├── pretty_html_table ├── __init__.py └── pretty_html_table.py ├── image ├── 1.PNG ├── 2.PNG ├── generate_example_table.py └── example.html ├── .gitignore ├── setup.py ├── LICENSE.txt └── README.md /pretty_html_table/__init__.py: -------------------------------------------------------------------------------- 1 | from .pretty_html_table import build_table -------------------------------------------------------------------------------- /image/1.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sbi-rviot/ph_table/HEAD/image/1.PNG -------------------------------------------------------------------------------- /image/2.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sbi-rviot/ph_table/HEAD/image/2.PNG -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | build/* 2 | dist/* 3 | pretty_html_table.egg-info/* 4 | 5 | #update package 6 | python setup.py sdist bdist_wheel 7 | python -m twine upload -u USERNAME -p PASSWORD dist/* -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | import setuptools 2 | 3 | with open("README.md", "r") as fh: 4 | long_description = fh.read() 5 | 6 | 7 | setuptools.setup( 8 | name = 'pretty_html_table', 9 | version = '0.9.15', 10 | license_files = ('LICENSE.txt',), 11 | author="Renaud Viot", 12 | author_email="renaud.viot@simply-bi.com", 13 | description = 'Make pandas dataframe looking pretty again', 14 | long_description = long_description, 15 | long_description_content_type="text/markdown", 16 | url="https://github.com/sbi-rviot/ph_table", 17 | install_requires = ['pandas'], 18 | packages=['pretty_html_table'], 19 | classifiers=[ 20 | "Programming Language :: Python :: 3", 21 | "License :: OSI Approved :: MIT License", 22 | "Operating System :: OS Independent", 23 | ], 24 | ) 25 | 26 | -------------------------------------------------------------------------------- /LICENSE.txt: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) [year] [fullname] 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. -------------------------------------------------------------------------------- /image/generate_example_table.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | from pretty_html_table import build_table 3 | 4 | """ 5 | Code which generates example tables html for documentation. 6 | """ 7 | 8 | def generate_table(): 9 | df = pd.DataFrame(data={ 10 | 'ID' : [1,2,3,4], 11 | 'First Name' : ['Flore', 'Grom', 'Truip', 'Ftro'], 12 | 'Last Name' : ['Ju', 'Re', 'Ve', 'Cy'], 13 | 'Age' : [23, 45, 67, 12], 14 | 'Place of Birth' : ['France', 'USA', 'China', 'India'], 15 | 'Date of Birth' : ['1996-10-04', '1974-10-10', '1952-04-07', '2007-10-06'] 16 | }) 17 | 18 | start = """""" 19 | end = """ """ 20 | 21 | output = start \ 22 | + '

blue_light

' \ 23 | + build_table( 24 | df, 25 | 'blue_light', 26 | width_dict=['10px','700px', '50px', '10px','200px', '50px'], 27 | conditions={ 28 | 'Age': { 29 | 'min': 25, 30 | 'max': 60, 31 | 'min_color': 'red', 32 | 'max_color': 'green', 33 | } 34 | } 35 | ) \ 36 | + '

blue_dark

' \ 37 | + build_table(df, 'blue_dark') \ 38 | + '

grey_light

' \ 39 | + build_table(df, 'grey_light') \ 40 | + '

grey_dark

' \ 41 | + build_table(df, 'grey_dark') \ 42 | + '

orange_light

' \ 43 | + build_table(df, 'orange_light') \ 44 | + '

orange_dark

' \ 45 | + build_table(df, 'orange_dark') \ 46 | + '

yellow_light

' \ 47 | + build_table(df, 'yellow_light') \ 48 | + '

yellow_dark

' \ 49 | + build_table(df, 'yellow_dark') \ 50 | + '

green_light

' \ 51 | + build_table(df, 'green_light') \ 52 | + '

green_dark

' \ 53 | + build_table(df, 'green_dark') \ 54 | + '

red_light

' \ 55 | + build_table(df, 'red_light') \ 56 | + '

