├── Lecture 2 └── Data Visualisation │ ├── 1976-2016-president.csv │ └── Data Visualisation .ipynb ├── Lecture 3 └── EDA │ ├── EDA.ipynb │ ├── bank.csv │ └── test ├── Lecture 4 └── Network Analysis │ ├── NetworkX.ipynb │ ├── knuth_miles.txt.gz │ ├── quaker_network.gexf │ ├── quakers_edgelist.csv │ ├── quakers_nodelist.csv │ └── readme.md ├── Lecture 5 └── Supervised_learning │ ├── Iris.csv │ ├── Supervised Learning.ipynb │ └── readme.md ├── Lecture 6 ├── Unsupervised Learning.ipynb ├── readme.md └── shopping-data.csv ├── README.md └── Webscraping ├── Webscraping.ipynb └── test /Lecture 3/EDA/test: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Lecture 4/Network Analysis/knuth_miles.txt.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sepinouda/Intro_to_Data_Science/15d7d7a6099d0313c8a9040011c68a158e625b61/Lecture 4/Network Analysis/knuth_miles.txt.gz -------------------------------------------------------------------------------- /Lecture 4/Network Analysis/quaker_network.gexf: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | NetworkX 2.5 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 | 830 | 831 | 832 | 833 | 834 | 835 | 836 | 837 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | 866 | 867 | 868 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 | 880 | 881 | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | 929 | 930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 | 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959 | 960 | 961 | 962 | 963 | 964 | 965 | 966 | 967 | 968 | 969 | 970 | 971 | 972 | 973 | 974 | 975 | 976 | 977 | 978 | 979 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 1023 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 1055 | 1056 | 1057 | 1058 | 1059 | 1060 | 1061 | 1062 | 1063 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 | 1070 | 1071 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | 1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 1103 | 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | 1112 | 1113 | 1114 | 1115 | 1116 | 1117 | 1118 | 1119 | 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 1135 | 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151 | 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 1167 | 1168 | 1169 | 1170 | 1171 | 1172 | 1173 | 1174 | 1175 | 1176 | 1177 | 1178 | 1179 | 1180 | 1181 | 1182 | 1183 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | 1192 | 1193 | 1194 | 1195 | 1196 | 1197 | 1198 | 1199 | 1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 1327 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 | 1375 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 | 1420 | 1421 | 1422 | 1423 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 1455 | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | 1488 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 | 1500 | 1501 | 1502 | 1503 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 | 1510 | 1511 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | 1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | 1528 | 1529 | 1530 | 1531 | 1532 | 1533 | 1534 | 1535 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | 1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 1567 | 1568 | 1569 | 1570 | 1571 | 1572 | 1573 | 1574 | 1575 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 1583 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1599 | 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | 1615 | 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 1663 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 1679 | 1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1694 | 1695 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704 | 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 1711 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 1727 | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1740 | 1741 | 1742 | 1743 | 1744 | 1745 | -------------------------------------------------------------------------------- /Lecture 4/Network Analysis/quakers_edgelist.csv: -------------------------------------------------------------------------------- 1 | Source,Target 2 | George Keith,Robert Barclay 3 | George Keith,Benjamin Furly 4 | George Keith,Anne Conway Viscountess Conway and Killultagh 5 | George Keith,Franciscus Mercurius van Helmont 6 | George Keith,William Penn 7 | George Keith,George Fox 8 | George Keith,George Whitehead 9 | George Keith,William Bradford 10 | James Parnel,Benjamin Furly 11 | James Parnel,Stephen Crisp 12 | Peter Collinson,John Bartram 13 | Peter Collinson,James Logan 14 | Joseph Wyeth,Thomas Ellwood 15 | Alexander Skene of Newtyle,Lilias Skene 16 | Dorcas Erbery,James Nayler 17 | William Mucklow,George Fox 18 | Franciscus Mercurius van Helmont,Benjamin Furly 19 | William Dewsbury,Edward Burrough 20 | William Dewsbury,George Fox 21 | William Dewsbury,John Crook 22 | John Audland,John Camm 23 | John Audland,Francis Howgill 24 | John Audland,Edward Pyott 25 | John Audland,Charles Marshall 26 | John Audland,George Fox 27 | John Audland,Anne Camm 28 | Francis Howgill,Martha Simmonds 29 | Francis Howgill,James Nayler 30 | Francis Howgill,Edward Burrough 31 | Francis Howgill,George Fox 32 | Francis Howgill,Richard Farnworth 33 | Francis Howgill,William Crouch 34 | William Bradford,William Penn 35 | William Bradford,Tace Sowle 36 | John Bellers,Fettiplace Bellers 37 | William Rogers,Thomas Ellwood 38 | William Rogers,George Whitehead 39 | Martha Simmonds,Hannah Stranger 40 | Martha Simmonds,James Nayler 41 | Isabel Yeamans,William Penn 42 | George Fox the younger,Margaret Fell 43 | George Fox,Ellis Hookes 44 | George Fox,William Mead 45 | George Fox,Elizabeth Hooten 46 | George Fox,Margaret Fell 47 | George Fox,John Crook 48 | George Fox,George Whitehead 49 | George Fox,Benjamin Furly 50 | George Fox,Thomas Salthouse 51 | George Fox,James Nayler 52 | George Fox,Edward Burrough 53 | George Fox,John Wilkinson 54 | George Fox,Thomas Ellwood 55 | George Fox,William Coddington 56 | George Fox,John Stubbs 57 | George Fox,John Perrot 58 | George Fox,Leonard Fell 59 | George Fox,William Penn 60 | John Stubbs,Benjamin Furly 61 | John Stubbs,William Caton 62 | John Stubbs,Samuel Fisher 63 | John Stubbs,John Burnyeat 64 | John Camm,Charles Marshall 65 | John Camm,Thomas Camm 66 | John Camm,Edward Pyott 67 | Thomas Camm,John Story 68 | Thomas Camm,Anne Camm 69 | John Wilkinson,Charles Marshall 70 | John Wilkinson,Solomon Eccles 71 | John Wilkinson,John Story 72 | John Wilkinson,Alexander Parker 73 | Isaac Norris,William Penn 74 | John Swinton,David Barclay of Ury 75 | James Nayler,Hannah Stranger 76 | James Nayler,Gervase Benson 77 | James Nayler,Margaret Fell 78 | James Nayler,Richard Farnworth 79 | James Nayler,George Whitehead 80 | James Nayler,John Perrot 81 | James Nayler,Robert Rich 82 | James Nayler,Anthony Pearson 83 | James Nayler,Thomas Ellwood 84 | James Nayler,Edward Burrough 85 | James Nayler,Rebecca Travers 86 | James Nayler,William Tomlinson 87 | Anthony Sharp,Samuel Clarridge 88 | Anthony Sharp,Thomas Curtis 89 | Anthony Sharp,William Edmundson 90 | Thomas Salthouse,Margaret Fell 91 | William Ames,William Caton 92 | Mary Fisher,John Perrot 93 | Mary Fisher,Mary Prince 94 | Lydia Lancaster,Grace Chamber 95 | Henry Pickworth,Francis Bugg 96 | Samuel Clarridge,James Claypoole 97 | Francis Bugg,George Whitehead 98 | Thomas Lower,Margaret Fell 99 | Sarah Gibbons,Dorothy Waugh 100 | Gervase Benson,Anthony Pearson 101 | Stephen Crisp,William Caton 102 | Stephen Crisp,Benjamin Furly 103 | John Freame,David Barclay 104 | Humphrey Norton,John Rous 105 | William Gibson,Thomas Holme 106 | Gideon Wanton,John Wanton 107 | William Mead,Margaret Fell 108 | Benjamin Furly,Robert Barclay 109 | Benjamin Furly,Alexander Parker 110 | Benjamin Furly,William Caton 111 | Benjamin Furly,William Penn 112 | James Logan,John Bartram 113 | James Logan,William Penn 114 | James Logan,David Lloyd 115 | Mary Prince,John Perrot 116 | Edward Haistwell,William Penn 117 | John ap John,John Burnyeat 118 | John Crook,John Perrot 119 | John Crook,Edward Burrough 120 | Gilbert Latey,Edward Burrough 121 | Gilbert Latey,George Whitehead 122 | Richard Hubberthorne,George Whitehead 123 | Richard Hubberthorne,Richard Farnworth 124 | Joseph Besse,Richard Claridge 125 | Joseph Besse,Samuel Bownas 126 | George Whitehead,Alexander Parker 127 | George Whitehead,John Whitehead 128 | George Whitehead,Daniel Quare 129 | George Whitehead,William Penn 130 | George Whitehead,John Story 131 | George Whitehead,Rebecca Travers 132 | Silvanus Bevan,Daniel Quare 133 | Solomon Eccles,John Story 134 | Robert Rich,William Tomlinson 135 | John Burnyeat,William Edmundson 136 | John Burnyeat,William Penn 137 | Katharine Evans,Sarah Cheevers 138 | Edward Burrough,John Perrot 139 | Edward Burrough,Thomas Ellwood 140 | Edward Burrough,William Crouch 141 | John Whiting,Christopher Taylor 142 | Rebecca Travers,Alice Curwen 143 | Rebecca Travers,William Penn 144 | William Caton,Margaret Fell 145 | Thomas Lawson,Margaret Fell 146 | Thomas Lawson,Alexander Parker 147 | Richard Farnworth,John Perrot 148 | Richard Farnworth,Margaret Fell 149 | Richard Farnworth,Anthony Pearson 150 | Thomas Taylor,Christopher Taylor 151 | John Penington,Mary Penington 152 | Humphrey Woolrich,Mary Pennyman 153 | William Penn,Tace Sowle 154 | William Penn,James Claypoole 155 | William Penn,Thomas Story 156 | William Penn,Mary Penington 157 | William Penn,David Lloyd 158 | William Penn,Margaret Fell 159 | William Penn,Richard Claridge 160 | Richard Vickris,George Bishop 161 | Robert Barclay,David Barclay of Ury 162 | Jane Sowle,Tace Sowle 163 | Margaret Fell,Alexander Parker 164 | Margaret Fell,Elizabeth Leavens 165 | Margaret Fell,Anthony Pearson 166 | Elizabeth Leavens,Thomas Holme 167 | Lewis Morris,Sir Charles Wager 168 | Mary Penington,Thomas Curtis 169 | Mary Penington,Thomas Ellwood 170 | Thomas Curtis,Thomas Ellwood 171 | Thomas Curtis,William Simpson 172 | Thomas Curtis,John Story 173 | Alexander Parker,Sir Charles Wager 174 | John Story,Thomas Ellwood 175 | Thomas Aldam,Anthony Pearson 176 | -------------------------------------------------------------------------------- /Lecture 4/Network Analysis/quakers_nodelist.csv: -------------------------------------------------------------------------------- 1 | Name,Historical Significance,Gender,Birthdate,Deathdate,ID 2 | Joseph Wyeth,religious writer,male,1663,1731,10013191 3 | Alexander Skene of Newtyle,local politician and author,male,1621,1694,10011149 4 | James Logan,colonial official and scholar,male,1674,1751,10007567 5 | Dorcas Erbery,Quaker preacher,female,1656,1659,10003983 6 | Lilias Skene,Quaker preacher and poet,male,1626,1697,10011152 7 | William Mucklow,religious writer,male,1630,1713,10008595 8 | Thomas Salthouse,Quaker preacher and writer,male,1630,1691,10010643 9 | William Dewsbury,Quaker activist,male,1621,1688,10003478 10 | John Audland,Quaker preacher,male,1630,1664,10000411 11 | Richard Claridge,Quaker minister and schoolmaster,male,1649,1723,10002469 12 | William Bradford,printer,male,1663,1752,10001445 13 | Fettiplace Bellers,philosophical writer and playwright,male,1687,1750,10000933 14 | John Bellers,political economist and cloth merchant,male,1654,1725,10000934 15 | Isabel Yeamans,Quaker preacher,female,1637,1704,10013226 16 | George Fox the younger,religious writer,male,1551,1661,10004523 17 | George Fox, a founder of the Religious Society of Friends (Quakers),male,1624,1691,10004524 18 | John Stubbs,Quaker minister,male,1618,1675,10011695 19 | Anne Camm,Quaker preacher,female,1627,1705,10001967 20 | John Camm,Quaker preacher,male,1605,1657,10001968 21 | Thomas Camm,Quaker preacher and writer,male,1640,1708,10001969 22 | Katharine Evans,Quaker missionary,female,1618,1692,10004036 23 | Lydia Lancaster,Quaker minister,female,1683,1761,10007110 24 | Samuel Clarridge,Quaker activist,male,1631,1704,10002504 25 | Thomas Lower,Quaker activist and physician,male,1633,1720,10007626 26 | Gervase Benson,Quaker leader,male,1569,1679,10000972 27 | Stephen Crisp,Quaker activist and writer,male,1628,1692,10003022 28 | James Claypoole,merchant and pioneer settler in America,male,1634,1687,10002513 29 | Thomas Holme,Quaker missionary,male,1626,1666,10006100 30 | John Freame,banker and