├── AssociationAnalysis
├── AssociationDiscovery.pdf
├── AssociationDiscovery.xml
└── README.md
├── Clustering
├── ClusterNodeExplore.pdf
├── ClusterNodeExplore.xml
├── ClusterNodePredict.pdf
├── ClusterNodePredict.xml
└── README.md
├── ContributorAgreement.txt
├── CreditScoring
├── README.md
├── Reject Inference.pdf
├── RejectInference.xml
├── ReverseScorecard.pdf
└── ReverseScorecard.xml
├── EnsembleModeling
├── EnsembleFullFlow.xml
├── EnsembleModeling.pdf
├── EnsembleSubflow.xml
└── README.md
├── LICENSE.txt
├── MARS
├── MARS.xml
├── MARS_16.gif
├── MARS_32.gif
├── README.md
├── README.pdf
└── emextn.sas7bcat
├── PredictiveModeling
├── HPPredictiveModeling.pdf
├── HPPredictiveModeling.xml
├── HPPredictiveModelingTip.pdf
├── HPPredictiveModelingTip.xml
├── PredictiveModeling.pdf
├── PredictiveModeling.xml
└── README.md
├── README.md
├── README_imgs
├── AssociationDiscovery.png
├── ClusterNodeExplore.png
├── ClusterNodePredict.png
├── EnsemblePMSubflow.PNG
├── EnsembleSubflow.PNG
├── HPPredictiveModeling.png
├── HPPredictiveModelingTip.png
├── PredictiveModeling.png
├── RejectInference.png
├── ReverseScorecard.png
├── Survival.png
├── SurvivalTVC.png
├── TextMiningClassify.png
├── TextMiningExplore.png
└── TimeSeriesExplore.png
├── SUPPORT.md
├── SurvivalAnalysis
├── README.md
├── Survival.pdf
├── Survival.xml
├── SurvivalTVC.pdf
└── SurvivalTVC.xml
├── TextMining
├── README.md
├── TextMiningClassify.xml
├── TextMiningExplore.xml
├── TextMining_Classify.pdf
└── TextMining_Explore.pdf
└── TimeSeries
├── README.md
├── TimeSeriesExplore.pdf
└── TimeSeriesExplore.xml
/AssociationAnalysis/AssociationDiscovery.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/AssociationAnalysis/AssociationDiscovery.pdf
--------------------------------------------------------------------------------
/AssociationAnalysis/AssociationDiscovery.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
158 |
159 |
160 |
161 |
162 |
--------------------------------------------------------------------------------
/AssociationAnalysis/README.md:
--------------------------------------------------------------------------------
1 | ## Association Analysis
2 |
3 | ##### Example 1: Association Discovery Using SAS® Enterprise Miner™
4 |
5 | 
6 |
7 | ###### Goal:
8 | The goal is to identify the association between different actions by creating rules. These
9 | rules will then be used to make recommendations (to predict future actions) for each customer.
10 |
11 | ###### Files:
12 | AssociationDiscovery.xml, AssociationDiscovery.pdf
13 |
14 | ***
15 |
16 | License:
17 |
--------------------------------------------------------------------------------
/Clustering/ClusterNodeExplore.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/Clustering/ClusterNodeExplore.pdf
--------------------------------------------------------------------------------
/Clustering/ClusterNodeExplore.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
102 |
103 |
104 |
105 |
106 |
--------------------------------------------------------------------------------
/Clustering/ClusterNodePredict.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/Clustering/ClusterNodePredict.pdf
--------------------------------------------------------------------------------
/Clustering/ClusterNodePredict.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
153 |
154 |
155 |
156 |
157 |
--------------------------------------------------------------------------------
/Clustering/README.md:
--------------------------------------------------------------------------------
1 | ## Clustering
2 |
3 | ##### Example 1: Using the Cluster and Segment Profile Nodes in SAS® Enterprise Miner™
4 |
5 | 
6 |
7 | ###### Goal:
8 | The goal is to use the Cluster node and the Segment Profile node to explore the data.
9 |
10 | ###### Files:
11 | ClusterNodeExplore.xml, ClusterNodeExplore.pdf
12 |
13 | ***
14 |
15 | ##### Example 2: Using the Cluster Node in a Predictive Model in SAS® Enterprise Miner™
16 |
17 | 
18 |
19 | ###### Goal:
20 | The goal is to use the Cluster node to create segments that are used as input to a
21 | predictive model and to compare this model with a similar model that does not have this input.
