]
534 | },
535 | "execution_count": 10,
536 | "metadata": {},
537 | "output_type": "execute_result"
538 | }
539 | ],
540 | "source": [
541 | "best_hyperparams['AdaBoost']"
542 | ]
543 | },
544 | {
545 | "cell_type": "code",
546 | "execution_count": 11,
547 | "metadata": {},
548 | "outputs": [
549 | {
550 | "data": {
551 | "text/plain": [
552 | "{'criterion': 'friedman_mse',\n",
553 | " 'max_features': 'sqrt',\n",
554 | " 'n_estimators': 100,\n",
555 | " 'learning_rate': 0.04102652661864284,\n",
556 | " 'max_depth': 3,\n",
557 | " 'min_samples_split': 7,\n",
558 | " 'min_samples_leaf': 7,\n",
559 | " 'min_weight_fraction_leaf': 0.0,\n",
560 | " 'min_impurity_decrease': 1.0,\n",
561 | " 'ccp_alpha': 0.0,\n",
562 | " 'random_state': 42}"
563 | ]
564 | },
565 | "execution_count": 11,
566 | "metadata": {},
567 | "output_type": "execute_result"
568 | }
569 | ],
570 | "source": [
571 | "best_hyperparams['GradBoost']"
572 | ]
573 | },
574 | {
575 | "cell_type": "code",
576 | "execution_count": 12,
577 | "metadata": {},
578 | "outputs": [
579 | {
580 | "data": {
581 | "text/plain": [
582 | "{'n_estimators': 550,\n",
583 | " 'learning_rate': 0.0479901225935416,\n",
584 | " 'min_child_samples': 1,\n",
585 | " 'max_depth': 6,\n",
586 | " 'reg_lambda': 3.3766279624518107,\n",
587 | " 'silent': True,\n",
588 | " 'random_state': 42}"
589 | ]
590 | },
591 | "execution_count": 12,
592 | "metadata": {},
593 | "output_type": "execute_result"
594 | }
595 | ],
596 | "source": [
597 | "best_hyperparams['CatBoost']"
598 | ]
599 | },
600 | {
601 | "cell_type": "code",
602 | "execution_count": 13,
603 | "metadata": {},
604 | "outputs": [
605 | {
606 | "data": {
607 | "text/plain": [
608 | "{'class_weight': 'balanced',\n",
609 | " 'boosting_type': 'gbdt',\n",
610 | " 'num_leaves': 55,\n",
611 | " 'learning_rate': 0.04496177447997528,\n",
612 | " 'min_child_samples': 10,\n",
613 | " 'reg_alpha': 0.3916912792044354,\n",
614 | " 'reg_lambda': 1.4941077467431771,\n",
615 | " 'colsample_by_tree': 0.379259630420579,\n",
616 | " 'verbosity': -1,\n",
617 | " 'random_state': 42}"
618 | ]
619 | },
620 | "execution_count": 13,
621 | "metadata": {},
622 | "output_type": "execute_result"
623 | }
624 | ],
625 | "source": [
626 | "best_hyperparams['LightGBM']"
627 | ]
628 | },
629 | {
630 | "cell_type": "code",
631 | "execution_count": 14,
632 | "metadata": {},
633 | "outputs": [
634 | {
635 | "data": {
636 | "text/plain": [
637 | "{'booster': 'gbtree',\n",
638 | " 'learning_rate': 0.011777426690454684,\n",
639 | " 'gamma': 2,\n",
640 | " 'max_depth': 4,\n",
641 | " 'min_child_weight': 1,\n",
642 | " 'colsample_bytree': 0.6642423404208758,\n",
643 | " 'colsample_bylevel': 0.8389604376670141,\n",
644 | " 'colsample_bynode': 0.46801910869053165,\n",
645 | " 'reg_alpha': 1.3842922617481603,\n",
646 | " 'reg_lambda': 0.25127542856871243,\n",
647 | " 'random_state': 42}"
648 | ]
649 | },
650 | "execution_count": 14,
651 | "metadata": {},
652 | "output_type": "execute_result"
653 | }
654 | ],
655 | "source": [
656 | "best_hyperparams['XGBoost']"
657 | ]
658 | },
659 | {
660 | "cell_type": "code",
661 | "execution_count": 15,
662 | "metadata": {
663 | "id": "AiGBWUhXmjty"
664 | },
665 | "outputs": [],
666 | "source": [
667 | "rskf = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=42)"
668 | ]
669 | },
670 | {
671 | "cell_type": "code",
672 | "execution_count": 16,
673 | "metadata": {},
674 | "outputs": [],
675 | "source": [
676 | "names = ['AdaBoost', 'GradBoost', 'CatBoost', 'LightGBM', 'XGBoost']"
677 | ]
678 | },
679 | {
680 | "cell_type": "code",
681 | "execution_count": 18,
682 | "metadata": {
683 | "id": "x7JQf94WmaZT"
684 | },
685 | "outputs": [
686 | {
687 | "name": "stdout",
688 | "output_type": "stream",
689 | "text": [
690 | "--------- AdaBoost on Wine Dataset ---------\n",
691 | "Accuracy: 96.72% (4.17%)\n",
692 | "Execution Time: 18.45 seconds\n",
693 | "------------------------------\n",
694 | "--------- GradBoost on Wine Dataset ---------\n",
695 | "Accuracy: 98.08% (3.44%)\n",
696 | "Execution Time: 10.51 seconds\n",
697 | "------------------------------\n",
698 | "--------- CatBoost on Wine Dataset ---------\n",
699 | "Accuracy: 97.97% (3.03%)\n",
700 | "Execution Time: 103.71 seconds\n",
701 | "------------------------------\n",
702 | "--------- LightGBM on Wine Dataset ---------\n",
703 | "Accuracy: 97.12% (4.03%)\n",
704 | "Execution Time: 3.20 seconds\n",
705 | "------------------------------\n",
706 | "--------- XGBoost on Wine Dataset ---------\n",
707 | "Accuracy: 98.19% (3.40%)\n",
708 | "Execution Time: 5.71 seconds\n",
709 | "------------------------------\n"
710 | ]
711 | }
712 | ],
713 | "source": [
714 | "wine_scores = []\n",
715 | "wine_scores_mean = []\n",
716 | "wine_scores_std = []\n",
717 | "model_names = []\n",
718 | "execution_times = []\n",
719 | "\n",
720 | "for algorithm_name in names:\n",
721 | " if algorithm_name == 'AdaBoost':\n",
722 | " base_estimator = DecisionTreeClassifier(max_depth=int(best_hyperparams[algorithm_name]['max_depth']),\n",
723 | " max_features=best_hyperparams[algorithm_name]['max_features'],\n",
724 | " min_samples_leaf=int(best_hyperparams[algorithm_name]['min_samples_leaf']),\n",
725 | " min_samples_split=int(best_hyperparams[algorithm_name]['min_samples_split']))\n",
726 | "\n",
727 | " clf = AdaBoostClassifier(base_estimator=base_estimator, \n",
728 | " n_estimators=int(best_hyperparams[algorithm_name]['n_estimators']), \n",
729 | " learning_rate=best_hyperparams[algorithm_name]['learning_rate'],\n",
730 | " random_state=42) \n",
731 | "\n",
732 | " if algorithm_name == 'GradBoost':\n",
733 | " clf = GradientBoostingClassifier(criterion=best_hyperparams[algorithm_name]['criterion'], \n",
734 | " max_features=best_hyperparams[algorithm_name]['max_features'], \n",
735 | " n_estimators=best_hyperparams[algorithm_name]['n_estimators'],\n",
736 | " learning_rate=best_hyperparams[algorithm_name]['learning_rate'],\n",
737 | " max_depth=best_hyperparams[algorithm_name]['max_depth'],\n",
738 | " min_samples_split=best_hyperparams[algorithm_name]['min_samples_split'],\n",
739 | " min_samples_leaf=best_hyperparams[algorithm_name]['min_samples_leaf'],\n",
