├── README.md
├── LICENSE
├── Data_Prep_Transformers.ipynb
└── Data_Preparation_UCF101.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Action-Recognition-in-TensorFlow
2 | Contains additional materials for the following keras.io blog posts:
3 |
4 | * [Video Classification with a CNN-RNN Architecture](https://keras.io/examples/vision/video_classification/)
5 | * [Video Classification with Transformers](https://keras.io/examples/vision/video_transformers/)
6 |
7 | ## Notebooks
8 | * `Data_Preparation_UCF101.ipynb`: Performs the initial data preparation steps on the [UCF101 dataset](https://www.crcv.ucf.edu/data/UCF101.php).
9 | * `Data_Prep_Transformers.ipynb` Performs additional data preparation steps for Transformers.
10 | * `Video_Classification.ipynb`: Original notebook submitted for the [PR](https://github.com/keras-team/keras-io/pull/478).
11 | * `Video_Classification_w_Transformers`: Original notebook submitted for the [PR](https://github.com/keras-team/keras-io/pull/488).
12 |
13 |
14 | ## Acknowledgements
15 | * François Chollet for providing guidance during the development.
16 | * [ML-GDE](https://developers.google.com/programs/experts/) program for providing GCP credits that helped me run the initial experiments.
17 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/Data_Prep_Transformers.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "video_classification.ipynb",
7 | "provenance": [],
8 | "collapsed_sections": [],
9 | "machine_shape": "hm",
10 | "mount_file_id": "https://github.com/sayakpaul/Action-Recognition-in-TensorFlow/blob/main/Data_Prep_Transformers.ipynb",
11 | "authorship_tag": "ABX9TyN4fGabFizrFuLWxGwDHWKO",
12 | "include_colab_link": true
13 | },
14 | "kernelspec": {
15 | "name": "python3",
16 | "display_name": "Python 3"
17 | },
18 | "language_info": {
19 | "name": "python"
20 | },
21 | "accelerator": "GPU"
22 | },
23 | "cells": [
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {
27 | "id": "view-in-github",
28 | "colab_type": "text"
29 | },
30 | "source": [
31 | "
"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {
37 | "id": "l8ZDSWk3TqX9"
38 | },
39 | "source": [
40 | "## Data collection\n",
41 | "\n",
42 | "In order to keep the runtime of this example relatively short, we will be using a subsampled version of the original UCF101 dataset. You can refer to [this notebook](https://github.com/sayakpaul/Action-Recognition-in-TensorFlow/blob/main/Data_Preparation_UCF101.ipynb) to know how the subsampling was done. "
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "metadata": {
48 | "id": "uaIsRk-Cy8Fr"
49 | },
50 | "source": [
51 | "!wget -q https://git.io/JGc31 -O ucf101_top5.tar.gz\n",
52 | "!tar xf ucf101_top5.tar.gz"
53 | ],
54 | "execution_count": null,
55 | "outputs": []
56 | },
57 | {
58 | "cell_type": "markdown",
59 | "metadata": {
60 | "id": "JA4azW2ATsc1"
61 | },
62 | "source": [
63 | "## Setup"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "metadata": {
69 | "id": "ASNYUVHCuwFp"
70 | },
71 | "source": [
72 | "from tensorflow import keras\n",
73 | "\n",
74 | "import tensorflow as tf\n",
75 | "import pandas as pd \n",
76 | "import numpy as np\n",
77 | "import cv2\n",
78 | "import os"
79 | ],
80 | "execution_count": null,
81 | "outputs": []
82 | },
83 | {
84 | "cell_type": "markdown",
85 | "metadata": {
86 | "id": "3XlVLSl4TuHW"
87 | },
88 | "source": [
89 | "## Define hyperparameters"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "metadata": {
95 | "id": "36965nYbwLmX"
96 | },
97 | "source": [
98 | "IMG_SIZE = 128\n",
99 | "MAX_SEQ_LENGTH = 20\n",
100 | "NUM_FEATURES = 1024"
101 | ],
102 | "execution_count": null,
103 | "outputs": []
104 | },
105 | {
106 | "cell_type": "markdown",
107 | "metadata": {
108 | "id": "GWw29TqsT0uT"
109 | },
110 | "source": [
111 | "## Data preparation"
112 | ]
113 | },
114 | {
115 | "cell_type": "code",
116 | "metadata": {
117 | "colab": {