lobbyist,male,1665,1745,10004564 31 | John Swinton,politician,male,1620,1679,10011742 32 | William Mead,Quaker patron and merchant,male,1627,1713,10008161 33 | Henry Pickworth,religious controversialist,male,1673,1738,10009697 34 | John Crook,Quaker leader and writer,male,1616,1699,10003063 35 | Gilbert Latey,Quaker activist,male,1626,1705,10007166 36 | Ellis Hookes,Quaker administrator,male,1635,1681,10006146 37 | Joseph Besse,historian of Quakerism,male,1683,1757,10001027 38 | James Nayler,Quaker preacher and writer,male,1618,1660,10008713 39 | Elizabeth Hooten,Quaker preacher,female,1562,1672,10006153 40 | George Whitehead,Quaker leader and writer,male,1637,1724,10012813 41 | John Whitehead,Quaker minister and preacher,male,1630,1696,10012815 42 | William Crouch,Quaker leader and writer,male,1628,1711,10003087 43 | Benjamin Furly,merchant and religious writer,male,1636,1714,10004625 44 | Silvanus Bevan,apothecary,male,1691,1765,10001041 45 | Robert Rich,Quaker adherent and sectary,male,1607,1679,10010260 46 | John Whiting,Quaker bibliographer and writer,male,1656,1722,10012829 47 | Christopher Taylor,religious writer and schoolmaster,male,1614,1686,10011811 48 | Thomas Lawson,Quaker minister and botanist,male,1630,1691,10007210 49 | Richard Farnworth,Quaker preacher and writer,male,1630,1666,10004141 50 | William Coddington,merchant and official in America,male,1601,1678,10002606 51 | Thomas Taylor,Quaker minister and writer,male,1617,1682,10011824 52 | Richard Vickris,religious writer,male,1590,1700,10012350 53 | Robert Barclay,religious writer and colonial governor,male,1648,1690,10054848 54 | Jane Sowle,,female,1631,1711,10011331 55 | Tace Sowle,printer and bookseller,male,1666,1749,10011332 56 | Leonard Fell,Quaker missionary and writer,male,1624,1701,10004169 57 | Margaret Fell,Quaker leader,female,1614,1702,10004170 58 | George Bishop,government official and religious writer,male,1558,1668,10001097 59 | Elizabeth Leavens,Quaker missionary,female,1555,1665,10007246 60 | Thomas Curtis,Quaker schismatic,male,1602,1712,10003161 61 | Alice Curwen,Quaker missionary,female,1619,1679,10003162 62 | Alexander Parker,Quaker preacher and author,male,1628,1689,10009307 63 | John Wilkinson,Quaker schismatic,male,1652,1683,10012893 64 | Thomas Aldam,Quaker preacher and writer,male,1616,1660,10000099 65 | David Barclay of Ury,soldier and politician,male,1610,1686,10000621 66 | David Barclay,merchant,male,1682,1769,10000622 67 | Sir Charles Wager,naval officer and politician,male,1666,1743,10012403 68 | George Keith,Quaker schismatic and Church of England clergyman,male,1638,1716,10006784 69 | James Parnel,Quaker martyr,male,1636,1656,10009347 70 | Peter Collinson,botanist,male,1694,1768,10002694 71 | Franciscus Mercurius van Helmont,physician and cabbalist,male,1614,1698,10005781 72 | William Caton,Quaker preacher,male,1636,1665,10002203 73 | Francis Howgill,Quaker activist,male,1618,1669,10006305 74 | Richard Hubberthorne,Quaker activist,male,1628,1662,10006314 75 | William Ames,Quaker preacher,male,1552,1662,10000175 76 | William Rogers,Quaker schismatic,male,1601,1711,10010417 77 | Isaac Norris,colonial official and merchant,male,1671,1735,10008884 78 | Anthony Sharp,Quaker leader,male,1643,1707,10010941 79 | Mary Fisher,Quaker missionary,female,1623,1698,10004290 80 | Anne Conway Viscountess Conway and Killultagh,philosopher,female,1631,1679,10002755 81 | Samuel Fisher,Quaker preacher and writer,male,1604,1665,10004292 82 | Francis Bugg,Quaker apostate,male,1640,1727,10001737 83 | Sarah Gibbons,Quaker preacher in America,female,1634,1659,10004811 84 | William Tomlinson,religious writer,male,1650,1696,10011989 85 | Humphrey Norton,Quaker missionary and author,male,1655,1660,10008917 86 | William Gibson,Quaker leader,male,1628,1684,10004827 87 | Gideon Wanton,merchant and colonial governor,male,1693,1767,10012509 88 | John Wanton,merchant and colonial governor,male,1672,1740,10012510 89 | Grace Chamber,Quaker minister,female,1676,1762,10002274 90 | Mary Prince,Quaker preacher,female,1569,1679,10009959 91 | John Bartram,botanist and explorer in America,male,1699,1777,10000745 92 | Edward Haistwell,merchant,male,1658,1709,10005359 93 | John ap John,Quaker leader,male,1625,1697,10000243 94 | John Rous,Quaker missionary,male,1585,1695,10010488 95 | Anthony Pearson,Quaker administrator,male,1627,1666,10009470 96 | Solomon Eccles,musician and Quaker missionary,male,1617,1682,10003859 97 | John Burnyeat,Quaker minister,male,1631,1690,10001815 98 | Edward Burrough,Quaker activist and writer,male,1633,1663,10001818 99 | Rebecca Travers,Quaker preacher and writer,female,1609,1688,10012062 100 | William Edmundson,Quaker leader,male,1627,1712,10003882 101 | Sarah Cheevers,Quaker missionary,female,1608,1664,10002354 102 | Edward Pyott,parliamentarian army officer,male,1560,1670,10010036 103 | Daniel Quare,"maker of clocks, watches, and barometers",male,1648,1724,10010037 104 | John Penington,Quaker apologist and controversialist,male,1655,1710,10009526 105 | Mary Penington,Quaker and writer,female,1623,1682,10009527 106 | Charles Marshall,Quaker preacher and apothecary,male,1637,1698,10007992 107 | Humphrey Woolrich,religious writer,male,1633,1707,10013112 108 | William Penn,Quaker leader and founder of Pennsylvania,male,1644,1718,10009531 109 | Mary Pennyman,,female,1630,1701,10009535 110 | Dorothy Waugh,Quaker preacher,female,1636,1666,10012614 111 | David Lloyd,lawyer and politician in America,male,1656,1731,10007509 112 | Lewis Morris,politician in America,male,1671,1746,10008534 113 | Martha Simmonds,Quaker and author,female,1624,1665,10011100 114 | John Story,Quaker schismatic,male,1571,1681,10011613 115 | Thomas Story,Quaker minister and journal writer,male,1670,1742,10011614 116 | Thomas Ellwood,religious controversialist,male,1639,1713,10003945 117 | William Simpson,Quaker preacher,male,1627,1671,10011114 118 | Samuel Bownas,Quaker minister and writer,male,1677,1753,10001390 119 | John Perrot,Quaker schismatic,male,1555,1665,10009584 120 | Hannah Stranger,Quaker missionary,female,1656,1671,10011632 121 | -------------------------------------------------------------------------------- /Lecture 4/Network Analysis/readme.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Lecture 5/Supervised_learning/Iris.csv: -------------------------------------------------------------------------------- 1 | Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species 2 | 1,5.1,3.5,1.4,0.2,Iris-setosa 3 | 2,4.9,3.0,1.4,0.2,Iris-setosa 4 | 3,4.7,3.2,1.3,0.2,Iris-setosa 5 | 4,4.6,3.1,1.5,0.2,Iris-setosa 6 | 5,5.0,3.6,1.4,0.2,Iris-setosa 7 | 6,5.4,3.9,1.7,0.4,Iris-setosa 8 | 7,4.6,3.4,1.4,0.3,Iris-setosa 9 | 8,5.0,3.4,1.5,0.2,Iris-setosa 10 | 9,4.4,2.9,1.4,0.2,Iris-setosa 11 | 10,4.9,3.1,1.5,0.1,Iris-setosa 12 | 11,5.4,3.7,1.5,0.2,Iris-setosa 13 | 12,4.8,3.4,1.6,0.2,Iris-setosa 14 | 13,4.8,3.0,1.4,0.1,Iris-setosa 15 | 14,4.3,3.0,1.1,0.1,Iris-setosa 16 | 15,5.8,4.0,1.2,0.2,Iris-setosa 17 | 16,5.7,4.4,1.5,0.4,Iris-setosa 18 | 17,5.4,3.9,1.3,0.4,Iris-setosa 19 | 18,5.1,3.5,1.4,0.3,Iris-setosa 20 | 19,5.7,3.8,1.7,0.3,Iris-setosa 21 | 20,5.1,3.8,1.5,0.3,Iris-setosa 22 | 21,5.4,3.4,1.7,0.2,Iris-setosa 23 | 22,5.1,3.7,1.5,0.4,Iris-setosa 24 | 23,4.6,3.6,1.0,0.2,Iris-setosa 25 | 24,5.1,3.3,1.7,0.5,Iris-setosa 26 | 25,4.8,3.4,1.9,0.2,Iris-setosa 27 | 26,5.0,3.0,1.6,0.2,Iris-setosa 28 | 27,5.0,3.4,1.6,0.4,Iris-setosa 29 | 28,5.2,3.5,1.5,0.2,Iris-setosa 30 | 29,5.2,3.4,1.4,0.2,Iris-setosa 31 | 30,4.7,3.2,1.6,0.2,Iris-setosa 32 | 31,4.8,3.1,1.6,0.2,Iris-setosa 33 | 32,5.4,3.4,1.5,0.4,Iris-setosa 34 | 33,5.2,4.1,1.5,0.1,Iris-setosa 35 | 34,5.5,4.2,1.4,0.2,Iris-setosa 36 | 35,4.9,3.1,1.5,0.1,Iris-setosa 37 | 36,5.0,3.2,1.2,0.2,Iris-setosa 38 | 37,5.5,3.5,1.3,0.2,Iris-setosa 39 | 38,4.9,3.1,1.5,0.1,Iris-setosa 40 | 39,4.4,3.0,1.3,0.2,Iris-setosa 41 | 40,5.1,3.4,1.5,0.2,Iris-setosa 42 | 41,5.0,3.5,1.3,0.3,Iris-setosa 43 | 42,4.5,2.3,1.3,0.3,Iris-setosa 44 | 43,4.4,3.2,1.3,0.2,Iris-setosa 45 | 44,5.0,3.5,1.6,0.6,Iris-setosa 46 | 45,5.1,3.8,1.9,0.4,Iris-setosa 47 | 46,4.8,3.0,1.4,0.3,Iris-setosa 48 | 47,5.1,3.8,1.6,0.2,Iris-setosa 49 | 48,4.6,3.2,1.4,0.2,Iris-setosa 50 | 49,5.3,3.7,1.5,0.2,Iris-setosa 51 | 50,5.0,3.3,1.4,0.2,Iris-setosa 52 | 51,7.0,3.2,4.7,1.4,Iris-versicolor 53 | 52,6.4,3.2,4.5,1.5,Iris-versicolor 54 | 53,6.9,3.1,4.9,1.5,Iris-versicolor 55 | 54,5.5,2.3,4.0,1.3,Iris-versicolor 56 | 55,6.5,2.8,4.6,1.5,Iris-versicolor 57 | 56,5.7,2.8,4.5,1.3,Iris-versicolor 58 | 57,6.3,3.3,4.7,1.6,Iris-versicolor 59 | 58,4.9,2.4,3.3,1.0,Iris-versicolor 60 | 59,6.6,2.9,4.6,1.3,Iris-versicolor 61 | 60,5.2,2.7,3.9,1.4,Iris-versicolor 62 | 61,5.0,2.0,3.5,1.0,Iris-versicolor 63 | 62,5.9,3.0,4.2,1.5,Iris-versicolor 64 | 63,6.0,2.2,4.0,1.0,Iris-versicolor 65 | 64,6.1,2.9,4.7,1.4,Iris-versicolor 66 | 65,5.6,2.9,3.6,1.3,Iris-versicolor 67 | 66,6.7,3.1,4.4,1.4,Iris-versicolor 68 | 67,5.6,3.0,4.5,1.5,Iris-versicolor 69 | 68,5.8,2.7,4.1,1.0,Iris-versicolor 70 | 69,6.2,2.2,4.5,1.5,Iris-versicolor 71 | 70,5.6,2.5,3.9,1.1,Iris-versicolor 72 | 71,5.9,3.2,4.8,1.8,Iris-versicolor 73 | 72,6.1,2.8,4.0,1.3,Iris-versicolor 74 | 73,6.3,2.5,4.9,1.5,Iris-versicolor 75 | 74,6.1,2.8,4.7,1.2,Iris-versicolor 76 | 75,6.4,2.9,4.3,1.3,Iris-versicolor 77 | 76,6.6,3.0,4.4,1.4,Iris-versicolor 78 | 77,6.8,2.8,4.8,1.4,Iris-versicolor 79 | 78,6.7,3.0,5.0,1.7,Iris-versicolor 80 | 79,6.0,2.9,4.5,1.5,Iris-versicolor 81 | 80,5.7,2.6,3.5,1.0,Iris-versicolor 82 | 81,5.5,2.4,3.8,1.1,Iris-versicolor 83 | 82,5.5,2.4,3.7,1.0,Iris-versicolor 84 | 83,5.8,2.7,3.9,1.2,Iris-versicolor 85 | 84,6.0,2.7,5.1,1.6,Iris-versicolor 86 | 85,5.4,3.0,4.5,1.5,Iris-versicolor 87 | 86,6.0,3.4,4.5,1.6,Iris-versicolor 88 | 87,6.7,3.1,4.7,1.5,Iris-versicolor 89 | 88,6.3,2.3,4.4,1.3,Iris-versicolor 90 | 89,5.6,3.0,4.1,1.3,Iris-versicolor 91 | 90,5.5,2.5,4.0,1.3,Iris-versicolor 92 | 91,5.5,2.6,4.4,1.2,Iris-versicolor 93 | 92,6.1,3.0,4.6,1.4,Iris-versicolor 94 | 93,5.8,2.6,4.0,1.2,Iris-versicolor 95 | 94,5.0,2.3,3.3,1.0,Iris-versicolor 96 | 95,5.6,2.7,4.2,1.3,Iris-versicolor 97 | 96,5.7,3.0,4.2,1.2,Iris-versicolor 98 | 97,5.7,2.9,4.2,1.3,Iris-versicolor 99 | 98,6.2,2.9,4.3,1.3,Iris-versicolor 100 | 99,5.1,2.5,3.0,1.1,Iris-versicolor 101 | 100,5.7,2.8,4.1,1.3,Iris-versicolor 102 | 101,6.3,3.3,6.0,2.5,Iris-virginica 103 | 102,5.8,2.7,5.1,1.9,Iris-virginica 104 | 103,7.1,3.0,5.9,2.1,Iris-virginica 105 | 104,6.3,2.9,5.6,1.8,Iris-virginica 106 | 105,6.5,3.0,5.8,2.2,Iris-virginica 107 | 106,7.6,3.0,6.6,2.1,Iris-virginica 108 | 107,4.9,2.5,4.5,1.7,Iris-virginica 109 | 108,7.3,2.9,6.3,1.8,Iris-virginica 110 | 109,6.7,2.5,5.8,1.8,Iris-virginica 111 | 110,7.2,3.6,6.1,2.5,Iris-virginica 112 | 111,6.5,3.2,5.1,2.0,Iris-virginica 113 | 112,6.4,2.7,5.3,1.9,Iris-virginica 114 | 113,6.8,3.0,5.5,2.1,Iris-virginica 115 | 114,5.7,2.5,5.0,2.0,Iris-virginica 116 | 115,5.8,2.8,5.1,2.4,Iris-virginica 117 | 116,6.4,3.2,5.3,2.3,Iris-virginica 118 | 117,6.5,3.0,5.5,1.8,Iris-virginica 119 | 118,7.7,3.8,6.7,2.2,Iris-virginica 120 | 119,7.7,2.6,6.9,2.3,Iris-virginica 121 | 120,6.0,2.2,5.0,1.5,Iris-virginica 122 | 121,6.9,3.2,5.7,2.3,Iris-virginica 123 | 122,5.6,2.8,4.9,2.0,Iris-virginica 124 | 123,7.7,2.8,6.7,2.0,Iris-virginica 125 | 124,6.3,2.7,4.9,1.8,Iris-virginica 126 | 125,6.7,3.3,5.7,2.1,Iris-virginica 127 | 126,7.2,3.2,6.0,1.8,Iris-virginica 128 | 127,6.2,2.8,4.8,1.8,Iris-virginica 129 | 128,6.1,3.0,4.9,1.8,Iris-virginica 130 | 129,6.4,2.8,5.6,2.1,Iris-virginica 131 | 130,7.2,3.0,5.8,1.6,Iris-virginica 132 | 131,7.4,2.8,6.1,1.9,Iris-virginica 133 | 132,7.9,3.8,6.4,2.0,Iris-virginica 134 | 133,6.4,2.8,5.6,2.2,Iris-virginica 135 | 134,6.3,2.8,5.1,1.5,Iris-virginica 136 | 135,6.1,2.6,5.6,1.4,Iris-virginica 137 | 136,7.7,3.0,6.1,2.3,Iris-virginica 138 | 137,6.3,3.4,5.6,2.4,Iris-virginica 139 | 138,6.4,3.1,5.5,1.8,Iris-virginica 140 | 139,6.0,3.0,4.8,1.8,Iris-virginica 141 | 140,6.9,3.1,5.4,2.1,Iris-virginica 142 | 141,6.7,3.1,5.6,2.4,Iris-virginica 143 | 142,6.9,3.1,5.1,2.3,Iris-virginica 144 | 143,5.8,2.7,5.1,1.9,Iris-virginica 145 | 144,6.8,3.2,5.9,2.3,Iris-virginica 146 | 145,6.7,3.3,5.7,2.5,Iris-virginica 147 | 146,6.7,3.0,5.2,2.3,Iris-virginica 148 | 147,6.3,2.5,5.0,1.9,Iris-virginica 149 | 148,6.5,3.0,5.2,2.0,Iris-virginica 150 | 149,6.2,3.4,5.4,2.3,Iris-virginica 151 | 150,5.9,3.0,5.1,1.8,Iris-virginica 152 | -------------------------------------------------------------------------------- /Lecture 5/Supervised_learning/readme.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Lecture 6/Unsupervised Learning.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Hierarchical Clustering" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import matplotlib.pyplot as plt\n", 17 | "import pandas as pd\n", 18 | "%matplotlib inline\n", 19 | "import numpy as np" 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": 2, 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "customer_data = pd.read_csv('shopping-data.csv')\n" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 3, 34 | "metadata": {}, 35 | "outputs": [ 36 | { 37 | "data": { 38 | "text/plain": [ 39 | "(200, 5)" 40 | ] 41 | }, 42 | "execution_count": 3, 43 | "metadata": {}, 44 | "output_type": "execute_result" 45 | } 46 | ], 47 | "source": [ 48 | "customer_data.shape" 49 | ] 50 | }, 51 | { 52 | "cell_type": "code", 53 | "execution_count": 4, 54 | "metadata": {}, 55 | "outputs": [ 56 | { 57 | "data": { 58 | "text/html": [ 59 | "
