├── README.md
├── LICENSE
└── ML_Project_Coursera.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # loan-repayment-prediction
2 | A Machine Learning Project to Predict the Loan Repayment Status of the Loan Holder on the basic of previous data analysis.
3 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/ML_Project_Coursera.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "button": false,
7 | "new_sheet": false,
8 | "run_control": {
9 | "read_only": false
10 | }
11 | },
12 | "source": " \n\n
Loan Repayment Prediction \nA Machine Learning Project (Using classification in Python) "
13 | },
14 | {
15 | "cell_type": "markdown",
16 | "metadata": {
17 | "button": false,
18 | "new_sheet": false,
19 | "run_control": {
20 | "read_only": false
21 | }
22 | },
23 | "source": "In this notebook we try to predict the Loan_Status of the customer whether he/she will be able to return the loan amount at the time or not by using all the classification algorithms and analysing the predictions.\n\nWe load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods.\n\nLets first load required libraries:"
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 1,
28 | "metadata": {
29 | "button": false,
30 | "new_sheet": false,
31 | "run_control": {
32 | "read_only": false
33 | }
34 | },
35 | "outputs": [],
36 | "source": "import itertools\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.ticker import NullFormatter\nimport pandas as pd\nimport numpy as np\nimport matplotlib.ticker as ticker\nfrom sklearn import preprocessing\n%matplotlib inline"
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {
41 | "button": false,
42 | "new_sheet": false,
43 | "run_control": {
44 | "read_only": false
45 | }
46 | },
47 | "source": "### About dataset"
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "metadata": {
52 | "button": false,
53 | "new_sheet": false,
54 | "run_control": {
55 | "read_only": false
56 | }
57 | },
58 | "source": "This dataset is about past loans. The __Loan_train.csv__ data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:\n\n| Field | Description |\n|----------------|---------------------------------------------------------------------------------------|\n| Loan_status | Whether a loan is paid off on in collection |\n| Principal | Basic principal loan amount at the |\n| Terms | Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule |\n| Effective_date | When the loan got originated and took effects |\n| Due_date | Since it\u2019s one-time payoff schedule, each loan has one single due date |\n| Age | Age of applicant |\n| Education | Education of applicant |\n| Gender | The gender of applicant |"
59 | },
60 | {
61 | "cell_type": "markdown",
62 | "metadata": {
63 | "button": false,
64 | "new_sheet": false,
65 | "run_control": {
66 | "read_only": false
67 | }
68 | },
69 | "source": "Lets download the dataset"
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": 2,
74 | "metadata": {
75 | "button": false,
76 | "new_sheet": false,
77 | "run_control": {
78 | "read_only": false
79 | }
80 | },
81 | "outputs": [
82 | {
83 | "name": "stdout",
84 | "output_type": "stream",
85 | "text": "--2020-01-06 09:08:28-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv\nResolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.196\nConnecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.196|:443... connected.\nHTTP request sent, awaiting response... 200 OK\nLength: 23101 (23K) [text/csv]\nSaving to: \u2018loan_train.csv\u2019\n\n100%[======================================>] 23,101 --.-K/s in 0.07s \n\n2020-01-06 09:08:29 (304 KB/s) - \u2018loan_train.csv\u2019 saved [23101/23101]\n\n"
86 | }
87 | ],
88 | "source": "!wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv"
89 | },
90 | {
91 | "cell_type": "markdown",
92 | "metadata": {
93 | "button": false,
94 | "new_sheet": false,
95 | "run_control": {
96 | "read_only": false
97 | }
98 | },
99 | "source": "### Load Data From CSV File "
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": 3,
104 | "metadata": {
105 | "button": false,
106 | "new_sheet": false,
107 | "run_control": {
108 | "read_only": false
109 | }
110 | },
111 | "outputs": [
112 | {
113 | "data": {
114 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n \n \n \n \n 0 \n 0 \n 0 \n PAIDOFF \n 1000 \n 30 \n 9/8/2016 \n 10/7/2016 \n 45 \n High School or Below \n male \n \n \n 1 \n 2 \n 2 \n PAIDOFF \n 1000 \n 30 \n 9/8/2016 \n 10/7/2016 \n 33 \n Bechalor \n female \n \n \n 2 \n 3 \n 3 \n PAIDOFF \n 1000 \n 15 \n 9/8/2016 \n 9/22/2016 \n 27 \n college \n male \n \n \n 3 \n 4 \n 4 \n PAIDOFF \n 1000 \n 30 \n 9/9/2016 \n 10/8/2016 \n 28 \n college \n female \n \n \n 4 \n 6 \n 6 \n PAIDOFF \n 1000 \n 30 \n 9/9/2016 \n 10/8/2016 \n 29 \n college \n male \n \n \n
\n
",
115 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 0 0 PAIDOFF 1000 30 9/8/2016 \n1 2 2 PAIDOFF 1000 30 9/8/2016 \n2 3 3 PAIDOFF 1000 15 9/8/2016 \n3 4 4 PAIDOFF 1000 30 9/9/2016 \n4 6 6 PAIDOFF 1000 30 9/9/2016 \n\n due_date age education Gender \n0 10/7/2016 45 High School or Below male \n1 10/7/2016 33 Bechalor female \n2 9/22/2016 27 college male \n3 10/8/2016 28 college female \n4 10/8/2016 29 college male "
116 | },
117 | "execution_count": 3,
118 | "metadata": {},
119 | "output_type": "execute_result"
120 | }
121 | ],
122 | "source": "df = pd.read_csv('loan_train.csv')\ndf.head()"
123 | },
124 | {
125 | "cell_type": "code",
126 | "execution_count": 4,
127 | "metadata": {},
128 | "outputs": [
129 | {
130 | "data": {
131 | "text/plain": "(346, 10)"
132 | },
133 | "execution_count": 4,
134 | "metadata": {},
135 | "output_type": "execute_result"
136 | }
137 | ],
138 | "source": "df.shape"
139 | },
140 | {
141 | "cell_type": "markdown",
142 | "metadata": {
143 | "button": false,
144 | "new_sheet": false,
145 | "run_control": {
146 | "read_only": false
147 | }
148 | },
149 | "source": "### Convert to date time object "
150 | },
151 | {
152 | "cell_type": "code",
153 | "execution_count": 5,
154 | "metadata": {
155 | "button": false,
156 | "new_sheet": false,
157 | "run_control": {
158 | "read_only": false
159 | }
160 | },
161 | "outputs": [
162 | {
163 | "data": {
164 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n \n \n \n \n 0 \n 0 \n 0 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 45 \n High School or Below \n male \n \n \n 1 \n 2 \n 2 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 33 \n Bechalor \n female \n \n \n 2 \n 3 \n 3 \n PAIDOFF \n 1000 \n 15 \n 2016-09-08 \n 2016-09-22 \n 27 \n college \n male \n \n \n 3 \n 4 \n 4 \n PAIDOFF \n 1000 \n 30 \n 2016-09-09 \n 2016-10-08 \n 28 \n college \n female \n \n \n 4 \n 6 \n 6 \n PAIDOFF \n 1000 \n 30 \n 2016-09-09 \n 2016-10-08 \n 29 \n college \n male \n \n \n
\n
",
165 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 0 0 PAIDOFF 1000 30 2016-09-08 \n1 2 2 PAIDOFF 1000 30 2016-09-08 \n2 3 3 PAIDOFF 1000 15 2016-09-08 \n3 4 4 PAIDOFF 1000 30 2016-09-09 \n4 6 6 PAIDOFF 1000 30 2016-09-09 \n\n due_date age education Gender \n0 2016-10-07 45 High School or Below male \n1 2016-10-07 33 Bechalor female \n2 2016-09-22 27 college male \n3 2016-10-08 28 college female \n4 2016-10-08 29 college male "
166 | },
167 | "execution_count": 5,
168 | "metadata": {},
169 | "output_type": "execute_result"
170 | }
171 | ],
172 | "source": "df['due_date'] = pd.to_datetime(df['due_date'])\ndf['effective_date'] = pd.to_datetime(df['effective_date'])\ndf.head()"
173 | },
174 | {
175 | "cell_type": "markdown",
176 | "metadata": {
177 | "button": false,
178 | "new_sheet": false,
179 | "run_control": {
180 | "read_only": false
181 | }
182 | },
183 | "source": "# Data visualization and pre-processing\n\n"
184 | },
185 | {
186 | "cell_type": "markdown",
187 | "metadata": {
188 | "button": false,
189 | "new_sheet": false,
190 | "run_control": {
191 | "read_only": false
192 | }
193 | },
194 | "source": "Let\u2019s see how many of each class is in our data set "
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": 6,
199 | "metadata": {
200 | "button": false,
201 | "new_sheet": false,
202 | "run_control": {
203 | "read_only": false
204 | }
205 | },
206 | "outputs": [
207 | {
208 | "data": {
209 | "text/plain": "PAIDOFF 260\nCOLLECTION 86\nName: loan_status, dtype: int64"
210 | },
211 | "execution_count": 6,
212 | "metadata": {},
213 | "output_type": "execute_result"
214 | }
215 | ],
216 | "source": "df['loan_status'].value_counts()"
217 | },
218 | {
219 | "cell_type": "markdown",
220 | "metadata": {
221 | "button": false,
222 | "new_sheet": false,
223 | "run_control": {
224 | "read_only": false
225 | }
226 | },
227 | "source": "260 people have paid off the loan on time while 86 have gone into collection \n"
228 | },
229 | {
