├── README.md ├── .gitattributes ├── .gitignore ├── 00.0_MathModeling_2018-05-14.ipynb └── .ipynb_checkpoints └── 00.0_MathModeling_2018-05-14-checkpoint.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # cgn3405 2 | Applied Numerical Methods in Civil Engineering 3 | 4 | This repository is for students taking my CGN 3405 Applied Numerical Methods Course at UCF. 5 | -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | 4 | # Custom for Visual Studio 5 | *.cs diff=csharp 6 | 7 | # Standard to msysgit 8 | *.doc diff=astextplain 9 | *.DOC diff=astextplain 10 | *.docx diff=astextplain 11 | *.DOCX diff=astextplain 12 | *.dot diff=astextplain 13 | *.DOT diff=astextplain 14 | *.pdf diff=astextplain 15 | *.PDF diff=astextplain 16 | *.rtf diff=astextplain 17 | *.RTF diff=astextplain 18 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Windows image file caches 2 | Thumbs.db 3 | ehthumbs.db 4 | 5 | # Folder config file 6 | Desktop.ini 7 | 8 | # Recycle Bin used on file shares 9 | $RECYCLE.BIN/ 10 | 11 | # Windows Installer files 12 | *.cab 13 | *.msi 14 | *.msm 15 | *.msp 16 | 17 | # Windows shortcuts 18 | *.lnk 19 | 20 | # ========================= 21 | # Operating System Files 22 | # ========================= 23 | 24 | # OSX 25 | # ========================= 26 | 27 | .DS_Store 28 | .AppleDouble 29 | .LSOverride 30 | 31 | # Thumbnails 32 | ._* 33 | 34 | # Files that might appear in the root of a volume 35 | .DocumentRevisions-V100 36 | .fseventsd 37 | .Spotlight-V100 38 | .TemporaryItems 39 | .Trashes 40 | .VolumeIcon.icns 41 | 42 | # Directories potentially created on remote AFP share 43 | .AppleDB 44 | .AppleDesktop 45 | Network Trash Folder 46 | Temporary Items 47 | .apdisk 48 | -------------------------------------------------------------------------------- /00.0_MathModeling_2018-05-14.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "%matplotlib inline" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 3, 19 | "metadata": {}, 20 | "outputs": [ 21 | { 22 | "name": "stdout", 23 | "output_type": "stream", 24 | "text": [ 25 | "Hello Class!\n" 26 | ] 27 | } 28 | ], 29 | "source": [ 30 | "print('Hello Class!')" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 4, 36 | "metadata": { 37 | "collapsed": true 38 | }, 39 | "outputs": [], 40 | "source": [ 41 | "def analytical(g,m,c,t):\n", 42 | " return (g*m/c)*(1-np.exp((-1)*(c/m*t)))\n", 43 | "\n", 44 | "def numerical(g, m, c, t_step, vi):\n", 45 | " return vi+(g-c/m*vi)*(t_step)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": 12, 51 | "metadata": { 52 | "collapsed": true 53 | }, 54 | "outputs": [], 55 | "source": [ 56 | "g = 9.81 #m/s2\n", 57 | "m = 68.1 #kg\n", 58 | "c = 12.5 #kg/s\n", 59 | "t_start = 0 #s\n", 60 | "t_end = 50 #sec\n", 61 | "t_step = 2 #s" 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": 13, 67 | "metadata": {}, 68 | "outputs": [ 69 | { 70 | "name": "stdout", 71 | "output_type": "stream", 72 | "text": [ 73 | "The time step is 2 seconds.\n" 74 | ] 75 | } 76 | ], 77 | "source": [ 78 | "print('The time step is {} seconds.'.format(t_step))" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": 14, 84 | "metadata": {}, 85 | "outputs": [ 86 | { 87 | "name": "stdout", 88 | "output_type": "stream", 89 | "text": [ 90 | "[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]\n" 91 | ] 92 | } 93 | ], 94 | "source": [ 95 | "t_tick = [t for t in range(t_start,t_end+t_step,t_step)]\n", 96 | "print(t_tick)" 97 | ] 98 | }, 99 | { 100 | "cell_type": "code", 101 | "execution_count": 15, 102 | "metadata": {}, 103 | "outputs": [ 104 | { 105 | "name": "stdout", 106 | "output_type": "stream", 107 | "text": [ 108 | "[0.0, 16.42172057920007, 27.797627475567975, 35.678120697377175, 41.137217188295963, 44.918926487237513, 47.538650327160717, 49.35342572499016, 50.610584855421081, 51.481463467240552, 52.084751896020961, 52.502671136843666, 52.792178582234115, 52.992730633322992, 53.131660135262784, 53.227901517011034, 53.294571327465157, 53.340755864150381, 53.372749526863686, 53.394912669059721, 53.41026586185928, 53.420901561754889, 53.428269287396454, 53.43337317164125, 53.436908812848785, 53.43935807661515]\n" 109 | ] 110 | } 111 | ], 112 | "source": [ 113 | "a_sol = [analytical(g,m,c,t) for t in t_tick]\n", 114 | "print(a_sol)" 115 | ] 116 | }, 117 | { 118 | "cell_type": "code", 119 | "execution_count": 21, 120 | "metadata": {}, 121 | "outputs": [ 122 | { 123 | "data": { 124 | "text/plain": [ 125 | "" 126 | ] 127 | }, 128 | "execution_count": 21, 129 | "metadata": {}, 130 | "output_type": "execute_result" 131 | }, 132 | { 133 | "data": { 134 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHElJREFUeJzt3XuQ3GWd7/H3ty8zPTOZXGYyDCEBZkBWuWgIGTUCWgHU\nimdZibjIKq7REimrVsot9xQn3uqwW2UVRenWHi3/OIFFUrq7HhDYoKJuiMToLsgGRBCIRkNCJplM\nhkky957py/f80b/pzCSZzK17uvvXn1dVqn/X6ecZKh+ePM/ze37m7oiISOWLlLoAIiJSGAp0EZGQ\nUKCLiISEAl1EJCQU6CIiIaFAFxEJCQW6iEhIKNBFREJCgS4iEhKxhfyy5cuXe1tb20J+pYhIxXvu\nuefecPeW6a5b0EBva2tj9+7dC/mVIiIVz8wOzOQ6dbmIiISEAl1EJCQU6CIiIaFAFxEJCQW6iEhI\nKNBFREJCgS4iEhILOg9dRM4s607WIZP/PPuxbHCPO8H+xG3wCde5g5Pb9/z+yWuck8ez5A5MPDZ+\nLUw+zqRrfNL++DYT9k+e90n7Z7t24if5n3v6azNPv2aK8xOPneXtm9O9mPNMZZju51/eVMua5XXT\n3jcfCnSRM3B3xrLOWCb3mcpCKuun/RnL5M6ls+PXORnP7WfcSWdzgZx2yGSdtDuZLLnP/HWlrq0s\nhFUN8aJ/hwJdQi2VdYZSWYbTWYbSWUbSTjLjjGayjGbGtz3Yzua3RzMzaYMVVtQgakbEIDJh+0zH\nIgZGsA2YQSQ4Z+S2c58nr7XgnOXvOXnN+PFJ1+WP5Yxfz4Tj49dAcC/kb8hfe8o949dOdd2Uxyd8\n18lLbcL2KedOu/Z0Nt0FMz89qSxnumlxvPg93Ap0qTjuzmA6S99olsFULqhzoe0MpYPwDvbHsnOP\n5XgEaiMR4lGIR4yaiBGLWH47HjFiEfLb8QnHopa7NmrkP3PHTp6LGUSDc5FT00dkDhToUnbcneG0\n0zeWoW8sS99YhhOj2Un7M+2miBo0xCLUxyLUx436WIRE1KiNGrXRCLVRy+8nJuzXRI2oQlYqjAJd\nSsbdOTGWpXskzdGRND0jGY6PZugby5DKnv3eupixtCZKYzxCQzxCfcxywR2P0BCLBNtGbcQwBbNU\nCQW6LIjRTJaekUwuuJOZfIBP1SVSGzWW1kRYUhNlSU2EJbVRlo5v10SpiSqkRU6lQJeCy7jTNZTm\n9cEUR4Zzre8TY2duci+KRzinLso5dTHOScRoTuRCOxHTIxIis6VAl3lzd3qTGfYPpNg/kOL1wdRp\nLe+IwfJEENx1sXyI1yu4RQpGgS5z0j+W4UAQ4AcGUgymJ7fAm2qjtDXGOa8hF+DNtVGiEXWTiBTT\njALdzPYDA0AGSLt7h5k1Af8PaAP2Ax9x9+PFKaaUWjrr7Osfywd472hm0vmGmNHWWMOFjXHaGuMs\nromWqKQi1Ws2LfTr3P2NCfubgR3ufo+ZbQ72/1dBSycl5e50j2R4sTfJK8dHSU6YK1gTMc5fFKOt\nsYa2xjjLE1HNJhEpsfl0udwErA+2twI7UaCHwnA6y8vHRnmxN0lP8mRLvLUuyiVLamlrjLOiIaZ5\n2iJlZqaB7sCTZpYB/q+7bwFa3b0rOH8EaC1GAWVhZN15rT/Fi8eS7O0bY3xMsy5qXN5Uy1ubErTW\na8hFpJzN9G/ote5+yMzOAbab2Z6JJ93dzeyME4rN7A7gDoALLrhgXoWVwjuWzPDSsSQvHRtlMHia\nx4CLF8d5a1OCNy2pIabBTJGKMKNAd/dDwedRM3sMeAfQbWYr3L3LzFYAR6e4dwuwBaCjo0PrypUB\nd+eP/WP8unuEzqF0/viy2ghva0pwRVMtjRrUFKk40wa6mTUAEXcfCLbfD/wD8DiwCbgn+NxWzIJK\nYXQNp/j5oSEODuaCPB6Btyyt5W3NCVY1xDSwKVLBZtJCbwUeC/6ix4B/dfefmtl/Aw+Z2aeBA8BH\nildMma8Toxl2dQ3zyvFRABJR4+pz61ndXEttVA/3iITBtIHu7vuA1Wc43gvcUIxCSeEk01n+q3uE\n53pGyHhu9cGOljre1Vqnx+tFQkbTFkIqk3WefyPJfx4Zzs8fv2xZLe9ZUc/SWvWPi4SRAj1k3J09\nJ8b4xeGh/IJYFyyKc93KelbUF/8VWCJSOgr0EDk4mOKpQ0McHs4NeDYnolx3XgMXL45rsFOkCijQ\nQyCVdX52cJDfHcsNeDbEjGtX1LO6OaFXm4lUEQV6hTsxmuHR1/o5OpIhZvDO1jrecU6dZq6IVCEF\negV7rX+MbfsHSGacpTURPnzRYlrq9J9UpFrpb38Fcnd+fXSEXxwexsk9pv8XFzZqGqJIlVOgV5ix\njPPE6wPsOTEGwNXn1vHuc+s16CkiCvRKcnw0w6P7+ulJZqiJGDdeuIg/W1pb6mKJSJlQoFeIP/WN\n8fiBAUYzTlNtlA9f1EhzQv/5ROQkJUKZc3ee7h5hV9cwAJcsqeHGCxdpFouInEaBXsZGM1l+fGCQ\nP/Tl+svfvaKeq1vr1F8uImekQC9Tvck0j742QG8yQ23U+IsLG3nTkppSF0tEypgCvQwdS2b43h/6\nGMk4yxNRbm5fTFNCC2qJyNkp0MvMcDrLw/tyYd7eGOdD7YupiaqLRUSmp5G1MpLKOo/s6+f4aJbW\nuqjCXERmRYFeJtydHx8Y4NBQmsXxCH95scJcRGZHgV4mnjo8zJ4TY9RGjFsuXkxjXH3mIjI7CvQy\n8HzPCM8eHSECfOiiRi2wJSJzokAvsT/2jbG9cwiAD1ywiLZGTU0UkblRoJfQkeE02/b348A159bx\n1uZEqYskIhVMgV4ifWMZHv5TH6ksXNFUy7Xn1pe6SCJS4RToJZBMZ3n4T/0MpZ0LF8X5wPmL9Di/\niMybAn2BZbLOo68N8EYyw/JElA+1NxKNKMxFZP4U6AvI3