red_dark

' \ 57 | + build_table(df, 'red_dark') \ 58 | + end 59 | 60 | with open('example.html', 'w') as f: 61 | f.write(output) 62 | 63 | if __name__ == "__main__": 64 | generate_table() 65 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # pretty_html_table - Beautiful html tables made easy 2 | 3 | `pretty_html_table` exists to convert a pandas DataFrame into a pretty html table for use in email. The intended target audience is anyone who needs to send reports via email and would like to make their tables look more attractive. 4 | 5 | 12 different color themes are available. The output of the package embeds nicely with other packages used to send html emails, such as [email](https://docs.python.org/3/library/email.examples.html) or [O365](https://pypi.org/project/O365/). 6 | The html formatting is set at the DataFrame row level, which allows nearly every email provider to parse it. This obviates the need to grok out how the CSS may interact with the sending/recieving email provider. 7 | 8 | Use [`pip`](https://pypi.org/project/pretty-html-table/) to install the package: 9 | 10 | ``` 11 | pip install pretty_html_table 12 | ``` 13 | 14 | A simple example to load an Excel file to a pandas DataFrame, convert it to html, and then save to an html file: 15 | 16 | ``` 17 | from pretty_html_table import build_table 18 | 19 | df = pd.read_excel('df.xlsx') 20 | html_table_blue_light = build_table(df, 'blue_light') 21 | 22 | # Save to html file 23 | with open('pretty_table.html', 'w') as f: 24 | f.write(html_table_blue_light) 25 | 26 | # Compare to the pandas .to_html method: 27 | with open('pandas_table.html', 'w') as f: 28 | f.write(df.to_html()) 29 | ``` 30 | 31 | Use any browser to open `pretty_table.html` to see how the table would appear in an html email. 32 | 33 | 34 | ## Why choose pretty_html_table? 35 | 36 | Output is ready to be sent via any Python package used to send emails. Insert the result of this package to the body of the email and voila. 37 | 38 | 39 | ## List of colors available 40 | 41 | | Name | font style | Header | Rows | 42 | |---------------|----------------|---------------------------------------------------------------|-------------------------------------------------------------------| 43 | | 'blue_light' | Century Gothic | Bold: yes / Background color: white / Font color: dark blue | Odd background color: light blue / Even background color: white | 44 | | 'blue_dark' | Century Gothic | Bold: yes / Background color: dark blue / Font color: white | Odd background color: light blue / Even background color: white | 45 | | 'grey_light' | Century Gothic | Bold: yes / Background color: white / Font color: dark grey | Odd background color: light grey / Even background color: white | 46 | | 'grey_dark' | Century Gothic | Bold: yes / Background color: dark grey / Font color: white | Odd background color: light grey / Even background color: white | 47 | | 'orange_light' | Century Gothic | Bold: yes / Background color: white / Font color: dark orange | Odd background color: light orange / Even background color: white | 48 | | 'orange_dark' | Century Gothic | Bold: yes / Background color: dark orange / Font color: white | Odd background color: light orange / Even background color: white | 49 | | 'yellow_light' | Century Gothic | Bold: yes / Background color: white / Font color: dark yellow | Odd background color: light yellow / Even background color: white | 50 | | 'yellow_dark' | Century Gothic | Bold: yes / Background color: dark yellow / Font color: white | Odd background color: light yellow / Even background color: white | 51 | | 'green_light' | Century Gothic | Bold: yes / Background color: white / Font color: dark green | Odd background color: light green / Even background color: white | 52 | | 'green_dark' | Century Gothic | Bold: yes / Background color: dark green / Font color: white | Odd background color: light green / Even background color: white | 53 | | 'red_light' | Century Gothic | Bold: yes / Background color: white / Font color: dark red | Odd background color: light red / Even background color: white | 54 | | 'red_dark' | Century Gothic | Bold: yes / Background color: dark red / Font color: white | Odd background color: light red / Even background color: white | 55 | 56 | 57 | ## Example of an integration with the O365 package 58 | 59 | First, create a function to send an email: 60 | 61 | ``` 62 | from O365 import Account 63 | 64 | # Never hard code credentials or store them in a repo 65 | # Use environmental variables instead 66 | 67 | credentials = (o365credid, o365credpwd) 68 | account = Account(credentials) 69 | 70 | def send_email(account, to, subject, start, body, end): 71 | m = account.new_message() 72 | m.to.add(to) 73 | m.subject = subject 74 | m.body = start + body + end 75 | m.send() 76 | ``` 77 | 78 | Then create the start and end of an email in html: 79 | 80 | ``` 81 | start = """ 82 | 83 | Data table here:
