├── maxim
├── __init__.py
├── tests
│ ├── __init__.py
│ ├── test_maxim_variable_img_length.py
│ ├── conftest.py
│ └── test_block_operations.py
├── blocks
│ ├── __init__.py
│ ├── others.py
│ ├── bottleneck.py
│ ├── block_gating.py
│ ├── grid_gating.py
│ ├── unet.py
│ ├── attentions.py
│ └── misc_gating.py
├── configs.py
├── layers.py
└── maxim.py
├── requirements.txt
├── images
├── maxim.gif
├── overview.png
├── Deraining
│ └── input
│ │ ├── 0.jpg
│ │ ├── 1.png
│ │ ├── 15.png
│ │ └── 55.png
├── Enhancement
│ └── input
│ │ ├── 1.png
│ │ ├── 111.png
│ │ ├── 748.png
│ │ └── a4541-DSC_0040-2.png
├── Dehazing
│ └── input
│ │ ├── 1440_10.png
│ │ ├── 1444_10.png
│ │ ├── 0003_0.8_0.2.png
│ │ ├── 0014_0.8_0.12.png
│ │ ├── 0048_0.9_0.2.png
│ │ └── 0010_0.95_0.16.png
├── Denoising
│ └── input
│ │ ├── 0003_30.png
│ │ ├── 0011_23.png
│ │ ├── 0013_19.png
│ │ └── 0039_04.png
└── Deblurring
│ └── input
│ ├── 1fromGOPR0950.png
│ ├── 109fromGOPR1096.MP4.png
│ ├── 110fromGOPR1087.MP4.png
│ └── 1fromGOPR1096.MP4.png
├── hub_utilities
├── obtain_sm.py
├── export_for_hub.py
└── generate_doc.py
├── create_maxim_model.py
├── benchmark_xla.py
├── convert_to_tf.py
├── README.md
├── LICENSE
├── notebooks
├── inference.ipynb
└── inference-dynamic-resize.ipynb
└── run_eval.py
/maxim/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/maxim/tests/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/maxim/blocks/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow==2.10.0
2 | einops==0.5.0
3 | huggingface_hub
--------------------------------------------------------------------------------
/images/maxim.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/maxim.gif
--------------------------------------------------------------------------------
/images/overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/overview.png
--------------------------------------------------------------------------------
/images/Deraining/input/0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deraining/input/0.jpg
--------------------------------------------------------------------------------
/images/Deraining/input/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deraining/input/1.png
--------------------------------------------------------------------------------
/images/Deraining/input/15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deraining/input/15.png
--------------------------------------------------------------------------------
/images/Deraining/input/55.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deraining/input/55.png
--------------------------------------------------------------------------------
/images/Enhancement/input/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Enhancement/input/1.png
--------------------------------------------------------------------------------
/images/Enhancement/input/111.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Enhancement/input/111.png
--------------------------------------------------------------------------------
/images/Enhancement/input/748.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Enhancement/input/748.png
--------------------------------------------------------------------------------
/images/Dehazing/input/1440_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Dehazing/input/1440_10.png
--------------------------------------------------------------------------------
/images/Dehazing/input/1444_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Dehazing/input/1444_10.png
--------------------------------------------------------------------------------
/images/Denoising/input/0003_30.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Denoising/input/0003_30.png
--------------------------------------------------------------------------------
/images/Denoising/input/0011_23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Denoising/input/0011_23.png
--------------------------------------------------------------------------------
/images/Denoising/input/0013_19.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Denoising/input/0013_19.png
--------------------------------------------------------------------------------
/images/Denoising/input/0039_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Denoising/input/0039_04.png
--------------------------------------------------------------------------------
/images/Dehazing/input/0003_0.8_0.2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Dehazing/input/0003_0.8_0.2.png
--------------------------------------------------------------------------------
/images/Dehazing/input/0014_0.8_0.12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Dehazing/input/0014_0.8_0.12.png
--------------------------------------------------------------------------------
/images/Dehazing/input/0048_0.9_0.2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Dehazing/input/0048_0.9_0.2.png
--------------------------------------------------------------------------------
/images/Deblurring/input/1fromGOPR0950.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deblurring/input/1fromGOPR0950.png
--------------------------------------------------------------------------------
/images/Dehazing/input/0010_0.95_0.16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Dehazing/input/0010_0.95_0.16.png
--------------------------------------------------------------------------------
/images/Deblurring/input/109fromGOPR1096.MP4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deblurring/input/109fromGOPR1096.MP4.png
--------------------------------------------------------------------------------
/images/Deblurring/input/110fromGOPR1087.MP4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deblurring/input/110fromGOPR1087.MP4.png
--------------------------------------------------------------------------------
/images/Deblurring/input/1fromGOPR1096.MP4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Deblurring/input/1fromGOPR1096.MP4.png
--------------------------------------------------------------------------------
/images/Enhancement/input/a4541-DSC_0040-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sayakpaul/maxim-tf/main/images/Enhancement/input/a4541-DSC_0040-2.png
--------------------------------------------------------------------------------
/maxim/tests/test_maxim_variable_img_length.py:
--------------------------------------------------------------------------------
1 | def test_maxim_variable_length(none_model, random_image_multiple_of_64):
2 | # this line will run several times with random images of different size
3 | # The none_model is instantiated only once, since the fixture scope is session.
4 | out = none_model(random_image_multiple_of_64)
5 |
--------------------------------------------------------------------------------
/hub_utilities/obtain_sm.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | GCS_ROOT = "gs://gresearch/maxim/ckpt"
4 |
5 | # From https://github.com/google-research/maxim#results-and-pre-trained-models
6 | DS_TASKS_MAP = {
7 | "Denoising": ["SIDD"],
8 | "Deblurring": [
9 | "GoPro",
10 | "REDS",
11 | "RealBlur_R",
12 | "RealBlur_J",
13 | ],
14 | "Deraining": ["Rain13k", "Raindrop"],
15 | "Dehazing": [
16 | "SOTS-Indoor",
17 | "SOTS-Outdoor",
18 | ],
19 | "Enhancement": ["LOL", "FiveK"],
20 | }
21 |
22 |
23 | def main():
24 | for task in DS_TASKS_MAP:
25 | datasets = DS_TASKS_MAP[task]
26 |
27 | for dataset in datasets:
28 | command = f"python ../convert_to_tf.py -t {task} -c {GCS_ROOT}/{task}/{dataset}/checkpoint.npz"
29 | print(f"Converting for task: {task} and dataset: {dataset}.")
30 | os.system(command)
31 |
32 |
33 | if __name__ == "__main__":
34 | main()
35 |
--------------------------------------------------------------------------------
/create_maxim_model.py:
--------------------------------------------------------------------------------
1 | from tensorflow import keras
2 |
3 | from maxim import maxim
4 | from maxim.configs import MAXIM_CONFIGS
5 |
6 |
7 | def Model(variant=None, input_resolution=(None, None), **kw) -> keras.Model:
8 | """Factory function to easily create a Model variant like "S".
9 |
10 | Args:
11 | variant: UNet model variants. Options: 'S-1' | 'S-2' | 'S-3'
12 | | 'M-1' | 'M-2' | 'M-3'
13 | input_resolution: Size of the input images.
14 | **kw: Other UNet config dicts.
15 |
16 | Returns:
17 | The MAXIM model.
18 | """
19 |
20 | if variant is not None:
21 | config = MAXIM_CONFIGS[variant]
22 | for k, v in config.items():
23 | kw.setdefault(k, v)
24 |
25 | if "variant" in kw:
26 | _ = kw.pop("variant")
27 | if "input_resolution" in kw:
28 | _ = kw.pop("input_resolution")
29 | model_name = kw.pop("name")
30 |
31 | maxim_model = maxim.MAXIM(**kw)
32 |
33 | inputs = keras.Input((*input_resolution, 3))
34 | outputs = maxim_model(inputs)
35 | final_model = keras.Model(inputs, outputs, name=f"{model_name}_model")
36 |
37 | return final_model
38 |
--------------------------------------------------------------------------------
/hub_utilities/export_for_hub.py:
--------------------------------------------------------------------------------
1 | """Generates .tar.gz archives from SavedModels and serializes them."""
2 |
3 |
4 | import os
5 | from typing import List
6 |
7 | import tensorflow as tf
8 |
9 | TF_MODEL_ROOT = "gs://maxim-tf"
10 | TAR_ARCHIVES = os.path.join(TF_MODEL_ROOT, "tars/")
11 |
12 |
13 | def prepare_archive(model_name: str) -> None:
14 | """Prepares a tar archive."""
15 | archive_name = f"{model_name}.tar.gz"
16 | print(f"Archiving to {archive_name}.")
17 | archive_command = f"cd {model_name} && tar -czvf ../{archive_name} *"
18 | os.system(archive_command)
19 | os.system(f"rm -rf {model_name}")
20 |
21 |
22 | def save_to_gcs(model_paths: List[str]) -> None:
23 | """Prepares tar archives and saves them inside a GCS bucket."""
24 | for path in model_paths:
25 | print(f"Preparing model: {path}.")
26 | model_name = path.strip("/")
27 | abs_model_path = os.path.join(TF_MODEL_ROOT, model_name)
28 |
29 | print(f"Copying from {abs_model_path}.")
30 | os.system(f"gsutil cp -r {abs_model_path} .")
31 | prepare_archive(model_name)
32 |
33 | os.system(f"gsutil -m cp -r *.tar.gz {TAR_ARCHIVES}")
34 | os.system("rm -rf *.tar.gz")
35 |
36 |
37 | model_paths = tf.io.gfile.listdir(TF_MODEL_ROOT)
38 | print(f"Total models: {len(model_paths)}.")
39 |
40 | print("Preparing archives for the classification and feature extractor models.")
41 | save_to_gcs(model_paths)
42 | tar_paths = tf.io.gfile.listdir(TAR_ARCHIVES)
43 | print(f"Total tars: {len(tar_paths)}.")
44 |
--------------------------------------------------------------------------------
/benchmark_xla.py:
--------------------------------------------------------------------------------
1 | """
2 | Script to benchmark the regular MAXIM model in TF and its JiT-compiled variant.
3 |
4 | Expected outputs (benchmarked on my Mac locally):
5 |
6 | ```
7 | Benchmarking TF model...
8 | Average latency (seconds): 3.1694554823999987.
9 | Benchmarking Jit-compiled TF model...
10 | Average latency (seconds): 1.2475706969000029.
11 | ```
12 | """
13 |
14 |
15 | import timeit
16 |
17 | import numpy as np
18 | import tensorflow as tf
19 |
20 | from create_maxim_model import Model
21 |
22 | INPUT_RESOLUTION = 256
23 |
24 | MAXIM_S1 = Model("S-1")
25 | DUMMY_INPUTS = tf.ones((1, INPUT_RESOLUTION, INPUT_RESOLUTION, 3))
26 |
27 |
28 | def benchmark_regular_model():
29 | # Warmup
30 | print("Benchmarking TF model...")
31 | for _ in range(2):
32 | _ = MAXIM_S1(DUMMY_INPUTS, training=False)
33 |
34 | # Timing
35 | tf_runtimes = timeit.repeat(
36 | lambda: MAXIM_S1(DUMMY_INPUTS, training=False), number=1, repeat=10
37 | )
38 | print(f"Average latency (seconds): {np.mean(tf_runtimes)}.")
39 |
40 |
41 | @tf.function(jit_compile=True)
42 | def infer():
43 | return MAXIM_S1(DUMMY_INPUTS, training=False)
44 |
45 |
46 | def benchmark_xla_model():
47 | # Warmup
48 | print("Benchmarking Jit-compiled TF model...")
49 | for _ in range(2):
50 | _ = infer()
51 |
52 | # Timing
53 | tf_runtimes = timeit.repeat(lambda: infer(), number=1, repeat=10)
54 | print(f"Average latency (seconds): {np.mean(tf_runtimes)}.")
55 |
56 |
57 | if __name__ == "__main__":
58 | benchmark_regular_model()
59 | benchmark_xla_model()
60 |
--------------------------------------------------------------------------------
/maxim/blocks/others.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import functools
6 |
7 | import tensorflow as tf
8 | from tensorflow.keras import backend as K
9 | from tensorflow.keras import layers
10 |
11 | from ..layers import Resizing
12 |
13 | Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
14 |
15 |
16 | def MlpBlock(
17 | mlp_dim: int,
18 | dropout_rate: float = 0.0,
19 | use_bias: bool = True,
20 | name: str = "mlp_block",
21 | ):
22 | """A 1-hidden-layer MLP block, applied over the last dimension."""
23 |
24 | def apply(x):
25 | d = K.int_shape(x)[-1]
26 | x = layers.Dense(mlp_dim, use_bias=use_bias, name=f"{name}_Dense_0")(x)
27 | x = tf.nn.gelu(x, approximate=True)
28 | x = layers.Dropout(dropout_rate)(x)
29 | x = layers.Dense(d, use_bias=use_bias, name=f"{name}_Dense_1")(x)
30 | return x
31 |
32 | return apply
33 |
34 |
35 | def UpSampleRatio(
36 | num_channels: int, ratio: float, use_bias: bool = True, name: str = "upsample"
37 | ):
38 | """Upsample features given a ratio > 0."""
39 |
40 | def apply(x):
41 | # Following `jax.image.resize()`
42 | x = Resizing(
43 | ratio=1 / ratio,
44 | method="bilinear",
45 | antialias=True,
46 | name=f"{name}_resizing_{K.get_uid('Resizing')}",
47 | )(x)
48 |
49 | x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x)
50 | return x
51 |
52 | return apply
53 |
--------------------------------------------------------------------------------
/maxim/blocks/bottleneck.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import functools
6 |
7 | from tensorflow.keras import layers
8 |
9 | from .attentions import RDCAB
10 | from .misc_gating import ResidualSplitHeadMultiAxisGmlpLayer
11 |
12 | Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
13 |
14 |
15 | def BottleneckBlock(
16 | features: int,
17 | block_size,
18 | grid_size,
19 | num_groups: int = 1,
20 | block_gmlp_factor: int = 2,
21 | grid_gmlp_factor: int = 2,
22 | input_proj_factor: int = 2,
23 | channels_reduction: int = 4,
24 | dropout_rate: float = 0.0,
25 | use_bias: bool = True,
26 | name: str = "bottleneck_block",
27 | ):
28 | """The bottleneck block consisting of multi-axis gMLP block and RDCAB."""
29 |
30 | def apply(x):
31 | # input projection
32 | x = Conv1x1(filters=features, use_bias=use_bias, name=f"{name}_input_proj")(x)
33 | shortcut_long = x
34 |
35 | for i in range(num_groups):
36 | x = ResidualSplitHeadMultiAxisGmlpLayer(
37 | grid_size=grid_size,
38 | block_size=block_size,
39 | grid_gmlp_factor=grid_gmlp_factor,
40 | block_gmlp_factor=block_gmlp_factor,
41 | input_proj_factor=input_proj_factor,
42 | use_bias=use_bias,
43 | dropout_rate=dropout_rate,
44 | name=f"{name}_SplitHeadMultiAxisGmlpLayer_{i}",
45 | )(x)
46 | # Channel-mixing part, which provides within-patch communication.
47 | x = RDCAB(
48 | num_channels=features,
49 | reduction=channels_reduction,
50 | use_bias=use_bias,
51 | name=f"{name}_channel_attention_block_1_{i}",
52 | )(x)
53 |
54 | # long skip-connect
55 | x = x + shortcut_long
56 | return x
57 |
58 | return apply
59 |
--------------------------------------------------------------------------------
/maxim/blocks/block_gating.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import tensorflow as tf
6 | from tensorflow.keras import backend as K
7 | from tensorflow.keras import layers
8 |
9 | from ..layers import SwapAxes, TFBlockImages, TFUnblockImages
10 |
11 |
12 | def BlockGatingUnit(use_bias: bool = True, name: str = "block_gating_unit"):
13 | """A SpatialGatingUnit as defined in the gMLP paper.
14 |
15 | The 'spatial' dim is defined as the **second last**.
16 | If applied on other dims, you should swapaxes first.