118 | "base_uri": "https://localhost:8080/"
119 | },
120 | "id": "GPQ5feZ3zwzB",
121 | "outputId": "1102e8c2-2792-45d3-a3b8-9f754b011c31"
122 | },
123 | "source": [
124 | "train_df = pd.read_csv(\"train.csv\")\n",
125 | "test_df = pd.read_csv(\"test.csv\")\n",
126 | "\n",
127 | "print(f\"Total videos for training: {len(train_df)}\")\n",
128 | "print(f\"Total videos for testing: {len(test_df)}\")"
129 | ],
130 | "execution_count": null,
131 | "outputs": [
132 | {
133 | "output_type": "stream",
134 | "text": [
135 | "Total videos for training: 594\n",
136 | "Total videos for testing: 224\n"
137 | ],
138 | "name": "stdout"
139 | }
140 | ]
141 | },
142 | {
143 | "cell_type": "code",
144 | "metadata": {
145 | "colab": {
146 | "base_uri": "https://localhost:8080/",
147 | "height": 359
148 | },
149 | "id": "qBFLKe-Iz_Cp",
150 | "outputId": "6e0b0756-17db-44ac-d4ec-2cecf48656ab"
151 | },
152 | "source": [
153 | "train_df.sample(10)"
154 | ],
155 | "execution_count": null,
156 | "outputs": [
157 | {
158 | "output_type": "execute_result",
159 | "data": {
160 | "text/html": [
161 | "
\n",
162 | "\n",
175 | "
\n",
176 | " \n",
177 | " \n",
178 | " | \n",
179 | " video_name | \n",
180 | " tag | \n",
181 | "
\n",
182 | " \n",
183 | " \n",
184 | " \n",
185 | " | 77 | \n",
186 | " v_CricketShot_g19_c04.avi | \n",
187 | " CricketShot | \n",
188 | "
\n",
189 | " \n",
190 | " | 444 | \n",
191 | " v_ShavingBeard_g21_c02.avi | \n",
192 | " ShavingBeard | \n",
193 | "
\n",
194 | " \n",
195 | " | 464 | \n",
196 | " v_ShavingBeard_g24_c01.avi | \n",
197 | " ShavingBeard | \n",
198 | "
\n",
199 | " \n",
200 | " | 63 | \n",
201 | " v_CricketShot_g17_c01.avi | \n",
202 | " CricketShot | \n",
203 | "
\n",
204 | " \n",
205 | " | 352 | \n",
206 | " v_Punch_g25_c01.avi | \n",
207 | " Punch | \n",
208 | "
\n",
209 | " \n",
210 | " | 236 | \n",
211 | " v_PlayingCello_g25_c06.avi | \n",
212 | " PlayingCello | \n",
213 | "
\n",
214 | " \n",
215 | " | 535 | \n",
216 | " v_TennisSwing_g16_c04.avi | \n",
217 | " TennisSwing | \n",
218 | "
\n",
219 | " \n",
220 | " | 246 | \n",
221 | " v_Punch_g09_c02.avi | \n",
222 | " Punch | \n",
223 | "
\n",
224 | " \n",
225 | " | 68 | \n",
226 | " v_CricketShot_g17_c06.avi | \n",
227 | " CricketShot | \n",
228 | "
\n",
229 | " \n",
230 | " | 546 | \n",
231 | " v_TennisSwing_g18_c01.avi | \n",
232 | " TennisSwing | \n",
233 | "
\n",
234 | " \n",
235 | "
\n",
236 | "
"
237 | ],
238 | "text/plain": [
239 | " video_name tag\n",
240 | "77 v_CricketShot_g19_c04.avi CricketShot\n",
241 | "444 v_ShavingBeard_g21_c02.avi ShavingBeard\n",
242 | "464 v_ShavingBeard_g24_c01.avi ShavingBeard\n",
243 | "63 v_CricketShot_g17_c01.avi CricketShot\n",
244 | "352 v_Punch_g25_c01.avi Punch\n",
245 | "236 v_PlayingCello_g25_c06.avi PlayingCello\n",
246 | "535 v_TennisSwing_g16_c04.avi TennisSwing\n",
247 | "246 v_Punch_g09_c02.avi Punch\n",
248 | "68 v_CricketShot_g17_c06.avi CricketShot\n",
249 | "546 v_TennisSwing_g18_c01.avi TennisSwing"
250 | ]
251 | },
252 | "metadata": {
253 | "tags": []
254 | },
255 | "execution_count": 5
256 | }
257 | ]
258 | },
259 | {
260 | "cell_type": "code",
261 | "metadata": {
262 | "id": "9HLXWv4hzDSH"
263 | },
264 | "source": [
265 | "center_crop_layer = keras.layers.experimental.preprocessing.CenterCrop(IMG_SIZE, IMG_SIZE)\n",
266 | "\n",
267 | "def crop_center(frame):\n",
268 | " cropped = center_crop_layer(frame[None, ...])\n",
269 | " cropped = cropped.numpy().squeeze()\n",
270 | " return cropped\n",
271 | "\n",
272 | "# Following method is modified from this tutorial:\n",
273 | "# https://www.tensorflow.org/hub/tutorials/action_recognition_with_tf_hub\n",
274 | "def load_video(path, max_frames=0):\n",
275 | " cap = cv2.VideoCapture(path)\n",
276 | " frames = []\n",
277 | " try:\n",
278 | " while True:\n",
279 | " ret, frame = cap.read()\n",
280 | " if not ret:\n",
281 | " break\n",
282 | " frame = crop_center(frame)\n",
283 | " frame = frame[:, :, [2, 1, 0]]\n",