740 | " min_weight_fraction_leaf=best_hyperparams[algorithm_name]['min_weight_fraction_leaf'],\n",
741 | " min_impurity_decrease=best_hyperparams[algorithm_name]['min_impurity_decrease'],\n",
742 | " ccp_alpha=best_hyperparams[algorithm_name]['ccp_alpha'],\n",
743 | " random_state=42)\n",
744 | " \n",
745 | " if algorithm_name == 'CatBoost':\n",
746 | " clf = CatBoostClassifier(n_estimators=best_hyperparams[algorithm_name]['n_estimators'],\n",
747 | " learning_rate=best_hyperparams[algorithm_name]['learning_rate'],\n",
748 | " min_child_samples=best_hyperparams[algorithm_name]['min_child_samples'],\n",
749 | " max_depth=best_hyperparams[algorithm_name]['max_depth'],\n",
750 | " reg_lambda=best_hyperparams[algorithm_name]['reg_lambda'],\n",
751 | " silent=True,\n",
752 | " random_state=42) \n",
753 | " \n",
754 | " if algorithm_name == 'LightGBM':\n",
755 | " clf = LGBMClassifier(boosting_type=best_hyperparams[algorithm_name]['boosting_type'], \n",
756 | " class_weight=best_hyperparams[algorithm_name]['class_weight'], \n",
757 | " colsample_by_tree=best_hyperparams[algorithm_name]['colsample_by_tree'],\n",
758 | " learning_rate=best_hyperparams[algorithm_name]['learning_rate'],\n",
759 | " min_child_samples=best_hyperparams[algorithm_name]['min_child_samples'],\n",
760 | " num_leaves=best_hyperparams[algorithm_name]['num_leaves'],\n",
761 | " reg_alpha=best_hyperparams[algorithm_name]['reg_alpha'],\n",
762 | " reg_lambda=best_hyperparams[algorithm_name]['reg_lambda'],\n",
763 | " verbosity=-1,\n",
764 | " random_state=42)\n",
765 | " \n",
766 | " if algorithm_name == 'XGBoost':\n",
767 | " clf = XGBClassifier(booster=best_hyperparams[algorithm_name]['booster'], \n",
768 | " learning_rate=best_hyperparams[algorithm_name]['learning_rate'],\n",
769 | " gamma=best_hyperparams[algorithm_name]['gamma'], \n",
770 | " max_depth=best_hyperparams[algorithm_name]['max_depth'], \n",
771 | " min_child_weight=best_hyperparams[algorithm_name]['min_child_weight'],\n",
772 | " colsample_bytree=best_hyperparams[algorithm_name]['colsample_bytree'],\n",
773 | " colsample_bylevel=best_hyperparams[algorithm_name]['colsample_bylevel'],\n",
774 | " colsample_bynode=best_hyperparams[algorithm_name]['colsample_bynode'], \n",
775 | " reg_alpha=best_hyperparams[algorithm_name]['reg_alpha'],\n",
776 | " reg_lambda=best_hyperparams[algorithm_name]['reg_lambda'],\n",
777 | " verbosity=0,\n",
778 | " random_state=42)\n",
779 | " \n",
780 | " start_time = time.time() \n",
781 | " results = cross_val_score(clf, X, y, cv=rskf)\n",
782 | " end_time = time.time()\n",
783 | " wine_scores.append(results)\n",
784 | " wine_scores_mean.append(results.mean()*100)\n",
785 | " wine_scores_std.append(results.std()*100)\n",
786 | " model_names.append(algorithm_name)\n",
787 | " execution_time = end_time - start_time \n",
788 | " execution_times.append(execution_time)\n",
789 | "\n",
790 | " print(f'--------- {algorithm_name} on Wine Dataset ---------')\n",
791 | " # print(results)\n",
792 | " print('Accuracy: %.2f%% (%.2f%%)' % (results.mean()*100, results.std()*100))\n",
793 | " print(f'Execution Time: {execution_time:.2f} seconds')\n",
794 | " print('------------------------------')"
795 | ]
796 | },
797 | {
798 | "cell_type": "code",
799 | "execution_count": 19,
800 | "metadata": {},
801 | "outputs": [],
802 | "source": [
803 | "Algo_results = pd.DataFrame()\n",
804 | "Algo_results['Names'] = names"
805 | ]
806 | },
807 | {
808 | "cell_type": "code",
809 | "execution_count": 20,
810 | "metadata": {},
811 | "outputs": [],
812 | "source": [
813 | "Algo_results['Wine'] = wine_scores_mean"
814 | ]
815 | },
816 | {
817 | "cell_type": "code",
818 | "execution_count": 21,
819 | "metadata": {},
820 | "outputs": [
821 | {
822 | "data": {
823 | "text/html": [
824 | "
\n",
825 | "\n",
838 | "
\n",
839 | " \n",
840 | " \n",
841 | " | \n",
842 | " Names | \n",
843 | " Wine | \n",
844 | "
\n",
845 | " \n",
846 | " \n",
847 | " \n",
848 | " | 0 | \n",
849 | " AdaBoost | \n",
850 | " 96.722222 | \n",
851 | "
\n",
852 | " \n",
853 | " | 1 | \n",
854 | " GradBoost | \n",
855 | " 98.075163 | \n",
856 | "
\n",
857 | " \n",
858 | " | 2 | \n",
859 | " CatBoost | \n",
860 | " 97.967320 | \n",
861 | "
\n",
862 | " \n",
863 | " | 3 | \n",
864 | " LightGBM | \n",
865 | " 97.120915 | \n",
866 | "
\n",
867 | " \n",
868 | " | 4 | \n",
869 | " XGBoost | \n",
870 | " 98.186275 | \n",
871 | "
\n",
872 | " \n",
873 | "
\n",
874 | "
"
875 | ],
876 | "text/plain": [
877 | " Names Wine\n",
878 | "0 AdaBoost 96.722222\n",
879 | "1 GradBoost 98.075163\n",
880 | "2 CatBoost 97.967320\n",
881 | "3 LightGBM 97.120915\n",
882 | "4 XGBoost 98.186275"
883 | ]
884 | },
885 | "execution_count": 21,
886 | "metadata": {},
887 | "output_type": "execute_result"
888 | }
889 | ],
890 | "source": [
891 | "Algo_results"
892 | ]
893 | },
894 | {
895 | "cell_type": "code",
896 | "execution_count": 22,
897 | "metadata": {},
898 | "outputs": [],
899 | "source": [
900 | "Algo_time_results = pd.DataFrame()\n",
901 | "Algo_time_results['Names'] = names"
902 | ]
903 | },
904 | {
905 | "cell_type": "code",
906 | "execution_count": 23,
907 | "metadata": {},
908 | "outputs": [],
909 | "source": [
910 | "Algo_time_results['Wine'] = pd.Series(execution_times)"
911 | ]
912 | },
913 | {
914 | "cell_type": "code",
915 | "execution_count": 24,
916 | "metadata": {},
917 | "outputs": [
918 | {
919 | "data": {
920 | "text/html": [
921 | "\n",
922 | "\n",
935 | "
\n",
936 | " \n",
937 | " \n",
938 | " | \n",
939 | " Names | \n",
940 | " Wine | \n",
941 | "
\n",
942 | " \n",
943 | " \n",
944 | " \n",
945 | " | 0 | \n",
946 | " AdaBoost | \n",
947 | " 18.447767 | \n",
948 | "
\n",
949 | " \n",
950 | " | 1 | \n",
951 | " GradBoost | \n",
952 | " 10.506224 | \n",
953 | "
\n",
954 | " \n",
955 | " | 2 | \n",
956 | " CatBoost | \n",
957 | " 103.706576 | \n",
958 | "
\n",
959 | " \n",
960 | " | 3 | \n",
961 | " LightGBM | \n",
962 | " 3.198158 | \n",
963 | "
\n",
964 | " \n",
965 | " | 4 | \n",
966 | " XGBoost | \n",
967 | " 5.706122 | \n",
968 | "
\n",
969 | " \n",
970 | "
\n",
971 | "
"
972 | ],
973 | "text/plain": [