17 | """
18 |
19 | def apply(x):
20 | u, v = tf.split(x, 2, axis=-1)
21 | v = layers.LayerNormalization(
22 | epsilon=1e-06, name=f"{name}_intermediate_layernorm"
23 | )(v)
24 | n = K.int_shape(x)[-2] # get spatial dim
25 | v = SwapAxes()(v, -1, -2)
26 | v = layers.Dense(n, use_bias=use_bias, name=f"{name}_Dense_0")(v)
27 | v = SwapAxes()(v, -1, -2)
28 | return u * (v + 1.0)
29 |
30 | return apply
31 |
32 |
33 | def BlockGmlpLayer(
34 | block_size,
35 | use_bias: bool = True,
36 | factor: int = 2,
37 | dropout_rate: float = 0.0,
38 | name: str = "block_gmlp",
39 | ):
40 | """Block gMLP layer that performs local mixing of tokens."""
41 |
42 | def apply(x):
43 | n, h, w, num_channels = (
44 | K.int_shape(x)[0],
45 | K.int_shape(x)[1],
46 | K.int_shape(x)[2],
47 | K.int_shape(x)[3],
48 | )
49 | fh, fw = block_size
50 | x, gh, gw = TFBlockImages()(x, patch_size=(fh, fw))
51 | # MLP2: Local (block) mixing part, provides within-block communication.
52 | y = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x)
53 | y = layers.Dense(
54 | num_channels * factor,
55 | use_bias=use_bias,
56 | name=f"{name}_in_project",
57 | )(y)
58 | y = tf.nn.gelu(y, approximate=True)
59 | y = BlockGatingUnit(use_bias=use_bias, name=f"{name}_BlockGatingUnit")(y)
60 | y = layers.Dense(
61 | num_channels,
62 | use_bias=use_bias,
63 | name=f"{name}_out_project",
64 | )(y)
65 | y = layers.Dropout(dropout_rate)(y)
66 | x = x + y
67 | x = TFUnblockImages()(x, patch_size=(fh, fw), grid_size=(gh, gw))
68 | return x
69 |
70 | return apply
71 |
--------------------------------------------------------------------------------
/maxim/blocks/grid_gating.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import tensorflow as tf
6 | from tensorflow.keras import backend as K
7 | from tensorflow.keras import layers
8 |
9 | from ..layers import SwapAxes, TFBlockImagesByGrid, TFUnblockImages
10 |
11 |
12 | def GridGatingUnit(use_bias: bool = True, name: str = "grid_gating_unit"):
13 | """A SpatialGatingUnit as defined in the gMLP paper.
14 |
15 | The 'spatial' dim is defined as the second last.
16 | If applied on other dims, you should swapaxes first.
17 | """
18 |
19 | def apply(x):
20 | u, v = tf.split(x, 2, axis=-1)
21 | v = layers.LayerNormalization(
22 | epsilon=1e-06, name=f"{name}_intermediate_layernorm"
23 | )(v)
24 | n = K.int_shape(x)[-3] # get spatial dim
25 | v = SwapAxes()(v, -1, -3)
26 | v = layers.Dense(n, use_bias=use_bias, name=f"{name}_Dense_0")(v)
27 | v = SwapAxes()(v, -1, -3)
28 | return u * (v + 1.0)
29 |
30 | return apply
31 |
32 |
33 | def GridGmlpLayer(
34 | grid_size,
35 | use_bias: bool = True,
36 | factor: int = 2,
37 | dropout_rate: float = 0.0,
38 | name: str = "grid_gmlp",
39 | ):
40 | """Grid gMLP layer that performs global mixing of tokens."""
41 |
42 | def apply(x):
43 | n, h, w, num_channels = (
44 | K.int_shape(x)[0],
45 | K.int_shape(x)[1],
46 | K.int_shape(x)[2],
47 | K.int_shape(x)[3],
48 | )
49 | gh, gw = grid_size
50 |
51 | x, ph, pw = TFBlockImagesByGrid()(x, grid_size=(gh, gw))
52 | # gMLP1: Global (grid) mixing part, provides global grid communication.
53 | y = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x)
54 | y = layers.Dense(
55 | num_channels * factor,
56 | use_bias=use_bias,
57 | name=f"{name}_in_project",
58 | )(y)
59 | y = tf.nn.gelu(y, approximate=True)
60 | y = GridGatingUnit(use_bias=use_bias, name=f"{name}_GridGatingUnit")(y)
61 | y = layers.Dense(
62 | num_channels,
63 | use_bias=use_bias,
64 | name=f"{name}_out_project",
65 | )(y)
66 | y = layers.Dropout(dropout_rate)(y)
67 | x = x + y
68 | x = TFUnblockImages()(x, grid_size=(gh, gw), patch_size=(ph, pw))
69 | return x
70 |
71 | return apply
72 |
--------------------------------------------------------------------------------
/maxim/tests/conftest.py:
--------------------------------------------------------------------------------
1 | import gc
2 | import random
3 |
4 | import pytest
5 | import tensorflow as tf
6 | from maxim import maxim
7 | from maxim.configs import MAXIM_CONFIGS
8 | from tensorflow import keras
9 |
10 |
11 | @pytest.fixture()
12 | def fix_random():
13 | tf.random.set_seed(0)
14 | random.seed(0)
15 |
16 |
17 | @pytest.fixture(params=[(16, 12), (12, 16), (16, 16)])
18 | def window_size(request):
19 | return request.param
20 |
21 |
22 | @pytest.fixture(params=[20, 30, 40])
23 | def random_image(request, fix_random, window_size):
24 | h, w = window_size
25 | n_windows = request.param
26 |
27 | h_img = h * n_windows
28 | w_img = w * n_windows
29 |
30 | return tf.random.uniform(shape=(5, h_img, w_img, 3), dtype=tf.float32)
31 |
32 |
33 | @pytest.fixture(params=[(10, 13), (14, 15), (20, 20)])
34 | def random_image_multiple_of_64(request, fix_random, window_size):
35 | h, w = request.param
36 | h_img = h * 64
37 | w_img = w * 64
38 |
39 | return tf.random.uniform(shape=(1, h_img, w_img, 3), dtype=tf.float32)
40 |
41 |
42 | ##########################################################################
43 | ########################## Fixtures for model test #######################
44 |
45 |
46 | def Model(variant=None, input_resolution=(None, None), **kw) -> keras.Model:
47 | """Factory function to easily create a Model variant like "S".
48 |
49 | Args:
50 | variant: UNet model variants. Options: 'S-1' | 'S-2' | 'S-3'
51 | | 'M-1' | 'M-2' | 'M-3'
52 | input_resolution: Size of the input images.
53 | **kw: Other UNet config dicts.
54 |
55 | Returns:
56 | The MAXIM model.
57 | """
58 |
59 | if variant is not None:
60 | config = MAXIM_CONFIGS[variant]
61 | for k, v in config.items():
62 | kw.setdefault(k, v)
63 |
64 | if "variant" in kw:
65 | _ = kw.pop("variant")
66 | if "input_resolution" in kw:
67 | _ = kw.pop("input_resolution")
68 | model_name = kw.pop("name")
69 |
70 | maxim_model = maxim.MAXIM(**kw)
71 |
72 | inputs = keras.Input((*input_resolution, 3))
73 | outputs = maxim_model(inputs)
74 | final_model = keras.Model(inputs, outputs, name=f"{model_name}_model")
75 |
76 | return final_model
77 |
78 |
79 | # Scope = session means it should only be instantiated once per test session.
80 | @pytest.fixture(scope="session", params=["S-2"])
81 | def none_model(request):
82 | model = Model(variant=request.param, input_resolution=(None, None))
83 | yield model
84 | del model
85 | gc.collect()
86 |
--------------------------------------------------------------------------------
/maxim/configs.py:
--------------------------------------------------------------------------------
1 | """
2 | Configs based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | MAXIM_CONFIGS = {
6 | # params: 6.108515000000001 M, GFLOPS: 93.163716608
7 | "S-1": {
8 | "features": 32,
9 | "depth": 3,
10 | "num_stages": 1,
11 | "num_groups": 2,
12 | "num_bottleneck_blocks": 2,
13 | "block_gmlp_factor": 2,
14 | "grid_gmlp_factor": 2,
15 | "input_proj_factor": 2,
16 | "channels_reduction": 4,
17 | "name": "s1",
18 | },
19 | # params: 13.35383 M, GFLOPS: 206.743273472
20 | "S-2": {
21 | "features": 32,
22 | "depth": 3,
23 | "num_stages": 2,
24 | "num_groups": 2,
25 | "num_bottleneck_blocks": 2,
26 | "block_gmlp_factor": 2,
27 | "grid_gmlp_factor": 2,
28 | "input_proj_factor": 2,
29 | "channels_reduction": 4,
30 | "name": "s2",
31 | },
32 | # params: 20.599145 M, GFLOPS: 320.32194560000005
33 | "S-3": {
34 | "features": 32,
35 | "depth": 3,
36 | "num_stages": 3,
37 | "num_groups": 2,
38 | "num_bottleneck_blocks": 2,
39 | "block_gmlp_factor": 2,
40 | "grid_gmlp_factor": 2,
41 | "input_proj_factor": 2,
42 | "channels_reduction": 4,
43 | "name": "s3",
44 | },
45 | # params: 19.361219000000002 M, 308.495712256 GFLOPs
46 | "M-1": {
47 | "features": 64,
48 | "depth": 3,
49 | "num_stages": 1,
50 | "num_groups": 2,
51 | "num_bottleneck_blocks": 2,
52 | "block_gmlp_factor": 2,
53 | "grid_gmlp_factor": 2,
54 | "input_proj_factor": 2,
55 | "channels_reduction": 4,
56 | "name": "m1",
57 | },
58 | # params: 40.83911 M, 675.25541888 GFLOPs
59 | "M-2": {
60 | "features": 64,
61 | "depth": 3,
62 | "num_stages": 2,
63 | "num_groups": 2,
64 | "num_bottleneck_blocks": 2,
65 | "block_gmlp_factor": 2,
66 | "grid_gmlp_factor": 2,
67 | "input_proj_factor": 2,
68 | "channels_reduction": 4,
69 | "name": "m2",
70 | },
71 | # params: 62.317001 M, 1042.014666752 GFLOPs
72 | "M-3": {
73 | "features": 64,
74 | "depth": 3,
75 | "num_stages": 3,
76 | "num_groups": 2,
77 | "num_bottleneck_blocks": 2,
78 | "block_gmlp_factor": 2,
79 | "grid_gmlp_factor": 2,
80 | "input_proj_factor": 2,
81 | "channels_reduction": 4,
82 | "name": "m3",
83 | },
84 | }
85 |
--------------------------------------------------------------------------------
/hub_utilities/generate_doc.py:
--------------------------------------------------------------------------------
1 | """Generates model documentation for MAXIM TF models.
2 |
3 | Credits: Willi Gierke
4 | """
5 |
6 | import os
7 | from string import Template
8 |
9 | import attr
10 |
11 | template = Template(
12 | """# Module $HANDLE
13 |
14 | MAXIM model pre-trained on the $DATASET_DESCRIPTION suitable for image $TASK.
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 | ## Overview
24 |
25 | This model is based on the MAXIM backbone [1] pre-trained on the $DATASET_DESCRIPTION. You can use this
26 | model for image $TASK. Please refer to the Colab Notebook linked on this page for more details.
27 |
28 | MAXIM introduces a common backbone for different image processing tasks like
29 | denoising, deblurring, dehazing, deraining, and enhancement. You can find the complete
30 | collection of MAXIM models on TF-Hub on [this page](https://tfhub.dev/sayakpaul/collections/maxim/1).
31 |
32 | ## Notes
33 |
34 | * The original model weights are provided in [2]. There were ported to Keras models
35 | (`tf.keras.Model`) and then serialized as TensorFlow SavedModels. The porting
36 | steps are available in [3].
37 | * The format of the model handle is: `'maxim_{variant}_{task}_{dataset}'`.
38 | * The model can be unrolled into a standard Keras model and you can inspect its topology.
39 | To do so, first download the model from TF-Hub and then load it using `tf.keras.models.load_model`
40 | providing the path to the downloaded model folder.
41 |
42 | ## References
43 |
44 | [1] [MAXIM: Multi-Axis MLP for Image Processing Tu et al.](https://arxiv.org/abs/2201.02973)
45 |
46 | [2] [MAXIM GitHub](https://github.com/google-research/maxim)
47 |
48 | [3] [MAXIM TF GitHub](https://github.com/sayakpaul/maxim-tf)
49 |
50 | ## Acknowledgements
51 |
52 | * [Gustavo Martins](https://twitter.com/gusthema?lang=en)
53 | * [ML-GDE program](https://developers.google.com/programs/experts/)
54 |
55 | """
56 | )
57 |
58 |
59 | @attr.s
60 | class Config:
61 | variant = attr.ib(type=str)
62 | dataset = attr.ib(type=str)
63 | task = attr.ib(type=str)
64 | task_metadata = attr.ib(type=str)
65 |
66 | def gcs_folder_name(self):
67 | return f"{self.variant}_{self.task}_{self.dataset}"
68 |
69 | def handle(self):
70 | return f"sayakpaul/maxim_{self.gcs_folder_name().lower()}/1"
71 |
72 | def rel_doc_file_path(self):
73 | """Relative to the tfhub.dev directory."""
74 | return f"assets/docs/{self.handle()}.md"
75 |
76 |
77 | for c in [
78 | Config("S-2", "sots-indoor", "dehazing", "dehazing"),
79 | Config("S-2", "sots-outdoor", "dehazing", "dehazing"),
80 | Config("S-2", "rain13k", "deraining", "deraining"),
81 | Config("S-2", "raindrop", "deraining", "deraining"),
82 | Config("S-2", "fivek", "enhancement", "enhancement"),
83 | Config("S-2", "lol", "enhancement", "enhancement"),
84 | Config("S-3", "gopro", "deblurring", "deblurring"),
85 | Config("S-3", "realblur_j", "deblurring", "deblurring"),
86 | Config("S-3", "realblur_r", "deblurring", "deblurring"),
87 | Config("S-3", "reds", "deblurring", "deblurring"),
88 | Config("S-3", "sidd", "denoising", "denoising"),
89 | ]:
90 | save_path = os.path.join(
91 | "/Users/sayakpaul/Downloads/", "tfhub.dev", c.rel_doc_file_path()
92 | )
93 | model_folder = save_path.split("/")[-2]
94 | model_abs_path = "/".join(save_path.split("/")[:-1])
95 |
96 | if not os.path.exists(model_abs_path):
97 | os.makedirs(model_abs_path, exist_ok=True)
98 |
99 | with open(save_path, "w") as f:
100 | f.write(
101 | template.substitute(
102 | HANDLE=c.handle(),
103 | DATASET_DESCRIPTION=c.dataset,
104 | TASK=c.task,
105 | TASK_METADATA=c.task_metadata,
106 | ARCHIVE_NAME=c.gcs_folder_name(),
107 | )
108 | )
109 |
--------------------------------------------------------------------------------
/maxim/blocks/unet.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import functools
6 |
7 | import tensorflow as tf
8 | from tensorflow.keras import layers
9 |
10 | from .attentions import RCAB
11 | from .misc_gating import CrossGatingBlock, ResidualSplitHeadMultiAxisGmlpLayer
12 |
13 | Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
14 | Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
15 | ConvT_up = functools.partial(
16 | layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same"
17 | )
18 | Conv_down = functools.partial(
19 | layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same"
20 | )
21 |
22 |
23 | def UNetEncoderBlock(
24 | num_channels: int,
25 | block_size,
26 | grid_size,
27 | num_groups: int = 1,
28 | lrelu_slope: float = 0.2,
29 | block_gmlp_factor: int = 2,
30 | grid_gmlp_factor: int = 2,
31 | input_proj_factor: int = 2,
32 | channels_reduction: int = 4,
33 | dropout_rate: float = 0.0,
34 | downsample: bool = True,
35 | use_global_mlp: bool = True,
36 | use_bias: bool = True,
37 | use_cross_gating: bool = False,
38 | name: str = "unet_encoder",
39 | ):
40 | """Encoder block in MAXIM."""
