├── OpenXML-SDK.sln ├── OpenXML-SDK.suo ├── OpenXML-SDK ├── OpenXML-SDK.csproj ├── Program.cs ├── Properties │ └── AssemblyInfo.cs ├── bin │ └── Debug │ │ ├── OpenXML-SDK.exe │ │ ├── OpenXML-SDK.pdb │ │ ├── OpenXML-SDK.vshost.exe │ │ ├── template.docx │ │ ├── test.xml │ │ ├── test1.xml │ │ ├── test2.xml │ │ ├── test3.xml │ │ └── test4.xml ├── mathMM.xml └── obj │ └── x86 │ └── Debug │ ├── DesignTimeResolveAssemblyReferencesInput.cache │ ├── Interop.AccessibilityCplAdminLib.dll │ ├── OpenXML-SDK.csproj.FileListAbsolute.txt │ ├── OpenXML-SDK.csproj.ResolveComReference.cache │ ├── OpenXML-SDK.exe │ └── OpenXML-SDK.pdb ├── OpenXMLSDKToolV25.msi ├── README.md ├── doc ├── OpenXMLSDKV25.msi └── image │ └── 20170725164448.png ├── template.docx ├── test1.xml ├── test2.xml └── 将Html导出为Docx.docx /OpenXML-SDK.sln: -------------------------------------------------------------------------------- 1 | 2 | Microsoft Visual Studio Solution File, Format Version 11.00 3 | # Visual Studio 2010 4 | Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "OpenXML-SDK", "OpenXML-SDK\OpenXML-SDK.csproj", "{97F2ABD9-BA6B-4DF6-A2AB-F0402FA4BD84}" 5 | EndProject 6 | Global 7 | GlobalSection(SolutionConfigurationPlatforms) = preSolution 8 | Debug|x86 = Debug|x86 9 | Release|x86 = Release|x86 10 | EndGlobalSection 11 | GlobalSection(ProjectConfigurationPlatforms) = postSolution 12 | {97F2ABD9-BA6B-4DF6-A2AB-F0402FA4BD84}.Debug|x86.ActiveCfg = Debug|x86 13 | {97F2ABD9-BA6B-4DF6-A2AB-F0402FA4BD84}.Debug|x86.Build.0 = Debug|x86 14 | {97F2ABD9-BA6B-4DF6-A2AB-F0402FA4BD84}.Release|x86.ActiveCfg = Release|x86 15 | {97F2ABD9-BA6B-4DF6-A2AB-F0402FA4BD84}.Release|x86.Build.0 = Release|x86 16 | EndGlobalSection 17 | GlobalSection(SolutionProperties) = preSolution 18 | HideSolutionNode = FALSE 19 | EndGlobalSection 20 | EndGlobal 21 | -------------------------------------------------------------------------------- /OpenXML-SDK.suo: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK.suo -------------------------------------------------------------------------------- /OpenXML-SDK/OpenXML-SDK.csproj: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | Debug 5 | x86 6 | 8.0.30703 7 | 2.0 8 | {97F2ABD9-BA6B-4DF6-A2AB-F0402FA4BD84} 9 | Exe 10 | Properties 11 | OpenXML_SDK 12 | OpenXML-SDK 13 | v4.0 14 | Client 15 | 512 16 | 17 | 18 | x86 19 | true 20 | full 21 | false 22 | bin\Debug\ 23 | DEBUG;TRACE 24 | prompt 25 | 4 26 | 27 | 28 | x86 29 | pdbonly 30 | true 31 | bin\Release\ 32 | TRACE 33 | prompt 34 | 4 35 | 36 | 37 | 38 | False 39 | ..\..\..\..\..\..\..\Program Files (x86)\Open XML SDK\V2.5\lib\DocumentFormat.OpenXml.dll 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | {714DD4F6-7676-4BDE-925A-C2FEC2073F36} 60 | 1 61 | 0 62 | 0 63 | tlbimp 64 | False 65 | True 66 | 67 | 68 | {2DF8D04C-5BFA-101B-BDE5-00AA0044DE52} 69 | 2 70 | 5 71 | 0 72 | primary 73 | False 74 | True 75 | 76 | 77 | {00020813-0000-0000-C000-000000000046} 78 | 1 79 | 7 80 | 0 81 | primary 82 | False 83 | True 84 | 85 | 86 | {00020905-0000-0000-C000-000000000046} 87 | 8 88 | 5 89 | 0 90 | primary 91 | False 92 | True 93 | 94 | 95 | {0002E157-0000-0000-C000-000000000046} 96 | 5 97 | 3 98 | 0 99 | primary 100 | False 101 | True 102 | 103 | 104 | 105 | 106 | 107 | 108 | 115 | -------------------------------------------------------------------------------- /OpenXML-SDK/Program.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.Collections.Generic; 3 | using System.Linq; 4 | using System.Text; 5 | using System.Reflection; 6 | using System.Xml.Xsl; 7 | using DocumentFormat.OpenXml; 8 | using System.Xml; 9 | using System.IO; 10 | using Microsoft.Office.Interop.Word; 11 | using DocumentFormat; 12 | using DocumentFormat.OpenXml.Packaging; 13 | using DocumentFormat.OpenXml.Wordprocessing; 14 | 15 | namespace OpenXML_SDK 16 | { 17 | class Program 18 | { 19 | 20 | public static void MathML2Word() 21 | { 22 | XslCompiledTransform xslTransform = new XslCompiledTransform(); 23 | xslTransform.Load(@"C:\Program Files (x86)\Microsoft Office\Office14\MML2OMML.xsl"); 24 | 25 | // Load the file containing your MathML presentation markup. 26 | using (XmlReader reader = XmlReader.Create(File.Open("../../../test1.xml", FileMode.Open))) 27 | { 28 | using (MemoryStream ms = new MemoryStream()) 29 | { 30 | XmlWriterSettings settings = xslTransform.OutputSettings.Clone(); 31 | 32 | // Configure xml writer to omit xml declaration. 33 | settings.ConformanceLevel = ConformanceLevel.Fragment; 34 | settings.OmitXmlDeclaration = true; 35 | XmlWriter xw = XmlWriter.Create(ms, settings); 36 | // Transform our MathML to OfficeMathML 37 | xslTransform.Transform(reader, xw); 38 | ms.Seek(0, SeekOrigin.Begin); 39 | StreamReader sr = new StreamReader(ms, Encoding.UTF8); 40 | 41 | string officeML = sr.ReadToEnd(); 42 | Console.Out.WriteLine(officeML); 43 | 44 | // Create a OfficeMath instance from the OfficeMathML xml. 45 | DocumentFormat.OpenXml.Math.OfficeMath om = new DocumentFormat.OpenXml.Math.OfficeMath(officeML); 46 | 47 | //创建Word文档(Microsoft.Office.Interop.Word) 48 | Microsoft.Office.Interop.Word._Application WordApp = new Application(); 49 | WordApp.Visible = true; 50 | using (WordprocessingDocument package = WordprocessingDocument.Create("../../../template.docx", WordprocessingDocumentType.Document)) 51 | { 52 | // Add a new main document part. 53 | package.AddMainDocumentPart(); 54 | 55 | // Create the Document DOM. 56 | package.MainDocumentPart.Document = 57 | new DocumentFormat.OpenXml.Wordprocessing.Document( 58 | new Body( 59 | new DocumentFormat.OpenXml.Wordprocessing.Paragraph( 60 | new Run( 61 | new Text(" "))))); 62 | 63 | // Save changes to the main document part. 64 | package.MainDocumentPart.Document.Save(); 65 | } 66 | 67 | using (WordprocessingDocument wordDoc = WordprocessingDocument.Open("../../../template.docx", true)) 68 | { 69 | DocumentFormat.OpenXml.Wordprocessing.Paragraph par = 70 | wordDoc.MainDocumentPart.Document.Body.Descendants().FirstOrDefault(); 71 | 72 | foreach (var currentRun in om.Descendants()) 73 | { 74 | // Add font information to every run. 75 | DocumentFormat.OpenXml.Wordprocessing.RunProperties runProperties2 = 76 | new DocumentFormat.OpenXml.Wordprocessing.RunProperties(); 77 | currentRun.InsertAt(runProperties2, 0); 78 | } 79 | par.Append(om); 80 | } 81 | } 82 | } 83 | } 84 | 85 | static void Main(string[] args) 86 | { 87 | MathML2Word(); 88 | Console.ReadLine(); 89 | } 90 | } 91 | } 92 | -------------------------------------------------------------------------------- /OpenXML-SDK/Properties/AssemblyInfo.cs: -------------------------------------------------------------------------------- 1 | using System.Reflection; 2 | using System.Runtime.CompilerServices; 3 | using System.Runtime.InteropServices; 4 | 5 | // 有关程序集的常规信息通过以下 6 | // 特性集控制。