230 | "cell_type": "markdown",
231 | "metadata": {},
232 | "source": "Lets plot some columns to underestand data better:"
233 | },
234 | {
235 | "cell_type": "code",
236 | "execution_count": 7,
237 | "metadata": {},
238 | "outputs": [],
239 | "source": "# notice: installing seaborn might takes a few minutes\n!conda install -c anaconda seaborn -y"
240 | },
241 | {
242 | "cell_type": "code",
243 | "execution_count": 8,
244 | "metadata": {},
245 | "outputs": [
246 | {
247 | "data": {
248 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG4xJREFUeJzt3XucFOWd7/HPV5wVFaIioyKIMyKKqGTAWY3XJbCyqPF2jAbjUdx4DtFoXDbxeMt5aTa+1nghMclRibhyyCaKGrKgSxINUTmKiRfAEcELITrqKCAQN8YgBPB3/qiaSYM9zKV7pmu6v+/Xq15T9VTVU7+umWd+XU9XP6WIwMzMLGt2KHUAZmZm+ThBmZlZJjlBmZlZJjlBmZlZJjlBmZlZJjlBmZlZJjlBdRFJe0u6T9LrkhZJ+q2kM4tU92hJc4tRV3eQNF9SfanjsNIop7YgqVrSs5JekHR8Fx7nw66quydxguoCkgTMAZ6MiAMi4ghgAjCoRPHsWIrjmpVhWxgLvBoRIyPiqWLEZK1zguoaY4C/RMQPmwsi4s2I+D8AknpJulXS85KWSPpyWj46vdqYJelVSfemDRxJ49OyBcB/a65X0q6Spqd1vSDp9LT8Qkk/lfSfwK8KeTGSZkiaKumJ9F3w36XHfEXSjJztpkpaKGmZpH9ppa5x6TvoxWl8fQqJzTKvbNqCpDrgFuBkSQ2Sdm7t71lSo6Qb03ULJY2S9Kik30u6ON2mj6TH0n1fao43z3H/V875yduuylZEeCryBFwO3Lad9ZOA/53O7wQsBGqB0cAfSd5d7gD8FjgO6A28DQwFBDwIzE33vxH47+n87sByYFfgQqAJ6NdKDE8BDXmmv8+z7Qzg/vTYpwMfAIenMS4C6tLt+qU/ewHzgRHp8nygHugPPAnsmpZfBVxX6t+Xp66byrAtXAjcns63+vcMNAKXpPO3AUuAvkA18F5aviPwqZy6VgBKlz9Mf44DpqWvdQdgLnBCqX+v3TW566cbSLqDpHH9JSL+luSPboSkz6eb7EbS4P4CPBcRTel+DUAN8CHwRkT8Li3/CUnDJq3rNElXpMu9gcHp/LyI+EO+mCKio/3n/xkRIeklYHVEvJTGsiyNsQE4R9IkkoY3ABhO0jCbfSYtezp9M/w3JP94rEKUSVto1tbf88Ppz5eAPhHxJ+BPkjZI2h34M3CjpBOAj4GBwN7Aqpw6xqXTC+lyH5Lz82QnY+5RnKC6xjLgrOaFiLhUUn+Sd4eQvBv6akQ8mruTpNHAxpyiLfz1d9TaoIkCzoqI17ap6yiSBpB/J+kpknd027oiIn6dp7w5ro+3ifFjYEdJtcAVwN9GxPtp11/vPLHOi4hzW4vLyk45toXc423v73m7bQY4j+SK6oiI2CSpkfxt5tsRcdd24ihb/gyqazwO9JZ0SU7ZLjnzjwKXSKoCkHSQpF23U9+rQK2kIelyboN4FPhqTv/8yPYEGBHHR0Rdnml7DXJ7PkXyT+CPkvYGTsqzzTPAsZIOTGPdRdJBnTye9Qzl3BYK/XvejaS7b5OkzwL759nmUeBLOZ9tDZS0VweO0aM5QXWBSDqPzwD+TtIbkp4DfkTSRw3wb8DLwGJJS4G72M7VbERsIOnG+Hn6wfCbOatvAKqAJWldNxT79bRHRLxI0g2xDJgOPJ1nmzUkffgzJS0haeDDujFM62bl3BaK8Pd8L1AvaSHJ1dSreY7xK+A+4Ldp9/os8l/tlaXmD+TMzMwyxVdQZmaWSU5QZmaWSU5QZmaWSU5QZmaWSZlIUOPHjw+S7zZ48lQuU9G4fXgqs6ndMpGg1q5dW+oQzDLL7cMqVSYSlJmZ2bacoMzMLJOcoMzMLJM8WKyZlZVNmzbR1NTEhg0bSh1KRevduzeDBg2iqqqq03U4QZlZWWlqaqJv377U1NSQjhtr3SwiWLduHU1NTdTW1na6HnfxmVlZ2bBhA3vuuaeTUwlJYs899yz4KtYJyirG/gMGIKko0/4DBpT65dh2ODmVXjF+B+7is4rx1qpVNO07qCh1DXq3qSj1mFnrfAVlZmWtmFfO7b167tWrF3V1dRx22GGcffbZrF+/vmXd7NmzkcSrr/718U+NjY0cdthhAMyfP5/ddtuNkSNHcvDBB3PCCScwd+7creqfNm0aw4YNY9iwYRx55JEsWLCgZd3o0aM5+OCDqauro66ujlmzZm0VU/PU2NhYyGntFr6CMrOyVswrZ2jf1fPOO+9MQ0MDAOeddx4//OEP+drXvgbAzJkzOe6447j//vv55je/mXf/448/viUpNTQ0cMYZZ7DzzjszduxY5s6dy1133cWCBQvo378/ixcv5owzzuC5555jn332AeDee++lvr6+1Zh6ijavoCRNl/Re+oTK5rJvSnpHUkM6nZyz7hpJKyS9JukfuipwM7Oe4Pjjj2fFihUAfPjhhzz99NPcc8893H///e3av66ujuuuu47bb78dgJtvvplbb72V/v37AzBq1CgmTpzIHXfc0TUvoITa08U3Axifp/y2iKhLp18ASBoOTAAOTfe5U1KvYgVrZtaTbN68mV/+8pccfvjhAMyZM4fx48dz0EEH0a9fPxYvXtyuekaNGtXSJbhs2TKOOOKIrdbX19ezbNmyluXzzjuvpStv3bp1AHz00UctZWeeeWYxXl6Xa7OLLyKelFTTzvpOB+6PiI3AG5JWAEcCv+10hGZmPUxzMoDkCuqiiy4Cku69yZMnAzBhwgRmzpzJqFGj2qwvYvuDgEfEVnfNlUsXXyGfQV0m6QJgIfD1iHgfGAg8k7NNU1r2CZImAZMABg8eXEAYZuXH7aNny5cM1q1bx+OPP87SpUuRxJYtW5DELbfc0mZ9L7zwAocccggAw4cPZ9GiRYwZM6Zl/eLFixk+fHhxX0QGdPYuvqnAEKAOWAl8Jy3Pd+N73tQfEdMioj4i6qurqzsZhll5cvsoP7NmzeKCCy7gzTffpLGxkbfffpva2tqt7sDLZ8mSJdxwww1ceumlAFx55ZVcddVVLV13DQ0NzJgxg6985Std/hq6W6euoCJidfO8pLuB5nsgm4D9cjYdBLzb6ejMzAo0eJ99ivq9tcHpnXIdNXPmTK6++uqtys466yzuu+8+rrrqqq3Kn3rqKUaOHMn69evZa6+9+MEPfsDYsWMBOO2003jnnXc45phjkETfvn35yU9+woAy/PK42urbBEg/g5obEYelywMiYmU6/8/AURExQdKhwH0knzvtCzwGDI2ILdurv76+PhYuXFjI6zBrk6SiflG3jbZTtKEM3D465pVXXmnpDrPSauV30e620eYVlKSZwGigv6Qm4HpgtKQ6ku67RuDLABGxTNKDwMvAZuDStpKTmZlZPu25i+/cPMX3bGf7fwX+tZCgzMzMPNSRmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZW1fQcNLurjNvYd1L6RPVatWsWECRMYMmQIw4cP5+STT2b58uUsW7aMMWPGcNBBBzF06FBuuOGGlq8szJgxg8suu+wTddXU1LB27dqtymbMmEF1dfVWj9B4+eWXAVi+fDknn3wyBx54IIcccgjnnHMODzzwQMt2ffr0aXkkxwUXXMD8+fP53Oc+11L3nDlzGDFiBMOGDePwww9nzpw5LesuvPBCBg4cyMaNGwFYu3YtNTU1HfqdtJcft2FmZW3lO29z1HWPFK2+Z7+Vb+zsrUUEZ555JhMnTmwZtbyhoYHVq1dz4YUXMnXqVMaNG8f69es566yzuPPOO1tGiuiIL3zhCy2jnDfbsGEDp5xyCt/97nc59dRTAXjiiSeorq5uGX5p9OjRTJkypWW8vvnz57fs/+KLL3LFFVcwb948amtreeONNzjxxBM54IADGDFiBJA8W2r69OlccsklHY65I3wFZWZWZE888QRVVVVcfPHFLWV1dXUsX76cY489lnHjxgGwyy67cPvtt3PTTTcV7dj33XcfRx99dEtyAvjsZz/b8kDEtkyZMoVrr72W2tpaAGpra7nmmmu49dZbW7aZPHkyt912G5s3by5a3Pk4QZmZFdnSpUs/8UgMyP+ojCFDhvDhhx/ywQcfdPg4ud12dXV1fPTRR60eu73a8ziPwYMHc9xxx/HjH/+408dpD3fxmZl1k20fi5GrtfLtydfFV6h8MeYru/baaznttNM45ZRTinr8XL6CMjMrskMPPZRFixblLd92XMXXX3+dPn360Ldv3y49dkf23zbGfI/zOPDAA6mrq+PBBx/s9LHa4gRlZlZkY8aMYePGjdx9990tZc8//zxDhw5lwYIF/PrXvwaSBxtefvnlXHnllUU79he/+EV+85vf8POf/7yl7JFHHuGll15q1/5XXHEF3/72t2lsbASgsbGRG2+8ka9//euf2PYb3/gGU6ZMKUrc+biLz8zK2oCB+7XrzruO1NcWScyePZvJkydz00030bt3b2pqavje977HQw89xFe/+lUuvfRStmzZwvnnn7/VreUzZszY6rbuZ55JngE7YsQIdtghuaY455xzGDFiBA888MBWz5O68847OeaYY5g7dy6TJ09m8uTJVFVVMWLECL7//e+36/XV1dVx8803c+qpp7Jp0yaqqqq45ZZbWp4QnOvQQw9l1KhR7X50fUe163EbXc2PE7Du4MdtVAY/biM7Cn3cRptdfJKmS3pP0tKcslslvSppiaTZknZPy2skfSSpIZ1+2N5AzMzMcrXnM6gZwLbXx/OAwyJiBLAcuCZn3e8joi6dLsbMzKwT2kxQEfEk8Idtyn4VEc3f0HqG5NHuZmaZkIWPLipdMX4HxbiL70vAL3OWayW9IOn/STq+tZ0kTZK0UNLCNWvWFCEMs/Lh9tF5vXv3Zt26dU5SJRQRrFu3jt69exdUT0F38Un6Bsmj3e9Ni1YCgyNinaQjgDmSDo2IT3xFOiKmAdMg+RC4kDjMyo3bR+cNGjSIpqYmnNhLq3fv3gwaVFjnWqcTlKSJwOeAsZG+VYmIjcDGdH6RpN8DBwG+BcnMukVVVVXLOHLWs3Wqi0/SeOAq4LSIWJ9TXi2pVzp/ADAUeL0YgZqZWWVp8wpK0kxgNNBfUhNwPcldezsB89LxmZ5J79g7AfiWpM3AFuDiiPhD3orNzMy2o80EFRHn5im+p5Vtfwb8rNCgzMzMPBafmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllUrsSlKTpkt6TtDSnrJ+keZJ+l/7cIy2XpB9IWiFpiaRRXRW8mZmVr/ZeQc0Axm9TdjXwWEQMBR5LlwFOInmS7lBgEjC18DDNzKzStCtBRcSTwLZPxj0d+FE6/yPgjJzyf4/EM8DukgYUI1gzM6schXwGtXdErARIf+6Vlg8E3s7Zrikt24qkSZIWSlq4Zs2aAsIwKz9uH2Zdc5OE8pTFJwoipkVEfUTUV1dXd0EYZj2X24dZYQlqdXPXXfrzvbS8CdgvZ7tBwLsFHMfMzCpQIQnqYWBiOj8ReCin/IL0br7PAH9s7go0MzNrrx3bs5GkmcBooL+kJuB64CbgQUkXAW8BZ6eb/wI4GVgBrAf+scgxm5lZBWhXgoqIc1tZNTbPtgFcWkhQZmZmHknCzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyqV2jmecj6WDggZyiA4DrgN2B/wk0P6f62oj4RacjNDOzitTpBBURrwF1AJJ6Ae8As0me/3RbREwpSoRmZlaRitXFNxb4fUS8WaT6zMyswhUrQU0AZuYsXyZpiaTpkvbIt4OkSZIWSlq4Zs2afJuYVSy3D7MiJChJfwOcBvw0LZoKDCHp/lsJfCfffhExLSLqI6K+urq60DDMyorbh1lxrqBOAhZHxGqAiFgdEVsi4mPgbuDIIhzDzMwqTDES1LnkdO9JGpCz7kxgaRGOYWZmFabTd/EBSNoFOBH4ck7xLZLqgAAat1lnZmbWLgUlqIhYD+y5Tdn5BUVkZmaGR5IwM7OMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMKug2c7OeRL2qGPRuU9HqMrOu5QRlFSO2bOKo6x4pSl3Pfmt8Ueoxs9a5i8/MzDLJCcrMzDLJCcrMzDLJCcrMzDLJCcrMzDLJCcrMzDKp4NvMJTUCfwK2AJsjol5SP+ABoIbkmVDnRMT7hR7LzMwqR7GuoD4bEXURUZ8uXw08FhFDgcfSZasw+w8YgKSCp/0HDGj7YGZWdrrqi7qnA6PT+R8B84GruuhYllFvrVpF076DCq6nWKM/mFnPUowrqAB+JWmRpElp2d4RsRIg/bnXtjtJmiRpoaSFa9asKUIYZuXD7cOsOAnq2IgYBZwEXCrphPbsFBHTIqI+Iuqrq6uLEIZZ+XD7MCtCgoqId9Of7wGzgSOB1ZIGAKQ/3yv0OGZmVlkKSlCSdpXUt3keGAcsBR4GJqabTQQeKuQ4ZmZWeQq9SWJvYLak5rrui4hHJD0PPCjpIuAt4OwCj2NmZhWmoAQVEa8Dn85Tvg4YW0jdZmZW2TyShJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZfIJ2F31RF0zM+tBsvgEbF9BmZlZJnU6QUnaT9ITkl6RtEzSP6Xl35T0jqSGdDq5eOGamVmlKKSLbzPw9YhYnD60cJGkeem62yJiSuHhmZlZpep0goqIlcDKdP5Pkl4BBhYrMDMzq2xF+QxKUg0wEng2LbpM0hJJ0yXt0co+kyQtlLRwzZo1xQjDrGy4fZgVIUFJ6gP8DJgcER8AU4EhQB3JFdZ38u0XEdMioj4i6qurqwsNw6ysuH2YFZigJFWRJKd7I+I/ACJidURsiYiPgbuBIwsP08zMKk0hd/EJuAd4JSK+m1Oe+y2tM4GlnQ/PzMwqVSF38R0LnA+8JKkhLbsWOFdSHRBAI/DlgiI0M7OKVMhdfAsA5Vn1i86HY2ZmlvBIEmZmlkkei8+6jHpVFWVcLvWqKkI0ZtbTOEFZl4ktmzjqukcKrufZb40vQjRm1tO4i8/MzDLJCcrMzDLJCcrMzDLJCcrMzDLJCcrMrJtl8fHqWeS7+MzMulkWH6+eRb6CMjOzTHKCMjOzTHIXn5mZZXLkFycoMzPL5Mgv7uIzM7NM6rIEJWm8pNckrZB0daH1+bZMM7PK0iVdfJJ6AXcAJwJNwPOSHo6Ilztbp2/LNDOrLF31GdSRwIqIeB1A0v3A6UCnE1TW7D9gAG+tWlVwPYP32Yc3V64sQkTlTcr3bEzLIreNthXrhoQdelWVddtQRBS/UunzwPiI+B/p8vnAURFxWc42k4BJ6eLBwGtFD6T9+gNrS3j8Qjj20mgr9rUR0elPizPUPsr5d5Rl5Rx7u9tGV11B5UvpW2XCiJgGTOui43eIpIURUV/qODrDsZdGV8eelfbh31FpOPZEV90k0QTsl7M8CHi3i45lZmZlqKsS1PPAUEm1kv4GmAA83EXHMjOzMtQlXXwRsVnSZcCjQC9gekQs64pjFUnJu1IK4NhLoyfH3hE9+XU69tIoWuxdcpOEmZlZoTyShJmZZZITlJmZZVLFJChJvSS9IGluulwr6VlJv5P0QHozB5J2SpdXpOtrShz37pJmSXpV0iuSjpbUT9K8NPZ5kvZIt5WkH6SxL5E0qsSx/7OkZZKWSpopqXdWz7uk6ZLek7Q0p6zD51nSxHT730ma2J2vobPcNkoSu9tGO1RMggL+CXglZ/lm4LaIGAq8D1yUll8EvB8RBwK3pduV0veBRyJiGPBpktdwNfBYGvtj6TLAScDQdJoETO3+cBOSBgKXA/URcRjJzTITyO55nwFs++XBDp1nSf2A64GjSEZTub654Wac20Y3ctvoQNuIiLKfSL6H9RgwBphL8kXitcCO6fqjgUfT+UeBo9P5HdPtVKK4PwW8se3xSUYVGJDODwBeS+fvAs7Nt10JYh8IvA30S8/jXOAfsnzegRpgaWfPM3AucFdO+VbbZXFy23DbaGfMJWkblXIF9T3gSuDjdHlP4L8iYnO63ETyRwN//eMhXf/HdPtSOABYA/zftAvm3yTtCuwdESvTGFcCe6Xbt8Seyn1d3Soi3gGmAG8BK0nO4yJ6xnlv1tHznJnz3wFuG93MbWOr8u0q+wQl6XPAexGxKLc4z6bRjnXdbUdgFDA1IkYCf+avl9L5ZCb29PL9dKAW2BfYleTyf1tZPO9taS3WnvQa3DbcNrpCUdtG2Sco4FjgNEmNwP0kXRnfA3aX1PxF5dyhmFqGaUrX7wb8oTsDztEENEXEs+nyLJJGuVrSAID053s522dliKm/B96IiDURsQn4D+AYesZ5b9bR85yl898ebhul4bbRzvNf9gkqIq6JiEERUUPyQeTjEXEe8ATw+XSzicBD6fzD6TLp+scj7TTtbhGxCnhb0sFp0ViSR5bkxrht7Bekd9J8Bvhj82V4CbwFfEbSLpLEX2PP/HnP0dHz/CgwTtIe6bvkcWlZJrltuG0UoHvaRik+JCzVBIwG5qbzBwDPASuAnwI7peW90+UV6foDShxzHbAQWALMAfYg6X9+DPhd+rNfuq1IHhT5e+AlkruEShn7vwCvAkuBHwM7ZfW8AzNJPg/YRPJu76LOnGfgS+lrWAH8Y6n/5jvw+t02ujd2t412HNtDHZmZWSaVfRefmZn1TE5QZmaWSU5QZmaWSU5QZmaWSU5QZmaWSU5QGSZpi6SGdMTjn0rapZXtfiFp907Uv6+kWQXE1yipf2f3N+sst43K4NvMM0zShxHRJ52/F1gUEd/NWS+S3+HHrdXRxfE1knzPYW0pjm+Vy22jMvgKqud4CjhQUo2SZ9/cCSwG9mt+t5az7m4lz5r5laSdASQdKOnXkl6UtFjSkHT7pen6CyU9JOkRSa9Jur75wJLmSFqU1jmpJK/erHVuG2XKCaoHSMffOonkm9kABwP/HhEjI+LNbTYfCtwREYcC/wWclZbfm5Z/mmTcr3zDvBwJnEfyDf2zJdWn5V+KiCOAeuBySaUeSdkMcNsod05Q2bazpAaS4VzeAu5Jy9+MiGda2eeNiGhI5xcBNZL6AgMjYjZARGyIiPV59p0XEesi4iOSASyPS8svl/Qi8AzJgI9DC35lZoVx26gAO7a9iZXQRxFRl1uQdK3z5+3sszFnfguwM/mHus9n2w8kQ9JoktGXj46I9ZLmk4wNZlZKbhsVwFdQFSAiPgCaJJ0BIGmnVu56OlFSv7Rv/gzgaZKh/d9PG+Aw4DPdFrhZF3PbyDYnqMpxPkl3xBLgN8A+ebZZQDKycgPws4hYCDwC7JjudwNJV4ZZOXHbyCjfZm5AcqcSyW2xl5U6FrMscdsoHV9BmZlZJvkKyszMMslXUGZmlklOUGZmlklOUGZmlklOUGZmlklOUGZmlkn/H+LDZoiBEQ8dAAAAAElFTkSuQmCC\n",
