├── ReadMe.md ├── get_features.cpp ├── sc_load.m ├── test_caffe_manual.cpp ├── test_caffe_manual_output.log ├── train_mnist_99.57.log └── train_mnist_99.58.log /ReadMe.md: -------------------------------------------------------------------------------- 1 | ##Caffe使用教程 2 | by Shicai Yang([@星空下的巫师](http://weibo.com/shicaiyang))on 2015/08/06 3 | 4 | ### 初始化网络 5 | 6 | #include "caffe/caffe.hpp" 7 | #include 8 | #include 9 | using namespace caffe; 10 | 11 | char *proto = "H:\\Models\\Caffe\\deploy.prototxt"; /* 加载CaffeNet的配置 */ 12 | Phase phase = TEST; /* or TRAIN */ 13 | Caffe::set_mode(Caffe::CPU); 14 | // Caffe::set_mode(Caffe::GPU); 15 | // Caffe::SetDevice(0); 16 | 17 | //! Note: 后文所有提到的net,都是这个net 18 | boost::shared_ptr< Net > net(new caffe::Net(proto, phase)); 19 | 20 | ### 加载已训练好的模型 21 | 22 | char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel"; 23 | net->CopyTrainedLayersFrom(model); 24 | 25 | ### 读取模型中的每层的结构配置参数 26 | 27 | char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel"; 28 | NetParameter param; 29 | ReadNetParamsFromBinaryFileOrDie(model, ¶m); 30 | int num_layers = param.layer_size(); 31 | for (int i = 0; i < num_layers; ++i) 32 | { 33 | // 结构配置参数:name,type,kernel size,pad,stride等 34 | LOG(ERROR) << "Layer " << i << ":" << param.layer(i).name() << "\t" << param.layer(i).type(); 35 | if (param.layer(i).type() == "Convolution") 36 | { 37 | ConvolutionParameter conv_param = param.layer(i).convolution_param(); 38 | LOG(ERROR) << "\t\tkernel size: " << conv_param.kernel_size() 39 | << ", pad: " << conv_param.pad() 40 | << ", stride: " << conv_param.stride(); 41 | } 42 | } 43 | 44 | ### 读取图像均值 45 | 46 | char *mean_file = "H:\\Models\\Caffe\\imagenet_mean.binaryproto"; 47 | Blob image_mean; 48 | BlobProto blob_proto; 49 | const float *mean_ptr; 50 | unsigned int num_pixel; 51 | 52 | bool succeed = ReadProtoFromBinaryFile(mean_file, &blob_proto); 53 | if (succeed) 54 | { 55 | image_mean.FromProto(blob_proto); 56 | num_pixel = image_mean.count(); /* NCHW=1x3x256x256=196608 */ 57 | mean_ptr = (const float *) image_mean.cpu_data(); 58 | } 59 | 60 | ### 根据指定数据,前向传播网络 61 | //! Note: data_ptr指向已经处理好(去均值的,符合网络输入图像的长宽和Batch Size)的数据 62 | void caffe_forward(boost::shared_ptr< Net > & net, float *data_ptr) 63 | { 64 | Blob* input_blobs = net->input_blobs()[0]; 65 | switch (Caffe::mode()) 66 | { 67 | case Caffe::CPU: 68 | memcpy(input_blobs->mutable_cpu_data(), data_ptr, 69 | sizeof(float) * input_blobs->count()); 70 | break; 71 | case Caffe::GPU: 72 | cudaMemcpy(input_blobs->mutable_gpu_data(), data_ptr, 73 | sizeof(float) * input_blobs->count(), cudaMemcpyHostToDevice); 74 | break; 75 | default: 76 | LOG(FATAL) << "Unknown Caffe mode."; 77 | } 78 | net->ForwardPrefilled(); 79 | } 80 | 81 | ### 根据Feature层的名字获取其在网络中的Index 82 | 83 | //! Note: Net的Blob是指,每个层的输出数据,即Feature Maps 84 | // char *query_blob_name = "conv1"; 85 | unsigned int get_blob_index(boost::shared_ptr< Net > & net, char *query_blob_name) 86 | { 87 | std::string str_query(query_blob_name); 88 | vector< string > const & blob_names = net->blob_names(); 89 | for( unsigned int i = 0; i != blob_names.size(); ++i ) 90 | { 91 | if( str_query == blob_names[i] ) 92 | { 93 | return i; 94 | } 95 | } 96 | LOG(FATAL) << "Unknown blob name: " << str_query; 97 | } 98 | 99 | ### 读取网络指定Feature层数据 100 | 101 | //! Note: 根据CaffeNet的deploy.prototxt文件,该Net共有15个Blob,从data一直到prob 102 | char *query_blob_name = "conv1"; /* data, conv1, pool1, norm1, fc6, prob, etc */ 103 | unsigned int blob_id = get_blob_index(net, query_blob_name); 104 | 105 | boost::shared_ptr > blob = net->blobs()[blob_id]; 106 | unsigned int num_data = blob->count(); /* NCHW=10x96x55x55 */ 107 | const float *blob_ptr = (const float *) blob->cpu_data(); 108 | 109 | ### 根据文件列表,获取特征,并存为二进制文件 110 | 111 | 详见**get_features.cpp**文件: 112 | > 主要包括三个步骤 113 | - 生成文件列表,格式与训练用的类似,每行一个图像 114 | 包括文件全路径、空格、标签(没有的话,可以置0) 115 | - 根据train_val或者deploy的prototxt,改写生成feat.prototxt 116 | 主要是将输入层改为image_data层,最后加上prob和argmax(为了输出概率和Top1/5预测标签) 117 | - 根据指定参数,运行程序后会生成若干个二进制文件,可以用MATLAB读取数据,进行分析 118 | 119 | 120 | 121 | ### 根据Layer的名字获取其在网络中的Index 122 | 123 | //! Note: Layer包括神经网络所有层,比如,CaffeNet共有23层 124 | // char *query_layer_name = "conv1"; 125 | unsigned int get_layer_index(boost::shared_ptr< Net > & net, char *query_layer_name) 126 | { 127 | std::string str_query(query_layer_name); 128 | vector< string > const & layer_names = net->layer_names(); 129 | for( unsigned int i = 0; i != layer_names.size(); ++i ) 130 | { 131 | if( str_query == layer_names[i] ) 132 | { 133 | return i; 134 | } 135 | } 136 | LOG(FATAL) << "Unknown layer name: " << str_query; 137 | } 138 | 139 | ### 读取指定Layer的权重数据 140 | 141 | //! Note: 不同于Net的Blob是Feature Maps,Layer的Blob是指Conv和FC等层的Weight和Bias 142 | char *query_layer_name = "conv1"; 143 | const float *weight_ptr, *bias_ptr; 144 | unsigned int layer_id = get_layer_index(net, query_layer_name); 145 | boost::shared_ptr > layer = net->layers()[layer_id]; 146 | std::vector >> blobs = layer->blobs(); 147 | if (blobs.size() > 0) 148 | { 149 | weight_ptr = (const float *) blobs[0]->cpu_data(); 150 | bias_ptr = (const float *) blobs[1]->cpu_data(); 151 | } 152 | 153 | //! Note: 训练模式下,读取指定Layer的梯度数据,与此相似,唯一的区别是将cpu_data改为cpu_diff 154 | 155 | ### 修改某层的Weight数据 156 | 157 | const float* data_ptr; /* 指向待写入数据的指针, 源数据指针*/ 158 | float* weight_ptr = NULL; /* 指向网络中某层权重的指针,目标数据指针*/ 159 | unsigned int data_size; /* 待写入的数据量 */ 160 | char *layer_name = "conv1"; /* 需要修改的Layer名字 */ 161 | 162 | unsigned int layer_id = get_layer_index(net, query_layer_name); 163 | boost::shared_ptr > blob = net->layers()[layer_id]->blobs()[0]; 164 | 165 | CHECK(data_size == blob->count()); 166 | switch (Caffe::mode()) 167 | { 168 | case Caffe::CPU: 169 | weight_ptr = blob->mutable_cpu_data(); 170 | break; 171 | case Caffe::GPU: 172 | weight_ptr = blob->mutable_gpu_data(); 173 | break; 174 | default: 175 | LOG(FATAL) << "Unknown Caffe mode"; 176 | } 177 | caffe_copy(blob->count(), data_ptr, weight_ptr); 178 | 179 | //! Note: 训练模式下,手动修改指定Layer的梯度数据,与此相似 180 | // mutable_cpu_data改为mutable_cpu_diff,mutable_gpu_data改为mutable_gpu_diff 181 | 182 | ### 保存新的模型 183 | 184 | char* weights_file = "bvlc_reference_caffenet_new.caffemodel"; 185 | NetParameter net_param; 186 | net->ToProto(&net_param, false); 187 | WriteProtoToBinaryFile(net_param, weights_file); 188 | 189 | -------------------------------------------------------------------------------- /get_features.cpp: -------------------------------------------------------------------------------- 1 | /*** 2 | usage: 3 | get_features.exe feat.prototxt H:\Models\Caffe\bvlc_reference_caffenet.caffemodel 6 4 | conv1,fc7,prob,argmax conv1.dat,fc7.dat,prob.dat,argmax.dat GPU 0 5 | 6 | for feat.prototxt, see the following example: 7 | name: "CaffeNet" 8 | state { 9 | phase: TEST 10 | } 11 | layer { 12 | name: "data" 13 | type: "ImageData" 14 | top: "data" 15 | top: "label" 16 | transform_param { 17 | mirror: false 18 | crop_size: 227 19 | mean_file: "imagenet_mean.binaryproto" 20 | } 21 | image_data_param { 22 | source: "file_list.txt" 23 | batch_size: 1 24 | new_height: 256 25 | new_width: 256 26 | } 27 | } 28 | layer { 29 | name: "conv1" 30 | type: "Convolution" 31 | bottom: "data" 32 | top: "conv1" 33 | convolution_param { 34 | num_output: 96 35 | kernel_size: 11 36 | stride: 4 37 | } 38 | } 39 | ################################################################################# 40 | ######some lines are ignored here for simplicity, complete them by yourself###### 41 | ################################################################################# 42 | layer { 43 | name: "fc8" 44 | type: "InnerProduct" 45 | bottom: "fc7" 46 | top: "fc8" 47 | inner_product_param { 48 | num_output: 1000 49 | } 50 | } 51 | layer { 52 | name: "prob" 53 | type: "Softmax" 54 | bottom: "fc8" 55 | top: "prob" 56 | } 57 | layer { 58 | name: "argmax" 59 | type: "ArgMax" 60 | bottom: "prob" 61 | top: "argmax" 62 | argmax_param { 63 | top_k: 1 64 | } 65 | } 66 | 67 | for file_list.txt, see the following example: 68 | H:\Data\ILSVRC2012\n01440764\n01440764_18.JPEG 0 69 | H:\Data\ILSVRC2012\n01440764\n01440764_297.JPEG 0 70 | H:\Data\ILSVRC2012\n01443537\n01443537_395.JPEG 1 71 | H:\Data\ILSVRC2012\n01443537\n01443537_693.JPEG 1 72 | H:\Data\ILSVRC2012\n01518878\n01518878_103.JPEG 9 73 | H:\Data\ILSVRC2012\n01518878\n01518878_477.JPEG 9 74 | 75 | How to load features in Matlab? use the following function, see: 76 | prob = sc_load('prob.dat'); 77 | 78 | function data = sc_load(filename, type) 79 | if ~exist('type', 'var') || isempty(type) 80 | type = 'single'; 81 | end 82 | 83 | fid = fopen(filename, 'r'); 84 | rows = fread(fid, 1, type); 85 | cols = fread(fid, 1, type); 86 | data = fread(fid, rows * cols, type); 87 | fclose(fid); 88 | 89 | data = reshape(data, rows, cols); 90 | switch type 91 | case 'int32' 92 | data = int32(data); 93 | case 'single' 94 | data = single(data); 95 | end 96 | end 97 | 98 | ***/ 99 | 100 | #include 101 | #include 102 | #include "boost/algorithm/string.hpp" 103 | #include "caffe/caffe.hpp" 104 | using boost::shared_ptr; 105 | using std::string; 106 | using namespace caffe; 107 | 108 | #define MAX_FEAT_NUM 16 109 | 110 | int main(int argc, char** argv) 111 | { 112 | if (argc < 6) 113 | { 114 | LOG(ERROR) << "get_features proto_file model_file iterations blob_name1[,name2] save_name1[,name2]" 115 | << "[CPU/GPU] [Device ID]"; 116 | return 1; 117 | } 118 | 119 | Phase phase = TEST; 120 | if (argc >= 7 && strcmp(argv[6], "GPU") == 0) 121 | { 122 | Caffe::set_mode(Caffe::GPU); 123 | int device_id = 0; 124 | if (argc == 8) 125 | { 126 | device_id = atoi(argv[7]); 127 | } 128 | Caffe::SetDevice(device_id); 129 | LOG(ERROR) << "Using GPU #" << device_id; 130 | } else { 131 | LOG(ERROR) << "Using CPU"; 132 | Caffe::set_mode(Caffe::CPU); 133 | } 134 | 135 | boost::shared_ptr > feature_net; 136 | feature_net.reset(new Net(argv[1], phase)); 137 | feature_net->CopyTrainedLayersFrom(argv[2]); 138 | 139 | int total_iter = atoi(argv[3]); 140 | LOG(ERROR) << "Running " << total_iter << " iterations."; 141 | 142 | std::string feature_blob_names(argv[4]); 143 | std::vector blob_names; 144 | boost::split(blob_names, feature_blob_names, boost::is_any_of(",")); 145 | 146 | std::string save_file_names(argv[5]); 147 | std::vector file_names; 148 | boost::split(file_names, save_file_names, boost::is_any_of(",")); 149 | CHECK_EQ(blob_names.size(), file_names.size()) << 150 | " the number of feature blob names and save file names must be equal"; 151 | 152 | size_t num_features = blob_names.size(); 153 | for (size_t i = 0; i < num_features; i++) 154 | { 155 | CHECK(feature_net->has_blob(blob_names[i])) 156 | << "Unknown feature blob name " << blob_names[i] << " in the network"; 157 | } 158 | 159 | FILE *fp[MAX_FEAT_NUM]; 160 | for (size_t i = 0; i < num_features; i++) 161 | { 162 | fp[i] = fopen(file_names[i].c_str(), "wb"); 163 | } 164 | 165 | for (int i = 0; i < total_iter; ++i) 166 | { 167 | feature_net->ForwardPrefilled(); 168 | for (int j = 0; j < num_features; ++j) 169 | { 170 | const boost::shared_ptr > feature_blob = feature_net->blob_by_name(blob_names[j]); 171 | float num_imgs = feature_blob->num() * total_iter; 172 | float feat_dim = feature_blob->count() / feature_blob->num(); 173 | const float* data_ptr = (const float *) feature_blob->cpu_data(); 174 | 175 | if (i == 0) 176 | { 177 | fwrite(&feat_dim, sizeof(float), 1, fp[j]); 178 | fwrite(&num_imgs, sizeof(float), 1, fp[j]); 179 | } 180 | fwrite(data_ptr, sizeof(float), feature_blob->count(), fp[j]); 181 | } 182 | } 183 | 184 | for (size_t i = 0; i < num_features; i++) 185 | { 186 | fclose(fp[i]); 187 | } 188 | return 0; 189 | } 190 | -------------------------------------------------------------------------------- /sc_load.m: -------------------------------------------------------------------------------- 1 | function data = sc_load(filename, type) 2 | if ~exist('type', 'var') || isempty(type) 3 | type = 'single'; 4 | end 5 | fid =fopen(filename, 'r'); 6 | rows = fread(fid, 1, type); 7 | cols = fread(fid, 1, type); 8 | data = fread(fid, rows * cols, type); 9 | fclose(fid); 10 | data = reshape(data, rows, cols); 11 | switch type 12 | case 'int32' 13 | data = int32(data); 14 | case 'single' 15 | data = single(data); 16 | end 17 | end 18 | -------------------------------------------------------------------------------- /test_caffe_manual.