22 |
23 | ###### Files:
24 | ClusterNodePredict.xml, ClusterNodePredict.pdf
25 |
26 | ***
27 |
28 | License:
29 |
--------------------------------------------------------------------------------
/ContributorAgreement.txt:
--------------------------------------------------------------------------------
1 | Contributor Agreement
2 |
3 | Version 1.1
4 |
5 | Contributions to this software are accepted only when they are
6 | properly accompanied by a Contributor Agreement. The Contributor
7 | Agreement for this software is the Developer's Certificate of Origin
8 | 1.1 (DCO) as provided with and required for accepting contributions
9 | to the Linux kernel.
10 |
11 | In each contribution proposed to be included in this software, the
12 | developer must include a "sign-off" that denotes consent to the
13 | terms of the Developer's Certificate of Origin. The sign-off is
14 | a line of text in the description that accompanies the change,
15 | certifying that you have the right to provide the contribution
16 | to be included. For changes provided in source code control (for
17 | example, via a Git pull request) the sign-off must be included in
18 | the commit message in source code control. For changes provided
19 | in email or issue tracking, the sign-off must be included in the
20 | email or the issue, and the sign-off will be incorporated into the
21 | permanent commit message if the contribution is accepted into the
22 | official source code.
23 |
24 | If you can certify the below:
25 |
26 | Developer's Certificate of Origin 1.1
27 |
28 | By making a contribution to this project, I certify that:
29 |
30 | (a) The contribution was created in whole or in part by me and I
31 | have the right to submit it under the open source license
32 | indicated in the file; or
33 |
34 | (b) The contribution is based upon previous work that, to the best
35 | of my knowledge, is covered under an appropriate open source
36 | license and I have the right under that license to submit that
37 | work with modifications, whether created in whole or in part
38 | by me, under the same open source license (unless I am
39 | permitted to submit under a different license), as indicated
40 | in the file; or
41 |
42 | (c) The contribution was provided directly to me by some other
43 | person who certified (a), (b) or (c) and I have not modified
44 | it.
45 |
46 | (d) I understand and agree that this project and the contribution
47 | are public and that a record of the contribution (including all
48 | personal information I submit with it, including my sign-off) is
49 | maintained indefinitely and may be redistributed consistent with
50 | this project or the open source license(s) involved.
51 |
52 | then you just add a line saying
53 |
54 | Signed-off-by: Random J Developer
55 |
56 | using your real name (sorry, no pseudonyms or anonymous contributions.)
--------------------------------------------------------------------------------
/CreditScoring/README.md:
--------------------------------------------------------------------------------
1 | ## Credit Scoring
2 |
3 | ##### Example 1: Scorecard and Reverse Scorecard Using Credit Scoring for SAS® Enterprise Miner™
4 |
5 | 
6 |
7 | ###### Goal:
8 | Scorecards are the standard model for credit scoring because they are easy to interpret and their output can be easily used to
9 | score new applications. This flow diagram shows the basic steps to build a scorecard and a reverse scorecard. In the output of a
10 | scorecard, the higher the score, the less likely a client is to default. On a reverse scorecard, the higher the score,
11 | the more likely a client is to default.
12 |
13 | ###### Files:
14 | ReverseScorecard.xml, ReverseScorecard.pdf
15 |
16 | ***
17 |
18 | ##### Example 2: Reject Inference Using Credit Scoring for SAS® Enterprise Miner™
19 |
20 | 
21 |
22 | ###### Goal:
23 | A scorecard that is developed using only the accepted applicants may incur sample bias. The goal of a reject inference
24 | diagram flow is to solve the bias by calibrating the scorecard in context with a population that includes both accepted and
25 | rejected observations. This population is usually known as the through-the-door population.
26 |
27 | ###### Files:
28 | RejectInference.xml, RejectInference.pdf
29 |
30 | ***
31 |
32 | License:
--------------------------------------------------------------------------------
/CreditScoring/Reject Inference.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/CreditScoring/Reject Inference.pdf
--------------------------------------------------------------------------------
/CreditScoring/ReverseScorecard.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/CreditScoring/ReverseScorecard.pdf
--------------------------------------------------------------------------------
/EnsembleModeling/EnsembleModeling.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/EnsembleModeling/EnsembleModeling.pdf
--------------------------------------------------------------------------------
/EnsembleModeling/README.md:
--------------------------------------------------------------------------------
1 | ## Ensemble Modeling
2 | Please see the SAS Global Forum 16 paper [Ensemble Modeling: Recent Advances and Applications](http://support.sas.com/resources/papers/proceedings16/SAS3120-2016.pdf) by Wendy Czika, Miguel Maldonado, and Ye Liu for details on the flows provided here that implement ensemble methods that take model performance into account.