974 | " Names Wine\n",
975 | "0 AdaBoost 18.447767\n",
976 | "1 GradBoost 10.506224\n",
977 | "2 CatBoost 103.706576\n",
978 | "3 LightGBM 3.198158\n",
979 | "4 XGBoost 5.706122"
980 | ]
981 | },
982 | "execution_count": 24,
983 | "metadata": {},
984 | "output_type": "execute_result"
985 | }
986 | ],
987 | "source": [
988 | "Algo_time_results"
989 | ]
990 | }
991 | ],
992 | "metadata": {
993 | "colab": {
994 | "authorship_tag": "ABX9TyMVO8koMTTTdYQJS3YoNuih",
995 | "include_colab_link": true,
996 | "provenance": []
997 | },
998 | "kernelspec": {
999 | "display_name": "Python 3",
1000 | "name": "python3"
1001 | },
1002 | "language_info": {
1003 | "codemirror_mode": {
1004 | "name": "ipython",
1005 | "version": 3
1006 | },
1007 | "file_extension": ".py",
1008 | "mimetype": "text/x-python",
1009 | "name": "python",
1010 | "nbconvert_exporter": "python",
1011 | "pygments_lexer": "ipython3",
1012 | "version": "3.9.12"
1013 | }
1014 | },
1015 | "nbformat": 4,
1016 | "nbformat_minor": 0
1017 | }
1018 |
--------------------------------------------------------------------------------
/Session-06_14-10-23_DecisionTrees_RandomForests_Boosting/DT_RF_Boosting.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-06_14-10-23_DecisionTrees_RandomForests_Boosting/DT_RF_Boosting.pptx
--------------------------------------------------------------------------------
/Session-07_30-10-23_ConstrainedOptimisation/Constrained_Optimization_KKT.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-07_30-10-23_ConstrainedOptimisation/Constrained_Optimization_KKT.pdf
--------------------------------------------------------------------------------
/Session-08_06-11-23_SVM/SVM.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "provenance": []
7 | },
8 | "kernelspec": {
9 | "name": "python3",
10 | "display_name": "Python 3"
11 | },
12 | "language_info": {
13 | "name": "python"
14 | }
15 | },
16 | "cells": [
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {
21 | "id": "qeV_uNcKGIlX"
22 | },
23 | "outputs": [],
24 | "source": [
25 | "import pandas as pd\n",
26 | "import numpy as np\n",
27 | "from sklearn import svm\n",
28 | "from sklearn.model_selection import train_test_split\n",
29 | "from sklearn.metrics import accuracy_score"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "source": [
35 | "from sklearn.datasets import load_breast_cancer\n",
36 | "data = load_breast_cancer()\n",
37 | "dataset = pd.DataFrame(data=data.data, columns=data.feature_names)"
38 | ],
39 | "metadata": {
40 | "id": "Aru5nkhPMdd3"
41 | },
42 | "execution_count": null,
43 | "outputs": []
44 | },
45 | {
46 | "cell_type": "code",
47 | "source": [
48 | "dataset"
49 | ],
50 | "metadata": {
51 | "colab": {
52 | "base_uri": "https://localhost:8080/",
53 | "height": 478
54 | },
55 | "id": "zRl9oTn5RpmE",
56 | "outputId": "0beba0f2-c21e-4dd6-ed66-cf6bffe4fa74"
57 | },
58 | "execution_count": null,
59 | "outputs": [
60 | {
61 | "output_type": "execute_result",
62 | "data": {
63 | "text/plain": [
64 | " mean radius mean texture mean perimeter mean area mean smoothness \\\n",
65 | "0 17.99 10.38 122.80 1001.0 0.11840 \n",
66 | "1 20.57 17.77 132.90 1326.0 0.08474 \n",
67 | "2 19.69 21.25 130.00 1203.0 0.10960 \n",
68 | "3 11.42 20.38 77.58 386.1 0.14250 \n",
69 | "4 20.29 14.34 135.10 1297.0 0.10030 \n",
70 | ".. ... ... ... ... ... \n",
71 | "564 21.56 22.39 142.00 1479.0 0.11100 \n",
72 | "565 20.13 28.25 131.20 1261.0 0.09780 \n",
73 | "566 16.60 28.08 108.30 858.1 0.08455 \n",
74 | "567 20.60 29.33 140.10 1265.0 0.11780 \n",
75 | "568 7.76 24.54 47.92 181.0 0.05263 \n",
76 | "\n",
77 | " mean compactness mean concavity mean concave points mean symmetry \\\n",
78 | "0 0.27760 0.30010 0.14710 0.2419 \n",
79 | "1 0.07864 0.08690 0.07017 0.1812 \n",
80 | "2 0.15990 0.19740 0.12790 0.2069 \n",
81 | "3 0.28390 0.24140 0.10520 0.2597 \n",
82 | "4 0.13280 0.19800 0.10430 0.1809 \n",
83 | ".. ... ... ... ... \n",
84 | "564 0.11590 0.24390 0.13890 0.1726 \n",
85 | "565 0.10340 0.14400 0.09791 0.1752 \n",
86 | "566 0.10230 0.09251 0.05302 0.1590 \n",
87 | "567 0.27700 0.35140 0.15200 0.2397 \n",
88 | "568 0.04362 0.00000 0.00000 0.1587 \n",
89 | "\n",
90 | " mean fractal dimension ... worst radius worst texture \\\n",
91 | "0 0.07871 ... 25.380 17.33 \n",
92 | "1 0.05667 ... 24.990 23.41 \n",
93 | "2 0.05999 ... 23.570 25.53 \n",
94 | "3 0.09744 ... 14.910 26.50 \n",
95 | "4 0.05883 ... 22.540 16.67 \n",
96 | ".. ... ... ... ... \n",
97 | "564 0.05623 ... 25.450 26.40 \n",
98 | "565 0.05533 ... 23.690 38.25 \n",
99 | "566 0.05648 ... 18.980 34.12 \n",
100 | "567 0.07016 ... 25.740 39.42 \n",
101 | "568 0.05884 ... 9.456 30.37 \n",
102 | "\n",
103 | " worst perimeter worst area worst smoothness worst compactness \\\n",
104 | "0 184.60 2019.0 0.16220 0.66560 \n",
105 | "1 158.80 1956.0 0.12380 0.18660 \n",
106 | "2 152.50 1709.0 0.14440 0.42450 \n",
107 | "3 98.87 567.7 0.20980 0.86630 \n",
108 | "4 152.20 1575.0 0.13740 0.20500 \n",
109 | ".. ... ... ... ... \n",
110 | "564 166.10 2027.0 0.14100 0.21130 \n",
111 | "565 155.00 1731.0 0.11660 0.19220 \n",
112 | "566 126.70 1124.0 0.11390 0.30940 \n",
113 | "567 184.60 1821.0 0.16500 0.86810 \n",
114 | "568 59.16 268.6 0.08996 0.06444 \n",
115 | "\n",
116 | " worst concavity worst concave points worst symmetry \\\n",
117 | "0 0.7119 0.2654 0.4601 \n",
118 | "1 0.2416 0.1860 0.2750 \n",
119 | "2 0.4504 0.2430 0.3613 \n",
120 | "3 0.6869 0.2575 0.6638 \n",
121 | "4 0.4000 0.1625 0.2364 \n",
122 | ".. ... ... ... \n",
123 | "564 0.4107 0.2216 0.2060 \n",
124 | "565 0.3215 0.1628 0.2572 \n",
125 | "566 0.3403 0.1418 0.2218 \n",
126 | "567 0.9387 0.2650 0.4087 \n",
127 | "568 0.0000 0.0000 0.2871 \n",
128 | "\n",
129 | " worst fractal dimension \n",
130 | "0 0.11890 \n",
131 | "1 0.08902 \n",
132 | "2 0.08758 \n",
133 | "3 0.17300 \n",
134 | "4 0.07678 \n",
135 | ".. ... \n",
136 | "564 0.07115 \n",
137 | "565 0.06637 \n",
138 | "566 0.07820 \n",
139 | "567 0.12400 \n",
140 | "568 0.07039 \n",
141 | "\n",
142 | "[569 rows x 30 columns]"
143 | ],
144 | "text/html": [
145 | "\n",
146 | " \n",
147 | "
\n",
148 | "\n",
161 | "
\n",
162 | " \n",
163 | " \n",
164 | " | \n",