41 |
42 | def apply(x, skip=None, enc=None, dec=None):
43 | if skip is not None:
44 | x = tf.concat([x, skip], axis=-1)
45 |
46 | # convolution-in
47 | x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x)
48 | shortcut_long = x
49 |
50 | for i in range(num_groups):
51 | if use_global_mlp:
52 | x = ResidualSplitHeadMultiAxisGmlpLayer(
53 | grid_size=grid_size,
54 | block_size=block_size,
55 | grid_gmlp_factor=grid_gmlp_factor,
56 | block_gmlp_factor=block_gmlp_factor,
57 | input_proj_factor=input_proj_factor,
58 | use_bias=use_bias,
59 | dropout_rate=dropout_rate,
60 | name=f"{name}_SplitHeadMultiAxisGmlpLayer_{i}",
61 | )(x)
62 | x = RCAB(
63 | num_channels=num_channels,
64 | reduction=channels_reduction,
65 | lrelu_slope=lrelu_slope,
66 | use_bias=use_bias,
67 | name=f"{name}_channel_attention_block_1{i}",
68 | )(x)
69 |
70 | x = x + shortcut_long
71 |
72 | if enc is not None and dec is not None:
73 | assert use_cross_gating
74 | x, _ = CrossGatingBlock(
75 | features=num_channels,
76 | block_size=block_size,
77 | grid_size=grid_size,
78 | dropout_rate=dropout_rate,
79 | input_proj_factor=input_proj_factor,
80 | upsample_y=False,
81 | use_bias=use_bias,
82 | name=f"{name}_cross_gating_block",
83 | )(x, enc + dec)
84 |
85 | if downsample:
86 | x_down = Conv_down(
87 | filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1"
88 | )(x)
89 | return x_down, x
90 | else:
91 | return x
92 |
93 | return apply
94 |
95 |
96 | def UNetDecoderBlock(
97 | num_channels: int,
98 | block_size,
99 | grid_size,
100 | num_groups: int = 1,
101 | lrelu_slope: float = 0.2,
102 | block_gmlp_factor: int = 2,
103 | grid_gmlp_factor: int = 2,
104 | input_proj_factor: int = 2,
105 | channels_reduction: int = 4,
106 | dropout_rate: float = 0.0,
107 | downsample: bool = True,
108 | use_global_mlp: bool = True,
109 | use_bias: bool = True,
110 | name: str = "unet_decoder",
111 | ):
112 |
113 | """Decoder block in MAXIM."""
114 |
115 | def apply(x, bridge=None):
116 | x = ConvT_up(
117 | filters=num_channels, use_bias=use_bias, name=f"{name}_ConvTranspose_0"
118 | )(x)
119 | x = UNetEncoderBlock(
120 | num_channels=num_channels,
121 | num_groups=num_groups,
122 | lrelu_slope=lrelu_slope,
123 | block_size=block_size,
124 | grid_size=grid_size,
125 | block_gmlp_factor=block_gmlp_factor,
126 | grid_gmlp_factor=grid_gmlp_factor,
127 | channels_reduction=channels_reduction,
128 | use_global_mlp=use_global_mlp,
129 | dropout_rate=dropout_rate,
130 | downsample=False,
131 | use_bias=use_bias,
132 | name=f"{name}_UNetEncoderBlock_0",
133 | )(x, skip=bridge)
134 |
135 | return x
136 |
137 | return apply
138 |
--------------------------------------------------------------------------------
/maxim/blocks/attentions.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import functools
6 |
7 | import tensorflow as tf
8 | from tensorflow.keras import layers
9 |
10 | from .others import MlpBlock
11 |
12 | Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
13 | Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
14 |
15 |
16 | def CALayer(
17 | num_channels: int,
18 | reduction: int = 4,
19 | use_bias: bool = True,
20 | name: str = "channel_attention",
21 | ):
22 | """Squeeze-and-excitation block for channel attention.
23 |
24 | ref: https://arxiv.org/abs/1709.01507
25 | """
26 |
27 | def apply(x):
28 | # 2D global average pooling
29 | y = layers.GlobalAvgPool2D(keepdims=True)(x)
30 | # Squeeze (in Squeeze-Excitation)
31 | y = Conv1x1(
32 | filters=num_channels // reduction, use_bias=use_bias, name=f"{name}_Conv_0"
33 | )(y)
34 | y = tf.nn.relu(y)
35 | # Excitation (in Squeeze-Excitation)
36 | y = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1")(y)
37 | y = tf.nn.sigmoid(y)
38 | return x * y
39 |
40 | return apply
41 |
42 |
43 | def RCAB(
44 | num_channels: int,
45 | reduction: int = 4,
46 | lrelu_slope: float = 0.2,
47 | use_bias: bool = True,
48 | name: str = "residual_ca",
49 | ):
50 | """Residual channel attention block. Contains LN,Conv,lRelu,Conv,SELayer."""
51 |
52 | def apply(x):
53 | shortcut = x
54 | x = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x)
55 | x = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_conv1")(x)
56 | x = tf.nn.leaky_relu(x, alpha=lrelu_slope)
57 | x = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_conv2")(x)
58 | x = CALayer(
59 | num_channels=num_channels,
60 | reduction=reduction,
61 | use_bias=use_bias,
62 | name=f"{name}_channel_attention",
63 | )(x)
64 | return x + shortcut
65 |
66 | return apply
67 |
68 |
69 | def RDCAB(
70 | num_channels: int,
71 | reduction: int = 16,
72 | use_bias: bool = True,
73 | dropout_rate: float = 0.0,
74 | name: str = "rdcab",
75 | ):
76 | """Residual dense channel attention block. Used in Bottlenecks."""
77 |
78 | def apply(x):
79 | y = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm")(x)
80 | y = MlpBlock(
81 | mlp_dim=num_channels,
82 | dropout_rate=dropout_rate,
83 | use_bias=use_bias,
84 | name=f"{name}_channel_mixing",
85 | )(y)
86 | y = CALayer(
87 | num_channels=num_channels,
88 | reduction=reduction,
89 | use_bias=use_bias,
90 | name=f"{name}_channel_attention",
91 | )(y)
92 | x = x + y
93 | return x
94 |
95 | return apply
96 |
97 |
98 | def SAM(
99 | num_channels: int,
100 | output_channels: int = 3,
101 | use_bias: bool = True,
102 | name: str = "sam",
103 | ):
104 |
105 | """Supervised attention module for multi-stage training.
106 |
107 | Introduced by MPRNet [CVPR2021]: https://github.com/swz30/MPRNet
108 | """
109 |
110 | def apply(x, x_image):
111 | """Apply the SAM module to the input and num_channels.
112 | Args:
113 | x: the output num_channels from UNet decoder with shape (h, w, c)
114 | x_image: the input image with shape (h, w, 3)
115 | Returns:
116 | A tuple of tensors (x1, image) where (x1) is the sam num_channels used for the
117 | next stage, and (image) is the output restored image at current stage.
118 | """
119 | # Get num_channels
120 | x1 = Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x)
121 |
122 | # Output restored image X_s
123 | if output_channels == 3:
124 | image = (
125 | Conv3x3(
126 | filters=output_channels, use_bias=use_bias, name=f"{name}_Conv_1"
127 | )(x)
128 | + x_image
129 | )
130 | else:
131 | image = Conv3x3(
132 | filters=output_channels, use_bias=use_bias, name=f"{name}_Conv_1"
133 | )(x)
134 |
135 | # Get attention maps for num_channels
136 | x2 = tf.nn.sigmoid(
137 | Conv3x3(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_2")(
138 | image
139 | )
140 | )
141 |
142 | # Get attended feature maps
143 | x1 = x1 * x2
144 |
145 | # Residual connection
146 | x1 = x1 + x
147 | return x1, image
148 |
149 | return apply
150 |
--------------------------------------------------------------------------------
/maxim/layers.py:
--------------------------------------------------------------------------------
1 | """
2 | Layers based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | and reworked to cope with variable image dimensions
4 | """
5 |
6 | import tensorflow as tf
7 | from tensorflow.experimental import numpy as tnp
8 | from tensorflow.keras import layers
9 |
10 |
11 | @tf.keras.utils.register_keras_serializable("maxim")
12 | class TFBlockImages(layers.Layer):
13 | def __init__(self, **kwargs):
14 | super().__init__(**kwargs)
15 |
16 | def call(self, image, patch_size):
17 | bs, h, w, num_channels = (
18 | tf.shape(image)[0],
19 | tf.shape(image)[1],
20 | tf.shape(image)[2],
21 | tf.shape(image)[3],
22 | )
23 | ph, pw = patch_size
24 | gh = h // ph
25 | gw = w // pw
26 | pad = [[0, 0], [0, 0]]
27 | patches = tf.space_to_batch_nd(image, [ph, pw], pad)
28 | patches = tf.split(patches, ph * pw, axis=0)
29 | patches = tf.stack(patches, 3) # (bs, h/p, h/p, p*p, 3)
30 | patches_dim = tf.shape(patches)
31 | patches = tf.reshape(
32 | patches, [patches_dim[0], patches_dim[1], patches_dim[2], -1]
33 | )
34 | patches = tf.reshape(
35 | patches,
36 | (patches_dim[0], patches_dim[1] * patches_dim[2], ph * pw, num_channels),
37 | )
38 | return [patches, gh, gw]
39 |
40 | def get_config(self):
41 | return super().get_config()
42 |
43 |
44 | @tf.keras.utils.register_keras_serializable("maxim")
45 | class TFBlockImagesByGrid(layers.Layer):
46 | def __init__(self, **kwargs):
47 | super().__init__(**kwargs)
48 |
49 | def call(self, image, grid_size):
50 | bs, h, w, num_channels = (
51 | tf.shape(image)[0],
52 | tf.shape(image)[1],
53 | tf.shape(image)[2],
54 | tf.shape(image)[3],
55 | )
56 | gh, gw = grid_size
57 | ph = h // gh
58 | pw = w // gw
59 | pad = [[0, 0], [0, 0]]
60 |
61 | def block_single_image(img):
62 | pat = tf.expand_dims(img, 0) # batch = 1
63 | pat = tf.space_to_batch_nd(pat, [ph, pw], pad) # p*p*bs, g, g, c
64 | pat = tf.expand_dims(pat, 3) # pxpxbs, g, g, 1, c
65 | pat = tf.transpose(pat, perm=[3, 1, 2, 0, 4]) # 1, g, g, pxp, c
66 | pat = tf.reshape(pat, [gh, gw, ph * pw, num_channels])
67 | return pat
68 |
69 | patches = image
70 | patches = tf.map_fn(fn=lambda x: block_single_image(x), elems=patches)
71 | patches_dim = tf.shape(patches)
72 | patches = tf.reshape(
73 | patches, [patches_dim[0], patches_dim[1], patches_dim[2], -1]
74 | )
75 | patches = tf.reshape(
76 | patches,
77 | (patches_dim[0], patches_dim[1] * patches_dim[2], ph * pw, num_channels),
78 | )
79 | return [patches, ph, pw]
80 |
81 | def get_config(self):
82 | return super().get_config()
83 |
84 |
85 | @tf.keras.utils.register_keras_serializable("maxim")
86 | class TFUnblockImages(layers.Layer):
87 | def __init__(self, **kwargs):
88 | super().__init__(**kwargs)
89 |
90 | def call(self, x, patch_size, grid_size):
91 | bs, grid_sqrt, patch_sqrt, num_channels = (
92 | tf.shape(x)[0],
93 | tf.shape(x)[1],
94 | tf.shape(x)[2],
95 | tf.shape(x)[3],
96 | )
97 | ph, pw = patch_size
98 | gh, gw = grid_size
99 |
100 | pad = [[0, 0], [0, 0]]
101 |
102 | y = tf.reshape(x, (bs, gh, gw, -1, num_channels)) # (bs, gh, gw, ph*pw, 3)
103 | y = tf.expand_dims(y, 0)
104 | y = tf.transpose(y, perm=[4, 1, 2, 3, 0, 5])
105 | y = tf.reshape(y, [bs * ph * pw, gh, gw, num_channels])
106 | y = tf.batch_to_space(y, [ph, pw], pad)
107 |
108 | return y
109 |
110 | def get_config(self):
111 | return super().get_config()
112 |
113 |
114 | @tf.keras.utils.register_keras_serializable("maxim")
115 | class SwapAxes(layers.Layer):
116 | def __init__(self, **kwargs):
117 | super().__init__(**kwargs)
118 |
119 | def call(self, x, axis_one, axis_two):
120 | return tnp.swapaxes(x, axis_one, axis_two)
121 |
122 | def get_config(self):
123 | config = super().get_config().copy()
124 | return config
125 |
126 |
127 | @tf.keras.utils.register_keras_serializable("maxim")
128 | class Resizing(tf.keras.layers.Layer):
129 | def __init__(self, ratio: float, method="bilinear", antialias=True, **kwargs):
130 | super().__init__(**kwargs)
131 | self.ratio = ratio
132 | self.method = method
133 | self.antialias = antialias
134 |
135 | def call(self, img):
136 | shape = tf.shape(img)
137 |
138 | new_sh = tf.cast(shape[1:3], tf.float32) // self.ratio
139 |
140 | x = tf.image.resize(
141 | img,
142 | size=tf.cast(new_sh, tf.int32),
143 | method=self.method,
144 | antialias=self.antialias,
145 | )
146 | return x
147 |
148 | def get_config(self):
149 | config = super().get_config().copy()
150 | config.update(
151 | {
152 | "ratio": self.ratio,
153 | "antialias": self.antialias,
154 | "method": self.method,
155 | }
156 | )
157 | return config
158 |
--------------------------------------------------------------------------------
/maxim/tests/test_block_operations.py:
--------------------------------------------------------------------------------
1 | import random
2 |
3 | import einops
4 | import numpy as np
5 | import tensorflow as tf
6 | from maxim.layers import TFBlockImages, TFBlockImagesByGrid, TFUnblockImages
7 | from tensorflow.keras import backend as K
8 | from tensorflow.keras import layers
9 |
10 | LOW_THRESHOLD = 1e-7
11 |
12 |
13 | @tf.keras.utils.register_keras_serializable("maxim")
14 | class BlockImages(layers.Layer):
15 | def __init__(self, **kwargs):
16 | super().__init__(**kwargs)
17 |
18 | def call(self, x, patch_size):
19 | bs, h, w, num_channels = (
20 | K.int_shape(x)[0],
21 | K.int_shape(x)[1],
22 | K.int_shape(x)[2],
23 | K.int_shape(x)[3],
24 | )
25 |
26 | grid_height, grid_width = h // patch_size[0], w // patch_size[1]
27 |
28 | x = einops.rearrange(
29 | x,
30 | "n (gh fh) (gw fw) c -> n (gh gw) (fh fw) c",
31 | gh=grid_height,
32 | gw=grid_width,
33 | fh=patch_size[0],
34 | fw=patch_size[1],
35 | )
36 |
37 | return x
38 |
39 | def get_config(self):
40 | config = super().get_config().copy()
41 | return config
42 |
43 |
44 | @tf.keras.utils.register_keras_serializable("maxim")
45 | class UnblockImages(layers.Layer):
46 | def __init__(self, **kwargs):
47 | super().__init__(**kwargs)
48 |
49 | def call(self, x, grid_size, patch_size):
50 | x = einops.rearrange(
51 | x,
52 | "n (gh gw) (fh fw) c -> n (gh fh) (gw fw) c",
53 | gh=grid_size[0],
54 | gw=grid_size[1],
55 | fh=patch_size[0],
56 | fw=patch_size[1],
57 | )
58 |
59 | return x
60 |
61 | def get_config(self):
62 | config = super().get_config().copy()
63 | return config
64 |
65 |
66 | def test_patch_block_equivalence(random_image, window_size):
67 | patch_size = window_size
68 | patched_image_original = BlockImages()(random_image, patch_size=patch_size)
69 | patched_image_tf, _, _ = TFBlockImages()(random_image, patch_size=patch_size)
70 | difference = np.sum(
71 | (patched_image_original.numpy() - patched_image_tf.numpy()) ** 2
72 | )
73 | assert difference < LOW_THRESHOLD
74 |
75 |
76 | def test_grid_block_equivalence(random_image, window_size):
77 | grid_size = window_size
78 | gh, gw = grid_size
79 | height, width = random_image.shape[1], random_image.shape[2]
80 | patch_size = (height // gh, width // gw)
81 | patched_image_original = BlockImages()(random_image, patch_size=patch_size)
82 | patched_image_tf, _, _ = TFBlockImagesByGrid()(random_image, grid_size=grid_size)
83 | difference = np.sum(
84 | (patched_image_original.numpy() - patched_image_tf.numpy()) ** 2
85 | )
86 | assert difference < LOW_THRESHOLD
87 |
88 |
89 | def test_reconstruction_by_grid(random_image, window_size):
90 | grid_size = window_size
91 | height, width = random_image.shape[1], random_image.shape[2]
92 | p_h, p_w = height // grid_size[0], width // grid_size[1]
93 |
94 | # Block and Unblock with einops layers
95 | patched_image_original = BlockImages()(random_image, patch_size=(p_h, p_w))
96 | reconstructed_original = UnblockImages()(
97 | patched_image_original,
98 | grid_size=grid_size,
99 | patch_size=(p_h, p_w),
100 | )
101 |
102 | # Block and Unblock with TF layers
103 | patched_image_tf, ph, pw = TFBlockImagesByGrid()(random_image, grid_size=grid_size)
104 | reconstructed_image_tf = TFUnblockImages()(
105 | patched_image_tf, grid_size=grid_size, patch_size=(ph, pw)
106 | )
107 |
108 | # Compare implementation diff and reconstruction diff
109 | difference_between_implementations = np.sum(
110 | (reconstructed_original.numpy() - reconstructed_image_tf.numpy()) ** 2
111 | )
112 | assert difference_between_implementations < LOW_THRESHOLD
113 | difference_between_reconstruction = np.sum(
114 | (random_image.numpy() - reconstructed_image_tf.numpy()) ** 2
115 | )
116 | assert difference_between_reconstruction < LOW_THRESHOLD
117 |
118 |
119 | def test_reconstruction(random_image, window_size):
120 | patch_size = window_size
121 | height, width = random_image.shape[1], random_image.shape[2]
122 |
123 | # Block and Unblock with einops layers
124 | patched_image_original = BlockImages()(random_image, patch_size=patch_size)
125 | reconstructed_original = UnblockImages()(
126 | patched_image_original,
127 | grid_size=(height // patch_size[0], width // patch_size[1]),
128 | patch_size=patch_size,
129 | )
130 |
131 | # Block and Unblock with TF layers
132 | patched_image_tf, gh, gw = TFBlockImages()(random_image, patch_size=patch_size)
133 | reconstructed_image_tf = TFUnblockImages()(
134 | patched_image_tf, patch_size=patch_size, grid_size=(gh, gw)
135 | )
136 |
137 | # Compare implementation diff and reconstruction diff
138 | difference_between_implementations = np.sum(
139 | (reconstructed_original.numpy() - reconstructed_image_tf.numpy()) ** 2
140 | )
141 | assert difference_between_implementations < LOW_THRESHOLD
142 | difference_between_reconstruction = np.sum(
143 | (random_image.numpy() - reconstructed_image_tf.numpy()) ** 2
144 | )
145 | assert difference_between_reconstruction < LOW_THRESHOLD
146 |
--------------------------------------------------------------------------------
/maxim/blocks/misc_gating.py:
--------------------------------------------------------------------------------
1 | """
2 | Blocks based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import functools
6 |
7 | import tensorflow as tf
8 | from tensorflow.keras import backend as K
9 | from tensorflow.keras import layers
10 |
11 | from ..layers import SwapAxes, TFBlockImages, TFBlockImagesByGrid, TFUnblockImages
12 | from .block_gating import BlockGmlpLayer
13 | from .grid_gating import GridGmlpLayer
14 |
15 | Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
16 | Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
17 | ConvT_up = functools.partial(
18 | layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same"
19 | )
20 | Conv_down = functools.partial(
21 | layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same"
22 | )
23 |
24 |
25 | def ResidualSplitHeadMultiAxisGmlpLayer(
26 | block_size,
27 | grid_size,
28 | block_gmlp_factor: int = 2,
29 | grid_gmlp_factor: int = 2,
30 | input_proj_factor: int = 2,
31 | use_bias: bool = True,
32 | dropout_rate: float = 0.0,
33 | name: str = "residual_split_head_maxim",
34 | ):
35 | """The multi-axis gated MLP block."""