3 |
4 | ***
5 |
6 | ##### Example 1: Full Flow for Ensemble Modeling Using SAS® Enterprise Miner™
7 |
8 | ")
9 |
10 |
11 | ###### Goal:
12 | The goal is to run an entire flow to perform predictive modeling and apply the ensemble methods from the SAS Global Forum paper. The full flow consists of the predictive modeling portion of the flow shown here (the "Common Practices" flow from the SAS Global Forum paper) connected to the ensemble subflow shown below in Example 2.
13 |
14 | ###### File: EnsembleFullFlow.xml
15 |
16 | ***
17 |
18 | ##### Example 2: Ensemble Subflow for Ensemble Modeling Using SAS® Enterprise Miner™
19 |
20 | 
21 |
22 | ###### Goal:
23 | The goal is to apply ensemble methods from the SAS Global Forum paper to an existing predictive modeling flow. After importing the XML, you can copy this subflow into the diagram with your predictive modeling flow and connect them together by attaching your model nodes to the leftmost Control Point node in this subflow.
24 |
25 |
26 | ###### File: EnsembleSubflow.xml
27 |
28 | ***
29 |
30 |
31 |
32 |
33 |
34 | License:
35 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 |
2 | Apache License
3 | Version 2.0, January 2004
4 | http://www.apache.org/licenses/
5 |
6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7 |
8 | 1. Definitions.
9 |
10 | "License" shall mean the terms and conditions for use, reproduction,
11 | and distribution as defined by Sections 1 through 9 of this document.
12 |
13 | "Licensor" shall mean the copyright owner or entity authorized by
14 | the copyright owner that is granting the License.
15 |
16 | "Legal Entity" shall mean the union of the acting entity and all
17 | other entities that control, are controlled by, or are under common
18 | control with that entity. For the purposes of this definition,
19 | "control" means (i) the power, direct or indirect, to cause the
20 | direction or management of such entity, whether by contract or
21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
22 | outstanding shares, or (iii) beneficial ownership of such entity.
23 |
24 | "You" (or "Your") shall mean an individual or Legal Entity
25 | exercising permissions granted by this License.
26 |
27 | "Source" form shall mean the preferred form for making modifications,
28 | including but not limited to software source code, documentation
29 | source, and configuration files.
30 |
31 | "Object" form shall mean any form resulting from mechanical
32 | transformation or translation of a Source form, including but
33 | not limited to compiled object code, generated documentation,
34 | and conversions to other media types.
35 |
36 | "Work" shall mean the work of authorship, whether in Source or
37 | Object form, made available under the License, as indicated by a
38 | copyright notice that is included in or attached to the work
39 | (an example is provided in the Appendix below).
40 |
41 | "Derivative Works" shall mean any work, whether in Source or Object
42 | form, that is based on (or derived from) the Work and for which the
43 | editorial revisions, annotations, elaborations, or other modifications
44 | represent, as a whole, an original work of authorship. For the purposes
45 | of this License, Derivative Works shall not include works that remain
46 | separable from, or merely link (or bind by name) to the interfaces of,
47 | the Work and Derivative Works thereof.
48 |
49 | "Contribution" shall mean any work of authorship, including
50 | the original version of the Work and any modifications or additions
51 | to that Work or Derivative Works thereof, that is intentionally
52 | submitted to Licensor for inclusion in the Work by the copyright owner
53 | or by an individual or Legal Entity authorized to submit on behalf of
54 | the copyright owner. For the purposes of this definition, "submitted"
55 | means any form of electronic, verbal, or written communication sent
56 | to the Licensor or its representatives, including but not limited to
57 | communication on electronic mailing lists, source code control systems,
58 | and issue tracking systems that are managed by, or on behalf of, the
59 | Licensor for the purpose of discussing and improving the Work, but
60 | excluding communication that is conspicuously marked or otherwise
61 | designated in writing by the copyright owner as "Not a Contribution."
62 |
63 | "Contributor" shall mean Licensor and any individual or Legal Entity
64 | on behalf of whom a Contribution has been received by Licensor and
65 | subsequently incorporated within the Work.