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include "caffe/caffe.hpp" 4 | 5 | using namespace caffe; 6 | 7 | unsigned int get_layer_index(boost::shared_ptr< Net > & net, char *query_layer_name) 8 | { 9 | std::string str_query(query_layer_name); 10 | vector< string > const & layer_names = net->layer_names(); 11 | for( unsigned int i = 0; i != layer_names.size(); ++i ) 12 | { 13 | if( str_query == layer_names[i] ) 14 | { 15 | return i; 16 | } 17 | } 18 | LOG(FATAL) << "Unknown layer name: " << str_query; 19 | } 20 | 21 | unsigned int get_blob_index(boost::shared_ptr< Net > & net, char *query_blob_name) 22 | { 23 | std::string str_query(query_blob_name); 24 | vector< string > const & blob_names = net->blob_names(); 25 | for( unsigned int i = 0; i != blob_names.size(); ++i ) 26 | { 27 | if( str_query == blob_names[i] ) 28 | { 29 | return i; 30 | } 31 | } 32 | LOG(FATAL) << "Unknown blob name: " << str_query; 33 | } 34 | 35 | void get_blob_features(boost::shared_ptr< Net > & net, float *data_ptr, char* layer_name) 36 | { 37 | unsigned int id = get_layer_index(net, layer_name); 38 | const vector*>& output_blobs = net->top_vecs()[id]; 39 | for (unsigned int i = 0; i < output_blobs.size(); ++i) 40 | { 41 | switch (Caffe::mode()) { 42 | case Caffe::CPU: 43 | memcpy(data_ptr, output_blobs[i]->cpu_data(), 44 | sizeof(float) * output_blobs[i]->count()); 45 | break; 46 | case Caffe::GPU: 47 | cudaMemcpy(data_ptr, output_blobs[i]->gpu_data(), 48 | sizeof(float) * output_blobs[i]->count(), cudaMemcpyDeviceToHost); 49 | break; 50 | default: 51 | LOG(FATAL) << "Unknown Caffe mode."; 52 | } 53 | } 54 | } 55 | 56 | #define PRINT_SHAPE1(x) \ 57 | std::cout << (x).num() << "\t" << (x).channels() << "\t" << (x).height() << "\t" << (x).width() << "\n"; 58 | #define PRINT_SHAPE2(x) \ 59 | std::cout << (x)->num() << "\t" << (x)->channels() << "\t" << (x)->height() << "\t" << (x)->width() << "\n"; 60 | #define PRINT_DATA(x) \ 61 | std::cout << (x)[0] << "\t" << (x)[1] << "\n"; 62 | 63 | int main(int argc, char** argv) { 64 | 65 | char *proto = "H:\\Models\\Caffe\\deploy.prototxt"; 66 | char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel"; 67 | char *mean_file = "H:\\Models\\Caffe\\imagenet_mean.binaryproto"; 68 | Phase phase = TEST; 69 | //Caffe::set_mode(Caffe::CPU); 70 | Caffe::set_mode(Caffe::GPU); 71 | Caffe::SetDevice(0); 72 | 73 | // processing mean 74 | Blob image_mean; 75 | BlobProto blob_proto; 76 | const float *mean_ptr; 77 | bool succeed = ReadProtoFromBinaryFile(mean_file, &blob_proto); 78 | if (succeed) 79 | { 80 | std::cout << "read image mean succeeded" << std::endl; 81 | image_mean.FromProto(blob_proto); 82 | mean_ptr = (const float *) image_mean.cpu_data(); 83 | unsigned int num_pixel = image_mean.count(); 84 | std::cout << num_pixel << "\n"; 85 | PRINT_SHAPE1(image_mean); 86 | PRINT_DATA(mean_ptr); 87 | } 88 | else 89 | { 90 | LOG(FATAL) << "read image mean failed"; 91 | } 92 | 93 | // load net model 94 | boost::shared_ptr > net(new caffe::Net(proto, phase)); 95 | net->CopyTrainedLayersFrom(model); 96 | 97 | const std::vector >> layers = net->layers(); 98 | std::vector >> net_blobs = net->blobs(); 99 | std::vector layer_names = net->layer_names(); 100 | std::vector blob_names = net->blob_names(); 101 | boost::shared_ptr > layer; 102 | boost::shared_ptr > blob; 103 | 104 | // show input blob size 105 | Blob* input_blobs = net->input_blobs()[0]; 106 | std::cout << "\nInput blob size:\n"; 107 | PRINT_SHAPE2(input_blobs); 108 | 109 | // processing blobs of each layer, namely, weights and bias 110 | const float *mem_ptr; 111 | CHECK(layers.size() == layer_names.size()); 112 | std::cout << "\n#Layers: " << layers.size() << std::endl; 113 | std::vector >> layer_blobs; 114 | for (int i = 0; i < layers.size(); ++i) 115 | { 116 | layer_blobs = layers[i]->blobs(); 117 | std::cout << "\n[" << i+1 << "] layer name: " << layer_names[i] << ", type: " << layers[i]->type() << std::endl; 118 | std::cout << "#Blobs: " << layer_blobs.size() << std::endl; 119 | for (int j = 0; j < layer_blobs.size(); ++j) 120 | { 121 | blob = layer_blobs[j]; 122 | PRINT_SHAPE2(blob); 123 | mem_ptr = (const float *) blob->cpu_data(); 124 | PRINT_DATA(mem_ptr); 125 | } 126 | } 127 | 128 | // get weights and bias from layer name 129 | char *query_layer_name = "conv1"; 130 | const float *weight_ptr, *bias_ptr; 131 | unsigned int layer_id = get_layer_index(net, query_layer_name); 132 | layer = net->layers()[layer_id]; 133 | std::vector >> blobs = layer->blobs(); 134 | if (blobs.size() > 0) 135 | { 136 | std::cout << "\nweights and bias from layer: " << query_layer_name << "\n"; 137 | weight_ptr = (const float *) blobs[0]->cpu_data(); 138 | PRINT_DATA(weight_ptr); 139 | bias_ptr = (const float *) blobs[1]->cpu_data(); 140 | PRINT_DATA(bias_ptr); 141 | } 142 | 143 | // modify weights from layer name 144 | blob = net->layers()[layer_id]->blobs()[0]; 145 | unsigned int data_size = blob->count(); 146 | float *data_ptr = new float[data_size]; 147 | caffe_copy(blob->count(), weight_ptr, data_ptr); 148 | float *w_ptr = NULL; 149 | data_ptr[0] = 1.1111f; 150 | data_ptr[1] = 2.2222f; 151 | switch (Caffe::mode()) 152 | { 153 | case Caffe::CPU: 154 | w_ptr = blob->mutable_cpu_data(); 155 | break; 156 | case Caffe::GPU: 157 | w_ptr = blob->mutable_gpu_data(); 158 | break; 159 | default: 160 | LOG(FATAL) << "Unknown Caffe mode"; 161 | } 162 | caffe_copy(blob->count(), data_ptr, w_ptr); 163 | weight_ptr = (const float *) blob->cpu_data(); 164 | delete [] data_ptr; 165 | std::cout << "\nnew weights and bias from layer: " << query_layer_name << "\n"; 166 | PRINT_DATA(weight_ptr); 167 | 168 | // get features from name 169 | char *query_blob_name = "conv1"; /* data, conv1, pool1, norm1, fc6, prob, etc */ 170 | unsigned int blob_id = get_blob_index(net, query_blob_name); 171 | blob = net->blobs()[blob_id]; 172 | unsigned int num_data = blob->count(); /* NCHW=10x96x55x55 */ 173 | mem_ptr = (const float *) blob->cpu_data(); 174 | std::cout << "\n#Features: " << num_data << "\n"; 175 | PRINT_DATA(mem_ptr); 176 | 177 | char* weights_file = "bvlc_reference_caffenet_new.caffemodel"; 178 | NetParameter net_param; 179 | net->ToProto(&net_param, false); 180 | WriteProtoToBinaryFile(net_param, weights_file); 181 | 182 | std::cout << "END" << std::endl; 183 | return 0; 184 | } 185 | -------------------------------------------------------------------------------- /test_caffe_manual_output.log: -------------------------------------------------------------------------------- 1 | read image mean succeeded 2 | 196608 3 | 1 3 256 256 4 | 110.177 110.459 5 | 6 | Input blob size: 7 | 10 3 227 227 8 | 9 | #Layers: 23 10 | 11 | [1] layer name: conv1, type: Convolution 12 | #Blobs: 2 13 | 96 3 11 11 14 | -0.00121359 0.00323653 15 | 96 1 1 1 16 | -0.504212 -0.188764 17 | 18 | [2] layer name: relu1, type: ReLU 19 | #Blobs: 0 20 | 21 | [3] layer name: pool1, type: Pooling 22 | #Blobs: 0 23 | 24 | [4] layer name: norm1, type: LRN 25 | #Blobs: 0 26 | 27 | [5] layer name: conv2, type: Convolution 28 | #Blobs: 2 29 | 256 48 5 5 30 | -0.0111258 0.0218567 31 | 256 1 1 1 32 | 0.982103 0.994344 33 | 34 | [6] layer name: relu2, type: ReLU 35 | #Blobs: 0 36 | 37 | [7] layer name: pool2, type: Pooling 38 | #Blobs: 0 39 | 40 | [8] layer name: norm2, type: LRN 41 | #Blobs: 0 42 | 43 | [9] layer name: conv3, type: Convolution 44 | #Blobs: 2 45 | 384 256 3 3 46 | -0.000527019 0.00534925 47 | 384 1 1 1 48 | -0.000547366 -0.00652369 49 | 50 | [10] layer name: relu3, type: ReLU 51 | #Blobs: 0 52 | 53 | [11] layer name: conv4, type: Convolution 54 | #Blobs: 2 55 | 384 192 3 3 56 | 0.00378311 0.000618855 57 | 384 1 1 1 58 | 0.884884 1.02955 59 | 60 | [12] layer name: relu4, type: ReLU 61 | #Blobs: 0 62 | 63 | [13] layer name: conv5, type: Convolution 64 | #Blobs: 2 65 | 256 192 3 3 66 | -0.0134502 -0.0174268 67 | 256 1 1 1 68 | 0.982957 1.04293 69 | 70 | [14] layer name: relu5, type: ReLU 71 | #Blobs: 0 72 | 73 | [15] layer name: pool5, type: Pooling 74 | #Blobs: 0 75 | 76 | [16] layer name: fc6, type: InnerProduct 77 | #Blobs: 2 78 | 4096 9216 1 1 79 | 0.00639847 0.00915686 80 | 4096 1 1 1 81 | 0.983698 1.00962 82 | 83 | [17] layer name: relu6, type: ReLU 84 | #Blobs: 0 85 | 86 | [18] layer name: drop6, type: Dropout 87 | #Blobs: 0 88 | 89 | [19] layer name: fc7, type: InnerProduct 90 | #Blobs: 2 91 | 4096 4096 1 1 92 | 0.0125212 -0.0134137 93 | 4096 1 1 1 94 | 1.09399 0.999266 95 | 96 | [20] layer name: relu7, type: ReLU 97 | #Blobs: 0 98 | 99 | [21] layer name: drop7, type: Dropout 100 | #Blobs: 0 101 | 102 | [22] layer name: fc8, type: InnerProduct 103 | #Blobs: 2 104 | 1000 4096 1 1 105 | 0.000160601 -0.010393 106 | 1000 1 1 1 107 | -0.196648 -0.100678 108 | 109 | [23] layer name: prob, type: Softmax 110 | #Blobs: 0 111 | 112 | weights and bias from layer: conv1 113 | -0.00121359 0.00323653 114 | -0.504212 -0.188764 115 | 116 | new weights and bias from layer: conv1 117 | 1.1111 2.2222 118 | 119 | #Features: 2904000 120 | 0 0 121 | END 122 | -------------------------------------------------------------------------------- /train_mnist_99.57.log: -------------------------------------------------------------------------------- 1 | I0805 14:52:42.048267 1392 caffe.cpp:113] Use GPU with device ID 0 2 | I0805 14:52:42.416288 1392 common.cpp:24] System entropy source not available, using fallback algorithm to generate seed instead. 