Xni9UFeH0zREMtNT9RbhkSkUJQmC+hX\nR4Z5+fgo8QjccvESltRorrmIFI4CfYG82JvkP4+MYMBNbYs5t15zzUWksBToC6BnJM1PXx8E4H2r\nGrQMrogUxYwD3cyiZvYbM/tRsN9kZtvNbG/wuax4xaxc7s5/dA6SBVY313JVS12piyQiITWbFvrn\ngVcn7G8Gdrj7JcCOYF9O8crxUQ4OpqmPGded11Dq4ohIiM0o0M1sFfDnwP0TDt8EbA22twIbC1u0\nypfMZPn5odxj/evPa9CMFhEpqpkmzD8BdwHZCcda3b0r2D4CtBayYGHwq65hhtLOyoYYb22qLXVx\nRCTkpg10M7sROOruz011jbs74FPcf4eZ7Taz3T09PXMvaYXpHk7zXE8SA96/Sk+CikjxzaSFfg3w\nQTPbD3wfuN7Mvgd0m9kKgODz6Jludvct7t7h7h0tLS0FKnZ5c3e2dw7iwFUtCVo1RVFEFsC0ge7u\nX3T3Ve7eBvwV8HN3/zjwOLApuGwTsK1opawwvzs2SudQmoaY8e4VWnRLRBbGfEbp7gHeZ2Z7gfcG\n+1Uvmc7y1OHcQOh1KxtIRDUQKiILY1Z9Ae6+E9gZbPcCNxS+SJVtV9cww2lnVUOMy5dpIFREFo6a\njwV0ZDjNb94IBkK1JK6ILDAFeoG4O/9xMDcQ2tGS4By9F1REFpgCvUBePDbK4eE0i2IRrtVAqIiU\ngAK9AEbSWXYGT4Rev6qBWg2EikgJKHkK4BeHhxnJOBcsinPpUq2kKCKloUCfp66hFC/0JokA71/V\noIFQESkZBfo8ZN35WWeuq+Xt59SxXAOhIlJCCvR5+G1vkiPDaRrjEa45VwOhIlJaCvQ5Gk5n+cXh\nYQBuWNlATVRdLSJSWgr0Odp5eIhkxmlrjPNmDYSKSBlQoM/BkeE0L/aOErHcO0I1ECoi5UCBPge7\ne0YAuGp5guaEBkJFpDwo0GdpOJ3l1eOjAHTohc8iUkYU6LP0Ym+SjMPFi+MsrY2WujgiInkK9FnI\nuvObN5IAXLVcrXMRKS8K9FnY15+ibyzL0poIFy2Ol7o4IiKTKNBn4flgMHTN8oRmtohI2VGgz9Dx\n0Qz7BlLEDN7WnCh1cURETqNAn6Hx1vmly2qpi+nXJiLlR8k0A6ms8+Kx3FTFtZqqKCJlSoE+A68c\nH2U045xXH+Pcej1IJCLlSYE+DXfPd7dc1aK+cxEpXwr0aRweTtM9kqEuZrxlaW2piyMiMiUF+jSe\n78k9SLS6KUEsoqmKIlK+FOhnMZTKsudEbjD0yuXqbhGR8qZAP4vfBuu2vGlxjdZtEZGyp0CfQtad\nF8bXbdFgqIhUAAX6FP7YN0Z/Ksuy2gjtjVq3RUTK37SBbmYJM3vWzH5rZi+b2d8Hx5vMbLuZ7Q0+\nlxW/uAvn+aB1vmZ5ndZtEZGKMJMW+ihwvbuvBq4ENpjZOmAzsMPdLwF2BPuh0JtMs3983ZYmTVUU\nkcowbaB7zmCwGw/+OHATsDU4vhXYWJQSlsD4mueXN9WS0LotIlIhZpRWZhY1sxeAo8B2d/810Oru\nXcElR4DWIpVxQY1lnJeCdVv0EgsRqSQzCnR3z7j7lcAq4B1mdsUp551cq/00ZnaHme02s909PT3z\nLnCxja/bsrIhRqvWbRGRCjKr/gR3PwE8BWwAus1sBUDweXSKe7a4e4e7d7S0tMy3vEXl7jw3vm6L\nHiQSkQozk1kuLWa2NNiuA94H7AEeBzYFl20CthWrkAulcyhNTzJDfcx4s9ZtEZEKM5M+hRXAVjOL\nkvsfwEPu/iMzexp4yMw+DRwAPlLEci6I8VUVVzdr3RYRqTzTBrq7vwisOcPxXuCGYhSqFAZTWX7f\nN4ahdVtEpDJpTl7gt71Jsg5vWlLDkhqt2yIilUeBzuR1W9aqdS4iFUqBDuztG2MglaWpNsqFWrdF\nRCqUAh34w4kxAFY312rdFhGpWFUf6Fl39vXnAv2SJZqqKCKVq+oDvWs4zUjGWVoTYVlt1f86RKSC\nVX2C/SlonV+8pEbdLSJS0ao+0Pf1pQC4eHFNiUsiIjI/VR3og6ksR0bSxAzOX6TZLSJS2ao60McH\nQy9sjBPXo/4iUuGqOtDz/efqbhGREKjaQM+4s78/139+kQJdREKgagP90GCa0azTnIiytFZrt4hI\n5avaQFd3i4iETdUG+r58oGt2i4iEQ1UGet9Yhp5khpqIsapBgS4i4VCVgT7eOm9rjBPVdEURCYmq\nDPQ/BbNbLl6i/nMRCY+qC/R01jkwkGuhX6T+cxEJkaoL9IODKVJZOKcuSmNc0xVFJDyqLtA1XVFE\nwkqBLiISElUV6MeSGY6PZklEjfMaYqUujohIQVVVoI9PV2xvjBPRyyxEJGSqKtAnvp1IRCRsqibQ\nxzLO64O5+eftjQp0EQmfqgn01wdTZBxW1MdoiFdNtUWkilRNsml2i4iE3bSBbmbnm9lTZvaKmb1s\nZp8PjjeZ2XYz2xt8Lit+cefG3ScEup4OFZFwmkkLPQ38nbtfBqwD/sbMLgM2Azvc/RJgR7BflnqT\nGfrHstTHjHPrNV1RRMJp2kB39y53fz7YHgBeBVYCNwFbg8u2AhuLVcj5Gm+dX7S4BtN0RREJqVn1\noZtZG7AG+DXQ6u5dwakjQGtBS1ZA+dUV1X8uIiE240A3s0XAI8Dfunv/xHPu7oBPcd8dZrbbzHb3\n9PTMq7BzMZrJ0jmYwsg9UCQiElYzCnQzi5ML839x90eDw91mtiI4vwI4eqZ73X2Lu3e4e0dLS0sh\nyjwrrw2kyAIrG2IkYlUzqUdEqtBMZrkY8M/Aq+7+jxNOPQ5sCrY3AdsKX7z529en6YoiUh1mMuXj\nGuCvgZfM7IXg2JeAe4CHzOzTwAHgI8Up4txNmq6ox/1FJOSmDXR3/xUw1dSQGwpbnMLqHskwlHYa\n4xFaEnqZhYiEW6g7lff1n3zVnKYrikjYhTrQ9bi/iFST0Ab6SDrL4aE0EYMLNV1RRKpAaAP9tf4U\nDpzfEKc2GtpqiojkhTbpNLtFRKpNKAM9686+Aa2uKCLVJZSBfmQ4zUjaWVIToalW0xVFpDqEMtAn\nzm7RdEURqRahDPSDg2kA2jS7RUSqSOgC3d3pHs4F+nkNCnQRqR6hC/Tjo1lGs86iWIRFehm0iFSR\n0CXekaB1rlfNiUi1CV+gjyjQRaQ6hS/Q1UIXkSoVqkB3dwW6iFStUAX68dEsY1lnUVwDoiJSfUKV\nevnWeZ1a5yJSfUIV6F3DKUDdLSJSnUIV6JrhIiLVLDSBnntCNAMo0EWkOoUm0I+NZjQgKiJVLTTJ\np+mKIlLtwhfomuEiIlUqPIGuAVERqXKhCHQNiIqIhCTQxwdEGzUgKiJVLBTpN95/3qrWuYhUsVAF\n+goFuohUsWkD3cweMLOjZva7CceazGy7me0NPpcVt5hnlx8Q1QwXEaliM2mhPwhsOOXYZmCHu18C\n7Aj2S0IDoiIiOdMGurvvAo6dcvgmYGuwvRXYWOByzdjEAdEGDYiKSBWbawK2untXsH0EaC1QeWZN\nT4iKiOTMu0nr7g74VOfN7A4z221mu3t6eub7dadRoIuI5Mw10LvNbAVA8Hl0qgvdfYu7d7h7R0tL\nyxy/bmpdeuRfRASYe6A/DmwKtjcB2wpTnNlxd46OaEBURARmNm3x34CngTebWaeZfRq4B3ifme0F\n3hvsLzgNiIqInDRts9bdPzrFqRsKXJZZU/+5iMhJFd2s7VKgi4jkVXSgaw10EZGTKjbQsxoQFRGZ\npGIDfXxAdLEGREVEgAoOdC2ZKyIyWcUHurpbRERyKj7QtQa6iEhORQZ61p1urYEuIjJJRQb6sdEM\nqSwsjkeo14CoiAhQoYGu/nMRkdMp0EVEQkKBLiISEhUX6BoQFRE5s4oL9GNJDYiKiJxJxSXikRF1\nt4iInEnlBbr6z0VEzkiBLiISEhUV6JMGRBXoIiKTVFSgTxoQjVVU0UVEiq6imrl65ZxIeUmlUnR2\ndpJMJktdlFBIJBKsWrWKeDw+p/srKhk1w0WkvHR2dtLY2EhbWxtmVuriVDR3p7e3l87OTtrb2+f0\nMyqq36JbLXSRspJMJmlublaYF4CZ0dzcPK9/7VRMoGtAVKQ8KcwLZ76/y4oJ9N7xAdEaDYiKSOE9\n+OCDfO5zn5v2msOHD+f3b7/9dl555ZVZf9fOnTu58cYbZ33fdComGfPzz7V+i4iUyKmBfv/993PZ\nZZeVsESTVU6gj+iVcyJyZhs3bmTt2rVcfvnlbNmyBYBFixbx5S9/mdWrV7Nu3Tq6u7sB+OEPf8g7\n3/lO1qxZw3vf+9788XEDAwO0t7eTSqUA6O/vp729nYcffpjdu3dz2223ceWVVzIyMsL69evZvXs3\nAD/96U+56qqrWL16NTfccAMAzz77LO9617tYs2YNV199Nb///e+L+nuomHTUE6Ii5e2e37xRlJ+7\nec3yaa954IEHaGpqYmRkhLe//e18+MMfZmhoiHXr1vG1r32Nu+66i/vuu4+vfOUrXHvttTzzzDOY\nGffffz/33nsv3/jGN/I/q7GxkfXr1/PjH/+YjRs38v3vf5+bb76ZW265hW9/+9t8/etfp6OjY9L3\n9/T08JnPfIZdu3bR3t7OsWPHAHjLW97CL3/5S2KxGE8++SRf+tKXeOSRRwr7C5qgItIx685RDYiK\nyBS++c1v8thjjwFw8OBB9u7dS01NTb6feu3atWzfvh3ITbW89dZb6erqYmxs7IxTBG+//Xbuvfde\nNm7cyHe+8x3uu+++s37/M888w3ve8578z2pqagKgr6+PTZs2sXfvXsws3+ovlnmlo5ltAP4PEAXu\nd/d7ClKqU0wcEK3TgKhIWZpJS7oYdu7cyZNPPsnTTz9NfX0969evJ5lMEo/H87NGotEo6XSuUXjn\nnXfyhS98gQ9+8IPs3LmTu++++7Sfec0117B//3527txJJpPhiiuumFPZvvrVr3Ldddfx2GOPsX//\nftavXz/Xas7InNPRzKLAt4EPAJcBHzWzoowOjHe3qP9cRE7V19fHsmXLqK+vZ8+ePTzzzDPTXr9y\n5UoAtm7dOuV1n/jEJ/jYxz7Gpz71qfyxxsZGBgYGTrt23bp17Nq1i9deew0g3+Uy8bsefPDBWdVr\nLubT3H0H8Ed33+fuY8D3gZsKU6zJjugNRSIyhQ0bNpBOp7n00kvZvHkz69atO+v1d999N7fccgtr\n165l+fKp/1Vx2223cfz4cT760Y/mj33yk5/ks5/9bH5QdFxLSwtbtmzh5ptvZvXq1dx6660A3HXX\nXXzxi19kzZo1+X8hFJO5+9xuNPtLYIO73x7s/zXwTnefciJnR0eHj48Iz8Z3/3CCQ0Npbr14Me2L\na+ZUXhEpvFdffZVLL7201MUoih/84Ads27aN7373uwv6vWf6nZrZc+7eMcUteUVv8prZHcAdABdc\ncMGs73d3DIiYBkRFZGHceeed/OQnP+GJJ54odVFmZT4JeQg4f8L+quDYJO6+BdgCuRb6bL/EzPj4\nny0lk3WiET1iLCLF961vfavURZiT+fSh/zdwiZm1m1kN8FfA44Up1ukU5iIiZzfnFrq7p83sc8DP\nyE1bfMDdXy5YyUSkIri7FugqkLmOaY6bV6e0uz8BVFYnk4gUTCKRoLe3V0voFsD4euiJRGLOP0Oj\njCIyZ6tWraKzs5Oenp5SFyUUxt9YNFcKdBGZs3g8Pue360jh6Tl6EZGQUKCLiISEAl1EJCTm/Oj/\nnL7MrAc4MMfblwPFWXC5fKnO1UF1rg7zqfOF7t4y3UULGujzYWa7Z7KWQZioztVBda4OC1FndbmI\niISEAl1EJCQqKdC3lLoAJaA6VwfVuToUvc4V04cuIiJnV0ktdBEROYuKCHQz22BmvzezP5rZ5lKX\npxjM7AEzO2pmv5twrMnMtpvZ3uBzWSnLWEhmdr6ZPWVmr5jZy2b2+eB4mOucMLNnzey3QZ3/Pjge\n2jqPM7Oomf3GzH4U7Ie6zma238xeMrMXzGx3cKzodS77QF/Il1GX2IPAhlOObQZ2uPslwI5gPyzS\nwN+5+2XAOuBvgv+uYa7zKHC9u68GrgQ2mNk6wl3ncZ8HXp2wXw11vs7dr5wwVbHodS77QGcBX0Zd\nSu6+Czh2yuGbgPHXkm8FNi5ooYrI3bvc/flge4DcX/aVhLvO7u6DwW48+OOEuM4AZrYK+HPg/gmH\nQ13nKRS9zpUQ6CuBgxP2O4Nj1aDV3buC7SNAaykLUyxm1gasAX5NyOscdD28ABwFtrt76OsM/BNw\nF5CdcCzsdXbgSTN7LnivMixAnbV8boVwdzez0E1JMrNFwCPA37p7/8SXJISxzu6eAa40s6XAY2Z2\nxSnnQ1VnM7sROOruz5nZ+jNdE7Y6B65190Nmdg6w3cz2TDxZrDpXQgt9Ri+jDqluM1sBEHweLXF5\nCsrM4uTC/F/c/dHgcKjrPM7dTwBPkRs3CXOdrwE+aGb7yXWXXm9m3yPcdcbdDwWfR4HHyHUdF73O\nlRDoC/oy6jLzOLAp2N4EbCthWQrKck3xfwZedfd/nHAqzHVuCVrmmFkd8D5gDyGus7t/0d1XuXsb\nub+7P3f3jxPiOptZg5k1jm8D7wd+xwLUuSIeLDKz/0GuH278ZdRfK3GRCs7M/g1YT25Ftm7gfwP/\nDjwEXEBulcqPuPupA6cVycyuBX4JvMTJvtUvketHD2ud30ZuMCxKrjH1kLv/g5k1E9I6TxR0ufxP\nd78xzHU2s4vItcoh1639r+7+tYWoc0UEuoiITK8SulxERGQGFOgiIiGhQBcRCQkFuohISCjQRURC\nQoEuIhISCnQRkZBQoIuIhMT/B5/TdBF/gnAkAAAAAElFTkSuQmCC\n", 135 | "text/plain": [ 136 | "" 137 | ] 138 | }, 139 | "metadata": {}, 140 | "output_type": "display_data" 141 | } 142 | ], 143 | "source": [ 144 | "plt.plot(t_tick,a_sol,color='skyblue',linewidth=2,label='analytical')\n", 145 | "plt.legend(loc=4)" 146 | ] 147 | }, 148 | { 149 | "cell_type": "code", 150 | "execution_count": 22, 151 | "metadata": {}, 152 | "outputs": [ 153 | { 154 | "name": "stdout", 155 | "output_type": "stream", 156 | "text": [ 157 | "50 53.44430302092583\n", 158 | "26 26\n" 159 | ] 160 | } 161 | ], 162 | "source": [ 163 | "n_sol = [0]\n", 164 | "for i in range(len(t_tick)):\n", 165 | " if i == 25: break\n", 166 | " n_sol.append(numerical(g,m,c,t_step,n_sol[i]))\n", 167 | "print(t_tick[i],n_sol[i])\n", 168 | "print(len(t_tick),len(n_sol))" 169 | ] 170 | }, 171 | { 172 | "cell_type": "code", 173 | "execution_count": 23, 174 | "metadata": {}, 175 | "outputs": [ 176 | { 177 | "data": { 178 | "text/plain": [ 179 | "" 180 | ] 181 | }, 182 | "execution_count": 23, 183 | "metadata": {}, 184 | "output_type": "execute_result" 185 | }, 186 | { 187 | "data": { 188 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXZ5KQBIhhC4ugJiqKokQuUKNSRFnEnWpB\nrb1F1FLL0nqttWi91trf7UO4bb3aWhUFwbrVDVfkynrVigsIYbWiBRGFkAQIgawz8/39cSYhIQkJ\nIZPJzLyfj8c8zj75nNi+Ofme7/kec84hIiLRzxfpAkREpGUo0EVEYoQCXUQkRijQRURihAJdRCRG\nKNBFRGKEAl1EJEYo0EVEYoQCXUQkRiS25g/r1q2by8zMbM0fKSIS9VatWlXgnMtobL9WDfTMzExW\nrlzZmj9SRCTqmdlXTdlPTS4iIjFCgS4iEiMU6CIiMUKBLiISIxToIiIxQoEuIhIjFOgiIjGiVfuh\ni7QZzgGVECwHKsBV1J535aFpBTi/98FfYz5Qe12dbQEgGJo/ZEowtL1qXRDnAjgXJBj0EwwECAT9\nBIN+XCDgrXMBgsEALuA/uK9zuGAQ5+p+qJ533jLePM7hqDkNer8KgoCrsQ9YaNl7SaXDm3Gh/Q7O\nU71P1TpqrTNc9aEOhx26t6txXI0tVavN3MH/ZIfsU+s/Zw12sOp6OA7d2PCLOBvYyZqw/yH2ucsY\nevnTDW5vCQp0adtcAIJFENhbY7oXAkXeNFgMwRJwJfVPgyXgSg+uc6Wh4K6M9JnVYqHPYf9k9jW2\ng7Rly9d9EfafoUCX1uX84M8D/w7vE9hxcN6/EwKFocAOBXiwOGyl+AM+7+M3yiuNikoor3CUlQUp\nLQ9SXuGoqITKSvAHIBAEv9+br54eMh8I7Vc1DYbmg+6QafDg9mDQW++c4fMlYD4fPkvEl5CAWQLm\nSyTBl4D5EvD5EvD5Er39zIcvwXdwPrS9ej/zhb7D24aFvt8stM6HmQ+zBHw+b533s6vWG+YLTUPH\nVK83qz4e8KZG6FjvnyczAwPDwHz4rGqdYVXbwdsntA47uN5bpvpn11S9T439626r/5hDj69PffvW\n3b/xY2vKPOusete3JAW6tKxAEVT8M/T5HPzbawT2DggUcLg/S+vlSwdfJ0jwpi6hE2UVKRQVQ1Fx\ngL37KtlbVEHhnlIKdpewK38/O3cVs2PnXvLy91NSBiWlUFIGZeVQXgGVfqqbIhqSlJREeno6HTt2\npEOHDtWf9u3b11qu/qR7245JTSU5OZmUlJRa04bWJScnk5SUhM+ny285Ogp0OXIuAJVbQ6H9mTct\nD4V4YGcjBxsk9IDEXqFPz4PzCb0gsRv4OlG039iybQ//2prPli1fsXXrVrZs2cKWLVvYunUlJSUl\nTSo1ISGBjIwMevTowSndu5ORkUGnTp2qP+np6Q1OU1JSGrzaEmmLFOhyeM4P5blQ8i6UfgDlm6By\ns3ezsD6WAu1OgXb9oN2pkHR8jcDuCYndwbz/2Tnn2LZtG7mf5JKbm8vatf/H5s2b2bp1K0VFRYct\nKz09naysLI477jh69OhB9+7da02r5rt06aIrX4kbCnSpLVgOZSuh9N1QiP+j/nbsxN5eYFcFd7tT\nIbkfJB4HVjdAS0tLWb9mPbm5C1i7dm0owNeyd+/eesvo0KEDWVlZZGZm1jvt1KlTS5+5SNRToMe7\n4AEo/TAU3u96866s9j5JJ0P7YZA6FFIGQNIpkJDW4FcGAgE+/fRTli1bxqeffkpubi6ff/45wWDd\n9uqMjAyys7OrP/369SMrK4uuXbuquUPkCCnQ45E/D4qehuKXvKtx/LW3t+vvBXj7YZA6DJKOPezX\nOefYvHkzixcvZsmSJSxdurTOlXdCQgKnn356rfDOzs6mZ8+eCm6RFqJAjxfOD/vfhqI5sP9NDoa4\nD1IGecFddRWe2K3Rr9u5cydLlixhyZIlLF68mK+//rrW9hNPPJERI0ZwzjnnMGDAAPr3709KSkrL\nn5eIVGtSoJvZVqAY7zE3v3NusJl1Af4OZAJbgfHOuT3hKVOarfwzKHoSip6q0QMlATpeAek3QPsR\nkHBMo19TUVHBokWLWLx4MYsXL2b9+vW1tnfr1o0LL7yQkSNHMmLECE488cSWPxcROawjuUK/wDlX\nUGN5OrDEOXe/mU0PLf+qRauT5gkUQ/EL3tV46QcH17frB+k3Qvq/e90Fm2Dt2rXMmTOHp59+msLC\nwur1qampDBs2jJEjRzJy5EgGDBig3iQiEXY0TS5XAsND8/OA5SjQI8c5KH3fC/F9L3iPuQP4OkLa\ntdDpRkjJgSa0V+/Zs4fnnnuOOXPmsGrVqur1Z5xxBmPHjmXkyJHk5OSQnJwcrrMRkWZoaqA7YLGZ\nBYDHnHOzgB7OuR2h7TuBHuEoUJqgbBXsnAxlHx9clzrMC/G074OvQ6NfEQwGWbJkCU8++SSvvPIK\n5eXlgNff+/rrr2fixIkMGjRINzBF2rCmBvpQ59w3ZtYdWGRmn9Xc6JxzVjUk2iHMbBIwCeD4448/\nqmLlEIE9kP9r2Pso4LwnMDvdCOkToV3fJn3Fli1bmDt3LnPnzmXbtm2ANxbFyJEjufHGGxk7diyp\nqalhPAkRaSlNCnTn3Deh6S4zmw98B8gzs17OuR1m1gvY1cCxs4BZAIMHDz7CQTykXi7o3eTMvwMC\n+UACdLkVuv7msP3Dqw93jnfeeYeZM2eydOnS6vWZmZlMnDiRCRMmcMIJJ4TxBEQkHBoNdDPrAPic\nc8Wh+dHAfcDrwATg/tD0tXAWKiFlayFvsvcEJ3hNKz0fhuQzmnT4mjVr+OUvf8nixYsBSElJ4eqr\nr+bGG29k+PDhurEpEsWacoXeA5gfajtNBJ51zi00s0+AF8zsJuArYHz4yhQC+6DgN7Dnz0AAErpD\n9z/AMT9s0o3O7du3c/fdd/PUU0/hnCM9PZ277rqLSZMm6TF6kRjRaKA75/4FZNezvhAYEY6ipAbn\noPh52PULb/hZfNB5GnS7DxIaD+KioiJmzJjBAw88QFlZGUlJSUyZMoW7776brl27hr9+EWk1elK0\nLSvfBHlToGSZt5ySAz3/CikDGz20srKSxx57jN/+9rcUFHiPD4wfP57f//73nHTSSeGsWkQiRIHe\nFjkHhfdBwf8D/JDQFTJmeL1X6hnJsPahjldffZVf/epXbN68GYChQ4fyhz/8gbPPPrsViheRSFGg\ntzUuCHk/hb2zAINOkyDj916oN+LDDz/k9ttv5x//8G6Y9u3bl5kzZ3LllVeq/7hIHFCgtyXODzsm\nwr6nvRdF9H4ZOl7S6GGlpaVMmzaN2bNnA964Kvfeey+TJk0iKSkp3FWLSBuhQG8rXAV8+wMofhms\nA/R5EzoMb/Swbdu2cdVVV7Fq1SpSUlK47bbb+NWvfsUxxzQ+4JaIxBYFelsQLIVvvg8HFngvRD5u\nIaTmNHrYsmXLGD9+PAUFBWRlZTF//nyys+t0SBKROKGnSCItuB+2X+qFeUI3OH5Zo2HunOOBBx5g\n1KhRFBQUMHr0aFauXKkwF4lzCvRICuyFr0d73RITe8Hx/9dol8SSkhJ++MMfcttttxEIBLjzzjtZ\nsGABXbp0aaWiRaStUpNLpPgL4OuLoPxTSDwejl8C7U4+7CFbtmzhe9/7Hrm5uXTo0IF58+Zx9dVX\nt1LBItLWKdAjwb8Dto2Cig3eC5iPXwJJhx+J8p133uG6665j9+7d9O3bl/nz59O/f/9WKlhEooGa\nXFpb5Tb4apgX5u1OhxPePWyYO+eYMWMGF198Mbt37+ayyy7j448/VpiLSB0K9NZU8QV89V2o/AKS\nB3pt5om9Gtx9//79jB8/nunTpxMMBrnnnnt47bXXNJiWiNRLTS6tpXwjfD3Sa25JPQf6LDjs4Fpf\nfPEFY8eOZcOGDaSlpfH0009zxRVXtGLBIhJtFOitofJb2DbcexlF+wugz+veuz4b8OWXX3LuueeS\nn59Pv379ePXVVzn11FNbrVwRiU5qcgk35yDvlhph/tZhw7ywsJBLLrmE/Px8Ro4cyUcffaQwF5Em\n0RV6uO17Fva/4T0B2utv4Gv4/ZxlZWWMHTuWzz//nOzsbF555RXS0hp/pZyICOgKPbz8OyFvmjff\n/QFI6t3grsFgkBtuuIH333+f3r1789ZbbynMReSIKNDDxTnY+VMI7oEOF0H6DYfd/a677uLvf/87\naWlpLFiwgN69Gw5/EZH6KNDDpfjvsP9V8KVBz8cP+97Pxx57jBkzZpCQkMBLL73EgAEDWrFQEYkV\nCvRw8O+CvKnefPc/QtJxDe769ttvM2XKFABmzZrF6NGjW6NCEYlBCvRwyJsKgUJoPxLSb25wt9Wr\nVzNu3DgCgQB33303N954YysWKSKxRoHe0va9BMUvel0TD9PUsm3bNi699FIOHDjA9ddfz3333dfK\nhYpIrFGgtyR/AeRN9uYzZkK7zHp3Kyoq4tJLL2XHjh0MHz6c2bNn652fInLUFOgtKW9a6AGi4dDp\nJ/XuUlFRwdVXX8369evp168fr7zyCsnJya1bp4jEJAV6Syl+FYqfB2sPPWeD1f3VOuf4yU9+wpIl\nS+jevTsLFiygc+fOEShWRGKRAr0lBHbDzlu8+Yz7od2J9e72u9/9jrlz59K+fXvefPNNsrKyWrFI\nEYl1CvSWkPdzCORB6neh85R6d3nqqaf4zW9+g8/n47nnnmPIkCGtXKSIxDoF+tEqfgP2PQ2WCr3q\nb2rZsGEDN9/sdV988MEHNQyuiIRFkwPdzBLMbLWZvRla7mJmi8xsc2gaf43BgT2QF7r5mfFf0K5v\nnV2cc0ydOpXKykpuuukmpk6d2spFiki8OJIr9J8Dm2osTweWOOf6AktCy/Fl122hF1acC51/Vu8u\nzz33HMuXL6dr167MnDmzlQsUkXjSpEA3sz7ApcATNVZfCcwLzc8DxrZsaW3c/rehaC5YCvScA5ZQ\nZ5d9+/bxi1/8AoAZM2bQpUuXVi5SROJJU6/Q/we4AwjWWNfDObcjNL8T6NGShbVpgX2wc5I33+0+\nSK7/BRT33nsvO3fuJCcnh4kTJ7ZigSISjxoNdDO7DNjlnFvV0D7OOQe4Bo6fZGYrzWxlfn5+8ytt\nS/Y+Bv7tkDIEutxW7y7r1q3joYcewufz8de//hWfT/efRSS8mpIy5wFXmNlW4HngQjN7Gsgzs14A\noemu+g52zs1yzg12zg3OyMhoobIjyAVg7yPefLd76m1qcc4xefJkAoEAkydPZuDAga1cpIjEo0YD\n3Tl3p3Ouj3MuE7gWWOqc+yHwOjAhtNsE4LWwVdmWHFgIlVsgKRM6XFzvLk8//TTvv/8+GRkZ/O53\nv2vd+kQkbh1NO8D9wCgz2wyMDC3Hvj1/8aadJtd7db53715uv/12AP77v/+bTp06tWZ1IhLHjugl\n0c655cDy0HwhMKLlS2rDKr7wrtAtBTrVP3b5Pffcw65duxg6dCg/+tGPWrlAEYlnulN3JPaE2s6P\nuRYSutbZvHr1ah5++GESEhJ4+OGHNSSuiLQqBXpTBUugaI4336nueC3BYJApU6YQDAaZNm2a3gsq\nIq1Ogd5U+56F4F5IORtSB9fZPG/ePFasWEHPnj259957W78+EYl7CvSmcA72POzN1zOa4u7du7nj\njjsA+OMf/0h6enprViciAijQm6Z0BZSvgYRukDauzua7776bgoICzj//fK677roIFCgiokBvmr2h\nq/P0m8GXUmvTqlWrePTRR0lMTNSNUBGJKAV6Y/x5sO9FwAedb6m1KRgMMnnyZJxz3HrrrfTv3z8y\nNYqIoEBv3N7HgUroeDkknVBr0+zZs/n444859thjueeeeyJTn4hIiAL9cJzfG4gL6twMLSgoYPp0\nbwj4Bx54gLS0tNauTkSkFgX64ex/3RtVsd0p0L72Q7F33XUXu3fvZsSIEYwbV/dGqYhIa1OgH05V\nV8VOU2q9K3TNmjU88cQTJCUl8Ze//EU3QkWkTVCgN6R8I5QsBesA6RNqbXrwwQerh8jt169fhAoU\nEalNgd6QPX/1puk/hISDDwoVFhby/PPPY2ZMmzYtQsWJiNSlQK9PoBj2PeXNHzJuy5w5cygrK2PM\nmDGcdNJJEShORKR+CvT67PsbBIshdRiknFm9OhAI8Mgj3oiLU6bUHQJARCSSFOiHcu7gSywO6aq4\ncOFCtmzZQlZWFmPGjIlAcSIiDVOgH6pkOVRsgsRekPa9Wpseftjr9fLTn/6UhIS6bysSEYkkBfqh\nqsdtmQSWVL36yy+/ZOHChaSkpHDjjfW/rUhEJJIU6DVVbofiV4FE6DSp1qZHHnkE5xzXXnstXbvW\nfVuRiEikKdBr2vsYEIC0qyDp2OrVJSUlzJnjva1IN0NFpK1SoFdxFaGBuKhzM/T5559nz549DBky\nhMGD676tSESkLVCgVyl+GQJ5kHwGpH63erVzrvpmqK7ORaQtU6BXqR63ZSrUGJvlo48+4tNPP6Vr\n165cc801ESpORKRxCnSAsjVQ+g/wHQPp19faVHV1ftNNN5GSklLf0SIibYICHWDfs940fQL4Olav\n3rVrFy+88AJmxi233NLAwSIibYMCHeDAYm/a8cpaq2fPnk1FRQWXXnopWVlZEShMRKTpFOj+Aihf\nDZYCqedVrw4EAjz66KOAboaKSHRQoJcs9aapQ8F3sI38zTffZNu2bZx88smMHj06QsWJiDRdo4Fu\nZilm9rGZ5ZrZBjP7bWh9FzNbZGabQ9PO4S83DKqaWzrUfsVczXFbfD79uycibV9TkqocuNA5lw2c\nBYwxsxxgOrDEOdcXWBJajj4loUBvP7J61eeff86iRYtITU1l4sSJESpMROTINBrozrM/tJgU+jjg\nSmBeaP08YGxYKgynin9B5RbwdYaUgdWrq8Y8/8EPfkDnztH5h4eIxJ8mtSWYWYKZrQF2AYuccx8B\nPZxzO0K77AR6hKnG8ClZ4k07XAjmDYd74MABnnzySUA3Q0UkujQp0J1zAefcWUAf4DtmdsYh2x3e\nVXsdZjbJzFaa2cr8/PyjLrhFHajb3PLss89SVFTEOeecw8CBAxs4UESk7Tmiu33Oub3AMmAMkGdm\nvQBC010NHDPLOTfYOTc4IyPjaOttOS5Y4wrdC3SN2yIi0awpvVwyzKxTaD4VGAV8BrwOTAjtNgF4\nLVxFhkV5LgQKIfEESPJe9vzBBx+Qm5tLRkYG3//+9yNcoIjIkUlswj69gHlmloD3D8ALzrk3zWwF\n8IKZ3QR8BYwPY50tr2Z3xdBgXFVX5zfffDPJycmRqkxEpFkaDXTn3FqgTmOyc64QGFH3iChR1V0x\n1NySl5fHSy+9hM/n07gtIhKV4vOJmWA5lLznzbe/EIDHH3+cyspKLr/8co4//vgIFici0jzxGeil\nK8CVQvIASOyB3+/nscceA3QzVESiV3wG+iFPh77xxhts376dU045hREjorcVSUTiW3wG+oHa7ecv\nv/wy4N0M1bgtIhKt4i+9Anuh7BMgCdp/l0AgwMKFCwG44oorIlubiMhRiL9AL1kOBCE1B3wd+eST\nTygsLOSkk07ilFNOiXR1IiLNFn+Bfkhzy4IFCwC45JJLsBovhxYRiTbxF+iH3BCtGegiItEsvgK9\ncjtU/BN8aZA6hJ07d7Jq1SpSU1M5//zzI12diMhRia9ArxqMq/1wsKTqm6EXXnghqampkatLRKQF\nxFegH1Bzi4jErvgJdOdq3RCtrKzknXfeAeDiiy+OYGEiIi0jfgK9YiMEdkJiL2h3GitWrKCoqIjT\nTjuNrKysSFcnInLU4ifQq5tbvOFy1dwiIrEm/gK9nv7nIiKxID4C3VVC6XJvvv0Itm3bxrp16+jY\nsSNDhw6NaGkiIi0lPgK99BMI7od2/SCpD2+//TYAo0aNol27dhEuTkSkZcRHoOvpUBGJA/ER6DXa\nz8vLy1m82FtWd0URiSWxH+jB/d4bivBB+/N59913KSkpITs7m969e0e6OhGRFhP7gV7yLuCHlCGQ\n0EnNLSISs2I/0NVdUUTiROwHeo0bol988QWff/45nTt3JicnJ7J1iYi0sNgOdH8elK8DS4XUc6q7\nK1500UUkJiZGuDgRkZYV24FestSbth8GvmQ1t4hITIvtQK8xXG5JSQnLli3DzLjooosiW5eISBjE\nbqA7BwcWefMdRrBs2TLKy8sZMmQI3bt3j2xtIiJhELuBXvkF+L+GhK6QnK3mFhGJeY0GupkdZ2bL\nzGyjmW0ws5+H1ncxs0Vmtjk07Rz+co9AjeFyHcZbb70FKNBFJHY15QrdD/zCOXc6kANMMbPTgenA\nEudcX2BJaLntqNH/fNOmTXz11VdkZGQwaNCgyNYlIhImjQa6c26Hc+7T0HwxsAnoDVwJzAvtNg8Y\nG64ij5gL1OjhMrK6ueXiiy/G54vdViYRiW9HlG5mlgkMBD4CejjndoQ27QR6tGhlR6NsNQT3QtKJ\n0C5L7eciEheaHOhm1hF4GbjVObev5jbnnANcA8dNMrOVZrYyPz//qIptspKDzS379u3jvffew+fz\nMXr06Nb5+SIiEdCkQDezJLwwf8Y590podZ6Z9Qpt7wXsqu9Y59ws59xg59zgjIyMlqi5cSX/8Kbt\nh7N48WL8fj/nnnsunTu3rfu2IiItqSm9XAyYDWxyzv2pxqbXgQmh+QnAay1fXjNVrPem6q4oInGk\nKQOanAf8O7DOzNaE1t0F3A+8YGY3AV8B48NT4hEKHoDKrUASLulkBbqIxI1GA9059z5gDWwe0bLl\ntIDyTd603Snkrt3Ijh07OPbYYxkwYEBk6xIRCbPY68NXscGbJvevdXXutRyJiMSu2Av08voDXUQk\n1sVsoBdXHM+KFStISkpi5MiRES5KRCT8YjbQ/+/DAoLBIMOGDSMtLS3CRYmIhF9sBXpwP/i/AmvH\ni6+uBtTcIiLxI7YCvXwjAC7pVBa8/Q6gQBeR+BFjge41txTu70lBQQFZWVmceuqpES5KRKR1xFag\nh7os5n5WCai7oojEl9gK9NAV+vIPvEHARo0aFclqRERaVUwG+luLtwLwne98J4LFiIi0rtgJ9MA+\n8H9NkHbkbjpAr1696NWrV6SrEhFpNbET6BVeD5ei0l4EgzB48OAIFyQi0rpiJ9BDzS1bvkkF0LtD\nRSTuxFygf7qhHFCgi0j8iZ1AD3VZXPL+TkCBLiLxJ3YCPXSF/snaUo499ljdEBWRuBMbgR7YC/5v\n8AeT2LJdV+ciEp9iI9ArvLcU5e3uRDCoQBeR+BQbgR5qbtn4pfeYv7osikg8iqlA/8fKvYCu0EUk\nPsVUoH+6oYJjjz2Wnj17RrggEZHWFxuBHuqyuOELNbeISPyK/kAP7AX/t1T4E9XDRUTiWvQHevUj\n/yk4p0AXkfgV/YFeUdV+XgYo0EUkfkV/oIeu0Nds8tO7d2/dEBWRuBUzgb7hC12di0h8i51A36we\nLiIS3xoNdDObY2a7zGx9jXVdzGyRmW0OTTuHt8wGBHZDYCel5T6++lZX6CIS35pyhT4XGHPIuunA\nEudcX2BJaLn1ha7ON32JeriISNxrNNCdc+8Cuw9ZfSUwLzQ/DxjbwnU1TSjQ1/4zSO/evenRo0dE\nyhARaQua24bewzm3IzS/E4hMkpbrCVERkSpHfVPUOecA19B2M5tkZivNbGV+fv7R/rjaKtTDRUSk\nSnMDPc/MegGEprsa2tE5N8s5N9g5NzgjI6OZP64B6rIoIlKtuYH+OjAhND8BeK1lyjkC/gII7KL4\nAGxTDxcRkSZ1W3wOWAGcambbzewm4H5glJltBkaGlltXxcEeLn369NENURGJe4mN7eCcu66BTSNa\nuJYjU74RUHOLiEiV6H1SVD1cRERqid5AVw8XEZFaojbQnXq4iIjUEp2B7s/HAvns2w8k9qF79+6R\nrkhEJOIavSnaJoWuzjd+CYMGqf1cJBIqKyvZvn07ZWVlkS4lZqSkpNCnTx+SkpKadXx0Brraz0Ui\nbvv27aSlpZGZmYmZRbqcqOeco7CwkO3bt5OVldWs74jOJheNgS4ScWVlZXTt2lVh3kLMjK5dux7V\nXzxRGeiu3BuaXVfoIpGlMG9ZR/v7jL5Ad45AyToA9pT0osXHhxGRuDJ37lymTp3a6D7ffvtt9fLN\nN9/Mxo0bj/hnLV++nMsuu+yIj2uq6Av0wC4SbS9FxdD7hO9EuhoRiQOHBvoTTzzB6aefHsGK6hd9\ngV7rCdEhES5GRCJp7NixDBo0iP79+zNr1iwAOnbsyK9//Wuys7PJyckhLy8PgDfeeIOzzz6bgQMH\nMnLkyOr1VYqLi8nKyqKyshKAffv2kZWVxYsvvsjKlSu5/vrrOeussygtLWX48OGsXLkSgIULF/Jv\n//ZvZGdnM2KENyLKxx9/zDnnnMPAgQM599xz+ec//9kqv4+oDnS1n4u0DWYWlk9j5syZw6pVq1i5\nciUPPfQQhYWFHDhwgJycHHJzcxk2bBiPP/44AEOHDuXDDz9k9erVXHvttcycObPWd6WlpTF8+HDe\neustAJ5//nmuuuoqxo0bx+DBg3nmmWdYs2YNqamp1cfk5+fz4x//mJdffpnc3FxefPFFAPr168d7\n773H6tWrue+++7jrrrta6ld9WFHXbTFYth4fXqCPvUWBLhLPHnroIebPnw/A119/zebNm2nXrl11\nO/WgQYNYtGgR4HWzvOaaa9ixYwcVFRX1dg28+eabmTlzJmPHjuXJJ5+s/segIR9++CHDhg2r/q4u\nXboAUFRUxIQJE9i8eTNmVn3VH25Rd4VeVuT9mZO/L0M3REXaCOdcWD6Hs3z5chYvXsyKFSvIzc1l\n4MCBlJWVkZSUVH11n5CQgN/vB2DatGlMnTqVdevW8dhjj9XbPfC8885j69atLF++nEAgwBlnnNGs\n38d//ud/csEFF7B+/XreeOONVnv4KroC3TkSAl5bVMoxujoXiWdFRUV07tyZ9u3b89lnn/Hhhx82\nun/v3r0BmDdvXoP7/ehHP+IHP/gBEydOrF6XlpZGcXFxnX1zcnJ499132bJlCwC7d++u87Pmzp17\nROd1NKK+VOwWAAAItUlEQVQr0AM7SU48wJ4iOPGU8yJdjYhE0JgxY/D7/Zx22mlMnz6dnJycw+5/\n7733Mm7cOAYNGkS3bt0a3O/6669nz549XHfdwVdB3HDDDdxyyy3VN0WrZGRkMGvWLK666iqys7O5\n5pprALjjjju48847GThwYPVfCK3BGvuzpiUNHjzYVd0ZbpYDi+HrUby/Cg50W8hFF13UcsWJyBHZ\ntGkTp512WqTLaHEvvfQSr732Gn/7298i8vPr+72a2SrnXKOPxUfVTdFg6Tp8eINyXXWRmlxEpGVN\nmzaNt99+mwULFkS6lGaJqkAvyl9BZ4NvCzsd9k8mEZHm+POf/xzpEo5KVLWhV+5fA4AlN+/Os4hI\nLIueQHeOju22AdCpp26IiogcKnoC3b+D9snl7N4L/foPj3Q1IiJtTtQEeqB0LVD1yL/GQBcROVTU\nBPqu7csB2JbXUTdERaRNeP3117n//vubdWxmZiYFBQUtWk/U9HLZX/AhdIfS4EmRLkVEBL/fzxVX\nXMEVV1wR6VKqRc0VemLQe+Q/tZP6n4uIZ+vWrZx22mn8+Mc/pn///owePbrO8LYFBQVkZmYC3mP4\nY8eOZdSoUWRmZvKXv/yFP/3pTwwcOJCcnJzqR/e//PJLxowZw6BBg/jud7/LZ599Bhx8YvTss8/m\njjvuqPVyjLy8PL73ve+RnZ1NdnY2H3zwAVD/EL/hEh1X6M6RcUw+AL2zRke4GBGp47MwvYquX+NP\nsm/evJnnnnuOxx9/nPHjx/Pyyy8fdv/169ezevVqysrKOPnkk5kxYwarV6/mP/7jP3jqqae49dZb\nmTRpEo8++ih9+/blo48+YvLkySxduhTwRm384IMPSEhIqDVOy89+9jPOP/985s+fTyAQYP/+/YA3\nxG+XLl0oLS1lyJAhXH311XTt2rX5v5PDiIpAD5Rvo2P7AAV74MyzRkS6HBFpQ7KysjjrrLMAb7jc\nrVu3Hnb/Cy64gLS0NNLS0khPT+fyyy8H4Mwzz2Tt2rXs37+fDz74gHHjxlUfU15eXj0/btw4EhIS\n6nzv0qVLeeqppwBvlMf09HSg/iF+22Sgm9kY4EEgAXjCOde8uwON+PrL/yUzAb78Opmzz9ENUZE2\npwlX0uGSnJxcPZ+QkEBpaSmJiYkEg0GAOkPX1tzf5/NVL/t8Pvx+P8FgkE6dOrFmzZp6f16HDh2a\nXFvNIX7bt2/P8OHDwzqUbrPb0M0sAXgYuBg4HbjOzMLykr387csA2FPaOxxfLyIxJjMzk1WrVgHe\nYFtH4phjjql+9Rx4Y73n5uY2etyIESN45JFHAAgEAhQVFR3xEL9H62huin4H+MI59y/nXAXwPHBl\ny5RVm7/E64Nuyf3D8fUiEmNuv/12HnnkEQYOHNisroHPPPMMs2fPJjs7m/79+/Paa681esyDDz7I\nsmXLOPPMMxk0aBAbN2484iF+j1azh881s+8DY5xzN4eW/x042zk3taFjmjt87oa30uh/0n4+yZvJ\nkPN/2ax6RaRlxerwuZF2NMPnhr3boplNMrOVZrYyPz//iI93zhEI+iivgJNObzv9PUVE2pqjCfRv\ngONqLPcJravFOTfLOTfYOTe4Oe8ANTMGXF6EnXqALhmnNr9aEZEYdzSB/gnQ18yyzKwdcC3wesuU\nVVe75Pbh+moRkZjQ7G6Lzjm/mU0F/hev2+Ic59yGFqtMRNo85xxmYXqoKA4d7StBj6ofunNuARCd\n72oSkaOSkpJCYWEhXbt2Vai3AOcchYWFpKSkNPs7ouJJURFpe/r06cP27dtpTmcHqV9KSgp9+vRp\n9vEKdBFplqSkJLKysiJdhtQQNaMtiojI4SnQRURihAJdRCRGNPvR/2b9MLN84KtmHt4NaNn3NbV9\nOuf4oHOOD0dzzic45xp9MrNVA/1omNnKpoxlEEt0zvFB5xwfWuOc1eQiIhIjFOgiIjEimgI9vG9X\nbZt0zvFB5xwfwn7OUdOGLiIihxdNV+giInIYURHoZjbGzP5pZl+Y2fRI1xMOZjbHzHaZ2foa67qY\n2SIz2xyado5kjS3JzI4zs2VmttHMNpjZz0PrY/mcU8zsYzPLDZ3zb0PrY/acq5hZgpmtNrM3Q8sx\nfc5mttXM1pnZGjNbGVoX9nNu84Hemi+jjrC5wJhD1k0Hljjn+gJLQsuxwg/8wjl3OpADTAn9d43l\ncy4HLnTOZQNnAWPMLIfYPucqPwc21ViOh3O+wDl3Vo2uimE/5zYf6LTiy6gjyTn3LrD7kNVXAvNC\n8/OAsa1aVBg553Y45z4NzRfj/Z+9N7F9zs45tz+0mBT6OGL4nAHMrA9wKfBEjdUxfc4NCPs5R0Og\n9wa+rrG8PbQuHvRwzu0Ize8EekSymHAxs0xgIPARMX7OoaaHNcAuYJFzLubPGfgf4A4gWGNdrJ+z\nAxab2SozmxRaF/Zz1vC5UcI558ws5rokmVlH4GXgVufcvpovSojFc3bOBYCzzKwTMN/Mzjhke0yd\ns5ldBuxyzq0ys+H17RNr5xwy1Dn3jZl1BxaZ2Wc1N4brnKPhCr1JL6OOUXlm1gsgNN0V4XpalJkl\n4YX5M865V0KrY/qcqzjn9gLL8O6bxPI5nwdcYWZb8ZpLLzSzp4ntc8Y5901ouguYj9d0HPZzjoZA\nb9WXUbcxrwMTQvMTgNciWEuLMu9SfDawyTn3pxqbYvmcM0JX5phZKjAK+IwYPmfn3J3OuT7OuUy8\n/+8udc79kBg+ZzPrYGZpVfPAaGA9rXDOUfFgkZldgtcOV/Uy6v+KcEktzsyeA4bjjciWB/wGeBV4\nATgeb5TK8c65Q2+cRiUzGwq8B6zjYNvqXXjt6LF6zgPwboYl4F1MveCcu8/MuhKj51xTqMnldufc\nZbF8zmZ2It5VOXjN2s865/6rNc45KgJdREQaFw1NLiIi0gQKdBGRGKFAFxGJEQp0EZEYoUAXEYkR\nCnQRkRihQBcRiREKdBGRGPH/Aa8Z5BXXA2OtAAAAAElFTkSuQmCC\n", 189 | "text/plain": [ 190 | "" 191 | ] 192 | }, 193 | "metadata": {}, 194 | "output_type": "display_data" 195 | } 196 | ], 197 | "source": [ 198 | "plt.plot(t_tick,a_sol,color='black',linewidth=2,label='analytical')\n", 