66 |
67 | 2. Grant of Copyright License. Subject to the terms and conditions of
68 | this License, each Contributor hereby grants to You a perpetual,
69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70 | copyright license to reproduce, prepare Derivative Works of,
71 | publicly display, publicly perform, sublicense, and distribute the
72 | Work and such Derivative Works in Source or Object form.
73 |
74 | 3. Grant of Patent License. Subject to the terms and conditions of
75 | this License, each Contributor hereby grants to You a perpetual,
76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77 | (except as stated in this section) patent license to make, have made,
78 | use, offer to sell, sell, import, and otherwise transfer the Work,
79 | where such license applies only to those patent claims licensable
80 | by such Contributor that are necessarily infringed by their
81 | Contribution(s) alone or by combination of their Contribution(s)
82 | with the Work to which such Contribution(s) was submitted. If You
83 | institute patent litigation against any entity (including a
84 | cross-claim or counterclaim in a lawsuit) alleging that the Work
85 | or a Contribution incorporated within the Work constitutes direct
86 | or contributory patent infringement, then any patent licenses
87 | granted to You under this License for that Work shall terminate
88 | as of the date such litigation is filed.
89 |
90 | 4. Redistribution. You may reproduce and distribute copies of the
91 | Work or Derivative Works thereof in any medium, with or without
92 | modifications, and in Source or Object form, provided that You
93 | meet the following conditions:
94 |
95 | (a) You must give any other recipients of the Work or
96 | Derivative Works a copy of this License; and
97 |
98 | (b) You must cause any modified files to carry prominent notices
99 | stating that You changed the files; and
100 |
101 | (c) You must retain, in the Source form of any Derivative Works
102 | that You distribute, all copyright, patent, trademark, and
103 | attribution notices from the Source form of the Work,
104 | excluding those notices that do not pertain to any part of
105 | the Derivative Works; and
106 |
107 | (d) If the Work includes a "NOTICE" text file as part of its
108 | distribution, then any Derivative Works that You distribute must
109 | include a readable copy of the attribution notices contained
110 | within such NOTICE file, excluding those notices that do not
111 | pertain to any part of the Derivative Works, in at least one
112 | of the following places: within a NOTICE text file distributed
113 | as part of the Derivative Works; within the Source form or
114 | documentation, if provided along with the Derivative Works; or,
115 | within a display generated by the Derivative Works, if and
116 | wherever such third-party notices normally appear. The contents
117 | of the NOTICE file are for informational purposes only and
118 | do not modify the License. You may add Your own attribution
119 | notices within Derivative Works that You distribute, alongside
120 | or as an addendum to the NOTICE text from the Work, provided
121 | that such additional attribution notices cannot be construed
122 | as modifying the License.
123 |
124 | You may add Your own copyright statement to Your modifications and
125 | may provide additional or different license terms and conditions
126 | for use, reproduction, or distribution of Your modifications, or
127 | for any such Derivative Works as a whole, provided Your use,
128 | reproduction, and distribution of the Work otherwise complies with
129 | the conditions stated in this License.
130 |
131 | 5. Submission of Contributions. Unless You explicitly state otherwise,
132 | any Contribution intentionally submitted for inclusion in the Work
133 | by You to the Licensor shall be under the terms and conditions of
134 | this License, without any additional terms or conditions.
135 | Notwithstanding the above, nothing herein shall supersede or modify
136 | the terms of any separate license agreement you may have executed
137 | with Licensor regarding such Contributions.
138 |
139 | 6. Trademarks. This License does not grant permission to use the trade
140 | names, trademarks, service marks, or product names of the Licensor,
141 | except as required for reasonable and customary use in describing the
142 | origin of the Work and reproducing the content of the NOTICE file.
143 |
144 | 7. Disclaimer of Warranty. Unless required by applicable law or
145 | agreed to in writing, Licensor provides the Work (and each
146 | Contributor provides its Contributions) on an "AS IS" BASIS,
147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148 | implied, including, without limitation, any warranties or conditions
149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150 | PARTICULAR PURPOSE. You are solely responsible for determining the
151 | appropriateness of using or redistributing the Work and assume any
152 | risks associated with Your exercise of permissions under this License.