""" 84 | 85 | 86 | end = """ 87 | """ 88 | ``` 89 | 90 | Finally we can utilize `pretty_table_html` to convert our Excel file and send the email: 91 | 92 | ``` 93 | from pretty_html_table import build_table 94 | 95 | html_table_blue_light = build_table(pd.read_excel('df.xlsx'), 'blue_light') 96 | 97 | send_email(account 98 | , 'test@any.com' 99 | , 'test table' 100 | , start 101 | , html_table_blue_light 102 | , end 103 | ) 104 | ``` 105 | 106 | Here are all of the currently available colors: 107 | 108 | ![Light](image/1.PNG) 109 | ![Dark](image/2.PNG) 110 | 111 | ## Additional arguments 112 | Several optional arguments now exist that allow the user to control the table's font, font size, and alignment: 113 | 114 | * `font_size` - accepts absolute keywords (`medium`) and pixel values (`20px`) 115 | * `font_family` - best practice is to include a generic font family in case a recipient's client cannot render the chosen font. The example below designates `Open Sans` as a font, but designates the generic `sans-serif` family as a fallback. It's possible that the fallback font may be utilized in case a recipient has web fonts blocked for security reasons, or if they are viewing the email on a client that does not have acces to Google Fonts. 116 | * `text_align` - accepts standard html property values such as `left`, `right`, `center`, `justify`. 117 | * `width` - accepts string representation of pixels. For instance, for the columns to have a width of 100px, you would write: width="100px". 118 | * `width_dict` - accepts list of string representation of pixels. It will only work if the length of the list matches the number of columns of your pandas dataframe. You can for example provide the following argument to the fonction: width_dict=['300px','auto', 'auto', 'auto','auto', 'auto'] only the first column would be resized to 300px, the other would be "auto". 119 | * `index` - bolean. False by default - If you write index=True, index of the dataframe will then be visible in your table. 120 | * `even_color` - accepts string representation of colors (either "white" or "FFFFF"). For instance, for the font color of the even lines to be white, you would write: even_color='white'. 121 | * `color` - accepts string representation of colors (either "white" or "FFFFF"). For instance, for the background color of the even lines to be black, you would write: even_color='black'. 122 | * `conditions` - accepts dictionnary providing the following information: : `{'min': ,'max': ,'min_color': ,'max_color': }` Below is an exmaple, if a column name is "Age" and we wish to have the ages represented in red if they are under 25 and green if they are over 60. 123 | * `padding` - accepts a string to set the CSS padding in the table (`10px`, `0px 20px`, `0px 20px 0px 0px`) 124 | * `odd_bg_color` - accepts a hex or standard color for the odd row background 125 | * `border_bottom_color` - accepts a color for the bottom border for the headers 126 | 127 | 128 | ``` 129 | html_table = build_table(df 130 | , 'yellow_dark' 131 | , font_size='medium' 132 | , font_family='Open Sans 133 | , sans-serif' 134 | , text_align='left' 135 | , width='auto' 136 | , index=False 137 | ,conditions={ 138 | 'Age': { 139 | 'min': 25, 140 | 'max': 60, 141 | 'min_color': 'red', 142 | 'max_color': 'green', 143 | } 144 | } 145 | , even_color='black' 146 | , even_bg_color='white') 147 | ``` 148 | -------------------------------------------------------------------------------- /pretty_html_table/pretty_html_table.py: -------------------------------------------------------------------------------- 1 | import io 2 | 3 | # Reformat table_color as dict of tuples 4 | 5 | dict_colors = { 6 | 'yellow_light' : ('#BF8F00', '2px solid #BF8F00', '#FFF2CC', '#FFFFFF'), 7 | 'grey_light' : ('#808080', '2px solid #808080', '#EDEDED', '#FFFFFF'), 8 | 'blue_light' : ('#305496', '2px solid #305496', '#D9E1F2', '#FFFFFF'), 9 | 'orange_light' : ('#C65911', '2px solid #C65911', '#FCE4D6', '#FFFFFF'), 10 | 'green_light' : ('#548235', '2px solid #548235', '#E2EFDA', '#FFFFFF'), 11 | 'red_light' : ('#823535', '2px solid #823535', '#efdada', '#FFFFFF'), 12 | 'yellow_dark' : ('#FFFFFF', '2px solid #BF8F00', '#FFF2CC', '#BF8F00'), 13 | 'grey_dark' : ('#FFFFFF', '2px solid #808080', '#EDEDED', '#808080'), 14 | 'blue_dark': ('#FFFFFF', '2px solid #305496', '#D9E1F2', '#305496'), 15 | 'orange_dark' : ('#FFFFFF', '2px solid #C65911', '#FCE4D6', '#C65911'), 16 | 'green_dark' : ('#FFFFFF', '2px solid #548235', '#E2EFDA', '#548235'), 17 | 'red_dark' : ('#FFFFFF', '2px solid #823535', '#efdada', '#823535') 18 | } 19 | 20 | 21 | def build_table( 22 | df, 23 | color, 24 | font_size='medium', 25 | font_family='Century Gothic, sans-serif', 26 | text_align='left', 27 | width='auto', 28 | index=False, 29 | even_color='black', 30 | even_bg_color='white', 31 | odd_bg_color=None, 32 | border_bottom_color=None, 33 | escape=True, 34 | width_dict=[], 35 | padding="0px 20px 0px 0px", 36 | float_format=None, 37 | conditions={}): 38 | 39 | if df.empty: 40 | return '' 41 | 42 | # Set color 43 | color, border_bottom, odd_background_color, header_background_color = dict_colors[color] 44 | 45 | if odd_bg_color: 46 | odd_background_color = odd_bg_color 47 | 48 | if border_bottom_color: 49 | border_bottom = border_bottom_color 50 | 51 | a = 0 52 | while a != len(df): 53 | if a == 0: 54 | df_html_output = df.iloc[[a]].to_html( 55 | na_rep="", 56 | index=index, 57 | border=0, 58 | escape=escape, 59 | float_format=float_format, 60 | ) 61 | # change format of header 62 | if index: 63 | df_html_output = df_html_output.replace('' 64 | ,'', len(df.columns)+1) 72 | 73 | df_html_output = df_html_output.replace('' 74 | ,'') 80 | 81 | else: 82 | df_html_output = df_html_output.replace('' 83 | ,'') 91 | 92 | #change format of table 93 | df_html_output = df_html_output.replace('' 94 | ,'') 100 | body = """