\n", 60 | "\n", 73 | "\n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | "
CustomerIDGenreAgeAnnual Income (k$)Spending Score (1-100)
01Male191539
12Male211581
23Female20166
34Female231677
45Female311740
\n", 127 | "
" 128 | ], 129 | "text/plain": [ 130 | " CustomerID Genre Age Annual Income (k$) Spending Score (1-100)\n", 131 | "0 1 Male 19 15 39\n", 132 | "1 2 Male 21 15 81\n", 133 | "2 3 Female 20 16 6\n", 134 | "3 4 Female 23 16 77\n", 135 | "4 5 Female 31 17 40" 136 | ] 137 | }, 138 | "execution_count": 4, 139 | "metadata": {}, 140 | "output_type": "execute_result" 141 | } 142 | ], 143 | "source": [ 144 | "customer_data.head()" 145 | ] 146 | }, 147 | { 148 | "cell_type": "code", 149 | "execution_count": 5, 150 | "metadata": {}, 151 | "outputs": [], 152 | "source": [ 153 | "data = customer_data.iloc[:, 3:5].values" 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "execution_count": 6, 159 | "metadata": {}, 160 | "outputs": [ 161 | { 162 | "data": { 163 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAGrCAYAAADtg7J7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+LElEQVR4nO3de5wkVX338c9PriqiIAuL3DULGxBEs8Eg3jVCgIgmKpcIutHgk2DEJ14xRn2SEE0e7yYaMbqiJuFmDLisIKIYFQVXRVZgF3m4yGWBlUUBBZT19/xxTu/U9nbP9MzUzPTMft6v1762prqqzqnqunz7nOrqyEwkSZLUjofNdAUkSZLmEsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5I0ThGREfFbM10PScPJcCXNIRFxXEQsj4j7ImJ1RHwpIp4+yWW+KyI+11Yd21br9+uIuLf+uzYi/jkidp7puknaNBmupDkiIv4K+CDwD8BOwO7AR4GjZrBarYqIzfu8dGZmPgrYHngxMB/43mwKWFF4TpbmAA9kaQ6IiEcDfwuclJn/lZm/yMxfZ+YXM/NNdZpPR8TfN+Z5dkTc0vj7LRFxa239WRURz4uIw4C3AUfX1rAf1mkfFxHnRcTaiLguIv6ssZx3RcTZEfG5uqwVEbF3RJwSEXdGxM0R8YJm3SPik7Wl7daI+PuI2Ky+9sqI+FZEfCAi1gLvGm071HW+CjgaWAO8oVHOkRFxRUT8LCIujYgDGq/dGBFvjIgrI+LnEXFmRGzdeP1NtX63RcSfdm/7iPhMRKyJiJsi4u2dkBQRm0XE+yLipxFxQ0S8tnYpbl5fvyQiTo2IbwG/BB4fEYsj4pq67a6PiNd0v2cR8ea6LVdHxIsi4vDaYrc2It7WmP6g2pJ5T0TcERHvH237SWqH4UqaGw4Gtga+MJGZI2If4LXA79YWoEOBGzPzAkpL2JmZuU1mPqnO8p/ALcDjgJcA/xARz2ss8g+BzwLbAT8ALqScb3ahhMCPN6Y9HXgI+C3gycALgFc3Xn8qcD2wI3DqIOuTmeuAc4Fn1PV7CvAp4DXAY2v550XEVo3ZXgYcBuwFHAC8ss57GPBG4PeBBcDzu4r7CPBo4PHAs4ATgMX1tT8D/gA4EHgK8KIe1T0eOBF4FHATcCdwJLBtXc4Hav075lPe612AdwCfAF4O/E5d33dExOPrtB8CPpSZ2wJPAM7qvcUktclwJc0NjwV+mpkPTXD+dcBWwL4RsUVm3piZ/6/XhBGxG/B04C2Z+UBmXgH8GyUkdHwjMy+s9TkbmAe8JzN/DZwB7BkRj4mInSjh4/W1te1O4APAMY1l3ZaZH8nMhzLz/nGs022UbkIoIefjmXlZZq7LzNOBB4Hfa0z/4cy8LTPXAl+kBCIooWtJZv4oM39Bo/WstrAdDZySmfdm5o3A+xrb4mWUcHNLZt4NvKdHPT+dmVfV9ft1Zp6fmf8vi68DX6aGxOrXwKmNbblDLePe2mp3FSUcdqb9rYjYITPvy8zvjGP7SZogw5U0N9wF7DDKPUmjyszrgNdTgsOdEXFGRDyuz+SPA9Zm5r2NcTdRWlI67mgM308JfusafwNsA+wBbAGsrt11P6O0Ku3YmP/mca9QsQuwtg7vAbyhU0YtZ7e6Lh23N4Z/WetHnaZZh5sawzsAW3aNa26L7nl7rcsG4yLiDyLiO7WL72fA4bWcjrt6bMvu7d2p+6uAvYGVEfHdiDiyR/mSWma4kuaGbwMP0LvbqeMXwCMaf89vvpiZ/5GZT6cEkQT+sfNS13JuA7aPiEc1xu0O3Dr+anMzpQVph8x8TP23bWbu16zaeBda73n6Q+AbjXJObZTxmMx8RGb+5wCLW00JYh27N4Z/Smkd2qPr9c62WA3s2nituZyO9etXuyk/D7wX2CkzHwMsA2KAem684MwfZ+axlLD6j8A5EfHIiSxL0uAMV9IckJk/p9x/8y/1BudHRMQWtRXkn+pkVwCHR8T2ETGf0lIFlHuuIuK59eL+AKX1o9M6cgelG+9htaybgUuBd0fE1vXG8FcB/z6Beq+mdHu9LyK2jYiHRcQTIuJZ498KUNf5tyn3hM0HOjdwfwL4XxHx1CgeGRFHdAXEfs4CXhkR+0bEI4B3Nuq/rr5+akQ8KiL2AP4K+Fxj3pMjYpeIeAzwljHK2pLSPbsGeCgi/oByD9qERMTLI2JeZv4G+FkdvW6UWSS1wHAlzRGZ+X7Khf3tlIvzzZSb1P+7TvJZ4IfAjZRAc2Zj9q0o9wP9lNI9tiPlW4JQ7pkCuCsivl+HjwX2pLRifQF4Z2ZeNMGqn0AJFVcDdwPnAON9hMLREXEfJUCcR+km/Z3MvA0gM5dT7rv651rGddQb1seSmV+iPOLiq3W+r3ZN8peUVsHrgW8C/0G5eR5KqPsycCXlxv5llJv3ewac2tX6Okoouxs4rq7PRB0GXFW3zYeAYzLzgUksT9IAInPcLe6SpAmoLVH/mpl7jDmxpFnLlitJmiIR8fD6DKrNI2IXSpfihB6XIWn2sOVKkqZIvUfr68BCyn1s5wMnZ+Y9M1oxSVPKcCVJktQiuwUlSZJaZLiSJElq0YSe5ty2HXbYIffcc8+ZroYkSdKYvve97/00M+f1e30owtWee+7J8uXLZ7oakiRJY4qIm0Z73W5BSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJatHmM10BTZ//uOwnnHvFrTNdDUnSOB114C4c99TdZ7oaGpAtV5uQc6+4latX3zPT1ZAkjcPVq+/xg/EsM3DLVURsBiwHbs3MIyNie+BMYE/gRuBlmXl3nfYU4FXAOuB1mXlhy/XWBO2787ac+ZqDZ7oakqQBHf3xb890FTRO42m5Ohm4pvH3W4GLM3MBcHH9m4jYFzgG2A84DPhoDWaSJElz3kDhKiJ2BY4A/q0x+ijg9Dp8OvCixvgzMvPBzLwBuA44qJXaSpIkDblBW64+CLwZ+E1j3E6ZuRqg/r9jHb8LcHNjulvqOEmSpDlvzHAVEUcCd2bm9wZcZvQYlz2We2JELI+I5WvWrBlw0ZIkScNtkJarQ4AXRsSNwBnAcyPic8AdEbEzQP3/zjr9LcBujfl3BW7rXmhmnpaZizJz0bx58yaxCpIkScNjzHCVmadk5q6ZuSflRvWvZubLgfOAV9TJXgGcW4fPA46JiK0iYi9gAXB56zWXJEkaQpN5iOh7gLMi4lXAT4CXAmTmVRFxFnA18BBwUmaum3RNJUmSZoFxhavMvAS4pA7fBTyvz3SnAqdOsm6SJK23qf7KROfhz5vq865m49PpfUK7JGlW2FR/ZWLfnbdl3523nelqzIjZ+nR6f1tQkjRr+CsTm5bZ2lpny5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0aM1xFxNYRcXlE/DAiroqI/1PHvysibo2IK+q/wxvznBIR10XEqog4dCpXQJIkaZhsPsA0DwLPzcz7ImIL4JsR8aX62gcy873NiSNiX+AYYD/gccBXImLvzFzXZsUlSZKG0ZgtV1ncV//cov7LUWY5CjgjMx/MzBuA64CDJl1TSZKkWWCge64iYrOIuAK4E7goMy+rL702Iq6MiE9FxHZ13C7AzY3Zb6njJEmS5ryBwlVmrsvMA4FdgYMi4onAx4AnAAcCq4H31cmj1yK6R0TEiRGxPCKWr1mzZgJVlyRJGj7j+rZgZv4MuAQ4LDPvqKHrN8AnGOn6uwXYrTHbrsBtPZZ1WmYuysxF8+bNm0jdJUmShs4g3xacFxGPqcMPB54PrIyInRuTvRj4UR0+DzgmIraKiL2ABcDlrdZakiRpSA3ybcGdgdMjYjNKGDsrM5dGxGcj4kBKl9+NwGsAMvOqiDgLuBp4CDjJbwpKkqRNxZjhKjOvBJ7cY/zxo8xzKnDq5KomSZI0+/iEdkmSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUVjhquI2DoiLo+IH0bEVRHxf+r47SPiooj4cf1/u8Y8p0TEdRGxKiIOncoVkCRJGiaDtFw9CDw3M58EHAgcFhG/B7wVuDgzFwAX17+JiH2BY4D9gMOAj0bEZlNQd0mSpKEzZrjK4r765xb1XwJHAafX8acDL6rDRwFnZOaDmXkDcB1wUJuVliRJGlYD3XMVEZtFxBXAncBFmXkZsFNmrgao/+9YJ98FuLkx+y11XPcyT4yI5RGxfM2aNZNYBUmSpOExULjKzHWZeSCwK3BQRDxxlMmj1yJ6LPO0zFyUmYvmzZs3UGUlSZKG3bi+LZiZPwMuodxLdUdE7AxQ/7+zTnYLsFtjtl2B2yZbUUmSpNlgkG8LzouIx9ThhwPPB1YC5wGvqJO9Aji3Dp8HHBMRW0XEXsAC4PKW6y1JkjSUNh9gmp2B0+s3/h4GnJWZSyPi28BZEfEq4CfASwEy86qIOAu4GngIOCkz101N9SVJkobLmOEqM68Entxj/F3A8/rMcypw6qRrJ0mSNMv4hHZJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElq0eYzXYEZsXwJrDhnpmsx/W4/qvy/5O9nth7Tbf+XwKLFM10LSdImYtMMVyvOgdtXwPz9Z7om0+rM3c+d6SpMv9tXlP8NV5KkabJphisowWrx+TNdC021JUfMdA0kSZsY77mSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJatGY4SoidouIr0XENRFxVUScXMe/KyJujYgr6r/DG/OcEhHXRcSqiDh0KldAkiRpmAzyKIaHgDdk5vcj4lHA9yLiovraBzLzvc2JI2Jf4BhgP+BxwFciYu/MXNdmxSVJkobRmC1Xmbk6M79fh+8FrgF2GWWWo4AzMvPBzLwBuA44qI3KSpIkDbtx3XMVEXsCTwYuq6NeGxFXRsSnImK7Om4X4ObGbLcwehiTJEmaMwYOVxGxDfB54PWZeQ/wMeAJwIHAauB9nUl7zJ49lndiRCyPiOVr1qwZb70lSZKG0kDhKiK2oASrf8/M/wLIzDsyc11m/gb4BCNdf7cAuzVm3xW4rXuZmXlaZi7KzEXz5s2bzDpIkiQNjUG+LRjAJ4FrMvP9jfE7NyZ7MfCjOnwecExEbBURewELgMvbq7IkSdLwGuTbgocAxwMrIuKKOu5twLERcSCly+9G4DUAmXlVRJwFXE35puFJflNwCCxfAivOmelaTL/bryz/b6o/4Lz/S2DR4pmuhSRtUsYMV5n5TXrfR7VslHlOBU6dRL3UthXnwO0rYP7+M12T6TX/gJmuwcy5fUX533AlSdNqkJYrzRXz94fF5890LTRdNtXWOkmaYf78jSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktWjMcBURu0XE1yLimoi4KiJOruO3j4iLIuLH9f/tGvOcEhHXRcSqiDh0KldAkiRpmAzScvUQ8IbM/G3g94CTImJf4K3AxZm5ALi4/k197RhgP+Aw4KMRsdlUVF6SJGnYjBmuMnN1Zn6/Dt8LXAPsAhwFnF4nOx14UR0+CjgjMx/MzBuA64CDWq63JEnSUBrXPVcRsSfwZOAyYKfMXA0lgAE71sl2AW5uzHZLHSdJkjTnDRyuImIb4PPA6zPzntEm7TEueyzvxIhYHhHL16xZM2g1JEmShtpA4SoitqAEq3/PzP+qo++IiJ3r6zsDd9bxtwC7NWbfFbite5mZeVpmLsrMRfPmzZto/SVJkobKIN8WDOCTwDWZ+f7GS+cBr6jDrwDObYw/JiK2ioi9gAXA5e1VWZIkaXhtPsA0hwDHAysi4oo67m3Ae4CzIuJVwE+AlwJk5lURcRZwNeWbhidl5rq2Ky5JkjSMxgxXmflNet9HBfC8PvOcCpw6iXpJkiTNSj6hXZIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJapHhSpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWmS4kiRJatGY4SoiPhURd0bEjxrj3hURt0bEFfXf4Y3XTomI6yJiVUQcOlUVlyRJGkaDtFx9Gjisx/gPZOaB9d8ygIjYFzgG2K/O89GI2KytykqSJA27McNVZv4PsHbA5R0FnJGZD2bmDcB1wEGTqJ8kSdKsMpl7rl4bEVfWbsPt6rhdgJsb09xSx20kIk6MiOURsXzNmjWTqIYkSdLwmGi4+hjwBOBAYDXwvjo+ekybvRaQmadl5qLMXDRv3rwJVkOSJGm4TChcZeYdmbkuM38DfIKRrr9bgN0ak+4K3Da5KkqSJM0eEwpXEbFz488XA51vEp4HHBMRW0XEXsAC4PLJVVGSJGn22HysCSLiP4FnAztExC3AO4FnR8SBlC6/G4HXAGTmVRFxFnA18BBwUmaum5KaS5IkDaExw1VmHttj9CdHmf5U4NTJVEqSJGm28gntkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktchwJUmS1CLDlSRJUosMV5IkSS0yXEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSiwxXkiRJLTJcSZIktWjzma6AJEmaXe4+8yzuWbp0yst5cIfnAHDT8R+b0nK2PfJItjv6Za0tz3AlSZqQs689m2XXL5u28latfRYAiy84bVrKO/zxh/PSvV86LWXNNvcsXcoDK1ey9cKFU1rOh376tSldPsADK1cCGK4kSTNv2fXLWLV2Fftsv8+0lPfkJ399WsoBWLV2FYDhahRbL1zIHp/9zExXY9JuOv6E1pdpuJIkTdg+2+/DksOWzHQ1Wrf4gsUzXQXNYt7QLkmS1CLDlSRJUovsFpQAli+BFefMdC3adfuV5f8lR8xsPdq2/0tgkV02koaXLVcSlGB1+4qZrkW75h9Q/s0lt6+YeyFY0pxjy5XUMX9/WHz+TNdCo5lrrXCS5qQxW64i4lMRcWdE/KgxbvuIuCgiflz/367x2ikRcV1ErIqIQ6eq4pIkScNokG7BTwOHdY17K3BxZi4ALq5/ExH7AscA+9V5PhoRm7VWW0mSpCE3ZrjKzP8B1naNPgo4vQ6fDryoMf6MzHwwM28ArgMOaqeqkiRJw2+iN7TvlJmrAer/O9bxuwA3N6a7pY6TJEnaJLT9bcHoMS57ThhxYkQsj4jla9asabkakiRJM2Oi4eqOiNgZoP5/Zx1/C7BbY7pdgdt6LSAzT8vMRZm5aN68eROshiRJ0nCZaLg6D3hFHX4FcG5j/DERsVVE7AUsAC6fXBUlSZJmjzGfcxUR/wk8G9ghIm4B3gm8BzgrIl4F/AR4KUBmXhURZwFXAw8BJ2XmuimquyRJ0tAZM1xl5rF9Xnpen+lPBU6dTKUkSZJmK3/+RpIkqUWGK0mSpBYZriRJklpkuJIkSWqR4UqSJKlFhitJkqQWGa4kSZJaZLiSJElqkeFKkiSpRYYrSZKkFhmuJEmSWjTmbwtqiCxfAivOmdi8t19Z/l9yxPjn3f8lsGjxxMqVJGkTY8vVbLLiHLh9xcTmnX9A+Tdet6+YeKCTJGkTZMvVbDN/f1h8/vSVN5GWLkmSNmG2XEmSJLXIcCVJktQiw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSi3zOlSRpVjn72rNZdv2yKS1j5dqVACy+YGp/neLwxx/OS/d+6ZSWoelny5UkaVZZdv0yVq1dNaVlLNx+IQu3XzilZaxau2rKQ6Jmhi1XkqRZZ5/t92HJYUtmuhqTMtWtYpo5tlxJkiS1yHAlSZLUIrsFJfW2fAmsOGema7Gh268s/w/bD4rv/xJYZBePpMKWK0m9rTgHbl8x07XY0PwDyr9hcvuK4QuhkmaULVeS+pu/Pyw+f6ZrMdyGrRVN0oyz5UqSJKlFhitJkqQW2S0oSRpI95PR+z3F3KeOa1Nny5UkaSDdT0bv9RRznzou2XIlSRqHsZ6M7lPHpdkarib7/J02npXjc20kSVIPs7NbcLLP35nss3J8ro0kSepjUi1XEXEjcC+wDngoMxdFxPbAmcCewI3AyzLz7slVs4eZfP6Oz7WRJGnWuPvMs7hn6dKerz2wsnwx46bjT+j5+rZHHsl2R79sXOW10XL1nMw8MDMX1b/fClycmQuAi+vfkiRJM+KepUvXh6huWy9cyNYLF/Z87YGVK/uGstFMxT1XRwHPrsOnA5cAb5mCciRJkgay9cKF7PHZz4xrnn6tWWOZbLhK4MsRkcDHM/M0YKfMXA2QmasjYsdJliFJ0qzQ/Syw0fR7Tlg/bT4/bLRuskGM1ZU2iIl0t80Wkw1Xh2TmbTVAXRQRvdvceoiIE4ETAXbfffdJVkNz2mS/HTqINr5BOgi/ZTq1pmNf6TZd+06T+9HQ6jwLbJ/t9xlz2u5nhI2m83yxtsJVp5usX3fYWCY6X0cnnBmuesjM2+r/d0bEF4CDgDsiYufaarUzcGefeU8DTgNYtGhRTqYemuM63w6dv//UlTGZb48OqvMNVy+KU2c69pVu07HvNLkfDb2xngU2EVPx/LCJdJO1ZTItXrPBhMNVRDwSeFhm3luHXwD8LXAe8ArgPfX/c9uoqDZxM/nt0Lb4LdPpMRf2ldG4H0lDbzItVzsBX4iIznL+IzMviIjvAmdFxKuAnwD+wJQkSdpkTDhcZeb1wJN6jL8LeN5kKiVJkjRbzc4ntEuSJA0pw5UkSVKLDFeSJEktMlxJkiS1yHAlSZLUIsOVJElSi6bih5s1G/X72ZCxftrDn+GQJGkDtlyp6PxsSLf5B/T/eY/bV0z/77hJkjTkbLnSiPH+bIg/wyFJ0kZsuZIkSWqR4UqSJKlFdguOpdeN3qPd5O0N3pIkbdKGM1z1++Zax1jfYIP2Qk7nRu/5+4+MG+0GbzBcSZI2aXefeRb3LF3a9/UHVq4E4KbjTxh1OdseeSTbHf2yVus2HYYzXPUKNE39wk1H2yFn0Bu9J3uD9zCFSkmSJuiepUt5YOVKtl64sOfr/cY3dQKY4apN4/3mWtNs/RbbsIVKjRgr+A5ikHA8FsPz3DKR/Woy+5H7j6bR1gsXssdnPzPh+cdq1RpmwxuuNlWbYqicDcYKvoMYKxyPxfA890xkv5rofuT+Iw2k2aXZ3X05aDel4Uoa1GSCbxsMz3PTdO1X7j+zytnXns2y65et/3vl2nKRX3zBSDg+/PGH89K9XzrtdZvrml2aze7L8XRTGq4kzaw2ulw72uh6bbIbbdp1h4peegWNfmZrAFl2/TJWrV3FPtvvA8DC7Te8R2nV2lUAs3LdZoNeXZrj6aY0XEmaWW10uXZMtuu1yW60GdEdKnrpDhr9zPYAss/2+7DksCU9XxskWG7q2ujemyjDlaSZN9Ndrr3YjTZjRgsV42EA2bS10b03UXMjXHV3K/TqGrB5X8NoPF1i4+3ycp+XNAv0eyZWv2dhjafVabLdexM1N8JVd7dCd9eAzfuTN+iT6r2gj894usTG0+XlPq9p1LxPqnk/1Gy930nTq98zsXo9C2u2PPtqboQrGL1bYa427w/SYgftBJ5BnlQ/0Qv6pv7w1KnoEpur+7yGUvM+qc79ULP9fidNr0GfiTVbnn01d8LVpmisFjtotwVjrBAw0Qu6D0+VhlqnZWq0Vqnu+6S830mbMsPVZDVbXbpbWEZrTWmrm22qAs908+Gp0tDqtEwNU6tUW49smOtdl+O9nwlm7+/5DZO5Ga6m8wb3ZqtLs4VlrNaUqexmk6SWNVumhqFVqo1HNgxDSJxq47mfCWbPPU3TqRNQO9vm7jPPGnOeuRmupvsG916tLoO0psyVVqfpMNp9WaPdkzWb78WSNKrJPrJhGELidBjPb/xN5J6mXq1jbXzTb1g0A+oDK1f2bAnsNjfDFWyaN7jPZaPdl9Xvnixb/sbHR5qoBb3uz4K51f02WpfkaF2RbWyDYdy+vVrHZvM3/XrpBNRBw+fcDVdNY100NtULxkTvF5sp470vyxA9Pj7SRC3ovj8Lhqv7rd9jIzoGCSmjdUn264psaxsM6/YdpHVstnzTrw2bRrga7aKxKV8wJnq/mOauTaXFd5CHt86mR4AM2foM8zcHez02omM8IWW8XZJtboNh3r6z3d1nnrXBvVUTbWXbNMIV9L9ozKULxkRM9H6xjtnW+jUou8gmZ9ifPD/Iw1vbfARIv+3R1v2C070+AxrkEQ4zoV8wMqQMp+n8jcDm/VT3LF1quNIMmautX7Oti2w6Hyg7iNnw5PnJPrx1PB9C+m2PNu8XnIb16Q5LZ1979qhBaTyPcBjWIDbXdd+M3utG9Jm+CX26fyOw3zcpx8NwNRf1a02aqgtr86S+vuwsZU9luVOtzS6y6W65mOoHyg7CJ89vaDzbY0jXsxmWVq1dxbLrl40ZfgZ9hMNYQaz7JvJ+N44PSyAbpL7DUNfum9G7g8VU3oTe/YiDm44/oW+QG+9vBPbq3htPeZM1POFqtO4lmPgFevmS3gGjU16/8DHW62Otx1SGmrHK6NWaNF0X1vVlj1Fu2wFw0Ieydky2nPF2gQ5Dy0W/C3Zbx0Lbx/B0vafDYKa6oSdwHHbC0ni60Ab9httoQaz7JvKF2y9kzf1r1i8T4L5f38fKtSs3CDVjBZip+l3EXvVtausm9LOvPXujej//B9mzG208waVjKm9C7w52bQa5Xt17U1let+EJV92B4N7VIwf7g/eU4RXnjP8Es+IcIMpymxessULAWK93X3CWL9l4ufeuhpu+OfG6j7ZOYwWY7gvtdH4Sbpbdr9y2A+BYD2W9dzX8Yk0Znuz+1Nz246n3TLVcDBzGJ3gsdPTrIh5tntEM8qDdySx/IqbqQ+BEuqHbqMs0fRBr6xtuvW7kXnv/2r4PEu3V+tUdRJoh6LEPfyx33X8Xy+9Yvn66Xi1ngz4GYbSb3tu6v2vZ9csIgn2232f9+h60dN1G3WhTESTG0xLUbEnqTAcbBrtBg9yg5fbq3ptIeRMxPOEKNr4o/+KnG55Y+51gugNOv+V2X7DGCgGd1ztlNLu5mhec21eUvztlN8vrrMNEbn4d7ZPkIAFm2HV3J3Zv40FaGPstr9ug+9N4691Zdi/jaRWY6ONCBtk+4w3jox0Lo61v93QbrNMEu4lHe0/7LR82LqOtlqG2A2TTeLuh2/pAOk0fxKbqG27jCTC9gkhzGZ2wtminRRt1e/b7luEwPAahV2tid2vUeIPEIAFmPC1BnZakzoM4J2M6W6AmasrCVUQcBnwI2Az4t8x8z7gXMshB32mZ6gxPxSfXXq1fzfoNcrGZ0M2vA3yS7NXt2f16rxa2XvpN269rdSzjmW+sFsZHzistT52WwM7r49H2RWQ83bPd9e++6HW3XHSmv/3KDS+UML5Wp17rPtp6j7U/DTLfRq2442gVGU8gHc+XKfq1DHVaNEfbxt16haBeHw465Q6yLv2MdfxO5APpWOVN8X2ag9wU32xhGuum+fGWMVa35miv9wpy3dONdWP+IF2kk13/QYwVngYNMFsvXMi2Rx65QTdkv2/yjfYgzl4tW6OFpcm2QI23vPF6WGtLaoiIzYB/Af4A2Bc4NiL2HXgBzRPV8iUbj1tyxMh4qCfXAb6VNBmdk9hky1m+pNT/9ivh1uXw7t3K373Waf2FLTfcFk3rQ0mjBa379fUX3xh5vdf27DdtvzJ6vU/jqVu3ftt4/v7wqJ3LsvZ4+sbr0dmevfaNfvrtT+NZXnN79VvHzjo16z/WtM3p5x8wMk+nm/mid2y8r3TmG23/7F63ibxn/bbb+g85seE8nbp178v9tmtnm8Lo23V9CMiy7F5ldJ87yPJ3Z/pe7wtsXF5nuy05ohyzP/n2yHHbvf7N+g6yLmPtb/2OyX4G3d799oXxHrMT0OwiDKLnk847LUz9Xj/72rNZfMFiVq5dycq1K1l8wWLOvvbscZUxHp2w0yyruw6d8ptlP/bhj2X5Hct5//L3r5+v+Xrz5v1mHXutf7/yJqoZnjZ77GP55Xe/y53vfe8Gv5vXCTCdLrxOcOr+bb1e3+Yb9GdimsvolNmctxOCHli5cqDf9JtseW2ZknAFHARcl5nXZ+avgDOAowaee8U55ZPkg/dseIF/8J5y0N/0zXYP+uZJZqqtOKfUf/4BsNmWZZ2g9zo1p21ui25jBb9er/fbnqMFnH7LGG/dJrq9+9Whs40663LROzZsnelVXr/1by4PRpY3Vp2A9ReysaZdfP7Y0zbDwAZBgNG3d/Mi3a2N/Wm043C0DznjeZ/IkXVubqvmtP3OEb3Wr1+dBy2vs1wox2yuK8O91r97u23wnsNG73u/7dLU7/0Y9L3utb1H2xfa+iA5ik4L0Gg/urzP9vv0fX3Z9ctYfsfy9QGlE2DGW8agll2/jPt+fd/6spZdv2yDOtz36/s2CEedsuc9fB7ABvM1X++0giW5wY35vdZ/tPLGctPxJ6wPKE2d8LTFvFLP39x7b8+Qcc/Spfzm3nvZeuFCfvnd7/acprOsZlfkeLv/Osto3ivVKbtf3TrlNFvMJlNeWyIz219oxEuAwzLz1fXv44GnZuZrG9OcCJxY/9wHWLXRgiRJkobPHpk5r9+LU3XPVfQYt0GKy8zTgNOmqHxJkqQZMVXdgrcAuzX+3hW4bYrKkiRJGhpTFa6+CyyIiL0iYkvgGOC8KSpLkiRpaExJt2BmPhQRrwUupDyK4VOZedVUlCVJkjRMpuSGdkmSpE3VVHULSpIkbZIMV5IkSS0yXEmSJLVoaH64uT5odH/gZmAesBR4EXBNZn52Ast7NeVJ8QDnZmafX0TdaL6PA+cCF2Z2HsU8PSLi7cB9wMHAIynfsjwZ+AHwVODnmfn+/ktovT6vBHYEDgB+DjwEfCsz2/sNAg2ViHgssBZ4NEBm/iwitsnM+5qv5xTdrBkRjwHWZea9A9RzXaeOddz6ek6i7PXL6yprbWZmRGwL3Nu9/v3GN5a7LjPv7VdG1/STWo+2Dfqe9JuP8qWmcc/fdn1msuxe87WxHoMso9f+S+P4rtNsk5n39dvX+83XXUa/5dbhjY6RrvJ6Tttnvk59H9NnPdaPH2W5PevcXUa/bTjWOXDGw1VE/CclPDwLWJCZe0fEl4BfZ+bbIuL8iNgZuB/YD/hv4JnAYcDHgZ0oz9F6NLA78Gng88BOmXliRLwV+PuI2BX4fGb+tJb70sw8uw5/ClhZy5gP3AW8LSIiM/+2TnM68CCwiPI0+UuBh2fmP9XX3wlcVuv2KOB84E3AwymB8QHgeuATwN/V8gJ4Wl3WIfXvG4GrgK2AN9fl3Q28G1gaEZvXabcALgFeVpf1/yhh8js9yvhd4Edd4zvL+DPgo/X1B4DnAhd0Xs/Mw+s23Luux44RcTTlNyN/H/hqne8I4OI6vAj4zzrNU+v4AO7PzI9ExCfrNrwfeD7wra73938BPwNu6pq/ez1Wdc33LkoI/Ebdbhc1y22819fU8QcBl1NC7A3Aa4BXUR54ewiwmpH97Y7M/FBjGSspIfhx9T1rvr9/W7fVJ4B/AH7Fhvtnc59dU+u7by3zy/X/+yiPL9m3bqOvAQcC29b6vrrW/Zl1G3271uE5lH3hsLr+bwH+lOIQYA/gY5Rj5CTKOeAs4A3AN4Gt6/I/Bfxx/Z3QByPiIeBL9fXjIuLiOt/b6zbfH1hOOVntSXn/n1nrf2dd1842ekrdtm9npPU8gM8C3wMeHxH7Af8BLANeSDmmfkLZz86h/JzWlsBZEXEC5Xg7JCLurtvwicCvMvNdEfE6yr5zOeX3Tr9OOe4eXdf5Acq+fHp5e+PZdV2PB35dl/fqiPgWZd95eURcVNf/Q3XcNcAB9QPSG+t79QbgVMrx/PiIeDhlf4qIeALwwbren6bs10+iHJP31Gkvq2X8O+UnxJYBf0I5Dx1IObdcWN/Xb7HxftN8H+7IzA9FxJmUY+uvgePq+0md/ktsfFwfRtk/nx4RPwZuB14KLOnx3jwL+K+67Q+hnNdeSDkWfh4RyzvbuLHO3fN1lr0r8Iv6+gLg79l4H+ks71DgBbWcvYAv1mUdTNknf0I5T36nDr8e+OQoZZxa179Zn2XAH1OOlyMjYnUtp7Os7m3RHN+Zr7kNO9vn8V3b5ZK6jt+m7Dfd9dkC+L89tkXneNkN+CkbH9PN/fc44N8o+2Hn2Dmu1u3rXdOeGBHf6DHfsbWOv6Gc177HyHkjuo7JHYHvs+Gx05zv+Ij4fI9pO2XvCexQG0zeDfxPnXarup7d5XXGN89fzeW+uOaO5rmuuU47U86zW3Wd95rbZQGl4aOvGQ9XwL9m5tcj4puUHR3KifeGOnwb8Jt6Ub4EOKSGrgMoJ5FPUcLZDZST7bnAscD+EfEOykVkuzrt1+tB8WXgDRGxFyMX2atrGU/OzMuAyyLiSxHx5jrN7wFPBs4GHlGnvTZi/cPojwM2r3X7GuUEdinlk9uDwNOBxZTA9CTKT/90AsNldZqbKSfzw+q4z1EuhNtTdqqvN6a9o26nZ9VxFwDPplzY39JVxgWUMNIseyvKJ8oTKAHhNkoY7NTnAeAHdf0fohwEW9ZtGbVuz651exPlhNwZ/hKlxetzwPOA91N2/IfVi8ZTKS2SH4mIw7vf31rWQZSTXWf+qMvtrMe+jWV05juPcoJ7f92GnfmuruVCuaj+WR2/lHKQn163wbG13A/XbbwDI/vbqnrQrt9fgBX13/21/M77u3/dxp3hZ1AOxC3ZeJ99BiUkfpZywexs+0fXbfjZxnb+LuWCegIlXGxR6/bl+vobKeHh9cCZlHB6bN3eH67LjVqHY4FnZubzovwU1aJan0spJ/Cv1ff9hZQT9LbALvX1hzLzb+p8T6TsM/9dt+GH6vbsbLev1rJeTzkGXkk5Rh9Rx59ECaBBudidzEhwei8lTB0C/HtmfiYiXljrcS/lfPFVSvi8jhJiFwBPycw3RsTKiPhl3cZ7ZebxEfEMygn0fmCbWuYbgcPrOgP8OeX4+nbj/XmAcsx8BTi2sf7zKWH2K8D/rttqT0poPpjyoeQtdZ2e3yjjzYx8+NmREjS+Qgl0y4GtM/M9tYx1jW3xO3W+H1LO3+9nw3PItowce59m4/13a0rAPpZy0X9urcOFjfmezcixfCTwmTpur8z804h4Ytd78x+ZeXpEHNfY9l+v8z0NuIJyPjyhbtf169xjvs6y/xV4XGa+KSKuqtukex/pLO+EOu3xEfHtxrKWNso4rDF86BhlPAP4WVd9jqjb6tWUY/qeeu45lN7b4tAe8zW3YWf7NNcjKPv0eykB4nbgC131+RHlnNPvePkkI/te85hu7r+vYGQ/7Bw7t1H2we59/RV95vuTegycCzyBEuy26LHcX1F6onZiw2OnOd/NfabtlL2yLvtgSnjtTLtjn/I645vnr+ZyX87IuaxZ5846fRD4bcq1vnnea26XvRnD0D+KISL26zwjKyL+Fvh6Zl4cEV+h7JxHUz6t/Yhy4vkWJZA8LTO/XOd7SmZ+v4atbShv5nMoJ89/pZxQvlnnOzgzL6rzPSkzf1iH303ZaXemXHS/V5dxFuWg2okS2h5BuYgsr8MHUw6skzPzTY31uKuu4m8ob9bBwK2ZeeEo2+JYysVjLeUTyg2Uk9dmlINiV+DHjXX6KmXn2JMSzB5NCSvfAd5B+eR1B6XlZ1mt766Ulpi3A4u7uwAbdci6vS+lhLzt67ZfQGmN2I6y4z6XcqJ4PKUFDsqO/m+Uk8ICSkvE0+p8l1GDKiUUfI7yfv0N5RP0OyjdxQdQ3q+DgN+ifEL/K8oBtSflU9/3KBeIS4F/rtMeR7noPAC8hBLW3khp5fmnuswrKRffxzFyQL0SeB3lIvR/KZ9OT6Ic0K+uZd9M2b9OppwYvkz51PnzWsfdgA/U8u6nnDx/Wd+Dt1E+CFwOvLW+d5dRgsenKfvZOXV7/ILS+nMZJWwdRHl/j6d8OlsB/BFln7gLuLW+B5+ntFJ+uW7DX2TmqfV9PZJywt68LuN36nu1ghLIl1IC9ObATzPzG3W+0+s0h1L2raSEpwMp+/VelH3gk5Su7l/U925dfY8uzcxP12UdSDnhXgjsnZnfr+N3z8yf1OFDKPvaY2pZv6ScHLegtND8mNJidU1EvJey/+9Xp726bvffplzozqDs73vU7f+rug3upHz6v5HSkrmaEqDupnza3ikzP1/r07ng7EEJRBdFxJOBmzJzbf1E/Yu6zXeo2yWAH2fmirqM/RvDL6BcQK7PzB/UcYszc0kd/iqlJffJtZ63Uc43l9T35khKIH8E8BfAaykfrj5W1//IWp/v1rq8kJFwdRkjrekXU/atrSnH0a2UD0GXR8QfZOaXan12y8yb6/BxwPczc2VjPVZS9tX/BvZsrOcTM/NHdfhY4Ad1vsMzc1nXcv8wM7/YYx/ZKzNXRMSTKL0I34mIP6J8UF4ZEc/PzK/U+Y7IemtIRLw4M7/QtV8dmZlL6/AzgDV1GYdl5gV1/F51Xa6itATeHRF/lJn/1WNbvCgz/7trvlspXXjfreFrm7pfNLfL72Tm9yJij8y8qUd9muvU3BYLMvMHtXGgs980j+nrG/vvOsqHgmDk2Hlu3S+6p30kpaVmjzrfTnW+NZn5jYjYmvJBYQXlA+OTGWmB25xyTH6vzrsHsGNmfr5rvq9SzrHPqMt4qKvs5wGXZ+ZVdbv9oE77NcpxTGM9OuOfVeuxgnK+aS73F5TjvnOue0qd9qeZ+T91272s1vl8Rs5711OuvXsAd+cYz+4chparsbw9In5AWfk/Be6LiEWUkLMv5U18YWYeXU88H6O8aVtSdlyAN9VlPJWRrscXNabdvmu+i+p8b22UfTzwkVrmgsxcHBFHUYLdWson6QWZ+daIeHFd3lLKjnUicERErGmsx0dqGX9JOYkFJWz0DVeUIPL+Ws/fpVwwVtT1/5O6/n9VX38UsHOtz4XAvnX4hXWeSyktQXtSwta8+vpFlJaN99bxo9XhsZSL9ZspQaXTsvOXlJaSqNMfS7mwPzwznxml2/cFjVaX+yifbLekHNRbUkLEt2uZW2TmI+t8h9b5LqLs5O+mHAC7Uw6qgykH0/n1fdmpDnemfSrlov+CWtZdlAvunpQL7K6UIPACykXmx5n5uoh4Wp32bZSL8+aUwLYf5f3ct9azOe0ptS6X1k+rF9VyOvU8iRJE7szMR9TX11FOmOdTgveOdZrnUFqFnkbpqjiX8uHor+s2/AHl5LIlpVXjuZT9eE/Khfb5mfm4ug2js+0j4teUDwebU5vb63v5RUpAfDglkH6E8rNWnwD+LiIOpgSb7eq2v4TyAeVXwDMy8/FRupN3zczN6vAz6356IWU/3xI4KiLmsWE37V8AB0VE52J/PyPHy6soF2wo3b2fi5Eu/nMawwC7ZOaxXeU9MzNfEBGn1Ho+t9btGEb2t+NqPTpl/Fds2J18PyN+WS/QP4mIT9b3/iFKy/lfUQJsJ4h9kBLKP1Hf/xV1Gf87Iq6hhKSkHJvHdq1/x02U/fcQSgvNX9T39HGNfW85Zf+9hhIS30YJ9g9Q9qujM/PvI+Irmbll3RZPpZwDXleXt1sdvpASCg8C1tZz2EP1HPfoOvyLOvxIYN+IaN4m8E5KqPgSpfvnV7UeR9YPyA/U7f2hiPgp8Ogotx38TUTcSPlQs02M3IpwCGW/PgFYHRH/TWmJuLee2/ah9Dr8PnBYRDylzpP1uvEJyrn4AODOiPgtyvnnkIjoLH8L4JKI+Edgizpt5zaBcykfPO+N0gX9qCito88E9o6Iy+v79fyI2LsOP6++p8fU9Xsl5Ri+mbLPnRwR11KOp5dE6cX5nYiYD1xLvXWghtA/joiPUM6nv133lzfV+T5c13NvNuwWPphyPji/1nM/Rm5FOaEO/y7lPHEB5bi/tFH3HzByu8O1dfw7I+KjlA9VF1I++P4z5dzW+RDXGf4XSoD6PPDC+uFjAeV43Ky+f2fVOh/XGO7cJvHC+v7cWeve6QL//fp+PINyfjyf8qHwL+p27QSsC+o26uxvzVtYTqKEps6+/HLqvl63+x9RwtijKcd1Z/g8SsjuazaEq3/NzK8DRMSdjU9wt1HuRfg9RroQL89yM9u7KC0SGywjNux6/G5j2oWjzdcsO0ofcGcZ/wrcQ2mZuIyRMNKpxwcpO+27KJ+y/qm5rB7DB4yxLX7YqOenKCfNfuvfeR1Kq8Z7uup8PuXT+HZdde+8/rPOp7pR6tDcbv3W7/46zZcoBwCUC0Snzh+kBNOfZeYH6qe0Zt1+w0grX3O+cygtYO+mtII9gdI6dHPXuO7hL+ZIt+9zM/OyKC0cX8/M33TG1df/GPhVlK6ZH3aPp3xq+maW7qrOtK/pmvb1lAtcs87Nel49xjo1p/k+5YTaPd9Et+H32bib+QFKa8+8WsZDlBPwkyj3pDW7ZP+5XswvonRH7kRpYfxljHTJ399j+It1PT5KCb2d7tuLgPc1hjvjr4nSrdtpVfkzRrqZHwH8VYx08TeHH9+jvGZ9mvXco6vs93WV0exObtanWd7BdZpldTufAPxFlPurmq+/uWt8Z9mPqu/V+0dZ/73rPvtvlIvBiZQL3ld67Hsb7cuUC8ulddoVdf3Pqe/7dV3LO5FyIX095YPiBZSL4XNqfU/uGn46G98m8FlK+D6W0k21ko1vI3g2I13Vf0S5/+oLlH23Oe5zlNa279T67kC5yN4APD0znxMRyxi5zeAZjOzfj6ScA99M+cBzYl2fR1C68w9k42Ohe3iH+l41y/sa5bh7W1fZh3cPU0LK5nW/6NThzZTAsLIeT0fV7fJDysX7Lka6pj/HyO0P3dulM/4T9T16HRt2CzfreUZjG25e96vvAL/fo+4vZORWjE49PxKlm/W8+j7uU+vzmEbdmsOPbgx3urVXUY6Hz1GuVTv2GO68J88DVmfpsjuj8T7tQOmh6l6/zm0SX6E0WHyADfe35nDnNormvjzIvr4jYxj6bkFJUycifpvaJU1pVTmY8uFhHrCQEqL+JSI+lJkn13lOzcy/rsPru1smWP4Cyv1OUFpC7+oxPD8zT6nT/w0l/D8OuKWe6P8uM/+mvt4cfk1mfnwS9WiW0Sm3uz7N8t6b5b6YZwEH1Pne3Zj2vZn5xjr87h7rtAMlBH5jlPUfeJ3aEBFPpVy4V1FakU6mtEyvoXSrNodPptynsoByn8ollAvZlZl5fv2g8c2u1xdQWsw+XMs7mrLv7QncUPe9zrgtKAHxq5T9dHfKttqG0nr/qq799AhKq8TBwPaZ+d46/kOZeXJE7ERpbbm0a7nNY6E53Ku8zwFLstyq0iz7zzPzY83hul9sU7dFv+PpjXW7HEYJ/O+ktOY8UNd/p8x8a9e2Wj++rtM7KLcr7AOcXevWrOdfU0LZwZT7hE+LckP8nrVuzbq/JTP/sUc9X5eZH47SMjgvMy+MiJMy81/q6/2GO/vAIsoHtmspPR731fVoDnfekz+n3DLzj1113x34Ro/1+zglZB5Oafi4s2t/aw53ukeb+/Ig+/ofjnUczoaWK0lTIEa+qRuUJv8Pdw0/HXhORGxD6Y64tb7+ioj4OSOtLhMOV7WsK+pws7u8OXx8lC6YoLSefYTSHbFFbVVaHBH31tebw0+jfKN4ovVoltEpt7s+zfKOidJ1cVxjvua0ndejzzr9IeWi8t1R1n8869SG11O2y6m1bsczcotE9/CfUAJh59aAh1HuiX15lBvD/5LSFdR8PYC/jHIPTvOWgudTtuE2bHibwRsorVBBudfxl4xs77ew4X7anO8vI6JTXmea4+o6Le9abq9joV95zwaujNLluEHZEfGoruHOfE+k//HU2S4vaWzv5nq8PCLW9li/zvjOOv2Ecn/d9bVuzXr+OeWLU526Paarbt11z171rO9ZZ77P1HGPbLzec7juA5163ki5L7CzHs3hznvyzFoGXXV/NaX1uXv9jqC02v9RLeMzdO1vXcPd+/Ig+/rYx2Fm+s9//tsE/wHPagwv7h6m3LNwQL/X6/ABU1mH6apbr3oMWMZE6zYj23ui78+Qbothfp9cp7m9LcY8Du0WlCRJatHDZroCkiRJc4nhSpIkqUWGK0mSpBYZriRJklpkuJIkSWrR/wfjPU874teh5QAAAABJRU5ErkJggg==\n", 164 | "text/plain": [ 165 | "
" 166 | ] 167 | }, 168 | "metadata": { 169 | "needs_background": "light" 170 | }, 171 | "output_type": "display_data" 172 | } 173 | ], 174 | "source": [ 175 | "import scipy.cluster.hierarchy as shc\n", 176 | "\n", 177 | "plt.figure(figsize=(10, 7))\n", 178 | "plt.title(\"Customer Dendograms\")\n", 179 | "dend = shc.dendrogram(shc.linkage(data, method='ward'))" 180 | ] 181 | }, 182 | { 183 | "cell_type": "code", 184 | "execution_count": 7, 185 | "metadata": {}, 186 | "outputs": [ 187 | { 188 | "data": { 189 | "text/plain": [ 190 | "array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,\n", 191 | " 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,\n", 192 | " 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 193 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 194 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 195 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2,\n", 196 | " 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2,\n", 197 | " 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,\n", 198 | " 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,\n", 199 | " 0, 2])" 200 | ] 201 | }, 202 | "execution_count": 7, 203 | "metadata": {}, 204 | "output_type": "execute_result" 205 | } 206 | ], 207 | "source": [ 208 | "from sklearn.cluster import AgglomerativeClustering\n", 209 | "\n", 210 | "cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')\n", 211 | "cluster.fit_predict(data)" 212 | ] 213 | }, 214 | { 215 | "cell_type": "code", 216 | "execution_count": 8, 217 | "metadata": {}, 218 | "outputs": [ 219 | { 220 | "data": { 221 | "text/plain": [ 222 | "" 223 | ] 224 | }, 225 | "execution_count": 8, 226 | "metadata": {}, 227 | "output_type": "execute_result" 228 | }, 229 | { 230 | "data": { 231 