更改这些特性值可修改 7 | // 与程序集关联的信息。 8 | [assembly: AssemblyTitle("OpenXML-SDK")] 9 | [assembly: AssemblyDescription("")] 10 | [assembly: AssemblyConfiguration("")] 11 | [assembly: AssemblyCompany("")] 12 | [assembly: AssemblyProduct("OpenXML-SDK")] 13 | [assembly: AssemblyCopyright("Copyright © 2017")] 14 | [assembly: AssemblyTrademark("")] 15 | [assembly: AssemblyCulture("")] 16 | 17 | // 将 ComVisible 设置为 false 使此程序集中的类型 18 | // 对 COM 组件不可见。如果需要从 COM 访问此程序集中的类型, 19 | // 则将该类型上的 ComVisible 特性设置为 true。 20 | [assembly: ComVisible(false)] 21 | 22 | // 如果此项目向 COM 公开,则下列 GUID 用于类型库的 ID 23 | [assembly: Guid("5d127b7f-0766-4e54-8580-ac5cf894b61b")] 24 | 25 | // 程序集的版本信息由下面四个值组成: 26 | // 27 | // 主版本 28 | // 次版本 29 | // 内部版本号 30 | // 修订号 31 | // 32 | // 可以指定所有这些值,也可以使用“内部版本号”和“修订号”的默认值, 33 | // 方法是按如下所示使用“*”: 34 | // [assembly: AssemblyVersion("1.0.*")] 35 | [assembly: AssemblyVersion("1.0.0.0")] 36 | [assembly: AssemblyFileVersion("1.0.0.0")] 37 | -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/OpenXML-SDK.exe: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/bin/Debug/OpenXML-SDK.exe -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/OpenXML-SDK.pdb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/bin/Debug/OpenXML-SDK.pdb -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/OpenXML-SDK.vshost.exe: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/bin/Debug/OpenXML-SDK.vshost.exe -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/template.docx: -------------------------------------------------------------------------------- 1 | PK -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/test.xml: -------------------------------------------------------------------------------- 1 | 解:(I)∵e=ca=22,且2c=2, 2 | ∴a=2,b=1, 3 | ∴椭圆E的方程为x22+y2=1; 4 | (Ⅱ)设A(x1,y1),B(x2,y2),联立方程{x22+y2=1y=k1x−32,可得(4k12+2)x2−43k1x−1=0, 5 | 由题意可知Δ>0,且x1+x2=23k12k12+1,x1x2=−12(2k12+1), 6 | ∴|AB|=1+k12|x1−x2|=21+k121+8k122k12+1, 7 | 由题意可知k1k2=24, 8 | ∴k2=24k1, 9 | ∴直线OC的方程为y=24k1x, 10 | 联立方程{x22+y2=1y=24k1x,可得x2=8k121+4k12,y2=11+4k12, 11 | ∴|OC|=x2+y2=1+8k121+4k12, 12 | ∴sin∠SOT2=rr+|OC|=11+|OC|r, 13 | 又∵|OC|r=1+8k121+4k122231+k121+8k122k12+1=3241+2k121+4k121+k12, 14 | 令t=1+2k12,则t>1,1t∈(0,1), 15 | ∴|OC|r=32t2t2+t−1=3212+1t−1t2=321−(1t−12)2+94≥1, 16 | 当且仅当1t=12,即t=2时等号成立,此时k1=±22, 17 | ∴sin∠SOT2≤12, 18 | ∴∠SOT2≤π6, 19 | 故∠SOT最大值为π3, 20 | 综上所述,∠SOT的最大值为π3,取得最大值时直线l的斜率为k1=±22. 21 | -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/test1.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | R 4 | i 5 | 6 | 7 | 8 | j 9 | 10 | 11 | 12 | kl 13 | 14 | = 15 | 16 | g 17 | jm 18 | 19 | 20 | R 21 | imkl 22 | 23 | + 24 | 25 | 1 26 | - 27 | 28 | g 29 | jm 30 | 31 | 32 | R 33 | mikl 34 | 35 | 36 | 37 | -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/test2.xml: -------------------------------------------------------------------------------- 1 | e=ca=22 -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/test3.xml: -------------------------------------------------------------------------------- 1 | 2 | 解:(I)∵ 3 | 4 | 5 | e 6 | = 7 | 8 | c 9 | a 10 | 11 | = 12 | 13 | 14 | 15 | 2 16 | 17 | 18 | 2 19 | 20 | 21 | ,且 22 | 23 | 24 | 2 25 | c 26 | = 27 | 2 28 | 29 | , 30 | 31 | ∴ 32 | 33 | 34 | a 35 | = 36 | 37 | 2 38 | 39 | , 40 | b 41 | = 42 | 1 43 | 44 | , 45 | 46 | ∴椭圆 47 | 48 | E 49 | 的方程为 50 | 51 | 52 | 53 | 54 | 55 | x 56 | 2 57 | 58 | 59 | 2 60 | 61 | + 62 | 63 | y 64 | 2 65 | 66 | = 67 | 1 68 | 69 | ; 70 | 71 | (Ⅱ)设 72 | 73 | 74 | A 75 | 76 | ( 77 | 78 | 79 | x 80 | 1 81 | 82 | , 83 | 84 | y 85 | 1 86 | 87 | 88 | ) 89 | 90 | , 91 | B 92 | 93 | ( 94 | 95 | 96 | x 97 | 2 98 | 99 | , 100 | 101 | y 102 | 2 103 | 104 | 105 | ) 106 | 107 | 108 | ,联立方程 109 | 110 | 111 | 112 | { 113 | 114 | 115 | 116 | 117 | 118 | 119 | x 120 | 2 121 | 122 | 123 | 2 124 | 125 | + 126 | 127 | y 128 | 2 129 | 130 | = 131 | 1 132 | 133 | 134 | 135 | 136 | y 137 | = 138 | 139 | k 140 | 1 141 | 142 | x 143 | − 144 | 145 | 146 | 147 | 3 148 | 149 | 150 | 2 151 | 152 | 153 | 154 | 155 | 156 | 157 | ,可得 158 | 159 | 160 | 161 | ( 162 | 163 | 4 164 | 165 | k 166 | 1 167 | 168 | 169 | 170 | 2 171 | 172 | + 173 | 2 174 | 175 | ) 176 | 177 | 178 | x 179 | 2 180 | 181 | − 182 | 4 183 | 184 | 3 185 | 186 | 187 | k 188 | 1 189 | 190 | x 191 | − 192 | 1 193 | = 194 | 0 195 | 196 | , 197 | 198 | 由题意可知 199 | 200 | 201 | Δ 202 | > 203 | 0 204 | 205 | ,且 206 | 207 | 208 | 209 | x 210 | 1 211 | 212 | + 213 | 214 | x 215 | 2 216 | 217 | = 218 | 219 | 220 | 2 221 | 222 | 3 223 | 224 | 225 | k 226 | 1 227 | 228 | 229 | 230 | 2 231 | 232 | k 233 | 1 234 | 235 | 236 | 237 | 2 238 | 239 | + 240 | 1 241 | 242 | 243 | , 244 | 245 | x 246 | 1 247 | 248 | 249 | x 250 | 2 251 | 252 | = 253 | − 254 | 255 | 1 256 | 257 | 2 258 | 259 | ( 260 | 261 | 2 262 | 263 | k 264 | 1 265 | 266 | 267 | 268 | 2 269 | 270 | + 271 | 1 272 | 273 | ) 274 | 275 | 276 | 277 | 278 | , 279 | 280 | ∴ 281 | 282 | 283 | 284 | | 285 | 286 | A 287 | B 288 | 289 | | 290 | 291 | = 292 | 293 | 294 | 1 295 | + 296 | 297 | k 298 | 1 299 | 300 | 301 | 302 | 2 303 | 304 | 305 | 306 | 307 | | 308 | 309 | 310 | x 311 | 1 312 | 313 | − 314 | 315 | x 316 | 2 317 | 318 | 319 | | 320 | 321 | = 322 | 323 | 2 324 | 325 | 326 | 327 | 328 | 329 | 1 330 | + 331 | 332 | k 333 | 1 334 | 335 | 336 | 337 | 2 338 | 339 | 340 | 341 | 342 | 343 | 1 344 | + 345 | 8 346 | 347 | k 348 | 1 349 | 350 | 351 | 352 | 2 353 | 354 | 355 | 356 | 357 | 358 | 2 359 | 360 | k 361 | 1 362 | 363 | 364 | 365 | 2 366 | 367 | + 368 | 1 369 | 370 | 371 | 372 | , 373 | 374 | 由题意可知 375 | 376 | 377 | 378 | k 379 | 1 380 | 381 | 382 | k 383 | 2 384 | 385 | = 386 | 387 | 388 | 389 | 2 390 | 391 | 392 | 4 393 | 394 | 395 | , 396 | 397 | ∴ 398 | 399 | 400 | 401 | k 402 | 2 403 | 404 | = 405 | 406 | 407 | 408 | 2 409 | 410 | 411 | 412 | 4 413 | 414 | k 415 | 1 416 | 417 | 418 | 419 | 420 | , 421 | 422 | ∴直线 423 | 424 | 425 | O 426 | C 427 | 428 | 的方程为 429 | 430 | 431 | y 432 | = 433 | 434 | 435 | 436 | 2 437 | 438 | 439 | 440 | 4 441 | 442 | k 443 | 1 444 | 445 | 446 | 447 | x 448 | 449 | , 450 | 451 | 联立方程 452 | 453 | 454 | 455 | { 456 | 457 | 458 | 459 | 460 | 461 | 462 | x 463 | 2 464 | 465 | 466 | 2 467 | 468 | + 469 | 470 | y 471 | 2 472 | 473 | = 474 | 1 475 | 476 | 477 | 478 | 479 | y 480 | = 481 | 482 | 483 | 484 | 2 485 | 486 | 487 | 488 | 4 489 | 490 | k 491 | 1 492 | 493 | 494 | 495 | x 496 | 497 | 498 | 499 | 500 | 501 | ,可得 502 | 503 | 504 | 505 | x 506 | 2 507 | 508 | = 509 | 510 | 511 | 8 512 | 513 | k 514 | 1 515 | 516 | 517 | 518 | 2 519 | 520 | 521 | 522 | 1 523 | + 524 | 4 525 | 526 | k 527 | 1 528 | 529 | 530 | 531 | 2 532 | 533 | 534 | 535 | , 536 | 537 | y 538 | 2 539 | 540 | = 541 | 542 | 1 543 | 544 | 1 545 | + 546 | 4 547 | 548 | k 549 | 1 550 | 551 | 552 | 553 | 2 554 | 555 | 556 | 557 | 558 | , 559 | 560 | ∴ 561 | 562 | 563 | 564 | | 565 | 566 | O 567 | C 568 | 569 | | 570 | 571 | = 572 | 573 | 574 | 575 | x 576 | 2 577 | 578 | + 579 | 580 | y 581 | 2 582 | 583 | 584 | 585 | = 586 | 587 | 588 | 589 | 590 | 1 591 | + 592 | 8 593 | 594 | k 595 | 1 596 | 597 | 598 | 599 | 2 600 | 601 | 602 | 603 | 1 604 | + 605 | 4 606 | 607 | k 608 | 1 609 | 610 | 611 | 612 | 2 613 | 614 | 615 | 616 | 617 | 618 | 619 | , 620 | 621 | ∴ 622 | 623 | 624 | sin 625 | 626 | 627 | ∠ 628 | S 629 | O 630 | T 631 | 632 | 2 633 | 634 | = 635 | 636 | r 637 | 638 | r 639 | + 640 | 641 | | 642 | 643 | O 644 | C 645 | 646 | | 647 | 648 | 649 | 650 | = 651 | 652 | 1 653 | 654 | 1 655 | + 656 | 657 | 658 | 659 | | 660 | 661 | O 662 | C 663 | 664 | | 665 | 666 | 667 | r 668 | 669 | 670 | 671 | 672 | , 673 | 674 | 又∵ 675 | 676 | 677 | 678 | 679 | 680 | | 681 | 682 | O 683 | C 684 | 685 | | 686 | 687 | 688 | r 689 | 690 | = 691 | 692 | 693 | 694 | 695 | 696 | 697 | 1 698 | + 699 | 8 700 | 701 | k 702 | 1 703 | 704 | 705 | 706 | 2 707 | 708 | 709 | 710 | 1 711 | + 712 | 4 713 | 714 | k 715 | 1 716 | 717 | 718 | 719 | 2 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 2 730 | 731 | 2 732 | 733 | 734 | 3 735 | 736 | 737 | 738 | 739 | 740 | 1 741 | + 742 | 743 | k 744 | 1 745 | 746 | 747 | 748 | 2 749 | 750 | 751 | 752 | 753 | 754 | 1 755 | + 756 | 8 757 | 758 | k 759 | 1 760 | 761 | 762 | 763 | 2 764 | 765 | 766 | 767 | 768 | 769 | 2 770 | 771 | k 772 | 1 773 | 774 | 775 | 776 | 2 777 | 778 | + 779 | 1 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | = 789 | 790 | 791 | 3 792 | 793 | 2 794 | 795 | 796 | 4 797 | 798 | 799 | 800 | 1 801 | + 802 | 2 803 | 804 | k 805 | 1 806 | 807 | 808 | 809 | 2 810 | 811 | 812 | 813 | 814 | 815 | 1 816 | + 817 | 4 818 | 819 | k 820 | 1 821 | 822 | 823 | 824 | 2 825 | 826 | 827 | 828 | 829 | 830 | 1 831 | + 832 | 833 | k 834 | 1 835 | 836 | 837 | 838 | 2 839 | 840 | 841 | 842 | 843 | 844 | 845 | , 846 | 847 | 令 848 | 849 | 850 | t 851 | = 852 | 1 853 | + 854 | 2 855 | 856 | k 857 | 1 858 | 859 | 860 | 861 | 2 862 | 863 | 864 | ,则 865 | 866 | 867 | t 868 | > 869 | 1 870 | , 871 | 872 | 1 873 | t 874 | 875 | ∈ 876 | 877 | ( 878 | 879 | 0 880 | , 881 | 1 882 | 883 | ) 884 | 885 | 886 | , 887 | 888 | ∴ 889 | 890 | 891 | 892 | 893 | 894 | | 895 | 896 | O 897 | C 898 | 899 | | 900 | 901 | 902 | r 903 | 904 | = 905 | 906 | 3 907 | 2 908 | 909 | 910 | t 911 | 912 | 913 | 914 | 2 915 | 916 | t 917 | 2 918 | 919 | + 920 | t 921 | − 922 | 1 923 | 924 | 925 | 926 | 927 | = 928 | 929 | 3 930 | 2 931 | 932 | 933 | 1 934 | 935 | 936 | 937 | 2 938 | + 939 | 940 | 1 941 | t 942 | 943 | − 944 | 945 | 1 946 | 947 | 948 | t 949 | 2 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | = 958 | 959 | 3 960 | 2 961 | 962 | 963 | 1 964 | 965 | 966 | 967 | − 968 | 969 | 970 | 971 | ( 972 | 973 | 974 | 1 975 | t 976 | 977 | − 978 | 979 | 1 980 | 2 981 | 982 | 983 | ) 984 | 985 | 986 | 2 987 | 988 | + 989 | 990 | 9 991 | 4 992 | 993 | 994 | 995 | 996 | 997 | ≥ 998 | 1 999 | 1000 | , 1001 | 1002 | 当且仅当 1003 | 1004 | 1005 | 1006 | 1 1007 | t 1008 | 1009 | = 1010 | 1011 | 1 1012 | 2 1013 | 1014 | 1015 | ,即 1016 | 1017 | 1018 | t 1019 | = 1020 | 2 1021 | 1022 | 时等号成立,此时 1023 | 1024 | 1025 | 1026 | k 1027 | 1 1028 | 1029 | = 1030 | ± 1031 | 1032 | 1033 | 1034 | 2 1035 | 1036 | 1037 | 2 1038 | 1039 | 1040 | , 1041 | 1042 | ∴ 1043 | 1044 | 1045 | sin 1046 | 1047 | 1048 | ∠ 1049 | S 1050 | O 1051 | T 1052 | 1053 | 2 1054 | 1055 | ≤ 1056 | 1057 | 1 1058 | 2 1059 | 1060 | 1061 | , 1062 | 1063 | ∴ 1064 | 1065 | 1066 | 1067 | 1068 | ∠ 1069 | S 1070 | O 1071 | T 1072 | 1073 | 2 1074 | 1075 | ≤ 1076 | 1077 | π 1078 | 6 1079 | 1080 | 1081 | , 1082 | 1083 | 故 1084 | 1085 | 1086 | ∠ 1087 | S 1088 | O 1089 | T 1090 | 1091 | 最大值为 1092 | 1093 | 1094 | 1095 | π 1096 | 3 1097 | 1098 | 1099 | , 1100 | 1101 | 综上所述, 1102 | 1103 | 1104 | ∠ 1105 | S 1106 | O 1107 | T 1108 | 1109 | 的最大值为 1110 | 1111 | 1112 | 1113 | π 1114 | 3 1115 | 1116 | 1117 | ,取得最大值时直线 1118 | 1119 | l 1120 | 的斜率为 1121 | 1122 | 1123 | 1124 | k 1125 | 1 1126 | 1127 | = 1128 | ± 1129 | 1130 | 1131 | 1132 | 2 1133 | 1134 | 1135 | 2 1136 | 1137 | 1138 | . 1139 | 1140 | -------------------------------------------------------------------------------- /OpenXML-SDK/bin/Debug/test4.