36 |
37 | def apply(x):
38 | shortcut = x
39 | n, h, w, num_channels = (
40 | K.int_shape(x)[0],
41 | K.int_shape(x)[1],
42 | K.int_shape(x)[2],
43 | K.int_shape(x)[3],
44 | )
45 | x = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm_in")(x)
46 |
47 | x = layers.Dense(
48 | int(num_channels) * input_proj_factor,
49 | use_bias=use_bias,
50 | name=f"{name}_in_project",
51 | )(x)
52 | x = tf.nn.gelu(x, approximate=True)
53 |
54 | u, v = tf.split(x, 2, axis=-1)
55 |
56 | # GridGMLPLayer
57 | u = GridGmlpLayer(
58 | grid_size=grid_size,
59 | factor=grid_gmlp_factor,
60 | use_bias=use_bias,
61 | dropout_rate=dropout_rate,
62 | name=f"{name}_GridGmlpLayer",
63 | )(u)
64 |
65 | # BlockGMLPLayer
66 | v = BlockGmlpLayer(
67 | block_size=block_size,
68 | factor=block_gmlp_factor,
69 | use_bias=use_bias,
70 | dropout_rate=dropout_rate,
71 | name=f"{name}_BlockGmlpLayer",
72 | )(v)
73 |
74 | x = tf.concat([u, v], axis=-1)
75 |
76 | x = layers.Dense(
77 | num_channels,
78 | use_bias=use_bias,
79 | name=f"{name}_out_project",
80 | )(x)
81 | x = layers.Dropout(dropout_rate)(x)
82 | x = x + shortcut
83 | return x
84 |
85 | return apply
86 |
87 |
88 | def GetSpatialGatingWeights(
89 | features: int,
90 | block_size,
91 | grid_size,
92 | input_proj_factor: int = 2,
93 | dropout_rate: float = 0.0,
94 | use_bias: bool = True,
95 | name: str = "spatial_gating",
96 | ):
97 |
98 | """Get gating weights for cross-gating MLP block."""
99 |
100 | def apply(x):
101 | n, h, w, num_channels = (
102 | K.int_shape(x)[0],
103 | K.int_shape(x)[1],
104 | K.int_shape(x)[2],
105 | K.int_shape(x)[3],
106 | )
107 |
108 | # input projection
109 | x = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm_in")(x)
110 | x = layers.Dense(
111 | num_channels * input_proj_factor,
112 | use_bias=use_bias,
113 | name=f"{name}_in_project",
114 | )(x)
115 | x = tf.nn.gelu(x, approximate=True)
116 | u, v = tf.split(x, 2, axis=-1)
117 |
118 | # Get grid MLP weights
119 | gh, gw = grid_size
120 | u, phu, pwu = TFBlockImagesByGrid()(u, grid_size=(gh, gw))
121 | dim_u = gh * gw
122 | u = SwapAxes()(u, -1, -3)
123 | u = layers.Dense(dim_u, use_bias=use_bias, name=f"{name}_Dense_0")(u)
124 | u = SwapAxes()(u, -1, -3)
125 | u = TFUnblockImages()(u, grid_size=(gh, gw), patch_size=(phu, pwu))
126 |
127 | # Get Block MLP weights
128 | fh, fw = block_size
129 | v, gh, gw = TFBlockImages()(v, patch_size=(fh, fw))
130 | dim_v = fh * fw
131 | v = SwapAxes()(v, -1, -2)
132 | v = layers.Dense(dim_v, use_bias=use_bias, name=f"{name}_Dense_1")(v)
133 | v = SwapAxes()(v, -1, -2)
134 | v = TFUnblockImages()(v, patch_size=(fh, fw), grid_size=(gh, gw))
135 |
136 | x = tf.concat([u, v], axis=-1)
137 | x = layers.Dense(num_channels, use_bias=use_bias, name=f"{name}_out_project")(x)
138 | x = layers.Dropout(dropout_rate)(x)
139 | return x
140 |
141 | return apply
142 |
143 |
144 | def CrossGatingBlock(
145 | features: int,
146 | block_size,
147 | grid_size,
148 | dropout_rate: float = 0.0,
149 | input_proj_factor: int = 2,
150 | upsample_y: bool = True,
151 | use_bias: bool = True,
152 | name: str = "cross_gating",
153 | ):
154 |
155 | """Cross-gating MLP block."""
156 |
157 | def apply(x, y):
158 | # Upscale Y signal, y is the gating signal.
159 | if upsample_y:
160 | y = ConvT_up(
161 | filters=features, use_bias=use_bias, name=f"{name}_ConvTranspose_0"
162 | )(y)
163 |
164 | x = Conv1x1(filters=features, use_bias=use_bias, name=f"{name}_Conv_0")(x)
165 | n, h, w, num_channels = (
166 | K.int_shape(x)[0],
167 | K.int_shape(x)[1],
168 | K.int_shape(x)[2],
169 | K.int_shape(x)[3],
170 | )
171 |
172 | y = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1")(y)
173 |
174 | shortcut_x = x
175 | shortcut_y = y
176 |
177 | # Get gating weights from X
178 | x = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm_x")(x)
179 | x = layers.Dense(num_channels, use_bias=use_bias, name=f"{name}_in_project_x")(
180 | x
181 | )
182 | x = tf.nn.gelu(x, approximate=True)
183 | gx = GetSpatialGatingWeights(
184 | features=num_channels,
185 | block_size=block_size,
186 | grid_size=grid_size,
187 | dropout_rate=dropout_rate,
188 | use_bias=use_bias,
189 | name=f"{name}_SplitHeadMultiAxisGating_x",
190 | )(x)
191 |
192 | # Get gating weights from Y
193 | y = layers.LayerNormalization(epsilon=1e-06, name=f"{name}_LayerNorm_y")(y)
194 | y = layers.Dense(num_channels, use_bias=use_bias, name=f"{name}_in_project_y")(
195 | y
196 | )
197 | y = tf.nn.gelu(y, approximate=True)
198 | gy = GetSpatialGatingWeights(
199 | features=num_channels,
200 | block_size=block_size,
201 | grid_size=grid_size,
202 | dropout_rate=dropout_rate,
203 | use_bias=use_bias,
204 | name=f"{name}_SplitHeadMultiAxisGating_y",
205 | )(y)
206 |
207 | # Apply cross gating: X = X * GY, Y = Y * GX
208 | y = y * gx
209 | y = layers.Dense(num_channels, use_bias=use_bias, name=f"{name}_out_project_y")(
210 | y
211 | )
212 | y = layers.Dropout(dropout_rate)(y)
213 | y = y + shortcut_y
214 |
215 | x = x * gy # gating x using y
216 | x = layers.Dense(num_channels, use_bias=use_bias, name=f"{name}_out_project_x")(
217 | x
218 | )
219 | x = layers.Dropout(dropout_rate)(x)
220 | x = x + y + shortcut_x # get all aggregated signals
221 | return x, y
222 |
223 | return apply
224 |
--------------------------------------------------------------------------------
/convert_to_tf.py:
--------------------------------------------------------------------------------
1 | """
2 | Script to port the pre-trained JAX params of MAXIM to TF.
3 |
4 | Usage:
5 | python convert_to_tf.py
6 |
7 | The above will convert a MAXIM-3S model trained on the denoising task with the
8 | SIDD dataset. You can find the tasks and checkpoints supported by MAXIM here:
9 | https://github.com/google-research/maxim#results-and-pre-trained-models.
10 |
11 | So, to convert the pre-trained JAX params (for deblurring on GoPro dataset, say) to TF,
12 | you can run the following:
13 |
14 | python convert_to_tf.py \
15 | --task Deblurring \
16 | --ckpt_path gs://gresearch/maxim/ckpt/Deblurring/GoPro/checkpoint.npz
17 |
18 | """
19 |
20 | import argparse
21 | import collections
22 | import io
23 | import re
24 | from typing import Tuple
25 |
26 | import numpy as np
27 | import pandas as pd
28 | import tensorflow as tf
29 | from huggingface_hub import push_to_hub_keras
30 |
31 | from create_maxim_model import Model
32 | from maxim.configs import MAXIM_CONFIGS
33 |
34 | _MODEL_VARIANT_DICT = {
35 | "Denoising": "S-3",
36 | "Deblurring": "S-3",
37 | "Deraining": "S-2",
38 | "Dehazing": "S-2",
39 | "Enhancement": "S-2",
40 | }
41 |
42 |
43 | # `recover_tree()` and `get_params()` come from here:
44 | # https://github.com/google-research/maxim/blob/main/maxim/run_eval.py
45 | def recover_tree(keys, values):
46 | """Recovers a tree as a nested dict from flat names and values.
47 | This function is useful to analyze checkpoints that are saved by our programs
48 | without need to access the exact source code of the experiment. In particular,
49 | it can be used to extract an reuse various subtrees of the scheckpoint, e.g.
50 | subtree of parameters.
51 | Args:
52 | keys: a list of keys, where '/' is used as separator between nodes.
53 | values: a list of leaf values.
54 | Returns:
55 | A nested tree-like dict.
56 | """
57 | tree = {}
58 | sub_trees = collections.defaultdict(list)
59 | for k, v in zip(keys, values):
60 | if "/" not in k:
61 | tree[k] = v
62 | else:
63 | k_left, k_right = k.split("/", 1)
64 | sub_trees[k_left].append((k_right, v))
65 | for k, kv_pairs in sub_trees.items():
66 | k_subtree, v_subtree = zip(*kv_pairs)
67 | tree[k] = recover_tree(k_subtree, v_subtree)
68 | return tree
69 |
70 |
71 | def get_params(ckpt_path):
72 | """Get params checkpoint."""
73 | with tf.io.gfile.GFile(ckpt_path, "rb") as f:
74 | data = f.read()
75 | values = np.load(io.BytesIO(data))
76 | params = recover_tree(*zip(*values.items()))
77 | params = params["opt"]["target"]
78 | return params
79 |
80 |
81 | # From https://stackoverflow.com/questions/5491913/sorting-list-in-python
82 | def sort_nicely(l):
83 | """Sort the given iterable in the way that humans expect."""
84 | convert = lambda text: int(text) if text.isdigit() else text
85 | alphanum_key = lambda key: [convert(c) for c in re.split("([0-9]+)", key)]
86 | return sorted(l, key=alphanum_key)
87 |
88 |
89 | def modify_upsample(jax_params):
90 | modified_jax_params = collections.OrderedDict()
91 |
92 | jax_keys = list(jax_params.keys())
93 | keys_upsampling = []
94 | for k in range(len(jax_keys)):
95 | if "UpSample" in jax_keys[k]:
96 | keys_upsampling.append(jax_keys[k])
97 | sorted_keys_upsampling = sort_nicely(keys_upsampling)
98 |
99 | i = 1
100 | for k in sorted_keys_upsampling:
101 | k_t = k.split("_")[0] + "_" + str(i)
102 | i += 1
103 | for j in jax_params[k]:
104 | for l in jax_params[k][j]:
105 | modified_param_name = f"{k_t}_{j}/{l}:0"
106 | params = jax_params[k][j][l]
107 | modified_jax_params.update({modified_param_name: params})
108 |
109 | return modified_jax_params
110 |
111 |
112 | def modify_jax_params(jax_params):
113 | modified_jax_params = collections.OrderedDict()
114 |
115 | for k in jax_params:
116 | if "UpSample" not in k:
117 | params = jax_params[k]
118 |
119 | if ("ConvTranspose" in k) and ("bias" not in k):
120 | params = params.transpose(0, 1, 3, 2)
121 |
122 | split_names = k.split("_")
123 | modified_param_name = (
124 | "_".join(split_names[0:-1]) + "/" + split_names[-1] + ":0"
125 | )
126 |
127 | if "layernorm" in modified_param_name.lower():
128 | if "scale" in modified_param_name:
129 | modified_param_name = modified_param_name.replace("scale", "gamma")
130 | elif "bias" in modified_param_name:
131 | modified_param_name = modified_param_name.replace("bias", "beta")
132 |
133 | modified_jax_params.update({modified_param_name: params})
134 |
135 | return modified_jax_params
136 |
137 |
138 | def port_jax_params(configs: dict, ckpt_path: str) -> Tuple[dict, tf.keras.Model]:
139 | # Initialize TF Model.
140 | print("Initializing model.")
141 | tf_model = Model(**configs)
142 |
143 | # Obtain a mapping of the TF variable names and their values.
144 | tf_model_variables = tf_model.variables
145 | tf_model_variables_dict = {}
146 | for v in tf_model_variables:
147 | tf_model_variables_dict[v.name] = v
148 |
149 | # Obtain the JAX pre-trained variables.