153 |
154 | 8. Limitation of Liability. In no event and under no legal theory,
155 | whether in tort (including negligence), contract, or otherwise,
156 | unless required by applicable law (such as deliberate and grossly
157 | negligent acts) or agreed to in writing, shall any Contributor be
158 | liable to You for damages, including any direct, indirect, special,
159 | incidental, or consequential damages of any character arising as a
160 | result of this License or out of the use or inability to use the
161 | Work (including but not limited to damages for loss of goodwill,
162 | work stoppage, computer failure or malfunction, or any and all
163 | other commercial damages or losses), even if such Contributor
164 | has been advised of the possibility of such damages.
165 |
166 | 9. Accepting Warranty or Additional Liability. While redistributing
167 | the Work or Derivative Works thereof, You may choose to offer,
168 | and charge a fee for, acceptance of support, warranty, indemnity,
169 | or other liability obligations and/or rights consistent with this
170 | License. However, in accepting such obligations, You may act only
171 | on Your own behalf and on Your sole responsibility, not on behalf
172 | of any other Contributor, and only if You agree to indemnify,
173 | defend, and hold each Contributor harmless for any liability
174 | incurred by, or claims asserted against, such Contributor by reason
175 | of your accepting any such warranty or additional liability.
176 |
177 | END OF TERMS AND CONDITIONS
178 |
179 | APPENDIX: How to apply the Apache License to your work.
180 |
181 | To apply the Apache License to your work, attach the following
182 | boilerplate notice, with the fields enclosed by brackets "[]"
183 | replaced with your own identifying information. (Don't include
184 | the brackets!) The text should be enclosed in the appropriate
185 | comment syntax for the file format. We also recommend that a
186 | file or class name and description of purpose be included on the
187 | same "printed page" as the copyright notice for easier
188 | identification within third-party archives.
189 |
190 | Copyright [yyyy] [name of copyright owner]
191 |
192 | Licensed under the Apache License, Version 2.0 (the "License");
193 | you may not use this file except in compliance with the License.
194 | You may obtain a copy of the License at
195 |
196 | http://www.apache.org/licenses/LICENSE-2.0
197 |
198 | Unless required by applicable law or agreed to in writing, software
199 | distributed under the License is distributed on an "AS IS" BASIS,
200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201 | See the License for the specific language governing permissions and
202 | limitations under the License.
203 |
--------------------------------------------------------------------------------
/MARS/MARS.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
13 |
14 |
15 |
16 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
33 |
34 |
37 |
38 |
39 |
40 |
41 |
42 |
45 |
46 |
47 |
48 |
58 |
59 |
60 |
63 |
64 |
65 |
66 |
76 |
77 |
78 |
79 |
82 |
83 |
84 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
99 |
100 |
101 |
102 |
103 |
104 |
107 |
108 |
109 |
110 |
111 |
114 |
115 |
116 |
117 |
118 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
241 |
242 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
275 |
276 |
277 |
278 |
279 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
--------------------------------------------------------------------------------
/MARS/MARS_16.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/MARS/MARS_16.gif
--------------------------------------------------------------------------------
/MARS/MARS_32.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/MARS/MARS_32.gif
--------------------------------------------------------------------------------
/MARS/README.md:
--------------------------------------------------------------------------------
1 | Multivariate Adaptive Regression Splines (Friedman, 1991) is a nonparametric technique that combines regression splines and model selection methods. It is a powerful predictive modeling tool because 1) it extends linear models to analyze nonlinear dependencies 2) it produces parsimonious models that do not overfit the data and thus have good predictive power. Multivariate adaptive regression splines construct spline basis functions in an adaptive way by automatically selecting appropriate knot values for different variables. This can help E-miners to identify linear and nonlinear variables, and the interactions of them as well. When excluding higher order terms, multivariate adaptive regression splines are really good at identifying the effects of single variables in a multivariate setting. This makes it highly usable in process control and for identifying experimental designs. Multivariate adaptive regression splines also has its application in forecasting as a variable screening tool.
2 |
3 | It has always been a desirable tool for our E-miners and now you have multivariate adaptive regression splines as an extension node in Enterprise Miner by just following a few simple steps.
4 |
5 | 1. Download all the files from this Github repository, including a XML file (MARS.xml) defining the node properties, a SAS catalog (emextn.sas7bcat), and two GIF files (MARS_16.gif and MARS_32.gif) for the node icon.