""" + format(df_html_output) 101 | 102 | a = 1 103 | 104 | elif a % 2 == 0: 105 | df_html_output = df.iloc[[a]].to_html(na_rep = "", index = index, header = False, escape=escape) 106 | 107 | # change format of index 108 | df_html_output = df_html_output.replace('' 109 | ,'') 115 | 116 | #change format of table 117 | df_html_output = df_html_output.replace('' 118 | ,'') 124 | 125 | body = body + format(df_html_output) 126 | 127 | a += 1 128 | 129 | elif a % 2 != 0: 130 | df_html_output = df.iloc[[a]].to_html(na_rep = "", index = index, header = False, escape=escape) 131 | 132 | # change format of index 133 | df_html_output = df_html_output.replace('' 134 | ,'') 141 | 142 | #change format of table 143 | df_html_output = df_html_output.replace('' 144 | ,'') 151 | body = body + format(df_html_output) 152 | 153 | a += 1 154 | 155 | body = body + """

""" 156 | 157 | body = body.replace(""" 158 | 159 | 160 | 161 | 162 | 163 | """,""" 164 | 165 | """).replace(""" 166 | 167 | 168 |
169 | 170 | """,""" 171 | 172 | """) 173 | 174 | if conditions: 175 | for k in conditions.keys(): 176 | try: 177 | conditions[k]['index'] = list(df.columns).index(k) 178 | width_body = '' 179 | w = 0 180 | for line in io.StringIO(body): 181 | updated_body = False 182 | if w == conditions[k]['index']: 183 | try: 184 | if int(repr(line).split('>')[1].split('<')[0]) < conditions[k]['min']: 185 | if 'color: black' in repr(line): 186 | width_body = width_body + repr(line).replace("color: black", 'color: ' + conditions[k]['min_color'])[1:] 187 | elif 'color: white' in repr(line): 188 | width_body = width_body + repr(line).replace("color: white", 'color: ' + conditions[k]['min_color'])[1:] 189 | else: 190 | width_body = width_body + repr(line).replace('">', '; color: ' + conditions[k]['min_color'] + '">')[1:] 191 | updated_body = True 192 | elif int(repr(line).split('>')[1].split('<')[0]) > conditions[k]['max']: 193 | if 'color: black' in repr(line): 194 | width_body = width_body + repr(line).replace("color: black", 'color: ' + conditions[k]['max_color'])[1:] 195 | elif 'color: white' in repr(line): 196 | width_body = width_body + repr(line).replace("color: white", 'color: ' + conditions[k]['max_color'])[1:] 197 | else: 198 | width_body = width_body + repr(line).replace('">', '; color: ' + conditions[k]['max_color'] + '">')[1:] 199 | updated_body = True 200 | except: 201 | pass 202 | if not updated_body: 203 | width_body = width_body + repr(line)[1:] 204 | 205 | if str(repr(line))[:10] == "'

blue_light

ID First Name Last Name Age Place of Birth Date of Birth
1 Flore Ju 23 France 1996-10-04
2 Grom Re 45 USA 1974-10-10
3 Truip Ve 67 China 1952-04-07
4 Ftro Cy 12 India 2007-10-06

blue_dark

2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

grey_light

47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

grey_dark

92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

orange_light

137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

orange_dark

182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

yellow_light

227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

yellow_dark

272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

green_light

317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

green_dark

362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

red_light

407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

red_dark

452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 |
IDFirst NameLast NameAgePlace of BirthDate of Birth
1FloreJu23France1996-10-04
2GromRe45USA1974-10-10
3TruipVe67China1952-04-07
4FtroCy12India2007-10-06

--------------------------------------------------------------------------------