249 | "text/plain": ""
250 | },
251 | "metadata": {
252 | "needs_background": "light"
253 | },
254 | "output_type": "display_data"
255 | }
256 | ],
257 | "source": "import seaborn as sns\n\nbins = np.linspace(df.Principal.min(), df.Principal.max(), 10)\ng = sns.FacetGrid(df, col=\"Gender\", hue=\"loan_status\", palette=\"Set1\", col_wrap=2)\ng.map(plt.hist, 'Principal', bins=bins, ec=\"k\")\n\ng.axes[-1].legend()\nplt.show()"
258 | },
259 | {
260 | "cell_type": "code",
261 | "execution_count": 9,
262 | "metadata": {
263 | "button": false,
264 | "new_sheet": false,
265 | "run_control": {
266 | "read_only": false
267 | }
268 | },
269 | "outputs": [
270 | {
271 | "data": {
272 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGfZJREFUeJzt3XuQVOW57/HvTxgdFbygo4yMwKgoopIBZ3tDDYJy2N49XuKOR7GOJx4Naqjo8ZZTVrLdZbyVmhwvkUQLK1HUmA26SUWDCidi4gVwRBBv0UFHQS7RKAchgs/5o9fMHqBhembWTK/u+X2qVnWvt1e/61lMvzy93vX2uxQRmJmZZc02xQ7AzMwsHycoMzPLJCcoMzPLJCcoMzPLJCcoMzPLJCcoMzPLJCeolEjaU9Ijkt6XNE/SXySdkVLdoyXNSKOu7iBptqT6YsdhxVdO7UJSlaSXJb0m6Zgu3M/qrqq71DhBpUCSgOnAnyJin4g4FDgXqClSPL2LsV+z1sqwXYwF3oqIERHxQhox2dY5QaVjDPCPiPhFc0FELImI/wMgqZek2yS9KmmBpP+ZlI9OzjaekPSWpIeTRo2k8UnZHOC/NtcraUdJDyZ1vSbptKT8Qkm/lfQfwB87czCSpki6T9Ks5Jvvt5N9LpY0pdV290maK2mRpJ9soa5xybfm+Ul8fToTm5WUsmkXkuqAW4ETJTVI2n5Ln21JjZJuSl6bK2mkpGck/VXSJck2fSQ9l7z3jeZ48+z3f7X698nbxspaRHjp5AJcAdy5ldcvBv538nw7YC5QC4wG/k7uG+U2wF+Ao4FK4CNgCCDgcWBG8v6bgP+WPN8FeAfYEbgQaAL6bSGGF4CGPMvxebadAjya7Ps04AvgkCTGeUBdsl2/5LEXMBsYnqzPBuqB3YE/ATsm5dcANxT77+Wle5YybBcXAncnz7f42QYagUuT53cCC4C+QBWwPCnvDezUqq73ACXrq5PHccDk5Fi3AWYAxxb779qdi7uCuoCke8g1qH9ExD+R+6ANl3RWssnO5BrZP4BXIqIpeV8DMBhYDXwQEe8m5b8h15hJ6jpV0lXJeiUwMHk+MyL+li+miGhvn/l/RERIegP4NCLeSGJZlMTYAJwj6WJyja0aGEauMTY7Iil7MfkCvC25/2ysByqTdtGsrc/2U8njG0CfiPgS+FLSWkm7AP8PuEnSscA3wABgT2BZqzrGJctryXofcv8+f+pgzCXHCSodi4Azm1ciYqKk3cl9I4TcN6DLI+KZ1m+SNBpY16poA//5N9nSJIkCzoyItzep63ByH/r8b5JeIPctblNXRcSzecqb4/pmkxi/AXpLqgWuAv4pIj5Luv4q88Q6MyL+ZUtxWVkrx3bRen9b+2xvtf0A55E7ozo0Ir6W1Ej+9vPTiLh/K3GUNV+DSsfzQKWkS1uV7dDq+TPApZIqACTtL2nHrdT3FlArad9kvXUjeAa4vFWf/IhCAoyIYyKiLs+ytUa4NTuRa/h/l7Qn8M95tnkJGCVpvyTWHSTt38H9Wekp53bR2c/2zuS6+76WdBwwKM82zwD/vdW1rQGS9mjHPkqeE1QKItdhfDrwbUkfSHoFeIhcvzTAr4A3gfmSFgL3s5Wz14hYS67r4vfJxeAlrV6+EagAFiR13Zj28RQiIl4n1/WwCHgQeDHPNivI9dtPlbSAXKMe2o1hWhGVc7tI4bP9MFAvaS65s6m38uzjj8AjwF+SrvYnyH+2V7aaL8qZmZllis+gzMwsk5ygzMwsk5ygzMwsk5ygzMwsk7o1QY0fPz7I/Y7Bi5dyXTrN7cRLD1gK0q0JauXKld25O7OS5HZiluMuPjMzyyQnKDMzyyQnKDMzyyRPFmtmZefrr7+mqamJtWvXFjuUHq2yspKamhoqKio69H4nKDMrO01NTfTt25fBgweTzB9r3SwiWLVqFU1NTdTW1naoDnfxmVnZWbt2LbvttpuTUxFJYrfdduvUWawTVDcaVF2NpFSWQdXVxT4cs0xzciq+zv4N3MXXjT5ctoymvWpSqavmk6ZU6jEzyyqfQZlZ2Uuz96LQHoxevXpRV1fHwQcfzNlnn82aNWtaXps2bRqSeOut/7wNVGNjIwcffDAAs2fPZuedd2bEiBEccMABHHvsscyYMWOj+idPnszQoUMZOnQohx12GHPmzGl5bfTo0RxwwAHU1dVRV1fHE088sVFMzUtjY2Nn/lm7nM+gzKzspdl7AYX1YGy//fY0NDQAcN555/GLX/yCH/7whwBMnTqVo48+mkcffZQf//jHed9/zDHHtCSlhoYGTj/9dLbffnvGjh3LjBkzuP/++5kzZw6777478+fP5/TTT+eVV16hf//+ADz88MPU19dvMaZS4DMoM7Mudswxx/Dee+8BsHr1al588UUeeOABHn300YLeX1dXxw033MDdd98NwC233MJtt93G7rvvDsDIkSOZMGEC99xzT9ccQJE4QZmZdaH169fzhz/8gUMOOQSA6dOnM378ePbff3/69evH/PnzC6pn5MiRLV2CixYt4tBDD93o9fr6ehYtWtSyft5557V05a1atQqAr776qqXsjDPOSOPwupS7+MzMukBzMoDcGdRFF10E5Lr3Jk2aBMC5557L1KlTGTlyZJv1RWx9EvCI2GjUXDl08RWUoCQ1Al8CG4D1EVEvqR/wGDAYaATOiYjPuiZMM7PSki8ZrFq1iueff56FCxciiQ0bNiCJW2+9tc36XnvtNQ488EAAhg0bxrx58xgzZkzL6/Pnz2fYsGHpHkSRtaeL77iIqIuI5pR8LfBcRAwBnkvWzcxsC5544gkuuOAClixZQmNjIx999BG1tbUbjcDLZ8GCBdx4441MnDgRgKuvvpprrrmmpeuuoaGBKVOm8P3vf7/Lj6E7daaL7zRgdPL8IWA2cE0n4zEzS93A/v1T/e3gwGSkXHtNnTqVa6/d+Lv8mWeeySOPPMI112z83+cLL7zAiBEjWLNmDXvssQc///nPGTt2LACnnnoqH3/8MUcddRSS6Nu3L7/5zW+oLrMf8Kutfk0ASR8An5G7E+L9ETFZ0ucRsUurbT6LiF3zvPdi4GKAgQMHHrpkyZLUgi81klL9oW4hfzvrdh366bzbSboWL17c0h1mxbWFv0VB7aTQLr5RETES+GdgoqRjCw0uIiZHRH1E1FdVVRX6NrMexe3EbHMFJaiI+CR5XA5MAw4DPpVUDZA8Lu+qIM3MrOdpM0FJ2lFS3+bnwDhgIfAUMCHZbALwZFcFaWZmPU8hgyT2BKYl4+t7A49ExNOSXgUel3QR8CFwdteFaWZmPU2bCSoi3ge+lad8FTC2K4IyMzPzVEdmZpZJTlBmVvb2qhmY6u029qoZWNB+ly1bxrnnnsu+++7LsGHDOPHEE3nnnXdYtGgRY8aMYf/992fIkCHceOONLT8bmTJlCpdddtlmdQ0ePJiVK1duVDZlyhSqqqo2uoXGm2++CcA777zDiSeeyH777ceBBx7IOeecw2OPPdayXZ8+fVpuyXHBBRcwe/ZsTj755Ja6p0+fzvDhwxk6dCiHHHII06dPb3ntwgsvZMCAAaxbtw6AlStXMnjw4Hb9TQrhufgKMKi6mg+XLSt2GGbWQUs//ojDb3g6tfpe/tfxbW4TEZxxxhlMmDChZdbyhoYGPv30Uy688ELuu+8+xo0bx5o1azjzzDO59957W2aKaI/vfOc7LbOcN1u7di0nnXQSd9xxB6eccgoAs2bNoqqqqmX6pdGjR3P77be3zNc3e/bslve//vrrXHXVVcycOZPa2lo++OADTjjhBPbZZx+GDx8O5O4t9eCDD3LppZe2O+ZCOUEVIK17yfguuGY9x6xZs6ioqOCSSy5pKaurq+OBBx5g1KhRjBs3DoAddtiBu+++m9GjR3coQeXzyCOPcOSRR7YkJ4Djjjuu4PfffvvtXH/99dTW1gJQW1vLddddx2233cavf/1rACZNmsSdd97J9773vVRizsddfGZmXWDhwoWb3RID8t8qY99992X16tV88cUX7d5P6267uro6vvrqqy3uu1CF3M5j4MCBHH300S0Jqyv4DMrMrBtteluM1rZUvjX5uvg6K1+M+cquv/56Tj31VE466aRU99/MZ1BmZl3goIMOYt68eXnL586du1HZ+++/T58+fejbt2+X7rs97980xny389hvv/2oq6vj8ccf7/C+tsYJysysC4wZM4Z169bxy1/+sqXs1VdfZciQIcyZM4dnn30WyN3Y8IorruDqq69Obd/f/e53+fOf/8zvf//7lrKnn36aN954o6D3X3XVVfz0pz+lsbERgMbGRm666SauvPLKzbb90Y9+xO23355K3JtyF5+Zlb3qAXsXNPKuPfW1RRLTpk1j0qRJ3HzzzVRWVjJ48GDuuusunnzySS6//HImTpzIhg0bOP/88zcaWj5lypSNhnW/9NJLAAwfPpxttsmdV5xzzjkMHz6cxx57bKP7Sd17770cddRRzJgxg0mTJjFp0iQqKioYPnw4P/vZzwo6vrq6Om655RZOOeUUvv76ayoqKrj11ltb7hDc2kEHHcTIkSMLvnV9exR0u4201NfXx6anjaUgrdtk1HzS5NttlL8O3W6jtVJtJ1ni221kR3fcbsPMzKxbOUGZmVkmOUGZWVlyF3jxdfZv4ARlZmWnsrKSVatWOUkVUUSwatUqKisrO1yHR/GZWdmpqamhqamJFStWFDuUHq2yspKamo4PDHOCKlHb0bFfneczsH9/lixdmkpdZllQUVHRMo+clS4nqBK1DlIdsm5mljUFX4OS1EvSa5JmJOu1kl6W9K6kxyRt23VhmplZT9OeQRI/ABa3Wr8FuDMihgCfARelGZiZmfVsBSUoSTXAScCvknUBY4Ankk0eAk7vigDNzKxnKvQM6i7gauCbZH034POIWJ+sNwED8r1R0sWS5kqa6xE1Zvm5nZhtrs0EJelkYHlEtJ67Pd/wsbw/OIiIyRFRHxH1VVVVHQzTrLy5nZhtrpBRfKOAUyWdCFQCO5E7o9pFUu/kLKoG+KTrwjQzs56mzTOoiLguImoiYjBwLvB8RJwHzALOSjabADzZZVGamVmP05mpjq4BfijpPXLXpB5IJyQzM7N2/lA3ImYDs5Pn7wOHpR+SmZmZJ4s1M7OMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMajNBSaqU9Iqk1yUtkvSTpLxW0suS3pX0mKRtuz5cMzPrKQo5g1oHjImIbwF1wHhJRwC3AHdGxBDgM+CirgvTzMx6mjYTVOSsTlYrkiWAMcATSflDwOldEqGZmfVIBV2DktRLUgOwHJgJ/BX4PCLWJ5s0AQO28N6LJc2VNHfFihVpxGxWdtxOzDZXUIKKiA0RUQfUAIcBB+bbbAvvnRwR9RFRX1VV1fFIzcqY24nZ5to1ii8iPgdmA0cAu0jqnbxUA3ySbmhmZtaTFTKKr0rSLsnz7YHjgcXALOCsZLMJwJNdFaSZmfU8vdvehGrgIUm9yCW0xyNihqQ3gUcl/RvwGvBAF8ZpZmY9TJsJKiIWACPylL9P7nqUmZlZ6jyThJmZZZITlJmZZZITlJmZZZITlJmZZVLZJqhB1dVISmUxM7PuV8gw85L04bJlNO1Vk0pdNZ80pVKPmZkVrmzPoMzMrLQ5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSa1maAk7S1plqTFkhZJ+kFS3k/STEnvJo+7dn24ZmbWUxRyBrUeuDIiDgSOACZKGgZcCzwXEUOA55J1MzOzVLSZoCJiaUTMT55/CSwGBgCnAQ8lmz0EnN5VQZqZWc/TrmtQkgYDI4CXgT0jYinkkhiwxxbec7GkuZLmrlixonPRmpUptxOzzRWcoCT1AX4HTIqILwp9X0RMjoj6iKivqqrqSIxmZc/txGxzBSUoSRXkktPDEfHvSfGnkqqT16uB5V0TopmZ9USFjOIT8ACwOCLuaPXSU8CE5PkE4Mn0w7PusB20edv7QpZB1dXFPhQzKyOF3PJ9FHA+8IakhqTseuBm4HFJFwEfAmd3TYjW1dYBTXvVdLqemk+aOh+MmVmizQQVEXMAbeHlsemGk03qVZHKf77qvW1q/4mrV0Uq9ZiZZVUhZ1A9Xmz4msNveLrT9bz8r+NTqae5LjOzcuapjszMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJPKdiaJtKYnMjOz4ijbBJXW9ETgaYXMzIrBXXxmZpZJTlBmZpZJTlBmZpZJZXsNqtylOQjE95ayrBlUXc2Hy5Z1up7tt+nFV99sSCEiGNi/P0uWLk2lLiuME1SJ8iAQK2cfLluW2l2e06inuS7rXm128Ul6UNJySQtblfWTNFPSu8njrl0bppmZ9TSFXIOaAmz6Ffta4LmIGAI8l6xbD7cdICmVZVB1dbEPx8yKrM0uvoj4k6TBmxSfBoxOnj8EzAauSTEuK0HrwN0pZpaajo7i2zMilgIkj3tsaUNJF0uaK2nuihUrOrg7s/JWDu1kUHV1amfQZtANgyQiYjIwGaC+vj66en9mpagc2klaAxvAZ9CW09EzqE8lVQMkj8vTC8nMzKzjCeopYELyfALwZDrhmJmZ5RQyzHwq8BfgAElNki4CbgZOkPQucEKybmZmlppCRvH9yxZeGptyLGZmZi0yNRefRwGZmVmzTE115FFAZmbWLFMJyoojrYlnPemsmaXJCcpSm3jWk86aWZoydQ3KzMysmROUmZllkhOUmZllkhOUmZllkhOUZZLvLdU9/NtDyzKP4rNM8r2luod/e2hZ5gRlqUnr91TNdZlZz+YEZalJ6/dU4N9UmZmvQZmZWUb5DMoyKc3uwm16VaRyEX9g//4sWbo0hYjKU6pdvL239fRbBRhUXc2Hy5alUlcWP99OUJZJaXcXpjEQwIMAti7tv5mn32pbuQ9ycRefmZllUqbOoNLsIjAzs9KWqQTlUWBmZtasUwlK0njgZ0Av4FcRcXMqUZmlqBzvd5XmxXErTFqDbQC26V3BN+u/TqWuctbhBCWpF3APcALQBLwq6amIeDOt4MzSUI73u0rr4ri71Av3jQfudLvODJI4DHgvIt6PiH8AjwKnpROWmZn1dIqIjr1ROgsYHxH/I1k/Hzg8Ii7bZLuLgYuT1QOAtzsebovdgZUp1JMFPpZs6uixrIyIdp9qdVE7Af9NsqqnH0tB7aQz16DydcZulu0iYjIwuRP72XzH0tyIqE+zzmLxsWRTdx9LV7QT8N8kq3wshelMF18TsHer9Rrgk86FY2ZmltOZBPUqMERSraRtgXOBp9IJy8zMeroOd/FFxHpJlwHPkBtm/mBELEotsq1LvSukiHws2VQux1IuxwE+lqzqsmPp8CAJMzOzruS5+MzMLJOcoMzMLJMyn6Ak7S1plqTFkhZJ+kFS3k/STEnvJo+7FjvWtkiqlPSKpNeTY/lJUl4r6eXkWB5LBp1knqRekl6TNCNZL8njAJDUKOkNSQ2S5iZlJfMZczvJtnJpK93dTjKfoID1wJURcSBwBDBR0jDgWuC5iBgCPJesZ906YExEfAuoA8ZLOgK4BbgzOZbPgIuKGGN7/ABY3Gq9VI+j2XERUdfqNx2l9BlzO8m2cmor3ddOIqKkFuBJcvP/vQ1UJ2XVwNvFjq2dx7EDMB84nNyvsHsn5UcCzxQ7vgLir0k+jGOAGeR+uF1yx9HqeBqB3TcpK9nPmNtJdpZyaivd3U5K4QyqhaTBwAjgZWDPiFgKkDzuUbzICpec6jcAy4GZwF+BzyNifbJJEzCgWPG1w13A1cA3yfpulOZxNAvgj5LmJdMOQel+xgbjdpIl5dRWurWdZOp+UFsjqQ/wO2BSRHyR1rT33S0iNgB1knYBpgEH5tuse6NqH0knA8sjYp6k0c3FeTbN9HFsYlREfCJpD2CmpLeKHVBHuJ1kSxm2lW5tJyWRoCRVkGt0D0fEvyfFn0qqjoilkqrJfdMqGRHxuaTZ5K4X7CKpd/KNqhSmjBoFnCrpRKAS2Inct8RSO44WEfFJ8rhc0jRys/WX1GfM7SSTyqqtdHc7yXwXn3JfAR8AFkfEHa1eegqYkDyfQK7PPdMkVSXfCJG0PXA8uQuns4Czks0yfywRcV1E1ETEYHJTXD0fEedRYsfRTNKOkvo2PwfGAQspoc+Y20k2lVNbKUo7KfZFtwIuyh1N7vR3AdCQLCeS68d9Dng3eexX7FgLOJbhwGvJsSwEbkjK9wFeAd4DfgtsV+xY23FMo4EZpXwcSdyvJ8si4EdJecl8xtxOsr+UelspRjvxVEdmZpZJme/iMzOznskJyszMMskJyszMMskJyszMMskJyszMMskJyszMMskJyszMMskJqsRJmp5M3LioefJGSRdJekfSbEm/lHR3Ul4l6XeSXk2WUcWN3qx7uJ2UJv9Qt8RJ6hcRf0umhHkV+C/Ai8BI4EvgeeD1iLhM0iPAvRExR9JAclP855uE06ysuJ2UppKYLNa26gpJZyTP9wbOB/5vRPwNQNJvgf2T148HhrWa4XonSX0j4svuDNisCNxOSpATVAlLpu8/HjgyItYksz6/Tf5bE0CuS/fIiPiqeyI0Kz63k9Lla1ClbWfgs6TRDSV3S4IdgG9L2lVSb+DMVtv/EbiseUVSXbdGa1YcbiclygmqtD0N9Ja0ALgReAn4GLiJ3N1UnwXeBP6ebH8FUC9pgaQ3gUu6P2Szbud2UqI8SKIMSeoTEauTb4bTgAcjYlqx4zLLEreT7PMZVHn6saQGcvfS+QCYXuR4zLLI7STjfAZlZmaZ5DMoMzPLJCcoMzPLJCcoMzPLJCcoMzPLJCcoMzPLpP8PlTlGZbaTvVAAAAAASUVORK5CYII=\n",
273 | "text/plain": ""
274 | },
275 | "metadata": {
276 | "needs_background": "light"
277 | },
278 | "output_type": "display_data"
279 | }
280 | ],
281 | "source": "bins = np.linspace(df.age.min(), df.age.max(), 10)\ng = sns.FacetGrid(df, col=\"Gender\", hue=\"loan_status\", palette=\"Set1\", col_wrap=2)\ng.map(plt.hist, 'age', bins=bins, ec=\"k\")\n\ng.axes[-1].legend()\nplt.show()"
282 | },
283 | {
284 | "cell_type": "markdown",
285 | "metadata": {
286 | "button": false,
287 | "new_sheet": false,
288 | "run_control": {
289 | "read_only": false
290 | }
291 | },
292 | "source": "# Pre-processing: Feature selection/extraction"
293 | },
294 | {
295 | "cell_type": "markdown",
296 | "metadata": {
297 | "button": false,
298 | "new_sheet": false,
299 | "run_control": {
300 | "read_only": false
301 | }
302 | },
303 | "source": "### Lets look at the day of the week people get the loan "
304 | },
305 | {
306 | "cell_type": "code",
307 | "execution_count": 10,
308 | "metadata": {
309 | "button": false,
310 | "new_sheet": false,
311 | "run_control": {
312 | "read_only": false
313 | }
314 | },
315 | "outputs": [
316 | {
317 | "data": {
318 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGepJREFUeJzt3XmcVPW55/HPV2gvIriC2tIBWkQQldtgR+OCQUh4EdzwuoTEKGTMdTQuYQyDSzImN84YF8YlcSVq8EbEhUTMJTcaVIjgztKCiCFebbEVFJgYYxQFfeaPOt1poKGr6VPU6erv+/WqV1edOud3ntNdTz91fnXq91NEYGZmljU7FDsAMzOzprhAmZlZJrlAmZlZJrlAmZlZJrlAmZlZJrlAmZlZJrlApUTS3pLuk/S6pAWSnpV0ckptD5U0M422tgdJcyRVFzsOK75SygtJ3SU9L2mRpCEF3M+HhWq7rXGBSoEkATOApyJiv4g4FBgDVBQpno7F2K9ZYyWYF8OBVyNiUETMTSMm2zoXqHQMAz6NiNvrF0TEmxHxcwBJHSRdJ+lFSYsl/fdk+dDkbGO6pFclTU2SGkkjk2XzgH+pb1fSzpLuTtpaJOmkZPk4SQ9J+g/gD605GElTJN0maXbyzvfLyT6XSZrSaL3bJM2XtFTSv22hrRHJu+aFSXxdWhObtSklkxeSqoBrgVGSaiTttKXXtqRaSVclz82XNFjSY5L+S9K5yTpdJD2RbLukPt4m9vs/G/1+msyxkhYRvrXyBlwE3LCV588Bfpjc/ydgPlAJDAX+Su4d5Q7As8DRQCfgLaAvIOBBYGay/VXAt5L7uwHLgZ2BcUAdsMcWYpgL1DRx+0oT604B7k/2fRLwAXBIEuMCoCpZb4/kZwdgDjAweTwHqAa6AU8BOyfLLwGuKPbfy7ftcyvBvBgH3Jzc3+JrG6gFzkvu3wAsBroC3YH3kuUdgV0atfUaoOTxh8nPEcDk5Fh3AGYCxxT777o9b+4KKgBJt5BLqE8j4ovkXmgDJZ2arLIruST7FHghIuqS7WqA3sCHwBsR8edk+b3kkpmkrRMlTUgedwJ6JvdnRcT/ayqmiGhpn/l/RERIWgK8GxFLkliWJjHWAKdLOodcspUDA8glY70vJcueTt4A70jun421QyWSF/Wae23/Nvm5BOgSEX8D/iZpnaTdgL8DV0k6Bvgc6AHsDaxq1MaI5LYoedyF3O/nqW2Muc1xgUrHUuCU+gcRcb6kbuTeEULuHdCFEfFY440kDQU+abToM/7xN9nSIIkCTomIP23S1uHkXvRNbyTNJfcublMTIuLxJpbXx/X5JjF+DnSUVAlMAL4YEX9Juv46NRHrrIj4xpbispJWinnReH9be21vNX+AM8idUR0aEesl1dJ0/vw0Iu7YShwlzZ9BpeNJoJOk8xot69zo/mPAeZLKACQdIGnnrbT3KlApqU/yuHESPAZc2KhPflA+AUbEkIioauK2tSTcml3IJf5fJe0NfK2JdZ4DjpK0fxJrZ0kHbOP+rO0p5bxo7Wt7V3LdfeslHQv0amKdx4D/1uizrR6S9mrBPto8F6gURK7DeDTwZUlvSHoBuIdcvzTAncArwEJJLwN3sJWz14hYR67r4nfJh8FvNnr6SqAMWJy0dWXax5OPiHiJXNfDUuBu4Okm1llNrt9+mqTF5JK6/3YM04qolPMihdf2VKBa0nxyZ1OvNrGPPwD3Ac8mXe3Tafpsr2TVfyhnZmaWKT6DMjOzTHKBMjOzTHKBMjOzTHKBMjOzTNquBWrkyJFB7nsMvvlWqrdWc5741g5uedmuBWrNmjXbc3dmbZLzxCzHXXxmZpZJLlBmZpZJLlBmZpZJHizWzErO+vXrqaurY926dcUOpV3r1KkTFRUVlJWVbdP2LlBmVnLq6uro2rUrvXv3Jhk/1raziGDt2rXU1dVRWVm5TW24i8/MSs66devYc889XZyKSBJ77rlnq85iXaCs5PUqL0dSq2+9ysuLfSjWAi5Oxdfav4G7+KzkrVi1irp9K1rdTsU7dSlEY2b58hmUmZW8tM6iW3I23aFDB6qqqjj44IM57bTT+Oijjxqee/jhh5HEq6/+Yxqo2tpaDj74YADmzJnDrrvuyqBBg+jXrx/HHHMMM2fO3Kj9yZMn079/f/r3789hhx3GvHnzGp4bOnQo/fr1o6qqiqqqKqZPn75RTPW32tra1vxaCy6vMyhJ/wP4DrkhKpYA3wbKgfuBPYCFwJkR8WmB4jQz22ZpnUXXy+dseqeddqKmpgaAM844g9tvv52LL74YgGnTpnH00Udz//338+Mf/7jJ7YcMGdJQlGpqahg9ejQ77bQTw4cPZ+bMmdxxxx3MmzePbt26sXDhQkaPHs0LL7zAPvvsA8DUqVOprq7eYkxtQbNnUJJ6ABcB1RFxMNABGANcA9wQEX2BvwBnFzJQM7O2asiQIbz22msAfPjhhzz99NPcdddd3H///XltX1VVxRVXXMHNN98MwDXXXMN1111Ht27dABg8eDBjx47llltuKcwBFEm+XXwdgZ0kdQQ6AyuBYeSmIIbcNM6j0w/PzKxt27BhA7///e855JBDAJgxYwYjR47kgAMOYI899mDhwoV5tTN48OCGLsGlS5dy6KGHbvR8dXU1S5cubXh8xhlnNHTlrV27FoCPP/64YdnJJ5+cxuEVVLNdfBHxtqRJwArgY+APwALg/YjYkKxWB/RoantJ5wDnAPTs2TONmM1KjvOk9NQXA8idQZ19dq6Tadq0aYwfPx6AMWPGMG3aNAYPHtxsexFbHwQ8Ija6aq4UuviaLVCSdgdOAiqB94GHgK81sWqTv72ImAxMBqiurs57mHWz9sR5UnqaKgZr167lySef5OWXX0YSn332GZK49tprm21v0aJFHHjggQAMGDCABQsWMGzYsIbnFy5cyIABA9I9iCLLp4vvK8AbEbE6ItYDvwGOBHZLuvwAKoB3ChSjmVlJmD59OmeddRZvvvkmtbW1vPXWW1RWVm50BV5TFi9ezJVXXsn5558PwMSJE7nkkksauu5qamqYMmUK3/3udwt+DNtTPlfxrQC+JKkzuS6+4cB8YDZwKrkr+cYCjxQqSDOz1ui5zz6pfo+tZ3KlXEtNmzaNSy+9dKNlp5xyCvfddx+XXHLJRsvnzp3LoEGD+Oijj9hrr7342c9+xvDhwwE48cQTefvttznyyCORRNeuXbn33nspL7Evk6u5fk0ASf8GfB3YACwid8l5D/5xmfki4FsR8cnW2qmuro758+e3NmazFpGU2hd188iXVg9f4DxpvWXLljV0h1lxbeFvkVee5PU9qIj4EfCjTRa/DhyWz/ZmZmYt5ZEkzMwsk1ygzMwsk1ygzMwsk1ygzMwsk1ygzMwsk1ygzKzk7VvRM9XpNvatyG84qlWrVjFmzBj69OnDgAEDGDVqFMuXL2fp0qUMGzaMAw44gL59+3LllVc2fIVhypQpXHDBBZu11bt3b9asWbPRsilTptC9e/eNptB45ZVXAFi+fDmjRo1i//3358ADD+T000/ngQceaFivS5cuDVNynHXWWcyZM4fjjz++oe0ZM2YwcOBA+vfvzyGHHMKMGTManhs3bhw9evTgk09y3yxas2YNvXv3btHfJB+esNDMSt7Kt9/i8CseTa29538ystl1IoKTTz6ZsWPHNoxaXlNTw7vvvsu4ceO47bbbGDFiBB999BGnnHIKt956a8NIES3x9a9/vWGU83rr1q3juOOO4/rrr+eEE04AYPbs2XTv3r1h+KWhQ4cyadKkhvH65syZ07D9Sy+9xIQJE5g1axaVlZW88cYbfPWrX2W//fZj4MCBQG5uqbvvvpvzzjuvxTHny2dQZmYFMHv2bMrKyjj33HMbllVVVbF8+XKOOuooRowYAUDnzp25+eabufrqq1Pb93333ccRRxzRUJwAjj322IYJEZszadIkLr/8ciorKwGorKzksssu47rrrmtYZ/z48dxwww1s2LBhS820mguUmVkBvPzyy5tNiQFNT5XRp08fPvzwQz744IMW76dxt11VVRUff/zxFvedr3ym8+jZsydHH300v/rVr7Z5P81xF5+Z2Xa06bQYjW1p+dY01cXXWk3F2NSyyy+/nBNPPJHjjjsu1f3X8xmUmVkBHHTQQSxYsKDJ5ZuOtfj666/TpUsXunbtWtB9t2T7TWNsajqP/fffn6qqKh588MFt3tfWuECZmRXAsGHD+OSTT/jFL37RsOzFF1+kb9++zJs3j8cffxzITWx40UUXMXHixNT2/c1vfpNnnnmG3/3udw3LHn30UZYsWZLX9hMmTOCnP/0ptbW1ANTW1nLVVVfx/e9/f7N1f/CDHzBp0qRU4t6Uu/jMrOSV9/hCXlfetaS95kji4YcfZvz48Vx99dV06tSJ3r17c+ONN/LII49w4YUXcv755/PZZ59x5plnbnRp+ZQpUza6rPu5554DYODAgeywQ+684vTTT2fgwIE88MADG80ndeutt3LkkUcyc+ZMxo8fz/jx4ykrK2PgwIHcdNNNeR1fVVUV11xzDSeccALr16+nrKyMa6+9tmGG4MYOOuggBg8enPfU9S2R13QbafE0AlYMnm6j/fF0G9nRmuk23MVnZmaZlKkC1au8PLVvevcqsZklzczam0x9BrVi1apUumKAVKd3NrO2Z2uXc9v20dqPkDJ1BmVmloZOnTqxdu3aVv+DtG0XEaxdu5ZOnTptcxuZOoMyM0tDRUUFdXV1rF69utihtGudOnWiomLbe8VcoMys5JSVlTWMI2dtl7v4zMwsk1ygzMwsk1ygzMwsk1ygzMwsk1ygzMwsk/IqUJJ2kzRd0quSlkk6QtIekmZJ+nPyc/dCB2tmZu1HvmdQNwGPRkR/4J+BZcClwBMR0Rd4InlsZmaWimYLlKRdgGOAuwAi4tOIeB84CbgnWe0eYHShgjQzs/YnnzOo/YDVwC8lLZJ0p6Sdgb0jYiVA8nOvpjaWdI6k+ZLm+1vdZk1znphtLp8C1REYDNwWEYOAv9OC7ryImBwR1RFR3b17920M06y0OU/MNpdPgaoD6iLi+eTxdHIF611J5QDJz/cKE6KZmbVHzRaoiFgFvCWpX7JoOPAK8FtgbLJsLPBIQSI0M7N2Kd/BYi8EpkraEXgd+Da54vagpLOBFcBphQnRrHXUoSyV+cHUoSyFaMwsX3kVqIioAaqbeGp4uuGYpS8+W8/hVzza6nae/8nIFKIxs3x5JAkzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8ukvAuUpA6SFkmamTyulPS8pD9LekDSjoUL08zM2puWnEF9D1jW6PE1wA0R0Rf4C3B2moGZmVn7lleBklQBHAfcmTwWMAyYnqxyDzC6EAGamVn7lO8Z1I3ARODz5PGewPsRsSF5XAf0aGpDSedImi9p/urVq1sVrFmpcp6Yba7ZAiXpeOC9iFjQeHETq0ZT20fE5Iiojojq7t27b2OYZqXNeWK2uY55rHMUcKKkUUAnYBdyZ1S7SeqYnEVVAO8ULkwzM2tvmj2DiojLIqIiInoDY4AnI+IMYDZwarLaWOCRgkVpZmbtTmu+B3UJcLGk18h9JnVXOiGZmZnl18XXICLmAHOS+68Dh6UfkpmZmUeSMDOzjHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKB2o56lZcjKZVbr/LyYh+OmVlBtWg+KGudFatWUbdvRSptVbxTl0o7ZmZZ5TMoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLpGYLlKQvSJotaZmkpZK+lyzfQ9IsSX9Ofu5e+HDNzKy9yOcMagPw/Yg4EPgScL6kAcClwBMR0Rd4InlsZmaWimYLVESsjIiFyf2/AcuAHsBJwD3JavcAowsVpJmZtT8t+gxKUm9gEPA8sHdErIRcEQP22sI250iaL2n+6tWrWxetWYlynphtLu8CJakL8GtgfER8kO92ETE5Iqojorp79+7bEqNZyXOemG0urwIlqYxccZoaEb9JFr8rqTx5vhx4rzAhmplZe5TPVXwC7gKWRcT1jZ76LTA2uT8WeCT98MzMrL3KZ8LCo4AzgSWSapJllwNXAw9KOhtYAZxWmBDNzKw9arZARcQ8QFt4eni64ZiZWTH0Ki9nxapVqbTVc599eHPlyla34ynfzcyMFatWUbdvRSptVbxTl0o7HurIMqlXeTmSUrmVorR+P73Ky4t9KGZb5DMoy6QsvpvLkrR+P6X4u7HS4TMoMzPLpJI9g/onSK17J60P/Cx/6lDmd/dm7VzJFqhPwF1EbVh8tp7Dr3g0lbae/8nIVNoxs+3LXXxmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJJTvUkZmZ5S/N8S/VoSyVdlygzMwsk+NfuovPrB2rH/Xfkx9aFvkMyqwd86j/lmU+gzIzs0xygbLU7FvRM7XuIjMzd/FZala+/VbmPmQ1s7YrUwUqi5c5mtn216u8nBWrVrW6nZ777MObK1emEJEVQ6YKVBYvc8yq+quv0uAktqxZsWpVKhdv+MKNtq1VBUrSSOAmoANwZ0RcnUpU1ixffWVmpW6bL5KQ1AG4BfgaMAD4hqQBaQVmZtZaWf2eV6/y8lRi6tyhY0lfmNSaM6jDgNci4nUASfcDJwGvpBGYmVlrZbWnIc0uzCweX1oUEdu2oXQqMDIivpM8PhM4PCIu2GS9c4Bzkof9gD9tpdluwJptCqht8PG1bfkc35qIaPEHoC3Mk3xjact8fG1bc8eXV5605gyqqXPCzapdREwGJufVoDQ/IqpbEVOm+fjatkIeX0vypNCxZIGPr21L6/ha80XdOuALjR5XAO+0LhwzM7Oc1hSoF4G+kiol7QiMAX6bTlhmZtbebXMXX0RskHQB8Bi5y8zvjoilrYwn7y6ONsrH17Zl6fiyFEsh+PjatlSOb5svkjAzMyskDxZrZmaZ5AJlZmaZlJkCJWmkpD9Jek3SpcWOJ02SviBptqRlkpZK+l6xY0qbpA6SFkmaWexYCkHSbpKmS3o1+TseUaQ4nCdtXCnnStp5konPoJJhk5YDXyV3+fqLwDcioiRGpZBUDpRHxEJJXYEFwOhSOT4ASRcD1cAuEXF8seNJm6R7gLkRcWdy1WrniHh/O8fgPCkBpZwraedJVs6gGoZNiohPgfphk0pCRKyMiIXJ/b8By4AexY0qPZIqgOOAO4sdSyFI2gU4BrgLICI+3d7FKeE8aeNKOVcKkSdZKVA9gLcaPa6jxF6Y9ST1BgYBzxc3klTdCEwEPi92IAWyH7Aa+GXSNXOnpJ2LEIfzpO0r5VxJPU+yUqDyGjaprZPUBfg1MD4iPih2PGmQdDzwXkQsKHYsBdQRGAzcFhGDgL8Dxfj8x3nShrWDXEk9T7JSoEp+2CRJZeSSbmpE/KbY8aToKOBESbXkupyGSbq3uCGlrg6oi4j6d/PTySViMeJwnrRdpZ4rqedJVgpUSQ+bpNxkK3cByyLi+mLHk6aIuCwiKiKiN7m/25MR8a0ih5WqiFgFvCWpX7JoOMWZVsZ50oaVeq4UIk8yMeV7gYZNypKjgDOBJZJqkmWXR8R/FjEma5kLgalJYXgd+Pb2DsB5Ym1AqnmSicvMzczMNpWVLj4zM7ONuECZmVkmuUCZmVkmuUCZmVkmuUCZmVkmuUBlgKQfS5qQYnv9JdUkw430SavdRu3PkVSddrtmW+M8aX9coErTaOCRiBgUEf9V7GDMMsp5knEuUEUi6QfJvD6PA/2SZf8q6UVJL0n6taTOkrpKeiMZAgZJu0iqlVQmqUrSc5IWS3pY0u6SRgHjge8kc+tMlHRRsu0Nkp5M7g+vH2ZF0ghJz0paKOmhZCw0JB0q6Y+SFkh6LJkOofEx7CDpHkn/e7v94qxdcZ60by5QRSDpUHJDnQwC/gX4YvLUbyLiixHxz+SmGjg7mXZgDrkh+km2+3VErAf+HbgkIgYCS4AfJd+6vx24ISKOBZ4ChiTbVgNdkiQ+GpgrqRvwQ+ArETEYmA9cnKzzc+DUiDgUuBv4P40OoyMwFVgeET9M8ddjBjhPLCNDHbVDQ4CHI+IjAEn146kdnLzL2g3oQm5IG8jNHTMRmEFu6JB/lbQrsFtE/DFZ5x7goSb2tQA4VLkJ4D4BFpJLwCHARcCXgAHA07mh0NgReJbcu9WDgVnJ8g7Aykbt3gE8GBGNk9EsTc6Tds4FqniaGmNqCrkZRF+SNA4YChART0vqLenLQIeIeDlJvOZ3ErFeudGTvw08AywGjgX6kHv32QeYFRHfaLydpEOApRGxpSmbnwGOlfR/I2JdPrGYbQPnSTvmLr7ieAo4WdJOyTu2E5LlXYGVSbfBGZts8+/ANOCXABHxV+Avkuq7Jc4E/kjTngImJD/nAucCNZEbiPE54ChJ+wMk/fkHAH8Cuks6IlleJumgRm3eBfwn8JAkv9GxQnCetHMuUEWQTGv9AFBDbu6buclT/4vcDKKzgFc32WwqsDu55Ks3FrhO0mKgCvjJFnY5FygHno2Id4F19fuMiNXAOGBa0s5zQP9kSvFTgWskvZTEeuQmx3E9ua6QX0nya8lS5Twxj2beRkg6FTgpIs4sdixmWeU8KS0+5WwDJP0c+BowqtixmGWV86T0+AzKzMwyyf2hZmaWSS5QZmaWSS5QZmaWSS5QZmaWSS5QZmaWSf8feZ3K8s9z83MAAAAASUVORK5CYII=\n",
319 | "text/plain": ""
320 | },
321 | "metadata": {
322 | "needs_background": "light"
323 | },
324 | "output_type": "display_data"
325 | }
326 | ],
327 | "source": "df['dayofweek'] = df['effective_date'].dt.dayofweek\nbins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)\ng = sns.FacetGrid(df, col=\"Gender\", hue=\"loan_status\", palette=\"Set1\", col_wrap=2)\ng.map(plt.hist, 'dayofweek', bins=bins, ec=\"k\")\ng.axes[-1].legend()\nplt.show()\n"
328 | },
329 | {
330 | "cell_type": "markdown",
331 | "metadata": {
332 | "button": false,
333 | "new_sheet": false,
334 | "run_control": {
335 | "read_only": false
336 | }
337 | },
338 | "source": "We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4 "
339 | },
340 | {
341 | "cell_type": "code",
342 | "execution_count": 11,
343 | "metadata": {
344 | "button": false,
345 | "new_sheet": false,
346 | "run_control": {
347 | "read_only": false
348 | }
349 | },
350 | "outputs": [
351 | {
352 | "data": {
353 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n dayofweek \n weekend \n \n \n \n \n 0 \n 0 \n 0 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 45 \n High School or Below \n male \n 3 \n 0 \n \n \n 1 \n 2 \n 2 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 33 \n Bechalor \n female \n 3 \n 0 \n \n \n 2 \n 3 \n 3 \n PAIDOFF \n 1000 \n 15 \n 2016-09-08 \n 2016-09-22 \n 27 \n college \n male \n 3 \n 0 \n \n \n 3 \n 4 \n 4 \n PAIDOFF \n 1000 \n 30 \n 2016-09-09 \n 2016-10-08 \n 28 \n college \n female \n 4 \n 1 \n \n \n 4 \n 6 \n 6 \n PAIDOFF \n 1000 \n 30 \n 2016-09-09 \n 2016-10-08 \n 29 \n college \n male \n 4 \n 1 \n \n \n
\n
",
354 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 0 0 PAIDOFF 1000 30 2016-09-08 \n1 2 2 PAIDOFF 1000 30 2016-09-08 \n2 3 3 PAIDOFF 1000 15 2016-09-08 \n3 4 4 PAIDOFF 1000 30 2016-09-09 \n4 6 6 PAIDOFF 1000 30 2016-09-09 \n\n due_date age education Gender dayofweek weekend \n0 2016-10-07 45 High School or Below male 3 0 \n1 2016-10-07 33 Bechalor female 3 0 \n2 2016-09-22 27 college male 3 0 \n3 2016-10-08 28 college female 4 1 \n4 2016-10-08 29 college male 4 1 "
355 | },
356 | "execution_count": 11,
357 | "metadata": {},
358 | "output_type": "execute_result"
359 | }
360 | ],
361 | "source": "df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)\ndf.head()"
362 | },
363 | {
364 | "cell_type": "markdown",
365 | "metadata": {
366 | "button": false,
367 | "new_sheet": false,
368 | "run_control": {
369 | "read_only": false
370 | }
371 | },
372 | "source": "## Convert Categorical features to numerical values"
373 | },
374 | {
375 | "cell_type": "markdown",
376 | "metadata": {
377 | "button": false,
378 | "new_sheet": false,
379 | "run_control": {
380 | "read_only": false
381 | }
382 | },
383 | "source": "Lets look at gender:"
384 | },
385 | {
386 | "cell_type": "code",
387 | "execution_count": 12,
388 | "metadata": {
389 | "button": false,
390 | "new_sheet": false,
391 | "run_control": {
392 | "read_only": false
393 | }
394 | },
395 | "outputs": [
396 | {
397 | "data": {
398 | "text/plain": "Gender loan_status\nfemale PAIDOFF 0.865385\n COLLECTION 0.134615\nmale PAIDOFF 0.731293\n COLLECTION 0.268707\nName: loan_status, dtype: float64"
399 | },
400 | "execution_count": 12,
401 | "metadata": {},
402 | "output_type": "execute_result"
403 | }
404 | ],
405 | "source": "df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)"
406 | },
407 | {
408 | "cell_type": "markdown",
409 | "metadata": {
410 | "button": false,
411 | "new_sheet": false,
412 | "run_control": {
413 | "read_only": false
414 | }
415 | },
416 | "source": "86 % of female pay there loans while only 73 % of males pay there loan\n"
417 | },
418 | {
419 | "cell_type": "markdown",
420 | "metadata": {
421 | "button": false,
422 | "new_sheet": false,
423 | "run_control": {
424 | "read_only": false
425 | }
426 | },
427 | "source": "Lets convert male to 0 and female to 1:\n"
428 | },
429 | {
430 | "cell_type": "code",
431 | "execution_count": 13,
432 | "metadata": {
433 | "button": false,
434 | "new_sheet": false,
435 | "run_control": {
436 | "read_only": false
437 | }
438 | },
439 | "outputs": [
440 | {
441 | "data": {
442 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n dayofweek \n weekend \n \n \n \n \n 0 \n 0 \n 0 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 45 \n High School or Below \n 0 \n 3 \n 0 \n \n \n 1 \n 2 \n 2 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 33 \n Bechalor \n 1 \n 3 \n 0 \n \n \n 2 \n 3 \n 3 \n PAIDOFF \n 1000 \n 15 \n 2016-09-08 \n 2016-09-22 \n 27 \n college \n 0 \n 3 \n 0 \n \n \n 3 \n 4 \n 4 \n PAIDOFF \n 1000 \n 30 \n 2016-09-09 \n 2016-10-08 \n 28 \n college \n 1 \n 4 \n 1 \n \n \n 4 \n 6 \n 6 \n PAIDOFF \n 1000 \n 30 \n 2016-09-09 \n 2016-10-08 \n 29 \n college \n 0 \n 4 \n 1 \n \n \n
\n
",
443 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 0 0 PAIDOFF 1000 30 2016-09-08 \n1 2 2 PAIDOFF 1000 30 2016-09-08 \n2 3 3 PAIDOFF 1000 15 2016-09-08 \n3 4 4 PAIDOFF 1000 30 2016-09-09 \n4 6 6 PAIDOFF 1000 30 2016-09-09 \n\n due_date age education Gender dayofweek weekend \n0 2016-10-07 45 High School or Below 0 3 0 \n1 2016-10-07 33 Bechalor 1 3 0 \n2 2016-09-22 27 college 0 3 0 \n3 2016-10-08 28 college 1 4 1 \n4 2016-10-08 29 college 0 4 1 "
444 | },
445 | "execution_count": 13,
446 | "metadata": {},
447 | "output_type": "execute_result"
448 | }
449 | ],
450 | "source": "df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)\ndf.head()"
451 | },
452 | {
453 | "cell_type": "markdown",
454 | "metadata": {
455 | "button": false,
456 | "new_sheet": false,
457 | "run_control": {
458 | "read_only": false
459 | }
460 | },
461 | "source": "## One Hot Encoding \n#### How about education?"