3 | I0805 14:52:42.417289 1392 caffe.cpp:121] Starting Optimization 4 | I0805 14:52:42.417289 1392 solver.cpp:32] Initializing solver from parameters: 5 | test_iter: 100 6 | test_interval: 1000 7 | base_lr: 0.04 8 | display: 100 9 | max_iter: 15000 10 | lr_policy: "inv" 11 | gamma: 0.0002 12 | power: 0.9 13 | momentum: 0.8 14 | weight_decay: 0.0001 15 | snapshot: 5000 16 | snapshot_prefix: "lenet" 17 | solver_mode: GPU 18 | net: "lenet_train_test.prototxt" 19 | I0805 14:52:42.417289 1392 solver.cpp:70] Creating training net from net file: lenet_train_test.prototxt 20 | I0805 14:52:42.418288 1392 net.cpp:287] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist 21 | I0805 14:52:42.418288 1392 net.cpp:287] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy 22 | I0805 14:52:42.418288 1392 net.cpp:42] Initializing net from parameters: 23 | name: "LeNet" 24 | state { 25 | phase: TRAIN 26 | } 27 | layer { 28 | name: "mnist" 29 | type: "Data" 30 | top: "data" 31 | top: "label" 32 | include { 33 | phase: TRAIN 34 | } 35 | transform_param { 36 | scale: 0.00390625 37 | } 38 | data_param { 39 | source: "mnist-train-leveldb" 40 | batch_size: 64 41 | backend: LEVELDB 42 | } 43 | } 44 | layer { 45 | name: "conv1" 46 | type: "Convolution" 47 | bottom: "data" 48 | top: "conv1" 49 | param { 50 | lr_mult: 1 51 | } 52 | param { 53 | lr_mult: 2 54 | } 55 | convolution_param { 56 | num_output: 32 57 | kernel_size: 6 58 | stride: 1 59 | weight_filler { 60 | type: "xavier" 61 | } 62 | bias_filler { 63 | type: "constant" 64 | } 65 | } 66 | } 67 | layer { 68 | name: "relu1" 69 | type: "ReLU" 70 | bottom: "conv1" 71 | top: "conv1" 72 | } 73 | layer { 74 | name: "conv1_bn" 75 | type: "BN" 76 | bottom: "conv1" 77 | top: "conv1_bn" 78 | param { 79 | lr_mult: 1 80 | decay_mult: 0 81 | } 82 | param { 83 | lr_mult: 1 84 | decay_mult: 0 85 | } 86 | bn_param { 87 | scale_filler { 88 | type: "constant" 89 | value: 1 90 | } 91 | shift_filler { 92 | type: "constant" 93 | value: 0 94 | } 95 | } 96 | } 97 | layer { 98 | name: "drop1" 99 | type: "Dropout" 100 | bottom: "conv1_bn" 101 | top: "conv1_bn" 102 | dropout_param { 103 | dropout_ratio: 0 104 | } 105 | } 106 | layer { 107 | name: "pool1" 108 | type: "Pooling" 109 | bottom: "conv1_bn" 110 | top: "pool1" 111 | pooling_param { 112 | pool: MAX 113 | kernel_size: 3 114 | stride: 2 115 | } 116 | } 117 | layer { 118 | name: "conv2" 119 | type: "Convolution" 120 | bottom: "pool1" 121 | top: "conv2" 122 | param { 123 | lr_mult: 1 124 | } 125 | param { 126 | lr_mult: 2 127 | } 128 | convolution_param { 129 | num_output: 72 130 | kernel_size: 3 131 | stride: 1 132 | weight_filler { 133 | type: "xavier" 134 | } 135 | bias_filler { 136 | type: "constant" 137 | } 138 | } 139 | } 140 | layer { 141 | name: "relu2" 142 | type: "ReLU" 143 | bottom: "conv2" 144 | top: "conv2" 145 | } 146 | layer { 147 | name: "conv2_bn" 148 | type: "BN" 149 | bottom: "conv2" 150 | top: "conv2_bn" 151 | param { 152 | lr_mult: 1 153 | decay_mult: 0 154 | } 155 | param { 156 | lr_mult: 1 157 | decay_mult: 0 158 | } 159 | bn_param { 160 | scale_filler { 161 | type: "constant" 162 | value: 1 163 | } 164 | shift_filler { 165 | type: "constant" 166 | value: 0 167 | } 168 | } 169 | } 170 | layer { 171 | name: "drop2" 172 | type: "Dropout" 173 | bottom: "conv2_bn" 174 | top: "conv2_bn" 175 | dropout_param { 176 | dropout_ratio: 0.1 177 | } 178 | } 179 | layer { 180 | name: "pool2" 181 | type: "Pooling" 182 | bottom: "conv2_bn" 183 | top: "pool2" 184 | pooling_param { 185 | pool: MAX 186 | kernel_size: 2 187 | stride: 2 188 | } 189 | } 190 | layer { 191 | name: "ip1" 192 | type: "InnerProduct" 193 | bottom: "pool2" 194 | top: "ip1" 195 | param { 196 | lr_mult: 1 197 | } 198 | param { 199 | lr_mult: 2 200 | } 201 | inner_product_param { 202 | num_output: 320 203 | weight_filler { 204 | type: "xavier" 205 | } 206 | bias_filler { 207 | type: "constant" 208 | } 209 | } 210 | } 211 | layer { 212 | name: "relu3" 213 | type: "ReLU" 214 | bottom: "ip1" 215 | top: "ip1" 216 | } 217 | layer { 218 | name: "drop3" 219 | type: "Dropout" 220 | bottom: "ip1" 221 | top: "ip1" 222 | dropout_param { 223 | dropout_ratio: 0.3 224 | } 225 | } 226 | layer { 227 | name: "ip2" 228 | type: "InnerProduct" 229 | bottom: "ip1" 230 | top: "ip2" 231 | param { 232 | lr_mult: 1 233 | } 234 | param { 235 | lr_mult: 2 236 | } 237 | inner_product_param { 238 | num_output: 10 239 | weight_filler { 240 | type: "xavier" 241 | } 242 | bias_filler { 243 | type: "constant" 244 | } 245 | } 246 | } 247 | layer { 248 | name: "loss" 249 | type: "SoftmaxWithLoss" 250 | bottom: "ip2" 251 | bottom: "label" 252 | top: "loss" 253 | } 254 | I0805 14:52:42.457290 1392 layer_factory.hpp:74] Creating layer mnist 255 | I0805 14:52:42.459291 1392 net.cpp:90] Creating Layer mnist 256 | I0805 14:52:42.460291 1392 net.cpp:368] mnist -> data 257 | I0805 14:52:42.460291 1392 net.cpp:368] mnist -> label 258 | I0805 14:52:42.461292 1392 net.cpp:120] Setting up mnist 259 | I0805 14:52:42.468291 1392 db.cpp:20] Opened leveldb mnist-train-leveldb 260 | I0805 14:52:42.469291 1392 data_layer.cpp:52] output data size: 64,1,28,28 261 | I0805 14:52:42.469291 1392 net.cpp:127] Top shape: 64 1 28 28 (50176) 262 | I0805 14:52:42.470291 1392 net.cpp:127] Top shape: 64 (64) 263 | I0805 14:52:42.470291 1392 layer_factory.hpp:74] Creating layer conv1 264 | I0805 14:52:42.471292 1392 net.cpp:90] Creating Layer conv1 265 | I0805 14:52:42.472291 1392 net.cpp:410] conv1 <- data 266 | I0805 14:52:42.473291 1392 net.cpp:368] conv1 -> conv1 267 | I0805 14:52:42.473291 1392 net.cpp:120] Setting up conv1 268 | I0805 14:52:42.474292 1392 common.cpp:24] System entropy source not available, using fallback algorithm to generate seed instead. 269 | I0805 14:52:42.539295 1392 net.cpp:127] Top shape: 64 32 23 23 (1083392) 270 | I0805 14:52:42.540295 1392 layer_factory.hpp:74] Creating layer relu1 271 | I0805 14:52:42.541296 1392 net.cpp:90] Creating Layer relu1 272 | I0805 14:52:42.541296 1392 net.cpp:410] relu1 <- conv1 273 | I0805 14:52:42.542295 1392 net.cpp:357] relu1 -> conv1 (in-place) 274 | I0805 14:52:42.542295 1392 net.cpp:120] Setting up relu1 275 | I0805 14:52:42.543295 1392 net.cpp:127] Top shape: 64 32 23 23 (1083392) 276 | I0805 14:52:42.544296 1392 layer_factory.hpp:74] Creating layer conv1_bn 277 | I0805 14:52:42.544296 1392 net.cpp:90] Creating Layer conv1_bn 278 | I0805 14:52:42.544296 1392 net.cpp:410] conv1_bn <- conv1 279 | I0805 14:52:42.545296 1392 net.cpp:368] conv1_bn -> conv1_bn 280 | I0805 14:52:42.545296 1392 net.cpp:120] Setting up conv1_bn 281 | I0805 14:52:42.546296 1392 net.cpp:127] Top shape: 64 32 23 23 (1083392) 282 | I0805 14:52:42.546296 1392 layer_factory.hpp:74] Creating layer drop1 283 | I0805 14:52:42.547297 1392 net.cpp:90] Creating Layer drop1 284 | I0805 14:52:42.547297 1392 net.cpp:410] drop1 <- conv1_bn 285 | I0805 14:52:42.548296 1392 net.cpp:357] drop1 -> conv1_bn (in-place) 286 | I0805 14:52:42.548296 1392 net.cpp:120] Setting up drop1 287 | I0805 14:52:42.549296 1392 net.cpp:127] Top shape: 64 32 23 23 (1083392) 288 | I0805 14:52:42.550297 1392 layer_factory.hpp:74] Creating layer pool1 289 | I0805 14:52:42.550297 1392 net.cpp:90] Creating Layer pool1 290 | I0805 14:52:42.551296 1392 net.cpp:410] pool1 <- conv1_bn 291 | I0805 14:52:42.551296 1392 net.cpp:368] pool1 -> pool1 292 | I0805 14:52:42.552296 1392 net.cpp:120] Setting up pool1 293 | I0805 14:52:42.552296 1392 net.cpp:127] Top shape: 64 32 11 11 (247808) 294 | I0805 14:52:42.553297 1392 layer_factory.hpp:74] Creating layer conv2 295 | I0805 14:52:42.553297 1392 net.cpp:90] Creating Layer conv2 296 | I0805 14:52:42.554296 1392 net.cpp:410] conv2 <- pool1 297 | I0805 14:52:42.554296 1392 net.cpp:368] conv2 -> conv2 298 | I0805 14:52:42.554296 1392 net.cpp:120] Setting up conv2 299 | I0805 14:52:42.555296 1392 net.cpp:127] Top shape: 64 72 9 9 (373248) 300 | I0805 14:52:42.555296 1392 layer_factory.hpp:74] Creating layer relu2 301 | I0805 14:52:42.556296 1392 net.cpp:90] Creating Layer relu2 302 | I0805 14:52:42.556296 1392 net.cpp:410] relu2 <- conv2 303 | I0805 14:52:42.556296 1392 net.cpp:357] relu2 -> conv2 (in-place) 304 | I0805 14:52:42.556296 1392 net.cpp:120] Setting up relu2 305 | I0805 14:52:42.557296 1392 net.cpp:127] Top shape: 64 72 9 9 (373248) 306 | I0805 14:52:42.557296 1392 layer_factory.hpp:74] Creating layer conv2_bn 307 | I0805 14:52:42.557296 1392 net.cpp:90] Creating Layer conv2_bn 308 | I0805 14:52:42.558296 1392 net.cpp:410] conv2_bn <- conv2 309 | I0805 14:52:42.558296 1392 net.cpp:368] conv2_bn -> conv2_bn 310 | I0805 14:52:42.558296 1392 net.cpp:120] Setting up conv2_bn 311 | I0805 14:52:42.558296 1392 net.cpp:127] Top shape: 64 72 9 9 (373248) 312 | I0805 14:52:42.559296 1392 layer_factory.hpp:74] Creating layer drop2 313 | I0805 14:52:42.559296 1392 net.cpp:90] Creating Layer drop2 314 | I0805 14:52:42.559296 1392 net.cpp:410] drop2 <- conv2_bn 315 | I0805 14:52:42.559296 1392 net.cpp:357] drop2 -> conv2_bn (in-place) 316 | I0805 14:52:42.559296 1392 net.cpp:120] Setting up drop2 317 | I0805 14:52:42.560297 1392 net.cpp:127] Top shape: 64 72 9 9 (373248) 318 | I0805 14:52:42.560297 1392 layer_factory.hpp:74] Creating layer pool2 319 | I0805 14:52:42.560297 1392 net.cpp:90] Creating Layer pool2 320 | I0805 14:52:42.561296 1392 net.cpp:410] pool2 <- conv2_bn 321 | I0805 14:52:42.561296 1392 net.cpp:368] pool2 -> pool2 322 | I0805 14:52:42.561296 1392 net.cpp:120] Setting up pool2 323 | I0805 14:52:42.562296 1392 net.cpp:127] Top shape: 64 72 5 5 (115200) 324 | I0805 14:52:42.562296 1392 layer_factory.hpp:74] Creating layer ip1 325 | I0805 14:52:42.562296 1392 net.cpp:90] Creating Layer ip1 326 | I0805 14:52:42.563297 1392 net.cpp:410] ip1 <- pool2 327 | I0805 14:52:42.563297 1392 net.cpp:368] ip1 -> ip1 328 | I0805 14:52:42.563297 1392 net.cpp:120] Setting up ip1 329 | I0805 14:52:42.567297 1392 net.cpp:127] Top shape: 64 320 (20480) 330 | I0805 14:52:42.568297 1392 layer_factory.hpp:74] Creating layer relu3 331 | I0805 14:52:42.568297 1392 net.cpp:90] Creating Layer relu3 332 | I0805 14:52:42.569298 1392 net.cpp:410] relu3 <- ip1 333 | I0805 14:52:42.569298 1392 net.cpp:357] relu3 -> ip1 (in-place) 334 | I0805 14:52:42.569298 1392 net.cpp:120] Setting up relu3 335 | I0805 14:52:42.570297 1392 net.cpp:127] Top shape: 64 320 (20480) 336 | I0805 14:52:42.570297 1392 layer_factory.hpp:74] Creating layer drop3 337 | I0805 14:52:42.571297 1392 net.cpp:90] Creating Layer drop3 338 | I0805 14:52:42.571297 1392 net.cpp:410] drop3 <- ip1 339 | I0805 14:52:42.571297 1392 net.cpp:357] drop3 -> ip1 (in-place) 340 | I0805 14:52:42.571297 1392 net.cpp:120] Setting up drop3 341 | I0805 14:52:42.572298 1392 net.cpp:127] Top shape: 64 320 (20480) 342 | I0805 14:52:42.572298 1392 layer_factory.hpp:74] Creating layer ip2 343 | I0805 14:52:42.572298 1392 net.cpp:90] Creating Layer ip2 344 | I0805 14:52:42.572298 1392 net.cpp:410] ip2 <- ip1 345 | I0805 14:52:42.572298 1392 net.cpp:368] ip2 -> ip2 346 | I0805 14:52:42.573297 1392 net.cpp:120] Setting up ip2 347 | I0805 14:52:42.573297 1392 net.cpp:127] Top shape: 64 10 (640) 348 | I0805 14:52:42.573297 1392 layer_factory.hpp:74] Creating layer loss 349 | I0805 14:52:42.573297 1392 net.cpp:90] Creating Layer loss 350 | I0805 14:52:42.574297 1392 net.cpp:410] loss <- ip2 351 | I0805 14:52:42.574297 1392 net.cpp:410] loss <- label 352 | I0805 14:52:42.574297 1392 net.cpp:368] loss -> loss 353 | I0805 14:52:42.574297 1392 net.cpp:120] Setting up loss 354 | I0805 14:52:42.575297 1392 layer_factory.hpp:74] Creating layer loss 355 | I0805 14:52:42.575297 1392 net.cpp:127] Top shape: (1) 356 | I0805 14:52:42.575297 1392 net.cpp:129] with loss weight 1 357 | I0805 14:52:42.575297 1392 net.cpp:192] loss needs backward computation. 358 | I0805 14:52:42.576297 1392 net.cpp:192] ip2 needs backward computation. 359 | I0805 14:52:42.576297 1392 net.cpp:192] drop3 needs backward computation. 360 | I0805 14:52:42.576297 1392 net.cpp:192] relu3 needs backward computation. 361 | I0805 14:52:42.576297 1392 net.cpp:192] ip1 needs backward computation. 362 | I0805 14:52:42.576297 1392 net.cpp:192] pool2 needs backward computation. 363 | I0805 14:52:42.577297 1392 net.cpp:192] drop2 needs backward computation. 