165 | " mean radius | \n",
166 | " mean texture | \n",
167 | " mean perimeter | \n",
168 | " mean area | \n",
169 | " mean smoothness | \n",
170 | " mean compactness | \n",
171 | " mean concavity | \n",
172 | " mean concave points | \n",
173 | " mean symmetry | \n",
174 | " mean fractal dimension | \n",
175 | " ... | \n",
176 | " worst radius | \n",
177 | " worst texture | \n",
178 | " worst perimeter | \n",
179 | " worst area | \n",
180 | " worst smoothness | \n",
181 | " worst compactness | \n",
182 | " worst concavity | \n",
183 | " worst concave points | \n",
184 | " worst symmetry | \n",
185 | " worst fractal dimension | \n",
186 | "
\n",
187 | " \n",
188 | " \n",
189 | " \n",
190 | " | 0 | \n",
191 | " 17.99 | \n",
192 | " 10.38 | \n",
193 | " 122.80 | \n",
194 | " 1001.0 | \n",
195 | " 0.11840 | \n",
196 | " 0.27760 | \n",
197 | " 0.30010 | \n",
198 | " 0.14710 | \n",
199 | " 0.2419 | \n",
200 | " 0.07871 | \n",
201 | " ... | \n",
202 | " 25.380 | \n",
203 | " 17.33 | \n",
204 | " 184.60 | \n",
205 | " 2019.0 | \n",
206 | " 0.16220 | \n",
207 | " 0.66560 | \n",
208 | " 0.7119 | \n",
209 | " 0.2654 | \n",
210 | " 0.4601 | \n",
211 | " 0.11890 | \n",
212 | "
\n",
213 | " \n",
214 | " | 1 | \n",
215 | " 20.57 | \n",
216 | " 17.77 | \n",
217 | " 132.90 | \n",
218 | " 1326.0 | \n",
219 | " 0.08474 | \n",
220 | " 0.07864 | \n",
221 | " 0.08690 | \n",
222 | " 0.07017 | \n",
223 | " 0.1812 | \n",
224 | " 0.05667 | \n",
225 | " ... | \n",
226 | " 24.990 | \n",
227 | " 23.41 | \n",
228 | " 158.80 | \n",
229 | " 1956.0 | \n",
230 | " 0.12380 | \n",
231 | " 0.18660 | \n",
232 | " 0.2416 | \n",
233 | " 0.1860 | \n",
234 | " 0.2750 | \n",
235 | " 0.08902 | \n",
236 | "
\n",
237 | " \n",
238 | " | 2 | \n",
239 | " 19.69 | \n",
240 | " 21.25 | \n",
241 | " 130.00 | \n",
242 | " 1203.0 | \n",
243 | " 0.10960 | \n",
244 | " 0.15990 | \n",
245 | " 0.19740 | \n",
246 | " 0.12790 | \n",
247 | " 0.2069 | \n",
248 | " 0.05999 | \n",
249 | " ... | \n",
250 | " 23.570 | \n",
251 | " 25.53 | \n",
252 | " 152.50 | \n",
253 | " 1709.0 | \n",
254 | " 0.14440 | \n",
255 | " 0.42450 | \n",
256 | " 0.4504 | \n",
257 | " 0.2430 | \n",
258 | " 0.3613 | \n",
259 | " 0.08758 | \n",
260 | "
\n",
261 | " \n",
262 | " | 3 | \n",
263 | " 11.42 | \n",
264 | " 20.38 | \n",
265 | " 77.58 | \n",
266 | " 386.1 | \n",
267 | " 0.14250 | \n",
268 | " 0.28390 | \n",
269 | " 0.24140 | \n",
270 | " 0.10520 | \n",
271 | " 0.2597 | \n",
272 | " 0.09744 | \n",
273 | " ... | \n",
274 | " 14.910 | \n",
275 | " 26.50 | \n",
276 | " 98.87 | \n",
277 | " 567.7 | \n",
278 | " 0.20980 | \n",
279 | " 0.86630 | \n",
280 | " 0.6869 | \n",
281 | " 0.2575 | \n",
282 | " 0.6638 | \n",
283 | " 0.17300 | \n",
284 | "
\n",
285 | " \n",
286 | " | 4 | \n",
287 | " 20.29 | \n",
288 | " 14.34 | \n",
289 | " 135.10 | \n",
290 | " 1297.0 | \n",
291 | " 0.10030 | \n",
292 | " 0.13280 | \n",
293 | " 0.19800 | \n",
294 | " 0.10430 | \n",
295 | " 0.1809 | \n",
296 | " 0.05883 | \n",
297 | " ... | \n",
298 | " 22.540 | \n",
299 | " 16.67 | \n",
300 | " 152.20 | \n",
301 | " 1575.0 | \n",
302 | " 0.13740 | \n",
303 | " 0.20500 | \n",
304 | " 0.4000 | \n",
305 | " 0.1625 | \n",
306 | " 0.2364 | \n",
307 | " 0.07678 | \n",
308 | "
\n",
309 | " \n",
310 | " | ... | \n",
311 | " ... | \n",
312 | " ... | \n",
313 | " ... | \n",
314 | " ... | \n",
315 | " ... | \n",
316 | " ... | \n",
317 | " ... | \n",
318 | " ... | \n",
319 | " ... | \n",
320 | " ... | \n",
321 | " ... | \n",
322 | " ... | \n",
323 | " ... | \n",
324 | " ... | \n",
325 | " ... | \n",
326 | " ... | \n",
327 | " ... | \n",
328 | " ... | \n",
329 | " ... | \n",
330 | " ... | \n",
331 | " ... | \n",
332 | "
\n",
333 | " \n",
334 | " | 564 | \n",
335 | " 21.56 | \n",
336 | " 22.39 | \n",
337 | " 142.00 | \n",
338 | " 1479.0 | \n",
339 | " 0.11100 | \n",
340 | " 0.11590 | \n",
341 | " 0.24390 | \n",
342 | " 0.13890 | \n",
343 | " 0.1726 | \n",
344 | " 0.05623 | \n",
345 | " ... | \n",
346 | " 25.450 | \n",
347 | " 26.40 | \n",
348 | " 166.10 | \n",
349 | " 2027.0 | \n",
350 | " 0.14100 | \n",
351 | " 0.21130 | \n",
352 | " 0.4107 | \n",
353 | " 0.2216 | \n",
354 | " 0.2060 | \n",
355 | " 0.07115 | \n",
356 | "
\n",
357 | " \n",
358 | " | 565 | \n",
359 | " 20.13 | \n",
360 | " 28.25 | \n",
361 | " 131.20 | \n",
362 | " 1261.0 | \n",
363 | " 0.09780 | \n",
364 | " 0.10340 | \n",
365 | " 0.14400 | \n",
366 | " 0.09791 | \n",
367 | " 0.1752 | \n",
368 | " 0.05533 | \n",
369 | " ... | \n",
370 | " 23.690 | \n",
371 | " 38.25 | \n",
372 | " 155.00 | \n",
373 | " 1731.0 | \n",
374 | " 0.11660 | \n",
375 | " 0.19220 | \n",
376 | " 0.3215 | \n",
377 | " 0.1628 | \n",
378 | " 0.2572 | \n",
379 | " 0.06637 | \n",
380 | "
\n",
381 | " \n",
382 | " | 566 | \n",
383 | " 16.60 | \n",
384 | " 28.08 | \n",
385 | " 108.30 | \n",
386 | " 858.1 | \n",
387 | " 0.08455 | \n",
388 | " 0.10230 | \n",
389 | " 0.09251 | \n",
390 | " 0.05302 | \n",
391 | " 0.1590 | \n",
392 | " 0.05648 | \n",
393 | " ... | \n",
394 | " 18.980 | \n",
395 | " 34.12 | \n",
396 | " 126.70 | \n",
397 | " 1124.0 | \n",
398 | " 0.11390 | \n",
399 | " 0.30940 | \n",
400 | " 0.3403 | \n",
401 | " 0.1418 | \n",
402 | " 0.2218 | \n",
403 | " 0.07820 | \n",
404 | "
\n",
405 | " \n",
406 | " | 567 | \n",
407 | " 20.60 | \n",
408 | " 29.33 | \n",
409 | " 140.10 | \n",
410 | " 1265.0 | \n",
411 | " 0.11780 | \n",
412 | " 0.27700 | \n",
413 | " 0.35140 | \n",
414 | " 0.15200 | \n",
415 | " 0.2397 | \n",
416 | " 0.07016 | \n",
417 | " ... | \n",
418 | " 25.740 | \n",
419 | " 39.42 | \n",
420 | " 184.60 | \n",
421 | " 1821.0 | \n",
422 | " 0.16500 | \n",
423 | " 0.86810 | \n",
424 | " 0.9387 | \n",
425 | " 0.2650 | \n",
426 | " 0.4087 | \n",
427 | " 0.12400 | \n",
428 | "
\n",
429 | " \n",
430 | " | 568 | \n",
431 | " 7.76 | \n",
432 | " 24.54 | \n",
433 | " 47.92 | \n",
434 | " 181.0 | \n",
435 | " 0.05263 | \n",
436 | " 0.04362 | \n",
437 | " 0.00000 | \n",
438 | " 0.00000 | \n",
439 | " 0.1587 | \n",
440 | " 0.05884 | \n",
441 | " ... | \n",
442 | " 9.456 | \n",
443 | " 30.37 | \n",
444 | " 59.16 | \n",
445 | " 268.6 | \n",
446 | " 0.08996 | \n",
447 | " 0.06444 | \n",
448 | " 0.0000 | \n",
449 | " 0.0000 | \n",