6 |
7 | 2. To deploy the extension node, you need to follow the steps as instructed in Chapter 5 “Deploying an Extension Node” in [“SAS® Enterprise Miner™ 14.1 Extension Nodes: Developer’s Guide”](http://support.sas.com/documentation/cdl/en/emxndg/67980/PDF/default/emxndg.pdf).
8 |
9 | 3. After storing the files in the proper directories, restart the Enterprise Miner server if necessary.
10 |
11 | 4. The MARS extension node runs with SAS Enterprise Miner 13.1 or any later version.
12 |
13 | Please see this [SAS Data Mining and Machine Learning Community tip](https://communities.sas.com/t5/SAS-Communities-Library/Tip-Fit-Multivariate-Adaptive-Regression-Splines-in-SAS/ta-p/328133) for more details.
14 |
15 |
--------------------------------------------------------------------------------
/MARS/README.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/MARS/README.pdf
--------------------------------------------------------------------------------
/MARS/emextn.sas7bcat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/MARS/emextn.sas7bcat
--------------------------------------------------------------------------------
/PredictiveModeling/HPPredictiveModeling.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/PredictiveModeling/HPPredictiveModeling.pdf
--------------------------------------------------------------------------------
/PredictiveModeling/HPPredictiveModeling.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
250 |
251 |
252 |
253 |
254 |
--------------------------------------------------------------------------------
/PredictiveModeling/HPPredictiveModelingTip.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/PredictiveModeling/HPPredictiveModelingTip.pdf
--------------------------------------------------------------------------------
/PredictiveModeling/HPPredictiveModelingTip.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="14.1" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
290 |
291 |
292 |
293 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
360 |
361 |
362 |
363 |
364 |
--------------------------------------------------------------------------------
/PredictiveModeling/PredictiveModeling.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/PredictiveModeling/PredictiveModeling.pdf
--------------------------------------------------------------------------------
/PredictiveModeling/PredictiveModeling.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
232 |
233 |
234 |
235 |
236 |
--------------------------------------------------------------------------------
/PredictiveModeling/README.md:
--------------------------------------------------------------------------------
1 | ## Predictive Modeling
2 |
3 | ##### Example 1: Predictive Modeling in SAS® Enterprise Miner™
4 |
5 | 
6 |
7 | ###### Goal:
8 | The goal is to create a model to predict which home loans will be bad loans (that is, will be defaulted on).
9 |
10 | ###### Files:
11 | PredictiveModeling.xml, PredictiveModeling.pdf
12 |
13 | ***
14 |
15 | ##### Example 2: High-Performance Predictive Modeling Using SAS® Enterprise Miner™
16 |
17 | 
18 |
19 | ###### Goal:
20 | The goal is to create a model for a binary target that predicts which home loans are likely to be defaulted. This flow
21 | uses high-performance nodes in SAS Enterprise Miner. If you set up a grid environment, the high-performance nodes run in a
22 | distributed computing environment, enabling you to use a large number of observations and variables to train and assess a
23 | predictive in a shorter period of time. These high-performance nodes are built on multithreaded procedures, so you might see
24 | performance gain even when you run these nodes on single-machine mode.
25 |
26 | ###### Files:
27 | HPPredictiveModeling.xml, HPPredictiveModeling.pdf
28 |
29 | ***
30 |
31 | ##### Example 3: SAS® High-Performance Analytics tip #3: Example flow diagram in SAS® Enterprise Miner™
32 |
33 | 
34 |
35 | ###### Goal:
36 | Read about this example on SAS communities site at:
37 |
38 | ###### Files:
39 | HPPredictiveModelingTip.xml, HPPredictiveModelingTip.pdf
40 |
41 | ***
42 |
43 | License:
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # SAS Enterprise Miner Data Mining Examples
2 |
3 | **Archived project: This project is no longer under active development and was archived on 2024-07-22.**
4 |
5 | ## Overview
6 | This repository contains example diagrams and materials for using SAS Enterprise Miner to perform data mining.
7 |
8 | The repository includes XML files (which represent SAS Enterprise Miner process flow diagrams) for association analysis,
9 | clustering, credit scoring, ensemble modeling, predictive modeling, survival analysis, text mining, time series, and accompanying PDF files to help guide you through the process flow diagrams.
10 |
11 | - [/AssociationAnalysis](https://github.com/sassoftware/dm-flow/tree/master/AssociationAnalysis) contains XML and PDF files about running an example for Association Analysis.
12 | - [/Clustering](https://github.com/sassoftware/dm-flow/tree/master/Clustering) contains XML and PDF files about running an example for Clustering.