462 | },
463 | {
464 | "cell_type": "code",
465 | "execution_count": 14,
466 | "metadata": {
467 | "button": false,
468 | "new_sheet": false,
469 | "run_control": {
470 | "read_only": false
471 | }
472 | },
473 | "outputs": [
474 | {
475 | "data": {
476 | "text/plain": "education loan_status\nBechalor PAIDOFF 0.750000\n COLLECTION 0.250000\nHigh School or Below PAIDOFF 0.741722\n COLLECTION 0.258278\nMaster or Above COLLECTION 0.500000\n PAIDOFF 0.500000\ncollege PAIDOFF 0.765101\n COLLECTION 0.234899\nName: loan_status, dtype: float64"
477 | },
478 | "execution_count": 14,
479 | "metadata": {},
480 | "output_type": "execute_result"
481 | }
482 | ],
483 | "source": "df.groupby(['education'])['loan_status'].value_counts(normalize=True)"
484 | },
485 | {
486 | "cell_type": "markdown",
487 | "metadata": {
488 | "button": false,
489 | "new_sheet": false,
490 | "run_control": {
491 | "read_only": false
492 | }
493 | },
494 | "source": "#### Feature befor One Hot Encoding"
495 | },
496 | {
497 | "cell_type": "code",
498 | "execution_count": 15,
499 | "metadata": {
500 | "button": false,
501 | "new_sheet": false,
502 | "run_control": {
503 | "read_only": false
504 | }
505 | },
506 | "outputs": [
507 | {
508 | "data": {
509 | "text/html": "\n\n
\n \n \n \n Principal \n terms \n age \n Gender \n education \n \n \n \n \n 0 \n 1000 \n 30 \n 45 \n 0 \n High School or Below \n \n \n 1 \n 1000 \n 30 \n 33 \n 1 \n Bechalor \n \n \n 2 \n 1000 \n 15 \n 27 \n 0 \n college \n \n \n 3 \n 1000 \n 30 \n 28 \n 1 \n college \n \n \n 4 \n 1000 \n 30 \n 29 \n 0 \n college \n \n \n
\n
",
510 | "text/plain": " Principal terms age Gender education\n0 1000 30 45 0 High School or Below\n1 1000 30 33 1 Bechalor\n2 1000 15 27 0 college\n3 1000 30 28 1 college\n4 1000 30 29 0 college"
511 | },
512 | "execution_count": 15,
513 | "metadata": {},
514 | "output_type": "execute_result"
515 | }
516 | ],
517 | "source": "df[['Principal','terms','age','Gender','education']].head()"
518 | },
519 | {
520 | "cell_type": "markdown",
521 | "metadata": {
522 | "button": false,
523 | "new_sheet": false,
524 | "run_control": {
525 | "read_only": false
526 | }
527 | },
528 | "source": "#### Use one hot encoding technique to conver categorical varables to binary variables and append them to the feature Data Frame "
529 | },
530 | {
531 | "cell_type": "code",
532 | "execution_count": 16,
533 | "metadata": {
534 | "button": false,
535 | "new_sheet": false,
536 | "run_control": {
537 | "read_only": false
538 | }
539 | },
540 | "outputs": [
541 | {
542 | "data": {
543 | "text/html": "\n\n
\n \n \n \n Principal \n terms \n age \n Gender \n weekend \n Bechalor \n High School or Below \n college \n \n \n \n \n 0 \n 1000 \n 30 \n 45 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n 1 \n 1000 \n 30 \n 33 \n 1 \n 0 \n 1 \n 0 \n 0 \n \n \n 2 \n 1000 \n 15 \n 27 \n 0 \n 0 \n 0 \n 0 \n 1 \n \n \n 3 \n 1000 \n 30 \n 28 \n 1 \n 1 \n 0 \n 0 \n 1 \n \n \n 4 \n 1000 \n 30 \n 29 \n 0 \n 1 \n 0 \n 0 \n 1 \n \n \n
\n
",
544 | "text/plain": " Principal terms age Gender weekend Bechalor High School or Below \\\n0 1000 30 45 0 0 0 1 \n1 1000 30 33 1 0 1 0 \n2 1000 15 27 0 0 0 0 \n3 1000 30 28 1 1 0 0 \n4 1000 30 29 0 1 0 0 \n\n college \n0 0 \n1 0 \n2 1 \n3 1 \n4 1 "
545 | },
546 | "execution_count": 16,
547 | "metadata": {},
548 | "output_type": "execute_result"
549 | }
550 | ],
551 | "source": "Feature = df[['Principal','terms','age','Gender','weekend']]\nFeature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)\nFeature.drop(['Master or Above'], axis = 1,inplace=True)\nFeature.head()\n"
552 | },
553 | {
554 | "cell_type": "markdown",
555 | "metadata": {
556 | "button": false,
557 | "new_sheet": false,
558 | "run_control": {
559 | "read_only": false
560 | }
561 | },
562 | "source": "### Feature selection"
563 | },
564 | {
565 | "cell_type": "markdown",
566 | "metadata": {
567 | "button": false,
568 | "new_sheet": false,
569 | "run_control": {
570 | "read_only": false
571 | }
572 | },
573 | "source": "Lets defind feature sets, X:"
574 | },
575 | {
576 | "cell_type": "code",
577 | "execution_count": 17,
578 | "metadata": {
579 | "button": false,
580 | "new_sheet": false,
581 | "run_control": {
582 | "read_only": false
583 | }
584 | },
585 | "outputs": [
586 | {
587 | "data": {
588 | "text/html": "\n\n
\n \n \n \n Principal \n terms \n age \n Gender \n weekend \n Bechalor \n High School or Below \n college \n \n \n \n \n 0 \n 1000 \n 30 \n 45 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n 1 \n 1000 \n 30 \n 33 \n 1 \n 0 \n 1 \n 0 \n 0 \n \n \n 2 \n 1000 \n 15 \n 27 \n 0 \n 0 \n 0 \n 0 \n 1 \n \n \n 3 \n 1000 \n 30 \n 28 \n 1 \n 1 \n 0 \n 0 \n 1 \n \n \n 4 \n 1000 \n 30 \n 29 \n 0 \n 1 \n 0 \n 0 \n 1 \n \n \n
\n
",
589 | "text/plain": " Principal terms age Gender weekend Bechalor High School or Below \\\n0 1000 30 45 0 0 0 1 \n1 1000 30 33 1 0 1 0 \n2 1000 15 27 0 0 0 0 \n3 1000 30 28 1 1 0 0 \n4 1000 30 29 0 1 0 0 \n\n college \n0 0 \n1 0 \n2 1 \n3 1 \n4 1 "
590 | },
591 | "execution_count": 17,
592 | "metadata": {},
593 | "output_type": "execute_result"
594 | }
595 | ],
596 | "source": "X = Feature\nX[0:5]"
597 | },
598 | {
599 | "cell_type": "markdown",
600 | "metadata": {
601 | "button": false,
602 | "new_sheet": false,
603 | "run_control": {
604 | "read_only": false
605 | }
606 | },
607 | "source": "What are our lables?"
608 | },
609 | {
610 | "cell_type": "code",
611 | "execution_count": 18,
612 | "metadata": {
613 | "button": false,
614 | "new_sheet": false,
615 | "run_control": {
616 | "read_only": false
617 | }
618 | },
619 | "outputs": [
620 | {
621 | "data": {
622 | "text/plain": "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])"
623 | },
624 | "execution_count": 18,
625 | "metadata": {},
626 | "output_type": "execute_result"
627 | }
628 | ],
629 | "source": "df['loan_status'].replace(to_replace=['PAIDOFF', 'COLLECTION'], value=[0,1],inplace=True)\ny = df['loan_status'].values\ny[0:10]"
630 | },
631 | {
632 | "cell_type": "markdown",
633 | "metadata": {
634 | "button": false,
635 | "new_sheet": false,
636 | "run_control": {
637 | "read_only": false
638 | }
639 | },
640 | "source": "## Normalize Data "
641 | },
642 | {
643 | "cell_type": "markdown",
644 | "metadata": {
645 | "button": false,
646 | "new_sheet": false,
647 | "run_control": {
648 | "read_only": false
649 | }
650 | },
651 | "source": "Data Standardization give data zero mean and unit variance (technically should be done after train test split )"
652 | },
653 | {
654 | "cell_type": "code",
655 | "execution_count": 19,
656 | "metadata": {
657 | "button": false,
658 | "new_sheet": false,
659 | "run_control": {
660 | "read_only": false
661 | }
662 | },
663 | "outputs": [
664 | {
665 | "name": "stderr",
666 | "output_type": "stream",
667 | "text": "/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.\n return self.partial_fit(X, y)\n/opt/conda/envs/Python36/lib/python3.6/site-packages/ipykernel/__main__.py:1: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.\n if __name__ == '__main__':\n"
668 | },
669 | {
670 | "data": {
671 | "text/plain": "array([[ 0.51578458, 0.92071769, 2.33152555, -0.42056004, -1.20577805,\n -0.38170062, 1.13639374, -0.86968108],\n [ 0.51578458, 0.92071769, 0.34170148, 2.37778177, -1.20577805,\n 2.61985426, -0.87997669, -0.86968108],\n [ 0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,\n -0.38170062, -0.87997669, 1.14984679],\n [ 0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.82934003,\n -0.38170062, -0.87997669, 1.14984679],\n [ 0.51578458, 0.92071769, -0.3215732 , -0.42056004, 0.82934003,\n -0.38170062, -0.87997669, 1.14984679]])"
672 | },
673 | "execution_count": 19,
674 | "metadata": {},
675 | "output_type": "execute_result"
676 | }
677 | ],
678 | "source": "X= preprocessing.StandardScaler().fit(X).transform(X)\nX[0:5]"
679 | },
680 | {
681 | "cell_type": "markdown",
682 | "metadata": {
683 | "button": false,
684 | "new_sheet": false,
685 | "run_control": {
686 | "read_only": false
687 | }
688 | },
689 | "source": "# Classification "
690 | },
691 | {
692 | "cell_type": "markdown",
693 | "metadata": {
694 | "button": false,
695 | "new_sheet": false,
696 | "run_control": {
697 | "read_only": false
698 | }
699 | },
700 | "source": "Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the accuracy of the model\nYou should use the following algorithm:\n- K Nearest Neighbor(KNN)\n- Decision Tree\n- Support Vector Machine\n- Logistic Regression\n\n\n\n__ Notice:__ \n- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.\n- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.\n- You should include the code of the algorithm in the following cells."
701 | },
702 | {
703 | "cell_type": "markdown",
704 | "metadata": {},
705 | "source": "# K Nearest Neighbor(KNN)\nNotice: You should find the best k to build the model with the best accuracy. \n**warning:** You should not use the __loan_test.csv__ for finding the best k, however, you can split your train_loan.csv into train and test to find the best __k__."