364 | I0805 14:52:42.577297 1392 net.cpp:192] conv2_bn needs backward computation. 365 | I0805 14:52:42.577297 1392 net.cpp:192] relu2 needs backward computation. 366 | I0805 14:52:42.577297 1392 net.cpp:192] conv2 needs backward computation. 367 | I0805 14:52:42.578297 1392 net.cpp:192] pool1 needs backward computation. 368 | I0805 14:52:42.578297 1392 net.cpp:192] drop1 needs backward computation. 369 | I0805 14:52:42.578297 1392 net.cpp:192] conv1_bn needs backward computation. 370 | I0805 14:52:42.578297 1392 net.cpp:192] relu1 needs backward computation. 371 | I0805 14:52:42.579298 1392 net.cpp:192] conv1 needs backward computation. 372 | I0805 14:52:42.579298 1392 net.cpp:194] mnist does not need backward computation. 373 | I0805 14:52:42.579298 1392 net.cpp:235] This network produces output loss 374 | I0805 14:52:42.580298 1392 net.cpp:482] Collecting Learning Rate and Weight Decay. 375 | I0805 14:52:42.580298 1392 net.cpp:247] Network initialization done. 376 | I0805 14:52:42.580298 1392 net.cpp:248] Memory required for data: 25207556 377 | I0805 14:52:42.581298 1392 solver.cpp:154] Creating test net (#0) specified by net file: lenet_train_test.prototxt 378 | I0805 14:52:42.582298 1392 net.cpp:287] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist 379 | I0805 14:52:42.582298 1392 net.cpp:42] Initializing net from parameters: 380 | name: "LeNet" 381 | state { 382 | phase: TEST 383 | } 384 | layer { 385 | name: "mnist" 386 | type: "Data" 387 | top: "data" 388 | top: "label" 389 | include { 390 | phase: TEST 391 | } 392 | transform_param { 393 | scale: 0.00390625 394 | } 395 | data_param { 396 | source: "mnist-test-leveldb" 397 | batch_size: 100 398 | backend: LEVELDB 399 | } 400 | } 401 | layer { 402 | name: "conv1" 403 | type: "Convolution" 404 | bottom: "data" 405 | top: "conv1" 406 | param { 407 | lr_mult: 1 408 | } 409 | param { 410 | lr_mult: 2 411 | } 412 | convolution_param { 413 | num_output: 32 414 | kernel_size: 6 415 | stride: 1 416 | weight_filler { 417 | type: "xavier" 418 | } 419 | bias_filler { 420 | type: "constant" 421 | } 422 | } 423 | } 424 | layer { 425 | name: "relu1" 426 | type: "ReLU" 427 | bottom: "conv1" 428 | top: "conv1" 429 | } 430 | layer { 431 | name: "conv1_bn" 432 | type: "BN" 433 | bottom: "conv1" 434 | top: "conv1_bn" 435 | param { 436 | lr_mult: 1 437 | decay_mult: 0 438 | } 439 | param { 440 | lr_mult: 1 441 | decay_mult: 0 442 | } 443 | bn_param { 444 | scale_filler { 445 | type: "constant" 446 | value: 1 447 | } 448 | shift_filler { 449 | type: "constant" 450 | value: 0 451 | } 452 | } 453 | } 454 | layer { 455 | name: "drop1" 456 | type: "Dropout" 457 | bottom: "conv1_bn" 458 | top: "conv1_bn" 459 | dropout_param { 460 | dropout_ratio: 0 461 | } 462 | } 463 | layer { 464 | name: "pool1" 465 | type: "Pooling" 466 | bottom: "conv1_bn" 467 | top: "pool1" 468 | pooling_param { 469 | pool: MAX 470 | kernel_size: 3 471 | stride: 2 472 | } 473 | } 474 | layer { 475 | name: "conv2" 476 | type: "Convolution" 477 | bottom: "pool1" 478 | top: "conv2" 479 | param { 480 | lr_mult: 1 481 | } 482 | param { 483 | lr_mult: 2 484 | } 485 | convolution_param { 486 | num_output: 72 487 | kernel_size: 3 488 | stride: 1 489 | weight_filler { 490 | type: "xavier" 491 | } 492 | bias_filler { 493 | type: "constant" 494 | } 495 | } 496 | } 497 | layer { 498 | name: "relu2" 499 | type: "ReLU" 500 | bottom: "conv2" 501 | top: "conv2" 502 | } 503 | layer { 504 | name: "conv2_bn" 505 | type: "BN" 506 | bottom: "conv2" 507 | top: "conv2_bn" 508 | param { 509 | lr_mult: 1 510 | decay_mult: 0 511 | } 512 | param { 513 | lr_mult: 1 514 | decay_mult: 0 515 | } 516 | bn_param { 517 | scale_filler { 518 | type: "constant" 519 | value: 1 520 | } 521 | shift_filler { 522 | type: "constant" 523 | value: 0 524 | } 525 | } 526 | } 527 | layer { 528 | name: "drop2" 529 | type: "Dropout" 530 | bottom: "conv2_bn" 531 | top: "conv2_bn" 532 | dropout_param { 533 | dropout_ratio: 0.1 534 | } 535 | } 536 | layer { 537 | name: "pool2" 538 | type: "Pooling" 539 | bottom: "conv2_bn" 540 | top: "pool2" 541 | pooling_param { 542 | pool: MAX 543 | kernel_size: 2 544 | stride: 2 545 | } 546 | } 547 | layer { 548 | name: "ip1" 549 | type: "InnerProduct" 550 | bottom: "pool2" 551 | top: "ip1" 552 | param { 553 | lr_mult: 1 554 | } 555 | param { 556 | lr_mult: 2 557 | } 558 | inner_product_param { 559 | num_output: 320 560 | weight_filler { 561 | type: "xavier" 562 | } 563 | bias_filler { 564 | type: "constant" 565 | } 566 | } 567 | } 568 | layer { 569 | name: "relu3" 570 | type: "ReLU" 571 | bottom: "ip1" 572 | top: "ip1" 573 | } 574 | layer { 575 | name: "drop3" 576 | type: "Dropout" 577 | bottom: "ip1" 578 | top: "ip1" 579 | dropout_param { 580 | dropout_ratio: 0.3 581 | } 582 | } 583 | layer { 584 | name: "ip2" 585 | type: "InnerProduct" 586 | bottom: "ip1" 587 | top: "ip2" 588 | param { 589 | lr_mult: 1 590 | } 591 | param { 592 | lr_mult: 2 593 | } 594 | inner_product_param { 595 | num_output: 10 596 | weight_filler { 597 | type: "xavier" 598 | } 599 | bias_filler { 600 | type: "constant" 601 | } 602 | } 603 | } 604 | layer { 605 | name: "accuracy" 606 | type: "Accuracy" 607 | bottom: "ip2" 608 | bottom: "label" 609 | top: "accuracy" 610 | include { 611 | phase: TEST 612 | } 613 | } 614 | layer { 615 | name: "loss" 616 | type: "SoftmaxWithLoss" 617 | bottom: "ip2" 618 | bottom: "label" 619 | top: "loss" 620 | } 621 | I0805 14:52:42.609299 1392 layer_factory.hpp:74] Creating layer mnist 622 | I0805 14:52:42.610299 1392 net.cpp:90] Creating Layer mnist 623 | I0805 14:52:42.610299 1392 net.cpp:368] mnist -> data 624 | I0805 14:52:42.610299 1392 net.cpp:368] mnist -> label 625 | I0805 14:52:42.611299 1392 net.cpp:120] Setting up mnist 626 | I0805 14:52:42.618300 1392 db.cpp:20] Opened leveldb mnist-test-leveldb 627 | I0805 14:52:42.619300 1392 data_layer.cpp:52] output data size: 100,1,28,28 628 | I0805 14:52:42.619300 1392 net.cpp:127] Top shape: 100 1 28 28 (78400) 629 | I0805 14:52:42.620301 1392 net.cpp:127] Top shape: 100 (100) 630 | I0805 14:52:42.620301 1392 layer_factory.hpp:74] Creating layer label_mnist_1_split 631 | I0805 14:52:42.620301 1392 net.cpp:90] Creating Layer label_mnist_1_split 632 | I0805 14:52:42.620301 1392 net.cpp:410] label_mnist_1_split <- label 633 | I0805 14:52:42.621300 1392 net.cpp:368] label_mnist_1_split -> label_mnist_1_split_0 634 | I0805 14:52:42.621300 1392 net.cpp:368] label_mnist_1_split -> label_mnist_1_split_1 635 | I0805 14:52:42.621300 1392 net.cpp:120] Setting up label_mnist_1_split 636 | I0805 14:52:42.622300 1392 net.cpp:127] Top shape: 100 (100) 637 | I0805 14:52:42.622300 1392 net.cpp:127] Top shape: 100 (100) 638 | I0805 14:52:42.622300 1392 layer_factory.hpp:74] Creating layer conv1 639 | I0805 14:52:42.622300 1392 net.cpp:90] Creating Layer conv1 640 | I0805 14:52:42.623301 1392 net.cpp:410] conv1 <- data 641 | I0805 14:52:42.623301 1392 net.cpp:368] conv1 -> conv1 642 | I0805 14:52:42.623301 1392 net.cpp:120] Setting up conv1 643 | I0805 14:52:42.624300 1392 net.cpp:127] Top shape: 100 32 23 23 (1692800) 644 | I0805 14:52:42.625300 1392 layer_factory.hpp:74] Creating layer relu1 645 | I0805 14:52:42.625300 1392 net.cpp:90] Creating Layer relu1 646 | I0805 14:52:42.625300 1392 net.cpp:410] relu1 <- conv1 647 | I0805 14:52:42.625300 1392 net.cpp:357] relu1 -> conv1 (in-place) 648 | I0805 14:52:42.626301 1392 net.cpp:120] Setting up relu1 649 | I0805 14:52:42.626301 1392 net.cpp:127] Top shape: 100 32 23 23 (1692800) 650 | I0805 14:52:42.626301 1392 layer_factory.hpp:74] Creating layer conv1_bn 651 | I0805 14:52:42.626301 1392 net.cpp:90] Creating Layer conv1_bn 652 | I0805 14:52:42.627300 1392 net.cpp:410] conv1_bn <- conv1 653 | I0805 14:52:42.627300 1392 net.cpp:368] conv1_bn -> conv1_bn 654 | I0805 14:52:42.627300 1392 net.cpp:120] Setting up conv1_bn 655 | I0805 14:52:42.627300 1392 net.cpp:127] Top shape: 100 32 23 23 (1692800) 656 | I0805 14:52:42.628300 1392 layer_factory.hpp:74] Creating layer drop1 657 | I0805 14:52:42.628300 1392 net.cpp:90] Creating Layer drop1 658 | I0805 14:52:42.628300 1392 net.cpp:410] drop1 <- conv1_bn 659 | I0805 14:52:42.628300 1392 net.cpp:357] drop1 -> conv1_bn (in-place) 660 | I0805 14:52:42.629300 1392 net.cpp:120] Setting up drop1 661 | I0805 14:52:42.629300 1392 net.cpp:127] Top shape: 100 32 23 23 (1692800) 662 | I0805 14:52:42.629300 1392 layer_factory.hpp:74] Creating layer pool1 663 | I0805 14:52:42.629300 1392 net.cpp:90] Creating Layer pool1 664 | I0805 14:52:42.630300 1392 net.cpp:410] pool1 <- conv1_bn 665 | I0805 14:52:42.630300 1392 net.cpp:368] pool1 -> pool1 666 | I0805 14:52:42.630300 1392 net.cpp:120] Setting up pool1 667 | I0805 14:52:42.631300 1392 net.cpp:127] Top shape: 100 32 11 11 (387200) 668 | I0805 14:52:42.631300 1392 layer_factory.hpp:74] Creating layer conv2 669 | I0805 14:52:42.631300 1392 net.cpp:90] Creating Layer conv2 670 | I0805 14:52:42.632300 1392 net.cpp:410] conv2 <- pool1 671 | I0805 14:52:42.632300 1392 net.cpp:368] conv2 -> conv2 672 | I0805 14:52:42.632300 1392 net.cpp:120] Setting up conv2 673 | I0805 14:52:42.633301 1392 net.cpp:127] Top shape: 100 72 9 9 (583200) 674 | I0805 14:52:42.633301 1392 layer_factory.hpp:74] Creating layer relu2 675 | I0805 14:52:42.633301 1392 net.cpp:90] Creating Layer relu2 676 | I0805 14:52:42.634301 1392 net.cpp:410] relu2 <- conv2 677 | I0805 14:52:42.634301 1392 net.cpp:357] relu2 -> conv2 (in-place) 678 | I0805 14:52:42.634301 1392 net.cpp:120] Setting up relu2 679 | I0805 14:52:42.635301 1392 net.cpp:127] Top shape: 100 72 9 9 (583200) 680 | I0805 14:52:42.635301 1392 layer_factory.hpp:74] Creating layer conv2_bn 681 | I0805 14:52:42.635301 1392 net.cpp:90] Creating Layer conv2_bn 682 | I0805 14:52:42.635301 1392 net.cpp:410] conv2_bn <- conv2 683 | I0805 14:52:42.636301 1392 net.cpp:368] conv2_bn -> conv2_bn 684 | I0805 14:52:42.636301 1392 net.cpp:120] Setting up conv2_bn 685 | I0805 14:52:42.636301 1392 net.cpp:127] Top shape: 100 72 9 9 (583200) 686 | I0805 14:52:42.636301 1392 layer_factory.hpp:74] Creating layer drop2 687 | I0805 14:52:42.637301 1392 net.cpp:90] Creating Layer drop2 688 | I0805 14:52:42.637301 1392 net.cpp:410] drop2 <- conv2_bn 689 | I0805 14:52:42.637301 1392 net.cpp:357] drop2 -> conv2_bn (in-place) 690 | I0805 14:52:42.637301 1392 net.cpp:120] Setting up drop2 691 | I0805 14:52:42.638301 1392 net.cpp:127] Top shape: 100 72 9 9 (583200) 692 | I0805 14:52:42.638301 1392 layer_factory.hpp:74] Creating layer pool2 693 | I0805 14:52:42.638301 1392 net.cpp:90] Creating Layer pool2 694 | I0805 14:52:42.638301 1392 net.cpp:410] pool2 <- conv2_bn 695 | I0805 14:52:42.639302 1392 net.cpp:368] pool2 -> pool2 696 | I0805 14:52:42.639302 1392 net.cpp:120] Setting up pool2 697 | I0805 14:52:42.639302 1392 net.cpp:127] Top shape: 100 72 5 5 (180000) 698 | I0805 14:52:42.639302 1392 layer_factory.hpp:74] Creating layer ip1 699 | I0805 14:52:42.640301 1392 net.cpp:90] Creating Layer ip1 700 | I0805 14:52:42.640301 1392 net.cpp:410] ip1 <- pool2 701 | I0805 14:52:42.640301 1392 net.cpp:368] ip1 -> ip1 702 | I0805 14:52:42.641301 1392 net.cpp:120] Setting up ip1 703 | I0805 14:52:42.645301 1392 net.cpp:127] Top shape: 100 320 (32000) 704 | I0805 14:52:42.645301 1392 layer_factory.hpp:74] Creating layer relu3 705 | I0805 14:52:42.646301 1392 net.cpp:90] Creating Layer relu3 706 | I0805 14:52:42.646301 1392 net.cpp:410] relu3 <- ip1 707 | I0805 14:52:42.646301 1392 net.cpp:357] relu3 -> ip1 (in-place) 708 | I0805 14:52:42.647301 1392 net.cpp:120] Setting up relu3 709 | I0805 14:52:42.647301 1392 net.cpp:127] Top shape: 100 320 (32000) 710 | I0805 14:52:42.648301 1392 layer_factory.hpp:74] Creating layer drop3 711 | I0805 14:52:42.648301 1392 net.cpp:90] Creating Layer drop3 712 | I0805 14:52:42.648301 1392 net.cpp:410] drop3 <- ip1 713 | I0805 14:52:42.649302 1392 net.cpp:357] drop3 -> ip1 (in-place) 714 | I0805 14:52:42.649302 1392 net.cpp:120] Setting up drop3 715 | I0805 14:52:42.649302 1392 net.cpp:127] Top shape: 100 320 (32000) 716 | I0805 14:52:42.649302 1392 layer_factory.hpp:74] Creating layer ip2 717 | I0805 14:52:42.650302 1392 net.cpp:90] Creating Layer ip2 718 | I0805 14:52:42.650302 1392 net.cpp:410] ip2 <- ip1 719 | I0805 14:52:42.650302 1392 net.cpp:368] ip2 -> ip2 720 | I0805 14:52:42.650302 1392 net.cpp:120] Setting up ip2 721 | I0805 14:52:42.651303 1392 net.cpp:127] Top shape: 100 10 (1000) 722 | I0805 14:52:42.651303 1392 layer_factory.hpp:74] Creating layer ip2_ip2_0_split 723 | I0805 14:52:42.651303 1392 net.cpp:90] Creating Layer ip2_ip2_0_split 724 | I0805 14:52:42.651303 1392 net.cpp:410] ip2_ip2_0_split <- ip2 725 | I0805 14:52:42.652302 1392 net.cpp:368] ip2_ip2_0_split -> ip2_ip2_0_split_0 726 | I0805 14:52:42.652302 1392 net.cpp:368] ip2_ip2_0_split -> ip2_ip2_0_split_1 727 | I0805 14:52:42.652302 1392 net.cpp:120] Setting up ip2_ip2_0_split 728 | I0805 14:52:42.652302 1392 net.cpp:127] Top shape: 100 10 (1000) 729 | I0805 14:52:42.653302 1392 net.cpp:127] Top shape: 100 10 (1000) 730 | I0805 14:52:42.653302 1392 layer_factory.hpp:74] Creating layer accuracy 731 | I0805 14:52:42.653302 1392 net.cpp:90] Creating Layer accuracy 732 | I0805 14:52:42.654302 1392 net.cpp:410] accuracy <- ip2_ip2_0_split_0 733 | I0805 14:52:42.654302 1392 net.cpp:410] accuracy <- label_mnist_1_split_0 734 | I0805 14:52:42.654302 1392 net.cpp:368] accuracy -> accuracy 735 | I0805 14:52:42.655303 1392 net.cpp:120] Setting up accuracy 736 | I0805 14:52:42.655303 1392 net.cpp:127] Top shape: (1) 737 | I0805 14:52:42.655303 1392 layer_factory.hpp:74] Creating layer loss 738 | I0805 14:52:42.655303 1392 net.cpp:90] Creating Layer loss 739 | I0805 14:52:42.656302 1392 net.cpp:410] loss <- ip2_ip2_0_split_1 740 | I0805 14:52:42.656302 1392 net.cpp:410] loss <- label_mnist_1_split_1 741 | I0805 14:52:42.656302 1392 net.cpp:368] loss -> loss 742 | I0805 14:52:42.657302 1392 net.cpp:120] Setting up loss 743 | I0805 14:52:42.657302 1392 layer_factory.hpp:74] Creating layer loss 744 | I0805 14:52:42.658303 1392 net.cpp:127] Top shape: (1) 745 | I0805 14:52:42.658303 1392 net.cpp:129] with loss weight 1 746 | I0805 14:52:42.659302 1392 net.cpp:192] loss needs backward computation. 747 | I0805 14:52:42.659302 1392 net.cpp:194] accuracy does not need backward computation. 748 | I0805 14:52:42.659302 1392 net.cpp:192] ip2_ip2_0_split needs backward computation. 749 | I0805 14:52:42.659302 1392 net.cpp:192] ip2 needs backward computation. 750 | I0805 14:52:42.660302 1392 net.cpp:192] drop3 needs backward computation. 751 | I0805 14:52:42.660302 1392 net.cpp:192] relu3 needs backward computation. 752 | I0805 14:52:42.660302 1392 net.cpp:192] ip1 needs backward computation. 753 | I0805 14:52:42.660302 1392 net.cpp:192] pool2 needs backward computation. 754 | I0805 14:52:42.661303 1392 net.cpp:192] drop2 needs backward computation. 755 | I0805 14:52:42.661303 1392 net.cpp:192] conv2_bn needs backward computation. 756 | I0805 14:52:42.661303 1392 net.cpp:192] relu2 needs backward computation. 757 | I0805 14:52:42.661303 1392 net.cpp:192] conv2 needs backward computation. 758 | I0805 14:52:42.662302 1392 net.cpp:192] pool1 needs backward computation. 759 | I0805 14:52:42.662302 1392 net.cpp:192] drop1 needs backward computation. 760 | I0805 14:52:42.662302 1392 net.cpp:192] conv1_bn needs backward computation. 761 | I0805 14:52:42.663302 1392 net.cpp:192] relu1 needs backward computation. 762 | I0805 14:52:42.663302 1392 net.cpp:192] conv1 needs backward computation. 763 | I0805 14:52:42.663302 1392 net.cpp:194] label_mnist_1_split does not need backward computation. 764 | I0805 14:52:42.664302 1392 net.cpp:194] mnist does not need backward computation. 765 | I0805 14:52:42.664302 1392 net.cpp:235] This network produces output accuracy 766 | I0805 14:52:42.664302 1392 net.cpp:235] This network produces output loss 767 | I0805 14:52:42.664302 1392 net.cpp:482] Collecting Learning Rate and Weight Decay. 768 | I0805 14:52:42.665302 1392 net.cpp:247] Network initialization done. 769 | I0805 14:52:42.665302 1392 net.cpp:248] Memory required for data: 39395608 770 | I0805 14:52:42.665302 1392 solver.cpp:42] Solver scaffolding done. 771 | I0805 14:52:42.665302 1392 solver.cpp:250] Solving LeNet 772 | I0805 14:52:42.666302 1392 solver.cpp:251] Learning Rate Policy: inv 773 | I0805 14:52:42.667302 1392 solver.cpp:294] Iteration 0, Testing net (#0) 774 | I0805 14:52:43.083326 1392 solver.cpp:343] Test net output #0: accuracy = 0.1007 775 | I0805 14:52:43.083326 1392 solver.cpp:343] Test net output #1: loss = 78.5417 (* 1 = 78.5417 loss) 776 | I0805 14:52:43.106328 1392 solver.cpp:214] Iteration 0, loss = 2.87422 777 | I0805 14:52:43.107328 1392 solver.cpp:229] Train net output #0: loss = 2.87422 (* 1 = 2.87422 loss) 778 | I0805 14:52:43.108328 1392 solver.cpp:486] Iteration 0, lr = 0.04 779 | I0805 14:52:43.809368 1392 solver.cpp:214] Iteration 100, loss = 0.220041 780 | I0805 14:52:43.810369 1392 solver.cpp:229] Train net output #0: loss = 0.220041 (* 1 = 0.220041 loss) 781 | I0805 14:52:43.810369 1392 solver.cpp:486] Iteration 100, lr = 0.0392934 782 | I0805 14:52:44.502408 1392 solver.cpp:214] Iteration 200, loss = 0.126289 783 | I0805 14:52:44.503408 1392 solver.cpp:229] Train net output #0: loss = 0.126289 (* 1 = 0.126289 loss) 784 | I0805 14:52:44.504408 1392 solver.cpp:486] Iteration 200, lr = 0.0386127 785 | I0805 14:52:45.194447 1392 solver.cpp:214] Iteration 300, loss = 0.139079 786 | I0805 14:52:45.195447 1392 solver.cpp:229] Train net output #0: loss = 0.139079 (* 1 = 0.139079 loss) 787 | I0805 14:52:45.196447 1392 solver.cpp:486] Iteration 300, lr = 0.0379564 788 | I0805 14:52:45.889487 1392 solver.cpp:214] Iteration 400, loss = 0.0402969 789 | I0805 14:52:45.890487 1392 solver.cpp:229] Train net output #0: loss = 0.040297 (* 1 = 0.040297 loss) 790 | I0805 14:52:45.891487 1392 solver.cpp:486] Iteration 400, lr = 0.0373232 791 | I0805 14:52:46.586527 1392 solver.cpp:214] Iteration 500, loss = 0.0935015 792 | I0805 14:52:46.586527 1392 solver.cpp:229] Train net output #0: loss = 0.0935016 (* 1 = 0.0935016 loss) 793 | I0805 14:52:46.587527 1392 solver.cpp:486] Iteration 500, lr = 0.0367119 794 | I0805 14:52:47.281566 1392 solver.cpp:214] Iteration 600, loss = 0.0859815 795 | I0805 14:52:47.281566 1392 solver.cpp:229] Train net output #0: loss = 0.0859815 (* 1 = 0.0859815 loss) 796 | I0805 14:52:47.282567 1392 solver.cpp:486] Iteration 600, lr = 0.0361213 797 | I0805 14:52:47.979606 1392 solver.cpp:214] Iteration 700, loss = 0.0612219 798 | I0805 14:52:47.979606 1392 solver.cpp:229] Train net output #0: loss = 0.0612219 (* 1 = 0.0612219 loss) 799 | I0805 14:52:47.980607 1392 solver.cpp:486] Iteration 700, lr = 0.0355505 800 | I0805 14:52:48.675647 1392 solver.cpp:214] Iteration 800, loss = 0.18401 801 | I0805 14:52:48.676646 1392 solver.cpp:229] Train net output #0: loss = 0.18401 (* 1 = 0.18401 loss) 802 | I0805 14:52:48.677646 1392 solver.cpp:486] Iteration 800, lr = 0.0349984 803 | I0805 14:52:49.369686 1392 solver.cpp:214] Iteration 900, loss = 0.213497 804 | I0805 14:52:49.369686 1392 solver.cpp:229] Train net output #0: loss = 0.213497 (* 1 = 0.213497 loss) 805 | I0805 14:52:49.370687 1392 solver.cpp:486] Iteration 900, lr = 0.034464 806 | I0805 14:52:50.060725 1392 solver.cpp:294] Iteration 1000, Testing net (#0) 807 | I0805 14:52:50.451748 1392 solver.cpp:343] Test net output #0: accuracy = 0.9893 808 | I0805 14:52:50.452749 1392 solver.cpp:343] Test net output #1: loss = 0.0339307 (* 1 = 0.0339307 loss) 809 | I0805 14:52:50.456748 1392 solver.cpp:214] Iteration 1000, loss = 0.0163326 810 | I0805 14:52:50.457748 1392 solver.cpp:229] Train net output #0: loss = 0.0163326 (* 1 = 0.0163326 loss) 811 | I0805 14:52:50.457748 1392 solver.cpp:486] Iteration 1000, lr = 0.0339466 812 | I0805 14:52:51.157788 1392 solver.cpp:214] Iteration 1100, loss = 0.00104439 813 | I0805 14:52:51.158788 1392 solver.cpp:229] Train net output #0: loss = 0.00104446 (* 1 = 0.00104446 loss) 814 | I0805 14:52:51.159788 1392 solver.cpp:486] Iteration 1100, lr = 0.0334454 815 | I0805 14:52:51.853828 1392 solver.cpp:214] Iteration 1200, loss = 0.0300438 816 | I0805 14:52:51.854828 1392 solver.cpp:229] Train net output #0: loss = 0.0300439 (* 1 = 0.0300439 loss) 817 | I0805 14:52:51.854828 1392 solver.cpp:486] Iteration 1200, lr = 0.0329595 818 | I0805 14:52:52.543867 1392 solver.cpp:214] Iteration 1300, loss = 0.00561851 819 | I0805 14:52:52.544867 1392 solver.cpp:229] Train net output #0: loss = 0.00561857 (* 1 = 0.00561857 loss) 820 | I0805 14:52:52.544867 1392 solver.cpp:486] Iteration 1300, lr = 0.0324883 821 | I0805 14:52:53.241907 1392 solver.cpp:214] Iteration 1400, loss = 0.00394553 822 | I0805 14:52:53.241907 1392 solver.cpp:229] Train net output #0: loss = 0.00394557 (* 1 = 0.00394557 loss) 823 | I0805 14:52:53.242908 1392 solver.cpp:486] Iteration 1400, lr = 0.032031 824 | I0805 14:52:53.938947 1392 solver.cpp:214] Iteration 1500, loss = 0.0390139 825 | I0805 14:52:53.939947 1392 solver.cpp:229] Train net output #0: loss = 0.039014 (* 1 = 0.039014 loss) 826 | I0805 14:52:53.939947 1392 solver.cpp:486] Iteration 1500, lr = 0.0315872 827 | I0805 14:52:54.632987 1392 solver.cpp:214] Iteration 1600, loss = 0.045935 828 | I0805 14:52:54.633987 1392 solver.cpp:229] Train net output #0: loss = 0.0459351 (* 1 = 0.0459351 loss) 829 | I0805 14:52:54.633987 1392 solver.cpp:486] Iteration 1600, lr = 0.0311561 830 | I0805 14:52:55.326027 1392 solver.cpp:214] Iteration 1700, loss = 0.0930766 831 | I0805 14:52:55.326027 1392 solver.cpp:229] Train net output #0: loss = 0.0930766 (* 1 = 0.0930766 loss) 832 | I0805 14:52:55.327028 1392 solver.cpp:486] Iteration 1700, lr = 0.0307373 833 | I0805 14:52:56.022066 1392 solver.cpp:214] Iteration 1800, loss = 0.00682616 834 | I0805 14:52:56.022066 1392 solver.cpp:229] Train net output #0: loss = 0.00682622 (* 1 = 0.00682622 loss) 835 | I0805 14:52:56.023066 1392 solver.cpp:486] Iteration 1800, lr = 0.0303302 836 | I0805 14:52:56.719106 1392 solver.cpp:214] Iteration 1900, loss = 0.122121 837 | I0805 14:52:56.719106 1392 solver.cpp:229] Train net output #0: loss = 0.122121 (* 1 = 0.122121 loss) 838 | I0805 14:52:56.720106 1392 solver.cpp:486] Iteration 1900, lr = 0.0299343 839 | I0805 14:52:57.405145 1392 solver.cpp:294] Iteration 2000, Testing net (#0) 840 | I0805 14:52:57.808168 1392 solver.cpp:343] Test net output #0: accuracy = 0.9898 841 | I0805 14:52:57.809170 1392 solver.cpp:343] Test net output #1: loss = 0.0301438 (* 1 = 0.0301438 loss) 842 | I0805 14:52:57.813169 1392 solver.cpp:214] Iteration 2000, loss = 0.0324452 843 | I0805 14:52:57.814169 1392 solver.cpp:229] Train net output #0: loss = 0.0324453 (* 1 = 0.0324453 