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGbCAYAAAAGO97oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB3CElEQVR4nO3dd3hc1Zn48e+5d5pGXZYs9y4bdwwCjOktIYTQElqAECCQSvpmQ5JNIdn8SLKbhN1NyBISAiGBUDYJJPReXeSCwTbGvXf1Nu2e3x9nbEuaK1sajeaOpPfzPHrkuTNz7zvH0uidU96jtNYIIYQQQoi+s7wOQAghhBBisJDESgghhBAiQySxEkIIIYTIEEmshBBCCCEyRBIrIYQQQogM8XkdAEB5ebmeMGGC12EIIYQQQhzV0qVL92utK9zuy4nEasKECdTU1HgdhhBCCCHEUSmltnR3nwwFCiGEEEJkiCRWQgghhBAZIomVEEIIIUSGSGIlhBBCCJEhklgJIYQQQmSIJFZCCCGEEBkiiZUQQgghRIZIYiWEEEIIkSGSWAkhhBBCZMhREyul1O+VUnuVUu92OFamlHpOKbUu+b20w323KaXWK6XWKqU+2F+BCyGEEELkmp70WP0BOL/LsW8CL2itq4AXkrdRSs0ArgJmJp/za6WUnbFohRBCCCFy2FETK631q0Btl8MXA/cl/30fcEmH4w9prSNa603AeuDEzIQqhBBCCJHb0t2EuVJrvQtAa71LKTU8eXw0sLDD47Ynj6VQSt0C3AIwbty4NMPIAq1h66uw4Z8QbYKSSTD9SijO4ZiFEEII4YlMT15XLse02wO11ndrrau11tUVFRUZDiOD1j0Oq/8Mrfsg3g77V8ObP4amHV5HJoQQQogck25itUcpNRIg+X1v8vh2YGyHx40BdqYfnscSEdjwJCSiXY5H4f3HvYlJCCGEEDkr3cTqceD65L+vB/7e4fhVSqmgUmoiUAUs7luIHmrdj3sTaWjY1LtzRZtg+1uwcxHE2jIRnRBCCCFyzFHnWCmlHgTOBMqVUtuB7wF3AA8rpW4CtgKXA2itVymlHgZWA3Hg81rrRD/F3v9CpdBd+PmVPT/P1lfh3QdAWZjRUgeO+yxUHpuBIIUQQgiRK46aWGmtr+7mrnO6efy/A//el6Byhj8Mo0+GHQvB6TAcaAeg6qKenaNlj0mqnFjn40vvgnP/EwIFmYtXCCGEEJ6SyutHM/s6GHc6WAFQNoTKYN6noayqZ8/fsRC0k3pcKdi9LLOxCiGEEMJT6ZZbGDosH8y6BmZcaSat+/JMUtRTiah7YqWd1EnxQoh+sYUDvMz7HKCFCgo4k2mMpfToTxS9FiHO66znXXagUBzLWBYwCR9SK1oMDdJj1VOWzwwN9iapAhgxD2y/+33D5/Q9LiHEEa1nL39iMVuopZkImzjAAyxkE/u9Dm3QcXC4lzdZyCYaaKeeNl5nPX9iMdq98o4Qg44kVv2tZDKMmg92MHlAmTlaUy6A/OFHfKoQou+eZjVxOvcax3B4ljUeRTR4rWUP9bSS6NDecRx20sA26jyMTIjskaHA/qYUzPkkjJ4POxeDZcPoBVA6yevIhBj0NJpaWlzv20dTlqMZ/HZQT5TUldQODjupZxxlHkQlRHZJYpUNSkH5dPMlhMgahSKEn3ZiKfeFCXgQ0eBWTB5+bGJdkisbiyLyPIpKiOySoUAhxKC2gEn4u0yc9mNzKpM9imjwms1orC47mynAj49p9KL2nxADmCRWQohB7RQmcxIT8GMf+jqFyZzABK9DG3RC+Lmek6mgABsLG4uRFHMDJ2PLnxsxRMhQoBDCU3tp4jXWsYsGKijkNKoYRXHGzq9QnM0xnE4VzUQoIJgTS/+jxFnIJlaxEx821YzjWMaiXPeyHzhGUMRnOYMm2rFQ5BM8+pOEGEQksRJCeGYH9dzPQuIk0EAtrWxgH1dxApMoz+i1fNiUEM7oOdOVwOH3vEktLYdWLD7NajZxgMuY53F0mVFIyOsQhPCE9M0KITzzDKuJJZOqg+I4PM27nsWUDavZRR2tncpAxEjwHrtltaIQA5wkVm60hobNsP89SES8jkaIQWsXDa7H99PSqRbSYLOZAykr58BM9N4u9Z6EGNBkKLCr5l2w+BcQaQRlma1nZl0LY0/1OjIhBp08/DST+uElgJ2yumwwKSKEjZWSPCoUBTKEJsSAJj1WHWkHFv4MWveZnqp4m/n+zh+hYavX0Qkx6JzsWgrB4gQmDPhJ3Ecyj7GuiWMAH5MzPLdMCJFdklh1VPu+Saa60nHY8mL24xFikJvPRKoZhw+LID58WMxmNGcx1evQ+lUReVxFNQUE8WPjw6KCQq7nZCx5WxZiQJOhwI6i7ltfoB0zNCiEyCiF4jxmcDpV1NFGMXnk0c2m5UfwPntYwhbaiTGDkRzPOAIZfHvTaNayhxq2ECXOLEZxHOP6VLZhIuV8hXPYTzM+bEpzZMWiEKJvJLHqqKwKnNQJpdgBqDw26+EIMVQE8TMijYQK4CXWspBNhyaD76GRFWzjU5yaMsyYrmdYzXK2dbrGSnZwAwv6VPhSoaigMCMxCiFyg/Q5dxQsgikfBrtDQTsrAPkjYPTJ3sUlhHDVQoQ32dhphV0ch3raWMn2jFyjnlaWsbXTNWI47KOZNezOyDWEEIOH9Fh1NfViKJ0Mm1+AWCuMPAHGnQ52ep+mB5xoC7TuhXA5BDL0SbqtDiINUDiyc9IqRB9tow6fy+q6GAnWsZfjGd/na2yl1nUifYwE69nLLEb1+RoHaTT7acZBM5zCQT2BX4jBShIrNxWzzNdQoh1Y9SBsfQUsHzgxGDUf5lxvbqcj1grL7oIDa8GyzTWmXgqTz89s7GLIChNAdyovamSybEEeAdf0xkJRkMHtWvbSxF+ooZkICrNC8DLmMYFhGbuGEKL/yVCgMDY8DdteNQlVvA2cOOxcDO89lv45l99tiqw6MYi3QyIK7/8Vdi/PXNxiSBtLqWvi40NRnYHeKoBJlLvO1bJQzGNcRq4RJ8F9vEUdrcRIECVBMxEeZAnNtGfkGkKI7JDEShibnjGJT0dOFLa8ZCrR91akEfavMqUqOkpEYcOT6ccpRAcKxXWcRBn5+LEJ4iOAzYeZzQiKMnING4vrmE8xeQSS1wgme5OGkZ+Ra7zPXtdK8w6alezIyDWEENkhQ4HCiLW6H09EzRCe6uXqqmhz8jnx1Psi7tuYiMFpB/UsYTMtRJnGcOYyNmOr9QDKyOdznMFemogQZxTFfSqD4GY4hXyRs9hDIzESjKKkT6sBu2omguMypJnAoVF6rHLWVmqpSZb5mM5IZjMq4z97YuCRxEoYxROhbl3q8YJRZn5Ub+UPN1sCdaUsKJ/R+/OJAWkpW3iG1Yc2GzZ/iLZyE6dkNLlSKCoz1EN1pGuMoLhfzj2OMtd5XH5sJsocq5z0Fht4mXWHVotuoZalbOGTnCzJ1RAnQ4HCmPlxs2LvUDKkTP2uWdemdz7LBzOvNuc4SNngy4Oqj/Q5XJH7osQ7JVVgVtLV0cJyZIuojkZQRBWVnZJNHxbDKaSKSg8jE25aifIi73cpwZFgH82sYpeHkYlcID1WwiiZAKd+F9b/Exo2Q+FomHIhFPdhcu7Y0yCvHDY8BW0HTE/V5AsgrzRTUYsctoN6bKxOiRWYGlCr2c2JTPQoMiOBQwNthAkQSrM4aSZdxjzeZjtL2UoChzmM5gTG98tm1GZ4UVNEXsbPPRQcqczHGnYxlzEeRSZygSRW4rDCUTDv5syes3y6+RJDThC/aykEgLDHicwSNvMia3HQOGhmMpILme3pEI5ZZTiWeYztt2vso4lHWUYtrSighDAfZV6/D6MONkF83ZT5MOU5xNAmQ4FCiH4xkiLyXeo8+bE5gQnZDyhpLbt5nveIECdGggQOq9nFP3nXs5iyIUqcP/AW+2gmgUMch/00cx8LibgtMhHdGkeZ616UPqyMlfkQA5ckVkKIfqFQXMOJncoU2FiczhQmUu5ZXK+xvtPcGDDb4Kxi56BOMN5jt2tJh4OJpeg5C8W1nEQhwUM/2z4szmU6oynxOjzhMRkKFEL0mzLy+SJnsZ162ogeKujppe7KFygUbUQJDtK3xUbaUxJKMPOCpKRD7w2nkC9zDtuoI0KcsZTmxFw94b3B+Q4ihMgZCsVYcmfBwkiKWcfelOMKKMrQNji5aDQl+LBTkqsAtvSypEmhGEeZ12GIHCNDgUKIIaW7XgUba1BvejyBYYygCF+Ht30fFhUUMtnDoVkhBhvpsRJCDAhtRLGxXCcN98YWDrgePzgkVjxISxAc3P7nLTbyNtvRwFzGcDKT+pxQajRtxPBjZ7TwqxADkSRWQoictp06HmcltbSggMlUcBFzCac5V6u7P/z6CPcNFj5sTqOK06jK2Dk3c4AnWEkjbQBMZQQfYbbMNxJDlgwFCiFyVgNtPMAi9tOMgyaBZj37eIBF3dbIOpoJ3WwRk4c/7WRtqDpAMw+yhDpaSST/f95nNw9R43VoQnhGEishRM6qYUtKiQAHzQFa2El6m3nvodH1eBtRooO43EJ/WMgm4l0mwyfQ7KSefTR5FJUQ3pKhwMFCa7OJ8u7lYPlhzMlQMNLrqITok/00k+imwnU9rd2uZmshwkq200A74yhjGpXYyc+R9ckhq64sLFqJ9nkO11BygBbXfkMbi3raqKAw6zEJ4TV5BxkMtIaVv4edSyARBaVg49Mw4yqYcLbX0QmRtnGUsYF9KfsNOmhGUOz6nO3U8QCLcNDEcVjONsrI5wZOJoCPURTzvku5BQtF4SAut9AfxlLKNupSehXjOLJNjhiyZChwMDjwXjKpigAatANODFY/BBH3YQ8hBoJ5jCWIr9OaNR8WVQxnGPkpj9doHmM5URKHkrEYCQ7QzEI2AXAW01ImqfuxOYOph3q1RM+cyAQC2J3+f/zYzGb0oK4JJsSRyLvIYHAoqepCWbBvcO9/Jga3EH5u4TTmMIY8/BQR4nSq+CjzXB9fRyutRFOOx3F4hx0AVFLEJzmZSZQTwk8FBVzEHOYzsV9fS7o02nUrGq8lcAgT4GZOZQYjycNPCXmcxVQuZLbX4QnhGRkKHAwsH2bWSdfZDgrU4F4+Lga/QkJczNwePdbG6na1oNXhc+RIirmWkzISX3+Jk+BZ1rCCbcRxGEERFzCLMR5XsX+fPTzDaupoJYiP+UzkMuYN6uKqQvSG9FgNBmMWmAnrKRwYPifr4QjhlWLyKHMZIvRjczxjPYgofY+y7FBSBbCbRv7IImpp8SymLRzgUZZRRysAEeK8yUae5z3PYhIi10hiNRiUTICqj5jkygqAHTTfj/sc+AdnFWkhunM5x5FPgAA2Piz82ExkGNWM9zq0HqunlY3sT5m0HyfBW2z0KCp4mfdTYoqRYAmbXTd4FmIokqHAwaLqQlNiYe9KsANQOQ/8Ya+jEiLrhlHAlzmHdeyliXbGUMrIblYQ5qpaWrGxUpIYDez1sD7UgW56yxSKZiKUkpn3HAfNOvaym0ZKyWM6Iwd9VXwxeEhiNZjkDYPxZ3kdhRCes7E4hhFeh5G2cvJTkiowJSFGeZgkVlJIMy4LZYBCghm5RoQY9/IW9bQSJUEAm2dZw40scB3mFSLXyFCgEELkmCLymMEIfF3eov3YzGeSR1HBmUzD7xLTKUzGl6EepZd4nwM0E00OLUZJ0EaUv/N2Rs4vRH+TxEoIIXLQxczlFCYTJoCNxUTKuZEFFOPdvMnRlHANJzGKYmwsighxHtM5jSkZu8YqdqZU29fADuqJyJZDYgCQoUAhhMhBFhZnMJUzmOp1KJ2Mo4xPcarXYQiRs6THSgghRM6YzeiUCvgK01sWlL4AMQBIYiWEECJnnMFUysknkJyzFcAmTIBLONbbwIToIUn/hRAC2EcTm9hPCD/HMIKAvD16IoiPmzmNDexjN42UkMd0RmRscrwYvBpp4332YqGYRiX5GVqp2lvyziGEGNI0mid5l7fZDpiSBk/yLtdwImMp8zi6oclCUcVwqhjudShigFjMpkM7ACgUT7OKjzCH2YzOeiwyFCiEGNLeZy8r2UEchzgOURJESfAQNTg5uPmxEKKzAzTzPO8d+h2OkSCOwxOs7LbuWn+SxEoIMaStYJvrdiwJHLZR50FEQojeWMUuHJfN1xXwHruzHo8MBQ5Uzbtg9cNQuxb8+TDpgzDhHFCyw7wQveFW4RzMcELXekpCiNyTwEG7/K5q8KTXWXqsBqLW/fD67bD3bYi3Qdt+eO8RWP2Q15EJMeDMYbTrPnQazThKPYhICNEb0xmRUqLjoKlUZjkaSawGpg1PQSIGHTP0RBS2vATRZs/CEmIgmskoJjDsUHJlY+HD4lLmyUo0IQaAERRzAhMObbekAB8WZzKVkgxtDN4bQ2MosHk31K2HUCmUTwc1wPPJuvWgU+eEYPnMEGFZVfrnrt8MTduhYASUTJahRTHoWSiuoppNHGADe8kjwGxGe7p1jBCid85jOrMYxWp2YaGYySiGU+hJLIM7sdIOrPgd7FqSTKYU+MOw4JsQrvA6uvQVjITGbdB1TNmJQ155eudMRGDRz6FhS4frjID53zBtJsQgplBMopxJpPn7I4Tw3EiKGUmx12EM8qHAba/D7hpwYiZxSLRDex3U/I/XkfXNlAvA9nc+Zvlh+GzIS3NOyJpHoX5jsp2SX4074N0H+h6vEEIIMUQM7sRqy4tm7lEn2gyXte73JKSMKBoH1bea3illm6Rq1Ekw79Ppn3P7G6bHqyMdh51LTM+fEEIIIY5qcA8FxrsmVUnKMr1YA1nFLDj7pxBrBTuQ2oPVW12TqoPc5nIJIYQQwlWfeqyUUl9RSq1SSr2rlHpQKRVSSpUppZ5TSq1LfvduvfKoE0xvTle+EORnfwlmxikFgfy+J1VgErWUSf3KTIQf6JP9hRBCiCxJ+y+mUmo08EWgWms9C7CBq4BvAi9orauAF5K3vTH5fAiXg53ciFHZpndn3i2SLHQ18+Om0KgdMLctP/jyYM4nPQ1LCCGEGEj6OhToA/KUUjEgDOwEbgPOTN5/H/Ay8K99vE56fHlw2g9g12LYt8rMSRp3ukm2+qppB7TsgYJRZvXcQBcuh7PugG1vQMMmKBxj2ipQ4HVkQgghkjSa7dTTSoTRlFBAyOuQRBdpJ1Za6x1Kqf8AtgJtwLNa62eVUpVa613Jx+xSSrluT66UugW4BWDcuHHphnF0th/GnGK+MiEegZr/gtr1YNlmblL5DDj+85kZkvOSPwyTzvM6CiGEEC7qaeWPLKKFCApFHIf5TORspqGQmoO5oi9DgaXAxcBEYBSQr5S6tqfP11rfrbWu1lpXV1QMoJpSqx+C2vfBiZrtZJwY7F8Na//P68iEEEIMYg9RQz2tREkQIU4Ch8VsZi17vA5NdNCXiUbnApu01vu01jHg/4AFwB6l1EiA5Pe9fQ8zR2jtXpbAicHWV72JSQghxKB3gBbqaEnZajhGgkVs8iQm4a4vc6y2AvOVUmHMUOA5QA3QAlwP3JH8/ve+Bpk7dPdlCVLqZQkhclU9rbzGerZSSwlhTmUy4xnmdVhCdCtCHIUFpNYVbKebv0vCE32ZY7VIKfUosAyIA8uBu4EC4GGl1E2Y5OvyTASaE5QFpZOgbkPqfeXTsh+PEKLXamnht7xOlDga0xOwlQNcyBxmM9rr8IRwVUmh6ywqHxbTGQQLqAaRPtUc0Fp/T2t9jNZ6ltb6Oq11RGt9QGt9jta6Kvm9NlPB5oTZ15s6WFYyJ7V8ZvXhzGu8jUsI0SMv8z5REp2GVGI4PM0qnJSBFiFyg43FhczGh3VoorofmyLyOIkJ3gYnOhnclde7k4hC/SaTIBWNM4U2e6poLJzxY1j/D3OOsikw+cMQ8n7jRyEGilpaaKCNSooIE8jqtTdzAO2SQMVxaKSNEmTTcZGbZjKKcgpYwhYaaaOK4cxlDIEh+qc8Vw29/43tb8I795tkSmsIFsGJX4GCkT17fiIGq/4Me982vVVN2yDaDHNvPNyLJYRwFSHGX1jKduqwsUjgUM14zmN61paLFxCkmUjKcQdNHgO8ZIoY9Cop4kJmex2GOIKhVX68cRusvA8SEYi3m++t+2Dhz3q+0fCaR0xS5cSS5RbisKsG1j3Rv7ELMQj8nbfZRi1xHCLEieOwlK0sZ1vWYjiVKfixOx2zsTiGSoKSWAkh+mhoJVZbXgLtsnoi3gYH3j/687WGba+mbuDsxGDzC5mJUYhBKkKcdezrMrvJLBdfyMasxTGDkZyeTK4C+LCxmEIFH2FO1mIQQgxeQ2vsKtLg3jOVSMC7D0CwEMaeCqNP7mYvQW16udzE2zMaqhCDTZR4t4N9bcS6uad/zGUMzUTYyH6Gkc9pVMk8FSFERgytd5LKY82egV2TIx2D5h3QjJmQvmspVN+aOqldWVA8ARo2p567dEr/xCzEIFFAkDwCNNH5Q4gCJpG93RcaaONuXiNKggQO+2lmPfv4KMcxjcqsxSGEGJyG1lDgqPmQXwnWEVYhJSJmi5q69e73z7oO7CCHmk7ZYIdg1sczHq4Qg4lCcSGz8WMf6rmyUYTwcxZTsxbHy7xPOzESyUKLGrMi8J+847paUAghemNo9VjZfjjl27D1Fdi5BKJN0LIHur6ZJqJwYA2UVaWeo3QSnPZ92PgMNG41PViTz4fwANrvsL+17jPz1gpGm42qhUiqYjg3sICFbOQALYxnGPOZQByHd9jBKIoZRkG/xrCRfa7pUzsxGvq53EKcBPtoJkyAYvJS7tdoDtCCg6aCAtlYV4gBaGglVgB2ACaeZ762vAyrH0zdjsb2Q6Cw+3MUjIA51/drmANS2wFY8t/QvNP05Fm2KUMx4jivIxM5ZARFXMKxADg43MMb7Kbx0P1lhLmF0/ptzpMZjkydK6mBUD+uClzONp5hNaBx0IyihCs4/lAdr3008ReWHhoqDeLjoxzHeMr6LSYhROYNraHArkaeAK6fCFXyPtFjWsNbPzV1vZwYJNoh1gLL/headngdnchRD1HTKakCqKWV+1nYb9c8mUmu5RYmU9FvidUWanmaVUSJEyVBHIft1PEXagDTk3Ufb1FLCzESxEjQTIQ/s9i15pYQIncN7cQqkA8nfhUCBaYKux0y/z7xK+a76Lm69e6rLp04bH7Rm5hEztvAPtfjO2nAcdlsNhPmMJoTGI+NRRAfPizGUsIlzO2X6wEsZCMxEp2OOWh20UAtLbzPXuIur1ejWcn2fotLCJF5Q28osKthU+G8O81qQICSid2UWhBHFGnoZmsgxwwRCuHiSFPF4zgEMvTZr5E2lrCF3TQwihJOYiILmMxemigiRBn5GbnOka7vxsaimQjNRFz3KTTb7EgpF5FdO6lnCVtoIcI0KpnDmJReXtE9SazAJFKlk72OYmArnQxOIvW4HYDhUnhRuAtgEyX158ZGZWyO1R4auZe3SJAggWYztSxmMzeygAkMy8g1jmYyFeylKaU4agKHSooIdFgp2VEAm4lZilEIMHMBn+JdEslUfwu1LGELN3GKJFc9JF0zIjNCpTD+LJNIHWT5IVgCY07xLCyR2z7ETNfjZzMtY9f4J+8SJX4oqUkkt9MxE8mz4yQmktclffJjcyZTCeJjBMVMYXinP1w+LMopoIrhWYtTDG1R4jzNKuId+k9jJKijheVs9TS2gUR6rLwUaTQTvUNlZhgt2gLxVsgblrnhyPYG0AmT+LgO1R2Fk4D2WvDng/8oy9BnXAUlk2Dz8xBrhZHVMOmD4AumF7sY9OYylhB+nmY1TbSTT4Bzmc5sRnd6nEbTQBt+bPLp+c+TRrODOtf7NrGfOloJEyDYz2+F+QT5NKfxJhtYxz4KCDKfiUztUJD0oxzHCraxlK0kcJJzwSZgyedfkSU7acBy6TuN4bCaXZzIRA+iGngksfJC2wFY9ptkBXdlSjuEK6B+g0mo7IApRDrqxPSv0bIXlv06uSJPQV4ZzPsMlEzo+Tm2vWHKUTgxMyl9xPEw94ZkgVQXSsHok8yXED00jRFMY0S3929iP3/nbVqJooExlPBR5lFAqEfnt7G6mRgOv+FVHDSzGMWHmYWvH4c68glyHjM4r5v7LRTHMY7jGNdvMQhxJEF8rnP9wJQpET0jH4WyTTvw5k+gfqNZMefETI9Q7VpzOxGFaDO8/bvuq78fjROHN38MDVsPX6NlDyz8qTl3T+xfDe/eb0omJKLmPLuXwfJ70otJiDTU0cpD1NBIO3EcEjhspZb7WdSjKukKxVzG4OvmrS6W3NZmFTv5J+9mOnwhBpQRFFHg0iPsx+YEJmQ/oAFKEqtsO/Ceqfjuthl0R4korH8yvWvseRviEVLWXDkJ2P5mz86x/p+phVOdGOxdYYYwhciCGjYf2nrmII1ZZbed+h6d4wPMYBxl+JLlFdzEk8lVhHgfIxZi4FIoPs6JFCdnBB4sR3IaU5hEudfhDRgyFNgTrfvNNjhtB6B8Bow6yVRnT0dbLUdeZN7luulorzXzqrpyotDWw3N2d23lM4lVsCi92ITohVpaXYcmHDQvs5ZSwsxiNOMp63b7Fz8213IS+2nmAM08wTu0Ek15nELRRrTf51sJkcuGkc8XOYtt1NFGjLGUHtodQPSMvIMczf41sOSXprdHJ8xw2Pp/wqn/dvTJ3G5KJpoq5UejbChPc2VUyST3ye92EEpd9j90M2xaMrnq2rOmIV9WKYnsmMgwNrKPWJefwzgOmzjAJg7wDjs5ljF8iFlHPFc5BZRTwEp28B67U9I1G0VRD+dtCTGYKRTjZCultMlQ4JFoB5bfbYbEDvYAJSKm12fD0+mds3A0VM4Bq+MngK6ftJVZSTfpgvSuUTIJSqd0voblg3A5jJjXs3NUfcTE0DFBswMw9ZLOJRWE6EdzGUseAdeVSgfFSLCcbSlb43TnTKbi71I3yo/NuRwjK/CEEH2mdE96T/pZdXW1rqmp8TqMVM274LUfmGSqq/xKOOuO9M7rJGDzC2YTaCcKlcdD4SjY8qKZf1U+wyQw4T6MaTtx2PgsbH3VJIWj58OUC8CX1/NztOyBtX8zE+uDxTDlw6aEghD9TKNpJ0YAHxHivMo63mM3cRzakqsDO1KYhOk0etYju48mXuZ9tlNPESFOY0qn0gdCCHEkSqmlWmvXP4gyFHgkdqD7SebdlRzoCcuGSR8wXx2NPyP9c6Zcw2cSqSlp9nqBSR6P+3TmYhKiB95jN0+zihYih1b1fZAZnM9MFrOZ51mTUj7BwupVVegKCrmc4zMduhBCSL/3EeUNMz1JXYch7ACMP9uTkIQYzLZRy19ZQSPtJNDEcXib7TzBOwDM6KbelQJmMCqLkQohhDtJrI7m+C+Y4pq+kOmlsvwwohrGneZ1ZEIMOq+xnliXvQPjOKxhF61EKSDEJRyLD4sANgFsfFhcxFyZeC6EyAkyFHg04XI4+6dmdWCkHkomQ0H3VaKFEOmrpcX1uI1FE+2ECTCDkUymnPXsA8wGxyHSLH8ihBAZJolVTygLKtw3ixVCZM5oSqmjLaWqegKHUg6XNwniZ6YM/QkhcpAMBQohcsZpTMHf5W3Jj80CJhGQz4FCiAFAEishRM4op4AbOYUpVBDERxlhzmcGZzDV69A8o9Hdbow72Dk4PdoTUohcIh8BhRA5ZTiFfJwTvQ7Dc3ESPMcalrONOA4jKeICZjOaEq9D63dr2MVzrKGeNvLwcypTmM/EbrctEiKXSI+VEELkoMdYfiipAthFI/ezsNsJ/oPFevbyN1ZQTxsAbcR4mfd5gw0eRyZEz0hiJYQQOaaeVjawL6UQagKHhWzyKKrseIm1KXtDxkjwBhtwUvYuFSL3yFCgEELkmFpasbFSEisHzZ4e7omYy9qJsZpdtBBhHGWMo+zQMF8tra7PiePQTpwwslepyG2SWAkhRI4pJz8lqQKwUIyk2IOIMmcH9fyRRWg0cRL4sBlHGVdRjY1FOQXsoD7leX4sqVcmBgQZChRCiBxTRB7TGYGvy1u0D4v5TPQoqr7TaB5mKVHixEigMcN8W6llBdsAOJtpKa/bj80ZTMWSyetiAJDESgghctDFzOVkJpGHHxvFBIZxI6dQ0qFQ6kCzlybaiaUcj5FgOdsBmEg5V1LNcAqxUBQT4kPM5KQBnFCKoUWGAoUQIgfZWJzFNM5imtehZN1kKphMhddhCJEW6bESQgiRFcMpdJ0n5cfmWMZ4EJEQmSeJlRBCiKxQKC7nOAL48GMDJqkaRxnzGOtxdEJkhgwFZoLWUL8R6jdBXhkMnwOWNK0QQnQ1hlK+zNmsZhfNRBjfpdyCEAOd/PXvKycOi38JdetAO6B84AvBKd+GcLnX0QkhRM4J4ec4xnkdhhD9QoYC+2rDU1D7PiSiJslKtEOkAZbd5XVkQgghhMgySaz6attr4HRdPqyhcStEBn6FZCGEEEL0nCRWfeUkurlDge7uvqHrmX1RTni9jtJnDzD/zXpe3B/1OiQhhBAiYySx6qvRJ7pPVA+XQ6g0+/HksL/ujnDp0kZqGhPUxzWL6uNcWNPIM/skuRJCCDE4SGLVV1MugvBwsIPmthUAXx7M+7S3ceWgr69poa3L9mdtjjkuhBBCDAayKrCv/Hlw+g9g9zKoXQfhChizAAIFXkeWUxyt2dg1q0p6r0WGTIUQQgwOklhlguWDUSeaL+HKUopyv2J/TKfcNzIoHadCCCEGB/mLJrLmtsl5hO3Ox8I2/NuUPG8CEkIIITJMeqxE1nxlYh4RB/7fxjaijibPUnx3Sh6fGhvyOjQhhBAiIySxElmjlOK2KWH+ZVIe9XFNqV9hK9nGQgiABA6L2MQytuHgMItRnMIUgvI2LcSAIr+xIut8lqI8IAmVEB09RA1bOEAcs8jjLTbxPnu5mVOxZdaGEAOG/LYKIYTHdlDPVmoPJVVgerDqaWUtezyMTAjRW5JYCSGEx3ZQjyZ1xWyUBFup9SAiIUS6JLESQgiPFRHCInV43IdFCbJqVoiBRBIrIYTwWBXDCeBLSa0sLOYwxpOYhBDpkcRKCCE8ZmNxAwsYQTE2Fj4sygjzCU4iTMDr8IQQvSCrAgeqSCNseAr2roRgMUw+H4bP8Tqqo3q7Mc6P17fyTlOCecU+vj05jxmF8mMoRClhbuZUmmjHQVNECOUyPCiEyG3yF20gijTCq9+FWAs4cWjeCfUbYOqlJsHKUa/WxvjQkgbaE+AAa1sS/G1PhJdOKubEEr/X4QmREwqRgrlCDGQyFDgQbXoWosmk6qBEFN7/K8TbvYvrKL6wqpnWZFIF5ntrAr60usXLsIQQQoiMkcRqINr7Luh46nFlQ+O27MfTA47WvNuUcL1vaYPLa+kg7mgW1sWoqY/haI3WmuUNcd6sixF1UpeoD2Y72hO8ciDGrnbn6A8WQgiRdX0aClRKlQD3ALMADdwIrAX+AkwANgNXaK3r+nId0UVeKTRuST3uxM18qxykgEKfojGemgiV+LufR/LcvihXrWgi7pgqP0HLVG5vjmssZc5835wCLhkR7K/Qc0LU0Vy3oonH90YJWoqIo7liZJDfzS7AZ8k8HCGEyBV97bG6E3haa30MMBdYA3wTeEFrXQW8kLwtMmnS+WB3WSmkbCieAPnDPQnpaJRSfH5ciHCXn7iwBV+Z4F6nZ1e7wyXLGqmNaRoT0JSA/THYHdE0J6AxDo1xzcdXNLG+xb03bLD41toWntgbpd2Bhrim3YFHdkW4fX2r16EJIYToIO3ESilVBJwO/A5Aax3VWtcDFwP3JR92H3BJ30IUKYZNg5nXgB0CXwgsP5ROhhNu9TqyI7p9apirRwUJWVDkU4QsuGFsiH+d7J5Y/WlnO4kejPTFNfx2W+7OLesrrTW/2dpOW5fRvzYHfr1l8L5uIYQYiPoyFDgJ2Afcq5SaCywFvgRUaq13AWitdymlXLtQlFK3ALcAjBs3rg9hDFHjTofRJ5sVgYECyBvmdURH5bMU98wp5CfH5LO5zWFS2KLU331uvzfiEOnBVKKYhj09eWBSQ8zh11va+cfeKKNCFjePCXLfjgj/3BfFrxQ3jwvyo6owlpUbUxA1ZpK/G7eh1W7PozVP7I3ym63ttMQ1V40KcuOYEEG7+6HEHe0JfrmpnTfqYhxTYPO1iXnMlPIYQgjRLaV1epN/lVLVwELgFK31IqXUnUAjcKvWuqTD4+q01qVHOld1dbWuqalJKw4xeD27L8pHlzXSfJRRvnwbfje7kCtHHX2eVX3M4djX69kTcTjS/O9jC22Wn3bEH9usqn69jqWNqQ1xeqmPV04u6dE5vra6mf/d1s7BUdOwBXOKfLw6vxi/yzyt9S0JTnijntaEJqrBVmaO2xPHF3F2uRStFEIMXUqppVrrarf7+vKRfDuwXWu9KHn7UeA4YI9SamTywiOBvX24hhjCzi33c3KJn3z78DEf4OuQA4QtmFng47IRPftD/1+b246aVAGsaErw8oFo74PuJ7+aVUC+DQebwqegwIY7Zxb06Plb2hL8euvhpAqg1YF3m+L8bY/76/zX91pojJukCiChTc/ZLe82k+4HMiGEGOzSTqy01ruBbUqpaclD5wCrgceB65PHrgf+3qcIxZBlKcU/TyjizhkFnF7q4+xhfu6bW8Bf5hXygXI/C0p9/PSYfF7ppsfFzcEJ4D1x3/ZIH6LPjN0Rh7cb48wp9LHslFJuHBvkhGIfN48N8vZppRxb1LNhuVcOxDolpAc1J+Afe90Tq5cOxHBrqm1tDvW9GII0z0mwsjFObIiVxxBCDD19nSxxK/AnpVQA2AjcgEnWHlZK3QRsBS7v4zXEEOa3FDeNDXHT2M7VqC9Ls7xCRcACeraCcFTIuzlWTXGHjy9v4rkDMQJKodH8+7R87p5dmNb5hgUs3HJPv4LKoPvrLPYr6lwSKKUgr4eJ7J6Iw8eWNVLTEMevwFaKX8/K5+pRUl1cCDE49Smx0lqvANzGGM/py3mF6C9fmZDHK7WxbieDH6SA27pZrZgN164wSVXEgQgmubltbQuT8mwurOz9/KYPlPsJWgronCj5FNw81j3J+fKEEN9a20prh26roAWXjwgSOsKE944uWNLAyqYEcQ1m/aLmUyubmRK2OUG2MRJCDEK5sexJiCw5ryLA7VVh8iwo9inCNgzr8vHCBh46tpACnze/HvsiDs/sj6WsiGxNwE82ple3ym8pXjixmLEhiwLblLsotBX3zy2gquMktg5unZDHJ0ab8hjFPghZcGaZn7tm9Wxe16qmOO+1mKSqo3YH7twsZSKEEIOTrJsWQ87XJoW5eWyIpY1xKgIWswp9NMYc7t8RodCGa0YH8WW41ELM0fxlV4RHdkUp8Ss+PS7EglL3Hpv9MYeAArcZXjv6sJXN7CIfm88qZVlDnFYHTiz2HbHnyVKKu2YX8v2p+axujjM+z2ZSuHMSltCax3ZHeWhnhLCtuGlskLOGmR61XREHt6L6DmYyvRBCDEaSWIkhqchvHUoADt7+QjcV4Psq5mjOWdTAssY4LQkzzPjorgg/qArz9cnhlMdPDttYymXYDrNSsi8spaju5RBcZdCiMpg6/OhozYU1jbxWGzu02vCveyJ8dUIeP5yWz3FFPtc6ZCELzq+Qcg1CiMFJhgKF6GeP7IocSqogWfDTge+sa2V/NDXzCFiK/zgmTMfOIb+CQr/iO1NSEzGvPLk31impAjNc+R+b2tjWlqAsYPHNyXmdymUEFAzzW3xuvExeF0IMTpJYiSEh6mg2tyZo6WWZgI7qYg5b2xI4vazh9Nc9Udy2MgwqUwbBzafG5fH344s4d5ifafkWN40N8vapJYzLc58P1Rv7ow7b2xJ9rkX1xN6I6+uyFTy/37yu71Xlc//cQk4p9XFMvs2XJuax4rSSI1bcF0KIgUyGAsWg94uNrXxvXRsOGkfDTWND/GJ6Pr4elgyoizlct6KJ5w/EsIBSv+K3swu5YHjPhrPK/AoLUmtCKUWRW3GppHPLA5ybwQrnO9oTXLW8iSUNcRQwOmRx/9zCbud6HU2J38LGpXiFptPrumxEMO3yGEIIMdDIx0YxqP1pRzvfWddKU0LTkjAbF/9+WzvfXNvS43N8pKaR55Kr9Noc2BnRXL68kZWN8R49/+axIdxKYgUtOGtYdkoOOFpzxsIG3qqPE3HMyrwNrQ4fWNzAjvb0JpJfONzvWhGs1YEPVkgpBSHE0CSJlRjUfrS+NaVmVasDd21t71EV8Pea4yxviB/a1uWgiAO/3NzWoxiqS/z87Jh8QtbhMgfDA4pnTyzuca9ZX718IMbeiEOiy+uIa7hnW3qlD16tjbuu+suz4M26niWdQggx2MhQoPBUa0Lz4M4IrxyIMSXf4lNjQ4wK9X0e0UE7I+7JU9yBprimLOCe2Cypj3HfjnY2tjool4cktNmkuKc+Mz5Emd/inu1tlPoU364KH3U7mm1tCX67tZ0t7Q5nD/Nz5cjOhTl703Zb2x3X7WkiDqxvSa+Ew4bWBDG35lWwrQ9lIYQQYiCTxEp4pjbqcMKb9eyJOLQkzNDYzza28eyJxZyc5ryfrmYXWrxRl5oAFfnMXCk3t69r5ScbW2lPuMyLSgomi2X2REJrLqpp5NXaGM0JU4D0n/sa+OWMfG4Z517i4eUDUS6saSTmQFTDY7sj3LGhjUULiinyW65t99ONbTzXTdudWOzDZQEiNnB6WXpvA6eX+Xl4l8sEdm2uJ4QQQ5EMBQrP/HB9K9vbnEN/mCOO2RT4E2839XnF2kFl3aw+y/dZKJeuqM2tCf7fBjN82F1S5cMM6d3aw7pXf9sd5ZVkUgVmsnebA19a3UJ9LPUqWmuuXdFMS4JDQ5AtCdjUluBnG83wo1vbtSTgum7arjxgpQwDgnmN5Wmu0LtqZJCRQYuOnX5hC84r9zO7h5tDCyHEYCOJlfDMo7ujKXOXALa3O+x0qyzZQVtC0xQ/+nDTG93M9dnZ7tDgktQ8tS9Kd7OehvkVo4MWnxwbZPmpJVR0s3lxV669OkDAghddyi2sb3Woc3ltEQf+ssvUY3+sm7bb0e64Vmd/bn+UPJdwNfD3vRHqY06vk9mQrVh8Sgm3TggxNmRRFba4fWqYR44r6tV5hBBiMJGPlcIzbn/owfyxD3YzqXtfxOGmd5p4ep9JSGYV2vx+TmG385WOlPv4Xa6RZyvcLu1T8IXxIb4/Nb/7E3Yj36dIraMOWkPYZUuZkAXdzas/+PgjtZ3bNjXdvS6AB3ZG+fPOWsaELO6aVcAHe1EVvdRv8R/TC/iP6T1+ihBCDGrSYyU885lxIcJdfgJtZebnlAdSfzS11py1qIGn98WIaYhpWN6Y4IyFDeztpofLrdSBT8EHyv2uSc3FlYGUBAhM5fNrRqdXLfzCCvdztibgLJf5TWPzbGYU2Cm/nGELPjvOxPDpbtruhG7azmwh455ZJZJtuanN4bJljSxrkBV9QgiRLkmshGe+OCGP8ysChC3It6HQhvF5Fn8+ttD18a/XxdnSlroSLerobksGfGtymDPK/IRtc40CG6bm29w7x/0apX6LR+YVHYqnwDY9SHfOyKcqP73Viksb466/aH4L3mlyX1n46HFFjAlZFNqKfNv0UF06IsjNycTqYNvldWm7B7tpu7CteLy6kEJbUWiTkpQd1JaAOza0pvMyhRBCIEOBwkM+S/HY8UWsaoqzpCHO2JDFWcP8yQ2IU23oWpAqqd2B97opfRC0FU+fWMyKxjgrGuNMCtucVupznbh+0AXDA+w+ZxhP7YsSdTTnVwQY5tIL1FOrmxOuE+EDyvQSVZek3jcxbLPxrFJe3B9jR8RhfomPYwoO/7r2tu0AzhwWYPe5ZTy1N8o7TXF+vqmdpi4z2jWwthdlJIQQQnQmiZXw3MxCHzMLj/6jeGyRzzVBybdh/lGW9x9b5Dtq3aiOCnyKy0dmZhuW+cU2T+xJ3fqlLQFzCrvvBbOV4ryjzHfqadsdFLYVHx0Z5OxyPz/ZmFrg1AfML5G3BSGESJcMBYoB49giH6eW+jtN3PYpKPZZXDcmd/eiGxe2Xbd+cYBRbnvdZEGp3+Lz40OEO+R1Csiz4V8nhz2JSQghBgNJrMSA4GiN1prHjy/i6xPzGBlUlPoU14wKUnNKCYW+3v8oHzxnf3t8T9T1eL4NL+xPLbfQVz19XT87Jp+fTstnQp5FkU9xQYWfRaeUMCmcucr3Qggx1Eifv8hpW9sSfPbdZp7ZH8MCLqkM8KuZBdw+rfdlDw56qy7G51c1s6IxQb4Nnx2Xx4+mhQn00759/m7mPWntXvIhXcsa4nxuVTOL6+OELLhpbMjsUeiy+hHMPoHb2h0ORDXNCc2OiEOtW3EsIYQQPSY9ViJntcQ1J71ZzzP7Y4dKAvxtT5RTF9aTSLOnaU1znHMXN7C8MYHGVHr/ny1t3LCyObPBd3BxpfvWN60OnDMsM1v3bG5NcMbCehbVx9GYyu73bGvnY8sbu33Oze8081+b22hKaDSwojHBB5Y08G6TlFsQQoh0SWIlctbDuyI0xXWnrVhiGna1a57dl94Q2k83tNG15FWbY/bi29VPGwe/05TAbXDNZ2VuBd6dm1NfV7tjhho3uFxjb8ThL7sitHV9TgLu2JA6qV0IIUTPSGIlcta7TXHXrWAiju62vIKbhNY8uTfKj9e38nJtzHXPPL+CH61v5b83t2U8wXq7KeE6eT2oMpdYLW+Mp9T3AlPB/n2Xa2xqS7hWt3eAd6THSggh0iZzrETOmlvko8Dm0ObFBwUsmFnQswnWjTGH0xc2sKE1QWui+08SzQn47bZ2fAr+9b0Wfj+ngKtGpVdpvavjCt3LLbQ7MKOHr+NoTij281ZdPGX/wIijme5yjclhm4jLvjm2guNkA2UhhEib9FiJnHX5yCAlfqtT9h9QMCHP5tzyns1N+t66Vt5rSdCcML0xR+qLiWkzLNjmwI0rm6lz2aQ5HdMKfK49VglNxlbgfWlCiJCtOm1ak2fBh4cHmOByjfKAxfWjgykV2EMWfHNyXkZiEkKIoUgSK5Gz8mzF4gUlXDoiQCi5dcs1o4O8dnLxESuMd/SnnZGUuUdgajb5FYSU+w56toKn9rqXSeitJ7o5T9hWvLA/M9cYk2fz5snFnD3Mh19BiU/x5Yl53W4PBPCrWQXcNjlMuV/hU7CgxMcr80uYViA9VkIIkS55BxU5bWTI4uHjirq939Gan21s45eb26iPaeaX+PjFjIKjVln3KThwXhm3rW3hV1siKfdrjevGyeno7jzqCPelw1bgUyZJ8imTOB4p/VSY/Qp9lnl8wDLn6OiF/VH+5b0WVjcnGBW0+F5VmOvHZGaIVAghBiPpsRID2q2rWrh9XSu7I5p2B16ujXPaW/W8n5yYdfXIIIEuyYKF2bal0GdxUYV7xfZWB87v4XDj0Vw7Oojb/s0JNOcMO/KWNT21oz3B/DcbeHZ/jDYH9sdMwnnd203dPudobffygSgX1TSyvDFBxDH7Gn5uVTO/2iyrBoUQojuSWIkB60DU4ffb22ntWj4hAT/Z2ArA7VPDVOXbHNySr8CG8oDi3jlmiGx9awKfS7dOwIINXWsRpOmD5X6uHhkkbIONmceUZ8EDcwvJd7t4Gv5rczttyXpUB7U58Pc9Uba0pc7w6knb3ba2NeX+1gR8d11r2nXEhBBisJOhQDFgrWsxJQPau6xuSwA1DWaaerHfYsWpJfxzX5S3GxNMDFt8dESQcHLMq6YxTtwlR/ApU3/qxBLTa9Wa0DyxJ0ptzOHsYf5ezUNSSvHbOYV8ZnweT+2LUmgrrhwVZEQwc59rFtfHUlYEghkO/PnGNuYV+/jI8ADDAuaa61uP3nZrui7HTGpJaOpjmmFduwKFEEJIYiUGrolhOyUxANMNO6vw8I+2z1JcXBnk4srUc8wqsMmzSCmUqYCq5Pjd4voYH1jciKP1oSTs+jFBfj2zANXDSfQAxxf7OL64f37lZhfavFobp2sfW1OyjIS9HT73LvxhTgFXjAoxIa/7tjtYymJinsWKptTkKmgpijPU0yaEEIONDAWKAasyaHqf8txKBkzqWcmAT45JLVMQUKYMwmmlPhJac1FNIw1xTVPicDmGP+6I8PduNlf2wpxCf0pSdVCbY+p0tTnwyZXN7Is4R267yWEAfjQtP6UcQ9iGb0zKw9dP+yoKIcRAJ4mVGNDunVPAp8eFCNuHe1uePKGY2T0sclkWsHjr5GJOK/VhY4bOLh0R4KWTilFKsbg+TqtLqfaWhNmLL1f8o4elIZQy+y2CabvPjAuR36Xt5iTb7sPDA9w7p4BxIQsLKPUrvjclzLekzpUQQnRLhgLFgBawFL+YUcDPp+cT0+Z2b5X5LY4psFmTnLM1Pd8mPzkHK+qQHO5LTa56s/PNzvYE317byj/2Rsm3FZ8dH+JrEzPX8+M2rOcmmoBvvNfCt99v4aLhfqYX+BgVtDgQ00zNtxkR7BzPuDybyWGLxrjD2KBiWoHdq+FPIYQYapTOgdU91dXVuqamxuswxBDUmtDMeKWOnRHn0F57eRacXubn6ROLiSQ0w1+opbHLDPd8G341s6BHNZ3qYw7TX61jf0QfqvweTlZFP1KNrt54YEc7n3m32XVvxe4cTI90h9uFPsXbp5YwIWyzsC7GOYsaOq0MDFumsOgnpZaVEGIIU0ot1VpXu90nQ4FiSPvzjnb2x5xOGxi3OfBaXYzlDXGCtuKBuQWELQ7VwyqwYUGJn2tGudfA6up329ppiOlO2+m0Omb4bl2GNmG+amSQ08r8HNwWMKBMaYegZRImt190Ted+OI1JNA+WW/jXtS2p5RYc0+Pl5MAHMiGEyEUyFCg8t7Y5Tk1DnLF5ZsJ4Noea3qyPd9vLs6wxbsoUVAZZc4aP+7e3sy+qOb8iwAcr/D3eVuf1unjKqkMwJR1WNMYPrT7sC5+l+Gd1EQ/tjHD/jggVAcX3qsIciGke2RVhTXOClw7EXOPoKK7hzTqTAr7d6N4wDTFTbqFMyi0IIUQKSayEZxJac82KJh7fEz20lcrokMVLJ5UwMpSdztRp+TY+Ujdn1tqUGzhoXJ7Nd6ry076GDSkbMcc1TOi6LK8Pvr+ulZ9tbDu0lc0z+2M8f2Ix/zG9gFcOxHi1tuGo51DA1GSiNyZk0eBSyypgmSFDIYQQqWQoUHjmfza38cSe6KFyAM0JWN/icPWKxqzFML/El5JUgZmYfmJJZj53zC/xpSRVYCbGzynse28VwHP7ovx8Uxvtjqld1ZiAfVHNh5aY+lunl/kYG7Jdq8x3lGfBvyZLVXy/KpxabsGCW8fn4ZdyC0II4UoSK+GZX29J3VIlAbxVF+dANDPbyRzNP/ZGcUtt8m14al8sI9d4optSCHm22Z8vE36ztd11SLMp7rCwPo5SipfmF3PuMD9+ZeZgzci3uLDCT9Ayc7HGJje8rk5Wm//YyCC/mJFPmV8RskybfHFCHj+cFs5IzEIIMRjJUKDwTNek6iBLQZtL7ajuPLIrwk83trI3ojm33M/3qsKMyzucLr3TGOf761pZ0hBnctjiu1VhzkpuftwY1669SWC2bsmEJrc9czDDbr25xlt1MX6wrpXVzQnmFNp8vyp8KAnqumrx0DUUtCTvqwxaPHViMc1xTdTRlAUsHtkVYVckwe6I5txhPprjDucsqmddi8PxxT6+XxVm77ll1EY1xX6VVjkLIYQYSqTHSnjmssoAbvOfRwUtRvdwjtW/r2/lhpVN1DQk2NrucP/2CPNer2dHu0mXljfEOfmtev66J8q2doeXa+NcuKSRR3eZ4p6XjgjiNnc8puED5f60X1tHFw4P4JaOtCTgrGE9u8Zz+6Kcu6iBZ/bH2Nbu8OS+GGcsbODVWtOrdvUo99cR17CgtPM1CnyKsoB1qO2WNjrsiGju2xHlqhXNvHggzrZ2h7/vibLgrXqWN8SpCFqSVAkhRA9IYiU8829VYUYGrUMJQUCZUgb3zS3s0crAprjDv69v7TQEFgea45r/2NgGmNIALYnOZQVaHfjS6ha01nyg3M8HywOHyhRYmHlE368KMyqUmflPtVHHNbGyFNTHetZj9cXVnUsfaMzr+OrqZgCuHR1kbqHvUFvamPlSd80sIN9lYpVb23XtQDTlF0wbCiGE6BkZChSeKQ9YvHt6KQ/saOfl2hhTwja3jAt1GsZzE3c0b9TFWd4Yw28p2rpUHY9qePGA6clZ0uA+h2l/VFMXSw6HHVfIk3tjPLwrQr4PbhgT4sSSzPRWAbxal7o5MpjEp6YhzsTwkV+vozXvdVMT4u3kJskBS/Hy/GL+b3eUv++JUhFQ3Dwu1Gkz6o7WNCdc285Nd20ohBAilSRWwlMFPsVnxufxmfE9239uaUOcC5Y00JbQaMxKwq4UHEpWKoOKBpf5Rz5lrg1gKcWFlQEurAyk+zKOaFLYwq+ga+eUhh4NeVpKUeJT1Lu8jvIOY6l+S3HlqCBX9qBw6cigRbSH2+CMCErHthBC9JS8Y4oBI5LQnLe4gb1RTVPCPakCs9ruXyaaRO3bk8N07RAKW3DLuFDW5gx9dlwe/i6/aTYwJmRzcg9LOnx1Yl7q67DhGxPT2xB5bJ7N6WV+gkdpgrCNbLoshBC9IImVGDCe2R/FbRGdwiQq+TYM8yvumV3AKWVmKO+60UG+OyVMgW3mb4Usc+ynx6RX7DMdk/NtHj++iNFBi3CytMGCUh8vnlTc4yrz356Sx2fHhcizzOsI2/CVCXl8Oc3ECuCReYV8MFluId+GMh+cO8xHKHmNfNskprIvoBBC9JxswiwGjD/uaOdz7za79lR9fFSAH1TlMyHPwufSE9We0GxrdxgRVBT6sv95oinucOemNv60M0KxT/G1SWE+NiLQ6+17WuKanRGH0SGLsJ2ZHrfaqENtTB9qu6a4w+6IZmzIIpShawghxGBypE2YZY6VGDDOKvPjVq6pwIaPjQgy5Qh77oVslZE9+dLRltCc+EYDm9sStCdnsd+wsok360L8YkZBr86V71NU+TL7OsoCFmUdppcV+iy6mfMuhBDiKGQoUAwYY/Jsvj4xr1O9pnwbTij2c1E/TTzPhD/uaGdr++GkCkwNq99sbWd7W3flSYUQQgxE8rlUDCg/nJbPmcP83L21naaE5upRQa4aGcTu5ZBaNj29L0arS/7kV/BWfZzLj1Jeor+935xgb9Th2CLfoZWSHR2IOqxuTjAhz2KsS6wxR7O0IU7IVswttHs9vCmEEIOJJFZiwDmnPMA55bnbQ9XV2JCFD1w3e670sJTBnojDR2oaWdUUx28poo7m36eF+cpEsxegozVfXt3Cb7e1E7QUEcdsGfSXeUWH5nf9Y0+U695uwkHjaFOb7PHji5hdJG8tQoihSYYChehnnxkfItDlN80ChgUsTi31LgG5ZGkjyxvjtDrQENe0OfCd91t5dp/ZNPrXW9r53fZ22pP3tzvw/P4Yn3vXVHvf1JrgiuWN1Mc1jXFT/mJzm8PZixp6XCNLCCEGG0mshOhn0wt8/HleIaV+RaGtCFsws9DmxZOKsTwaNtvYmuDtxnjKYoDWBPx8k9kO6Oeb2lKGMNsdeGhXhEhC87tt7a6LCSKO5ulkciaEEEON9NcLT61qivPpd5pY2ZSgImDxk2Py+djIo1cO709aa/66J8o929qJOKbu1bWjgq5lHHrqg+UBfjAljz/siFDqs/jG5LyjbmXTWy1xzW+3tfF/u6OUByw+Pz7IjnbNH3dEsBXcNCZIyFb879Z2dkUcuutTWtIQ49Q369kZcduIB7SGVkezO+KkVJMHs+fg/qj0WAkhhiZJrIRnltTFOOmthkN/4JvaHC5f3sT3muJ8f2r2Cnh29el3m/nzzsihDYoX1cd4cGeEp04oSquHKZLQnPJWPe81J5IbKSdY2BDj6xPzMvY6W+KaE96oZ3NbgrZkPvT3PVF8yuydCPDC/hgoXHuZOqqLwRv1cdeNowHGhCxKfIrzKwL8ZVckpa5YQsMZZZnba1EIIQYSGQoUnrnm7SbXXpMfrm8j7rj3lvS31U1xHthxOKkCUxrhzboYz+2PpXXOh3ZFWNtyMKk6fM6fbGxjdze9Qr31++1tbOmQVIHpOerYcRTnyEnVwURKd/l+8LiF2Q7oN7MKUEpxSWWAWYU+wh3eRfJt+OSYIJM9qhkmhBBek8RKeGZDq3tS4QBLGo5c32lza4I1zXGcDO8c8NKBmGuy15yAZ9KcN/T43minRO2ggAWv16aXrB3UltCsbIzz8K4o3TTnUY0NWRxXZHfbQ+UDqot9fHxUkLcWlHBehVmR6bMUL51UzE+PyefkEh/nDPPzhzmF/Hpm74qeCiHEYCJDgcIzfgu667AZ1c3uwBtbE1y2tJH3WxJYCgp9igfmFmas/EJZwMKllBNBCyq6Lu3rocqAwsIkjB0lHCjzpz9v6z82tPL99a1YStFytPG9btjAVaOC/GhqmKJnD7j+f1SGLJacUuL6/JCt+PyEPD4/QTZqFkIIkB4r4aGrR7onQ5UBxfhwas6f0JozFjbwTpMZ8mpJwO6I5uKljWzJUAXzi4YHXIuN2phJ7Ok4vyKQklSBWWF3ell6n20e2RXhe+tbaUlAU1y7nr8nEsCHKvwELMVVI4OEurwjhC344njZhFkIIXpKEivhmd/NLmBeUee5OEU2vLWg2PXxL+yP0RBLTSJiDtyztT0jMeX7FM+eWMTwgKLQhiKfosinePi4IsakWSH9xQMx11+0oA0L69NLCO/Y0OpazR1MG+bbMDp4+DXkdfObbpOc1A78amYBZ5b5CVlQ7FMELdOb9dVJ0hslhBA9JUOBWsPTT8P995t/f+IT8KEPgWzL0e8sy2LZqaWsaYrzj71RZhXafGh4971CpkRA6pBXVMPW9sxNdj+xxM/Oc8pYXB8npmF+iY9AH0otbG1zXHuUbMxrSsfuiPvQnx+oyrcZl2fxrclh5hT5WFQf59l9UX65uS11BV8yPjBJ5VMnFrOhJcHmtgTTC2xGhY6cTCa05q+7ozy0K0LYUtw0NsQZw7xfEfh+c4JfbWljU5vDeeU+PjkmRKFPPkcKIfpfnxMrpZQN1AA7tNYXKqXKgL8AE4DNwBVa67q+XqfffPrT8Oc/Q0uLuf2Pf8CVV8LvfudtXEPI9EIf0wuP/qN4comfhEs+kW/DORn+Y24rxcmlmTnneeV+ntmXOrk8puGkkvR+BU8v8/Hwrmhq7x2wtDHB8sYEz+xr4M4Z+XxqXB6VAYv/TBb+7CjfhnPLO7/Oyfl2j1b1OVpzUU0jr9TGaEmY1YOP7YnwLxksI5GOp/dF+ejSRqLarIJ8YX+Un29qp+aUEoalOU9OCCF6KhPvMl8C1nS4/U3gBa11FfBC8nZuWr4c/vSnw0kVmH8/9BAsXepdXMLV1AKby0cG6fg3P2TB+DybKz0uKnoknxgdYmTIItilLMENY4KMS3N48fap+RT4FN092wFaHfjS6haa45qpBTZXjAx2Ko1wsO2uSLPtntoXO5RUgSnP0JosI7E9Q3PeesvRmk++3USrc7i0RKsDu9odfroxNbEUQohM61NipZQaA3wYuKfD4YuB+5L/vg+4pC/XyIhEArZtg6amzsefeQYikdTHRyJmeFDknHvnFPBfMwo4vshmer7NbZPzWLigmKCdu0O3+T5FzSkl/MvEPKblW5xQbHPXrAJ+1YeyBFX5NstPLeH6MUGqwhZlbksZAZ9lanAB/H5OAf8983DbfTPZdqE02+7xPRHXMhK2Iu2aX321vsWh2aVbM6Lhsd0uv+ui3zTvgZZ9XkchRPb1dSjwl8A3gMIOxyq11rsAtNa7lFLD3Z6olLoFuAVg3LhxfQzjCP70J/jyl6G11SRYV1wB//u/kJcHhYUQCEBbl0+yfj8UFfVfTCJtllLcODbEjWMH1kq1Er/FD6fl88NpmRsimxS2+d0c86t3+bJGHt2dWmfL0WbyPWS+7Yr9Fj5M4dGOLDh0zWwr8HVfBLXYo5iGmj0r4bFroHYdoKHyWPjon6FssteRCZEdafdYKaUuBPZqrdMaM9Na3621rtZaV1dUVKQbxpG9/DLccgvs328Sq0gEHnkEPvlJc/8VV7hPUrcsc58QA8Tnx4fouvWgAkr9ihPTnMd1NDeMCeJ3eQdRSnHB8MzUFeutUSGb44t8KUOk+TbcKrW2+l17Pdx7Oux7FxIRSERhVw3ce6r5txBDQV+GAk8BLlJKbQYeAs5WSj0A7FFKjQRIft/b5yjT9eMfm4Sqo/Z2ePxxk2xVVJhEq6DA9FAVFUF+PvzlL1BZ6U3MQqThzGEBvjM5TMiCIh8U2jAyaPF0mvsb9sT0Ah+/nlVAnnWwLIVJ5J46oYg8D4dmHzmukKn5NgW2aYugBZ8YHeT6NOuQiZ5750FwuowCaweiLbD2CW9iEiLb0v4oq7W+DbgNQCl1JvB1rfW1SqmfAdcDdyS//73vYaZp0yb3434/7N4N5eVwwQWwdy+89JIpt3DWWRAOZzdOITLgtilhPjU2xOt1MUr9itPK/K7FTjPpk2NCXFYZ4OXaGCFLceYwf59KU2TCqJDNqtNLWFQfZ2fE4YRiH2PTXCQgeqd+E8RaU48nItCwNfvxCOGF/hgjuAN4WCl1E7AVuLwfrtEzp55qkqtElxm2jgOTOwz45+WZBEuIAa4iaHHpiOz2zBT5LS6qzK3eIKUU8zNULkP03Jj5ECiAaHPn45YfRp/gTUxCZFtGirporV/WWl+Y/PcBrfU5Wuuq5PfaTFwjLd/5jhnaszq8zHAYvvtdk0wJIYTImGkXQclEsDvk2b48GHU8jD3Fu7iEyKbBXS1v8mRYsgQ+9jEYMQLmzYN774VvfMPryIQQYtCxfHDj6zD/y1A01iRZp30Lrn1GNrMQQ4fSupu1yVlUXV2ta2pqvA5DCCGEEOKolFJLtdbVbvcN7h4rIYQQQogsksRKCCGEECJD+qdyoBDdaW2Fhx+GVatgzhy4/HIIDawq6mLgaU1oHt4VYVVTnDlFPi4fEUx7Kx8hhDgSSaxE9mzdCiedZPZsbGkxhVm//W1YtAhGjvQ6OjFIbW1LcNKb9TTFNS0JKLDhW2tbWbyghJEh6bQXQmSWvKuI7PnsZ2HfPpNUATQ3w65dZi9HIfrJZ99tZm9EH9owujkBu9sdvrS6+chPFEKINEhilUm9XWGpde+fM1AlEvDMM6nFWuNxs8WQGPL6Y4Wy1ppn9sdwuhyPA0/sTd28TmvdL3EIIYYOSawy4ZlnYPp0sG2zTc5PfmKqu3ensRFuuMEUK/X74dxzYd267MWbLYkE/PCHUFYGPl9qUnWQLduNDGUP7Wxnwou1WE8dYNQLB7hna1tGz9/dm1zHnXdWNMZZ8GY9vqcOUPjsAb60qpn2hCRYQojekzlWffXaa3DZZYc3ez5wAG6/3cwj+tGPUh+vtUmk3n4boslPzC+9BPPnm+SqrCx7sfe3r34V7rkndSPsjgIBuOKK7MUkcspjuyLctLKZ1uTnkF0RzZfWtJDQ8Onxfd8dQSnFJZUB/rYnSqxDnhRQcEVy658tbQlOe6ue5mTe35KAu7e1s7EtwRPVxX2OQQgxtEiPVV9973upiUNrK/ziF9Denvr4hQth9erDSRWY3q32dvjDH/o11KxqbIS773ZPqmzbJFQFBVBVBf/5n9mPT+SEb61tOZRUHdSagO+ta83YkNyvZhYwIc+i0DYJVYENU/Jtfj4jH4Bfbmoj0iWGdgee3x9jQ0s3vaxCCNEN6bHqqzVr3I8rBbt3w4QJnY+vXev++NZWWLEik5F5a/t2M8zpllyWl5tthWbOhPPO67yXoxhSNre5D5nviWr+34Y2RocsPjoiSIEv/dIIFUGLNWeU8sy+GO81J5hZaHNeuR8rucfKisZ4p96sg4KW4v2WBJPzZahaCNFzklj11cyZJoHqSimzP2FXM2a4nyccNnsZDhZjx0IslnpcKTPs+dWvZj8mkXMmhS3ea0lNrhSm1ypkwZdXt/Dy/GLmFqX/dmUrxQXDA1wwPPW+6mI/b9bFiXZJriKO5pgCSaqEEL0jXQV9dfvtJinqKByGr3/dvfDlCSeYwpjBDtu/W5Z5zg039G+s2VRYCJ//fGrb5OWZ4VMhgDuOySfP5V1IA3FtSiPUxzUfXdbYb6v1vjghRNDq3COWZ8EFFQEmhiWxEkL0jiRWfbVgATzxBMyda+YOjRgBP/4xfPe77o9XCp591iRR+flmrtGHPgSLF0NJSVZD73c//alJooYPN21z/PFmBeVg6pkTfXJxZZA/HVtIVdjCBvzdjPjtandY33UyVoaMzbN5c0ExZ5X58Cko9ilunZDHg/MK++V6QojBTeVCzZbq6mpdU1PjdRhCCI/Nea2Od5pSJ4yHbVh+SilTZWhOCJEDlFJLtdbVbvdJj5UQImdcPzroOjQ4PGBRlS9vV0KI3CfvVEKInPGF8XlUF/s42DEVtqHIp3hkXiFKyabJQojcJ6sCB7I1a+CVV6CiAj78YffJ8kIMIEFb8fL8Yp7fH+ONuhijQhZXjgxS4pfPgLlk1zLYvgiKx8GUD4Ilf0mEOER+HQYireGmm+Chh8xk+IMFN1980aw4FGIAs5TiAxUBPlAR8DoU0UUiBg9dAlteNm9Dlg9CxXDDa1AywePghMgR8jFwIHroIXj4YWhrM4VFm5rMVjoXXzx0NnUWQmTdwl/C5pcg1grxNog2QdNOePRqryMTIndIYjUQ/eY30NKSenz/fli5MvvxCCGGhGW/NQlVR9qB3cuhZa83MQmRaySxGogike6Pn302jB9vNoDuuB+hEEL0UaKbtx6lICFvN0IAklgNTNdem1rRHMwWMrW1sHWrKVJ68cXZj00IMWjNvBLsYOrxonFQODr78QiRiySxGohuvhmOPRYKCsxtn8sahLY2ePXVwbWxsxDCU6d9G0onQuDgW08eBArhsgdMr5UQQlYFDkzBoEmanngCnnsO3noLli9PfZxSsGyZScKEEKKPQsXwmbdh9aOw5TUomwxzr4f8Cq8jEyJ3SGI1UNk2XHKJ+brjDlPTqr2982Msy8y3EkKIDLEDMPvj5ksIkUqGAgeDG24Av7/zMZ8PKivhrLO8iUkIIYQYgiSxGgwqK+Hll2HmTFMoNBCAM84ww4WW/BcLIYQQ2SJ/dbOhpQVuvx2mToUZM+DnPzcr+DLpuOPg3Xdh507Ytw+efx5GjszsNYTIgOf3RzlzYT0TXqzl48sbWdsc9zokIYTIGKVzoFJ3dXW1rqmp8TqM/hGPw4kndp4DFQ7D6afDk0/KUhoxpPxxezufebeZVsfctjAbLS9aUMKMQpnyKYQYGJRSS7XW1W73SY9Vf/vHP2Ddus4Ty1tb4bXXYPFi7+ISIssSWvPVNS2HkioAB2hJwHfeb/UsLiGEyCRJrPrbG29Ac3Pq8XjclEkYitavN711mzZ5HYnIot0Rh5ZEag+5Bt6oy/DQuBAibVrDjsWw/mloq/M6moFH+t7729ixkJdnCnZ2FAjAmDHexOSVtjb42MfgpZfM649E4IIL4MEHzW0xqJX4LLqbeDAqKJ/xhMgFdRvhjx+Alj2gLLNV0Vk/hAVf9zqygUPezfrbNdekVkZXyiRbH/mINzF55V/+BV580SRYDQ1mePSpp+C73/U6MpEF+T7Fx0cFyevyrhO24VtTXLZoEkJkldbwwIegfhNEmyHSCPF2ePl7sOklr6MbOCSx6m/DhsELL8DkySaZCoVg9mxTCiHosunWYKU1/P73qUVM29rg7ru9iUlk3a9nFnD5yCBBCwps8/WjqjCXjxxCvwtC5KjdK6BpB2in8/FYKyz+b09CGpBkKDAbTjjBTGDfvNn0Xo0d63VE2ae1Gfpz4zYHTQxKQVtx39xC7pyRz56Iw4Q8m6AtK2PB/DF7+4+w7G6IR2DuJ+D4T4NPck6RJe31YNnu97Xuy2ooA5okVtmiFEyc6HUU3rEsk2AuWtT5uFKmmKkYUkr8FiV+6TDv6P+ug7V/h1iLub1/Daz6C3zy1e7/2AmRSaNPAMelrJwvD6Z/LPvxDFTyziay5667oKDg8PY7gQAUFsKdd3oblxAe27MS1v7tcFIFZvhlz0pY96RnYYkhJlAAH/w5+MNAsiPZH4aSCXDcp7yMbGCRHiuRWVqbYqiNjTBvXud5ZPPmmerwd94Jb78N1dVw661Db3WkGLKiLbDnbQhXwLCqw8e3vJo6rwXMBOJNz8O0IbbORXjn+E9D5VxY/D9mZeC0i2HejclkS/SIJFYiczZuhAsvhC1bzFwyrc3E9KuuOvyY8ePNlj5CDDGLfwXPfwMsHyRiMHwmXP0EFIyA/Eqw/ECXtR12EApHexKuGMLGzDdfIj0yFCgyw3HgnHNg7VpTWb6xEZqa4Kab4J13vI5OCE9teskkVbHW5BL2Nti1Ah5M9kRN+wjYLqXcLBvmXJfVUIUQfSSJlciMN9+EAwdMgtVRJAK//rU3MQmRIxb+3CRVHek47F0FB94HXwiufwlKJoI/38x1yR8OV/8DCmUvdSEGFBkKFJmxd6/7htKJBOzcmf14hMghTbvdj9t+aN0Pw6ZC5Wz44gbYt9pUu66cI6sBhRiIJLESmbFgAUSjqcfz8+HDH85+PELkkKoLYO87kOhSys2Jm4nCByll5l4JIQYuGQoUmTFiBHz1qyaROigvz0xWv04miYihbf6XzNCe3WGRrD8M5/4EAvndP08IMfBIj5XInB/9CE46Cf7nf6C+Hi6/HD77WZNgCTGE5ZXBZ1bAwjth3T/NSsCTvwoTz/Y6Mu8070kOg1a5T9wXYqBSWne333z2VFdX65qaGq/DEEII0c/a6+HRq2HzSyahUhZ88Jcw75MeByZELyillmqtq93uk6FAIYQQWfPwx2Dzi2a+WbQJIg3w1Odh8yteRyZEZkhiJYQQIisatsK2N8yqx45irfDmz7yJSYhMkzlWQgghsqJ5jxn+i7en3tew7fC/2+pg+T2w9XUonw4nfA6Kx2UvTiH6QhIrIYQQWVExw5SY6Mryw6Rzzb8bd8Ddx0GkyVSoX/80LPkVXPc8jDkpu/EKkQ4ZChRCCJEVgXw48wedN/S1fBAqhgVfN7df+Ca0HjBJFZhhw2gzPH5j9uMVIh3SYyWEGJKcODTvNqUQOv6hF/1rwddNpfk3fmraf8r5cOpth7fuWfck6ETq8w6sM0OEeaXZjVeI3pLESggx5Cz/PTz3LxBrAzTMvR4+9F9STylbpl1kvtz486GtNvW4UuALph4XItfIUKAQYkhZ9yQ8dav54x1vMxOp374fnrzV68gEQPVnwdelprDlh6oPS8+iGBgksRJCDCmv/NAs7+8o3gYr7zdzeYS3FnzdJFG+PAgUmh6syrlw0T1eRyZEz8hQoBBiSGnY4n5c2dCyDwIF2Y1HdGb74YpHzJyqPW9DyQQYebwZChRiIJDESggxpIyZD+/9Deiym5flg6IxXkQk3AyrMl9CDDQyFCiEGFLO+qEZXqJDD4g/DGf/2PSWCCFEX0hiJYQYUobPhJvehKoLIVwOI+bBpQ/AiZ/zJp5YW+oWL0KIgSvtxEopNVYp9ZJSao1SapVS6kvJ42VKqeeUUuuS36XqiBAipxx4H/asgPZ6qF0HOxaD41I7qT/tXQX3zIf/Vwg/LoCHLjZzvIQQA1tfeqziwNe01tOB+cDnlVIzgG8CL2itq4AXkreFECInbHoR/vYJaNxmioRGm2Hxf8GzX89eDK0H4N5TTUKnE+DEYN1TcN+ZoPXRni2EyGVpJ1Za611a62XJfzcBa4DRwMXAfcmH3Qdc0scYhRAiY17+fmq5hVgrLP3f1OP9ZcW9EI/QaQK9E4OGrbDllezEIIToHxmZY6WUmgDMAxYBlVrrXWCSL2B4N8+5RSlVo5Sq2bdP+r+FENlRu979uLKgeU92Yti35vBeeB1p3X18QoiBoc+JlVKqAHgM+LLWurGnz9Na3621rtZaV1dUVPQ1DCGE6JER8+i0IvAgZUHhqOzEMPrE5MpEF5VzsxODEKJ/9CmxUkr5MUnVn7TW/5c8vEcpNTJ5/0hgb99CFEKIzDn7h+DvsmWKPwynfzt7e9HNuQZCxaA6VBL0hWBUNYw+ITsxCCH6R19WBSrgd8AarfXPO9z1OHB98t/XA39PPzwhhMiskcfBJ16EcaeCvwBKp8AFv4IF38heDIECuLkGZl8FwWIIV8CJX4RrnspeDEIMRlp7vwBE6TQjUEqdCrwGvAM4ycPfwsyzehgYB2wFLtdau+xVflh1dbWuqalJKw4hhBBCDG2NO+DJz5lN1pUFx1wGF/y3qVXXH5RSS7XW1W73pb2ljdb6dVxnKgBwTrrnFUIIIYToqVgb3HOiWXyik/Xo1jwGu5fD51aBZWc3Hqm8LoQQQogBa/Uj0N5wOKkCU76kaSdseCb78cgmzKJ7WsObb5qvkSPhsssgHPY6KiH6TGvY/DLsXAJFY2H6pWbyuMgN2oGNL5geh5KJcMzFYAe8jkrkqr3vQqwl9XgiYkqbVF2Q3XgksRLuYjH4yEfg9dchGoVgEL74RXjlFZg92+vohEhbvB3+eB7sWm7eeH0hePpLcOPrMGyq19GJaDP84Uw4sNb8X/ny4Jkvw41vQsl4r6MTuWj4bLMQJdbc+bgdhIoZ2Y9HhgKFu7vugtdeg5YWk2Q1N0NdHXz0o94vuRCiD978D9i51HzCPbilTet+eOxqryMTAC//wPRARJuT/z9NZu7M364/+nPF0DTjY8nyJR3mUll+KBoNkz+Q/XgksRLufvc7aHXZ32PHDtiwIfvxCJEhK+51qXquzabIzbs9CUl0sPKPpiexI52AbW9CpMmbmERu8+fBzYthWnLI2BeCmVfAjW9kf+I6yFCg6I7jpHefEDlOH+HHVzpjvXek/x+G+P+PdmDRnfDmf0J7HYw5GT74c6ic43Vk3iscBVc+5nUUhvRYCXfXXw95eanHhw+HqqrsxyNEhkzophhMsAQKR2Y1FOFi1pUuE9WVqUofLPIkpJzxzFfgxe9A0w6zYfimF+D3p8CBdV5HJjqSxEq4+8IXYN48KCgwt8NhKCyEhx8G1V35MiFyX+M29+OxJohH3O8T2XPWD6F0sqlOD2ZScngYXHKft3F5ra0Olt5tEqqOYm3w+h3exCTcyVBgOrQ2q+PWroWZM+GUUwZfshEKmcnrzz4Lb7wBo0bBVVdBaanXkQnRJ3vf6eYOZerelE7MajhHFG+H9/8JbbUw8Swom+J1RO5qN8CmFyGvFKo+nLoXY2+ESuCzK2Ht42blZulEmHklBLrZtHqoqF1nVrnF2zsf1wlTNkTkDkmsequuDs48EzZuhEQCbBumT4cXXjA9OoOJZcH555svIQaJYVXQvCv1uHagoDL78XRn1zK4/1yzMk4nTHzzPgUf+q/c+RynNTz7Nai5y2wjomzzdd0zMPrE9M9r+WD6ZeZLGMXjU5MqMO1eMT378YjuyVBgb33hC/Dee6b8QFub+b5yJXz9615HJoTogTO+D74udW79Yaj+rPmeC5wE/PlCM0E52mSGf+LtZkXj2se9ju6w9U+Z4al4u4kx2gSRehO7kzjq00UvFFSaRNPXpTfQF4JTb/MmJuFOEqve0BoefdQUzOwoEoE//9mbmIQQvTLxLLjsAdMDoGwIFML8r8B5P/U6ssN2LjF1nLqKtZhEJlcs/a17xet4uymPIDLr4nvhuE+Z5ErZpqDtVY/DiGO9jkx0JIlVTzz4oKk2Pnx4alJ1UCyW3Zg2bIArrzQxTZ9u6k71da34G2+YYc6KCliwAJ5/PiOhCpFrpl8KX9oEtzXCN+vh7B95U++mO/FI98N9KTW4eiHaAs/fBr8YCz8fA8/9q3sC11PdxaKU+7CV6Btf0AwF39Zkfna/sBYmdbPKVXhH5lgdzU9/Cj/4gXuxzIMsCy7I4mZE27dDdTU0NpqaUvv2me1m1q2DO9JcHvLSS3DhhYdf5/79cNFFpifukksyFroQuUKp3Bn662rMSe6fk/xhmHNteufUDtx3pqlqfjDpWXQnbHwWbq5JL7GcfQ1sfT2110o7MO7U9OIUR2fZYOXoz66QHqsja2uD2293T6rs5LtQfr7p4bnzzuzF9bOfma1mOhbqbG01MdTVpXfOr30t9XW2tcFXv5p+nEKItPhCcOn9JpE6WNMpUGAmhM+5Lr1zbnwe9r/XuScpEYHa9bD+6fTOOftqGLvgcGkEy2+GqS6+t28rA4UYyKTH6kg2bjS9UW7y802v0YIF8I1vZHdF4GuvuQ89BoOwerUp/9Bbq1a5H9+82VzL7+/9OYUQvRJrM0UfE1GYeA58+m145QfQssf0Ds25Nv0hy5015vxdRZvNfVM/3PtzWj649mlY9xSs+yeEy2Hu9VA2Ob0YhRgMJLE6kpEju59T1dwMS5bAwoXm6/HH3SuV94eqKlixInWsIBKBcePSO2dlJWxzqZxYUgI++TERor9tfAH+cqkZotTaJFe+PFNqAWDLq1C3Ac66Pb3zl0wwvUhd51QFCqBkfPpxK8skZekkZkIMRjIUeCRlZfCxj7knTI4DTU1m+Oz11+Fb38peXN/4RmpMwSCcfTaMHZveOb/zHVNdvaNw2FwrV4rmCDFIRRrhoYuT5QoazfdExJQuiDYdvv3Wz2H9M+ld45hLTZkJ1fFdX5lhxxmXZ+JVCCFAEquju+ceuPpqk7gEg+6PaW+He+/NXkzHHw9/+Yuphh4KmbguvdQcS9fNN8P3vmeGNPPyzFDn175mEishRL967+89+/wSazHFONPhz4MbX4eR1Wbelh2AUcfDDa9LVXMhMknpHNjOvbq6WtfU1HgdxpG1tpqJ4ePGdZ40flAwaBKsbNIadu+GoiKTCGVCLGZWGZaXQ6DrTqhCDEw7FsMrP4R970LlXDjjuzDyOK+jOmzJXaaCeU9KKUw4E65/qW/Xa6s1bx/hYX07jxBDlVJqqda62u0+mTzTU+Gw+TrlFDP01zEhtSw4x4NiIkqZeWCZ5PebnjAhBomNL8CDFyWTFg31W2Djc3DtM7lTEmDyB4AefMb1h2HGFX2/Xl5Z388hhHAnQ4G9ddddpocoFDK38/LMBO9sllsQQvTYU1+EeCuHExdttl95+sseBtVF2WRT/d0fBpJDglbg8N57AP58KJ8O827wLEwhRA9Ij1VvzZwJa9fC3XfD8uWm5MItt5ihMyFEWuq3wP41UFaV2aX62oH9q93v2/N25q6TCef8GKacDyv+YCqvz74aisbCsnugeTdMuwhmXXm4rpUQIjdJYpWOykr4t3/zOgohBrxEDP56Haz9O9hBU2JgwplwxWOZKTCpLAiVQHt96n15OTi/aPzp5qujC/7bm1iEEOmRoUAhhGdeuR3WPm6qgUcazDyozS/BMxks+H/Sl1O3rvGHYcHXMncNIYQ4SBIrIYRnau5KXQkXb4e3/2CG8TLh9O/AcTebek2BQlN084QvwMmSWAkh+oEMBQohPNO1CvhB8Qg4CbBdPvo5cVhxHyz/HaDh2Btg3o1mexU3lg3n/xLO+iE0bofisYf3tssl2oGVf4Jld5vXP/cTyYSwm/J5QojcJImVEMIzE86ADc+RUmpg5PFgu2xPqTU8dClsftGs7APYsxLW/BWuefLIRTaDhVAxPWOhZ9xfPwHv/c0UAQXYuwpW/QWufzn9/QGFENknQ4FCCM988Jcm4Tm40s3ym7ICH/61++O3vWnmYB1MqsD8e+trZi+9gWrPO7Dm/w4nVWBKROxeAeuf8iwsIUQaJLESQnimYjp8bpUZ8hoxD+Z8Aj67Ekaf4P74La+aOVhdxVphyyv9G2t/2vIKrgVCo82mmKkQYuCQoUAhhGecBLz677DiXjO5fN9qM5n9knvd6zXlDzeP69izA6Y0Q/7w7MTcH/KHm946uiSNdhAKR3sSkhAiTdJjJYTwzJs/hZX3QyJiyi0kIvDeX+H5b7o/fsbHDlci70jZMPPK/o21P027yH1OmWXDnOuyH48QIn2SWAkhPLPwzs7zpcD0WC29u/N2nAeFiuG6Z6FwlFnZFyiAgpFw7dOQV5qdmPuDL2Q2Vi4eb+aYBQohXA5XPwGFGd4OVAjRv2QoUAjhGbeK6GCSLSfu3osz5iT4yjazGlBrGDHXVFgf6CrnwJc2wd53TQX6EcfKasBct/llWPJraKuF6R81+zj6Ql5HJbwmiZUQwjNjToYtL6ceHz7LPak6SFkm8RhslILK2V5HIXri9Tvg1R8e7nHd/hYsvwdufEOSq6FuEHzOE0IMVOf/wgznHZw3pSyz3cwFv/I2LiGOpHU/vPz91LIf+9fCOw96FpbIEZJYCSE8M+JYuGUZHPtJqJwLsz4On1oE40/r/DjtmD9ajTu8iFKIzra+4V4RP9ZiFl+IoU2GAoUQnhpWBRfd0/39G56Fv10PkSbQCag8Fq54FIqkDIHwSF6p++IKZUG4IvvxiNwiPVZCiJx1YB385VJo3m16A+LtsHMJ3H+2+x82IbJh7CkQLAa6bKHkC8EJn/UkJJFDJLESQuSsmt9AItb5mE5A006zvY0QXrBs+MRzhzf0DhaBLw8++AsYVe11dMJrQ28oMB6Hxx4zX6WlcPPNUN3lN6GmBu65B2pr4aMfNV++oddUQnitfhM4MZc7FDTJfCvhofJj4EubYcdiiDTC2JNNkiXE0MoW4nH4wAdg8WJoaQHLggcegDvugFtvNY/51a/gG9+A9nZwHHjySbjrLnjuOfAfYf23ECLjJp0LG55JLSKaiMHok7yJSYiDlDJ11YToaGgNBT766OGkCkzi1NpqEqnaWqirg69/3RxzHPOYlhbTg/Xoo97FLcQQNfcTkF9p9sw7yJ9vjpeM9y4uIYToztBKrB577HBS1VEgAC+/DK+8Yv7dVUsLPPJIv4dHSwvs2nU4qRNiiAsUwC1LYf5XoGSiqU7+of+GC+9KfWykEZr39O+k9vYGaNnbf+cXQgx8QyuxKi42w39daQ2FhVDQzQC5UlBS0n9xtbTANdfAsGEwaRKMGQOPP95/1xNiANm3GlY/aias738PVj0MrQcO3996AP78YfhZBfxyPPx3FWx5NbMxNO2C+8+Fnw2HX4yD/5lu5tYIIURXSufAmuXq6mpdU1PT/xdatAjOPtsM9XVUXg47d5oEatQo2Lev8/3hMDz/PJx8cv/E9ZGPmPO3t3e+5ssvwwkn9M81hRgA6rfAr2eaUgsHWX6omAGfXm5u310Ne9/pPMndnw+fXQmlk/oeg3bgV9OhdiPo+OHjgQL4wvuySbIQQ5FSaqnW2nUN6NDqsTrpJPjRjyAUMj1URUWml+jpp83EdJ/P/Lu83NxXWGgee/vt/ZdU7diRmlQBtLXBT37SP9cUYoCouSt1VaATg9r1psdo93I4sDb1MYkoLP6fzMSw5VXTY9UxqQIzgX7ZbzNzDSHE4DG0VgUCfOUrcN11pjeosND0YHVc7Xfccab36qWXoLERzjzTJFr9Zds2CAZTEyutYd26vp17xQqz6jESgSuugFNPNb1y3WluNo9ftgxmzzbt1J9DoEIcxf61JknqSlnQsAUsn6kp1JUTgwPvZyaG+i2m16qrRCRz1xBCDB5DL7ECkyh97GPd3+/3m7IM2TB9ukl83GI4/fT0z3vHHaanLRIxSdq998K118JvfuP++O3bzbBjU5OZ8xUOww9+AG+9BVVV6cchRB+MPx02PptabsGJwcjjzObNbomXLw/Gn5GZGEYd755Y+fNh3Gmpx4UQQ9vQGgrMRcXF8NWvQn7+4WOWZRKbf/mX9M65ZYtJitrazApDrU2y9Mc/wsKF7s/58pfN3LKDqyZbW035iU9/Or0YhMiAeTdCqMT0TB3kD8Mxl0LZFCidCDMuN8cOsnwQKobjPpWZGIbPgskfMMnaoWv4IVwOc67NzDWEEIOHJFY9lUiYZKM/Jvv/6Efw3/8NM2ZARYXpTaupgXHj0jvfk0+6D/m1tZmSE909J5HofMxx4NVXU48LkSWhYlNu4dgbIX+EmYx+1u1w6f2HH3PxvXD2v0PpZFPzau715jl5pZmL4/JH4IzvQskEE8dxn4Kbl0Ag/6hPFUIMMUNrVWA6YjH41rdM9fX2dpPs/M//wAUXeB1Z937/e/jiF1Nrdvl85rX84AepzykuNnPKuvL7zet2K1MhhBBCDEGyKrAvbr0Vfv1rk6QkErBpE1x+uZl7lKsuvti9yKjfDx//uPtzrr3WTKLv+vjLLpOkSgghhOgh+Yt5JPX1cN99qXWvWlvhhz/0JKQeGTYMHnzQzNMqKDDzt0Ih+M//hGnT3J/zk5/Asceaxx583rRpJqkUQgghRI8MzVWBPbVjx+GhsK7eey/78fTGxReb+P/xDzOcecEFUFnZ/eMLCkwv3FtvwTvvmKTqjDOOXJ5BCCGEEJ1IYnUkEya4T9y2LKh2HVrNLSUlZoivp5SCBQvMlxBCCCF6TYYCjyQ/35RCCIc7H8/Lg+9+15uYhBBCCJGzJLE6mttvh5/9DMaPNwnWGWfAK6/ArFleRyaEEEKIHCPlFoQQQ84bP4OX/s1sS4OCqR+GK/8uC2CFED0j5RaEECJp6d3w/DeSSRWAhvf/Afed6WFQQohBQxIrIcSQ8vw33Y9vfQ3a67MaihBiEJLESggxpEQaur9v98rsxSGEGJz6LbFSSp2vlFqrlFqvlOrmM6IQQmRXsLj7+4bLmhQhRB/1S2KllLKBXwEfAmYAVyulZvTHtYQQojfO+X/ux8eeAuGy7MYihBh8+qvH6kRgvdZ6o9Y6CjwEXNxP1xJCiB6r/jSc+xOwD26NqaDqw/DJVz0NSwgxSPRX5fXRwLYOt7cDJ3V8gFLqFuAWgHHjxvVTGEIIkeqUb5gvx5ESC0KIzOqvtxS3DeY6FczSWt+tta7WWldXVFT0UxhCCNE9SaqEEJnWX28r24GxHW6PAXb207WEEEIIIXJCfyVWS4AqpdREpVQAuAp4vJ+uJYQQQgiRE/pljpXWOq6U+gLwDGADv9dar+qPawkhhBBC5Ir+mryO1vpJ4Mn+Or8QQgghRK6RqZtCCCGEEBkiiZUQQgghRIZIYiWEEEIIkSGSWAkhhBBCZIgkVkIIIYQQGSKJlRBCCCFEhkhiJYQQQgiRIZJYCSGEEEJkiNJaH/1R/R2EUvuALV7HkYZyYL/XQQwi0p6ZI22ZOdKWmSNtmTnSlpmTTluO11pXuN2RE4nVQKWUqtFaV3sdx2Ah7Zk50paZI22ZOdKWmSNtmTmZbksZChRCCCGEyBBJrIQQQgghMkQSq7652+sABhlpz8yRtswcacvMkbbMHGnLzMloW8ocKyGEEEKIDJEeKyGEEEKIDJHESgghhBAiQySx6iGl1Fil1EtKqTVKqVVKqS8lj5cppZ5TSq1Lfi/1OtaBQillK6WWK6X+kbwtbZkGpVSJUupRpdR7yZ/Pk6Ut06OU+kry9/tdpdSDSqmQtGXPKaV+r5Taq5R6t8OxbttPKXWbUmq9UmqtUuqD3kSdm7ppy58lf89XKqX+qpQq6XCftGU33Nqyw31fV0pppVR5h2N9aktJrHouDnxNaz0dmA98Xik1A/gm8ILWugp4IXlb9MyXgDUdbktbpudO4Gmt9THAXEybSlv2klJqNPBFoFprPQuwgauQtuyNPwDndznm2n7J98+rgJnJ5/xaKWVnL9Sc9wdS2/I5YJbWeg7wPnAbSFv2wB9IbUuUUmOB84CtHY71uS0lseohrfUurfWy5L+bMH+8RgMXA/clH3YfcIknAQ4wSqkxwIeBezoclrbsJaVUEXA68DsArXVUa12PtGW6fECeUsoHhIGdSFv2mNb6VaC2y+Hu2u9i4CGtdURrvQlYD5yYjTgHAre21Fo/q7WOJ28uBMYk/y1teQTd/FwC/AL4BtBxFV+f21ISqzQopSYA84BFQKXWeheY5AsY7mFoA8kvMT/QTodj0pa9NwnYB9ybHFa9RymVj7Rlr2mtdwD/gfn0ugto0Fo/i7RlX3XXfqOBbR0etz15TPTMjcBTyX9LW/aSUuoiYIfW+u0ud/W5LSWx6iWlVAHwGPBlrXWj1/EMREqpC4G9WuulXscyCPiA44C7tNbzgBZkqCotybk/FwMTgVFAvlLqWm+jGtSUyzGp/9MDSqlvY6an/OngIZeHSVt2QykVBr4NfNftbpdjvWpLSax6QSnlxyRVf9Ja/1/y8B6l1Mjk/SOBvV7FN4CcAlyklNoMPAScrZR6AGnLdGwHtmutFyVvP4pJtKQte+9cYJPWep/WOgb8H7AAacu+6q79tgNjOzxuDGboVRyBUup64ELgGn24EKW0Ze9MxnyAejv5d2gMsEwpNYIMtKUkVj2klFKYeSxrtNY/73DX48D1yX9fD/w927ENNFrr27TWY7TWEzCTBF/UWl+LtGWvaa13A9uUUtOSh84BViNtmY6twHylVDj5+34OZi6ltGXfdNd+jwNXKaWCSqmJQBWw2IP4Bgyl1PnAvwIXaa1bO9wlbdkLWut3tNbDtdYTkn+HtgPHJd9P+9yWvoxHPHidAlwHvKOUWpE89i3gDuBhpdRNmDfmy70Jb1CQtkzPrcCflFIBYCNwA+ZDk7RlL2itFymlHgWWYYZZlmO2uihA2rJHlFIPAmcC5Uqp7cD36Ob3Wmu9Sin1MOaDQBz4vNY64UngOaibtrwNCALPmdyfhVrrz0hbHplbW2qtf+f22Ey0pWxpI4QQQgiRITIUKIQQQgiRIZJYCSGEEEJkiCRWQgghhBAZIomVEEIIIUSGSGIlhBBCCJEhklgJIYQQQmSIJFZCCCGEEBny/wF2YSiZTTIq3gAAAABJRU5ErkJggg==\n", 232 | "text/plain": [ 233 | "
" 234 | ] 235 | }, 236 | "metadata": { 237 | "needs_background": "light" 238 | }, 239 | "output_type": "display_data" 240 | } 241 | ], 242 | "source": [ 243 | "plt.figure(figsize=(10, 7))\n", 244 | "plt.scatter(data[:,0], data[:,1], c=cluster.labels_, cmap='rainbow')" 245 | ] 246 | }, 247 | { 248 | "cell_type": "markdown", 249 | "metadata": {}, 250 | "source": [ 251 | "# K-Means" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": 9, 257 | "metadata": {}, 258 | "outputs": [], 259 | "source": [ 260 | "from sklearn.datasets import make_blobs\n", 261 | "from sklearn.cluster import KMeans" 262 | ] 263 | }, 264 | { 265 | "cell_type": "code", 266 | "execution_count": 10, 267 | "metadata": {}, 268 | "outputs": [], 269 | "source": [ 270 | "num_samples_total = 1000\n", 271 | "cluster_centers = [(20,20), (4,4)]\n", 272 | "num_classes = len(cluster_centers)\n" 273 | ] 274 | }, 275 | { 276 | "cell_type": "code", 277 | "execution_count": 11, 278 | "metadata": {}, 279 | "outputs": [], 280 | "source": [ 281 | "X, targets = make_blobs(n_samples = num_samples_total, centers = cluster_centers, n_features = num_classes, center_box=(0, 1), cluster_std = 2)" 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "execution_count": 12, 287 | "metadata": {}, 288 | "outputs": [], 289 | "source": [ 290 | "np.save('./clusters.npy', X)\n", 291 | "X = np.load('./clusters.npy')" 292 | ] 293 | }, 294 | { 295 | "cell_type": "code", 296 | "execution_count": 13, 297 | "metadata": {}, 298 | "outputs": [ 299 | { 300 | "data": { 301 | "text/plain": [ 302 | "KMeans(n_clusters=2)" 303 | ] 304 | }, 305 | "execution_count": 13, 306 | "metadata": {}, 307 | "output_type": "execute_result" 308 | } 309 | ], 310 | "source": [ 311 | "kmeans = KMeans(init='k-means++', n_clusters=num_classes, n_init=10)\n", 312 | "kmeans.fit(X)" 313 | ] 314 | }, 315 | { 316 | "cell_type": "code", 317 | "execution_count": null, 318 | "metadata": {}, 319 | "outputs": [], 320 | "source": [ 321 | "P = kmeans.predict(X)" 322 | ] 323 | }, 324 | { 325 | "cell_type": "code", 326 | "execution_count": null, 327 | "metadata": {}, 328 | "outputs": [], 329 | "source": [ 330 | "colors = list(map(lambda x: '#3b4cc0' if x == 1 else '#b40426', P))\n", 331 | "plt.scatter(X[:,0], X[:,1], c=colors, marker=\"o\", picker=True)\n", 332 | "plt.title('Two clusters of data')\n", 333 | "plt.xlabel('Temperature yesterday')\n", 334 | "plt.ylabel('Temperature today')\n", 335 | "plt.show()" 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "execution_count": null, 341 | "metadata": {}, 342 | "outputs": [], 343 | "source": [] 344 | } 345 | ], 346 | "metadata": { 347 | "kernelspec": { 348 | "display_name": "Python 3", 349 | "language": "python", 350 | "name": "python3" 351 | }, 352 | "language_info": { 353 | "codemirror_mode": { 354 | "name": "ipython", 355 | "version": 3 356 | }, 357 | "file_extension": ".py", 358 | "mimetype": "text/x-python", 359 | "name": "python", 360 | "nbconvert_exporter": "python", 361 | "pygments_lexer": "ipython3", 362 | "version": "3.6.10" 363 | } 364 | }, 365 | "nbformat": 4, 366 | "nbformat_minor": 4 367 | } 368 | -------------------------------------------------------------------------------- /Lecture 6/readme.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Lecture 6/shopping-data.csv: -------------------------------------------------------------------------------- 1 | CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100) 2 | 0001,Male,19,15,39 3 | 0002,Male,21,15,81 4 | 0003,Female,20,16,6 5 | 0004,Female,23,16,77 6 | 0005,Female,31,17,40 7 | 0006,Female,22,17,76 8 | 0007,Female,35,18,6 9 | 0008,Female,23,18,94 10 | 0009,Male,64,19,3 11 | 0010,Female,30,19,72 12 | 0011,Male,67,19,14 13 | 0012,Female,35,19,99 14 | 0013,Female,58,20,15 15 | 0014,Female,24,20,77 16 | 0015,Male,37,20,13 17 | 0016,Male,22,20,79 18 | 0017,Female,35,21,35 19 | 0018,Male,20,21,66 20 | 0019,Male,52,23,29 21 | 0020,Female,35,23,98 22 | 0021,Male,35,24,35 23 | 0022,Male,25,24,73 24 | 0023,Female,46,25,5 25 | 0024,Male,31,25,73 26 | 0025,Female,54,28,14 27 | 0026,Male,29,28,82 28 | 0027,Female,45,28,32 29 | 0028,Male,35,28,61 30 | 0029,Female,40,29,31 31 | 0030,Female,23,29,87 32 | 0031,Male,60,30,4 33 | 0032,Female,21,30,73 34 | 0033,Male,53,33,4 35 | 0034,Male,18,33,92 36 | 0035,Female,49,33,14 37 | 0036,Female,21,33,81 38 | 0037,Female,42,34,17 39 | 0038,Female,30,34,73 40 | 0039,Female,36,37,26 41 | 0040,Female,20,37,75 42 | 0041,Female,65,38,35 43 | 0042,Male,24,38,92 44 | 0043,Male,48,39,36 45 | 0044,Female,31,39,61 46 | 0045,Female,49,39,28 47 | 0046,Female,24,39,65 48 | 0047,Female,50,40,55 49 | 0048,Female,27,40,47 50 | 0049,Female,29,40,42 51 | 0050,Female,31,40,42 52 | 0051,Female,49,42,52 53 | 0052,Male,33,42,60 54 | 0053,Female,31,43,54 55 | 0054,Male,59,43,60 56 | 0055,Female,50,43,45 57 | 0056,Male,47,43,41 58 | 0057,Female,51,44,50 59 | 0058,Male,69,44,46 60 | 0059,Female,27,46,51 61 | 0060,Male,53,46,46 62 | 0061,Male,70,46,56 63 | 0062,Male,19,46,55 64 | 0063,Female,67,47,52 65 | 0064,Female,54,47,59 66 | 0065,Male,63,48,51 67 | 0066,Male,18,48,59 68 | 0067,Female,43,48,50 69 | 0068,Female,68,48,48 70 | 0069,Male,19,48,59 71 | 0070,Female,32,48,47 72 | 0071,Male,70,49,55 73 | 0072,Female,47,49,42 74 | 0073,Female,60,50,49 75 | 0074,Female,60,50,56 76 | 0075,Male,59,54,47 77 | 0076,Male,26,54,54 78 | 0077,Female,45,54,53 79 | 0078,Male,40,54,48 80 | 0079,Female,23,54,52 81 | 0080,Female,49,54,42 82 | 0081,Male,57,54,51 83 | 0082,Male,38,54,55 84 | 0083,Male,67,54,41 85 | 0084,Female,46,54,44 86 | 0085,Female,21,54,57 87 | 0086,Male,48,54,46 88 | 0087,Female,55,57,58 89 | 0088,Female,22,57,55 90 | 0089,Female,34,58,60 91 | 0090,Female,50,58,46 92 | 0091,Female,68,59,55 93 | 0092,Male,18,59,41 94 | 0093,Male,48,60,49 95 | 0094,Female,40,60,40 96 | 0095,Female,32,60,42 97 | 0096,Male,24,60,52 98 | 0097,Female,47,60,47 99 | 0098,Female,27,60,50 100 | 0099,Male,48,61,42 101 | 0100,Male,20,61,49 102 | 0101,Female,23,62,41 103 | 0102,Female,49,62,48 104 | 0103,Male,67,62,59 105 | 0104,Male,26,62,55 106 | 0105,Male,49,62,56 107 | 0106,Female,21,62,42 108 | 0107,Female,66,63,50 109 | 0108,Male,54,63,46 110 | 0109,Male,68,63,43 111 | 0110,Male,66,63,48 112 | 0111,Male,65,63,52 113 | 0112,Female,19,63,54 114 | 0113,Female,38,64,42 115 | 0114,Male,19,64,46 116 | 0115,Female,18,65,48 117 | 0116,Female,19,65,50 118 | 0117,Female,63,65,43 119 | 0118,Female,49,65,59 120 | 0119,Female,51,67,43 121 | 0120,Female,50,67,57 122 | 0121,Male,27,67,56 123 | 0122,Female,38,67,40 124 | 0123,Female,40,69,58 125 | 0124,Male,39,69,91 126 | 0125,Female,23,70,29 127 | 0126,Female,31,70,77 128 | 0127,Male,43,71,35 129 | 0128,Male,40,71,95 130 | 0129,Male,59,71,11 131 | 0130,Male,38,71,75 132 | 0131,Male,47,71,9 133 | 0132,Male,39,71,75 134 | 0133,Female,25,72,34 135 | 0134,Female,31,72,71 136 | 0135,Male,20,73,5 137 | 0136,Female,29,73,88 138 | 0137,Female,44,73,7 139 | 0138,Male,32,73,73 140 | 0139,Male,19,74,10 141 | 0140,Female,35,74,72 142 | 0141,Female,57,75,5 143 | 0142,Male,32,75,93 144 | 0143,Female,28,76,40 145 | 0144,Female,32,76,87 146 | 0145,Male,25,77,12 147 | 0146,Male,28,77,97 148 | 0147,Male,48,77,36 149 | 0148,Female,32,77,74 150 | 0149,Female,34,78,22 151 | 0150,Male,34,78,90 152 | 0151,Male,43,78,17 153 | 0152,Male,39,78,88 154 | 0153,Female,44,78,20 155 | 0154,Female,38,78,76 156 | 0155,Female,47,78,16 157 | 0156,Female,27,78,89 158 | 0157,Male,37,78,1 159 | 0158,Female,30,78,78 160 | 0159,Male,34,78,1 161 | 0160,Female,30,78,73 162 | 0161,Female,56,79,35 163 | 0162,Female,29,79,83 164 | 0163,Male,19,81,5 165 | 0164,Female,31,81,93 166 | 0165,Male,50,85,26 167 | 0166,Female,36,85,75 168 | 0167,Male,42,86,20 169 | 0168,Female,33,86,95 170 | 0169,Female,36,87,27 171 | 0170,Male,32,87,63 172 | 0171,Male,40,87,13 173 | 0172,Male,28,87,75 174 | 0173,Male,36,87,10 175 | 0174,Male,36,87,92 176 | 0175,Female,52,88,13 177 | 0176,Female,30,88,86 178 | 0177,Male,58,88,15 179 | 0178,Male,27,88,69 180 | 0179,Male,59,93,14 181 | 0180,Male,35,93,90 182 | 0181,Female,37,97,32 183 | 0182,Female,32,97,86 184 | 0183,Male,46,98,15 185 | 0184,Female,29,98,88 186 | 0185,Female,41,99,39 187 | 0186,Male,30,99,97 188 | 0187,Female,54,101,24 189 | 0188,Male,28,101,68 190 | 0189,Female,41,103,17 191 | 0190,Female,36,103,85 192 | 0191,Female,34,103,23 193 | 0192,Female,32,103,69 194 | 0193,Male,33,113,8 195 | 0194,Female,38,113,91 196 | 0195,Female,47,120,16 197 | 0196,Female,35,120,79 198 | 0197,Female,45,126,28 199 | 0198,Male,32,126,74 200 | 0199,Male,32,137,18 201 | 0200,Male,30,137,83 -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Introduction to Data Science 2 | This is the repository for the course Introduction to Data Science offered by the Department of Information Technologies, Åbo Akademi University, Finland 3 | -------------------------------------------------------------------------------- /Webscraping/test: -------------------------------------------------------------------------------- 1 | 2 | --------------------------------------------------------------------------------