706 | },
707 | {
708 | "cell_type": "code",
709 | "execution_count": 98,
710 | "metadata": {},
711 | "outputs": [],
712 | "source": "#Splitting the dataset into test set and train set\nfrom sklearn.model_selection import train_test_split\nX_train,X_test,y_train,y_test = train_test_split(X,y)"
713 | },
714 | {
715 | "cell_type": "code",
716 | "execution_count": 99,
717 | "metadata": {},
718 | "outputs": [
719 | {
720 | "data": {
721 | "text/plain": "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=3, p=2,\n weights='uniform')"
722 | },
723 | "execution_count": 99,
724 | "metadata": {},
725 | "output_type": "execute_result"
726 | }
727 | ],
728 | "source": "#Fitting the KNN with just taking random k=3\nfrom sklearn.neighbors import KNeighborsClassifier\nknn_classifier = KNeighborsClassifier(n_neighbors=3,metric='minkowski')\nknn_classifier.fit(X_train,y_train)"
729 | },
730 | {
731 | "cell_type": "code",
732 | "execution_count": 100,
733 | "metadata": {},
734 | "outputs": [],
735 | "source": "#predictions\ny_knn = knn_classifier.predict(X_test)"
736 | },
737 | {
738 | "cell_type": "code",
739 | "execution_count": 101,
740 | "metadata": {},
741 | "outputs": [
742 | {
743 | "name": "stdout",
744 | "output_type": "stream",
745 | "text": "Accuracy Score= 0.8160919540229885\nconfusion_matrix= \n [[62 5]\n [11 9]]\n"
746 | }
747 | ],
748 | "source": "#Visualising the confusion_matrix and accuracy score\nfrom sklearn.metrics import confusion_matrix,accuracy_score\naccuracy_knn = accuracy_score(y_knn,y_test)\nconfusion_knn = confusion_matrix(y_knn,y_test)\nprint('Accuracy Score= ',accuracy_knn)\nprint('confusion_matrix= \\n',confusion_knn)"
749 | },
750 | {
751 | "cell_type": "code",
752 | "execution_count": 102,
753 | "metadata": {},
754 | "outputs": [
755 | {
756 | "name": "stdout",
757 | "output_type": "stream",
758 | "text": "Accuracy for k=1 => 0.7471264367816092\nAccuracy for k=2 => 0.8275862068965517\nAccuracy for k=3 => 0.8160919540229885\nAccuracy for k=4 => 0.8620689655172413\nAccuracy for k=5 => 0.8505747126436781\nAccuracy for k=6 => 0.8620689655172413\nAccuracy for k=7 => 0.8735632183908046\nAccuracy for k=8 => 0.8275862068965517\nAccuracy for k=9 => 0.8275862068965517\nAccuracy for k=10 => 0.8160919540229885\nAccuracy for k=11 => 0.8045977011494253\nAccuracy for k=12 => 0.8045977011494253\nAccuracy for k=13 => 0.7931034482758621\nAccuracy for k=14 => 0.8045977011494253\nAccuracy for k=15 => 0.7931034482758621\nAccuracy for k=16 => 0.8045977011494253\nAccuracy for k=17 => 0.7701149425287356\nAccuracy for k=18 => 0.8160919540229885\nAccuracy for k=19 => 0.8045977011494253\n"
759 | }
760 | ],
761 | "source": "#Searching for best k for the KNN\nfrom sklearn.metrics import accuracy_score\nfor k in range (1,20):\n knn_classifier = KNeighborsClassifier(n_neighbors=k,metric='minkowski')\n knn_classifier.fit(X_train,y_train)\n y_knn = knn_classifier.predict(X_test)\n acc_score = accuracy_score(y_knn,y_test)\n print('Accuracy for k={0} => {1}'.format(k,acc_score))"
762 | },
763 | {
764 | "cell_type": "code",
765 | "execution_count": 103,
766 | "metadata": {},
767 | "outputs": [
768 | {
769 | "name": "stdout",
770 | "output_type": "stream",
771 | "text": "Accuracy Score= 0.8735632183908046\nconfusion_matrix= \n [[69 7]\n [ 4 7]]\n"
772 | }
773 | ],
774 | "source": "#from the above result we get the best k as k = 7\n#Now applying k=7 in the KNN classification and fitting\nk = 7\nknn_classifier = KNeighborsClassifier(n_neighbors=k,metric='minkowski')\nknn_classifier.fit(X_train,y_train)\n\n#predictions\ny_knn = knn_classifier.predict(X_test)\n\n#Visualising the confusion_matrix and accuracy score\nfrom sklearn.metrics import confusion_matrix,accuracy_score\naccuracy_knn = accuracy_score(y_knn,y_test)\nconfusion_knn = confusion_matrix(y_knn,y_test)\nprint('Accuracy Score= ',accuracy_knn)\nprint('confusion_matrix= \\n',confusion_knn)"
775 | },
776 | {
777 | "cell_type": "markdown",
778 | "metadata": {},
779 | "source": "# Decision Tree"
780 | },
781 | {
782 | "cell_type": "code",
783 | "execution_count": 104,
784 | "metadata": {},
785 | "outputs": [
786 | {
787 | "data": {
788 | "text/plain": "DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, presort=False, random_state=0,\n splitter='best')"
789 | },
790 | "execution_count": 104,
791 | "metadata": {},
792 | "output_type": "execute_result"
793 | }
794 | ],
795 | "source": "#Fitting the Dataset into Decision Tree\nfrom sklearn.tree import DecisionTreeClassifier\nclassifier_dt = DecisionTreeClassifier(criterion='entropy',random_state=0)\nclassifier_dt.fit(X_train,y_train)"
796 | },
797 | {
798 | "cell_type": "code",
799 | "execution_count": 105,
800 | "metadata": {},
801 | "outputs": [],
802 | "source": "#Predictions\ny_dt = classifier_dt.predict(X_test)"
803 | },
804 | {
805 | "cell_type": "code",
806 | "execution_count": 106,
807 | "metadata": {},
808 | "outputs": [
809 | {
810 | "name": "stdout",
811 | "output_type": "stream",
812 | "text": "Accuracy Score= 0.7586206896551724\nconfusion_matrix= \n [[60 8]\n [13 6]]\n"
813 | }
814 | ],
815 | "source": "#Accuracy Score and Confusion matrix visualization\naccuracy_dt = accuracy_score(y_dt,y_test)\nconfusion_dt = confusion_matrix(y_dt,y_test)\nprint('Accuracy Score= ',accuracy_dt)\nprint('confusion_matrix= \\n',confusion_dt)"
816 | },
817 | {
818 | "cell_type": "markdown",
819 | "metadata": {},
820 | "source": "# Support Vector Machine"
821 | },
822 | {
823 | "cell_type": "code",
824 | "execution_count": 107,
825 | "metadata": {},
826 | "outputs": [
827 | {
828 | "name": "stderr",
829 | "output_type": "stream",
830 | "text": "/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n \"avoid this warning.\", FutureWarning)\n"
831 | },
832 | {
833 | "data": {
834 | "text/plain": "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='auto_deprecated',\n kernel='rbf', max_iter=-1, probability=False, random_state=0,\n shrinking=True, tol=0.001, verbose=False)"
835 | },
836 | "execution_count": 107,
837 | "metadata": {},
838 | "output_type": "execute_result"
839 | }
840 | ],
841 | "source": "#Fitting the SVM\nfrom sklearn.svm import SVC\nclassifier_svm = SVC(kernel='rbf',random_state=0)\nclassifier_svm.fit(X_train,y_train)"
842 | },
843 | {
844 | "cell_type": "code",
845 | "execution_count": 108,
846 | "metadata": {},
847 | "outputs": [],
848 | "source": "#Predictions\ny_svm = classifier_svm.predict(X_test)"
849 | },
850 | {
851 | "cell_type": "code",
852 | "execution_count": 109,
853 | "metadata": {},
854 | "outputs": [
855 | {
856 | "name": "stdout",
857 | "output_type": "stream",
858 | "text": "Accuracy Score= 0.8275862068965517\nconfusion_matrix= \n [[68 10]\n [ 5 4]]\n"
859 | }
860 | ],
861 | "source": "#Accuracy Score and Confusion Matrix Check\naccuracy_svm = accuracy_score(y_svm,y_test)\nconfusion_svm = confusion_matrix(y_svm,y_test)\nprint('Accuracy Score= ',accuracy_svm)\nprint('confusion_matrix= \\n',confusion_svm)"
862 | },
863 | {
864 | "cell_type": "markdown",
865 | "metadata": {},
866 | "source": "# Logistic Regression"
867 | },
868 | {
869 | "cell_type": "code",
870 | "execution_count": 110,
871 | "metadata": {},
872 | "outputs": [
873 | {
874 | "name": "stderr",
875 | "output_type": "stream",
876 | "text": "/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n FutureWarning)\n"
877 | },
878 | {
879 | "data": {
880 | "text/plain": "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, max_iter=100, multi_class='warn',\n n_jobs=None, penalty='l2', random_state=0, solver='warn',\n tol=0.0001, verbose=0, warm_start=False)"
881 | },
882 | "execution_count": 110,
883 | "metadata": {},
884 | "output_type": "execute_result"
885 | }
886 | ],
887 | "source": "#Fitting the Logistic Regression\nfrom sklearn.linear_model import LogisticRegression\nclassifier_lr = LogisticRegression(random_state=0)\nclassifier_lr.fit(X_train,y_train)"
888 | },
889 | {
890 | "cell_type": "code",
891 | "execution_count": 111,
892 | "metadata": {},
893 | "outputs": [],
894 | "source": "#Predictions\ny_lr = classifier_lr.predict(X_test)"
895 | },
896 | {
897 | "cell_type": "code",
898 | "execution_count": 112,
899 | "metadata": {},
900 | "outputs": [
901 | {
902 | "name": "stdout",
903 | "output_type": "stream",
904 | "text": "Accuracy Score= 0.7931034482758621\nconfusion_matrix= \n [[68 13]\n [ 5 1]]\n"
905 | }
906 | ],
907 | "source": "#Accuracy score and confusion matrix visualization\naccuracy_lr = accuracy_score(y_lr,y_test)\nconfusion_lr = confusion_matrix(y_lr,y_test)\nprint('Accuracy Score= ',accuracy_lr)\nprint('confusion_matrix= \\n',confusion_lr)"
908 | },
909 | {
910 | "cell_type": "markdown",
911 | "metadata": {},
912 | "source": "# Model Evaluation using Test set"
913 | },
914 | {
915 | "cell_type": "code",
916 | "execution_count": 113,
917 | "metadata": {},
918 | "outputs": [],
919 | "source": "#importing libraries\nfrom sklearn.metrics import jaccard_similarity_score\nfrom sklearn.metrics import f1_score\nfrom sklearn.metrics import log_loss"
920 | },
921 | {
922 | "cell_type": "markdown",
923 | "metadata": {},
924 | "source": "First, download and load the test set:"
925 | },
926 | {
927 | "cell_type": "code",
928 | "execution_count": 114,
929 | "metadata": {},
930 | "outputs": [
931 | {
932 | "name": "stdout",
933 | "output_type": "stream",
934 | "text": "--2020-01-06 09:14:18-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv\nResolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.196\nConnecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.196|:443... connected.\nHTTP request sent, awaiting response... 200 OK\nLength: 3642 (3.6K) [text/csv]\nSaving to: \u2018loan_test.csv\u2019\n\n100%[======================================>] 3,642 --.-K/s in 0s \n\n2020-01-06 09:14:18 (211 MB/s) - \u2018loan_test.csv\u2019 saved [3642/3642]\n\n"
935 | }
936 | ],
937 | "source": "!wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv"
938 | },
939 | {
940 | "cell_type": "markdown",
941 | "metadata": {
942 | "button": false,
943 | "new_sheet": false,
944 | "run_control": {
945 | "read_only": false
946 | }
947 | },
948 | "source": "### Load Test set for evaluation "
949 | },
950 | {
951 | "cell_type": "code",
952 | "execution_count": 115,
953 | "metadata": {
954 | "button": false,
955 | "new_sheet": false,
956 | "run_control": {
957 | "read_only": false
958 | }
959 | },
960 | "outputs": [
961 | {
962 | "data": {
963 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n \n \n \n \n 0 \n 1 \n 1 \n PAIDOFF \n 1000 \n 30 \n 9/8/2016 \n 10/7/2016 \n 50 \n Bechalor \n female \n \n \n 1 \n 5 \n 5 \n PAIDOFF \n 300 \n 7 \n 9/9/2016 \n 9/15/2016 \n 35 \n Master or Above \n male \n \n \n 2 \n 21 \n 21 \n PAIDOFF \n 1000 \n 30 \n 9/10/2016 \n 10/9/2016 \n 43 \n High School or Below \n female \n \n \n 3 \n 24 \n 24 \n PAIDOFF \n 1000 \n 30 \n 9/10/2016 \n 10/9/2016 \n 26 \n college \n male \n \n \n 4 \n 35 \n 35 \n PAIDOFF \n 800 \n 15 \n 9/11/2016 \n 9/25/2016 \n 29 \n Bechalor \n male \n \n \n
\n
",
964 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 1 1 PAIDOFF 1000 30 9/8/2016 \n1 5 5 PAIDOFF 300 7 9/9/2016 \n2 21 21 PAIDOFF 1000 30 9/10/2016 \n3 24 24 PAIDOFF 1000 30 9/10/2016 \n4 35 35 PAIDOFF 800 15 9/11/2016 \n\n due_date age education Gender \n0 10/7/2016 50 Bechalor female \n1 9/15/2016 35 Master or Above male \n2 10/9/2016 43 High School or Below female \n3 10/9/2016 26 college male \n4 9/25/2016 29 Bechalor male "
965 | },
966 | "execution_count": 115,
967 | "metadata": {},
968 | "output_type": "execute_result"
969 | }
970 | ],
971 | "source": "import pandas as pd\ntest_df = pd.read_csv('loan_test.csv')\ntest_df.head()"
972 | },
973 | {
974 | "cell_type": "code",
975 | "execution_count": 116,
976 | "metadata": {},
977 | "outputs": [
978 | {
979 | "data": {
980 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n \n \n \n \n 0 \n 1 \n 1 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 50 \n Bechalor \n female \n \n \n 1 \n 5 \n 5 \n PAIDOFF \n 300 \n 7 \n 2016-09-09 \n 2016-09-15 \n 35 \n Master or Above \n male \n \n \n 2 \n 21 \n 21 \n PAIDOFF \n 1000 \n 30 \n 2016-09-10 \n 2016-10-09 \n 43 \n High School or Below \n female \n \n \n 3 \n 24 \n 24 \n PAIDOFF \n 1000 \n 30 \n 2016-09-10 \n 2016-10-09 \n 26 \n college \n male \n \n \n 4 \n 35 \n 35 \n PAIDOFF \n 800 \n 15 \n 2016-09-11 \n 2016-09-25 \n 29 \n Bechalor \n male \n \n \n