199 | "plt.plot(t_tick,n_sol,color='gold',linewidth=2,label='numerical')\n", 200 | "plt.legend(loc=4)" 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "execution_count": null, 206 | "metadata": { 207 | "collapsed": true 208 | }, 209 | "outputs": [], 210 | "source": [] 211 | } 212 | ], 213 | "metadata": { 214 | "kernelspec": { 215 | "display_name": "Python 3", 216 | "language": "python", 217 | "name": "python3" 218 | }, 219 | "language_info": { 220 | "codemirror_mode": { 221 | "name": "ipython", 222 | "version": 3 223 | }, 224 | "file_extension": ".py", 225 | "mimetype": "text/x-python", 226 | "name": "python", 227 | "nbconvert_exporter": "python", 228 | "pygments_lexer": "ipython3", 229 | "version": "3.5.4" 230 | } 231 | }, 232 | "nbformat": 4, 233 | "nbformat_minor": 1 234 | } 235 | -------------------------------------------------------------------------------- /.ipynb_checkpoints/00.0_MathModeling_2018-05-14-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "%matplotlib inline" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 3, 19 | "metadata": {}, 20 | "outputs": [ 21 | { 22 | "name": "stdout", 23 | "output_type": "stream", 24 | "text": [ 25 | "Hello Class!\n" 26 | ] 27 | } 28 | ], 29 | "source": [ 30 | "print('Hello Class!')" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 4, 36 | "metadata": { 37 | "collapsed": true 38 | }, 39 | "outputs": [], 40 | "source": [ 41 | "def analytical(g,m,c,t):\n", 42 | " return (g*m/c)*(1-np.exp((-1)*(c/m*t)))\n", 43 | "\n", 44 | "def numerical(g, m, c, t_step, vi):\n", 45 | " return vi+(g-c/m*vi)*(t_step)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": 12, 51 | "metadata": { 52 | "collapsed": true 53 | }, 54 | "outputs": [], 55 | "source": [ 56 | "g = 9.81 #m/s2\n", 57 | "m = 68.1 #kg\n", 58 | "c = 12.5 #kg/s\n", 59 | "t_start = 0 #s\n", 60 | "t_end = 50 #sec\n", 61 | "t_step = 2 #s" 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": 13, 67 | "metadata": {}, 68 | "outputs": [ 69 | { 70 | "name": "stdout", 71 | "output_type": "stream", 72 | "text": [ 73 | "The time step is 2 seconds.\n" 74 | ] 75 | } 76 | ], 77 | "source": [ 78 | "print('The time step is {} seconds.'.format(t_step))" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": 14, 84 | "metadata": {}, 85 | "outputs": [ 86 | { 87 | "name": "stdout", 88 | "output_type": "stream", 89 | "text": [ 90 | "[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]\n" 91 | ] 92 | } 93 | ], 94 | "source": [ 95 | "t_tick = [t for t in range(t_start,t_end+t_step,t_step)]\n", 96 | "print(t_tick)" 97 | ] 98 | }, 99 | { 100 | "cell_type": "code", 101 | "execution_count": 15, 102 | "metadata": {}, 103 | "outputs": [ 104 | { 105 | "name": "stdout", 106 | "output_type": "stream", 107 | "text": [ 108 | "[0.0, 16.42172057920007, 27.797627475567975, 35.678120697377175, 41.137217188295963, 44.918926487237513, 47.538650327160717, 49.35342572499016, 50.610584855421081, 51.481463467240552, 52.084751896020961, 52.502671136843666, 52.792178582234115, 52.992730633322992, 53.131660135262784, 53.227901517011034, 53.294571327465157, 53.340755864150381, 53.372749526863686, 53.394912669059721, 53.41026586185928, 53.420901561754889, 53.428269287396454, 53.43337317164125, 53.436908812848785, 53.43935807661515]\n" 109 | ] 110 | } 111 | ], 112 | "source": [ 113 | "a_sol = [analytical(g,m,c,t) for t in t_tick]\n", 114 | "print(a_sol)" 115 | ] 116 | }, 117 | { 118 | "cell_type": "code", 119 | "execution_count": 21, 120 | "metadata": {}, 121 | "outputs": [ 122 | { 123 | "data": { 124 | "text/plain": [ 125 | "" 126 | ] 127 | }, 128 | "execution_count": 21, 129 | "metadata": {}, 130 | "output_type": "execute_result" 131 | }, 132 | { 133 | "data": { 134 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHElJREFUeJzt3XuQ3GWd7/H3ty8zPTOZXGYyDCEBZkBWuWgIGTUCWgHU\nimdZibjIKq7REimrVsot9xQn3uqwW2UVRenWHi3/OIFFUrq7HhDYoKJuiMToLsgGRBCIRkNCJplM\nhkky957py/f80b/pzCSZzK17uvvXn1dVqn/X6ecZKh+ePM/ze37m7oiISOWLlLoAIiJSGAp0EZGQ\nUKCLiISEAl1EJCQU6CIiIaFAFxEJCQW6iEhIKNBFREJCgS4iEhKxhfyy5cuXe1tb20J+pYhIxXvu\nuefecPeW6a5b0EBva2tj9+7dC/mVIiIVz8wOzOQ6dbmIiISEAl1EJCQU6CIiIaFAFxEJCQW6iEhI\nKNBFREJCgS4iEhILOg9dRM4s607WIZP/PPuxbHCPO8H+xG3wCde5g5Pb9/z+yWuck8ez5A5MPDZ+\nLUw+zqRrfNL++DYT9k+e90n7Z7t24if5n3v6azNPv2aK8xOPneXtm9O9mPNMZZju51/eVMua5XXT\n3jcfCnSRM3B3xrLOWCb3mcpCKuun/RnL5M6ls+PXORnP7WfcSWdzgZx2yGSdtDuZLLnP/HWlrq0s\nhFUN8aJ/hwJdQi2VdYZSWYbTWYbSWUbSTjLjjGayjGbGtz3Yzua3RzMzaYMVVtQgakbEIDJh+0zH\nIgZGsA2YQSQ4Z+S2c58nr7XgnOXvOXnN+PFJ1+WP5Yxfz4Tj49dAcC/kb8hfe8o949dOdd2Uxyd8\n18lLbcL2KedOu/Z0Nt0FMz89qSxnumlxvPg93Ap0qTjuzmA6S99olsFULqhzoe0MpYPwDvbHsnOP\n5XgEaiMR4lGIR4yaiBGLWH47HjFiEfLb8QnHopa7NmrkP3PHTp6LGUSDc5FT00dkDhToUnbcneG0\n0zeWoW8sS99YhhOj2Un7M+2miBo0xCLUxyLUx436WIRE1KiNGrXRCLVRy+8nJuzXRI2oQlYqjAJd\nSsbdOTGWpXskzdGRND0jGY6PZugby5DKnv3eupixtCZKYzxCQzxCfcxywR2P0BCLBNtGbcQwBbNU\nCQW6LIjRTJaekUwuuJOZfIBP1SVSGzWW1kRYUhNlSU2EJbVRlo5v10SpiSqkRU6lQJeCy7jTNZTm\n9cEUR4Zzre8TY2duci+KRzinLso5dTHOScRoTuRCOxHTIxIis6VAl3lzd3qTGfYPpNg/kOL1wdRp\nLe+IwfJEENx1sXyI1yu4RQpGgS5z0j+W4UAQ4AcGUgymJ7fAm2qjtDXGOa8hF+DNtVGiEXWTiBTT\njALdzPYDA0AGSLt7h5k1Af8PaAP2Ax9x9+PFKaaUWjrr7Osfywd472hm0vmGmNHWWMOFjXHaGuMs\nromWqKQi1Ws2LfTr3P2NCfubgR3ufo+ZbQ72/1dBSycl5e50j2R4sTfJK8dHSU6YK1gTMc5fFKOt\nsYa2xjjLE1HNJhEpsfl0udwErA+2twI7UaCHwnA6y8vHRnmxN0lP8mRLvLUuyiVLamlrjLOiIaZ5\n2iJlZqaB7sCTZpYB/q+7bwFa3b0rOH8EaC1GAWVhZN15rT/Fi8eS7O0bY3xMsy5qXN5Uy1ubErTW\na8hFpJzN9G/ote5+yMzOAbab2Z6JJ93dzeyME4rN7A7gDoALLrhgXoWVwjuWzPDSsSQvHRtlMHia\nx4CLF8d5a1OCNy2pIabBTJGKMKNAd/dDwedRM3sMeAfQbWYr3L3LzFYAR6e4dwuwBaCjo0PrypUB\nd+eP/WP8unuEzqF0/viy2ghva0pwRVMtjRrUFKk40wa6mTUAEXcfCLbfD/wD8DiwCbgn+NxWzIJK\nYXQNp/j5oSEODuaCPB6Btyyt5W3NCVY1xDSwKVLBZtJCbwUeC/6ix4B/dfefmtl/Aw+Z2aeBA8BH\nildMma8Toxl2dQ3zyvFRABJR4+pz61ndXEttVA/3iITBtIHu7vuA1Wc43gvcUIxCSeEk01n+q3uE\n53pGyHhu9cGOljre1Vqnx+tFQkbTFkIqk3WefyPJfx4Zzs8fv2xZLe9ZUc/SWvWPi4SRAj1k3J09\nJ8b4xeGh/IJYFyyKc93KelbUF/8VWCJSOgr0EDk4mOKpQ0McHs4NeDYnolx3XgMXL45rsFOkCijQ\nQyCVdX52cJDfHcsNeDbEjGtX1LO6OaFXm4lUEQV6hTsxmuHR1/o5OpIhZvDO1jrecU6dZq6IVCEF\negV7rX+MbfsHSGacpTURPnzRYlrq9J9UpFrpb38Fcnd+fXSEXxwexsk9pv8XFzZqGqJIlVOgV5ix\njPPE6wPsOTEGwNXn1vHuc+s16CkiCvRKcnw0w6P7+ulJZqiJGDdeuIg/W1pb6mKJSJlQoFeIP/WN\n8fiBAUYzTlNtlA9f1EhzQv/5ROQkJUKZc3ee7h5hV9cwAJcsqeHGCxdpFouInEaBXsZGM1l+fGCQ\nP/Tl+svfvaKeq1vr1F8uImekQC9Tvck0j742QG8yQ23U+IsLG3nTkppSF0tEypgCvQwdS2b43h/6\nGMk4yxNRbm5fTFNCC2qJyNkp0MvMcDrLw/tyYd7eGOdD7YupiaqLRUSmp5G1MpLKOo/s6+f4aJbW\nuqjCXERmRYFeJtydHx8Y4NBQmsXxCH95scJcRGZHgV4mnjo8zJ4TY9RGjFsuXkxjXH3mIjI7CvQy\n8HzPCM8eHSECfOiiRi2wJSJzokAvsT/2jbG9cwiAD1ywiLZGTU0UkblRoJfQkeE02/b348A159bx\n1uZEqYskIhVMgV4ifWMZHv5TH6ksXNFUy7Xn1pe6SCJS4RToJZBMZ3n4T/0MpZ0LF8X5wPmL9Di/\niMybAn2BZbLOo68N8EYyw/JElA+1NxKNKMxFZP4U6AvI3Xni9UFeH0zREMtNT9RbhkSkUJQmC+hX\nR4Z5+fgo8QjccvESltRorrmIFI4CfYG82JvkP4+MYMBNbYs5t15zzUWksBToC6BnJM1PXx8E4H2r\nGrQMrogUxYwD3cyiZvYbM/tRsN9kZtvNbG/wuax4xaxc7s5/dA6SBVY313JVS12piyQiITWbFvrn\ngVcn7G8Gdrj7JcCOYF9O8crxUQ4OpqmPGded11Dq4ohIiM0o0M1sFfDnwP0TDt8EbA22twIbC1u0\nypfMZPn5odxj/evPa9CMFhEpqpkmzD8BdwHZCcda3b0r2D4CtBayYGHwq65hhtLOyoYYb22qLXVx\nRCTkpg10M7sROOruz011jbs74FPcf4eZ7Taz3T09PXMvaYXpHk7zXE8SA96/Sk+CikjxzaSFfg3w\nQTPbD3wfuN7Mvgd0m9kKgODz6Jludvct7t7h7h0tLS0FKnZ5c3e2dw7iwFUtCVo1RVFEFsC0ge7u\nX3T3Ve7eBvwV8HN3/zjwOLApuGwTsK1opawwvzs2SudQmoaY8e4VWnRLRBbGfEbp7gHeZ2Z7gfcG\n+1Uvmc7y1OHcQOh1KxtIRDUQKiILY1Z9Ae6+E9gZbPcCNxS+SJVtV9cww2lnVUOMy5dpIFREFo6a\njwV0ZDjNb94IBkK1JK6ILDAFeoG4O/9xMDcQ2tGS4By9F1REFpgCvUBePDbK4eE0i2IRrtVAqIiU\ngAK9AEbSWXYGT4Rev6qBWg2EikgJKHkK4BeHhxnJOBcsinPpUq2kKCKloUCfp66hFC/0JokA71/V\noIFQESkZBfo8ZN35WWeuq+Xt59SxXAOhIlJCCvR5+G1vkiPDaRrjEa45VwOhIlJaCvQ5Gk5n+