13 | - [/CreditScoring](https://github.com/sassoftware/dm-flow/tree/master/CreditScoring) contains XML and PDF files about running an example for Credit Scoring.
14 | - [/EnsembleModeling](https://github.com/sassoftware/dm-flow/tree/master/EnsembleModeling) contains XML and PDF files about running an example for Ensemble Modeling.
15 | - [/MARS](https://github.com/sassoftware/dm-flow/tree/master/MARS) contains XML and PDF files about running an example for Multivariate Adaptive Regression Splines (MARS).
16 | - [/PredictiveModeling](https://github.com/sassoftware/dm-flow/tree/master/PredictiveModeling) contains XML and PDF files about running an example for Predictive Modeling.
17 | - [/SurvivalAnalysis](https://github.com/sassoftware/dm-flow/tree/master/SurvivalAnalysis) contains XML and PDF files about running an example for Survival Analysis.
18 | - [/TextMining](https://github.com/sassoftware/dm-flow/tree/master/TextMining) contains XML and PDF files about running an example for Text Mining.
19 | - [/TimeSeries](https://github.com/sassoftware/dm-flow/tree/master/TimeSeries) contains XML and PDF files about running an example for Time Series.
20 |
21 | # Prerequisites
22 | ## System Requirements
23 | These examples were tested in the following environment:
24 | - Windows Server 2008 R2 Enterprise
25 | - Dual Intel Xeon E5-2667 @ 2.9 GHz 128 GB RAM
26 | - SAS 9.4 (TS1M2)
27 | - SAS Enterprise Miner 13.2
28 |
29 |
30 |
31 | # Getting Started
32 | Download (and unzip) or clone this repository. The repository contains one directory for each data mining topic
33 | (clustering, survival analysis, and so on). Each directory contains one or more example XML files (diagrams)
34 | and associated PDF documentation.
35 |
36 | To run these examples:
37 |
38 | 1. Create a new Project or open an existing project in SAS Enterprise Miner.
39 |
40 | 2. Right-click on the Diagrams folder in the top left corner, and select "Import Diagram from XML." Select the
41 | XML file from one of the directories, and open the corresponding PDF document to learn about the technique
42 | implemented in the example.
43 |
44 | NOTE: You can import multiple XML files into the same SAS Enterprise Miner project or you can choose to
45 | create a separate project for every topic.
46 |
47 | 3. Right-click on the last node and select "Run" to run the process flow diagram.
48 |
49 |
50 | # Contributors
51 |
52 | Ralph Abbey, Wendy Czika, Funda Gunes, Susan Haller, Miguel Maldonado and Radhikha Myneni
53 |
54 | # Contributing
55 | The [Contributor Agreement](https://github.com/sassoftware/dm-flow/blob/master/ContributorAgreement.txt) details on how to make contributions on this project.
56 |
57 | # License
58 | Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at [LICENSE.txt](https://github.com/sassoftware/dm-flow/blob/master/LICENSE.txt)
59 |
60 | Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
61 |
62 |
63 |
64 | Copyright SAS Institute.
65 |
--------------------------------------------------------------------------------
/README_imgs/AssociationDiscovery.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/AssociationDiscovery.png
--------------------------------------------------------------------------------
/README_imgs/ClusterNodeExplore.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/ClusterNodeExplore.png
--------------------------------------------------------------------------------
/README_imgs/ClusterNodePredict.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/ClusterNodePredict.png
--------------------------------------------------------------------------------
/README_imgs/EnsemblePMSubflow.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/EnsemblePMSubflow.PNG
--------------------------------------------------------------------------------
/README_imgs/EnsembleSubflow.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/EnsembleSubflow.PNG
--------------------------------------------------------------------------------
/README_imgs/HPPredictiveModeling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/HPPredictiveModeling.png
--------------------------------------------------------------------------------
/README_imgs/HPPredictiveModelingTip.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/HPPredictiveModelingTip.png
--------------------------------------------------------------------------------
/README_imgs/PredictiveModeling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/PredictiveModeling.png
--------------------------------------------------------------------------------
/README_imgs/RejectInference.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/RejectInference.png
--------------------------------------------------------------------------------
/README_imgs/ReverseScorecard.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/ReverseScorecard.png
--------------------------------------------------------------------------------
/README_imgs/Survival.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/Survival.png
--------------------------------------------------------------------------------
/README_imgs/SurvivalTVC.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/SurvivalTVC.png
--------------------------------------------------------------------------------
/README_imgs/TextMiningClassify.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/TextMiningClassify.png
--------------------------------------------------------------------------------
/README_imgs/TextMiningExplore.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/TextMiningExplore.png
--------------------------------------------------------------------------------
/README_imgs/TimeSeriesExplore.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/README_imgs/TimeSeriesExplore.png
--------------------------------------------------------------------------------
/SUPPORT.md:
--------------------------------------------------------------------------------
1 | ## Support
2 |
3 | We use GitHub for tracking bugs and feature requests. Please submit a GitHub issue or pull request for support.