450 | " 0.2871 | \n",
451 | " 0.07039 | \n",
452 | "
\n",
453 | " \n",
454 | "
\n",
455 | "
569 rows × 30 columns
\n",
456 | "
\n",
457 | "
\n",
664 | "
\n"
665 | ]
666 | },
667 | "metadata": {},
668 | "execution_count": 32
669 | }
670 | ]
671 | },
672 | {
673 | "cell_type": "code",
674 | "source": [
675 | "target = data.target"
676 | ],
677 | "metadata": {
678 | "id": "l9rjLT17Sann"
679 | },
680 | "execution_count": null,
681 | "outputs": []
682 | },
683 | {
684 | "cell_type": "code",
685 | "source": [
686 | "target"
687 | ],
688 | "metadata": {
689 | "colab": {
690 | "base_uri": "https://localhost:8080/"
691 | },
692 | "id": "xHpz0ZJ4SfUC",
693 | "outputId": "8a48517a-dddf-452f-cab0-935bc2c74c58"
694 | },
695 | "execution_count": null,
696 | "outputs": [
697 | {
698 | "output_type": "execute_result",
699 | "data": {
700 | "text/plain": [
701 | "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,\n",
702 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n",
703 | " 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,\n",
704 | " 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,\n",
705 | " 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n",
706 | " 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,\n",
707 | " 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,\n",
708 | " 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,\n",
709 | " 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n",
710 | " 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,\n",
711 | " 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n",
712 | " 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
713 | " 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n",
714 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n",
715 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n",
716 | " 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,\n",
717 | " 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n",
718 | " 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,\n",
719 | " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n",
720 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n",
721 | " 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,\n",
722 | " 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
723 | " 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n",
724 | " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
725 | " 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
726 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])"
727 | ]
728 | },
729 | "metadata": {},
730 | "execution_count": 9
731 | }
732 | ]
733 | },
734 | {
735 | "cell_type": "code",
736 | "source": [
737 | "X = dataset.to_numpy()"
738 | ],
739 | "metadata": {
740 | "id": "4ZvD6tCsSmI9"
741 | },
742 | "execution_count": null,
743 | "outputs": []
744 | },
745 | {
746 | "cell_type": "code",
747 | "source": [
748 | "X_train, X_test, y_train, y_test = train_test_split(X, target, test_size=0.25, random_state=42)"
749 | ],
750 | "metadata": {
751 | "id": "N5yVRybTSt_i"
752 | },
753 | "execution_count": null,
754 | "outputs": []
755 | },
756 | {
757 | "cell_type": "markdown",
758 | "source": [
759 | "Since the sklearn Breast cancer dataset is linearly separable, SVMs with linear kernels perform best on it. SVMs that use polynomial kernels perform best on data that is not linearly separable. SVMs that use radial kernels generally perform better than polynomial kernels since they find SVCs in infinite dimensions. "
760 | ],
761 | "metadata": {
762 | "id": "n9qwMFiEUpNc"
763 | }
764 | },
765 | {
766 | "cell_type": "code",
767 | "source": [
768 | "linear_svc = svm.SVC(kernel='linear')\n",
769 | "linear_svc.fit(X_train, y_train)\n",
770 | "y_pred=linear_svc.predict(X_test)\n",
771 | "accuracy_score(y_test, y_pred)"
772 | ],
773 | "metadata": {
774 | "colab": {
775 | "base_uri": "https://localhost:8080/"
776 | },
777 | "id": "7PfLnlmHMc6i",
778 | "outputId": "f3ccce36-66d0-4b1f-b26a-66f9dcb469d3"
779 | },
780 | "execution_count": null,
781 | "outputs": [
782 | {
783 | "output_type": "execute_result",
784 | "data": {
785 | "text/plain": [
786 | "0.958041958041958"
787 | ]
788 | },
789 | "metadata": {},
790 | "execution_count": 18
791 | }
792 | ]
793 | },
794 | {
795 | "cell_type": "code",
796 | "source": [
797 | "poly_svc = svm.SVC(kernel='poly')\n",
798 | "poly_svc.fit(X_train, y_train)\n",
799 | "y_pred=poly_svc.predict(X_test)\n",
800 | "accuracy_score(y_test, y_pred)"
801 | ],
802 | "metadata": {
803 | "colab": {
804 | "base_uri": "https://localhost:8080/"
805 | },
806 | "id": "ld0ZSTejTDJe",
807 | "outputId": "d14853df-a722-4241-890b-09aa0f578a6f"
808 | },
809 | "execution_count": null,
810 | "outputs": [
811 | {
812 | "output_type": "execute_result",
813 | "data": {
814 | "text/plain": [
815 | "0.9440559440559441"
816 | ]
817 | },
818 | "metadata": {},
819 | "execution_count": 26
820 | }
821 | ]
822 | },
823 | {
824 | "cell_type": "code",
825 | "source": [
826 | "rbf_svc = svm.SVC(kernel='rbf')\n",
827 | "rbf_svc.fit(X_train, y_train)\n",
828 | "y_pred=rbf_svc.predict(X_test)\n",
829 | "accuracy_score(y_test, y_pred)"
830 | ],
831 | "metadata": {
832 | "colab": {
833 | "base_uri": "https://localhost:8080/"
834 | },
835 | "id": "ZXiO7suZTzDw",
836 | "outputId": "fe58ed75-8f62-4f0c-bd21-506ebb5adbb4"
837 | },
838 | "execution_count": null,
839 | "outputs": [
840 | {
841 | "output_type": "execute_result",
842 | "data": {
843 | "text/plain": [
844 | "0.951048951048951"
845 | ]
846 | },
847 | "metadata": {},
848 | "execution_count": 30
849 | }
850 | ]
851 | },
852 | {
853 | "cell_type": "markdown",
854 | "source": [
855 | "Depending on the dataset, SVMs may or may not perform better than random forests (bagging algorithms) or boosting models such as XGBoost and AdaBoost. Since SVMs use Soft Margin Classifiers, they avoid overfitting better than bagging and boosting algorithms (lower variance), but they may not perform as well on datasets with a lower amount of outliers since they may have a higher bias than bagging and boosting algorithms."
856 | ],
857 | "metadata": {
858 | "id": "IJgkZycoVUI6"
859 | }
860 | }
861 | ]
862 | }