150 | jax_params = get_params(ckpt_path)
151 | [flat_jax_dict] = pd.json_normalize(jax_params, sep="_").to_dict(orient="records")
152 |
153 | # Amend the JAX variables to match the names of the TF variables.
154 | modified_jax_params = modify_jax_params(flat_jax_dict)
155 | modified_jax_params.update(modify_upsample(jax_params))
156 |
157 | # Porting.
158 | tf_weights = []
159 | i = 0
160 |
161 | for k in modified_jax_params:
162 | param = modified_jax_params[k]
163 | tf_weights.append((tf_model_variables_dict[k], param))
164 | i += 1
165 |
166 | assert i == len(modified_jax_params) == len(tf_model_variables_dict)
167 |
168 | tf.keras.backend.batch_set_value(tf_weights)
169 |
170 | return modified_jax_params, tf_model
171 |
172 |
173 | def main(args):
174 | task = args.task
175 | task_from_ckpt = args.ckpt_path.split("/")[-3]
176 |
177 | assert task == task_from_ckpt, "Provided task and provided checkpoints differ."
178 | f" Task provided: {task}, task dervived from checkpoints: {task_from_ckpt}."
179 |
180 | # From https://github.com/google-research/maxim/blob/main/maxim/run_eval.py#L55
181 | variant = _MODEL_VARIANT_DICT[task]
182 | configs = MAXIM_CONFIGS.get(variant)
183 | configs.update(
184 | {
185 | "variant": variant,
186 | "dropout_rate": 0.0,
187 | "num_outputs": 3,
188 | "use_bias": True,
189 | "num_supervision_scales": 3,
190 | }
191 | )
192 |
193 | _, tf_model = port_jax_params(configs, args.ckpt_path)
194 | print("Model porting successful.")
195 |
196 | dataset_name = args.ckpt_path.split("/")[-2].lower()
197 | tf_params_path = f"{variant}_{task.lower()}_{dataset_name}.h5"
198 |
199 | tf_model.save_weights(tf_params_path)
200 | print(f"Model params serialized to {tf_params_path}.")
201 | saved_model_path = tf_params_path.replace(".h5", "")
202 | push_to_hub_keras(tf_model, repo_path_or_name=f"sayakpaul/{saved_model_path}")
203 | print("Model pushed to Hugging Face Hub.")
204 |
205 |
206 | def parse_args():
207 | parser = argparse.ArgumentParser(
208 | description="Conversion of the JAX pre-trained MAXIM weights to TensorFlow."
209 | )
210 | parser.add_argument(
211 | "-t",
212 | "--task",
213 | default="Denoising",
214 | type=str,
215 | choices=[
216 | "Denoising",
217 | "Deblurring",
218 | "Deraining",
219 | "Dehazing",
220 | "Enhancement",
221 | ],
222 | help="Name of the task on which the corresponding checkpoints were derived.",
223 | )
224 | parser.add_argument(
225 | "-c",
226 | "--ckpt_path",
227 | default="gs://gresearch/maxim/ckpt/Denoising/SIDD/checkpoint.npz",
228 | type=str,
229 | help="Checkpoint to port.",
230 | )
231 | return parser.parse_args()
232 |
233 |
234 | if __name__ == "__main__":
235 | args = parse_args()
236 | main(args)
237 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # MAXIM in TensorFlow
2 |
3 | [](https://huggingface.co/spaces/sayakpaul/maxim-spaces)
4 | [](https://colab.research.google.com/github/sayakpaul/maxim-tf/blob/main/notebooks/inference-dynamic-resize.ipynb) [](https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0)
5 | [](https://tfhub.dev/sayakpaul/collections/maxim/1)
6 | [](https://huggingface.co/models?pipeline_tag=image-to-image&sort=downloads&search=maxim)
7 |
8 | Implementation of MAXIM [1] in TensorFlow. This project received the [#TFCommunitySpotlight Award](https://twitter.com/TensorFlow/status/1611469033714470919?s=20&t=a5LMpYXrPg6E0WGudsYezw).
9 |
10 | MAXIM introduces a backbone that can tackle image denoising, dehazing, deblurring, deraining, and enhancement.
11 |
12 |
13 |

14 |
Taken from the MAXIM paper
15 |
16 |
17 | The weights of different MAXIM variants are in JAX and they're available in [2].
18 |
19 | You can find all the TensorFlow MAXIM models [here](https://tfhub.dev/sayakpaul/collections/maxim/1) on TensorFlow Hub as
20 | well as on [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=image-to-image&sort=downloads&search=maxim).
21 |
22 | You can try out the models on Hugging Face Spaces:
23 |
24 | * [Denoising](https://huggingface.co/spaces/sayakpaul/sidd-denoising-maxim)
25 | * [Low-light enhancement](https://huggingface.co/spaces/sayakpaul/lol-enhancement-maxim)
26 | * [Image retouching](https://huggingface.co/spaces/sayakpaul/fivek-retouching-maxim)
27 | * [Dehazing indoors](https://huggingface.co/spaces/sayakpaul/sots-indoor-dehazing-maxim)
28 | * [Dehazing outdoors](https://huggingface.co/spaces/sayakpaul/sots-outdoor-dehazing-maxim)
29 | * [Image deraining](https://huggingface.co/spaces/sayakpaul/rain13k-deraining-maxim)
30 | * [Image deblurring](https://huggingface.co/spaces/sayakpaul/gopro-deblurring-maxim)
31 |
32 | If you prefer Colab Notebooks, then you can check them out [here](https://github.com/sayakpaul/maxim-tf/tree/main/notebooks).
33 | ## Model conversion to TensorFlow from JAX
34 |
35 | Blocks and layers related to MAXIM are implemented in the `maxim` directory.
36 |
37 | `convert_to_tf.py` script is leveraged to initialize a particular MAXIM model variant and a pre-trained checkpoint and then run the conversion to TensorFlow. Refer to the usage section of the script to know more.
38 |
39 | This script serializes the model weights in `.h5` as as well pushes the `SavedModel` to Hugging Face Hub. For the latter, you need to authenticate yourself if not already done (`huggingface-cli login`).
40 |
41 | This TensorFlow implementation is in close alignment with [2]. The author of this repository has reused some code blocks from [2] (with credits) to do.
42 |
43 | ## Results and model variants
44 |
45 | A comprehensive table is available [here](https://github.com/google-research/maxim#results-and-pre-trained-models). The author of this repository validated the results with the converted models qualitatively.
46 |
47 |
48 |

49 |
50 |
51 | ## Inference with the provided sample images
52 |
53 | You can run the `run_eval.py` script for this purpose.
54 |
55 |
56 | Image Denoising (click to expand)
57 |
58 | ```
59 | python3 maxim/run_eval.py --task Denoising --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-3_denoising_sidd/1/uncompressed \
60 | --input_dir images/Denoising --output_dir images/Results --has_target=False --dynamic_resize=True
61 | ```
62 |
63 |
64 |
65 | Image Deblurring (click to expand)
66 |
67 | ```
68 | python3 maxim/run_eval.py --task Deblurring --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-3_deblurring_gopro/1/uncompressed \
69 | --input_dir images/Deblurring --output_dir images/Results --has_target=False --dynamic_resize=True
70 | ```
71 |
72 |
73 |
74 | Image Deraining (click to expand)
75 |
76 | Rain streak:
77 | ```
78 | python3 maxim/run_eval.py --task Deraining --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-2_deraining_rain13k/1/uncompressed \
79 | --input_dir images/Deraining --output_dir images/Results --has_target=False --dynamic_resize=True
80 | ```
81 |
82 | Rain drop:
83 | ```
84 | python3 maxim/run_eval.py --task Deraining --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-2_deraining_raindrop/1/uncompressed \
85 | --input_dir images/Deraining --output_dir images/Results --has_target=False --dynamic_resize=True
86 | ```
87 |
88 |
89 |
90 | Image Dehazing (click to expand)
91 |
92 | Indoor:
93 | ```
94 | python3 maxim/run_eval.py --task Dehazing --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-2_dehazing_sots-indoor/1/uncompressed \
95 | --input_dir images/Dehazing --output_dir images/Results --has_target=False --dynamic_resize=True
96 | ```
97 |
98 | Outdoor:
99 | ```
100 | python3 maxim/run_eval.py --task Dehazing --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-2_dehazing_sots-outdoor/1/uncompressed \
101 | --input_dir images/Dehazing --output_dir images/Results --has_target=False --dynamic_resize=True
102 | ```
103 |
104 |
105 |
106 | Image Enhancement (click to expand)
107 |
108 | Low-light enhancement:
109 | ```
110 | python3 maxim/run_eval.py --task Enhancement --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-2_enhancement_lol/1/uncompressed \
111 | --input_dir images/Enhancement --output_dir images/Results --has_target=False --dynamic_resize=True
112 | ```
113 |
114 | Retouching:
115 | ```
116 | python3 maxim/run_eval.py --task Enhancement --ckpt_path gs://tfhub-modules/sayakpaul/maxim_s-2_enhancement_fivek/1/uncompressed \
117 | --input_dir images/Enhancement --output_dir images/Results --has_target=False --dynamic_resize=True
118 | ```
119 |
120 |
121 |
122 | **Notes**:
123 |
124 | * The `run_eval.py` script is heavily inspired by the [original one](https://github.com/google-research/maxim/blob/main/maxim/run_eval.py).
125 | * You can set `dynamic_resize` to False to obtain faster latency compromising the prediction quality.
126 |
127 |
128 | ## XLA support
129 |
130 | The models are XLA-supported. It can drammatically reduce the latency. Refer to the `benchmark_xla.py` script for more.
131 |
132 | ## Known limitations
133 |
134 | These are some of the known limitations of the current implementation. These are all
135 | open for contributions.
136 |
137 | ### Supporting arbitrary image resolutions
138 |
139 | MAXIM supports arbitrary image resolutions. However, the available TensorFlow models were exported with `(256, 256, 3)` resolution. So, a crude form of resizing is done on the input images to perform inference with the available models. This impacts the results quite a bit. This issue is discussed in more details [here](https://github.com/sayakpaul/maxim-tf/issues/11). [Some work](https://github.com/sayakpaul/maxim-tf/pull/20) has been started to fix this behaviour (without ETA). I am thankful to [Amy Roberts](https://uk.linkedin.com/in/amy-roberts-70903a6a) from Hugging Face for guiding me in the right direction.
140 |
141 | But these models can be extended to support arbitrary resolution. Refer to [this notebook](https://colab.research.google.com/github/sayakpaul/maxim-tf/blob/main/notebooks/inference-dynamic-resize.ipynb) for more details. Specifically, for a given task and an image, a new version of the model is instantiated and the weights of the available model are copied into the new model instance. This is a time-consuming process and isn't very efficient.
142 |
143 | #### Changes to achieve arbitrary image resolution on TF
144 |
145 | - Substitute einops calls for pure TF operations: Einops operations are not intended operate on data-dependent (unknown) dimensionality [https://github.com/data-apis/array-api/issues/494](https://github.com/data-apis/array-api/issues/494). Thus, it was necessary to re-write BlockImages and UnblockImages as full TF ops. For convenience, we separate BlockImages into TFBlockImages and TFBlockImagesByGrid. We also rewrote UnblockImages as TFUnblockImages.
146 | - Make [dim_u](https://github.com/sayakpaul/maxim-tf/pull/24/files#diff-8b281bcfc137b53489e1b19b29735462d5deac19b8c2c2f82cf0383680908063R121) and [dim_v](https://github.com/sayakpaul/maxim-tf/pull/24/files#diff-8b281bcfc137b53489e1b19b29735462d5deac19b8c2c2f82cf0383680908063R130) parameters independent of the input image size. This can be done by computing dim_u and dim_v from the provided grid_size and/or block_size.
147 | - Change resizing layers so as to receive a ratio independent of the image size. It was important to use the float ratios to compute the final image size, just then converting back to int, to avoid loss of information.
148 |
149 | ### Output mismatches
150 |
151 | The outputs of the TF and JAX models vary slightly. This is because of the differences in the implementation of different layers (resizing layer mainly). Even though the differences in the outputs of individual blocks of TF and JAX models are small, they add up, in the end, to be larger than one might expect.
152 |
153 | With all that said, the qualitative performance doesn't seem to be disturbed at all.
154 |
155 | ## Call for contributions
156 |
157 | - [ ] Add a minimal training notebook.
158 | - [ ] Fix any of the known limitations stated above
159 |
160 | ## Acknowledgements
161 |
162 | * ML Developer Programs' team at Google for providing Google Cloud credits.
163 | * [Gustavo Martins](https://twitter.com/gusthema?lang=en) from Google for initial discussions and reviews of the codebase.
164 | * [Amy Roberts](https://uk.linkedin.com/in/amy-roberts-70903a6a) from Hugging Face for guiding me in the right direction for handling arbitrary input shapes.
165 |
166 | ## References
167 |
168 | [1] MAXIM paper: https://arxiv.org/abs/2201.02973
169 |
170 | [2] MAXIM official GitHub: https://github.com/google-research/maxim
171 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/notebooks/inference.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "view-in-github",
7 | "colab_type": "text"
8 | },
9 | "source": [
10 | "
"
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {
16 | "id": "Wxgb-sWfpb49"
17 | },
18 | "source": [
19 | "## Introduction\n",
20 | "\n",
21 | "This notebook shows how to run inference with the [MAXIM family of models](https://github.com/google-research/maxim) from [TensorFlow Hub](https://tfhub.dev/sayakpaul/collections/maxim/1). MAXIM family of models share the same backbone for performing: denoising, dehazing, deblurring, deraining, and enhancement. You can know more about the public MAXIM models from [here](https://github.com/google-research/maxim#results-and-pre-trained-models)."
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {
27 | "id": "Zlp7twW3tB2n"
28 | },
29 | "source": [
30 | "## Select a checkpoint"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": null,
36 | "metadata": {
37 | "id": "E-n8jA4Gojv2",
38 | "cellView": "form"
39 | },
40 | "outputs": [],
41 | "source": [
42 | "task = \"Dehazing_Indoor\" # @param [\"Denoising\", \"Dehazing_Indoor\", \"Dehazing_Outdoor\", \"Deblurring\", \"Deraining\", \"Enhancement\", \"Retouching\"]\n",
43 | "\n",
44 | "model_handle_map = {\n",
45 | " \"Denoising\": [\n",
46 | " \"https://tfhub.dev/sayakpaul/maxim_s-3_denoising_sidd/1\",\n",
47 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Denoising/input/0003_30.png\",\n",
48 | " ],\n",
49 | " \"Dehazing_Indoor\": [\n",
50 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_dehazing_sots-indoor/1\",\n",
51 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Dehazing/input/0003_0.8_0.2.png\",\n",
52 | " ],\n",
53 | " \"Dehazing_Outdoor\": [\n",
54 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_dehazing_sots-outdoor/1\",\n",
55 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Dehazing/input/1444_10.png\",\n",
56 | " ],\n",
57 | " \"Deblurring\": [\n",
58 | " \"https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_gopro/1\",\n",
59 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Deblurring/input/1fromGOPR0950.png\",\n",
60 | " ],\n",
61 | " \"Deraining\": [\n",
62 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_deraining_raindrop/1\",\n",
63 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Deraining/input/15.png\",\n",
64 | " ],\n",
65 | " \"Enhancement\": [\n",
66 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_enhancement_lol/1\",\n",
67 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Enhancement/input/a4541-DSC_0040-2.png\",\n",
68 | " ],\n",
69 | " \"Retouching\": [\n",
70 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_enhancement_fivek/1\",\n",
71 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Enhancement/input/a4541-DSC_0040-2.png\",\n",
72 | " ],\n",
73 | "}\n",
74 | "\n",
75 | "model_handle = model_handle_map[task]\n",
76 | "ckpt = model_handle[0]\n",
77 | "print(f\"TF-Hub handle: {ckpt}.\")"
78 | ]
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {
83 | "id": "3t6c3Z1Pz6UT"
84 | },
85 | "source": [
86 | "For deblurring, there are other checkpoints too:\n",
87 | "\n",
88 | "* https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_realblur_r/1\n",
89 | "* https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_realblur_j/1\n",
90 | "* https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_reds/1"
91 | ]
92 | },
93 | {
94 | "cell_type": "markdown",
95 | "metadata": {
96 | "id": "SNlQ2HzrtJOU"
97 | },
98 | "source": [
99 | "## Imports"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": null,
105 | "metadata": {
106 | "id": "IEhpgokqtKFz"
107 | },
108 | "outputs": [],
109 | "source": [
110 | "import tensorflow as tf\n",
111 | "import tensorflow_hub as hub\n",
112 | "\n",
113 | "import matplotlib.pyplot as plt\n",
114 | "\n",
115 | "from PIL import Image\n",
116 | "import numpy as np"
117 | ]
118 | },
119 | {
120 | "cell_type": "markdown",
121 | "metadata": {
122 | "id": "UTdrCvUltkCn"
123 | },
124 | "source": [
125 | "## Fetch the input image based on the task"
126 | ]
127 | },
128 | {
129 | "cell_type": "code",
130 | "execution_count": null,
131 | "metadata": {
132 | "id": "Bn90H1rltRcM"
133 | },
134 | "outputs": [],
135 | "source": [
136 | "image_url = model_handle[1]\n",
137 | "image_path = tf.keras.utils.get_file(origin=image_url)\n",
138 | "Image.open(image_path)"
139 | ]
140 | },
141 | {
142 | "cell_type": "markdown",
143 | "metadata": {
144 | "id": "UsXRY1kvum4O"
145 | },
146 | "source": [
147 | "## Preprocessing utilities\n",
148 | "\n",
149 | "Based on [this official script](https://github.com/google-research/maxim/blob/main/maxim/run_eval.py)."