284 | " frames.append(frame)\n",
285 | "\n",
286 | " if len(frames) == max_frames:\n",
287 | " break\n",
288 | " finally:\n",
289 | " cap.release()\n",
290 | " return np.array(frames)"
291 | ],
292 | "execution_count": null,
293 | "outputs": []
294 | },
295 | {
296 | "cell_type": "code",
297 | "metadata": {
298 | "id": "2DAc3uQmsyGH",
299 | "colab": {
300 | "base_uri": "https://localhost:8080/"
301 | },
302 | "outputId": "434abe18-a548-4ac1-ed32-63d4fb9fae4c"
303 | },
304 | "source": [
305 | "def build_feature_extractor():\n",
306 | " feature_extractor = keras.applications.DenseNet121(weights=\"imagenet\", \n",
307 | " include_top=False, pooling=\"avg\",\n",
308 | " input_shape=(IMG_SIZE, IMG_SIZE, 3))\n",
309 | " preprocess_input = keras.applications.densenet.preprocess_input\n",
310 | "\n",
311 | " inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))\n",
312 | " preprocessed = preprocess_input(inputs)\n",
313 | "\n",
314 | " outputs = feature_extractor(preprocessed)\n",
315 | " return keras.Model(inputs, outputs, name=\"feature_extractor\")\n",
316 | "\n",
317 | "feature_extractor = build_feature_extractor()"
318 | ],
319 | "execution_count": null,
320 | "outputs": [
321 | {
322 | "output_type": "stream",
323 | "text": [
324 | "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n",
325 | "29089792/29084464 [==============================] - 0s 0us/step\n"
326 | ],
327 | "name": "stdout"
328 | }
329 | ]
330 | },
331 | {
332 | "cell_type": "code",
333 | "metadata": {
334 | "id": "M_WHgBm6VWt6",
335 | "colab": {
336 | "base_uri": "https://localhost:8080/"
337 | },
338 | "outputId": "02c9deb2-7dd8-4692-fec8-b00827c4e396"
339 | },
340 | "source": [
341 | "label_processor = keras.layers.experimental.preprocessing.StringLookup(\n",
342 | " num_oov_indices=0, vocabulary=np.unique(train_df[\"tag\"]), mask_token=None\n",
343 | ")\n",
344 | "print(label_processor.get_vocabulary())"
345 | ],
346 | "execution_count": null,
347 | "outputs": [
348 | {
349 | "output_type": "stream",
350 | "text": [
351 | "['CricketShot', 'PlayingCello', 'Punch', 'ShavingBeard', 'TennisSwing']\n"
352 | ],
353 | "name": "stdout"
354 | }
355 | ]
356 | },
357 | {
358 | "cell_type": "code",
359 | "metadata": {
360 | "id": "-E_zksdrZ2AZ"
361 | },
362 | "source": [
363 | "def prepare_all_videos(df, root_dir):\n",
364 | " num_samples = len(df)\n",
365 | " video_paths = df[\"video_name\"].values.tolist()\n",
366 | " labels = df[\"tag\"].values\n",
367 | " labels = label_processor(labels[..., None]).numpy()\n",
368 | " \n",
369 | " # `frame_features` are what we will feed to our sequence model.\n",
370 | " frame_features = np.zeros(shape=(num_samples, MAX_SEQ_LENGTH, NUM_FEATURES),\n",
371 | " dtype=\"float32\")\n",
372 | " \n",
373 | " # For each video.\n",
374 | " for idx, path in enumerate(video_paths):\n",
375 | " # Gather all its frames and add a batch dimension.\n",
376 | " frames = load_video(os.path.join(root_dir, path))\n",
377 | " \n",
378 | " # Pad shorter videos.\n",
379 | " if len(frames) < MAX_SEQ_LENGTH:\n",
380 | " diff = MAX_SEQ_LENGTH - len(frames)\n",
381 | " padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3))\n",
382 | " frames = np.concatenate(frames, padding)\n",
383 | "\n",
384 | " frames = frames[None, ...]\n",
385 | " \n",
386 | " # Initialize placeholder to store the features of the current video. \n",
387 | " temp_frame_featutes = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES),\n",
388 | " dtype=\"float32\")\n",
389 | " \n",
390 | " # Extract features from the frames of the current video. \n",
391 | " for i, batch in enumerate(frames): \n",
392 | " video_length = batch.shape[0]\n",
393 | " length = min(MAX_SEQ_LENGTH, video_length) \n",
394 | " for j in range(length):\n",
395 | " if np.mean(batch[j, :]) > 0.0:\n",
396 | " temp_frame_featutes[i, j, :] = feature_extractor.predict(batch[None, j, :]) \n",
397 | " else:\n",