--------------------------------------------------------------------------------
/Session-08_06-11-23_SVM/Support Vector Machines.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-08_06-11-23_SVM/Support Vector Machines.pdf
--------------------------------------------------------------------------------
/Session-09_20-11-23_NeuralNetworks_PyTorch/NeuralNetworks.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023/f2da173f11a4ae44807aa32f343d5e196a6cda9f/Session-09_20-11-23_NeuralNetworks_PyTorch/NeuralNetworks.pdf
--------------------------------------------------------------------------------
/Session-09_20-11-23_NeuralNetworks_PyTorch/pytorch-mnist-example.ipynb:
--------------------------------------------------------------------------------
1 | {"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"import pandas as pd\nimport numpy as np\nfrom sklearn.metrics import accuracy_score, f1_score\nfrom sklearn.preprocessing import MinMaxScaler, StandardScaler\n\nimport torch\nimport torch.nn as nn\nfrom torch.utils.data import Dataset, DataLoader\nfrom tqdm import tqdm\n\nimport gc\nimport time\n\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2023-11-19T18:59:51.440856Z","iopub.execute_input":"2023-11-19T18:59:51.441734Z","iopub.status.idle":"2023-11-19T18:59:51.447316Z","shell.execute_reply.started":"2023-11-19T18:59:51.441697Z","shell.execute_reply":"2023-11-19T18:59:51.446472Z"},"trusted":true},"execution_count":2,"outputs":[]},{"cell_type":"code","source":"class ANN(nn.Module):\n def __init__(\n self,\n in_dim: int,\n hidden_dim_1: int,\n hidden_dim_2: int,\n hidden_dim_3: int,\n n_classes:int = 10,\n dropout: float = 0.3\n ):\n super().__init__()\n \n self.layer1 = nn.Sequential(\n nn.Linear(in_features=in_dim, out_features=hidden_dim_1),\n nn.ReLU(),\n nn.BatchNorm1d(hidden_dim_1),\n nn.Dropout(dropout),\n )\n self.layer2 = nn.Sequential(\n nn.Linear(in_features=hidden_dim_1, out_features=hidden_dim_2),\n nn.ReLU(),\n nn.BatchNorm1d(hidden_dim_2),\n nn.Dropout(dropout),\n )\n self.layer3 = nn.Sequential(\n nn.Linear(in_features=hidden_dim_2, out_features=hidden_dim_3),\n nn.ReLU(),\n nn.BatchNorm1d(hidden_dim_3),\n nn.Dropout(dropout),\n )\n self.output_layer = nn.Linear(in_features=hidden_dim_3, out_features=n_classes)\n \n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x (torch.Tensor): (batch_size, in_dim) the input\n \n Output:\n (torch.Tensor): (batch_size, n_classes) the output\n \"\"\"\n x = self.layer1(x)\n x = self.layer2(x)\n x = self.layer3(x)\n x = self.output_layer(x)\n \n return x","metadata":{"execution":{"iopub.status.busy":"2023-11-19T18:59:51.449227Z","iopub.execute_input":"2023-11-19T18:59:51.450010Z","iopub.status.idle":"2023-11-19T18:59:51.473529Z","shell.execute_reply.started":"2023-11-19T18:59:51.449976Z","shell.execute_reply":"2023-11-19T18:59:51.472734Z"},"trusted":true},"execution_count":3,"outputs":[]},{"cell_type":"code","source":"class MNIST(Dataset):\n def __init__(\n self,\n data,\n ):\n self.data = data\n # def _build(self):\n # scaler = MinMaxScaler(feature_range=())\n # scaler = StandardScaler()\n \n def __getitem__(self, index) -> (torch.Tensor, torch.Tensor):\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n \n def __len__(self):\n return self.data.shape[0]","metadata":{"execution":{"iopub.status.busy":"2023-11-19T18:59:51.474598Z","iopub.execute_input":"2023-11-19T18:59:51.474858Z","iopub.status.idle":"2023-11-19T18:59:51.488188Z","shell.execute_reply.started":"2023-11-19T18:59:51.474835Z","shell.execute_reply":"2023-11-19T18:59:51.487326Z"},"trusted":true},"execution_count":4,"outputs":[]},{"cell_type":"code","source":"train = pd.read_csv('/kaggle/input/mnist-in-csv/mnist_train.csv')\ntest = pd.read_csv('/kaggle/input/mnist-in-csv/mnist_test.csv')","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:27.413676Z","iopub.execute_input":"2023-11-19T19:00:27.414042Z","iopub.status.idle":"2023-11-19T19:00:33.143565Z","shell.execute_reply.started":"2023-11-19T19:00:27.414016Z","shell.execute_reply":"2023-11-19T19:00:33.142750Z"},"trusted":true},"execution_count":6,"outputs":[]},{"cell_type":"code","source":"scaler = StandardScaler()\ntrain.iloc[:, 1:] = scaler.fit_transform(X=train.iloc[:, 1:])\ntest.iloc[:, 1:] = scaler.transform(X=test.iloc[:, 1:])","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:33.145329Z","iopub.execute_input":"2023-11-19T19:00:33.145638Z","iopub.status.idle":"2023-11-19T19:00:34.762186Z","shell.execute_reply.started":"2023-11-19T19:00:33.145613Z","shell.execute_reply":"2023-11-19T19:00:34.761397Z"},"trusted":true},"execution_count":7,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:767: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if not hasattr(array, \"sparse\") and array.dtypes.apply(is_sparse).any():\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:605: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if is_sparse(pd_dtype):\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:614: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if is_sparse(pd_dtype) or not is_extension_array_dtype(pd_dtype):\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:767: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if not hasattr(array, \"sparse\") and array.dtypes.apply(is_sparse).any():\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:605: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if is_sparse(pd_dtype):\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:614: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if is_sparse(pd_dtype) or not is_extension_array_dtype(pd_dtype):\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:767: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if not hasattr(array, \"sparse\") and array.dtypes.apply(is_sparse).any():\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:605: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if is_sparse(pd_dtype):\n/opt/conda/lib/python3.10/site-packages/sklearn/utils/validation.py:614: FutureWarning: is_sparse is deprecated and will be removed in a future version. Check `isinstance(dtype, pd.SparseDtype)` instead.