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | e 5 | = 6 | 7 | c 8 | a 9 | 10 | = 11 | 12 | 13 | 14 | 2 15 | 16 | 17 | 2 18 | 19 | 20 | 21 | 22 | 23 | 2 24 | c 25 | = 26 | 2 27 | 28 | 29 | 30 | 31 | a 32 | = 33 | 34 | 2 35 | 36 | , 37 | b 38 | = 39 | 1 40 | 41 | 42 | 43 | E 44 | 45 | 46 | 47 | 48 | 49 | 50 | x 51 | 2 52 | 53 | 54 | 2 55 | 56 | + 57 | 58 | y 59 | 2 60 | 61 | = 62 | 1 63 | 64 | 65 | 66 | 67 | A 68 | 69 | ( 70 | 71 | 72 | x 73 | 1 74 | 75 | , 76 | 77 | y 78 | 1 79 | 80 | 81 | ) 82 | 83 | , 84 | B 85 | 86 | ( 87 | 88 | 89 | x 90 | 2 91 | 92 | , 93 | 94 | y 95 | 2 96 | 97 | 98 | ) 99 | 100 | 101 | 102 | 103 | 104 | 105 | { 106 | 107 | 108 | 109 | 110 | 111 | 112 | x 113 | 2 114 | 115 | 116 | 2 117 | 118 | + 119 | 120 | y 121 | 2 122 | 123 | = 124 | 1 125 | 126 | 127 | 128 | 129 | y 130 | = 131 | 132 | k 133 | 1 134 | 135 | x 136 | − 137 | 138 | 139 | 140 | 3 141 | 142 | 143 | 2 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | ( 155 | 156 | 4 157 | 158 | k 159 | 1 160 | 161 | 162 | 163 | 2 164 | 165 | + 166 | 2 167 | 168 | ) 169 | 170 | 171 | x 172 | 2 173 | 174 | − 175 | 4 176 | 177 | 3 178 | 179 | 180 | k 181 | 1 182 | 183 | x 184 | − 185 | 1 186 | = 187 | 0 188 | 189 | , 190 | 191 | 192 | Δ 193 | > 194 | 0 195 | 196 | 197 | 198 | 199 | 200 | x 201 | 1 202 | 203 | + 204 | 205 | x 206 | 2 207 | 208 | = 209 | 210 | 211 | 2 212 | 213 | 3 214 | 215 | 216 | k 217 | 1 218 | 219 | 220 | 221 | 2 222 | 223 | k 224 | 1 225 | 226 | 227 | 228 | 2 229 | 230 | + 231 | 1 232 | 233 | 234 | , 235 | 236 | x 237 | 1 238 | 239 | 240 | x 241 | 2 242 | 243 | = 244 | − 245 | 246 | 1 247 | 248 | 2 249 | 250 | ( 251 | 252 | 2 253 | 254 | k 255 | 1 256 | 257 | 258 | 259 | 2 260 | 261 | + 262 | 1 263 | 264 | ) 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | | 274 | 275 | A 276 | B 277 | 278 | | 279 | 280 | = 281 | 282 | 283 | 1 284 | + 285 | 286 | k 287 | 1 288 | 289 | 290 | 291 | 2 292 | 293 | 294 | 295 | 296 | | 297 | 298 | 299 | x 300 | 1 301 | 302 | − 303 | 304 | x 305 | 2 306 | 307 | 308 | | 309 | 310 | = 311 | 312 | 2 313 | 314 | 315 | 316 | 317 | 318 | 1 319 | + 320 | 321 | k 322 | 1 323 | 324 | 325 | 326 | 2 327 | 328 | 329 | 330 | 331 | 332 | 1 333 | + 334 | 8 335 | 336 | k 337 | 1 338 | 339 | 340 | 341 | 2 342 | 343 | 344 | 345 | 346 | 347 | 2 348 | 349 | k 350 | 1 351 | 352 | 353 | 354 | 2 355 | 356 | + 357 | 1 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | k 366 | 1 367 | 368 | 369 | k 370 | 2 371 | 372 | = 373 | 374 | 375 | 376 | 2 377 | 378 | 379 | 4 380 | 381 | 382 | 383 | 384 | 385 | 386 | k 387 | 2 388 | 389 | = 390 | 391 | 392 | 393 | 2 394 | 395 | 396 | 397 | 4 398 | 399 | k 400 | 1 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | O 409 | C 410 | 411 | 412 | 413 | 414 | y 415 | = 416 | 417 | 418 | 419 | 2 420 | 421 | 422 | 423 | 4 424 | 425 | k 426 | 1 427 | 428 | 429 | 430 | x 431 | 432 | 433 | 434 | 435 | 436 | { 437 | 438 | 439 | 440 | 441 | 442 | 443 | x 444 | 2 445 | 446 | 447 | 2 448 | 449 | + 450 | 451 | y 452 | 2 453 | 454 | = 455 | 1 456 | 457 | 458 | 459 | 460 | y 461 | = 462 | 463 | 464 | 465 | 2 466 | 467 | 468 | 469 | 4 470 | 471 | k 472 | 1 473 | 474 | 475 | 476 | x 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | x 487 | 2 488 | 489 | = 490 | 491 | 492 | 8 493 | 494 | k 495 | 1 496 | 497 | 498 | 499 | 2 500 | 501 | 502 | 503 | 1 504 | + 505 | 4 506 | 507 | k 508 | 1 509 | 510 | 511 | 512 | 2 513 | 514 | 515 | 516 | , 517 | 518 | y 519 | 2 520 | 521 | = 522 | 523 | 1 524 | 525 | 1 526 | + 527 | 4 528 | 529 | k 530 | 1 531 | 532 | 533 | 534 | 2 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | | 544 | 545 | O 546 | C 547 | 548 | | 549 | 550 | = 551 | 552 | 553 | 554 | x 555 | 2 556 | 557 | + 558 | 559 | y 560 | 2 561 | 562 | 563 | 564 | = 565 | 566 | 567 | 568 | 569 | 1 570 | + 571 | 8 572 | 573 | k 574 | 1 575 | 576 | 577 | 578 | 2 579 | 580 | 581 | 582 | 1 583 | + 584 | 4 585 | 586 | k 587 | 1 588 | 589 | 590 | 591 | 2 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | sin 602 | 603 | 604 | ∠ 605 | S 606 | O 607 | T 608 | 609 | 2 610 | 611 | = 612 | 613 | r 614 | 615 | r 616 | + 617 | 618 | | 619 | 620 | O 621 | C 622 | 623 | | 624 | 625 | 626 | 627 | = 628 | 629 | 1 630 | 631 | 1 632 | + 633 | 634 | 635 | 636 | | 637 | 638 | O 639 | C 640 | 641 | | 642 | 643 | 644 | r 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | | 656 | 657 | O 658 | C 659 | 660 | | 661 | 662 | 663 | r 664 | 665 | = 666 | 667 | 668 | 669 | 670 | 671 | 672 | 1 673 | + 674 | 8 675 | 676 | k 677 | 1 678 | 679 | 680 | 681 | 2 682 | 683 | 684 | 685 | 1 686 | + 687 | 4 688 | 689 | k 690 | 1 691 | 692 | 693 | 694 | 2 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 2 705 | 706 | 2 707 | 708 | 709 | 3 710 | 711 | 712 | 713 | 714 | 715 | 1 716 | + 717 | 718 | k 719 | 1 720 | 721 | 722 | 723 | 2 724 | 725 | 726 | 727 | 728 | 729 | 1 730 | + 731 | 8 732 | 733 | k 734 | 1 735 | 736 | 737 | 738 | 2 739 | 740 | 741 | 742 | 743 | 744 | 2 745 | 746 | k 747 | 1 748 | 749 | 750 | 751 | 2 752 | 753 | + 754 | 1 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | = 764 | 765 | 766 | 3 767 | 768 | 2 769 | 770 | 771 | 4 772 | 773 | 774 | 775 | 1 776 | + 777 | 2 778 | 779 | k 780 | 1 781 | 782 | 783 | 784 | 2 785 | 786 | 787 | 788 | 789 | 790 | 1 791 | + 792 | 4 793 | 794 | k 795 | 1 796 | 797 | 798 | 799 | 2 800 | 801 | 802 | 803 | 804 | 805 | 1 806 | + 807 | 808 | k 809 | 1 810 | 811 | 812 | 813 | 2 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | t 824 | = 825 | 1 826 | + 827 | 2 828 | 829 | k 830 | 1 831 | 832 | 833 | 834 | 2 835 | 836 | 837 | 838 | 839 | 840 | t 841 | > 842 | 1 843 | , 844 | 845 | 1 846 | t 847 | 848 | ∈ 849 | 850 | ( 851 | 852 | 0 853 | , 854 | 1 855 | 856 | ) 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | | 866 | 867 | O 868 | C 869 | 870 | | 871 | 872 | 873 | r 874 | 875 | = 876 | 877 | 3 878 | 2 879 | 880 | 881 | t 882 | 883 | 884 | 885 | 2 886 | 887 | t 888 | 2 889 | 890 | + 891 | t 892 | − 893 | 1 894 | 895 | 896 | 897 | 898 | = 899 | 900 | 3 901 | 2 902 | 903 | 904 | 1 905 | 906 | 907 | 908 | 2 909 | + 910 | 911 | 1 912 | t 913 | 914 | − 915 | 916 | 1 917 | 918 | 919 | t 920 | 2 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | = 929 | 930 | 3 931 | 2 932 | 933 | 934 | 1 935 | 936 | 937 | 938 | − 939 | 940 | 941 | 942 | ( 943 | 944 | 945 | 1 946 | t 947 | 948 | − 949 | 950 | 1 951 | 2 952 | 953 | 954 | ) 955 | 956 | 957 | 2 958 | 959 | + 960 | 961 | 9 962 | 4 963 | 964 | 965 | 966 | 967 | 968 | ≥ 969 | 1 970 | 971 | 972 | 973 | 974 | 975 | 1 976 | t 977 | 978 | = 979 | 980 | 1 981 | 2 982 | 983 | 984 | 985 | 986 | 987 | t 988 | = 989 | 2 990 | 991 | 992 | 993 | 994 | 995 | k 996 | 1 997 | 998 | = 999 | ± 1000 | 1001 | 1002 | 1003 | 2 1004 | 1005 | 1006 | 2 1007 | 1008 | 1009 | 1010 | 1011 | 1012 | sin 1013 | 1014 | 1015 | ∠ 1016 | S 1017 | O 1018 | T 1019 | 1020 | 2 1021 | 1022 | ≤ 1023 | 1024 | 1 1025 | 2 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | ∠ 1034 | S 1035 | O 1036 | T 1037 | 1038 | 2 1039 | 1040 | ≤ 1041 | 1042 | π 1043 | 6 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | ∠ 1050 | S 1051 | O 1052 | T 1053 | 1054 | 最大值为 1055 | 1056 | 1057 | 1058 | π 1059 | 3 1060 | 1061 | 1062 | 1063 | 1064 | 1065 | ∠ 1066 | S 1067 | O 1068 | T 1069 | 1070 | 1071 | 1072 | 1073 | 1074 | π 1075 | 3 1076 | 1077 | 1078 | 1079 | 1080 | l 1081 | 1082 | 1083 | 1084 | 1085 | k 1086 | 1 1087 | 1088 | = 1089 | ± 1090 | 1091 | 1092 | 1093 | 2 1094 | 1095 | 1096 | 2 1097 | 1098 | 1099 | 1100 | -------------------------------------------------------------------------------- /OpenXML-SDK/mathMM.xml: -------------------------------------------------------------------------------- 1 | ∵AP=PC=22,AC=4,∴∠APC=90°,PE=2, -------------------------------------------------------------------------------- /OpenXML-SDK/obj/x86/Debug/DesignTimeResolveAssemblyReferencesInput.cache: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/obj/x86/Debug/DesignTimeResolveAssemblyReferencesInput.cache -------------------------------------------------------------------------------- /OpenXML-SDK/obj/x86/Debug/Interop.AccessibilityCplAdminLib.dll: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/obj/x86/Debug/Interop.AccessibilityCplAdminLib.dll -------------------------------------------------------------------------------- /OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.csproj.FileListAbsolute.txt: -------------------------------------------------------------------------------- 1 | c:\users\administrator\documents\visual studio 2010\Projects\OpenXML-SDK\OpenXML-SDK\bin\Debug\OpenXML-SDK.exe 2 | c:\users\administrator\documents\visual studio 2010\Projects\OpenXML-SDK\OpenXML-SDK\bin\Debug\OpenXML-SDK.pdb 3 | c:\users\administrator\documents\visual studio 2010\Projects\OpenXML-SDK\OpenXML-SDK\obj\x86\Debug\OpenXML-SDK.exe 4 | c:\users\administrator\documents\visual studio 2010\Projects\OpenXML-SDK\OpenXML-SDK\obj\x86\Debug\OpenXML-SDK.pdb 5 | C:\Users\Administrator\documents\visual studio 2010\Projects\OpenXML-SDK\OpenXML-SDK\obj\x86\Debug\OpenXML-SDK.csproj.ResolveComReference.cache 6 | C:\Users\Administrator\documents\visual studio 2010\Projects\OpenXML-SDK\OpenXML-SDK\obj\x86\Debug\Interop.AccessibilityCplAdminLib.dll 7 | -------------------------------------------------------------------------------- /OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.csproj.ResolveComReference.cache: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.csproj.ResolveComReference.cache -------------------------------------------------------------------------------- /OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.exe: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.exe -------------------------------------------------------------------------------- /OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.pdb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXML-SDK/obj/x86/Debug/OpenXML-SDK.pdb -------------------------------------------------------------------------------- /OpenXMLSDKToolV25.msi: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/OpenXMLSDKToolV25.msi -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ### 如何将MATHML转为Word文档 ### 2 | 3 | [MATHML(Mathematical Markup Language,MathML)](https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%BD%AE%E6%A0%87%E8%AF%AD%E8%A8%80)是一种基于XML的标准,用来描述数学符号和公式。它的目标是把数学公式集成到万维网和其他文档中。从2015年开始,MathML成为了HTML5的一部分和ISO标准。 4 | 5 | 由于数学符号和公式的结构复杂且符号与符号之间存在多种逻辑关系,MathML的格式十分繁琐。因此,大多数人都不会去手写MathML,而是利用其它的工具来编写,其中包括TeX到MathML的转换器。 6 | 7 | 有些时候,我们想要将MATHML导出到Word中方便查看,我们该怎样实现呢?这个时候我们还需要了解一下微软Office的[OMML(Office math markup language)]()标记语言,它是一种在WORD里面进行公式表达的标记语法,是以XML结构来存储的。遗憾的是,MATHML并不能直接转换为Word文档,它需要先转换为OMML。 8 | 9 | 那么如何将MathML转换为OMML?答案是使用一个转换文件——`MML2OMML.xsl`,这个文件是office自带的,位于目录:`%ProgramFiles%\Microsoft Office\Office12\`之下(若你用的是office 2016,则在`%ProgramFiles%\Microsoft Office\Office16\`目录)。 10 | 11 | 不知你是否知道,将MathML公式以文本的形式粘贴到Word中时,它会自动变成Word公式,这个操作的背后就是MML2OMML.xsl在起作用。同样的目录下还有一个文件OMML2MML.xsl,它的作用是反过来转换,我们这里用不到。 12 | 13 |  14 | 这个式子的MATHML的XML代码如下: 15 | 16 | ```xml 17 | 18 | 19 | R 20 | i 21 | 22 | 23 | 24 | j 25 | 26 | 27 | 28 | kl 29 | 30 | = 31 | 32 | g 33 | jm 34 | 35 | 36 | R 37 | imkl 38 | 39 | + 40 | 41 | 1 42 | - 43 | 44 | g 45 | jm 46 | 47 | 48 | R 49 | mikl 50 | 51 | 52 | 53 | 54 | ``` 55 | 56 | 具体的实现过程参考了[https://stackoverflow.com/questions/10993621/openxml-sdk-and-mathml](https://stackoverflow.com/questions/10993621/openxml-sdk-and-mathml) 57 | 58 | 我们还需要由微软开发的[Open-XML-SDK](https://github.com/OfficeDev/Open-XML-SDK)来提供这些操作,你可以到微软的官网[下载](https://www.microsoft.com/en-us/search/result.aspx?q=open+xml+sdk),当然,我这里也上传到了Github上,你可以在根目录下找到该安装包文件[OpenXMLSDKV25.msi](https://github.com/scalad/MathML2Word/blob/master/doc/OpenXMLSDKV25.msi)。 59 | 60 | 为什么需要这个Open-XML-SDK呢?,我们首先需要了解一下[Office Open XML](https://zh.wikipedia.org/wiki/Office_Open_XML). 61 | 62 | Office Open XML(缩写:Open XML、OpenXML或OOXML),为由Microsoft开发的一种以XML为基础并以ZIP格式压缩的电子文件规范,支持文件、表格、备忘录、幻灯片等文件格式。 63 | 64 | OOXML在2006年12月成为了ECMA规范的一部分,编号为ECMA-376;并于2008年4月通过国际标准化组织的表决,在两个月后公布为ISO/IEC 29500国际标准。微软推出这个格式,很多人认为是商业考量。许多专家指出,该标准并不是个完整的标准,使用上困难重重。 65 | 66 | 从Microsoft Office 2007开始,Office Open XML文件格式已经成为Microsoft Office默认的文件格式。Microsoft Office 2010支持对ECMA-376标准文档的读操作,ISO/IEC 29500 Transitional的读/写,ISO/IEC 29500 Strict的读取。Microsoft Office 2013同时支持ISO/IEC 29500 Strict的读写操作。 67 | 68 | 具体的实现把MATHML转换为Word文档的代码如下: 69 | 70 | ```C# 71 | public static void MathML2Word() 72 | { 73 | XslCompiledTransform xslTransform = new XslCompiledTransform(); 74 | xslTransform.Load(@"C:\Program Files (x86)\Microsoft Office\Office14\MML2OMML.xsl"); 75 | 76 | // Load the file containing your MathML presentation markup. 77 | using (XmlReader reader = XmlReader.Create(File.Open("../../../test1.xml", FileMode.Open))) 78 | { 79 | using (MemoryStream ms = new MemoryStream()) 80 | { 81 | XmlWriterSettings settings = xslTransform.OutputSettings.Clone(); 82 | 83 | // Configure xml writer to omit xml declaration. 