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "execution_count": null,
155 | "metadata": {
156 | "id": "ZGmgEtfLt7S5"
157 | },
158 | "outputs": [],
159 | "source": [
160 | "# Since the model was not initialized to take variable-length sizes (None, None, 3),\n",
161 | "# we need to be careful about how we are resizing the images.\n",
162 | "# From https://www.tensorflow.org/lite/examples/style_transfer/overview#pre-process_the_inputs\n",
163 | "def resize_image(image, target_dim):\n",
164 | " # Resize the image so that the shorter dimension becomes `target_dim`.\n",
165 | " shape = tf.cast(tf.shape(image)[1:-1], tf.float32)\n",
166 | " short_dim = min(shape)\n",
167 | " scale = target_dim / short_dim\n",
168 | " new_shape = tf.cast(shape * scale, tf.int32)\n",
169 | " image = tf.image.resize(image, new_shape)\n",
170 | "\n",
171 | " # Central crop the image.\n",
172 | " image = tf.image.resize_with_crop_or_pad(image, target_dim, target_dim)\n",
173 | "\n",
174 | " return image\n",
175 | "\n",
176 | "\n",
177 | "def process_image(image_path, target_dim=256):\n",
178 | " input_img = np.asarray(Image.open(image_path).convert(\"RGB\"), np.float32) / 255.0\n",
179 | " input_img = tf.expand_dims(input_img, axis=0)\n",
180 | " input_img = resize_image(input_img, target_dim)\n",
181 | " return input_img"
182 | ]
183 | },
184 | {
185 | "cell_type": "markdown",
186 | "metadata": {
187 | "id": "FxsxGhvKvDrF"
188 | },
189 | "source": [
190 | "This notebook infers on fixed-shape images. However, MAXIM can handle images of any resolution. The current implementation in TensorFlow can achieve this with a bit of hacking. Please refer to [this notebook](https://github.com/sayakpaul/maxim-tf/blob/main/notebooks/inference-dynamic-resize.ipynb) if you want the model to infer on dynamic shapes. "
191 | ]
192 | },
193 | {
194 | "cell_type": "markdown",
195 | "metadata": {
196 | "id": "5T20A1xLvcLq"
197 | },
198 | "source": [
199 | "## Run predictions"
200 | ]
201 | },
202 | {
203 | "cell_type": "code",
204 | "execution_count": null,
205 | "metadata": {
206 | "id": "hOxESHl2vdRE"
207 | },
208 | "outputs": [],
209 | "source": [
210 | "def get_model(model_url: str, input_resolution: tuple) -> tf.keras.Model:\n",
211 | " inputs = tf.keras.Input((*input_resolution, 3))\n",
212 | " hub_module = hub.KerasLayer(model_url)\n",
213 | "\n",
214 | " outputs = hub_module(inputs)\n",
215 | "\n",
216 | " return tf.keras.Model(inputs, outputs)\n",
217 | "\n",
218 | "\n",
219 | "# Based on https://github.com/google-research/maxim/blob/main/maxim/run_eval.py\n",
220 | "def infer(image_path: str, model: tf.keras.Model, input_resolution=(256, 256)):\n",
221 | " preprocessed_image = process_image(image_path, input_resolution[0])\n",
222 | "\n",
223 | " preds = model.predict(preprocessed_image)\n",
224 | " if isinstance(preds, list):\n",
225 | " preds = preds[-1]\n",
226 | " if isinstance(preds, list):\n",
227 | " preds = preds[-1]\n",
228 | "\n",
229 | " preds = np.array(preds[0], np.float32)\n",
230 | " final_pred_image = np.array((np.clip(preds, 0.0, 1.0)).astype(np.float32))\n",
231 | " return final_pred_image"
232 | ]
233 | },
234 | {
235 | "cell_type": "code",
236 | "execution_count": null,
237 | "metadata": {
238 | "id": "1Fr-rYLpwab6"
239 | },
240 | "outputs": [],
241 | "source": [
242 | "input_resolution = (256, 256)\n",
243 | "\n",
244 | "model = get_model(ckpt, input_resolution)\n",
245 | "\n",
246 | "final_pred_image = infer(image_path, model, input_resolution)"
247 | ]
248 | },
249 | {
250 | "cell_type": "markdown",
251 | "metadata": {
252 | "id": "GTq1J42tw67G"
253 | },
254 | "source": [
255 | "## Visualize results"
256 | ]
257 | },
258 | {
259 | "cell_type": "code",
260 | "execution_count": null,
261 | "metadata": {
262 | "id": "ECGdFWQBw8E2"
263 | },
264 | "outputs": [],
265 | "source": [
266 | "# Based on https://www.tensorflow.org/lite/examples/style_transfer/overview#visualize_the_inputs\n",
267 | "def imshow(image, title=None):\n",
268 | " if len(image.shape) > 3:\n",
269 | " image = tf.squeeze(image, axis=0)\n",
270 | "\n",
271 | " plt.imshow(image)\n",
272 | " if title:\n",
273 | " plt.title(title)\n",
274 | "\n",
275 | "\n",
276 | "plt.figure(figsize=(15, 15))\n",
277 | "\n",
278 | "plt.subplot(1, 2, 1)\n",
279 | "input_image = np.asarray(Image.open(image_path).convert(\"RGB\"), np.float32) / 255.0\n",
280 | "imshow(input_image, \"Input Image\")\n",
281 | "\n",
282 | "plt.subplot(1, 2, 2)\n",
283 | "imshow(final_pred_image, \"Predicted Image\")"
284 | ]
285 | }
286 | ],
287 | "metadata": {
288 | "accelerator": "GPU",
289 | "colab": {
290 | "provenance": [],
291 | "include_colab_link": true
292 | },
293 | "kernelspec": {
294 | "display_name": "Python 3 (ipykernel)",
295 | "language": "python",
296 | "name": "python3"
297 | },
298 | "language_info": {
299 | "codemirror_mode": {
300 | "name": "ipython",
301 | "version": 3
302 | },
303 | "file_extension": ".py",
304 | "mimetype": "text/x-python",
305 | "name": "python",
306 | "nbconvert_exporter": "python",
307 | "pygments_lexer": "ipython3",
308 | "version": "3.8.2"
309 | }
310 | },
311 | "nbformat": 4,
312 | "nbformat_minor": 0
313 | }
--------------------------------------------------------------------------------
/notebooks/inference-dynamic-resize.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "view-in-github",
7 | "colab_type": "text"
8 | },
9 | "source": [
10 | "
"
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {
16 | "id": "Wxgb-sWfpb49"
17 | },
18 | "source": [
19 | "## Introduction\n",
20 | "\n",
21 | "This notebook shows how to run inference with the [MAXIM family of models](https://github.com/google-research/maxim) from [TensorFlow Hub](https://tfhub.dev/sayakpaul/collections/maxim/1). MAXIM family of models share the same backbone for performing: denoising, dehazing, deblurring, deraining, and enhancement. You can know more about the public MAXIM models from [here](https://github.com/google-research/maxim#results-and-pre-trained-models).\n",
22 | "\n",
23 | "This notebook allows you to run dynamic shaped images unlike [this one](https://github.com/sayakpaul/maxim-tf/blob/main/notebooks/inference.ipynb)."
24 | ]
25 | },
26 | {
27 | "cell_type": "markdown",
28 | "metadata": {
29 | "id": "Zlp7twW3tB2n"
30 | },
31 | "source": [
32 | "## Select a checkpoint"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": null,
38 | "metadata": {
39 | "id": "E-n8jA4Gojv2"
40 | },
41 | "outputs": [],
42 | "source": [
43 | "task = \"Deblurring\" # @param [\"Denoising\", \"Dehazing_Indoor\", \"Dehazing_Outdoor\", \"Deblurring\", \"Deraining\", \"Enhancement\", \"Retouching\"]\n",
44 | "\n",
45 | "model_handle_map = {\n",
46 | " \"Denoising\": [\n",
47 | " \"https://tfhub.dev/sayakpaul/maxim_s-3_denoising_sidd/1\",\n",
48 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Denoising/input/0003_30.png\",\n",
49 | " ],\n",
50 | " \"Dehazing_Indoor\": [\n",
51 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_dehazing_sots-indoor/1\",\n",
52 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Dehazing/input/0003_0.8_0.2.png\",\n",
53 | " ],\n",
54 | " \"Dehazing_Outdoor\": [\n",
55 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_dehazing_sots-outdoor/1\",\n",
56 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Dehazing/input/1444_10.png\",\n",
57 | " ],\n",
58 | " \"Deblurring\": [\n",
59 | " \"https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_gopro/1\",\n",
60 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Deblurring/input/1fromGOPR0950.png\",\n",
61 | " ],\n",
62 | " \"Deraining\": [\n",
63 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_deraining_raindrop/1\",\n",
64 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Deraining/input/15.png\",\n",
65 | " ],\n",
66 | " \"Enhancement\": [\n",
67 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_enhancement_lol/1\",\n",
68 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Enhancement/input/a4541-DSC_0040-2.png\",\n",
69 | " ],\n",
70 | " \"Retouching\": [\n",
71 | " \"https://tfhub.dev/sayakpaul/maxim_s-2_enhancement_fivek/1\",\n",
72 | " \"https://github.com/google-research/maxim/raw/main/maxim/images/Enhancement/input/a4541-DSC_0040-2.png\",\n",
73 | " ],\n",
74 | "}\n",
75 | "\n",
76 | "model_handle = model_handle_map[task]\n",
77 | "ckpt = model_handle[0]\n",
78 | "print(f\"TF-Hub handle: {ckpt}.\")"
79 | ]
80 | },
81 | {
82 | "cell_type": "markdown",
83 | "metadata": {
84 | "id": "3t6c3Z1Pz6UT"
85 | },
86 | "source": [
87 | "For deblurring, there are other checkpoints too:\n",
88 | "\n",
89 | "- https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_realblur_r/1\n",
90 | "- https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_realblur_j/1\n",
91 | "- https://tfhub.dev/sayakpaul/maxim_s-3_deblurring_reds/1\n"
92 | ]
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {
97 | "id": "SNlQ2HzrtJOU"
98 | },
99 | "source": [
100 | "## Imports"
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": null,
106 | "metadata": {
107 | "id": "IEhpgokqtKFz"
108 | },
109 | "outputs": [],
110 | "source": [
111 | "import tensorflow as tf\n",
112 | "import tensorflow_hub as hub\n",
113 | "\n",
114 | "import matplotlib.pyplot as plt\n",
115 | "\n",
116 | "from PIL import Image\n",
117 | "import numpy as np"
118 | ]
119 | },
120 | {
121 | "cell_type": "code",
122 | "execution_count": null,
123 | "metadata": {
124 | "id": "us19UdxvdE18"
125 | },
126 | "outputs": [],
127 | "source": [
128 | "import sys\n",
129 | "\n",
130 | "sys.path.append(\"..\")\n",
131 | "\n",
132 | "from create_maxim_model import Model\n",
133 | "from maxim.configs import MAXIM_CONFIGS"
134 | ]
135 | },
136 | {
137 | "cell_type": "markdown",
138 | "metadata": {
139 | "id": "YEtzvxy5dE18"
140 | },
141 | "source": [
142 | "TODO: When the repository is public, clone it and use accordingly."
143 | ]
144 | },
145 | {
146 | "cell_type": "markdown",
147 | "metadata": {
148 | "id": "UTdrCvUltkCn"
149 | },
150 | "source": [
151 | "## Fetch the input image based on the task"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": null,
157 | "metadata": {
158 | "id": "Bn90H1rltRcM"
159 | },
160 | "outputs": [],
161 | "source": [
162 | "image_url = model_handle[1]\n",
163 | "image_path = tf.keras.utils.get_file(origin=image_url)\n",
164 | "Image.open(image_path)"
165 | ]
166 | },
167 | {
168 | "cell_type": "markdown",
169 | "metadata": {
170 | "id": "qs1FCtINdE19"
171 | },
172 | "source": [
173 | "## Load the model"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": null,
179 | "metadata": {
180 | "id": "7dzkVpOQdE1-"
181 | },
182 | "outputs": [],
183 | "source": [
184 | "_MODEL = tf.keras.models.load_model(ckpt)"
185 | ]
186 | },
187 | {
188 | "cell_type": "markdown",
189 | "metadata": {
190 | "id": "UsXRY1kvum4O"
191 | },
192 | "source": [
193 | "## Preprocessing utilities\n",
194 | "\n",
195 | "Based on [this official script](https://github.com/google-research/maxim/blob/main/maxim/run_eval.py)."