loss) 844 | I0805 14:52:57.814169 1392 solver.cpp:486] Iteration 2000, lr = 0.0295491 845 | I0805 14:52:58.507208 1392 solver.cpp:214] Iteration 2100, loss = 0.0160458 846 | I0805 14:52:58.507208 1392 solver.cpp:229] Train net output #0: loss = 0.016046 (* 1 = 0.016046 loss) 847 | I0805 14:52:58.508209 1392 solver.cpp:486] Iteration 2100, lr = 0.0291743 848 | I0805 14:52:59.200248 1392 solver.cpp:214] Iteration 2200, loss = 0.00501125 849 | I0805 14:52:59.201248 1392 solver.cpp:229] Train net output #0: loss = 0.00501135 (* 1 = 0.00501135 loss) 850 | I0805 14:52:59.201248 1392 solver.cpp:486] Iteration 2200, lr = 0.0288094 851 | I0805 14:52:59.896288 1392 solver.cpp:214] Iteration 2300, loss = 0.0237116 852 | I0805 14:52:59.896288 1392 solver.cpp:229] Train net output #0: loss = 0.0237118 (* 1 = 0.0237118 loss) 853 | I0805 14:52:59.897289 1392 solver.cpp:486] Iteration 2300, lr = 0.0284539 854 | I0805 14:53:00.594328 1392 solver.cpp:214] Iteration 2400, loss = 0.0360984 855 | I0805 14:53:00.595329 1392 solver.cpp:229] Train net output #0: loss = 0.0360985 (* 1 = 0.0360985 loss) 856 | I0805 14:53:00.596328 1392 solver.cpp:486] Iteration 2400, lr = 0.0281076 857 | I0805 14:53:01.289368 1392 solver.cpp:214] Iteration 2500, loss = 0.0620604 858 | I0805 14:53:01.289368 1392 solver.cpp:229] Train net output #0: loss = 0.0620605 (* 1 = 0.0620605 loss) 859 | I0805 14:53:01.290369 1392 solver.cpp:486] Iteration 2500, lr = 0.0277701 860 | I0805 14:53:01.985407 1392 solver.cpp:214] Iteration 2600, loss = 0.036869 861 | I0805 14:53:01.985407 1392 solver.cpp:229] Train net output #0: loss = 0.0368692 (* 1 = 0.0368692 loss) 862 | I0805 14:53:01.986407 1392 solver.cpp:486] Iteration 2600, lr = 0.0274411 863 | I0805 14:53:02.676447 1392 solver.cpp:214] Iteration 2700, loss = 0.106417 864 | I0805 14:53:02.676447 1392 solver.cpp:229] Train net output #0: loss = 0.106417 (* 1 = 0.106417 loss) 865 | I0805 14:53:02.677448 1392 solver.cpp:486] Iteration 2700, lr = 0.0271201 866 | I0805 14:53:03.368487 1392 solver.cpp:214] Iteration 2800, loss = 0.000549857 867 | I0805 14:53:03.369488 1392 solver.cpp:229] Train net output #0: loss = 0.000549995 (* 1 = 0.000549995 loss) 868 | I0805 14:53:03.369488 1392 solver.cpp:486] Iteration 2800, lr = 0.026807 869 | I0805 14:53:04.065526 1392 solver.cpp:214] Iteration 2900, loss = 0.0262977 870 | I0805 14:53:04.065526 1392 solver.cpp:229] Train net output #0: loss = 0.0262979 (* 1 = 0.0262979 loss) 871 | I0805 14:53:04.066526 1392 solver.cpp:486] Iteration 2900, lr = 0.0265014 872 | I0805 14:53:04.755566 1392 solver.cpp:294] Iteration 3000, Testing net (#0) 873 | I0805 14:53:05.154589 1392 solver.cpp:343] Test net output #0: accuracy = 0.9933 874 | I0805 14:53:05.155589 1392 solver.cpp:343] Test net output #1: loss = 0.020941 (* 1 = 0.020941 loss) 875 | I0805 14:53:05.159590 1392 solver.cpp:214] Iteration 3000, loss = 0.00563839 876 | I0805 14:53:05.160589 1392 solver.cpp:229] Train net output #0: loss = 0.00563854 (* 1 = 0.00563854 loss) 877 | I0805 14:53:05.160589 1392 solver.cpp:486] Iteration 3000, lr = 0.0262031 878 | I0805 14:53:05.861629 1392 solver.cpp:214] Iteration 3100, loss = 0.00378355 879 | I0805 14:53:05.862629 1392 solver.cpp:229] Train net output #0: loss = 0.0037837 (* 1 = 0.0037837 loss) 880 | I0805 14:53:05.863629 1392 solver.cpp:486] Iteration 3100, lr = 0.0259117 881 | I0805 14:53:06.556669 1392 solver.cpp:214] Iteration 3200, loss = 0.00495449 882 | I0805 14:53:06.557669 1392 solver.cpp:229] Train net output #0: loss = 0.00495464 (* 1 = 0.00495464 loss) 883 | I0805 14:53:06.557669 1392 solver.cpp:486] Iteration 3200, lr = 0.0256272 884 | I0805 14:53:07.251709 1392 solver.cpp:214] Iteration 3300, loss = 0.0154928 885 | I0805 14:53:07.251709 1392 solver.cpp:229] Train net output #0: loss = 0.0154929 (* 1 = 0.0154929 loss) 886 | I0805 14:53:07.252709 1392 solver.cpp:486] Iteration 3300, lr = 0.0253491 887 | I0805 14:53:07.943748 1392 solver.cpp:214] Iteration 3400, loss = 0.0010491 888 | I0805 14:53:07.944748 1392 solver.cpp:229] Train net output #0: loss = 0.00104925 (* 1 = 0.00104925 loss) 889 | I0805 14:53:07.945749 1392 solver.cpp:486] Iteration 3400, lr = 0.0250774 890 | I0805 14:53:08.641788 1392 solver.cpp:214] Iteration 3500, loss = 0.00815444 891 | I0805 14:53:08.642788 1392 solver.cpp:229] Train net output #0: loss = 0.00815459 (* 1 = 0.00815459 loss) 892 | I0805 14:53:08.642788 1392 solver.cpp:486] Iteration 3500, lr = 0.0248117 893 | I0805 14:53:09.335829 1392 solver.cpp:214] Iteration 3600, loss = 0.00881401 894 | I0805 14:53:09.335829 1392 solver.cpp:229] Train net output #0: loss = 0.00881419 (* 1 = 0.00881419 loss) 895 | I0805 14:53:09.336828 1392 solver.cpp:486] Iteration 3600, lr = 0.0245519 896 | I0805 14:53:10.028867 1392 solver.cpp:214] Iteration 3700, loss = 0.0718557 897 | I0805 14:53:10.028867 1392 solver.cpp:229] Train net output #0: loss = 0.0718559 (* 1 = 0.0718559 loss) 898 | I0805 14:53:10.029868 1392 solver.cpp:486] Iteration 3700, lr = 0.0242977 899 | I0805 14:53:10.723907 1392 solver.cpp:214] Iteration 3800, loss = 0.0243846 900 | I0805 14:53:10.723907 1392 solver.cpp:229] Train net output #0: loss = 0.0243848 (* 1 = 0.0243848 loss) 901 | I0805 14:53:10.724907 1392 solver.cpp:486] Iteration 3800, lr = 0.0240491 902 | I0805 14:53:11.417948 1392 solver.cpp:214] Iteration 3900, loss = 0.010712 903 | I0805 14:53:11.418947 1392 solver.cpp:229] Train net output #0: loss = 0.0107122 (* 1 = 0.0107122 loss) 904 | I0805 14:53:11.418947 1392 solver.cpp:486] Iteration 3900, lr = 0.0238058 905 | I0805 14:53:12.104986 1392 solver.cpp:294] Iteration 4000, Testing net (#0) 906 | I0805 14:53:12.506009 1392 solver.cpp:343] Test net output #0: accuracy = 0.9941 907 | I0805 14:53:12.507009 1392 solver.cpp:343] Test net output #1: loss = 0.0183649 (* 1 = 0.0183649 loss) 908 | I0805 14:53:12.512011 1392 solver.cpp:214] Iteration 4000, loss = 0.0114788 909 | I0805 14:53:12.513010 1392 solver.cpp:229] Train net output #0: loss = 0.0114789 (* 1 = 0.0114789 loss) 910 | I0805 14:53:12.513010 1392 solver.cpp:486] Iteration 4000, lr = 0.0235676 911 | I0805 14:53:13.210049 1392 solver.cpp:214] Iteration 4100, loss = 0.000130875 912 | I0805 14:53:13.211050 1392 solver.cpp:229] Train net output #0: loss = 0.000131057 (* 1 = 0.000131057 loss) 913 | I0805 14:53:13.212050 1392 solver.cpp:486] Iteration 4100, lr = 0.0233344 914 | I0805 14:53:13.904089 1392 solver.cpp:214] Iteration 4200, loss = 0.00127553 915 | I0805 14:53:13.905089 1392 solver.cpp:229] Train net output #0: loss = 0.00127569 (* 1 = 0.00127569 loss) 916 | I0805 14:53:13.905089 1392 solver.cpp:486] Iteration 4200, lr = 0.023106 917 | I0805 14:53:14.598129 1392 solver.cpp:214] Iteration 4300, loss = 0.00505828 918 | I0805 14:53:14.598129 1392 solver.cpp:229] Train net output #0: loss = 0.00505844 (* 1 = 0.00505844 loss) 919 | I0805 14:53:14.599129 1392 solver.cpp:486] Iteration 4300, lr = 0.0228822 920 | I0805 14:53:15.295169 1392 solver.cpp:214] Iteration 4400, loss = 0.000817688 921 | I0805 14:53:15.295169 1392 solver.cpp:229] Train net output #0: loss = 0.000817851 (* 1 = 0.000817851 loss) 922 | I0805 14:53:15.296169 1392 solver.cpp:486] Iteration 4400, lr = 0.022663 923 | I0805 14:53:15.997210 1392 solver.cpp:214] Iteration 4500, loss = 0.00614459 924 | I0805 14:53:15.998209 1392 solver.cpp:229] Train net output #0: loss = 0.00614476 (* 1 = 0.00614476 loss) 925 | I0805 14:53:15.998209 1392 solver.cpp:486] Iteration 4500, lr = 0.0224482 926 | I0805 14:53:16.708250 1392 solver.cpp:214] Iteration 4600, loss = 0.0246302 927 | I0805 14:53:16.709250 1392 solver.cpp:229] Train net output #0: loss = 0.0246304 (* 1 = 0.0246304 loss) 928 | I0805 14:53:16.710250 1392 solver.cpp:486] Iteration 4600, lr = 0.0222377 929 | I0805 14:53:17.421290 1392 solver.cpp:214] Iteration 4700, loss = 0.0138153 930 | I0805 14:53:17.421290 1392 solver.cpp:229] Train net output #0: loss = 0.0138154 (* 1 = 0.0138154 loss) 931 | I0805 14:53:17.422291 1392 solver.cpp:486] Iteration 4700, lr = 0.0220312 932 | I0805 14:53:18.138331 1392 solver.cpp:214] Iteration 4800, loss = 0.00829904 933 | I0805 14:53:18.138331 1392 solver.cpp:229] Train net output #0: loss = 0.00829922 (* 1 = 0.00829922 loss) 934 | I0805 14:53:18.139331 1392 solver.cpp:486] Iteration 4800, lr = 0.0218288 935 | I0805 14:53:18.856372 1392 solver.cpp:214] Iteration 4900, loss = 0.000418008 936 | I0805 14:53:18.856372 1392 solver.cpp:229] Train net output #0: loss = 0.000418191 (* 1 = 0.000418191 loss) 937 | I0805 14:53:18.857372 1392 solver.cpp:486] Iteration 4900, lr = 0.0216302 938 | I0805 14:53:19.573413 1392 solver.cpp:361] Snapshotting to lenet_iter_5000.caffemodel 939 | I0805 14:53:19.585414 1392 solver.cpp:369] Snapshotting solver state to lenet_iter_5000.solverstate 940 | I0805 14:53:19.593415 1392 solver.cpp:294] Iteration 5000, Testing net (#0) 941 | I0805 14:53:20.009438 1392 solver.cpp:343] Test net output #0: accuracy = 0.9937 942 | I0805 14:53:20.010438 1392 solver.cpp:343] Test net output #1: loss = 0.0210218 (* 1 = 0.0210218 loss) 943 | I0805 14:53:20.014439 1392 solver.cpp:214] Iteration 5000, loss = 0.0439826 944 | I0805 14:53:20.015439 1392 solver.cpp:229] Train net output #0: loss = 0.0439828 (* 1 = 0.0439828 loss) 945 | I0805 14:53:20.016439 1392 solver.cpp:486] Iteration 5000, lr = 0.0214355 946 | I0805 14:53:20.739480 1392 solver.cpp:214] Iteration 5100, loss = 0.0212865 947 | I0805 14:53:20.739480 1392 solver.cpp:229] Train net output #0: loss = 0.0212867 (* 1 = 0.0212867 loss) 948 | I0805 14:53:20.740480 1392 solver.cpp:486] Iteration 5100, lr = 0.0212444 949 | I0805 14:53:21.462522 1392 solver.cpp:214] Iteration 5200, loss = 0.00098768 950 | I0805 14:53:21.463521 1392 solver.cpp:229] Train net output #0: loss = 0.000987855 (* 1 = 0.000987855 loss) 951 | I0805 14:53:21.464522 1392 solver.cpp:486] Iteration 5200, lr = 0.0210568 952 | I0805 14:53:22.186563 1392 solver.cpp:214] Iteration 5300, loss = 0.000718615 953 | I0805 14:53:22.187563 1392 solver.cpp:229] Train net output #0: loss = 0.000718786 (* 1 = 0.000718786 loss) 954 | I0805 14:53:22.187563 1392 solver.cpp:486] Iteration 5300, lr = 0.0208727 955 | I0805 14:53:22.906605 1392 solver.cpp:214] Iteration 5400, loss = 0.00133868 956 | I0805 14:53:22.907604 1392 solver.cpp:229] Train net output #0: loss = 0.00133886 (* 1 = 0.00133886 loss) 957 | I0805 14:53:22.908604 1392 solver.cpp:486] Iteration 5400, lr = 0.020692 958 | I0805 14:53:23.627645 1392 solver.cpp:214] Iteration 5500, loss = 0.000897586 959 | I0805 14:53:23.628645 1392 solver.cpp:229] Train net output #0: loss = 0.000897764 (* 1 = 0.000897764 loss) 960 | I0805 14:53:23.629645 1392 solver.cpp:486] Iteration 5500, lr = 0.0205146 961 | I0805 14:53:24.359688 1392 solver.cpp:214] Iteration 5600, loss = 9.13558e-005 962 | I0805 14:53:24.360687 1392 solver.cpp:229] Train net output #0: loss = 9.15377e-005 (* 1 = 9.15377e-005 loss) 963 | I0805 14:53:24.360687 1392 solver.cpp:486] Iteration 5600, lr = 0.0203403 964 | I0805 14:53:25.095729 1392 solver.cpp:214] Iteration 5700, loss = 0.0016139 965 | I0805 14:53:25.096729 1392 solver.cpp:229] Train net output #0: loss = 0.00161407 (* 1 = 0.00161407 loss) 966 | I0805 14:53:25.097729 1392 solver.cpp:486] Iteration 5700, lr = 0.0201692 967 | I0805 14:53:25.830771 1392 solver.cpp:214] Iteration 5800, loss = 0.00897269 968 | I0805 14:53:25.830771 