cXh\nYQBuWNlATVRdLSJSWgr0Odp5eIhkxmlrjPNmDYSKSBlQoM/BkeE0L/aOErHcO0I1ECoi5UCBPge7\ne0YAuGp5guaEBkJFpDwo0GdpOJ3l1eOjAHTohc8iUkYU6LP0Ym+SjMPFi+MsrY2WujgiInkK9FnI\nuvObN5IAXLVcrXMRKS8K9FnY15+ibyzL0poIFy2Ol7o4IiKTKNBn4flgMHTN8oRmtohI2VGgz9Dx\n0Qz7BlLEDN7WnCh1cURETqNAn6Hx1vmly2qpi+nXJiLlR8k0A6ms8+Kx3FTFtZqqKCJlSoE+A68c\nH2U045xXH+Pcej1IJCLlSYE+DXfPd7dc1aK+cxEpXwr0aRweTtM9kqEuZrxlaW2piyMiMiUF+jSe\n78k9SLS6KUEsoqmKIlK+FOhnMZTKsudEbjD0yuXqbhGR8qZAP4vfBuu2vGlxjdZtEZGyp0CfQtad\nF8bXbdFgqIhUAAX6FP7YN0Z/Ksuy2gjtjVq3RUTK37SBbmYJM3vWzH5rZi+b2d8Hx5vMbLuZ7Q0+\nlxW/uAvn+aB1vmZ5ndZtEZGKMJMW+ihwvbuvBq4ENpjZOmAzsMPdLwF2BPuh0JtMs3983ZYmTVUU\nkcowbaB7zmCwGw/+OHATsDU4vhXYWJQSlsD4mueXN9WS0LotIlIhZpRWZhY1sxeAo8B2d/810Oru\nXcElR4DWIpVxQY1lnJeCdVv0EgsRqSQzCnR3z7j7lcAq4B1mdsUp551cq/00ZnaHme02s909PT3z\nLnCxja/bsrIhRqvWbRGRCjKr/gR3PwE8BWwAus1sBUDweXSKe7a4e4e7d7S0tMy3vEXl7jw3vm6L\nHiQSkQozk1kuLWa2NNiuA94H7AEeBzYFl20CthWrkAulcyhNTzJDfcx4s9ZtEZEKM5M+hRXAVjOL\nkvsfwEPu/iMzexp4yMw+DRwAPlLEci6I8VUVVzdr3RYRqTzTBrq7vwisOcPxXuCGYhSqFAZTWX7f\nN4ahdVtEpDJpTl7gt71Jsg5vWlLDkhqt2yIilUeBzuR1W9aqdS4iFUqBDuztG2MglaWpNsqFWrdF\nRCqUAh34w4kxAFY312rdFhGpWFUf6Fl39vXnAv2SJZqqKCKVq+oDvWs4zUjGWVoTYVlt1f86RKSC\nVX2C/SlonV+8pEbdLSJS0ao+0Pf1pQC4eHFNiUsiIjI/VR3og6ksR0bSxAzOX6TZLSJS2ao60McH\nQy9sjBPXo/4iUuGqOtDz/efqbhGREKjaQM+4s78/139+kQJdREKgagP90GCa0azTnIiytFZrt4hI\n5avaQFd3i4iETdUG+r58oGt2i4iEQ1UGet9Yhp5khpqIsapBgS4i4VCVgT7eOm9rjBPVdEURCYmq\nDPQ/BbNbLl6i/nMRCY+qC/R01jkwkGuhX6T+cxEJkaoL9IODKVJZOKcuSmNc0xVFJDyqLtA1XVFE\nwkqBLiISElUV6MeSGY6PZklEjfMaYqUujohIQVVVoI9PV2xvjBPRyyxEJGSqKtAnvp1IRCRsqibQ\nxzLO64O5+eftjQp0EQmfqgn01wdTZBxW1MdoiFdNtUWkilRNsml2i4iE3bSBbmbnm9lTZvaKmb1s\nZp8PjjeZ2XYz2xt8Lit+cefG3ScEup4OFZFwmkkLPQ38nbtfBqwD/sbMLgM2Azvc/RJgR7BflnqT\nGfrHstTHjHPrNV1RRMJp2kB39y53fz7YHgBeBVYCNwFbg8u2AhuLVcj5Gm+dX7S4BtN0RREJqVn1\noZtZG7AG+DXQ6u5dwakjQGtBS1ZA+dUV1X8uIiE240A3s0XAI8Dfunv/xHPu7oBPcd8dZrbbzHb3\n9PTMq7BzMZrJ0jmYwsg9UCQiElYzCnQzi5ML839x90eDw91mtiI4vwI4eqZ73X2Lu3e4e0dLS0sh\nyjwrrw2kyAIrG2IkYlUzqUdEqtBMZrkY8M/Aq+7+jxNOPQ5sCrY3AdsKX7z529en6YoiUh1mMuXj\nGuCvgZfM7IXg2JeAe4CHzOzTwAHgI8Up4txNmq6ox/1FJOSmDXR3/xUw1dSQGwpbnMLqHskwlHYa\n4xFaEnqZhYiEW6g7lff1n3zVnKYrikjYhTrQ9bi/iFST0Ab6SDrL4aE0EYMLNV1RRKpAaAP9tf4U\nDpzfEKc2GtpqiojkhTbpNLtFRKpNKAM9686+Aa2uKCLVJZSBfmQ4zUjaWVIToalW0xVFpDqEMtAn\nzm7RdEURqRahDPSDg2kA2jS7RUSqSOgC3d3pHs4F+nkNCnQRqR6hC/Tjo1lGs86iWIRFehm0iFSR\n0CXekaB1rlfNiUi1CV+gjyjQRaQ6hS/Q1UIXkSoVqkB3dwW6iFStUAX68dEsY1lnUVwDoiJSfUKV\nevnWeZ1a5yJSfUIV6F3DKUDdLSJSnUIV6JrhIiLVLDSBnntCNAMo0EWkOoUm0I+NZjQgKiJVLTTJ\np+mKIlLtwhfomuEiIlUqPIGuAVERqXKhCHQNiIqIhCTQxwdEGzUgKiJVLBTpN95/3qrWuYhUsVAF\n+goFuohUsWkD3cweMLOjZva7CceazGy7me0NPpcVt5hnlx8Q1QwXEaliM2mhPwhsOOXYZmCHu18C\n7Aj2S0IDoiIiOdMGurvvAo6dcvgmYGuwvRXYWOByzdjEAdEGDYiKSBWbawK2untXsH0EaC1QeWZN\nT4iKiOTMu0nr7g74VOfN7A4z221mu3t6eub7dadRoIuI5Mw10LvNbAVA8Hl0qgvdfYu7d7h7R0tL\nyxy/bmpdeuRfRASYe6A/DmwKtjcB2wpTnNlxd46OaEBURARmNm3x34CngTebWaeZfRq4B3ifme0F\n3hvsLzgNiIqInDRts9bdPzrFqRsKXJZZU/+5iMhJFd2s7VKgi4jkVXSgaw10EZGTKjbQsxoQFRGZ\npGIDfXxAdLEGREVEgAoOdC2ZKyIyWcUHurpbRERyKj7QtQa6iEhORQZ61p1urYEuIjJJRQb6sdEM\nqSwsjkeo14CoiAhQoYGu/nMRkdMp0EVEQkKBLiISEhUX6BoQFRE5s4oL9GNJDYiKiJxJxSXikRF1\nt4iInEnlBbr6z0VEzkiBLiISEhUV6JMGRBXoIiKTVFSgTxoQjVVU0UVEiq6imrl65ZxIeUmlUnR2\ndpJMJktdlFBIJBKsWrWKeDw+p/srKhk1w0WkvHR2dtLY2EhbWxtmVuriVDR3p7e3l87OTtrb2+f0\nMyqq36JbLXSRspJMJmlublaYF4CZ0dzcPK9/7VRMoGtAVKQ8KcwLZ76/y4oJ9N7xAdEaDYiKSOE9\n+OCDfO5zn5v2msOHD+f3b7/9dl555ZVZf9fOnTu58cYbZ33fdComGfPzz7V+i4iUyKmBfv/993PZ\nZZeVsESTVU6gj+iVcyJyZhs3bmTt2rVcfvnlbNmyBYBFixbx5S9/mdWrV7Nu3Tq6u7sB+OEPf8g7\n3/lO1qxZw3vf+9788XEDAwO0t7eTSqUA6O/vp729nYcffpjdu3dz2223ceWVVzIyMsL69evZvXs3\nAD/96U+56qqrWL16NTfccAMAzz77LO9617tYs2YNV199Nb///e+L+nuomHTUE6Ii5e2e37xRlJ+7\nec3yaa954IEHaGpqYmRkhLe//e18+MMfZmhoiHXr1vG1r32Nu+66i/vuu4+vfOUrXHvttTzzzDOY\nGffffz/33nsv3/jGN/I/q7GxkfXr1/PjH/+YjRs38v3vf5+bb76ZW265hW9/+9t8/etfp6OjY9L3\n9/T08JnPfIZdu3bR3t7OsWPHAHjLW97CL3/5S2KxGE8++SRf+tKXeOSRRwr7C5qgItIx685RDYiK\nyBS++c1v8thjjwFw8OBB9u7dS01NTb6feu3atWzfvh3ITbW89dZb6erqYmxs7IxTBG+//Xbuvfde\nNm7cyHe+8x3uu+++s37/M888w3ve8578z2pqagKgr6+PTZs2sXfvXsws3+ovlnmlo5ltAP4PEAXu\nd/d7ClKqU0wcEK3TgKhIWZpJS7oYdu7cyZNPPsnTTz9NfX0969evJ5lMEo/H87NGotEo6XSuUXjn\nnXfyhS98gQ9+8IPs3LmTu++++7Sfec0117B//3527txJJpPhiiuumFPZvvrVr3Ldddfx2GOPsX//\nftavXz/Xas7InNPRzKLAt4EPAJcBHzWzoowOjHe3qP9cRE7V19fHsmXLqK+vZ8+ePTzzzDPTXr9y\n5UoAtm7dOuV1n/jEJ/jYxz7Gpz71qfyxxsZGBgYGTrt23bp17Nq1i9deew0g3+Uy8bsefPDBWdVr\nLubT3H0H8Ed33+fuY8D3gZsKU6zJjugNRSIyhQ0bNpBOp7n00kvZvHkz69atO+v1d999N7fccgtr\n165l+fKp/1Vx2223cfz4cT760Y/mj33yk5/ks5/9bH5QdFxLSwtbtmzh5ptvZvXq1dx6660A3HXX\nXXzxi19kzZo1+X8hFJO5+9xuNPtLYIO73x7s/zXwTnefciJnR0eHj48Iz8Z3/3CCQ0Npbr14Me2L\na+ZUXhEpvFdffZVLL7201MUoih/84Ads27aN7373uwv6vWf6nZrZc+7eMcUteUVv8prZHcAdABdc\ncMGs73d3DIiYBkRFZGHceeed/OQnP+GJJ54odVFmZT4JeQg4f8L+quDYJO6+BdgCuRb6bL/EzPj4\nny0lk3WiET1iLCLF961vfavURZiT+fSh/zdwiZm1m1kN8FfA44Up1ukU5iIiZzfnFrq7p83sc8DP\nyE1bfMDdXy5YyUSkIri7FugqkLmOaY6bV6e0uz8BVFYnk4gUTCKRoLe3V0voFsD4euiJRGLOP0Oj\njCIyZ6tWraKzs5Oenp5SFyUUxt9YNFcKdBGZs3g8Pue360jh6Tl6EZGQUKCLiISEAl1EJCTm/Oj/\nnL7MrAc4MMfblwPFWXC5fKnO1UF1rg7zqfOF7t4y3UULGujzYWa7Z7KWQZioztVBda4OC1FndbmI\niISEAl1EJCQqKdC3lLoAJaA6VwfVuToUvc4V04cuIiJnV0ktdBEROYuKCHQz22BmvzezP5rZ5lKX\npxjM7AEzO2pmv5twrMnMtpvZ3uBzWSnLWEhmdr6ZPWVmr5jZy2b2+eB4mOucMLNnzey3QZ3/Pjge\n2jqPM7Oomf3GzH4U7Ie6zma238xeMrMXzGx3cKzodS77QF/Il1GX2IPAhlOObQZ2uPslwI5gPyzS\nwN+5+2XAOuBvgv+uYa7zKHC9u68GrgQ2mNk6wl3ncZ8HXp2wXw11vs7dr5wwVbHodS77QGcBX0Zd\nSu6+Czh2yuGbgPHXkm8FNi5ooYrI3bvc/flge4DcX/aVhLvO7u6DwW48+OOEuM4AZrYK+HPg/gmH\nQ13nKRS9zpUQ6CuBgxP2O4Nj1aDV3buC7SNAaykLUyxm1gasAX5NyOscdD28ABwFtrt76OsM/BNw\nF5CdcCzsdXbgSTN7LnivMixAnbV8boVwdzez0E1JMrNFwCPA37p7/8SXJISxzu6eAa40s6XAY2Z2\nxSnnQ1VnM7sROOruz5nZ+jNdE7Y6B65190Nmdg6w3cz2TDxZrDpXQgt9Ri+jDqluM1sBEHweLXF5\nCsrM4uTC/F/c/dHgcKjrPM7dTwBPkRs3CXOdrwE+aGb7yXWXXm9m3yPcdcbdDwWfR4HHyHUdF73O\nlRDoC/oy6jLzOLAp2N4EbCthWQrKck3xfwZedfd/nHAqzHVuCVrmmFkd8D5gDyGus7t/0d1XuXsb\nub+7P3f3jxPiOptZg5k1jm8D7wd+xwLUuSIeLDKz/0GuH278ZdRfK3GRCs7M/g1YT25Ftm7gfwP/\nDjwEXEBulcqPuPupA6cVycyuBX4JvMTJvtUvketHD2ud30ZuMCxKrjH1kLv/g5k1E9I6TxR0ufxP\nd78xzHU2s4vItcoh1639r+7+tYWoc0UEuoiITK8SulxERGQGFOgiIiGhQBcRCQkFuohISCjQRURC\nQoEuIhISCnQRkZBQoIuIhMT/B5/TdBF/gnAkAAAAAElFTkSuQmCC\n", 135 | "text/plain": [ 136 | "" 137 | ] 138 | }, 139 | "metadata": {}, 140 | "output_type": "display_data" 141 | } 142 | ], 143 | "source": [ 144 | "plt.plot(t_tick,a_sol,color='skyblue',linewidth=2,label='analytical')\n", 145 | "plt.legend(loc=4)" 146 | ] 147 | }, 148 | { 149 | "cell_type": "code", 150 | "execution_count": 22, 151 | "metadata": {}, 152 | "outputs": [ 153 | { 154 | "name": "stdout", 155 | "output_type": "stream", 156 | "text": [ 157 | "50 53.44430302092583\n", 158 | "26 26\n" 159 | ] 160 | } 161 | ], 162 | "source": [ 163 | "n_sol = [0]\n", 164 | "for i in range(len(t_tick)):\n", 165 | " if i == 25: break\n", 166 | " n_sol.append(numerical(g,m,c,t_step,n_sol[i]))\n", 167 | "print(t_tick[i],n_sol[i])\n", 168 | "print(len(t_tick),len(n_sol))" 169 | ] 170 | }, 171 | { 172 | "cell_type": "code", 173 | "execution_count": 23, 174 | "metadata": {}, 175 | "outputs": [ 176 | { 177 | "data": { 178 | "text/plain": [ 179 | "" 180 | ] 181 | }, 182 | "execution_count": 23, 183 | "metadata": {}, 184 | "output_type": "execute_result" 185 | }, 186 | { 187 | "data": { 188 