398 | " temp_frame_featutes[i, j, :] = 0.0\n",
399 | "\n",
400 | " frame_features[idx, ] = temp_frame_featutes.squeeze()\n",
401 | "\n",
402 | " return frame_features, labels"
403 | ],
404 | "execution_count": null,
405 | "outputs": []
406 | },
407 | {
408 | "cell_type": "code",
409 | "metadata": {
410 | "id": "qWBXUZaNeK9H",
411 | "colab": {
412 | "base_uri": "https://localhost:8080/"
413 | },
414 | "outputId": "1c5254c1-f9f3-4d8e-a77a-1b8563665214"
415 | },
416 | "source": [
417 | "train_data, train_labels = prepare_all_videos(train_df, \"train\")\n",
418 | "test_data, test_labels = prepare_all_videos(test_df, \"test\")\n",
419 | "\n",
420 | "print(f\"Frame features in train set: {train_data.shape}\")"
421 | ],
422 | "execution_count": null,
423 | "outputs": [
424 | {
425 | "output_type": "stream",
426 | "text": [
427 | "Frame features in train set: (594, 20, 1024)\n"
428 | ],
429 | "name": "stdout"
430 | }
431 | ]
432 | },
433 | {
434 | "cell_type": "markdown",
435 | "metadata": {
436 | "id": "ZjbMB4V5mEsU"
437 | },
438 | "source": [
439 | "The above code block will take ~20 minutes to execute depending on the machine it's being executed. "
440 | ]
441 | },
442 | {
443 | "cell_type": "markdown",
444 | "metadata": {
445 | "id": "GFXAw6gn4CcX"
446 | },
447 | "source": [
448 | "## Serialize data for later use"
449 | ]
450 | },
451 | {
452 | "cell_type": "code",
453 | "metadata": {
454 | "id": "KvEER0n_35eB"
455 | },
456 | "source": [
457 | "np.save(\"train_data.npy\", train_data, fix_imports=True, allow_pickle=False)\n",
458 | "np.save(\"train_labels.npy\", train_labels, fix_imports=True, allow_pickle=False)\n",
459 | "np.save(\"test_data.npy\", test_data, fix_imports=True, allow_pickle=False)\n",
460 | "np.save(\"test_labels.npy\", test_labels, fix_imports=True, allow_pickle=False)"
461 | ],
462 | "execution_count": null,
463 | "outputs": []
464 | },
465 | {
466 | "cell_type": "code",
467 | "metadata": {
468 | "id": "r63LD7Y-61Lr"
469 | },
470 | "source": [
471 | "!tar cf top5_data_prepared.tar.gz train_data.npy train_labels.npy test_data.npy test_labels.npy"
472 | ],
473 | "execution_count": null,
474 | "outputs": []
475 | },
476 | {
477 | "cell_type": "code",
478 | "metadata": {
479 | "id": "nBKNlnmF7KoE"
480 | },
481 | "source": [
482 | "!cp top5_data_prepared.tar.gz /content/drive/MyDrive"
483 | ],
484 | "execution_count": null,
485 | "outputs": []
486 | }
487 | ]
488 | }
--------------------------------------------------------------------------------
/Data_Preparation_UCF101.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "kernelspec": {
6 | "display_name": "Python 3",
7 | "language": "python",
8 | "name": "python3"
9 | },
10 | "language_info": {
11 | "codemirror_mode": {
12 | "name": "ipython",
13 | "version": 3
14 | },
15 | "file_extension": ".py",
16 | "mimetype": "text/x-python",
17 | "name": "python",
18 | "nbconvert_exporter": "python",
19 | "pygments_lexer": "ipython3",
20 | "version": "3.5.3"
21 | },
22 | "colab": {
23 | "name": "Data_Preparation_UCF101.ipynb",
24 | "provenance": [],
25 | "collapsed_sections": [],
26 | "include_colab_link": true
27 | }
28 | },
29 | "cells": [
30 | {
31 | "cell_type": "markdown",
32 | "metadata": {
33 | "id": "view-in-github",
34 | "colab_type": "text"
35 | },
36 | "source": [
37 | "
"
38 | ]
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "metadata": {
43 | "id": "PYgy38H_-WdA"
44 | },
45 | "source": [
46 | "## Collect Data"
47 | ]
48 | },
49 | {
50 | "cell_type": "code",
51 | "metadata": {
52 | "id": "oKxtdcjgjuy2"
53 | },
54 | "source": [
55 | "!wget -q --no-check-certificate https://www.crcv.ucf.edu/data/UCF101/UCF101.rar\n",
56 | "!wget -q --no-check-certificate https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip"
57 | ],
58 | "execution_count": 1,
59 | "outputs": []
60 | },
61 | {
62 | "cell_type": "code",
63 | "metadata": {
64 | "id": "LZGjbGEUlIwc"
65 | },
66 | "source": [
67 | "%%capture\n",