\n if is_sparse(pd_dtype) or not is_extension_array_dtype(pd_dtype):\n","output_type":"stream"}]},{"cell_type":"code","source":"train_dataset = MNIST(data=train)\ntest_dataset = MNIST(data=test)","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:34.763387Z","iopub.execute_input":"2023-11-19T19:00:34.763767Z","iopub.status.idle":"2023-11-19T19:00:34.768528Z","shell.execute_reply.started":"2023-11-19T19:00:34.763733Z","shell.execute_reply":"2023-11-19T19:00:34.767490Z"},"trusted":true},"execution_count":8,"outputs":[]},{"cell_type":"code","source":"train_batchsize = 512\nval_batchsize = 512","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:34.769664Z","iopub.execute_input":"2023-11-19T19:00:34.770020Z","iopub.status.idle":"2023-11-19T19:00:34.780003Z","shell.execute_reply.started":"2023-11-19T19:00:34.769989Z","shell.execute_reply":"2023-11-19T19:00:34.778997Z"},"trusted":true},"execution_count":9,"outputs":[]},{"cell_type":"code","source":"train_dataloader = DataLoader(dataset=train_dataset, batch_size=train_batchsize, shuffle=True)\ntest_dataloader = DataLoader(dataset=test_dataset, batch_size=val_batchsize, shuffle=True)","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:34.782963Z","iopub.execute_input":"2023-11-19T19:00:34.783293Z","iopub.status.idle":"2023-11-19T19:00:34.791010Z","shell.execute_reply.started":"2023-11-19T19:00:34.783264Z","shell.execute_reply":"2023-11-19T19:00:34.790141Z"},"trusted":true},"execution_count":10,"outputs":[]},{"cell_type":"code","source":"model = ANN(\n in_dim=784,\n hidden_dim_1=784//2,\n hidden_dim_2=784//4,\n hidden_dim_3=784//8\n).to(device)","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:34.792040Z","iopub.execute_input":"2023-11-19T19:00:34.792297Z","iopub.status.idle":"2023-11-19T19:00:37.673670Z","shell.execute_reply.started":"2023-11-19T19:00:34.792275Z","shell.execute_reply":"2023-11-19T19:00:37.672894Z"},"trusted":true},"execution_count":11,"outputs":[]},{"cell_type":"code","source":"n_epochs = 20","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:37.674733Z","iopub.execute_input":"2023-11-19T19:00:37.675000Z","iopub.status.idle":"2023-11-19T19:00:37.679288Z","shell.execute_reply.started":"2023-11-19T19:00:37.674977Z","shell.execute_reply":"2023-11-19T19:00:37.678206Z"},"trusted":true},"execution_count":12,"outputs":[]},{"cell_type":"code","source":"lr = 1e-3\noptimiser = torch.optim.Adam(model.parameters(), lr=lr)\n\nloss_fn = torch.nn.CrossEntropyLoss()","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:37.680365Z","iopub.execute_input":"2023-11-19T19:00:37.680660Z","iopub.status.idle":"2023-11-19T19:00:37.691844Z","shell.execute_reply.started":"2023-11-19T19:00:37.680636Z","shell.execute_reply":"2023-11-19T19:00:37.691067Z"},"trusted":true},"execution_count":13,"outputs":[]},{"cell_type":"code","source":"def train_epoch(\n model,\n dataloader,\n optimiser\n):\n model.train()\n \n for batch in tqdm(dataloader):\n x, y = batch[0], batch[1]\n \n output = model(x)\n output = nn.Softmax(dim=-1)(output)\n loss = loss_fn(output, y)\n \n optimiser.zero_grad()\n loss.backward()\n optimiser.step()\n \n if sanity_check:\n break\n \ndef validate(\n model,\n dataloader\n):\n model.eval()\n total_loss = 0\n predictions = []\n truths = []\n \n with torch.no_grad():\n for batch in tqdm(dataloader):\n x, y = batch[0], batch[1]\n \n output = model(x)\n output = nn.Softmax(dim=-1)(output)\n loss = loss_fn(output, y)\n total_loss += loss.detach().cpu().item()/len(dataloader)\n \n preds = torch.argmax(output, dim=-1)\n predictions.extend(preds.cpu())\n truths.extend(y.cpu())\n \n if sanity_check:\n break\n \n acc = accuracy_score(y_true=truths, y_pred=predictions)\n f1 = f1_score(y_true=truths, y_pred=predictions, average='macro')\n \n return total_loss, acc, f1","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:37.692844Z","iopub.execute_input":"2023-11-19T19:00:37.693103Z","iopub.status.idle":"2023-11-19T19:00:37.703320Z","shell.execute_reply.started":"2023-11-19T19:00:37.693081Z","shell.execute_reply":"2023-11-19T19:00:37.702576Z"},"trusted":true},"execution_count":14,"outputs":[]},{"cell_type":"code","source":"def train_model(\n model,\n train_dataloader,\n test_dataloader,\n optimiser,\n):\n for epoch in range(1, n_epochs+1):\n start_time = time.time()\n \n print(f\"========= EPOCH {epoch} STARTED =========\")\n train_epoch(model=model, dataloader=train_dataloader, optimiser=optimiser)\n \n print(f\"========= TRAIN EVALUATION STARTED =========\")\n train_val_op = validate(model=model, dataloader=train_dataloader)\n \n print(f\"========= TEST EVALUATION STARTED =========\")\n test_val_op = validate(model=model, dataloader=test_dataloader)\n \n print(f\"END OF {epoch} EPOCH\")\n print(f\"| Time taken: {time.time() - start_time: 7.3f} |\")\n print(f\"| Train Loss: {train_val_op[0]: 7.3f} | Train acc: {train_val_op[1]: 1.5f} | Train f1: {train_val_op[2]: 1.5f} |\")\n print(f\"| Test Loss: {test_val_op[0]: 7.3f} | Test acc: {test_val_op[1]: 1.5f} | Test f1: {test_val_op[2]: 1.5f} |\")\n \n if sanity_check:\n break\n ","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:37.704519Z","iopub.execute_input":"2023-11-19T19:00:37.705255Z","iopub.status.idle":"2023-11-19T19:00:37.718727Z","shell.execute_reply.started":"2023-11-19T19:00:37.705221Z","shell.execute_reply":"2023-11-19T19:00:37.717878Z"},"trusted":true},"execution_count":15,"outputs":[]},{"cell_type":"code","source":"sanity_check=False","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:37.719661Z","iopub.execute_input":"2023-11-19T19:00:37.719906Z","iopub.status.idle":"2023-11-19T19:00:37.732471Z","shell.execute_reply.started":"2023-11-19T19:00:37.719885Z","shell.execute_reply":"2023-11-19T19:00:37.731694Z"},"trusted":true},"execution_count":16,"outputs":[]},{"cell_type":"code","source":"train_model(\n model=model,\n train_dataloader=train_dataloader,\n test_dataloader=test_dataloader,\n optimiser=optimiser,\n)","metadata":{"execution":{"iopub.status.busy":"2023-11-19T19:00:37.733622Z","iopub.execute_input":"2023-11-19T19:00:37.734053Z","iopub.status.idle":"2023-11-19T20:38:39.869400Z","shell.execute_reply.started":"2023-11-19T19:00:37.734023Z","shell.execute_reply":"2023-11-19T20:38:39.868461Z"},"trusted":true},"execution_count":17,"outputs":[{"name":"stdout","text":"========= EPOCH 