84 | settings.ConformanceLevel = ConformanceLevel.Fragment; 85 | settings.OmitXmlDeclaration = true; 86 | XmlWriter xw = XmlWriter.Create(ms, settings); 87 | // Transform our MathML to OfficeMathML 88 | xslTransform.Transform(reader, xw); 89 | ms.Seek(0, SeekOrigin.Begin); 90 | StreamReader sr = new StreamReader(ms, Encoding.UTF8); 91 | 92 | string officeML = sr.ReadToEnd(); 93 | Console.Out.WriteLine(officeML); 94 | 95 | // Create a OfficeMath instance from the OfficeMathML xml. 96 | DocumentFormat.OpenXml.Math.OfficeMath om = new DocumentFormat.OpenXml.Math.OfficeMath(officeML); 97 | 98 | //创建Word文档(Microsoft.Office.Interop.Word) 99 | Microsoft.Office.Interop.Word._Application WordApp = new Application(); 100 | WordApp.Visible = true; 101 | using (WordprocessingDocument package = WordprocessingDocument.Create("../../../template.docx", WordprocessingDocumentType.Document)) 102 | { 103 | // Add a new main document part. 104 | package.AddMainDocumentPart(); 105 | 106 | // Create the Document DOM. 107 | package.MainDocumentPart.Document = 108 | new DocumentFormat.OpenXml.Wordprocessing.Document( 109 | new Body( 110 | new DocumentFormat.OpenXml.Wordprocessing.Paragraph( 111 | new Run( 112 | new Text(" "))))); 113 | 114 | // Save changes to the main document part. 115 | package.MainDocumentPart.Document.Save(); 116 | } 117 | 118 | using (WordprocessingDocument wordDoc = WordprocessingDocument.Open("../../../template.docx", true)) 119 | { 120 | DocumentFormat.OpenXml.Wordprocessing.Paragraph par = 121 | wordDoc.MainDocumentPart.Document.Body.Descendants().FirstOrDefault(); 122 | 123 | foreach (var currentRun in om.Descendants()) 124 | { 125 | // Add font information to every run. 126 | DocumentFormat.OpenXml.Wordprocessing.RunProperties runProperties2 = 127 | new DocumentFormat.OpenXml.Wordprocessing.RunProperties(); 128 | currentRun.InsertAt(runProperties2, 0); 129 | } 130 | par.Append(om); 131 | } 132 | } 133 | } 134 | } 135 | ``` -------------------------------------------------------------------------------- /doc/OpenXMLSDKV25.msi: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/doc/OpenXMLSDKV25.msi -------------------------------------------------------------------------------- /doc/image/20170725164448.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/doc/image/20170725164448.png -------------------------------------------------------------------------------- /template.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/template.docx -------------------------------------------------------------------------------- /test1.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | R 4 | i 5 | 6 | 7 | 8 | j 9 | 10 | 11 | 12 | kl 13 | 14 | = 15 | 16 | g 17 | jm 18 | 19 | 20 | R 21 | imkl 22 | 23 | + 24 | 25 | 1 26 | - 27 | 28 | g 29 | jm 30 | 31 | 32 | R 33 | mikl 34 | 35 | 36 | 37 | -------------------------------------------------------------------------------- /test2.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | e 5 | = 6 | 7 | c 8 | a 9 | 10 | = 11 | 12 | 13 | 14 | 2 15 | 16 | 17 | 2 18 | 19 | 20 | 21 | 22 | 23 | 2 24 | c 25 | = 26 | 2 27 | 28 | 29 | 30 | 31 | a 32 | = 33 | 34 | 2 35 | 36 | , 37 | b 38 | = 39 | 1 40 | 41 | 42 | 43 | E 44 | 45 | 46 | 47 | 48 | 49 | 50 | x 51 | 2 52 | 53 | 54 | 2 55 | 56 | + 57 | 58 | y 59 | 2 60 | 61 | = 62 | 1 63 | 64 | 65 | 66 | 67 | A 68 | 69 | ( 70 | 71 | 72 | x 73 | 1 74 | 75 | , 76 | 77 | y 78 | 1 79 | 80 | 81 | ) 82 | 83 | , 84 | B 85 | 86 | ( 87 | 88 | 89 | x 90 | 2 91 | 92 | , 93 | 94 | y 95 | 2 96 | 97 | 98 | ) 99 | 100 | 101 | 102 | 103 | 104 | 105 | { 106 | 107 | 108 | 109 | 110 | 111 | 112 | x 113 | 2 114 | 115 | 116 | 2 117 | 118 | + 119 | 120 | y 121 | 2 122 | 123 | = 124 | 1 125 | 126 | 127 | 128 | 129 | y 130 | = 131 | 132 | k 133 | 1 134 | 135 | x 136 | − 137 | 138 | 139 | 140 | 3 141 | 142 | 143 | 2 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | ( 155 | 156 | 4 157 | 158 | k 159 | 1 160 | 161 | 162 | 163 | 2 164 | 165 | + 166 | 2 167 | 168 | ) 169 | 170 | 171 | x 172 | 2 173 | 174 | − 175 | 4 176 | 177 | 3 178 | 179 | 180 | k 181 | 1 182 | 183 | x 184 | − 185 | 1 186 | = 187 | 0 188 | 189 | , 190 | 191 | 192 | Δ 193 | > 194 | 0 195 | 196 | 197 | 198 | 199 | 200 | x 201 | 1 202 | 203 | + 204 | 205 | x 206 | 2 207 | 208 | = 209 | 210 | 211 | 2 212 | 213 | 3 214 | 215 | 216 | k 217 | 1 218 | 219 | 220 | 221 | 2 222 | 223 | k 224 | 1 225 | 226 | 227 | 228 | 2 229 | 230 | + 231 | 1 232 | 233 | 234 | , 235 | 236 | x 237 | 1 238 | 239 | 240 | x 241 | 2 242 | 243 | = 244 | − 245 | 246 | 1 247 | 248 | 2 249 | 250 | ( 251 | 252 | 2 253 | 254 | k 255 | 1 256 | 257 | 258 | 259 | 2 260 | 261 | + 262 | 1 263 | 264 | ) 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | | 274 | 275 | A 276 | B 277 | 278 | | 279 | 280 | = 281 | 282 | 283 | 1 284 | + 285 | 286 | k 287 | 1 288 | 289 | 290 | 291 | 2 292 | 293 | 294 | 295 | 296 | | 297 | 298 | 299 | x 300 | 1 301 | 302 | − 303 | 304 | x 305 | 2 306 | 307 | 308 | | 309 | 310 | = 311 | 312 | 2 313 | 314 | 315 | 316 | 317 | 318 | 1 319 | + 320 | 321 | k 322 | 1 323 | 324 | 325 | 326 | 2 327 | 328 | 329 | 330 | 331 | 332 | 1 333 | + 334 | 8 335 | 336 | k 337 | 1 338 | 339 | 340 | 341 | 2 342 | 343 | 344 | 345 | 346 | 347 | 2 348 | 349 | k 350 | 1 351 | 352 | 353 | 354 | 2 355 | 356 | + 357 | 1 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | k 366 | 1 367 | 368 | 369 | k 370 | 2 371 | 372 | = 373 | 374 | 375 | 376 | 2 377 | 378 | 379 | 4 380 | 381 | 382 | 383 | 384 | 385 | 386 | k 387 | 2 388 | 389 | = 390 | 391 | 392 | 393 | 2 394 | 395 | 396 | 397 | 4 398 | 399 | k 400 | 1 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | O 409 | C 410 | 411 | 412 | 413 | 414 | y 415 | = 416 | 417 | 418 | 419 | 2 420 | 421 | 422 | 423 | 4 424 | 425 | k 426 | 1 427 | 428 | 429 | 430 | x 431 | 432 | 433 | 434 | 435 | 436 | { 437 | 438 | 439 | 440 | 441 | 442 | 443 | x 444 | 2 445 | 446 | 447 | 2 448 | 449 | + 450 | 451 | y 452 | 2 453 | 454 | = 455 | 1 456 | 457 | 458 | 459 | 460 | y 461 | = 462 | 463 | 464 | 465 | 2 466 | 467 | 468 | 469 | 4 470 | 471 | k 472 | 1 473 | 474 | 475 | 476 | x 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | x 487 | 2 488 | 489 | = 490 | 491 | 492 | 8 493 | 494 | k 495 | 1 496 | 497 | 498 | 499 | 2 500 | 501 | 502 | 503 | 1 504 | + 505 | 4 506 | 507 | k 508 | 1 509 | 510 | 511 | 512 | 2 513 | 514 | 515 | 516 | , 517 | 518 | y 519 | 2 520 | 521 | = 522 | 523 | 1 524 | 525 | 1 526 | + 527 | 4 528 | 529 | k 530 | 1 531 | 532 | 533 | 534 | 2 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | | 544 | 545 | O 546 | C 547 | 548 | | 549 | 550 | = 551 | 552 | 553 | 554 | x 555 | 2 556 | 557 | + 558 | 559 | y 560 | 2 561 | 562 | 563 | 564 | = 565 | 566 | 567 | 568 | 569 | 1 570 | + 571 | 8 572 | 573 | k 574 | 1 575 | 576 | 577 | 578 | 2 579 | 580 | 581 | 582 | 1 583 | + 584 | 4 585 | 586 | k 587 | 1 588 | 589 | 590 | 591 | 2 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | sin 602 | 603 | 604 | ∠ 605 | S 606 | O 607 | T 608 | 609 | 2 610 | 611 | = 612 | 613 | r 614 | 615 | r 616 | + 617 | 618 | | 619 | 620 | O 621 | C 622 | 623 | | 624 | 625 | 626 | 627 | = 628 | 629 | 1 630 | 631 | 1 632 | + 633 | 634 | 635 | 636 | | 637 | 638 | O 639 | C 640 | 641 | | 642 | 643 | 644 | r 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | | 656 | 657 | O 658 | C 659 | 660 | | 661 | 662 | 663 | r 664 | 665 | = 666 | 667 | 668 | 669 | 670 | 671 | 672 | 1 673 | + 674 | 8 675 | 676 | k 677 | 1 678 | 679 | 680 | 681 | 2 682 | 683 | 684 | 685 | 1 686 | + 687 | 4 688 | 689 | k 690 | 1 691 | 692 | 693 | 694 | 2 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 2 705 | 706 | 2 707 | 708 | 709 | 3 710 | 711 | 712 | 713 | 714 | 715 | 1 716 | + 717 | 718 | k 719 | 1 720 | 721 | 722 | 723 | 2 724 | 725 | 726 | 727 | 728 | 729 | 1 730 | + 731 | 8 732 | 733 | k 734 | 1 735 | 736 | 737 | 738 | 2 739 | 740 | 741 | 742 | 743 | 744 | 2 745 | 746 | k 747 | 1 748 | 749 | 750 | 751 | 2 752 | 753 | + 754 | 1 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | = 764 | 765 | 766 | 3 767 | 768 | 2 769 | 770 | 771 | 4 772 | 773 | 774 | 775 | 1 776 | + 777 | 2 778 | 779 | k 780 | 1 781 | 782 | 783 | 784 | 2 785 | 786 | 787 | 788 | 789 | 790 | 1 791 | + 792 | 4 793 | 794 | k 795 | 1 796 | 797 | 798 | 799 | 2 800 | 801 | 802 | 803 | 804 | 805 | 1 806 | + 807 | 808 | k 809 | 1 810 | 811 | 812 | 813 | 2 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | t 824 | = 825 | 1 826 | + 827 | 2 828 | 829 | k 830 | 1 831 | 832 | 833 | 834 | 2 835 | 836 | 837 | 838 | 839 | 840 | t 841 | > 842 | 1 843 | , 844 | 845 | 1 846 | t 847 | 848 | ∈ 849 | 850 | ( 851 | 852 | 0 853 | , 854 | 1 855 | 856 | ) 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | | 866 | 867 | O 868 | C 869 | 870 | | 871 | 872 | 873 | r 874 | 875 | = 876 | 877 | 3 878 | 2 879 | 880 | 881 | t 882 | 883 | 884 | 885 | 2 886 | 887 | t 888 | 2 889 | 890 | + 891 | t 892 | − 893 | 1 894 | 895 | 896 | 897 | 898 | = 899 | 900 | 3 901 | 2 902 | 903 | 904 | 1 905 | 906 | 907 | 908 | 2 909 | + 910 | 911 | 1 912 | t 913 | 914 | − 915 | 916 | 1 917 | 918 | 919 | t 920 | 2 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | = 929 | 930 | 3 931 | 2 932 | 933 | 934 | 1 935 | 936 | 937 | 938 | − 939 | 940 | 941 | 942 | ( 943 | 944 | 945 | 1 946 | t 947 | 948 | − 949 | 950 | 1 951 | 2 952 | 953 | 954 | ) 955 | 956 | 957 | 2 958 | 959 | + 960 | 961 | 9 962 | 4 963 | 964 | 965 | 966 | 967 | 968 | ≥ 969 | 1 970 | 971 | 972 | 973 | 974 | 975 | 1 976 | t 977 | 978 | = 979 | 980 | 1 981 | 2 982 | 983 | 984 | 985 | 986 | 987 | t 988 | = 989 | 2 990 | 991 | 992 | 993 | 994 | 995 | k 996 | 1 997 | 998 | = 999 | ± 1000 | 1001 | 1002 | 1003 | 2 1004 | 1005 | 1006 | 2 1007 | 1008 | 1009 | 1010 | 1011 | 1012 | sin 1013 | 1014 | 1015 | ∠ 1016 | S 1017 | O 1018 | T 1019 | 1020 | 2 1021 | 1022 | ≤ 1023 | 1024 | 1 1025 | 2 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | ∠ 1034 | S 1035 | O 1036 | T 1037 | 1038 | 2 1039 | 1040 | ≤ 1041 | 1042 | π 1043 | 6 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | ∠ 1050 | S 1051 | O 1052 | T 1053 | 1054 | 最大值为 1055 | 1056 | 1057 | 1058 | π 1059 | 3 1060 | 1061 | 1062 | 1063 | 1064 | 1065 | ∠ 1066 | S 1067 | O 1068 | T 1069 | 1070 | 1071 | 1072 | 1073 | 1074 | π 1075 | 3 1076 | 1077 | 1078 | 1079 | 1080 | l 1081 | 1082 | 1083 | 1084 | 1085 | k 1086 | 1 1087 | 1088 | = 1089 | ± 1090 | 1091 | 1092 | 1093 | 2 1094 | 1095 | 1096 | 2 1097 | 1098 | 1099 | 1100 | -------------------------------------------------------------------------------- /将Html导出为Docx.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/scalad/MathML2Word/e58eea33737015932064c67bedc423ea10a10915/将Html导出为Docx.docx --------------------------------------------------------------------------------
解:(I)∵e=ca=22,且2c=2,
∴a=2,b=1,
∴椭圆E的方程为x22+y2=1;
(Ⅱ)设A(x1,y1),B(x2,y2),联立方程{x22+y2=1y=k1x−32,可得(4k12+2)x2−43k1x−1=0,
由题意可知Δ>0,且x1+x2=23k12k12+1,x1x2=−12(2k12+1),
∴|AB|=1+k12|x1−x2|=21+k121+8k122k12+1,
由题意可知k1k2=24,
∴k2=24k1,
∴直线OC的方程为y=24k1x,
联立方程{x22+y2=1y=24k1x,可得x2=8k121+4k12,y2=11+4k12,
∴|OC|=x2+y2=1+8k121+4k12,
∴sin∠SOT2=rr+|OC|=11+|OC|r,
又∵|OC|r=1+8k121+4k122231+k121+8k122k12+1=3241+2k121+4k121+k12,
令t=1+2k12,则t>1,1t∈(0,1),
∴|OC|r=32t2t2+t−1=3212+1t−1t2=321−(1t−12)2+94≥1,
当且仅当1t=12,即t=2时等号成立,此时k1=±22,
∴sin∠SOT2≤12,
∴∠SOT2≤π6,
故∠SOT最大值为π3,
综上所述,∠SOT的最大值为π3,取得最大值时直线l的斜率为k1=±22.
解:(I)∵ 3 | 4 | 5 | e 6 | = 7 | 8 | c 9 | a 10 | 11 | = 12 | 13 | 14 | 15 | 2 16 | 17 | 18 | 2 19 | 20 | 21 | ,且 22 | 23 | 24 | 2 25 | c 26 | = 27 | 2 28 | 29 | , 30 |
∴ 32 | 33 | 34 | a 35 | = 36 | 37 | 2 38 | 39 | , 40 | b 41 | = 42 | 1 43 | 44 | , 45 |
∴椭圆 47 | 48 | E 49 | 的方程为 50 | 51 | 52 | 53 | 54 | 55 | x 56 | 2 57 | 58 | 59 | 2 60 | 61 | + 62 | 63 | y 64 | 2 65 | 66 | = 67 | 1 68 | 69 | ; 70 |
(Ⅱ)设 72 | 73 | 74 | A 75 | 76 | ( 77 | 78 | 79 | x 80 | 1 81 | 82 | , 83 | 84 | y 85 | 1 86 | 87 | 88 | ) 89 | 90 | , 91 | B 92 | 93 | ( 94 | 95 | 96 | x 97 | 2 98 | 99 | , 100 | 101 | y 102 | 2 103 | 104 | 105 | ) 106 | 107 | 108 | ,联立方程 109 | 110 | 111 | 112 | { 113 | 114 | 115 | 116 | 117 | 118 | 119 | x 120 | 2 121 | 122 | 123 | 2 124 | 125 | + 126 | 127 | y 128 | 2 129 | 130 | = 131 | 1 132 | 133 | 134 | 135 | 136 | y 137 | = 138 | 139 | k 140 | 1 141 | 142 | x 143 | − 144 | 145 | 146 | 147 | 3 148 | 149 | 150 | 2 151 | 152 | 153 | 154 | 155 | 156 | 157 | ,可得 158 | 159 | 160 | 161 | ( 162 | 163 | 4 164 | 165 | k 166 | 1 167 | 168 | 169 | 170 | 2 171 | 172 | + 173 | 2 174 | 175 | ) 176 | 177 | 178 | x 179 | 2 180 | 181 | − 182 | 4 183 | 184 | 3 185 | 186 | 187 | k 188 | 1 189 | 190 | x 191 | − 192 | 1 193 | = 194 | 0 195 | 196 | , 197 |
由题意可知 199 | 200 | 201 | Δ 202 | > 203 | 0 204 | 205 | ,且 206 | 207 | 208 | 209 | x 210 | 1 211 | 212 | + 213 | 214 | x 215 | 2 216 | 217 | = 218 | 219 | 220 | 2 221 | 222 | 3 223 | 224 | 225 | k 226 | 1 227 | 228 | 229 | 230 | 2 231 | 232 | k 233 | 1 234 | 235 | 236 | 237 | 2 238 | 239 | + 240 | 1 241 | 242 | 243 | , 244 | 245 | x 246 | 1 247 | 248 | 249 | x 250 | 2 251 | 252 | = 253 | − 254 | 255 | 1 256 | 257 | 2 258 | 259 | ( 260 | 261 | 2 262 | 263 | k 264 | 1 265 | 266 | 267 | 268 | 2 269 | 270 | + 271 | 1 272 | 273 | ) 274 | 275 | 276 | 277 | 278 | , 279 |