\n
",
981 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 1 1 PAIDOFF 1000 30 2016-09-08 \n1 5 5 PAIDOFF 300 7 2016-09-09 \n2 21 21 PAIDOFF 1000 30 2016-09-10 \n3 24 24 PAIDOFF 1000 30 2016-09-10 \n4 35 35 PAIDOFF 800 15 2016-09-11 \n\n due_date age education Gender \n0 2016-10-07 50 Bechalor female \n1 2016-09-15 35 Master or Above male \n2 2016-10-09 43 High School or Below female \n3 2016-10-09 26 college male \n4 2016-09-25 29 Bechalor male "
982 | },
983 | "execution_count": 116,
984 | "metadata": {},
985 | "output_type": "execute_result"
986 | }
987 | ],
988 | "source": "#Date and time conversion\ntest_df['due_date'] = pd.to_datetime(test_df['due_date'])\ntest_df['effective_date'] = pd.to_datetime(test_df['effective_date'])\ntest_df.head()"
989 | },
990 | {
991 | "cell_type": "code",
992 | "execution_count": 117,
993 | "metadata": {},
994 | "outputs": [
995 | {
996 | "data": {
997 | "text/plain": "education loan_status\nBechalor PAIDOFF 1.000000\nHigh School or Below PAIDOFF 0.523810\n COLLECTION 0.476190\nMaster or Above PAIDOFF 1.000000\ncollege PAIDOFF 0.826087\n COLLECTION 0.173913\nName: loan_status, dtype: float64"
998 | },
999 | "execution_count": 117,
1000 | "metadata": {},
1001 | "output_type": "execute_result"
1002 | }
1003 | ],
1004 | "source": "test_df.groupby(['education'])['loan_status'].value_counts(normalize=True)"
1005 | },
1006 | {
1007 | "cell_type": "code",
1008 | "execution_count": 118,
1009 | "metadata": {},
1010 | "outputs": [
1011 | {
1012 | "data": {
1013 | "text/plain": "Gender loan_status\nfemale PAIDOFF 0.727273\n COLLECTION 0.272727\nmale PAIDOFF 0.744186\n COLLECTION 0.255814\nName: loan_status, dtype: float64"
1014 | },
1015 | "execution_count": 118,
1016 | "metadata": {},
1017 | "output_type": "execute_result"
1018 | }
1019 | ],
1020 | "source": "#Categorical Feature to numetrical values\ntest_df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)"
1021 | },
1022 | {
1023 | "cell_type": "code",
1024 | "execution_count": 119,
1025 | "metadata": {},
1026 | "outputs": [
1027 | {
1028 | "data": {
1029 | "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n Unnamed: 0.1 \n loan_status \n Principal \n terms \n effective_date \n due_date \n age \n education \n Gender \n \n \n \n \n 0 \n 1 \n 1 \n PAIDOFF \n 1000 \n 30 \n 2016-09-08 \n 2016-10-07 \n 50 \n Bechalor \n 1 \n \n \n 1 \n 5 \n 5 \n PAIDOFF \n 300 \n 7 \n 2016-09-09 \n 2016-09-15 \n 35 \n Master or Above \n 0 \n \n \n 2 \n 21 \n 21 \n PAIDOFF \n 1000 \n 30 \n 2016-09-10 \n 2016-10-09 \n 43 \n High School or Below \n 1 \n \n \n 3 \n 24 \n 24 \n PAIDOFF \n 1000 \n 30 \n 2016-09-10 \n 2016-10-09 \n 26 \n college \n 0 \n \n \n 4 \n 35 \n 35 \n PAIDOFF \n 800 \n 15 \n 2016-09-11 \n 2016-09-25 \n 29 \n Bechalor \n 0 \n \n \n
\n
",
1030 | "text/plain": " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n0 1 1 PAIDOFF 1000 30 2016-09-08 \n1 5 5 PAIDOFF 300 7 2016-09-09 \n2 21 21 PAIDOFF 1000 30 2016-09-10 \n3 24 24 PAIDOFF 1000 30 2016-09-10 \n4 35 35 PAIDOFF 800 15 2016-09-11 \n\n due_date age education Gender \n0 2016-10-07 50 Bechalor 1 \n1 2016-09-15 35 Master or Above 0 \n2 2016-10-09 43 High School or Below 1 \n3 2016-10-09 26 college 0 \n4 2016-09-25 29 Bechalor 0 "
1031 | },
1032 | "execution_count": 119,
1033 | "metadata": {},
1034 | "output_type": "execute_result"
1035 | }
1036 | ],
1037 | "source": "#Gender Encoding\ntest_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)\ntest_df.head()"
1038 | },
1039 | {
1040 | "cell_type": "code",
1041 | "execution_count": 120,
1042 | "metadata": {},
1043 | "outputs": [
1044 | {
1045 | "data": {
1046 | "text/html": "\n\n
\n \n \n \n Principal \n terms \n age \n Gender \n education \n weekend \n \n \n \n \n 0 \n 1000 \n 30 \n 50 \n 1 \n Bechalor \n 0 \n \n \n 1 \n 300 \n 7 \n 35 \n 0 \n Master or Above \n 1 \n \n \n 2 \n 1000 \n 30 \n 43 \n 1 \n High School or Below \n 1 \n \n \n 3 \n 1000 \n 30 \n 26 \n 0 \n college \n 1 \n \n \n 4 \n 800 \n 15 \n 29 \n 0 \n Bechalor \n 1 \n \n \n
\n
",
1047 | "text/plain": " Principal terms age Gender education weekend\n0 1000 30 50 1 Bechalor 0\n1 300 7 35 0 Master or Above 1\n2 1000 30 43 1 High School or Below 1\n3 1000 30 26 0 college 1\n4 800 15 29 0 Bechalor 1"
1048 | },
1049 | "execution_count": 120,
1050 | "metadata": {},
1051 | "output_type": "execute_result"
1052 | }
1053 | ],
1054 | "source": "#Features\ntest_df['dayofweek'] = test_df['effective_date'].dt.dayofweek\ntest_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)\ntest_df[['Principal','terms','age','Gender','education','weekend']].head()"
1055 | },
1056 | {
1057 | "cell_type": "code",
1058 | "execution_count": 121,
1059 | "metadata": {},
1060 | "outputs": [
1061 | {
1062 | "data": {
1063 | "text/html": "\n\n
\n \n \n \n Principal \n terms \n age \n Gender \n weekend \n Bechalor \n High School or Below \n college \n \n \n \n \n 0 \n 1000 \n 30 \n 50 \n 1 \n 0 \n 1 \n 0 \n 0 \n \n \n 1 \n 300 \n 7 \n 35 \n 0 \n 1 \n 0 \n 0 \n 0 \n \n \n 2 \n 1000 \n 30 \n 43 \n 1 \n 1 \n 0 \n 1 \n 0 \n \n \n 3 \n 1000 \n 30 \n 26 \n 0 \n 1 \n 0 \n 0 \n 1 \n \n \n 4 \n 800 \n 15 \n 29 \n 0 \n 1 \n 1 \n 0 \n 0 \n \n \n
\n
",
1064 | "text/plain": " Principal terms age Gender weekend Bechalor High School or Below \\\n0 1000 30 50 1 0 1 0 \n1 300 7 35 0 1 0 0 \n2 1000 30 43 1 1 0 1 \n3 1000 30 26 0 1 0 0 \n4 800 15 29 0 1 1 0 \n\n college \n0 0 \n1 0 \n2 0 \n3 1 \n4 0 "
1065 | },
1066 | "execution_count": 121,
1067 | "metadata": {},
1068 | "output_type": "execute_result"
1069 | }
1070 | ],
1071 | "source": "#After one hot encoding\nFeature = test_df[['Principal','terms','age','Gender','weekend']]\nFeature = pd.concat([Feature,pd.get_dummies(test_df['education'])], axis=1)\nFeature.drop(['Master or Above'], axis = 1,inplace=True)\nFeature.head()"
1072 | },
1073 | {
1074 | "cell_type": "code",
1075 | "execution_count": 122,
1076 | "metadata": {},
1077 | "outputs": [],
1078 | "source": "X_test2 = Feature"
1079 | },
1080 | {
1081 | "cell_type": "code",
1082 | "execution_count": 123,
1083 | "metadata": {},
1084 | "outputs": [
1085 | {
1086 | "name": "stderr",
1087 | "output_type": "stream",
1088 | "text": "/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.\n return self.partial_fit(X, y)\n/opt/conda/envs/Python36/lib/python3.6/site-packages/ipykernel/__main__.py:1: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.\n if __name__ == '__main__':\n"
1089 | }
1090 | ],
1091 | "source": "X_test2 = preprocessing.StandardScaler().fit(X_test2).transform(X_test2)"
1092 | },
1093 | {
1094 | "cell_type": "code",
1095 | "execution_count": 124,
1096 | "metadata": {},
1097 | "outputs": [
1098 | {
1099 | "data": {
1100 | "text/plain": "array([[ 0.49362588, 0.92844966, 3.05981865, 1.97714211, -1.30384048,\n 2.39791576, -0.79772404, -0.86135677],\n [-3.56269116, -1.70427745, 0.53336288, -0.50578054, 0.76696499,\n -0.41702883, -0.79772404, -0.86135677],\n [ 0.49362588, 0.92844966, 1.88080596, 1.97714211, 0.76696499,\n -0.41702883, 1.25356634, -0.86135677],\n [ 0.49362588, 0.92844966, -0.98251057, -0.50578054, 0.76696499,\n -0.41702883, -0.79772404, 1.16095912],\n [-0.66532184, -0.78854628, -0.47721942, -0.50578054, 0.76696499,\n 2.39791576, -0.79772404, -0.86135677]])"
1101 | },
1102 | "execution_count": 124,
1103 | "metadata": {},
1104 | "output_type": "execute_result"
1105 | }
1106 | ],
1107 | "source": "X_test2[0:5,:]"
1108 | },
1109 | {
1110 | "cell_type": "code",
1111 | "execution_count": 125,
1112 | "metadata": {},
1113 | "outputs": [
1114 | {
1115 | "data": {
1116 | "text/plain": "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,\n 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])"
1117 | },
1118 | "execution_count": 125,
1119 | "metadata": {},
1120 | "output_type": "execute_result"
1121 | }
1122 | ],
1123 | "source": "test_df['loan_status'].replace(to_replace=['PAIDOFF', 'COLLECTION'], value=[0,1],inplace=True)\ny_test2 = test_df['loan_status'].values\ny_test2"
1124 | },
1125 | {
1126 | "cell_type": "code",
1127 | "execution_count": 126,
1128 | "metadata": {},
1129 | "outputs": [],
1130 | "source": "#All predictions\ny_knn2 = knn_classifier.predict(X_test2) \ny_dt2 = classifier_dt.predict(X_test2) \ny_svm2 = classifier_svm.predict(X_test2) \ny_lr2 = classifier_lr.predict(X_test2) \n\n#probability of the logistic regression predictions\nlr_prob = classifier_lr.predict_proba(X_test2) "
1131 | },
1132 | {
1133 | "cell_type": "code",
1134 | "execution_count": 127,
1135 | "metadata": {},
1136 | "outputs": [
1137 | {
1138 | "name": "stdout",
1139 | "output_type": "stream",
1140 | "text": "KNN J-Index= 0.7222222222222222\nDT J-Index= 0.7037037037037037\nSVM J-Index= 0.7962962962962963\nLR J-Index= 0.7592592592592593\n"
1141 | }
1142 | ],
1143 | "source": "#JCCARD Index for all of them\nfrom sklearn.metrics import jaccard_similarity_score\nj_index_knn = jaccard_similarity_score(y_test2,y_knn2)\nj_index_dt = jaccard_similarity_score(y_true=y_test2,y_pred=y_dt2)\nj_index_svm = jaccard_similarity_score(y_true=y_test2,y_pred=y_svm2)\nj_index_lr = jaccard_similarity_score(y_true=y_test2,y_pred=y_lr2)\nprint('KNN J-Index= ',j_index_knn)\nprint('DT J-Index= ',j_index_dt)\nprint('SVM J-Index= ',j_index_svm)\nprint('LR J-Index= ',j_index_lr)"
1144 | },
1145 | {
1146 | "cell_type": "code",
1147 | "execution_count": 128,
1148 | "metadata": {},
1149 | "outputs": [
1150 | {
1151 | "name": "stdout",
1152 | "output_type": "stream",
1153 | "text": "KNN f1-Score= 0.7105756358768406\nDT f1-Score= 0.7037037037037038\nSVM f1-Score= 0.7801458747750308\nLR f1-Score= 0.6717642373556352\n"
1154 | }
1155 | ],
1156 | "source": "#F1_Score for all of them\nfrom sklearn.metrics import f1_score\nscore_knn = f1_score(y_test2,y_knn2, average='weighted')\nscore_dt = f1_score(y_test2,y_dt2, average='weighted')\nscore_svm = f1_score(y_test2,y_svm2, average='weighted')\nscore_lr = f1_score(y_test2,y_lr2, average='weighted')\nprint('KNN f1-Score= ',score_knn)\nprint('DT f1-Score= ',score_dt)\nprint('SVM f1-Score= ',score_svm)\nprint('LR f1-Score= ',score_lr)"
1157 | },
1158 | {
1159 | "cell_type": "code",
1160 | "execution_count": 129,
1161 | "metadata": {},
1162 | "outputs": [
1163 | {
1164 | "name": "stdout",
1165 | "output_type": "stream",
1166 | "text": "LR f1-Score= 0.47296409967926384\n"
1167 | }
1168 | ],
1169 | "source": "#Log loss of the Logistic Regression predictions\nfrom sklearn.metrics import log_loss\nlog_lr = log_loss(y_test2,lr_prob)\nprint('LR f1-Score= ',log_lr)"
1170 | },
1171 | {
1172 | "cell_type": "markdown",
1173 | "metadata": {},
1174 | "source": " \n\n# Report \nThe accuracy of the built model using different evaluation metrics are as given in the following table:-\n\n| Algorithm | Jaccard | F1-score | LogLoss |\n|--------------------|---------|----------|---------|\n| KNN | 0.72 | 0.71 | NA |\n| Decision Tree | 0.70 | 0.70 | NA |\n| SVM | 0.79 | 0.78 | NA |\n| LogisticRegression | 0.75 | 0.67 | 0.47 |"
1175 | },
1176 | {
1177 | "cell_type": "markdown",
1178 | "metadata": {
1179 | "button": false,
1180 | "new_sheet": false,
1181 | "run_control": {
1182 | "read_only": false
1183 | }
1184 | },
1185 | "source": " \nConclusion: \n\nAs we can see the accuracy rate for the predictions are almost in the range of 70% to 80% and for different classification algorithms used, and the highest accuation rate is in case of SVM algorithm so we can use this algorithm for getting more accurate prediction of the loan repayment status of Loan Holder.\n\nThanks! \n\n\nYou can contact me on LinkedIn
\n\n "
1186 | },
1187 | {
1188 | "cell_type": "code",
1189 | "execution_count": null,
1190 | "metadata": {},
1191 | "outputs": [],
1192 | "source": ""
1193 | }
1194 | ],
1195 | "metadata": {
1196 | "kernelspec": {
1197 | "display_name": "Python 3.6",
1198 | "language": "python",
1199 | "name": "python3"
1200 | },
1201 | "language_info": {
1202 | "codemirror_mode": {
1203 | "name": "ipython",
1204 | "version": 3
1205 | },
1206 | "file_extension": ".py",
1207 | "mimetype": "text/x-python",
1208 | "name": "python",
1209 | "nbconvert_exporter": "python",
1210 | "pygments_lexer": "ipython3",
1211 | "version": "3.6.8"
1212 | }
1213 | },
1214 | "nbformat": 4,
1215 | "nbformat_minor": 2
1216 | }
--------------------------------------------------------------------------------