196 | ]
197 | },
198 | {
199 | "cell_type": "code",
200 | "execution_count": null,
201 | "metadata": {
202 | "id": "ZGmgEtfLt7S5"
203 | },
204 | "outputs": [],
205 | "source": [
206 | "def mod_padding_symmetric(image, factor=64):\n",
207 | " \"\"\"Padding the image to be divided by factor.\"\"\"\n",
208 | " height, width = image.shape[0], image.shape[1]\n",
209 | " height_pad, width_pad = ((height + factor) // factor) * factor, (\n",
210 | " (width + factor) // factor\n",
211 | " ) * factor\n",
212 | " padh = height_pad - height if height % factor != 0 else 0\n",
213 | " padw = width_pad - width if width % factor != 0 else 0\n",
214 | " image = tf.pad(\n",
215 | " image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode=\"REFLECT\"\n",
216 | " )\n",
217 | " return image\n",
218 | "\n",
219 | "\n",
220 | "def make_shape_even(image):\n",
221 | " \"\"\"Pad the image to have even shapes.\"\"\"\n",
222 | " height, width = image.shape[0], image.shape[1]\n",
223 | " padh = 1 if height % 2 != 0 else 0\n",
224 | " padw = 1 if width % 2 != 0 else 0\n",
225 | " image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode=\"REFLECT\")\n",
226 | " return image\n",
227 | "\n",
228 | "\n",
229 | "def process_image(image: Image):\n",
230 | " input_img = np.asarray(image) / 255.0\n",
231 | " height, width = input_img.shape[0], input_img.shape[1]\n",
232 | "\n",
233 | " # Padding images to have even shapes\n",
234 | " input_img = make_shape_even(input_img)\n",
235 | " height_even, width_even = input_img.shape[0], input_img.shape[1]\n",
236 | "\n",
237 | " # padding images to be multiplies of 64\n",
238 | " input_img = mod_padding_symmetric(input_img, factor=64)\n",
239 | " input_img = tf.expand_dims(input_img, axis=0)\n",
240 | " return input_img, height, width, height_even, width_even\n",
241 | "\n",
242 | "\n",
243 | "def init_new_model(input_img):\n",
244 | " variant = ckpt.split(\"/\")[-1].split(\"_\")[0]\n",
245 | " configs = MAXIM_CONFIGS.get(variant)\n",
246 | " configs.update(\n",
247 | " {\n",
248 | " \"variant\": \"S-2\",\n",
249 | " \"dropout_rate\": 0.0,\n",
250 | " \"num_outputs\": 3,\n",
251 | " \"use_bias\": True,\n",
252 | " \"num_supervision_scales\": 3,\n",
253 | " }\n",
254 | " ) # From https://github.com/google-research/maxim/blob/main/maxim/run_eval.py#L45-#L61\n",
255 | " configs.update({\"input_resolution\": (input_img.shape[1], input_img.shape[2])})\n",
256 | " new_model = Model(**configs)\n",
257 | " new_model.set_weights(_MODEL.get_weights())\n",
258 | " return new_model"
259 | ]
260 | },
261 | {
262 | "cell_type": "markdown",
263 | "metadata": {
264 | "id": "lVOdyjTudE1_"
265 | },
266 | "source": [
267 | "To make the model operate on images of arbitrary shapes here's what we're doing:\n",
268 | "\n",
269 | "* Loading the initial pre-trained model into `_MODEL`.\n",
270 | "* Initializing a separate instance of MAXIM based on the configs and spatial resolutions of the input image.\n",
271 | "* Populating the params of this newly initialized model with that of `_MODEL`. \n",
272 | "\n",
273 | "All of it is handled in `init_new_model()`. "
274 | ]
275 | },
276 | {
277 | "cell_type": "markdown",
278 | "metadata": {
279 | "id": "5T20A1xLvcLq"
280 | },
281 | "source": [
282 | "## Run predictions"
283 | ]
284 | },
285 | {
286 | "cell_type": "code",
287 | "execution_count": null,
288 | "metadata": {
289 | "id": "hOxESHl2vdRE"
290 | },
291 | "outputs": [],
292 | "source": [
293 | "# Based on https://github.com/google-research/maxim/blob/main/maxim/run_eval.py\n",
294 | "def infer(image_path: str):\n",
295 | " image = Image.open(image_path).convert(\"RGB\")\n",
296 | " preprocessed_image, height, width, height_even, width_even = process_image(image)\n",
297 | " new_model = init_new_model(preprocessed_image)\n",
298 | "\n",
299 | " preds = new_model.predict(preprocessed_image)\n",
300 | " if isinstance(preds, list):\n",
301 | " preds = preds[-1]\n",
302 | " if isinstance(preds, list):\n",
303 | " preds = preds[-1]\n",
304 | "\n",
305 | " preds = np.array(preds[0], np.float32)\n",
306 | "\n",
307 | " new_height, new_width = preds.shape[0], preds.shape[1]\n",
308 | " h_start = new_height // 2 - height_even // 2\n",
309 | " h_end = h_start + height\n",
310 | " w_start = new_width // 2 - width_even // 2\n",
311 | " w_end = w_start + width\n",
312 | " preds = preds[h_start:h_end, w_start:w_end, :]\n",
313 | "\n",
314 | " return np.array(np.clip(preds, 0.0, 1.0))"
315 | ]
316 | },
317 | {
318 | "cell_type": "code",
319 | "execution_count": null,
320 | "metadata": {
321 | "id": "1Fr-rYLpwab6"
322 | },
323 | "outputs": [],
324 | "source": [
325 | "final_pred_image = infer(image_path)"
326 | ]
327 | },
328 | {
329 | "cell_type": "markdown",
330 | "metadata": {
331 | "id": "GTq1J42tw67G"
332 | },
333 | "source": [
334 | "## Visualize results"
335 | ]
336 | },
337 | {
338 | "cell_type": "code",
339 | "execution_count": null,
340 | "metadata": {
341 | "id": "ECGdFWQBw8E2"
342 | },
343 | "outputs": [],
344 | "source": [
345 | "# Based on https://www.tensorflow.org/lite/examples/style_transfer/overview#visualize_the_inputs\n",
346 | "def imshow(image, title=None):\n",
347 | " if len(image.shape) > 3:\n",
348 | " image = tf.squeeze(image, axis=0)\n",
349 | "\n",
350 | " plt.imshow(image)\n",
351 | " if title:\n",
352 | " plt.title(title)\n",
353 | "\n",
354 | "\n",
355 | "plt.figure(figsize=(15, 15))\n",
356 | "\n",
357 | "plt.subplot(1, 2, 1)\n",
358 | "input_image = np.asarray(Image.open(image_path).convert(\"RGB\"), np.float32) / 255.0\n",
359 | "imshow(input_image, \"Input Image\")\n",
360 | "\n",
361 | "plt.subplot(1, 2, 2)\n",
362 | "imshow(final_pred_image, \"Predicted Image\")"
363 | ]
364 | }
365 | ],
366 | "metadata": {
367 | "accelerator": "GPU",
368 | "colab": {
369 | "provenance": [],
370 | "include_colab_link": true
371 | },
372 | "kernelspec": {
373 | "display_name": "Python 3 (ipykernel)",
374 | "language": "python",
375 | "name": "python3"
376 | },
377 | "language_info": {
378 | "codemirror_mode": {
379 | "name": "ipython",
380 | "version": 3
381 | },
382 | "file_extension": ".py",
383 | "mimetype": "text/x-python",
384 | "name": "python",
385 | "nbconvert_exporter": "python",
386 | "pygments_lexer": "ipython3",
387 | "version": "3.8.2"
388 | }
389 | },
390 | "nbformat": 4,
391 | "nbformat_minor": 0
392 | }
--------------------------------------------------------------------------------
/run_eval.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Google LLC.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | """Modified from https://github.com/google-research/maxim/blob/main/maxim/run_eval.py"""
16 |
17 | import os
18 |
19 | import numpy as np
20 | import tensorflow as tf
21 | from absl import app, flags
22 | from PIL import Image
23 |
24 | from create_maxim_model import Model
25 | from maxim.configs import MAXIM_CONFIGS
26 |
27 | FLAGS = flags.FLAGS
28 |
29 | flags.DEFINE_enum(
30 | "task",
31 | "Denoising",
32 | ["Denoising", "Deblurring", "Deraining", "Dehazing", "Enhancement"],
33 | "Task to run.",
34 | )
35 | flags.DEFINE_string("ckpt_path", "", "Path to checkpoint.")
36 | flags.DEFINE_string("input_dir", "", "Input dir to the test set.")
37 | flags.DEFINE_string("output_dir", "", "Output dir to store predicted images.")
38 | flags.DEFINE_boolean("has_target", True, "Whether has corresponding gt image.")
39 | flags.DEFINE_boolean("save_images", True, "Dump predicted images.")
40 | flags.DEFINE_boolean("geometric_ensemble", False, "Whether use ensemble infernce.")
41 |
42 | _MODEL_VARIANT_DICT = {
43 | "Denoising": "S-3",
44 | "Deblurring": "S-3",
45 | "Deraining": "S-2",
46 | "Dehazing": "S-2",
47 | "Enhancement": "S-2",
48 | }
49 |
50 |
51 | _IMG_SIZE = 256
52 |
53 | _VALID_IMG_EXT = ["jpeg", "jpg", "png", "gif"]
54 |
55 |
56 | def mod_padding_symmetric(image, factor=64):
57 | """Padding the image to be divided by factor."""
58 | height, width = image.shape[0], image.shape[1]
59 | height_pad, width_pad = ((height + factor) // factor) * factor, (
60 | (width + factor) // factor
61 | ) * factor
62 | padh = height_pad - height if height % factor != 0 else 0
63 | padw = width_pad - width if width % factor != 0 else 0
64 | image = tf.pad(
65 | image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT"
66 | )
67 | return image
68 |
69 |
70 | # Since the model was not initialized to take variable-length sizes (None, None, 3),
71 | # we need to be careful about how we are resizing the images.
72 | # From https://www.tensorflow.org/lite/examples/style_transfer/overview#pre-process_the_inputs
73 | def resize_image(image, target_dim):
74 | # Resize the image so that the shorter dimension becomes `target_dim`.
75 | shape = tf.cast(tf.shape(image)[1:-1], tf.float32)
76 | short_dim = min(shape)
77 | scale = target_dim / short_dim
78 | new_shape = tf.cast(shape * scale, tf.int32)
79 | image = tf.image.resize(image, new_shape)
80 |
81 | # Central crop the image.
82 | image = tf.image.resize_with_crop_or_pad(image, target_dim, target_dim)
83 |
84 | return image
85 |
86 |
87 | def calculate_psnr(img1, img2, crop_border, test_y_channel=False):
88 | """Calculate PSNR (Peak Signal-to-Noise Ratio).
89 |
90 | Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
91 | Args:
92 | img1 (ndarray): Images with range [0, 255].
93 | img2 (ndarray): Images with range [0, 255].
94 | crop_border (int): Cropped pixels in each edge of an image. These
95 | pixels are not involved in the PSNR calculation.
96 | test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
97 | Returns:
98 | float: psnr result.
99 | """
100 | assert (
101 | img1.shape == img2.shape
102 | ), f"Image shapes are differnet: {img1.shape}, {img2.shape}."
103 | img1 = img1.astype(np.float64)
104 | img2 = img2.astype(np.float64)
105 |
106 | if crop_border != 0:
107 | img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
108 | img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
109 |
110 | if test_y_channel:
111 | img1 = to_y_channel(img1)
112 | img2 = to_y_channel(img2)
113 |
114 | mse = np.mean((img1 - img2) ** 2)
115 | if mse == 0:
116 | return float("inf")
117 | return 20.0 * np.log10(255.0 / np.sqrt(mse))
118 |
119 |
120 | def _convert_input_type_range(img):
121 | """Convert the type and range of the input image.
122 |
123 | It converts the input image to np.float32 type and range of [0, 1].
124 | It is mainly used for pre-processing the input image in colorspace
125 | convertion functions such as rgb2ycbcr and ycbcr2rgb.
126 | Args:
127 | img (ndarray): The input image. It accepts:
128 | 1. np.uint8 type with range [0, 255];
129 | 2. np.float32 type with range [0, 1].
130 | Returns:
131 | (ndarray): The converted image with type of np.float32 and range of
132 | [0, 1].
133 | """
134 | img_type = img.dtype
135 | img = img.astype(np.float32)
136 | if img_type == np.float32:
137 | pass
138 | elif img_type == np.uint8:
139 | img /= 255.0
140 | else:
141 | raise TypeError(
142 | "The img type should be np.float32 or np.uint8, " f"but got {img_type}"
143 | )
144 | return img
145 |
146 |
147 | def _convert_output_type_range(img, dst_type):
148 | """Convert the type and range of the image according to dst_type.
149 |
150 | It converts the image to desired type and range. If `dst_type` is np.uint8,
151 | images will be converted to np.uint8 type with range [0, 255]. If
152 | `dst_type` is np.float32, it converts the image to np.float32 type with
153 | range [0, 1].
154 | It is mainly used for post-processing images in colorspace convertion
155 | functions such as rgb2ycbcr and ycbcr2rgb.
156 | Args:
157 | img (ndarray): The image to be converted with np.float32 type and
158 | range [0, 255].
159 | dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
160 | converts the image to np.uint8 type with range [0, 255]. If
161 | dst_type is np.float32, it converts the image to np.float32 type
162 | with range [0, 1].
163 | Returns:
164 | (ndarray): The converted image with desired type and range.
165 | """
166 | if dst_type not in (np.uint8, np.float32):
167 | raise TypeError(
168 | "The dst_type should be np.float32 or np.uint8, " f"but got {dst_type}"
169 | )
170 | if dst_type == np.uint8:
171 | img = img.round()
172 | else:
173 | img /= 255.0
174 |
175 | return img.astype(dst_type)
176 |
177 |
178 | def rgb2ycbcr(img, y_only=False):
179 | """Convert a RGB image to YCbCr image.
180 |
181 | This function produces the same results as Matlab's `rgb2ycbcr` function.
182 | It implements the ITU-R BT.601 conversion for standard-definition
183 | television. See more details in
184 | https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
185 | It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
186 | In OpenCV, it implements a JPEG conversion. See more details in
187 | https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
188 |
189 | Args:
190 | img (ndarray): The input image. It accepts:
191 | 1. np.uint8 type with range [0, 255];
192 | 2. np.float32 type with range [0, 1].
193 | y_only (bool): Whether to only return Y channel. Default: False.
194 | Returns:
195 | ndarray: The converted YCbCr image. The output image has the same type
196 | and range as input image.
197 | """
198 | img_type = img.dtype
199 | img = _convert_input_type_range(img)
200 | if y_only:
201 | out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
202 | else:
203 | out_img = np.matmul(
204 | img,
205 | [
206 | [65.481, -37.797, 112.0],
207 | [128.553, -74.203, -93.786],
208 | [24.966, 112.0, -18.214],
209 | ],
210 | ) + [16, 128, 128]
211 | out_img = _convert_output_type_range(out_img, img_type)
212 | return out_img
213 |
214 |
215 | def to_y_channel(img):
216 | """Change to Y channel of YCbCr.
217 |
218 | Args:
219 | img (ndarray): Images with range [0, 255].
220 | Returns:
221 | (ndarray): Images with range [0, 255] (float type) without round.
222 | """
223 | img = img.astype(np.float32) / 255.0
224 | if img.ndim == 3 and img.shape[2] == 3:
225 | img = rgb2ycbcr(img, y_only=True)
226 | img = img[..., None]
227 | return img * 255.0
228 |
229 |
230 | def augment_image(image, times=8):
231 | """Geometric augmentation."""
232 | if times == 4: # only rotate image
233 | images = []
234 | for k in range(0, 4):
235 | images.append(np.rot90(image, k=k))
236 | images = np.stack(images, axis=0)
237 | elif times == 8: # roate and flip image
238 | images = []
239 | for k in range(0, 4):
240 | images.append(np.rot90(image, k=k))
241 | image = np.fliplr(image)
242 | for k in range(0, 4):
243 | images.append(np.rot90(image, k=k))
244 | images = np.stack(images, axis=0)
245 | else:
246 | raise Exception(f"Error times: {times}")
247 | return images
248 |
249 |
250 | def deaugment_image(images, times=8):
251 | """Reverse the geometric augmentation."""
252 |
253 | if times == 4: # only rotate image
254 | image = []
255 | for k in range(0, 4):
256 | image.append(np.rot90(images[k], k=4 - k))
257 | image = np.stack(image, axis=0)
258 | image = np.mean(image, axis=0)
259 | elif times == 8: # roate and flip image
260 | image = []
261 | for k in range(0, 4):
262 | image.append(np.rot90(images[k], k=4 - k))
263 | for k in range(0, 4):
264 | image.append(np.fliplr(np.rot90(images[4 + k], k=4 - k)))
265 | image = np.mean(image, axis=0)
266 | else:
267 | raise Exception(f"Error times: {times}")
268 | return image
269 |
270 |
271 | def is_image_file(filename):
272 | """Check if it is an valid image file by extension."""
273 |
274 | return any(
275 | (filename.endswith(extension)) or (filename.endswith(extension.upper()))
276 | for extension in _VALID_IMG_EXT
277 | )
278 |
279 |
280 | def save_img(img, pth):
281 | """Save an image to disk.
282 |
283 | Args:
284 | img: np.ndarry, [height, width, channels], img will be clipped to [0, 1]
285 | before saved to pth.
286 | pth: string, path to save the image to.
287 | """
288 | Image.fromarray(np.array((np.clip(img, 0.0, 1.0) * 255.0).astype(np.uint8))).save(
289 | pth, "PNG"
290 | )
291 |
292 |
293 | def make_shape_even(image):
294 | """Pad the image to have even shapes."""
295 | height, width = image.shape[0], image.shape[1]
296 | padh = 1 if height % 2 != 0 else 0
297 | padw = 1 if width % 2 != 0 else 0
298 | image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT")
299 | return image
300 |
301 |
302 | def main(_):
303 | if FLAGS.save_images:
304 | os.makedirs(FLAGS.output_dir, exist_ok=True)
305 |
306 | # sorted is important for continuning an inference job.
307 | filepath = sorted(os.listdir(os.path.join(FLAGS.input_dir, "input")))
308 | input_filenames = [
309 | os.path.join(FLAGS.input_dir, "input", x) for x in filepath if is_image_file(x)
310 | ]
311 | if FLAGS.has_target:
312 | target_filenames = [
313 | os.path.join(FLAGS.input_dir, "target", x)
314 | for x in filepath
315 | if is_image_file(x)
316 | ]
317 | num_images = len(input_filenames)
318 |
319 | print("Initializing model and loading model weights.")
320 | model = tf.keras.models.load_model(FLAGS.ckpt_path)
321 | print("Model successfully initialized and weights loaded.")