1392 solver.cpp:229] Train net output #0: loss = 0.00897286 (* 1 = 0.00897286 loss) 969 | I0805 14:53:25.831771 1392 solver.cpp:486] Iteration 5800, lr = 0.020001 970 | I0805 14:53:26.567813 1392 solver.cpp:214] Iteration 5900, loss = 0.00267578 971 | I0805 14:53:26.567813 1392 solver.cpp:229] Train net output #0: loss = 0.00267595 (* 1 = 0.00267595 loss) 972 | I0805 14:53:26.568814 1392 solver.cpp:486] Iteration 5900, lr = 0.0198358 973 | I0805 14:53:27.298856 1392 solver.cpp:294] Iteration 6000, Testing net (#0) 974 | I0805 14:53:27.719879 1392 solver.cpp:343] Test net output #0: accuracy = 0.9944 975 | I0805 14:53:27.720880 1392 solver.cpp:343] Test net output #1: loss = 0.0177348 (* 1 = 0.0177348 loss) 976 | I0805 14:53:27.725880 1392 solver.cpp:214] Iteration 6000, loss = 0.00269533 977 | I0805 14:53:27.725880 1392 solver.cpp:229] Train net output #0: loss = 0.0026955 (* 1 = 0.0026955 loss) 978 | I0805 14:53:27.726881 1392 solver.cpp:486] Iteration 6000, lr = 0.0196734 979 | I0805 14:53:28.466922 1392 solver.cpp:214] Iteration 6100, loss = 0.001992 980 | I0805 14:53:28.467922 1392 solver.cpp:229] Train net output #0: loss = 0.00199218 (* 1 = 0.00199218 loss) 981 | I0805 14:53:28.468922 1392 solver.cpp:486] Iteration 6100, lr = 0.0195138 982 | I0805 14:53:29.202965 1392 solver.cpp:214] Iteration 6200, loss = 0.0042955 983 | I0805 14:53:29.203964 1392 solver.cpp:229] Train net output #0: loss = 0.00429569 (* 1 = 0.00429569 loss) 984 | I0805 14:53:29.204964 1392 solver.cpp:486] Iteration 6200, lr = 0.0193569 985 | I0805 14:53:29.944007 1392 solver.cpp:214] Iteration 6300, loss = 0.00114569 986 | I0805 14:53:29.944007 1392 solver.cpp:229] Train net output #0: loss = 0.0011459 (* 1 = 0.0011459 loss) 987 | I0805 14:53:29.945008 1392 solver.cpp:486] Iteration 6300, lr = 0.0192027 988 | I0805 14:53:30.684049 1392 solver.cpp:214] Iteration 6400, loss = 0.000806044 989 | I0805 14:53:30.685050 1392 solver.cpp:229] Train net output #0: loss = 0.000806251 (* 1 = 0.000806251 loss) 990 | I0805 14:53:30.685050 1392 solver.cpp:486] Iteration 6400, lr = 0.019051 991 | I0805 14:53:31.425091 1392 solver.cpp:214] Iteration 6500, loss = 0.00453469 992 | I0805 14:53:31.425091 1392 solver.cpp:229] Train net output #0: loss = 0.00453489 (* 1 = 0.00453489 loss) 993 | I0805 14:53:31.426091 1392 solver.cpp:486] Iteration 6500, lr = 0.0189019 994 | I0805 14:53:32.166134 1392 solver.cpp:214] Iteration 6600, loss = 0.0772493 995 | I0805 14:53:32.167135 1392 solver.cpp:229] Train net output #0: loss = 0.0772495 (* 1 = 0.0772495 loss) 996 | I0805 14:53:32.168134 1392 solver.cpp:486] Iteration 6600, lr = 0.0187552 997 | I0805 14:53:32.902176 1392 solver.cpp:214] Iteration 6700, loss = 0.0040816 998 | I0805 14:53:32.903177 1392 solver.cpp:229] Train net output #0: loss = 0.0040818 (* 1 = 0.0040818 loss) 999 | I0805 14:53:32.903177 1392 solver.cpp:486] Iteration 6700, lr = 0.0186108 1000 | I0805 14:53:33.641218 1392 solver.cpp:214] Iteration 6800, loss = 0.00129661 1001 | I0805 14:53:33.641218 1392 solver.cpp:229] Train net output #0: loss = 0.00129682 (* 1 = 0.00129682 loss) 1002 | I0805 14:53:33.642218 1392 solver.cpp:486] Iteration 6800, lr = 0.0184688 1003 | I0805 14:53:34.377260 1392 solver.cpp:214] Iteration 6900, loss = 5.42768e-005 1004 | I0805 14:53:34.377260 1392 solver.cpp:229] Train net output #0: loss = 5.44799e-005 (* 1 = 5.44799e-005 loss) 1005 | I0805 14:53:34.378260 1392 solver.cpp:486] Iteration 6900, lr = 0.0183291 1006 | I0805 14:53:35.110302 1392 solver.cpp:294] Iteration 7000, Testing net (#0) 1007 | I0805 14:53:35.531327 1392 solver.cpp:343] Test net output #0: accuracy = 0.9946 1008 | I0805 14:53:35.532326 1392 solver.cpp:343] Test net output #1: loss = 0.0195909 (* 1 = 0.0195909 loss) 1009 | I0805 14:53:35.536326 1392 solver.cpp:214] Iteration 7000, loss = 0.0020149 1010 | I0805 14:53:35.537327 1392 solver.cpp:229] Train net output #0: loss = 0.00201511 (* 1 = 0.00201511 loss) 1011 | I0805 14:53:35.537327 1392 solver.cpp:486] Iteration 7000, lr = 0.0181916 1012 | I0805 14:53:36.275369 1392 solver.cpp:214] Iteration 7100, loss = 0.0015403 1013 | I0805 14:53:36.275369 1392 solver.cpp:229] Train net output #0: loss = 0.00154052 (* 1 = 0.00154052 loss) 1014 | I0805 14:53:36.276370 1392 solver.cpp:486] Iteration 7100, lr = 0.0180562 1015 | I0805 14:53:37.013411 1392 solver.cpp:214] Iteration 7200, loss = 0.00327097 1016 | I0805 14:53:37.013411 1392 solver.cpp:229] Train net output #0: loss = 0.0032712 (* 1 = 0.0032712 loss) 1017 | I0805 14:53:37.014411 1392 solver.cpp:486] Iteration 7200, lr = 0.0179229 1018 | I0805 14:53:37.753453 1392 solver.cpp:214] Iteration 7300, loss = 0.012502 1019 | I0805 14:53:37.753453 1392 solver.cpp:229] Train net output #0: loss = 0.0125022 (* 1 = 0.0125022 loss) 1020 | I0805 14:53:37.754453 1392 solver.cpp:486] Iteration 7300, lr = 0.0177917 1021 | I0805 14:53:38.495496 1392 solver.cpp:214] Iteration 7400, loss = 0.0244695 1022 | I0805 14:53:38.496496 1392 solver.cpp:229] Train net output #0: loss = 0.0244698 (* 1 = 0.0244698 loss) 1023 | I0805 14:53:38.496496 1392 solver.cpp:486] Iteration 7400, lr = 0.0176626 1024 | I0805 14:53:39.236538 1392 solver.cpp:214] Iteration 7500, loss = 0.00111646 1025 | I0805 14:53:39.237539 1392 solver.cpp:229] Train net output #0: loss = 0.00111668 (* 1 = 0.00111668 loss) 1026 | I0805 14:53:39.237539 1392 solver.cpp:486] Iteration 7500, lr = 0.0175353 1027 | I0805 14:53:39.978580 1392 solver.cpp:214] Iteration 7600, loss = 0.0110739 1028 | I0805 14:53:39.979581 1392 solver.cpp:229] Train net output #0: loss = 0.0110741 (* 1 = 0.0110741 loss) 1029 | I0805 14:53:39.980581 1392 solver.cpp:486] Iteration 7600, lr = 0.01741 1030 | I0805 14:53:40.719624 1392 solver.cpp:214] Iteration 7700, loss = 0.00653506 1031 | I0805 14:53:40.719624 1392 solver.cpp:229] Train net output #0: loss = 0.0065353 (* 1 = 0.0065353 loss) 1032 | I0805 14:53:40.720623 1392 solver.cpp:486] Iteration 7700, lr = 0.0172866 1033 | I0805 14:53:41.454665 1392 solver.cpp:214] Iteration 7800, loss = 0.000371143 1034 | I0805 14:53:41.455665 1392 solver.cpp:229] Train net output #0: loss = 0.00037139 (* 1 = 0.00037139 loss) 1035 | I0805 14:53:41.455665 1392 solver.cpp:486] Iteration 7800, lr = 0.017165 1036 | I0805 14:53:42.191707 1392 solver.cpp:214] Iteration 7900, loss = 9.31453e-005 1037 | I0805 14:53:42.192708 1392 solver.cpp:229] Train net output #0: loss = 9.33931e-005 (* 1 = 9.33931e-005 loss) 1038 | I0805 14:53:42.192708 1392 solver.cpp:486] Iteration 7900, lr = 0.0170452 1039 | I0805 14:53:42.921749 1392 solver.cpp:294] Iteration 8000, Testing net (#0) 1040 | I0805 14:53:43.344774 1392 solver.cpp:343] Test net output #0: accuracy = 0.9947 1041 | I0805 14:53:43.344774 1392 solver.cpp:343] Test net output #1: loss = 0.0167619 (* 1 = 0.0167619 loss) 1042 | I0805 14:53:43.349773 1392 solver.cpp:214] Iteration 8000, loss = 0.000271104 1043 | I0805 14:53:43.350774 1392 solver.cpp:229] Train net output #0: loss = 0.000271356 (* 1 = 0.000271356 loss) 1044 | I0805 14:53:43.350774 1392 solver.cpp:486] Iteration 8000, lr = 0.0169272 1045 | I0805 14:53:44.091816 1392 solver.cpp:214] Iteration 8100, loss = 0.00243713 1046 | I0805 14:53:44.092816 1392 solver.cpp:229] Train net output #0: loss = 0.00243739 (* 1 = 0.00243739 loss) 1047 | I0805 14:53:44.092816 1392 solver.cpp:486] Iteration 8100, lr = 0.0168108 1048 | I0805 14:53:44.826858 1392 solver.cpp:214] Iteration 8200, loss = 0.000995319 1049 | I0805 14:53:44.827858 1392 solver.cpp:229] Train net output #0: loss = 0.000995574 (* 1 = 0.000995574 loss) 1050 | I0805 14:53:44.828858 1392 solver.cpp:486] Iteration 8200, lr = 0.0166962 1051 | I0805 14:53:45.566900 1392 solver.cpp:214] Iteration 8300, loss = 0.0157538 1052 | I0805 14:53:45.566900 1392 solver.cpp:229] Train net output #0: loss = 0.0157541 (* 1 = 0.0157541 loss) 1053 | I0805 14:53:45.567900 1392 solver.cpp:486] Iteration 8300, lr = 0.0165831 1054 | I0805 14:53:46.307943 1392 solver.cpp:214] Iteration 8400, loss = 0.00639222 1055 | I0805 14:53:46.308943 1392 solver.cpp:229] Train net output #0: loss = 0.00639247 (* 1 = 0.00639247 loss) 1056 | I0805 14:53:46.308943 1392 solver.cpp:486] Iteration 8400, lr = 0.0164717 1057 | I0805 14:53:47.050986 1392 solver.cpp:214] Iteration 8500, loss = 0.00120033 1058 | I0805 14:53:47.050986 1392 solver.cpp:229] Train net output #0: loss = 0.00120057 (* 1 = 0.00120057 loss) 1059 | I0805 14:53:47.051985 1392 solver.cpp:486] Iteration 8500, lr = 0.0163619 1060 | I0805 14:53:47.792027 1392 solver.cpp:214] Iteration 8600, loss = 2.0404e-005 1061 | I0805 14:53:47.792027 1392 solver.cpp:229] Train net output #0: loss = 2.0649e-005 (* 1 = 2.0649e-005 loss) 1062 | I0805 14:53:47.793027 1392 solver.cpp:486] Iteration 8600, lr = 0.0162535 1063 | I0805 14:53:48.528070 1392 solver.cpp:214] Iteration 8700, loss = 0.00443287 1064 | I0805 14:53:48.529070 1392 solver.cpp:229] Train net output #0: loss = 0.00443312 (* 1 = 0.00443312 loss) 1065 | I0805 14:53:48.529070 1392 solver.cpp:486] Iteration 8700, lr = 0.0161467 1066 | I0805 14:53:49.268112 1392 solver.cpp:214] Iteration 8800, loss = 0.00139713 1067 | I0805 14:53:49.269112 1392 solver.cpp:229] Train net output #0: loss = 0.00139737 (* 1 = 0.00139737 loss) 1068 | I0805 14:53:49.269112 1392 solver.cpp:486] Iteration 8800, lr = 0.0160414 1069 | I0805 14:53:50.011154 1392 solver.cpp:214] Iteration 8900, loss = 0.000137165 1070 | I0805 14:53:50.011154 1392 solver.cpp:229] Train net output #0: loss = 0.000137404 (* 1 = 0.000137404 loss) 1071 | I0805 14:53:50.012154 1392 solver.cpp:486] Iteration 8900, lr = 0.0159375 1072 | I0805 14:53:50.751198 1392 solver.cpp:294] Iteration 9000, Testing net (#0) 1073 | I0805 14:53:51.170222 1392 solver.cpp:343] Test net output #0: accuracy = 0.9938 1074 | I0805 14:53:51.170222 1392 solver.cpp:343] Test net output #1: loss = 0.0212181 (* 1 = 0.0212181 loss) 1075 | I0805 14:53:51.175221 1392 solver.cpp:214] Iteration 9000, loss = 0.00263929 1076 | I0805 14:53:51.176221 1392 solver.cpp:229] Train net output #0: loss = 0.00263953 (* 1 = 0.00263953 loss) 1077 | I0805 14:53:51.176221 1392 solver.cpp:486] Iteration 9000, lr = 0.015835 1078 | I0805 14:53:51.916263 1392 solver.cpp:214] Iteration 9100, loss = 0.00258828 1079 | I0805 14:53:51.917263 1392 solver.cpp:229] Train net output #0: loss = 0.00258852 (* 1 = 0.00258852 loss) 1080 | I0805 14:53:51.917263 1392 solver.cpp:486] Iteration 9100, lr = 0.0157339 1081 | I0805 14:53:52.659307 1392 solver.cpp:214] Iteration 9200, loss = 0.000192979 1082 | I0805 14:53:52.660306 1392 solver.cpp:229] Train net output #0: loss = 0.000193216 (* 1 = 0.000193216 loss) 1083 | I0805 14:53:52.661306 1392 solver.cpp:486] Iteration 9200, lr = 0.0156341 1084 | I0805 14:53:53.401348 1392 solver.cpp:214] Iteration 9300, loss = 0.000233888 1085 | I0805 14:53:53.401348 1392 solver.cpp:229] Train net output #0: loss = 0.000234127 (* 1 = 0.000234127 loss) 1086 | I0805 14:53:53.402348 1392 solver.cpp:486] Iteration 9300, lr = 0.0155357 1087 | I0805 14:53:54.144392 1392 solver.cpp:214] Iteration 9400, loss = 0.0032883 1088 | I0805 14:53:54.144392 1392 solver.cpp:229] Train net output #0: loss = 0.00328854 (* 1 = 0.00328854 loss) 1089 | I0805 14:53:54.145391 1392 solver.cpp:486] Iteration 9400, lr = 0.0154386 1090 | I0805 14:53:54.887434 1392 solver.cpp:214] Iteration 9500, loss = 0.000106236 1091 | I0805 