1 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:14<00:00, 1.14s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 1 EPOCH\n| Time taken: 296.573 |\n| Train Loss: 1.516 | Train acc: 0.95195 | Train f1: 0.95152 |\n| Test Loss: 1.521 | Test acc: 0.94840 | Test f1: 0.94781 |\n========= EPOCH 2 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 2 EPOCH\n| Time taken: 293.952 |\n| Train Loss: 1.496 | Train acc: 0.96782 | Train f1: 0.96759 |\n| Test Loss: 1.504 | Test acc: 0.96020 | Test f1: 0.95992 |\n========= EPOCH 3 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.09s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 3 EPOCH\n| Time taken: 293.738 |\n| Train Loss: 1.491 | Train acc: 0.97267 | Train f1: 0.97248 |\n| Test Loss: 1.500 | Test acc: 0.96310 | Test f1: 0.96277 |\n========= EPOCH 4 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 4 EPOCH\n| Time taken: 294.105 |\n| Train Loss: 1.485 | Train acc: 0.97827 | Train f1: 0.97815 |\n| Test Loss: 1.493 | Test acc: 0.96980 | Test f1: 0.96964 |\n========= EPOCH 5 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:13<00:00, 1.13s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 5 EPOCH\n| Time taken: 295.684 |\n| Train Loss: 1.481 | Train acc: 0.98113 | Train f1: 0.98102 |\n| Test Loss: 1.491 | Test acc: 0.97070 | Test f1: 0.97037 |\n========= EPOCH 6 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 6 EPOCH\n| Time taken: 294.187 |\n| Train Loss: 1.480 | Train acc: 0.98185 | Train f1: 0.98178 |\n| Test Loss: 1.490 | Test acc: 0.97230 | Test f1: 0.97208 |\n========= EPOCH 7 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 7 EPOCH\n| Time taken: 293.921 |\n| Train Loss: 1.479 | Train acc: 0.98340 | Train f1: 0.98332 |\n| Test Loss: 1.490 | Test acc: 0.97240 | Test f1: 0.97212 |\n========= EPOCH 8 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 8 EPOCH\n| Time taken: 294.584 |\n| Train Loss: 1.477 | Train acc: 0.98483 | Train f1: 0.98479 |\n| Test Loss: 1.489 | Test acc: 0.97300 | Test f1: 0.97278 |\n========= EPOCH 9 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 9 EPOCH\n| Time taken: 294.116 |\n| Train Loss: 1.475 | Train acc: 0.98635 | Train f1: 0.98629 |\n| Test Loss: 1.487 | Test acc: 0.97470 | Test f1: 0.97449 |\n========= EPOCH 10 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 10 EPOCH\n| Time taken: 294.842 |\n| Train Loss: 1.475 | Train acc: 0.98713 | Train f1: 0.98711 |\n| Test Loss: 1.487 | Test acc: 0.97460 | Test f1: 0.97441 |\n========= EPOCH 11 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 11 EPOCH\n| Time taken: 294.011 |\n| Train Loss: 1.473 | Train acc: 0.98828 | Train f1: 0.98822 |\n| Test Loss: 1.488 | Test acc: 0.97330 | Test f1: 0.97298 |\n========= EPOCH 12 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 12 EPOCH\n| Time taken: 293.517 |\n| Train Loss: 1.473 | Train acc: 0.98848 | Train f1: 0.98841 |\n| Test Loss: 1.487 | Test acc: 0.97420 | Test f1: 0.97402 |\n========= EPOCH 13 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 13 EPOCH\n| Time taken: 293.769 |\n| Train Loss: 1.472 | Train acc: 0.98993 | Train f1: 0.98989 |\n| Test Loss: 1.485 | Test acc: 0.97640 | Test f1: 0.97619 |\n========= EPOCH 14 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:14<00:00, 1.14s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 14 EPOCH\n| Time taken: 296.116 |\n| Train Loss: 1.471 | Train acc: 0.99057 | Train f1: 0.99052 |\n| Test Loss: 1.485 | Test acc: 0.97660 | Test f1: 0.97641 |\n========= EPOCH 15 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 15 EPOCH\n| Time taken: 293.383 |\n| Train Loss: 1.471 | Train acc: 0.99107 | Train f1: 0.99102 |\n| Test Loss: 1.487 | Test acc: 0.97420 | Test f1: 0.97396 |\n========= EPOCH 16 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 16 EPOCH\n| Time taken: 293.618 |\n| Train Loss: 1.470 | Train acc: 0.99125 | Train f1: 0.99122 |\n| Test Loss: 1.485 | Test acc: 0.97630 | Test f1: 0.97606 |\n========= EPOCH 17 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.09s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 17 EPOCH\n| Time taken: 292.984 |\n| Train Loss: 1.470 | Train acc: 0.99178 | Train f1: 0.99175 |\n| Test Loss: 1.484 | Test acc: 0.97800 | Test f1: 0.97778 |\n========= EPOCH 18 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 18 EPOCH\n| Time taken: 293.467 |\n| Train Loss: 1.470 | Train acc: 0.99203 | Train f1: 0.99202 |\n| Test Loss: 1.484 | Test acc: 0.97740 | Test f1: 0.97726 |\n========= EPOCH 19 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:10<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:12<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:22<00:00, 1.10s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 19 EPOCH\n| Time taken: 292.649 |\n| Train Loss: 1.469 | Train acc: 0.99212 | Train f1: 0.99208 |\n| Test Loss: 1.485 | Test acc: 0.97700 | Test f1: 0.97678 |\n========= EPOCH 20 STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/118 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 118/118 [02:11<00:00, 1.11s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TRAIN EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":"100%|██████████| 118/118 [02:11<00:00, 1.12s/it]\n","output_type":"stream"},{"name":"stdout","text":"========= TEST EVALUATION STARTED =========\n","output_type":"stream"},{"name":"stderr","text":" 0%| | 0/20 [00:00, ?it/s]/tmp/ipykernel_47/2879017467.py:12: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n return torch.tensor(self.data.iloc[index, 1:], dtype=torch.float32).to(device), torch.tensor(self.data.iloc[index, 0]).to(device)\n100%|██████████| 20/20 [00:21<00:00, 1.09s/it]\n","output_type":"stream"},{"name":"stdout","text":"END OF 20 EPOCH\n| Time taken: 292.908 |\n| Train Loss: 1.469 | Train acc: 0.99247 | Train f1: 0.99247 |\n| Test Loss: 1.484 | Test acc: 0.97730 | Test f1: 0.97716 |\n","output_type":"stream"}]}]}
--------------------------------------------------------------------------------