∴ 281 | 282 | 283 | 284 | | 285 | 286 | A 287 | B 288 | 289 | | 290 | 291 | = 292 | 293 | 294 | 1 295 | + 296 | 297 | k 298 | 1 299 | 300 | 301 | 302 | 2 303 | 304 | 305 | 306 | 307 | | 308 | 309 | 310 | x 311 | 1 312 | 313 | − 314 | 315 | x 316 | 2 317 | 318 | 319 | | 320 | 321 | = 322 | 323 | 2 324 | 325 | 326 | 327 | 328 | 329 | 1 330 | + 331 | 332 | k 333 | 1 334 | 335 | 336 | 337 | 2 338 | 339 | 340 | 341 | 342 | 343 | 1 344 | + 345 | 8 346 | 347 | k 348 | 1 349 | 350 | 351 | 352 | 2 353 | 354 | 355 | 356 | 357 | 358 | 2 359 | 360 | k 361 | 1 362 | 363 | 364 | 365 | 2 366 | 367 | + 368 | 1 369 | 370 | 371 | 372 | , 373 |
由题意可知 375 | 376 | 377 | 378 | k 379 | 1 380 | 381 | 382 | k 383 | 2 384 | 385 | = 386 | 387 | 388 | 389 | 2 390 | 391 | 392 | 4 393 | 394 | 395 | , 396 |
∴ 398 | 399 | 400 | 401 | k 402 | 2 403 | 404 | = 405 | 406 | 407 | 408 | 2 409 | 410 | 411 | 412 | 4 413 | 414 | k 415 | 1 416 | 417 | 418 | 419 | 420 | , 421 |
∴直线 423 | 424 | 425 | O 426 | C 427 | 428 | 的方程为 429 | 430 | 431 | y 432 | = 433 | 434 | 435 | 436 | 2 437 | 438 | 439 | 440 | 4 441 | 442 | k 443 | 1 444 | 445 | 446 | 447 | x 448 | 449 | , 450 |
联立方程 452 | 453 | 454 | 455 | { 456 | 457 | 458 | 459 | 460 | 461 | 462 | x 463 | 2 464 | 465 | 466 | 2 467 | 468 | + 469 | 470 | y 471 | 2 472 | 473 | = 474 | 1 475 | 476 | 477 | 478 | 479 | y 480 | = 481 | 482 | 483 | 484 | 2 485 | 486 | 487 | 488 | 4 489 | 490 | k 491 | 1 492 | 493 | 494 | 495 | x 496 | 497 | 498 | 499 | 500 | 501 | ,可得 502 | 503 | 504 | 505 | x 506 | 2 507 | 508 | = 509 | 510 | 511 | 8 512 | 513 | k 514 | 1 515 | 516 | 517 | 518 | 2 519 | 520 | 521 | 522 | 1 523 | + 524 | 4 525 | 526 | k 527 | 1 528 | 529 | 530 | 531 | 2 532 | 533 | 534 | 535 | , 536 | 537 | y 538 | 2 539 | 540 | = 541 | 542 | 1 543 | 544 | 1 545 | + 546 | 4 547 | 548 | k 549 | 1 550 | 551 | 552 | 553 | 2 554 | 555 | 556 | 557 | 558 | , 559 |
∴ 561 | 562 | 563 | 564 | | 565 | 566 | O 567 | C 568 | 569 | | 570 | 571 | = 572 | 573 | 574 | 575 | x 576 | 2 577 | 578 | + 579 | 580 | y 581 | 2 582 | 583 | 584 | 585 | = 586 | 587 | 588 | 589 | 590 | 1 591 | + 592 | 8 593 | 594 | k 595 | 1 596 | 597 | 598 | 599 | 2 600 | 601 | 602 | 603 | 1 604 | + 605 | 4 606 | 607 | k 608 | 1 609 | 610 | 611 | 612 | 2 613 | 614 | 615 | 616 | 617 | 618 | 619 | , 620 |
∴ 622 | 623 | 624 | sin 625 | 626 | 627 | ∠ 628 | S 629 | O 630 | T 631 | 632 | 2 633 | 634 | = 635 | 636 | r 637 | 638 | r 639 | + 640 | 641 | | 642 | 643 | O 644 | C 645 | 646 | | 647 | 648 | 649 | 650 | = 651 | 652 | 1 653 | 654 | 1 655 | + 656 | 657 | 658 | 659 | | 660 | 661 | O 662 | C 663 | 664 | | 665 | 666 | 667 | r 668 | 669 | 670 | 671 | 672 | , 673 |
又∵ 675 | 676 | 677 | 678 | 679 | 680 | | 681 | 682 | O 683 | C 684 | 685 | | 686 | 687 | 688 | r 689 | 690 | = 691 | 692 | 693 | 694 | 695 | 696 | 697 | 1 698 | + 699 | 8 700 | 701 | k 702 | 1 703 | 704 | 705 | 706 | 2 707 | 708 | 709 | 710 | 1 711 | + 712 | 4 713 | 714 | k 715 | 1 716 | 717 | 718 | 719 | 2 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 2 730 | 731 | 2 732 | 733 | 734 | 3 735 | 736 | 737 | 738 | 739 | 740 | 1 741 | + 742 | 743 | k 744 | 1 745 | 746 | 747 | 748 | 2 749 | 750 | 751 | 752 | 753 | 754 | 1 755 | + 756 | 8 757 | 758 | k 759 | 1 760 | 761 | 762 | 763 | 2 764 | 765 | 766 | 767 | 768 | 769 | 2 770 | 771 | k 772 | 1 773 | 774 | 775 | 776 | 2 777 | 778 | + 779 | 1 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | = 789 | 790 | 791 | 3 792 | 793 | 2 794 | 795 | 796 | 4 797 | 798 | 799 | 800 | 1 801 | + 802 | 2 803 | 804 | k 805 | 1 806 | 807 | 808 | 809 | 2 810 | 811 | 812 | 813 | 814 | 815 | 1 816 | + 817 | 4 818 | 819 | k 820 | 1 821 | 822 | 823 | 824 | 2 825 | 826 | 827 | 828 | 829 | 830 | 1 831 | + 832 | 833 | k 834 | 1 835 | 836 | 837 | 838 | 2 839 | 840 | 841 | 842 | 843 | 844 | 845 | , 846 |
令 848 | 849 | 850 | t 851 | = 852 | 1 853 | + 854 | 2 855 | 856 | k 857 | 1 858 | 859 | 860 | 861 | 2 862 | 863 | 864 | ,则 865 | 866 | 867 | t 868 | > 869 | 1 870 | , 871 | 872 | 1 873 | t 874 | 875 | ∈ 876 | 877 | ( 878 | 879 | 0 880 | , 881 | 1 882 | 883 | ) 884 | 885 | 886 | , 887 |
∴ 889 | 890 | 891 | 892 | 893 | 894 | | 895 | 896 | O 897 | C 898 | 899 | | 900 | 901 | 902 | r 903 | 904 | = 905 | 906 | 3 907 | 2 908 | 909 | 910 | t 911 | 912 | 913 | 914 | 2 915 | 916 | t 917 | 2 918 | 919 | + 920 | t 921 | − 922 | 1 923 | 924 | 925 | 926 | 927 | = 928 | 929 | 3 930 | 2 931 | 932 | 933 | 1 934 | 935 | 936 | 937 | 2 938 | + 939 | 940 | 1 941 | t 942 | 943 | − 944 | 945 | 1 946 | 947 | 948 | t 949 | 2 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | = 958 | 959 | 3 960 | 2 961 | 962 | 963 | 1 964 | 965 | 966 | 967 | − 968 | 969 | 970 | 971 | ( 972 | 973 | 974 | 1 975 | t 976 | 977 | − 978 | 979 | 1 980 | 2 981 | 982 | 983 | ) 984 | 985 | 986 | 2 987 | 988 | + 989 | 990 | 9 991 | 4 992 | 993 | 994 | 995 | 996 | 997 | ≥ 998 | 1 999 | 1000 | , 1001 |
当且仅当 1003 | 1004 | 1005 | 1006 | 1 1007 | t 1008 | 1009 | = 1010 | 1011 | 1 1012 | 2 1013 | 1014 | 1015 | ,即 1016 | 1017 | 1018 | t 1019 | = 1020 | 2 1021 | 1022 | 时等号成立,此时 1023 | 1024 | 1025 | 1026 | k 1027 | 1 1028 | 1029 | = 1030 | ± 1031 | 1032 | 1033 | 1034 | 2 1035 | 1036 | 1037 | 2 1038 | 1039 | 1040 | , 1041 |
∴ 1043 | 1044 | 1045 | sin 1046 | 1047 | 1048 | ∠ 1049 | S 1050 | O 1051 | T 1052 | 1053 | 2 1054 | 1055 | ≤ 1056 | 1057 | 1 1058 | 2 1059 | 1060 | 1061 | , 1062 |
∴ 1064 | 1065 | 1066 | 1067 | 1068 | ∠ 1069 | S 1070 | O 1071 | T 1072 | 1073 | 2 1074 | 1075 | ≤ 1076 | 1077 | π 1078 | 6 1079 | 1080 | 1081 | , 1082 |
故 1084 | 1085 | 1086 | ∠ 1087 | S 1088 | O 1089 | T 1090 | 1091 | 最大值为 1092 | 1093 | 1094 | 1095 | π 1096 | 3 1097 | 1098 | 1099 | , 1100 |
综上所述, 1102 | 1103 | 1104 | ∠ 1105 | S 1106 | O 1107 | T 1108 | 1109 | 的最大值为 1110 | 1111 | 1112 | 1113 | π 1114 | 3 1115 | 1116 | 1117 | ,取得最大值时直线 1118 | 1119 | l 1120 | 的斜率为 1121 | 1122 | 1123 | 1124 | k 1125 | 1 1126 | 1127 | = 1128 | ± 1129 | 1130 | 1131 | 1132 | 2 1133 | 1134 | 1135 | 2 1136 | 1137 | 1138 | . 1139 |