68 | "!unrar e UCF101.rar data/\n",
69 | "!unzip -qq UCF101TrainTestSplits-RecognitionTask.zip"
70 | ],
71 | "execution_count": 2,
72 | "outputs": []
73 | },
74 | {
75 | "cell_type": "markdown",
76 | "metadata": {
77 | "id": "qtHh7Q9o-YdY"
78 | },
79 | "source": [
80 | "## Imports"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "metadata": {
86 | "id": "KqTOScR1i7UP"
87 | },
88 | "source": [
89 | "from imutils import paths\n",
90 | "from tqdm import tqdm\n",
91 | "import pandas as pd \n",
92 | "import numpy as np\n",
93 | "import shutil\n",
94 | "import cv2\n",
95 | "import os"
96 | ],
97 | "execution_count": 3,
98 | "outputs": []
99 | },
100 | {
101 | "cell_type": "markdown",
102 | "metadata": {
103 | "id": "gRlcc2Ph-arE"
104 | },
105 | "source": [
106 | "## Metadata Loading"
107 | ]
108 | },
109 | {
110 | "cell_type": "code",
111 | "metadata": {
112 | "id": "_rzBFXN4i7UR",
113 | "colab": {
114 | "base_uri": "https://localhost:8080/",
115 | "height": 204
116 | },
117 | "outputId": "6877e904-d3ba-45af-e782-7411e573a757"
118 | },
119 | "source": [
120 | "# Open the .txt file which have names of training videos\n",
121 | "f = open(\"ucfTrainTestlist/trainlist01.txt\", \"r\")\n",
122 | "temp = f.read()\n",
123 | "videos = temp.split('\\n')\n",
124 | "\n",
125 | "# Create a dataframe having video names\n",
126 | "train = pd.DataFrame()\n",
127 | "train['video_name'] = videos\n",
128 | "train = train[:-1]\n",
129 | "train.head()"
130 | ],
131 | "execution_count": 4,
132 | "outputs": [
133 | {
134 | "output_type": "execute_result",
135 | "data": {
136 | "text/html": [
137 | "\n",
138 | "\n",
151 | "
\n",
152 | " \n",
153 | " \n",
154 | " | \n",
155 | " video_name | \n",
156 | "
\n",
157 | " \n",
158 | " \n",
159 | " \n",
160 | " | 0 | \n",
161 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c01.avi 1 | \n",
162 | "
\n",
163 | " \n",
164 | " | 1 | \n",
165 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c02.avi 1 | \n",
166 | "
\n",
167 | " \n",
168 | " | 2 | \n",
169 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c03.avi 1 | \n",
170 | "
\n",
171 | " \n",
172 | " | 3 | \n",
173 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c04.avi 1 | \n",
174 | "
\n",
175 | " \n",
176 | " | 4 | \n",
177 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c05.avi 1 | \n",
178 | "
\n",
179 | " \n",
180 | "
\n",
181 | "
"
182 | ],
183 | "text/plain": [
184 | " video_name\n",
185 | "0 ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c01.avi 1\n",
186 | "1 ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c02.avi 1\n",
187 | "2 ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c03.avi 1\n",
188 | "3 ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c04.avi 1\n",
189 | "4 ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c05.avi 1"
190 | ]
191 | },
192 | "metadata": {
193 | "tags": []
194 | },
195 | "execution_count": 4
196 | }
197 | ]
198 | },
199 | {
200 | "cell_type": "code",
201 | "metadata": {
202 | "id": "WLhPitHyi7US",
203 | "colab": {
204 | "base_uri": "https://localhost:8080/",
205 | "height": 204
206 | },
207 | "outputId": "8c663359-b1ac-44d7-a59c-51fd74fffb79"
208 | },
209 | "source": [
210 | "# Open the .txt file which have names of test videos\n",
211 | "with open(\"ucfTrainTestlist/testlist01.txt\", \"r\") as f:\n",
212 | " temp = f.read()\n",
213 | "videos = temp.split(\"\\n\")\n",
214 | "\n",
215 | "# Create a dataframe having video names\n",
216 | "test = pd.DataFrame()\n",
217 | "test[\"video_name\"] = videos\n",
218 | "test = test[:-1]\n",
219 | "test.head()"
220 | ],
221 | "execution_count": 5,
222 | "outputs": [
223 | {
224 | "output_type": "execute_result",
225 | "data": {
226 | "text/html": [
227 | "\n",
228 | "\n",
241 | "
\n",
242 | " \n",
243 | " \n",
244 | " | \n",
245 | " video_name | \n",
246 | "
\n",
247 | " \n",
248 | " \n",
249 | " \n",
250 | " | 0 | \n",
251 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c01.avi | \n",