322 |
323 | psnr_all = []
324 |
325 | def _process_file(i):
326 | print(f"Processing {i + 1} / {num_images}...")
327 | input_file = input_filenames[i]
328 | input_img = np.asarray(Image.open(input_file).convert("RGB"), np.float32) / 255.0
329 |
330 | if FLAGS.has_target:
331 | target_file = target_filenames[i]
332 | target_img = (
333 | np.asarray(Image.open(target_file).convert("RGB"), np.float32) / 255.0
334 | )
335 |
336 | height, width = input_img.shape[0], input_img.shape[1]
337 | # Padding images to have even shapes
338 | input_img = make_shape_even(input_img)
339 | height_even, width_even = input_img.shape[0], input_img.shape[1]
340 |
341 | # padding images to be multiplies of 64
342 | input_img = mod_padding_symmetric(input_img, factor=64)
343 |
344 | if FLAGS.geometric_ensemble:
345 | input_img = augment_image(input_img, FLAGS.ensemble_times)
346 | else:
347 | input_img = tf.expand_dims(input_img, axis=0)
348 |
349 | # handle multi-stage outputs, obtain the last scale output of last stage
350 |
351 | preds = model.predict(input_img)
352 | if isinstance(preds, list):
353 | preds = preds[-1]
354 | if isinstance(preds, list):
355 | preds = preds[-1]
356 |
357 | # De-ensemble by averaging inferenced results.
358 | if FLAGS.geometric_ensemble:
359 | preds = deaugment_image(preds, FLAGS.ensemble_times)
360 | else:
361 | preds = np.array(preds[0], np.float32)
362 |
363 | # unpad images to get the original resolution
364 | new_height, new_width = preds.shape[0], preds.shape[1]
365 | h_start = new_height // 2 - height_even // 2
366 | h_end = h_start + height
367 | w_start = new_width // 2 - width_even // 2
368 | w_end = w_start + width
369 | preds = preds[h_start:h_end, w_start:w_end, :]
370 |
371 | # print PSNR scores
372 | if FLAGS.has_target:
373 | psnr = calculate_psnr(
374 | target_img * 255.0, preds * 255.0, crop_border=0, test_y_channel=False
375 | )
376 | print(f"{i}th image: psnr = {psnr:.4f}")
377 | else:
378 | psnr = -1
379 |
380 | # save files
381 | basename = os.path.basename(input_file)
382 | if FLAGS.save_images:
383 | save_pth = os.path.join(FLAGS.output_dir, basename)
384 | save_img(preds, save_pth)
385 |
386 | return psnr
387 |
388 | for i in range(num_images):
389 | psnr = _process_file(i)
390 | psnr_all.append(psnr)
391 |
392 | psnr_all = np.asarray(psnr_all)
393 |
394 | print(f"average psnr = {np.sum(psnr_all)/num_images:.4f}")
395 | print(f"std psnr = {np.std(psnr_all):.4f}")
396 |
397 |
398 | if __name__ == "__main__":
399 | app.run(main)
400 |
--------------------------------------------------------------------------------
/maxim/maxim.py:
--------------------------------------------------------------------------------
1 | """
2 | MAXIM based on https://github.com/google-research/maxim/blob/main/maxim/models/maxim.py
3 | """
4 |
5 | import functools
6 |
7 | import tensorflow as tf
8 | from tensorflow.keras import backend as K
9 | from tensorflow.keras import layers
10 |
11 | from .blocks.attentions import SAM
12 | from .blocks.bottleneck import BottleneckBlock
13 | from .blocks.misc_gating import CrossGatingBlock
14 | from .blocks.others import UpSampleRatio
15 | from .blocks.unet import UNetDecoderBlock, UNetEncoderBlock
16 | from .layers import Resizing
17 |
18 | Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
19 | Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
20 | ConvT_up = functools.partial(
21 | layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same"
22 | )
23 | Conv_down = functools.partial(
24 | layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same"
25 | )
26 |
27 |
28 | def MAXIM(
29 | features: int = 64,
30 | depth: int = 3,
31 | num_stages: int = 2,
32 | num_groups: int = 1,
33 | use_bias: bool = True,
34 | num_supervision_scales: int = 1,
35 | lrelu_slope: float = 0.2,
36 | use_global_mlp: bool = True,
37 | use_cross_gating: bool = True,
38 | high_res_stages: int = 2,
39 | block_size_hr=(16, 16),
40 | block_size_lr=(8, 8),
41 | grid_size_hr=(16, 16),
42 | grid_size_lr=(8, 8),
43 | num_bottleneck_blocks: int = 1,
44 | block_gmlp_factor: int = 2,
45 | grid_gmlp_factor: int = 2,
46 | input_proj_factor: int = 2,
47 | channels_reduction: int = 4,
48 | num_outputs: int = 3,
49 | dropout_rate: float = 0.0,
50 | ):
51 | """The MAXIM model function with multi-stage and multi-scale supervision.
52 |
53 | For more model details, please check the CVPR paper:
54 | MAXIM: MUlti-Axis MLP for Image Processing (https://arxiv.org/abs/2201.02973)
55 |
56 | Attributes:
57 | features: initial hidden dimension for the input resolution.
58 | depth: the number of downsampling depth for the model.
59 | num_stages: how many stages to use. It will also affects the output list.
60 | num_groups: how many blocks each stage contains.
61 | use_bias: whether to use bias in all the conv/mlp layers.
62 | num_supervision_scales: the number of desired supervision scales.
63 | lrelu_slope: the negative slope parameter in leaky_relu layers.
64 | use_global_mlp: whether to use the multi-axis gated MLP block (MAB) in each
65 | layer.
66 | use_cross_gating: whether to use the cross-gating MLP block (CGB) in the
67 | skip connections and multi-stage feature fusion layers.
68 | high_res_stages: how many stages are specificied as high-res stages. The
69 | rest (depth - high_res_stages) are called low_res_stages.
70 | block_size_hr: the block_size parameter for high-res stages.
71 | block_size_lr: the block_size parameter for low-res stages.
72 | grid_size_hr: the grid_size parameter for high-res stages.
73 | grid_size_lr: the grid_size parameter for low-res stages.
74 | num_bottleneck_blocks: how many bottleneck blocks.
75 | block_gmlp_factor: the input projection factor for block_gMLP layers.
76 | grid_gmlp_factor: the input projection factor for grid_gMLP layers.
77 | input_proj_factor: the input projection factor for the MAB block.
78 | channels_reduction: the channel reduction factor for SE layer.
79 | num_outputs: the output channels.
80 | dropout_rate: Dropout rate.
81 |
82 | Returns:
83 | The output contains a list of arrays consisting of multi-stage multi-scale
84 | outputs. For example, if num_stages = num_supervision_scales = 3 (the
85 | model used in the paper), the output specs are: outputs =
86 | [[output_stage1_scale1, output_stage1_scale2, output_stage1_scale3],
87 | [output_stage2_scale1, output_stage2_scale2, output_stage2_scale3],
88 | [output_stage3_scale1, output_stage3_scale2, output_stage3_scale3],]
89 | The final output can be retrieved by outputs[-1][-1].
90 | """
91 |
92 | def apply(x):
93 | n, h, w, c = (
94 | K.int_shape(x)[0],
95 | K.int_shape(x)[1],
96 | K.int_shape(x)[2],
97 | K.int_shape(x)[3],
98 | ) # input image shape
99 |
100 | shortcuts = []
101 | shortcuts.append(x)
102 |
103 | # Get multi-scale input images
104 | for i in range(1, num_supervision_scales):
105 | resizing_layer = Resizing(
106 | ratio=(2**i),
107 | method="nearest",
108 | antialias=True, # Following `jax.image.resize()`.
109 | name=f"initial_resizing_{K.get_uid('Resizing')}",
110 | )
111 | shortcuts.append(resizing_layer(x))
112 |
113 | # store outputs from all stages and all scales
114 | # Eg, [[(64, 64, 3), (128, 128, 3), (256, 256, 3)], # Stage-1 outputs
115 | # [(64, 64, 3), (128, 128, 3), (256, 256, 3)],] # Stage-2 outputs
116 | outputs_all = []
117 | sam_features, encs_prev, decs_prev = [], [], []
118 |
119 | for idx_stage in range(num_stages):
120 | # Input convolution, get multi-scale input features
121 | x_scales = []
122 | for i in range(num_supervision_scales):
123 | x_scale = Conv3x3(
124 | filters=(2**i) * features,
125 | use_bias=use_bias,
126 | name=f"stage_{idx_stage}_input_conv_{i}",
127 | )(shortcuts[i])
128 |
129 | # If later stages, fuse input features with SAM features from prev stage
130 | if idx_stage > 0:
131 | # use larger blocksize at high-res stages
132 | if use_cross_gating:
133 | block_size = (
134 | block_size_hr if i < high_res_stages else block_size_lr
135 | )
136 | grid_size = (
137 | grid_size_hr if i < high_res_stages else block_size_lr
138 | )
139 | x_scale, _ = CrossGatingBlock(
140 | features=(2**i) * features,
141 | block_size=block_size,
142 | grid_size=grid_size,
143 | dropout_rate=dropout_rate,
144 | input_proj_factor=input_proj_factor,
145 | upsample_y=False,
146 | use_bias=use_bias,
147 | name=f"stage_{idx_stage}_input_fuse_sam_{i}",
148 | )(x_scale, sam_features.pop())
149 | else:
150 | x_scale = Conv1x1(
151 | filters=(2**i) * features,
152 | use_bias=use_bias,
153 | name=f"stage_{idx_stage}_input_catconv_{i}",
154 | )(tf.concat([x_scale, sam_features.pop()], axis=-1))
155 |
156 | x_scales.append(x_scale)
157 |
158 | # start encoder blocks
159 | encs = []
160 | x = x_scales[0] # First full-scale input feature
161 |
162 | for i in range(depth): # 0, 1, 2
163 | # use larger blocksize at high-res stages, vice versa.
164 | block_size = block_size_hr if i < high_res_stages else block_size_lr
165 | grid_size = grid_size_hr if i < high_res_stages else block_size_lr
166 | use_cross_gating_layer = True if idx_stage > 0 else False
167 |
168 | # Multi-scale input if multi-scale supervision
169 | x_scale = x_scales[i] if i < num_supervision_scales else None
170 |
171 | # UNet Encoder block
172 | enc_prev = encs_prev.pop() if idx_stage > 0 else None
173 | dec_prev = decs_prev.pop() if idx_stage > 0 else None
174 |
175 | x, bridge = UNetEncoderBlock(
176 | num_channels=(2**i) * features,
177 | num_groups=num_groups,
178 | downsample=True,
179 | lrelu_slope=lrelu_slope,
180 | block_size=block_size,
181 | grid_size=grid_size,
182 | block_gmlp_factor=block_gmlp_factor,
183 | grid_gmlp_factor=grid_gmlp_factor,
184 | input_proj_factor=input_proj_factor,
185 | channels_reduction=channels_reduction,
186 | use_global_mlp=use_global_mlp,
187 | dropout_rate=dropout_rate,
188 | use_bias=use_bias,
189 | use_cross_gating=use_cross_gating_layer,
190 | name=f"stage_{idx_stage}_encoder_block_{i}",
191 | )(x, skip=x_scale, enc=enc_prev, dec=dec_prev)
192 |
193 | # Cache skip signals
194 | encs.append(bridge)
195 |
196 | # Global MLP bottleneck blocks
197 | for i in range(num_bottleneck_blocks):
198 | x = BottleneckBlock(
199 | block_size=block_size_lr,
200 | grid_size=block_size_lr,
201 | features=(2 ** (depth - 1)) * features,
202 | num_groups=num_groups,
203 | block_gmlp_factor=block_gmlp_factor,
204 | grid_gmlp_factor=grid_gmlp_factor,
205 | input_proj_factor=input_proj_factor,
206 | dropout_rate=dropout_rate,
207 | use_bias=use_bias,
208 | channels_reduction=channels_reduction,
209 | name=f"stage_{idx_stage}_global_block_{i}",
210 | )(x)
211 | # cache global feature for cross-gating
212 | global_feature = x
213 |
214 | # start cross gating. Use multi-scale feature fusion
215 | skip_features = []
216 | for i in reversed(range(depth)): # 2, 1, 0
217 | # use larger blocksize at high-res stages
218 | block_size = block_size_hr if i < high_res_stages else block_size_lr
219 | grid_size = grid_size_hr if i < high_res_stages else block_size_lr
220 |
221 | # get additional multi-scale signals
222 | signal = tf.concat(
223 | [
224 | UpSampleRatio(
225 | num_channels=(2**i) * features,
226 | ratio=2 ** (j - i),
227 | use_bias=use_bias,
228 | name=f"UpSampleRatio_{K.get_uid('UpSampleRatio')}",
229 | )(enc)
230 | for j, enc in enumerate(encs)
231 | ],
232 | axis=-1,
233 | )
234 |
235 | # Use cross-gating to cross modulate features
236 | if use_cross_gating:
237 | skips, global_feature = CrossGatingBlock(
238 | features=(2**i) * features,
239 | block_size=block_size,
240 | grid_size=grid_size,
241 | input_proj_factor=input_proj_factor,
242 | dropout_rate=dropout_rate,
243 | upsample_y=True,
244 | use_bias=use_bias,
245 | name=f"stage_{idx_stage}_cross_gating_block_{i}",
246 | )(signal, global_feature)
247 | else:
248 | skips = Conv1x1(
249 | filters=(2**i) * features, use_bias=use_bias, name="Conv_0"
250 | )(signal)
251 | skips = Conv3x3(
252 | filters=(2**i) * features, use_bias=use_bias, name="Conv_1"
253 | )(skips)
254 |
255 | skip_features.append(skips)
256 |
257 | # start decoder. Multi-scale feature fusion of cross-gated features
258 | outputs, decs, sam_features = [], [], []
259 | for i in reversed(range(depth)):
260 | # use larger blocksize at high-res stages
261 | block_size = block_size_hr if i < high_res_stages else block_size_lr
262 | grid_size = grid_size_hr if i < high_res_stages else block_size_lr
263 |
264 | # get multi-scale skip signals from cross-gating block
265 | signal = tf.concat(
266 | [
267 | UpSampleRatio(
268 | num_channels=(2**i) * features,
269 | ratio=2 ** (depth - j - 1 - i),
270 | use_bias=use_bias,
271 | name=f"UpSampleRatio_{K.get_uid('UpSampleRatio')}",
272 | )(skip)
273 | for j, skip in enumerate(skip_features)
274 | ],
275 | axis=-1,
276 | )
277 |
278 | # Decoder block
279 | x = UNetDecoderBlock(
280 | num_channels=(2**i) * features,
281 | num_groups=num_groups,
282 | lrelu_slope=lrelu_slope,
283 | block_size=block_size,
284 | grid_size=grid_size,
285 | block_gmlp_factor=block_gmlp_factor,
286 | grid_gmlp_factor=grid_gmlp_factor,
287 | input_proj_factor=input_proj_factor,
288 | channels_reduction=channels_reduction,
289 | use_global_mlp=use_global_mlp,
290 | dropout_rate=dropout_rate,
291 | use_bias=use_bias,
292 | name=f"stage_{idx_stage}_decoder_block_{i}",
293 | )(x, bridge=signal)
294 |
295 | # Cache decoder features for later-stage's usage
296 | decs.append(x)
297 |
298 | # output conv, if not final stage, use supervised-attention-block.
299 | if i < num_supervision_scales:
300 | if idx_stage < num_stages - 1: # not last stage, apply SAM
301 | sam, output = SAM(
302 | num_channels=(2**i) * features,
303 | output_channels=num_outputs,
304 | use_bias=use_bias,
305 | name=f"stage_{idx_stage}_supervised_attention_module_{i}",
306 | )(x, shortcuts[i])
307 | outputs.append(output)
308 | sam_features.append(sam)
309 | else: # Last stage, apply output convolutions
310 | output = Conv3x3(
311 | num_outputs,
312 | use_bias=use_bias,
313 | name=f"stage_{idx_stage}_output_conv_{i}",
314 | )(x)
315 | output = output + shortcuts[i]
316 | outputs.append(output)
317 | # Cache encoder and decoder features for later-stage's usage
318 | encs_prev = encs[::-1]
319 | decs_prev = decs
320 |
321 | # Store outputs
322 | outputs_all.append(outputs)
323 | return outputs_all
324 |
325 | return apply
326 |
--------------------------------------------------------------------------------