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXZ5KQBIhhC4ugJiqKokQuUKNSRFnEnWpB\nrb1F1FLL0nqttWi91trf7UO4bb3aWhUFwbrVDVfkynrVigsIYbWiBRGFkAQIgawz8/39cSYhIQkJ\nIZPJzLyfj8c8zj75nNi+Ofme7/kec84hIiLRzxfpAkREpGUo0EVEYoQCXUQkRijQRURihAJdRCRG\nKNBFRGKEAl1EJEYo0EVEYoQCXUQkRiS25g/r1q2by8zMbM0fKSIS9VatWlXgnMtobL9WDfTMzExW\nrlzZmj9SRCTqmdlXTdlPTS4iIjFCgS4iEiMU6CIiMUKBLiISIxToIiIxQoEuIhIjFOgiIjGiVfuh\ni7QZzgGVECwHKsBV1J535aFpBTi/98FfYz5Qe12dbQEgGJo/ZEowtL1qXRDnAjgXJBj0EwwECAT9\nBIN+XCDgrXMBgsEALuA/uK9zuGAQ5+p+qJ533jLePM7hqDkNer8KgoCrsQ9YaNl7SaXDm3Gh/Q7O\nU71P1TpqrTNc9aEOhx26t6txXI0tVavN3MH/ZIfsU+s/Zw12sOp6OA7d2PCLOBvYyZqw/yH2ucsY\nevnTDW5vCQp0adtcAIJFENhbY7oXAkXeNFgMwRJwJfVPgyXgSg+uc6Wh4K6M9JnVYqHPYf9k9jW2\ng7Rly9d9EfafoUCX1uX84M8D/w7vE9hxcN6/EwKFocAOBXiwOGyl+AM+7+M3yiuNikoor3CUlQUp\nLQ9SXuGoqITKSvAHIBAEv9+br54eMh8I7Vc1DYbmg+6QafDg9mDQW++c4fMlYD4fPkvEl5CAWQLm\nSyTBl4D5EvD5EvD5Er39zIcvwXdwPrS9ej/zhb7D24aFvt8stM6HmQ+zBHw+b533s6vWG+YLTUPH\nVK83qz4e8KZG6FjvnyczAwPDwHz4rGqdYVXbwdsntA47uN5bpvpn11S9T439626r/5hDj69PffvW\n3b/xY2vKPOusete3JAW6tKxAEVT8M/T5HPzbawT2DggUcLg/S+vlSwdfJ0jwpi6hE2UVKRQVQ1Fx\ngL37KtlbVEHhnlIKdpewK38/O3cVs2PnXvLy91NSBiWlUFIGZeVQXgGVfqqbIhqSlJREeno6HTt2\npEOHDtWf9u3b11qu/qR7245JTSU5OZmUlJRa04bWJScnk5SUhM+ny285Ogp0OXIuAJVbQ6H9mTct\nD4V4YGcjBxsk9IDEXqFPz4PzCb0gsRv4OlG039iybQ//2prPli1fsXXrVrZs2cKWLVvYunUlJSUl\nTSo1ISGBjIwMevTowSndu5ORkUGnTp2qP+np6Q1OU1JSGrzaEmmLFOhyeM4P5blQ8i6UfgDlm6By\ns3ezsD6WAu1OgXb9oN2pkHR8jcDuCYndwbz/2Tnn2LZtG7mf5JKbm8vatf/H5s2b2bp1K0VFRYct\nKz09naysLI477jh69OhB9+7da02r5rt06aIrX4kbCnSpLVgOZSuh9N1QiP+j/nbsxN5eYFcFd7tT\nIbkfJB4HVjdAS0tLWb9mPbm5C1i7dm0owNeyd+/eesvo0KEDWVlZZGZm1jvt1KlTS5+5SNRToMe7\n4AEo/TAU3u96866s9j5JJ0P7YZA6FFIGQNIpkJDW4FcGAgE+/fRTli1bxqeffkpubi6ff/45wWDd\n9uqMjAyys7OrP/369SMrK4uuXbuquUPkCCnQ45E/D4qehuKXvKtx/LW3t+vvBXj7YZA6DJKOPezX\nOefYvHkzixcvZsmSJSxdurTOlXdCQgKnn356rfDOzs6mZ8+eCm6RFqJAjxfOD/vfhqI5sP9NDoa4\nD1IGecFddRWe2K3Rr9u5cydLlixhyZIlLF68mK+//rrW9hNPPJERI0ZwzjnnMGDAAPr3709KSkrL\nn5eIVGtSoJvZVqAY7zE3v3NusJl1Af4OZAJbgfHOuT3hKVOarfwzKHoSip6q0QMlATpeAek3QPsR\nkHBMo19TUVHBokWLWLx4MYsXL2b9+vW1tnfr1o0LL7yQkSNHMmLECE488cSWPxcROawjuUK/wDlX\nUGN5OrDEOXe/mU0PLf+qRauT5gkUQ/EL3tV46QcH17frB+k3Qvq/e90Fm2Dt2rXMmTOHp59+msLC\nwur1qampDBs2jJEjRzJy5EgGDBig3iQiEXY0TS5XAsND8/OA5SjQI8c5KH3fC/F9L3iPuQP4OkLa\ntdDpRkjJgSa0V+/Zs4fnnnuOOXPmsGrVqur1Z5xxBmPHjmXkyJHk5OSQnJwcrrMRkWZoaqA7YLGZ\nBYDHnHOzgB7OuR2h7TuBHuEoUJqgbBXsnAxlHx9clzrMC/G074OvQ6NfEQwGWbJkCU8++SSvvPIK\n5eXlgNff+/rrr2fixIkMGjRINzBF2rCmBvpQ59w3ZtYdWGRmn9Xc6JxzVjUk2iHMbBIwCeD4448/\nqmLlEIE9kP9r2Pso4LwnMDvdCOkToV3fJn3Fli1bmDt3LnPnzmXbtm2ANxbFyJEjufHGGxk7diyp\nqalhPAkRaSlNCnTn3Deh6S4zmw98B8gzs17OuR1m1gvY1cCxs4BZAIMHDz7CQTykXi7o3eTMvwMC\n+UACdLkVuv7msP3Dqw93jnfeeYeZM2eydOnS6vWZmZlMnDiRCRMmcMIJJ4TxBEQkHBoNdDPrAPic\nc8Wh+dHAfcDrwATg/tD0tXAWKiFlayFvsvcEJ3hNKz0fhuQzmnT4mjVr+OUvf8nixYsBSElJ4eqr\nr+bGG29k+PDhurEpEsWacoXeA5gfajtNBJ51zi00s0+AF8zsJuArYHz4yhQC+6DgN7Dnz0AAErpD\n9z/AMT9s0o3O7du3c/fdd/PUU0/hnCM9PZ277rqLSZMm6TF6kRjRaKA75/4FZNezvhAYEY6ipAbn\noPh52PULb/hZfNB5GnS7DxIaD+KioiJmzJjBAw88QFlZGUlJSUyZMoW7776brl27hr9+EWk1elK0\nLSvfBHlToGSZt5ySAz3/CikDGz20srKSxx57jN/+9rcUFHiPD4wfP57f//73nHTSSeGsWkQiRIHe\nFjkHhfdBwf8D/JDQFTJmeL1X6hnJsPahjldffZVf/epXbN68GYChQ4fyhz/8gbPPPrsViheRSFGg\ntzUuCHk/hb2zAINOkyDj916oN+LDDz/k9ttv5x//8G6Y9u3bl5kzZ3LllVeq/7hIHFCgtyXODzsm\nwr6nvRdF9H4ZOl7S6GGlpaVMmzaN2bNnA964Kvfeey+TJk0iKSkp3FWLSBuhQG8rXAV8+wMofhms\nA/R5EzoMb/Swbdu2cdVVV7Fq1SpSUlK47bbb+NWvfsUxxzQ+4JaIxBYFelsQLIVvvg8HFngvRD5u\nIaTmNHrYsmXLGD9+PAUFBWRlZTF//nyys+t0SBKROKGnSCItuB+2X+qFeUI3OH5Zo2HunOOBBx5g\n1KhRFBQUMHr0aFauXKkwF4lzCvRICuyFr0d73RITe8Hx/9dol8SSkhJ++MMfcttttxEIBLjzzjtZ\nsGABXbp0aaWiRaStUpNLpPgL4OuLoPxTSDwejl8C7U4+7CFbtmzhe9/7Hrm5uXTo0IF58+Zx9dVX\nt1LBItLWKdAjwb8Dto2Cig3eC5iPXwJJhx+J8p133uG6665j9+7d9O3bl/nz59O/f/9WKlhEooGa\nXFpb5Tb4apgX5u1OhxPePWyYO+eYMWMGF198Mbt37+ayyy7j448/VpiLSB0K9NZU8QV89V2o/AKS\nB3pt5om9Gtx9//79jB8/nunTpxMMBrnnnnt47bXXNJiWiNRLTS6tpXwjfD3Sa25JPQf6LDjs4Fpf\nfPEFY8eOZcOGDaSlpfH0009zxRVXtGLBIhJtFOitofJb2DbcexlF+wugz+veuz4b8OWXX3LuueeS\nn59Pv379ePXVVzn11FNbrVwRiU5qcgk35yDvlhph/tZhw7ywsJBLLrmE/Px8Ro4cyUcffaQwF5Em\n0RV6uO17Fva/4T0B2utv4Gv4/ZxlZWWMHTuWzz//nOzsbF555RXS0hp/pZyICOgKPbz8OyFvmjff\n/QFI6t3grsFgkBtuuIH333+f3r1789ZbbynMReSIKNDDxTnY+VMI7oEOF0H6DYfd/a677uLvf/87\naWlpLFiwgN69Gw5/EZH6KNDDpfjvsP9V8KVBz8cP+97Pxx57jBkzZpCQkMBLL73EgAEDWrFQEYkV\nCvRw8O+CvKnefPc/QtJxDe769ttvM2XKFABmzZrF6NGjW6NCEYlBCvRwyJsKgUJoPxLSb25wt9Wr\nVzNu3DgCgQB33303N954YysWKSKxRoHe0va9BMUvel0TD9PUsm3bNi699FIOHDjA9ddfz3333dfK\nhYpIrFGgtyR/AeRN9uYzZkK7zHp3Kyoq4tJLL2XHjh0MHz6c2bNn652fInLUFOgtKW9a6AGi4dDp\nJ/XuUlFRwdVXX8369evp168fr7zyCsnJya1bp4jEJAV6Syl+FYqfB2sPPWeD1f3VOuf4yU9+wpIl\nS+jevTsLFiygc+fOEShWRGKRAr0lBHbDzlu8+Yz7od2J9e72u9/9jrlz59K+fXvefPNNsrKyWrFI\nEYl1CvSWkPdzCORB6neh85R6d3nqqaf4zW9+g8/n47nnnmPIkCGtXKSIxDoF+tEqfgP2PQ2WCr3q\nb2rZsGEDN9/sdV988MEHNQyuiIRFkwPdzBLMbLWZvRla7mJmi8xsc2gaf43BgT2QF7r5mfFf0K5v\nnV2cc0ydOpXKykpuuukmpk6d2spFiki8OJIr9J8Dm2osTweWOOf6AktCy/Fl122hF1acC51/Vu8u\nzz33HMuXL6dr167MnDmzlQsUkXjSpEA3sz7ApcATNVZfCcwLzc8DxrZsaW3c/rehaC5YCvScA5ZQ\nZ5d9+/bxi1/8AoAZM2bQpUuXVi5SROJJU6/Q/we4AwjWWNfDObcjNL8T6NGShbVpgX2wc5I33+0+\nSK7/BRT33nsvO3fuJCcnh4kTJ7ZigSISjxoNdDO7DNjlnFvV0D7OOQe4Bo6fZGYrzWxlfn5+8ytt\nS/Y+Bv7tkDIEutxW7y7r1q3joYcewufz8de//hWfT/efRSS8mpIy5wFXmNlW4HngQjN7Gsgzs14A\noemu+g52zs1yzg12zg3OyMhoobIjyAVg7yPefLd76m1qcc4xefJkAoEAkydPZuDAga1cpIjEo0YD\n3Tl3p3Ouj3MuE7gWWOqc+yHwOjAhtNsE4LWwVdmWHFgIlVsgKRM6XFzvLk8//TTvv/8+GRkZ/O53\nv2vd+kQkbh1NO8D9wCgz2wyMDC3Hvj1/8aadJtd7db53715uv/12AP77v/+bTp06tWZ1IhLHjugl\n0c655cDy0HwhMKLlS2rDKr7wrtAtBTrVP3b5Pffcw65duxg6dCg/+tGPWrlAEYlnulN3JPaE2s6P\nuRYSutbZvHr1ah5++GESEhJ4+OGHNSSuiLQqBXpTBUugaI4336nueC3BYJApU6YQDAaZNm2a3gsq\nIq1Ogd5U+56F4F5IORtSB9fZPG/ePFasWEHPnj259957W78+EYl7CvSmcA72POzN1zOa4u7du7nj\njjsA+OMf/0h6enprViciAijQm6Z0BZSvgYRukDauzua7776bgoICzj//fK677roIFCgiokBvmr2h\nq/P0m8GXUmvTqlWrePTRR0lMTNSNUBGJKAV6Y/x5sO9FwAedb6m1KRgMMnnyZJxz3HrrrfTv3z8y\nNYqIoEBv3N7HgUroeDkknVBr0+zZs/n444859thjueeeeyJTn4hIiAL9cJzfG4gL6twMLSgoYPp0\nbwj4Bx54gLS0tNauTkSkFgX64ex/3RtVsd0p0L72Q7F33XUXu3fvZsSIEYwbV/dGqYhIa1OgH05V\nV8VOU2q9K3TNmjU88cQTJCUl8Ze//EU3QkWkTVCgN6R8I5QsBesA6RNqbXrwwQerh8jt169fhAoU\nEalNgd6QPX/1puk/hISDDwoVFhby/PPPY2ZMmzYtQsWJiNSlQK9PoBj2PeXNHzJuy5w5cygrK2PM\nmDGcdNJJEShORKR+CvT67PsbBIshdRiknFm9OhAI8Mgj3oiLU6bUHQJARCSSFOiHcu7gSywO6aq4\ncOFCtmzZQlZWFmPGjIlAcSIiDVOgH6pkOVRsgsRekPa9Wpseftjr9fLTn/6UhIS6bysSEYkkBfqh\nqsdtmQSWVL36yy+/ZOHChaSkpHDjjfW/rUhEJJIU6DVVbofiV4FE6DSp1qZHHnkE5xzXXnstXbvW\nfVuRiEikKdBr2vsYEIC0qyDp2OrVJSUlzJnjva1IN0NFpK1SoFdxFaGBuKhzM/T5559nz549DBky\nhMGD676tSESkLVCgVyl+GQJ5kHwGpH63erVzrvpmqK7ORaQtU6BXqR63ZSrUGJvlo48+4tNPP6Vr\n165cc801ESpORKRxCnSAsjVQ+g/wHQPp19faVHV1ftNNN5GSklLf0SIibYICHWDfs940fQL4Olav\n3rVrFy+88AJmxi233NLAwSIibYMCHeDAYm/a8cpaq2fPnk1FRQWXXnopWVlZEShMRKTpFOj+Aihf\nDZYCqedVrw4EAjz66KOAboaKSHRQoJcs9aapQ8F3sI38zTffZNu2bZx88smMHj06QsWJiDRdo4Fu\nZilm9rGZ5ZrZBjP7bWh9FzNbZGabQ9PO4S83DKqaWzrUfsVczXFbfD79uycibV9TkqocuNA5lw2c\nBYwxsxxgOrDEOdcXWBJajj4loUBvP7J61eeff86iRYtITU1l4sSJESpMROTINBrozrM/tJgU+jjg\nSmBeaP08YGxYKgynin9B5RbwdYaUgdWrq8Y8/8EPfkDnztH5h4eIxJ8mtSWYWYKZrQF2AYuccx8B\nPZxzO0K77AR6hKnG8ClZ4k07XAjmDYd74MABnnzySUA3Q0UkujQp0J1zAefcWUAf4DtmdsYh2x3e\nVXsdZjbJzFaa2cr8/PyjLrhFHajb3PLss89SVFTEOeecw8CBAxs4UESk7Tmiu33Oub3AMmAMkGdm\nvQBC010NHDPLOTfYOTc4IyPjaOttOS5Y4wrdC3SN2yIi0awpvVwyzKxTaD4VGAV8BrwOTAjtNgF4\nLVxFhkV5LgQKIfEESPJe9vzBBx+Qm5tLRkYG3//+9yNcoIjIkUlswj69gHlmloD3D8ALzrk3zWwF\n8IKZ3QR8BYwPY50tr2Z3xdBgXFVX5zfffDPJycmRqkxEpFkaDXTn3FqgTmOyc64QGFH3iChR1V0x\n1NySl5fHSy+9hM/n07gtIhKV4vOJmWA5lLznzbe/EIDHH3+cyspKLr/8co4//vgIFici0jzxGeil\nK8CVQvIASOyB3+/nscceA3QzVESiV3wG+iFPh77xxhts376dU045hREjorcVSUTiW3wG+oHa7ecv\nv/wy4N0M1bgtIhKt4i+9Anuh7BMgCdp/l0AgwMKFCwG44oorIlubiMhRiL9AL1kOBCE1B3wd+eST\nTygsLOSkk07ilFNOiXR1IiLNFn+Bfkhzy4IFCwC45JJLsBovhxYRiTbxF+iH3BCtGegiItEsvgK9\ncjtU/BN8aZA6hJ07d7Jq1SpSU1M5//zzI12diMhRia9ArxqMq/1wsKTqm6EXXnghqampkatLRKQF\nxFegH1Bzi4jErvgJdOdq3RCtrKzknXfeAeDiiy+OYGEiIi0jfgK9YiMEdkJiL2h3GitWrKCoqIjT\nTjuNrKysSFcnInLU4ifQq5tbvOFy1dwiIrEm/gK9nv7nIiKxID4C3VVC6XJvvv0Itm3bxrp16+jY\nsSNDhw6NaGkiIi0lPgK99BMI7od2/SCpD2+//TYAo0aNol27dhEuTkSkZcRHoOvpUBGJA/ER6DXa\nz8vLy1m82FtWd0URiSWxH+jB/d4bivBB+/N59913KSkpITs7m969e0e6OhGRFhP7gV7yLuCHlCGQ\n0EnNLSISs2I/0NVdUUTiROwHeo0bol988QWff/45nTt3JicnJ7J1iYi0sNgOdH8elK8DS4XUc6q7\nK1500UUkJiZGuDgRkZYV24FestSbth8GvmQ1t4hITIvtQK8xXG5JSQnLli3DzLjooosiW5eISBjE\nbqA7BwcWefMdRrBs2TLKy8sZMmQI3bt3j2xtIiJhELuBXvkF+L+GhK6QnK3mFhGJeY0GupkdZ2bL\nzGyjmW0ws5+H1ncxs0Vmtjk07Rz+co9AjeFyHcZbb70FKNBFJHY15QrdD/zCOXc6kANMMbPTgenA\nEudcX2BJaLntqNH/fNOmTXz11VdkZGQwaNCgyNYlIhImjQa6c26Hc+7T0HwxsAnoDVwJzAvtNg8Y\nG64ij5gL1OjhMrK6ueXiiy/G54vdViYRiW9HlG5mlgkMBD4CejjndoQ27QR6tGhlR6NsNQT3QtKJ\n0C5L7eciEheaHOhm1hF4GbjVObev5jbnnANcA8dNMrOVZrYyPz//qIptspKDzS379u3jvffew+fz\nMXr06Nb5+SIiEdCkQDezJLwwf8Y590podZ6Z9Qpt7wXsqu9Y59ws59xg59zgjIyMlqi5cSX/8Kbt\nh7N48WL8fj/nnnsunTu3rfu2IiItqSm9XAyYDWxyzv2pxqbXgQmh+QnAay1fXjNVrPem6q4oInGk\nKQOanAf8O7DOzNaE1t0F3A+8YGY3AV8B48NT4hEKHoDKrUASLulkBbqIxI1GA9059z5gDWwe0bLl\ntIDyTd603Snkrt3Ijh07OPbYYxkwYEBk6xIRCbPY68NXscGbJvevdXXutRyJiMSu2Av08voDXUQk\n1sVsoBdXHM+KFStISkpi5MiRES5KRCT8YjbQ/+/DAoLBIMOGDSMtLS3CRYmIhF9sBXpwP/i/AmvH\ni6+uBtTcIiLxI7YCvXwjAC7pVBa8/Q6gQBeR+BFjge41txTu70lBQQFZWVmceuqpES5KRKR1xFag\nh7os5n5WCai7oojEl9gK9NAV+vIPvEHARo0aFclqRERaVUwG+luLtwLwne98J4LFiIi0rtgJ9MA+\n8H9NkHbkbjpAr1696NWrV6SrEhFpNbET6BVeD5ei0l4EgzB48OAIFyQi0rpiJ9BDzS1bvkkF0LtD\nRSTuxFygf7qhHFCgi0j8iZ1AD3VZXPL+TkCBLiLxJ3YCPXSF/snaUo499ljdEBWRuBMbgR7YC/5v\n8AeT2LJdV+ciEp9iI9ArvLcU5e3uRDCoQBeR+BQbgR5qbtn4pfeYv7osikg8iqlA/8fKvYCu0EUk\nPsVUoH+6oYJjjz2Wnj17RrggEZHWFxuBHuqyuOELNbeISPyK/kAP7AX/t1T4E9XDRUTiWvQHevUj\n/yk4p0AXkfgV/YFeUdV+XgYo0EUkfkV/oIeu0Nds8tO7d2/dEBWRuBUzgb7hC12di0h8i51A36we\nLiIS3xoNdDObY2a7zGx9jXVdzGyRmW0OTTuHt8wGBHZDYCel5T6++lZX6CIS35pyhT4XGHPIuunA\nEudcX2BJaLn1ha7ON32JeriISNxrNNCdc+8Cuw9ZfSUwLzQ/DxjbwnU1TSjQ1/4zSO/evenRo0dE\nyhARaQua24bewzm3IzS/E4hMkpbrCVERkSpHfVPUOecA19B2M5tkZivNbGV+fv7R/rjaKtTDRUSk\nSnMDPc/MegGEprsa2tE5N8s5N9g5NzgjI6OZP64B6rIoIlKtuYH+OjAhND8BeK1lyjkC/gII7KL4\nAGxTDxcRkSZ1W3wOWAGcambbzewm4H5glJltBkaGlltXxcEeLn369NENURGJe4mN7eCcu66BTSNa\nuJYjU74RUHOLiEiV6H1SVD1cRERqid5AVw8XEZFaojbQnXq4iIjUEp2B7s/HAvns2w8k9qF79+6R\nrkhEJOIavSnaJoWuzjd+CYMGqf1cJBIqKyvZvn07ZWVlkS4lZqSkpNCnTx+SkpKadXx0Brraz0Ui\nbvv27aSlpZGZmYmZRbqcqOeco7CwkO3bt5OVldWs74jOJheNgS4ScWVlZXTt2lVh3kLMjK5dux7V\nXzxRGeiu3BuaXVfoIpGlMG9ZR/v7jL5Ad45AyToA9pT0osXHhxGRuDJ37lymTp3a6D7ffvtt9fLN\nN9/Mxo0bj/hnLV++nMsuu+yIj2uq6Av0wC4SbS9FxdD7hO9EuhoRiQOHBvoTTzzB6aefHsGK6hd9\ngV7rCdEhES5GRCJp7NixDBo0iP79+zNr1iwAOnbsyK9//Wuys7PJyckhLy8PgDfeeIOzzz6bgQMH\nMnLkyOr1VYqLi8nKyqKyshKAffv2kZWVxYsvvsjKlSu5/vrrOeussygtLWX48OGsXLkSgIULF/Jv\n//ZvZGdnM2KENyLKxx9/zDnnnMPAgQM599xz+ec//9kqv4+oDnS1n4u0DWYWlk9j5syZw6pVq1i5\nciUPPfQQhYWFHDhwgJycHHJzcxk2bBiPP/44AEOHDuXDDz9k9erVXHvttcycObPWd6WlpTF8+HDe\neustAJ5//nmuuuoqxo0bx+DBg3nmmWdYs2YNqamp1cfk5+fz4x//mJdffpnc3FxefPFFAPr168d7\n773H6tWrue+++7jrrrta6ld9WFHXbTFYth4fXqCPvUWBLhLPHnroIebPnw/A119/zebNm2nXrl11\nO/WgQYNYtGgR4HWzvOaaa9ixYwcVFRX1dg28+eabmTlzJmPHjuXJJ5+s/segIR9++CHDhg2r/q4u\nXboAUFRUxIQJE9i8eTNmVn3VH25Rd4VeVuT9mZO/L0M3REXaCOdcWD6Hs3z5chYvXsyKFSvIzc1l\n4MCBlJWVkZSUVH11n5CQgN/vB2DatGlMnTqVdevW8dhjj9XbPfC8885j69atLF++nEAgwBlnnNGs\n38d//ud/csEFF7B+/XreeOONVnv4KroC3TkSAl5bVMoxujoXiWdFRUV07tyZ9u3b89lnn/Hhhx82\nun/v3r0BmDdvXoP7/ehHP+IHP/gBEydOrF6XlpZGcXFxnX1zcnJ499132bJlCwC7d++u87Pmzp17\nROd1NKK+VOwWAAAItUlEQVQr0AM7SU48wJ4iOPGU8yJdjYhE0JgxY/D7/Zx22mlMnz6dnJycw+5/\n7733Mm7cOAYNGkS3bt0a3O/6669nz549XHfdwVdB3HDDDdxyyy3VN0WrZGRkMGvWLK666iqys7O5\n5pprALjjjju48847GThwYPVfCK3BGvuzpiUNHjzYVd0ZbpYDi+HrUby/Cg50W8hFF13UcsWJyBHZ\ntGkTp512WqTLaHEvvfQSr732Gn/7298i8vPr+72a2SrnXKOPxUfVTdFg6Tp8eINyXXWRmlxEpGVN\nmzaNt99+mwULFkS6lGaJqkAvyl9BZ4NvCzsd9k8mEZHm+POf/xzpEo5KVLWhV+5fA4AlN+/Os4hI\nLIueQHeOju22AdCpp26IiogcKnoC3b+D9snl7N4L/foPj3Q1IiJtTtQEeqB0LVD1yL/GQBcROVTU\nBPqu7csB2JbXUTdERaRNeP3117n//vubdWxmZiYFBQUtWk/U9HLZX/AhdIfS4EmRLkVEBL/fzxVX\nXMEVV1wR6VKqRc0VemLQe+Q/tZP6n4uIZ+vWrZx22mn8+Mc/pn///owePbrO8LYFBQVkZmYC3mP4\nY8eOZdSoUWRmZvKXv/yFP/3pTwwcOJCcnJzqR/e//PJLxowZw6BBg/jud7/LZ599Bhx8YvTss8/m\njjvuqPVyjLy8PL73ve+RnZ1NdnY2H3zwAVD/EL/hEh1X6M6RcUw+AL2zRke4GBGp47MwvYquX+NP\nsm/evJnnnnuOxx9/nPHjx/Pyyy8fdv/169ezevVqysrKOPnkk5kxYwarV6/mP/7jP3jqqae49dZb\nmTRpEo8++ih9+/blo48+YvLkySxduhTwRm384IMPSEhIqDVOy89+9jPOP/985s+fTyAQYP/+/YA3\nxG+XLl0oLS1lyJAhXH311XTt2rX5v5PDiIpAD5Rvo2P7AAV74MyzRkS6HBFpQ7KysjjrrLMAb7jc\nrVu3Hnb/Cy64gLS0NNLS0khPT+fyyy8H4Mwzz2Tt2rXs37+fDz74gHHjxlUfU15eXj0/btw4EhIS\n6nzv0qVLeeqppwBvlMf09HSg/iF+22Sgm9kY4EEgAXjCOde8uwON+PrL/yUzAb78Opmzz9ENUZE2\npwlX0uGSnJxcPZ+QkEBpaSmJiYkEg0GAOkPX1tzf5/NVL/t8Pvx+P8FgkE6dOrFmzZp6f16HDh2a\nXFvNIX7bt2/P8OHDwzqUbrPb0M0sAXgYuBg4HbjOzMLykr387csA2FPaOxxfLyIxJjMzk1WrVgHe\nYFtH4phjjql+9Rx4Y73n5uY2etyIESN45JFHAAgEAhQVFR3xEL9H62huin4H+MI59y/nXAXwPHBl\ny5RVm7/E64Nuyf3D8fUiEmNuv/12HnnkEQYOHNisroHPPPMMs2fPJjs7m/79+/Paa681esyDDz7I\nsmXLOPPMMxk0aBAbN2484iF+j1azh881s+8DY5xzN4eW/x042zk3taFjmjt87oa30uh/0n4+yZvJ\nkPN/2ax6RaRlxerwuZF2NMPnhr3boplNMrOVZrYyPz//iI93zhEI+iivgJNObzv9PUVE2pqjCfRv\ngONqLPcJravFOTfLOTfYOTe4Oe8ANTMGXF6EnXqALhmnNr9aEZEYdzSB/gnQ18yyzKwdcC3wesuU\nVVe75Pbh+moRkZjQ7G6Lzjm/mU0F/hev2+Ic59yGFqtMRNo85xxmYXqoKA4d7StBj6ofunNuARCd\n72oSkaOSkpJCYWEhXbt2Vai3AOcchYWFpKSkNPs7ouJJURFpe/r06cP27dtpTmcHqV9KSgp9+vRp\n9vEKdBFplqSkJLKysiJdhtQQNaMtiojI4SnQRURihAJdRCRGNPvR/2b9MLN84KtmHt4NaNn3NbV9\nOuf4oHOOD0dzzic45xp9MrNVA/1omNnKpoxlEEt0zvFB5xwfWuOc1eQiIhIjFOgiIjEimgI9vG9X\nbZt0zvFB5xwfwn7OUdOGLiIihxdNV+giInIYURHoZjbGzP5pZl+Y2fRI1xMOZjbHzHaZ2foa67qY\n2SIz2xyado5kjS3JzI4zs2VmttHMNpjZz0PrY/mcU8zsYzPLDZ3zb0PrY/acq5hZgpmtNrM3Q8sx\nfc5mttXM1pnZGjNbGVoX9nNu84Hemi+jjrC5wJhD1k0Hljjn+gJLQsuxwg/8wjl3OpADTAn9d43l\ncy4HLnTOZQNnAWPMLIfYPucqPwc21ViOh3O+wDl3Vo2uimE/5zYf6LTiy6gjyTn3LrD7kNVXAvNC\n8/OAsa1aVBg553Y45z4NzRfj/Z+9N7F9zs45tz+0mBT6OGL4nAHMrA9wKfBEjdUxfc4NCPs5R0Og\n9wa+rrG8PbQuHvRwzu0Ize8EekSymHAxs0xgIPARMX7OoaaHNcAuYJFzLubPGfgf4A4gWGNdrJ+z\nAxab2SozmxRaF/Zz1vC5UcI558ws5rokmVlH4GXgVufcvpovSojFc3bOBYCzzKwTMN/Mzjhke0yd\ns5ldBuxyzq0ys+H17RNr5xwy1Dn3jZl1BxaZ2Wc1N4brnKPhCr1JL6OOUXlm1gsgNN0V4XpalJkl\n4YX5M865V0KrY/qcqzjn9gLL8O6bxPI5nwdcYWZb8ZpLLzSzp4ntc8Y5901ouguYj9d0HPZzjoZA\nb9WXUbcxrwMTQvMTgNciWEuLMu9SfDawyTn3pxqbYvmcM0JX5phZKjAK+IwYPmfn3J3OuT7OuUy8\n/+8udc79kBg+ZzPrYGZpVfPAaGA9rXDOUfFgkZldgtcOV/Uy6v+KcEktzsyeA4bjjciWB/wGeBV4\nATgeb5TK8c65Q2+cRiUzGwq8B6zjYNvqXXjt6LF6zgPwboYl4F1MveCcu8/MuhKj51xTqMnldufc\nZbF8zmZ2It5VOXjN2s865/6rNc45KgJdREQaFw1NLiIi0gQKdBGRGKFAFxGJEQp0EZEYoUAXEYkR\nCnQRkRihQBcRiREKdBGRGPH/Aa8Z5BXXA2OtAAAAAElFTkSuQmCC\n", 189 | "text/plain": [ 190 | "" 191 | ] 192 | }, 193 | "metadata": {}, 194 | "output_type": "display_data" 195 | } 196 | ], 197 | "source": [ 198 | "plt.plot(t_tick,a_sol,color='black',linewidth=2,label='analytical')\n", 199 | "plt.plot(t_tick,n_sol,color='gold',linewidth=2,label='numerical')\n", 200 | "plt.legend(loc=4)" 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "execution_count": null, 206 | "metadata": { 207 | "collapsed": true 208 | }, 209 | "outputs": [], 210 | "source": [] 211 | } 212 | ], 213 | "metadata": { 214 | "kernelspec": { 215 | "display_name": "Python 3", 216 | "language": "python", 217 | "name": "python3" 218 | }, 219 | "language_info": { 220 | "codemirror_mode": { 221 | "name": "ipython", 222 | "version": 3 223 | }, 224 | "file_extension": ".py", 225 | "mimetype": "text/x-python", 226 | "name": "python", 227 | "nbconvert_exporter": "python", 228 | "pygments_lexer": "ipython3", 229 | "version": "3.5.4" 230 | } 231 | }, 232 | "nbformat": 4, 233 | "nbformat_minor": 1 234 | } 235 | --------------------------------------------------------------------------------