252 | "
\n",
253 | " \n",
254 | " | 1 | \n",
255 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c02.avi | \n",
256 | "
\n",
257 | " \n",
258 | " | 2 | \n",
259 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c03.avi | \n",
260 | "
\n",
261 | " \n",
262 | " | 3 | \n",
263 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c04.avi | \n",
264 | "
\n",
265 | " \n",
266 | " | 4 | \n",
267 | " ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c05.avi | \n",
268 | "
\n",
269 | " \n",
270 | "
\n",
271 | "
"
272 | ],
273 | "text/plain": [
274 | " video_name\n",
275 | "0 ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c01.avi\n",
276 | "1 ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c02.avi\n",
277 | "2 ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c03.avi\n",
278 | "3 ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c04.avi\n",
279 | "4 ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c05.avi"
280 | ]
281 | },
282 | "metadata": {
283 | "tags": []
284 | },
285 | "execution_count": 5
286 | }
287 | ]
288 | },
289 | {
290 | "cell_type": "markdown",
291 | "metadata": {
292 | "id": "v7wK62Oi-lSk"
293 | },
294 | "source": [
295 | "## Utility Functions"
296 | ]
297 | },
298 | {
299 | "cell_type": "code",
300 | "metadata": {
301 | "id": "xCrOOcY_i7US"
302 | },
303 | "source": [
304 | "def extract_tag(video_path):\n",
305 | " return video_path.split(\"/\")[0]\n",
306 | "\n",
307 | "def separate_video_name(video_name):\n",
308 | " return video_name.split(\"/\")[1]\n",
309 | "\n",
310 | "def rectify_video_name(video_name):\n",
311 | " return video_name.split(\" \")[0]\n",
312 | "\n",
313 | "def move_videos(df, output_dir):\n",
314 | " if not os.path.exists(output_dir):\n",
315 | " os.mkdir(output_dir)\n",
316 | " for i in tqdm(range(df.shape[0])):\n",
317 | " videoFile = df['video_name'][i].split(\"/\")[-1]\n",
318 | " videoPath = os.path.join(\"data\", videoFile)\n",
319 | " shutil.copy2(videoPath, output_dir)\n",
320 | " print()\n",
321 | " print(f\"Total videos: {len(os.listdir(output_dir))}\")"
322 | ],
323 | "execution_count": 6,
324 | "outputs": []
325 | },
326 | {
327 | "cell_type": "markdown",
328 | "metadata": {
329 | "id": "OtyGiF7L-nnr"
330 | },
331 | "source": [
332 | "## DataFrame Preparation"
333 | ]
334 | },
335 | {
336 | "cell_type": "code",
337 | "metadata": {
338 | "id": "v-lNa682i7US",
339 | "colab": {
340 | "base_uri": "https://localhost:8080/",
341 | "height": 204
342 | },
343 | "outputId": "49636796-ea5f-445c-f014-1b79c9dd534e"
344 | },
345 | "source": [
346 | "train[\"tag\"] = train[\"video_name\"].apply(extract_tag)\n",
347 | "train[\"video_name\"] = train[\"video_name\"].apply(separate_video_name)\n",
348 | "train.head()"
349 | ],
350 | "execution_count": 7,
351 | "outputs": [
352 | {
353 | "output_type": "execute_result",
354 | "data": {
355 | "text/html": [
356 | "\n",
357 | "\n",
370 | "
\n",
371 | " \n",
372 | " \n",
373 | " | \n",
374 | " video_name | \n",
375 | " tag | \n",
376 | "
\n",
377 | " \n",
378 | " \n",
379 | " \n",
380 | " | 0 | \n",
381 | " v_ApplyEyeMakeup_g08_c01.avi 1 | \n",
382 | " ApplyEyeMakeup | \n",
383 | "
\n",
384 | " \n",
385 | " | 1 | \n",
386 | " v_ApplyEyeMakeup_g08_c02.avi 1 | \n",
387 | " ApplyEyeMakeup | \n",
388 | "
\n",
389 | " \n",
390 | " | 2 | \n",
391 | " v_ApplyEyeMakeup_g08_c03.avi 1 | \n",
392 | " ApplyEyeMakeup | \n",
393 | "
\n",
394 | " \n",
395 | " | 3 | \n",
396 | " v_ApplyEyeMakeup_g08_c04.avi 1 | \n",
397 | " ApplyEyeMakeup | \n",
398 | "
\n",
399 | " \n",
400 | " | 4 | \n",
401 | " v_ApplyEyeMakeup_g08_c05.avi 1 | \n",
402 | " ApplyEyeMakeup | \n",
403 | "
\n",
404 | " \n",
405 | "
\n",
406 | "
"
407 | ],
408 | "text/plain": [
409 | " video_name tag\n",
410 | "0 v_ApplyEyeMakeup_g08_c01.avi 1 ApplyEyeMakeup\n",
411 | "1 v_ApplyEyeMakeup_g08_c02.avi 1 ApplyEyeMakeup\n",
412 | "2 v_ApplyEyeMakeup_g08_c03.avi 1 ApplyEyeMakeup\n",