--------------------------------------------------------------------------------
/SurvivalAnalysis/README.md:
--------------------------------------------------------------------------------
1 | ## Survival Analysis
2 |
3 | ##### Example 1: Survival Analysis Using SAS® Enterprise Miner™
4 |
5 | 
6 |
7 | ###### Goal:
8 | The goal is to estimate when customers will cancel their subscription (churn). Estimating when customers will cancel
9 | subscriptions (as opposed to predicting which customers will cancel or whether they will cancel) enables you to view
10 | trends in time about churn and make decisions accordingly. Survival analysis can also be used to model other types of
11 | events or failures (for example, when objects will break or become unusable). This process flow diagram examines the
12 | use of the Survival node without the use of time-varying covariates.
13 |
14 | ###### Files:
15 | Survival.xml, Survival.pdf
16 |
17 | ***
18 |
19 | ##### Example 2: Survival Analysis with Time-Varying Covariates Using SAS® Enterprise Miner™
20 |
21 | 
22 |
23 | ###### Goal:
24 | The goal is to determine when a customer is most likely to upgrade. Estimating when customers upgrade (as
25 | opposed to whether they upgrade) enables you to view upgrade trends in time and make decisions accordingly. This example
26 | examines the use of the Survival node with time-varying covariates incorporated to potentially improve the model.
27 |
28 | ###### Files:
29 | SurvivalTVC.xml, SurvivalTVC.pdf
30 |
31 | ***
32 |
33 | License:
--------------------------------------------------------------------------------
/SurvivalAnalysis/Survival.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/SurvivalAnalysis/Survival.pdf
--------------------------------------------------------------------------------
/SurvivalAnalysis/Survival.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 |
556 |
557 |
558 |
559 |
560 |
561 |
562 |
563 |
564 |
565 |
566 |
567 |
568 |
569 |
570 |
571 |
572 |
573 |
578 |
579 |
580 |
581 |
582 |
--------------------------------------------------------------------------------
/SurvivalAnalysis/SurvivalTVC.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/SurvivalAnalysis/SurvivalTVC.pdf
--------------------------------------------------------------------------------
/SurvivalAnalysis/SurvivalTVC.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
273 |
274 |
275 |
276 |
277 |
--------------------------------------------------------------------------------
/TextMining/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/TextMining/README.md
--------------------------------------------------------------------------------
/TextMining/TextMining_Classify.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/TextMining/TextMining_Classify.pdf
--------------------------------------------------------------------------------
/TextMining/TextMining_Explore.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/TextMining/TextMining_Explore.pdf
--------------------------------------------------------------------------------
/TimeSeries/README.md:
--------------------------------------------------------------------------------
1 | ## Time Series
2 |
3 | ##### Example 1: Time Series Exploration and Comparison Using SAS® Enterprise Miner™
4 |
5 | 
6 |
7 | ###### Goal:
8 | The goal is to explore a time series data set and organize it into a format for further analysis that compares
9 | different time series in the data.
10 |
11 | ###### Files:
12 | TimeSeriesExplore.xml, TimeSeriesExplore.pdf
13 |
14 | ***
15 |
16 | License:
--------------------------------------------------------------------------------
/TimeSeries/TimeSeriesExplore.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sassoftware/dm-flow/2f4c346103bbadc91e52d2b64e91fed83ae4375d/TimeSeries/TimeSeriesExplore.pdf
--------------------------------------------------------------------------------
/TimeSeries/TimeSeriesExplore.xml:
--------------------------------------------------------------------------------
1 | <_ROOT_ EMVERSION="13.2" ORIENTATION="HORIZONTAL">
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
68 |
69 |
70 |
71 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
223 |
224 |
225 |
226 |
227 |
--------------------------------------------------------------------------------