413 | "3 v_ApplyEyeMakeup_g08_c04.avi 1 ApplyEyeMakeup\n",
414 | "4 v_ApplyEyeMakeup_g08_c05.avi 1 ApplyEyeMakeup"
415 | ]
416 | },
417 | "metadata": {
418 | "tags": []
419 | },
420 | "execution_count": 7
421 | }
422 | ]
423 | },
424 | {
425 | "cell_type": "code",
426 | "metadata": {
427 | "id": "nVhz28EIi7UT",
428 | "colab": {
429 | "base_uri": "https://localhost:8080/",
430 | "height": 204
431 | },
432 | "outputId": "7024466d-479f-447e-d47c-d65679192e19"
433 | },
434 | "source": [
435 | "train[\"video_name\"] = train[\"video_name\"].apply(rectify_video_name)\n",
436 | "train.head()"
437 | ],
438 | "execution_count": 8,
439 | "outputs": [
440 | {
441 | "output_type": "execute_result",
442 | "data": {
443 | "text/html": [
444 | "\n",
445 | "\n",
458 | "
\n",
459 | " \n",
460 | " \n",
461 | " | \n",
462 | " video_name | \n",
463 | " tag | \n",
464 | "
\n",
465 | " \n",
466 | " \n",
467 | " \n",
468 | " | 0 | \n",
469 | " v_ApplyEyeMakeup_g08_c01.avi | \n",
470 | " ApplyEyeMakeup | \n",
471 | "
\n",
472 | " \n",
473 | " | 1 | \n",
474 | " v_ApplyEyeMakeup_g08_c02.avi | \n",
475 | " ApplyEyeMakeup | \n",
476 | "
\n",
477 | " \n",
478 | " | 2 | \n",
479 | " v_ApplyEyeMakeup_g08_c03.avi | \n",
480 | " ApplyEyeMakeup | \n",
481 | "
\n",
482 | " \n",
483 | " | 3 | \n",
484 | " v_ApplyEyeMakeup_g08_c04.avi | \n",
485 | " ApplyEyeMakeup | \n",
486 | "
\n",
487 | " \n",
488 | " | 4 | \n",
489 | " v_ApplyEyeMakeup_g08_c05.avi | \n",
490 | " ApplyEyeMakeup | \n",
491 | "
\n",
492 | " \n",
493 | "
\n",
494 | "
"
495 | ],
496 | "text/plain": [
497 | " video_name tag\n",
498 | "0 v_ApplyEyeMakeup_g08_c01.avi ApplyEyeMakeup\n",
499 | "1 v_ApplyEyeMakeup_g08_c02.avi ApplyEyeMakeup\n",
500 | "2 v_ApplyEyeMakeup_g08_c03.avi ApplyEyeMakeup\n",
501 | "3 v_ApplyEyeMakeup_g08_c04.avi ApplyEyeMakeup\n",
502 | "4 v_ApplyEyeMakeup_g08_c05.avi ApplyEyeMakeup"
503 | ]
504 | },
505 | "metadata": {
506 | "tags": []
507 | },
508 | "execution_count": 8
509 | }
510 | ]
511 | },
512 | {
513 | "cell_type": "code",
514 | "metadata": {
515 | "id": "5QnYrt_xi7UT",
516 | "colab": {
517 | "base_uri": "https://localhost:8080/",
518 | "height": 204
519 | },
520 | "outputId": "bd1e1784-a722-4b39-c26b-9641eb44839e"
521 | },
522 | "source": [
523 | "test[\"tag\"] = test[\"video_name\"].apply(extract_tag)\n",
524 | "test[\"video_name\"] = test[\"video_name\"].apply(separate_video_name)\n",
525 | "test.head()"
526 | ],
527 | "execution_count": 9,
528 | "outputs": [
529 | {
530 | "output_type": "execute_result",
531 | "data": {
532 | "text/html": [
533 | "\n",
534 | "\n",
547 | "
\n",
548 | " \n",
549 | " \n",
550 | " | \n",
551 | " video_name | \n",
552 | " tag | \n",
553 | "
\n",
554 | " \n",
555 | " \n",
556 | " \n",
557 | " | 0 | \n",
558 | " v_ApplyEyeMakeup_g01_c01.avi | \n",
559 | " ApplyEyeMakeup | \n",
560 | "
\n",
561 | " \n",
562 | " | 1 | \n",
563 | " v_ApplyEyeMakeup_g01_c02.avi | \n",
564 | " ApplyEyeMakeup | \n",
565 | "
\n",
566 | " \n",
567 | " | 2 | \n",
568 | " v_ApplyEyeMakeup_g01_c03.avi | \n",
569 | " ApplyEyeMakeup | \n",
570 | "
\n",
571 | " \n",
572 | " | 3 | \n",
573 | " v_ApplyEyeMakeup_g01_c04.avi | \n",
574 | " ApplyEyeMakeup | \n",
575 | "
\n",
576 | " \n",
577 | " | 4 | \n",
578 | " v_ApplyEyeMakeup_g01_c05.avi | \n",
579 | " ApplyEyeMakeup | \n",
580 | "
\n",
581 | " \n",
582 | "
\n",
583 | "
"
584 | ],
585 | "text/plain": [
586 | " video_name tag\n",
587 | "0 v_ApplyEyeMakeup_g01_c01.avi ApplyEyeMakeup\n",
588 | "1 v_ApplyEyeMakeup_g01_c02.avi ApplyEyeMakeup\n",
589 | "2 v_ApplyEyeMakeup_g01_c03.avi ApplyEyeMakeup\n",
590 | "3 v_ApplyEyeMakeup_g01_c04.avi ApplyEyeMakeup\n",
591 | "4 v_ApplyEyeMakeup_g01_c05.avi ApplyEyeMakeup"
592 | ]
593 | },
594 | "metadata": {
595 | "tags": []
596 | },
597 | "execution_count": 9
598 | }
599 | ]
600 | },
601 | {
602 | "cell_type": "markdown",
603 | "metadata": {
604 | "id": "dKo0rwC5-qa5"
605 | },
606 | "source": [
607 | "## Filtering Top-n Actions"
608 | ]
609 | },
610 | {
611 | "cell_type": "code",
612 | "metadata": {
613 | "id": "C0Cipx6Wi7UT",
614 | "colab": {
615 | "base_uri": "https://localhost:8080/"
616 | },
617 | "outputId": "92cbfe45-4d64-422f-d846-f88151e63225"
618 | },
619 | "source": [
620 | "n = 10\n",
621 | "topNActs = train[\"tag\"].value_counts().nlargest(n).reset_index()[\"index\"].tolist()\n",
622 | "train_new = train[train[\"tag\"].isin(topNActs)]\n",
623 | "test_new = test[test[\"tag\"].isin(topNActs)]\n",
624 | "train_new.shape, test_new.shape"
625 | ],
626 | "execution_count": 10,
627 | "outputs": [
628 | {
629 | "output_type": "execute_result",
630 | "data": {
631 | "text/plain": [
632 | "((1171, 2), (459, 2))"
633 | ]
634 | },
635 | "metadata": {
636 | "tags": []
637 | },
638 | "execution_count": 10
639 | }
640 | ]
641 | },
642 | {
643 | "cell_type": "code",
644 | "metadata": {
645 | "id": "0HeihX0_i7UU"
646 | },
647 | "source": [
648 | "train_new = train_new.reset_index(drop=True)\n",
649 | "test_new = test_new.reset_index(drop=True)"
650 | ],
651 | "execution_count": 11,
652 | "outputs": []
653 | },
654 | {
655 | "cell_type": "markdown",
656 | "metadata": {
657 | "id": "Q0BtXtt8-vMU"
658 | },
659 | "source": [
660 | "## Move Top-n Action Videos"
661 | ]
662 | },
663 | {
664 | "cell_type": "code",
665 | "metadata": {
666 | "id": "5vjduxM_xEoB",
667 | "colab": {
668 | "base_uri": "https://localhost:8080/"
669 | },
670 | "outputId": "cea7dba5-164e-4d7f-e743-70a33a4db5dc"
671 | },
672 | "source": [
673 | "move_videos(train_new, \"train\")\n",
674 | "move_videos(test_new, \"test\")"
675 | ],
676 | "execution_count": 12,
677 | "outputs": [
678 | {
679 | "output_type": "stream",
680 | "text": [
681 | "100%|██████████| 1171/1171 [00:09<00:00, 127.50it/s]\n",
682 | " 3%|▎ | 14/459 [00:00<00:03, 137.80it/s]"
683 | ],
684 | "name": "stderr"
685 | },
686 | {
687 | "output_type": "stream",
688 | "text": [
689 | "\n",
690 | "Total videos: 1171\n"
691 | ],
692 | "name": "stdout"
693 | },
694 | {
695 | "output_type": "stream",
696 | "text": [
697 | "100%|██████████| 459/459 [00:03<00:00, 143.96it/s]"
698 | ],
699 | "name": "stderr"
700 | },
701 | {
702 | "output_type": "stream",
703 | "text": [
704 | "\n",
705 | "Total videos: 459\n"
706 | ],
707 | "name": "stdout"
708 | },
709 | {
710 | "output_type": "stream",
711 | "text": [
712 | "\n"
713 | ],
714 | "name": "stderr"
715 | }
716 | ]
717 | },
718 | {
719 | "cell_type": "code",
720 | "metadata": {
721 | "id": "7_9w-5ArxWuc"
722 | },
723 | "source": [
724 | "train_new.to_csv(\"train.csv\", index=False)\n",
725 | "test_new.to_csv(\"test.csv\", index=False)"
726 | ],
727 | "execution_count": 13,
728 | "outputs": []
729 | },
730 | {
731 | "cell_type": "markdown",
732 | "metadata": {
733 | "id": "_qbrwlIX-xqJ"
734 | },
735 | "source": [
736 | "## Serialization"
737 | ]
738 | },
739 | {
740 | "cell_type": "code",
741 | "metadata": {
742 | "id": "7GUzA8d1xxJR"
743 | },
744 | "source": [
745 | "!tar cf ucf101_top10.tar.gz train test train.csv test.csv"
746 | ],
747 | "execution_count": 14,
748 | "outputs": []
749 | },
750 | {
751 | "cell_type": "code",
752 | "metadata": {
753 | "id": "aagZH1iLx99b",
754 | "colab": {
755 | "base_uri": "https://localhost:8080/"
756 | },
757 | "outputId": "5429c06f-e970-4b4e-a2ad-be030ea8a2d3"
758 | },
759 | "source": [
760 | "from google.colab import drive\n",
761 | "drive.mount('/content/drive')"
762 | ],
763 | "execution_count": 15,
764 | "outputs": [
765 | {
766 | "output_type": "stream",
767 | "text": [
768 | "Mounted at /content/drive\n"
769 | ],
770 | "name": "stdout"
771 | }
772 | ]
773 | },
774 | {
775 | "cell_type": "code",
776 | "metadata": {
777 | "id": "vjFRFB2Dx_aO"
778 | },
779 | "source": [
780 | "!cp ucf101_top10.tar.gz /content/drive/MyDrive"
781 | ],
782 | "execution_count": 16,
783 | "outputs": []
784 | }
785 | ]
786 | }
--------------------------------------------------------------------------------