14:53:54.888433 1392 solver.cpp:229] Train net output #0: loss = 0.000106476 (* 1 = 0.000106476 loss) 1092 | I0805 14:53:54.888433 1392 solver.cpp:486] Iteration 9500, lr = 0.0153427 1093 | I0805 14:53:55.636476 1392 solver.cpp:214] Iteration 9600, loss = 0.00724748 1094 | I0805 14:53:55.636476 1392 solver.cpp:229] Train net output #0: loss = 0.00724772 (* 1 = 0.00724772 loss) 1095 | I0805 14:53:55.636476 1392 solver.cpp:486] Iteration 9600, lr = 0.0152481 1096 | I0805 14:53:56.386519 1392 solver.cpp:214] Iteration 9700, loss = 0.000535149 1097 | I0805 14:53:56.387519 1392 solver.cpp:229] Train net output #0: loss = 0.000535388 (* 1 = 0.000535388 loss) 1098 | I0805 14:53:56.387519 1392 solver.cpp:486] Iteration 9700, lr = 0.0151547 1099 | I0805 14:53:57.132562 1392 solver.cpp:214] Iteration 9800, loss = 0.0027088 1100 | I0805 14:53:57.133563 1392 solver.cpp:229] Train net output #0: loss = 0.00270903 (* 1 = 0.00270903 loss) 1101 | I0805 14:53:57.133563 1392 solver.cpp:486] Iteration 9800, lr = 0.0150625 1102 | I0805 14:53:57.878604 1392 solver.cpp:214] Iteration 9900, loss = 0.00340623 1103 | I0805 14:53:57.879604 1392 solver.cpp:229] Train net output #0: loss = 0.00340646 (* 1 = 0.00340646 loss) 1104 | I0805 14:53:57.880604 1392 solver.cpp:486] Iteration 9900, lr = 0.0149715 1105 | I0805 14:53:58.620647 1392 solver.cpp:361] Snapshotting to lenet_iter_10000.caffemodel 1106 | I0805 14:53:58.632647 1392 solver.cpp:369] Snapshotting solver state to lenet_iter_10000.solverstate 1107 | I0805 14:53:58.639648 1392 solver.cpp:294] Iteration 10000, Testing net (#0) 1108 | I0805 14:53:59.065672 1392 solver.cpp:343] Test net output #0: accuracy = 0.9956 1109 | I0805 14:53:59.065672 1392 solver.cpp:343] Test net output #1: loss = 0.0163376 (* 1 = 0.0163376 loss) 1110 | I0805 14:53:59.071673 1392 solver.cpp:214] Iteration 10000, loss = 0.000284814 1111 | I0805 14:53:59.071673 1392 solver.cpp:229] Train net output #0: loss = 0.000285046 (* 1 = 0.000285046 loss) 1112 | I0805 14:53:59.072674 1392 solver.cpp:486] Iteration 10000, lr = 0.0148816 1113 | I0805 14:53:59.815716 1392 solver.cpp:214] Iteration 10100, loss = 0.000493709 1114 | I0805 14:53:59.815716 1392 solver.cpp:229] Train net output #0: loss = 0.000493938 (* 1 = 0.000493938 loss) 1115 | I0805 14:53:59.816715 1392 solver.cpp:486] Iteration 10100, lr = 0.0147929 1116 | I0805 14:54:00.566758 1392 solver.cpp:214] Iteration 10200, loss = 0.0172551 1117 | I0805 14:54:00.567759 1392 solver.cpp:229] Train net output #0: loss = 0.0172553 (* 1 = 0.0172553 loss) 1118 | I0805 14:54:00.567759 1392 solver.cpp:486] Iteration 10200, lr = 0.0147053 1119 | I0805 14:54:01.309801 1392 solver.cpp:214] Iteration 10300, loss = 0.000248785 1120 | I0805 14:54:01.310801 1392 solver.cpp:229] Train net output #0: loss = 0.000249006 (* 1 = 0.000249006 loss) 1121 | I0805 14:54:01.311801 1392 solver.cpp:486] Iteration 10300, lr = 0.0146188 1122 | I0805 14:54:02.053843 1392 solver.cpp:214] Iteration 10400, loss = 0.00275543 1123 | I0805 14:54:02.053843 1392 solver.cpp:229] Train net output #0: loss = 0.00275565 (* 1 = 0.00275565 loss) 1124 | I0805 14:54:02.054843 1392 solver.cpp:486] Iteration 10400, lr = 0.0145333 1125 | I0805 14:54:02.801887 1392 solver.cpp:214] Iteration 10500, loss = 0.00512701 1126 | I0805 14:54:02.801887 1392 solver.cpp:229] Train net output #0: loss = 0.00512723 (* 1 = 0.00512723 loss) 1127 | I0805 14:54:02.802886 1392 solver.cpp:486] Iteration 10500, lr = 0.0144489 1128 | I0805 14:54:03.544929 1392 solver.cpp:214] Iteration 10600, loss = 0.000242352 1129 | I0805 14:54:03.544929 1392 solver.cpp:229] Train net output #0: loss = 0.000242577 (* 1 = 0.000242577 loss) 1130 | I0805 14:54:03.545928 1392 solver.cpp:486] Iteration 10600, lr = 0.0143655 1131 | I0805 14:54:04.286972 1392 solver.cpp:214] Iteration 10700, loss = 0.000278695 1132 | I0805 14:54:04.286972 1392 solver.cpp:229] Train net output #0: loss = 0.000278918 (* 1 = 0.000278918 loss) 1133 | I0805 14:54:04.287971 1392 solver.cpp:486] Iteration 10700, lr = 0.0142831 1134 | I0805 14:54:05.031013 1392 solver.cpp:214] Iteration 10800, loss = 0.00107858 1135 | I0805 14:54:05.031013 1392 solver.cpp:229] Train net output #0: loss = 0.0010788 (* 1 = 0.0010788 loss) 1136 | I0805 14:54:05.032013 1392 solver.cpp:486] Iteration 10800, lr = 0.0142017 1137 | I0805 14:54:05.779057 1392 solver.cpp:214] Iteration 10900, loss = 0.00286186 1138 | I0805 14:54:05.780056 1392 solver.cpp:229] Train net output #0: loss = 0.00286208 (* 1 = 0.00286208 loss) 1139 | I0805 14:54:05.780056 1392 solver.cpp:486] Iteration 10900, lr = 0.0141213 1140 | I0805 14:54:06.518098 1392 solver.cpp:294] Iteration 11000, Testing net (#0) 1141 | I0805 14:54:06.941123 1392 solver.cpp:343] Test net output #0: accuracy = 0.9952 1142 | I0805 14:54:06.942123 1392 solver.cpp:343] Test net output #1: loss = 0.0174111 (* 1 = 0.0174111 loss) 1143 | I0805 14:54:06.947124 1392 solver.cpp:214] Iteration 11000, loss = 0.000760555 1144 | I0805 14:54:06.947124 1392 solver.cpp:229] Train net output #0: loss = 0.00076078 (* 1 = 0.00076078 loss) 1145 | I0805 14:54:06.948123 1392 solver.cpp:486] Iteration 11000, lr = 0.0140419 1146 | I0805 14:54:07.689165 1392 solver.cpp:214] Iteration 11100, loss = 0.000516106 1147 | I0805 14:54:07.690166 1392 solver.cpp:229] Train net output #0: loss = 0.000516333 (* 1 = 0.000516333 loss) 1148 | I0805 14:54:07.691166 1392 solver.cpp:486] Iteration 11100, lr = 0.0139634 1149 | I0805 14:54:08.439208 1392 solver.cpp:214] Iteration 11200, loss = 0.000770474 1150 | I0805 14:54:08.440208 1392 solver.cpp:229] Train net output #0: loss = 0.000770702 (* 1 = 0.000770702 loss) 1151 | I0805 14:54:08.441208 1392 solver.cpp:486] Iteration 11200, lr = 0.0138858 1152 | I0805 14:54:09.181252 1392 solver.cpp:214] Iteration 11300, loss = 0.000217331 1153 | I0805 14:54:09.181252 1392 solver.cpp:229] Train net output #0: loss = 0.00021756 (* 1 = 0.00021756 loss) 1154 | I0805 14:54:09.182251 1392 solver.cpp:486] Iteration 11300, lr = 0.0138091 1155 | I0805 14:54:09.928294 1392 solver.cpp:214] Iteration 11400, loss = 0.000424193 1156 | I0805 14:54:09.929294 1392 solver.cpp:229] Train net output #0: loss = 0.00042442 (* 1 = 0.00042442 loss) 1157 | I0805 14:54:09.929294 1392 solver.cpp:486] Iteration 11400, lr = 0.0137333 1158 | I0805 14:54:10.670336 1392 solver.cpp:214] Iteration 11500, loss = 0.000439667 1159 | I0805 14:54:10.671336 1392 solver.cpp:229] Train net output #0: loss = 0.000439895 (* 1 = 0.000439895 loss) 1160 | I0805 14:54:10.672336 1392 solver.cpp:486] Iteration 11500, lr = 0.0136583 1161 | I0805 14:54:11.412379 1392 solver.cpp:214] Iteration 11600, loss = 0.000728036 1162 | I0805 14:54:11.413378 1392 solver.cpp:229] Train net output #0: loss = 0.000728263 (* 1 = 0.000728263 loss) 1163 | I0805 14:54:11.413378 1392 solver.cpp:486] Iteration 11600, lr = 0.0135843 1164 | I0805 14:54:12.152421 1392 solver.cpp:214] Iteration 11700, loss = 4.24944e-005 1165 | I0805 14:54:12.153421 1392 solver.cpp:229] Train net output #0: loss = 4.27263e-005 (* 1 = 4.27263e-005 loss) 1166 | I0805 14:54:12.154422 1392 solver.cpp:486] Iteration 11700, lr = 0.013511 1167 | I0805 14:54:12.898463 1392 solver.cpp:214] Iteration 11800, loss = 0.00542866 1168 | I0805 14:54:12.898463 1392 solver.cpp:229] Train net output #0: loss = 0.00542889 (* 1 = 0.00542889 loss) 1169 | I0805 14:54:12.899463 1392 solver.cpp:486] Iteration 11800, lr = 0.0134386 1170 | I0805 14:54:13.642506 1392 solver.cpp:214] Iteration 11900, loss = 0.00137749 1171 | I0805 14:54:13.642506 1392 solver.cpp:229] Train net output #0: loss = 0.00137772 (* 1 = 0.00137772 loss) 1172 | I0805 14:54:13.643507 1392 solver.cpp:486] Iteration 11900, lr = 0.013367 1173 | I0805 14:54:14.381548 1392 solver.cpp:294] Iteration 12000, Testing net (#0) 1174 | I0805 14:54:14.806573 1392 solver.cpp:343] Test net output #0: accuracy = 0.9957 1175 | I0805 14:54:14.806573 1392 solver.cpp:343] Test net output #1: loss = 0.0177655 (* 1 = 0.0177655 loss) 1176 | I0805 14:54:14.811573 1392 solver.cpp:214] Iteration 12000, loss = 0.0131612 1177 | I0805 14:54:14.812573 1392 solver.cpp:229] Train net output #0: loss = 0.0131614 (* 1 = 0.0131614 loss) 1178 | I0805 14:54:14.812573 1392 solver.cpp:486] Iteration 12000, lr = 0.0132962 1179 | I0805 14:54:15.556615 1392 solver.cpp:214] Iteration 12100, loss = 0.00379404 1180 | I0805 14:54:15.557616 1392 solver.cpp:229] Train net output #0: loss = 0.00379428 (* 1 = 0.00379428 loss) 1181 | I0805 14:54:15.557616 1392 solver.cpp:486] Iteration 12100, lr = 0.0132262 1182 | I0805 14:54:16.296658 1392 solver.cpp:214] Iteration 12200, loss = 0.000480589 1183 | I0805 14:54:16.297658 1392 solver.cpp:229] Train net output #0: loss = 0.000480827 (* 1 = 0.000480827 loss) 1184 | I0805 14:54:16.298658 1392 solver.cpp:486] Iteration 12200, lr = 0.013157 1185 | I0805 14:54:17.042701 1392 solver.cpp:214] Iteration 12300, loss = 0.000535732 1186 | I0805 14:54:17.043701 1392 solver.cpp:229] Train net output #0: loss = 0.000535974 (* 1 = 0.000535974 loss) 1187 | I0805 14:54:17.043701 1392 solver.cpp:486] Iteration 12300, lr = 0.0130885 1188 | I0805 14:54:17.783743 1392 solver.cpp:214] Iteration 12400, loss = 0.00221962 1189 | I0805 14:54:17.783743 1392 solver.cpp:229] Train net output #0: loss = 0.00221987 (* 1 = 0.00221987 loss) 1190 | I0805 14:54:17.784744 1392 solver.cpp:486] Iteration 12400, lr = 0.0130208 1191 | I0805 14:54:18.521785 1392 solver.cpp:214] Iteration 12500, loss = 0.021138 1192 | I0805 14:54:18.522785 1392 solver.cpp:229] Train net output #0: loss = 0.0211383 (* 1 = 0.0211383 loss) 1193 | I0805 14:54:18.523785 1392 solver.cpp:486] Iteration 12500, lr = 0.0129538 1194 | I0805 14:54:19.269829 1392 solver.cpp:214] Iteration 12600, loss = 0.0292871 1195 | I0805 14:54:19.270828 1392 solver.cpp:229] Train net output #0: loss = 0.0292874 (* 1 = 0.0292874 loss) 1196 | I0805 14:54:19.270828 1392 solver.cpp:486] Iteration 12600, lr = 0.0128876 1197 | I0805 14:54:20.010870 1392 solver.cpp:214] Iteration 12700, loss = 0.00116427 1198 | I0805 14:54:20.011870 1392 solver.cpp:229] Train net output #0: loss = 0.00116451 (* 1 = 0.00116451 loss) 1199 | I0805 14:54:20.011870 1392 solver.cpp:486] Iteration 12700, lr = 0.012822 1200 | I0805 14:54:20.755913 1392 solver.cpp:214] Iteration 12800, loss = 7.37607e-005 1201 | I0805 14:54:20.756913 1392 solver.cpp:229] Train net output #0: loss = 7.39952e-005 (* 1 = 7.39952e-005 loss) 1202 | I0805 14:54:20.756913 1392 solver.cpp:486] Iteration 12800, lr = 0.0127572 1203 | I0805 14:54:21.492955 1392 solver.cpp:214] Iteration 12900, loss = 0.00010704 1204 | I0805 14:54:21.492955 1392 solver.cpp:229] Train net output #0: loss = 0.000107275 (* 1 = 0.000107275 loss) 1205 | I0805 14:54:21.493955 1392 solver.cpp:486] Iteration 12900, lr = 0.012693 1206 | I0805 14:54:22.227998 1392 solver.cpp:294] Iteration 13000, Testing net (#0) 1207 | I0805 14:54:22.647022 1392 solver.cpp:343] Test net output #0: accuracy = 0.9951 1208 | I0805 14:54:22.648021 1392 solver.cpp:343] Test net output #1: loss = 0.0184569 (* 1 = 0.0184569 loss) 1209 | I0805 14:54:22.652021 1392 solver.cpp:214] Iteration 13000, loss = 0.000132562 1210 | I0805 14:54:22.653022 1392 solver.cpp:229] Train net output #0: loss = 0.000132799 (* 1 = 0.000132799 loss) 1211 | I0805 14:54:22.654021 1392 solver.cpp:486] Iteration 13000, lr = 0.0126295 1212 | I0805 14:54:23.392065 1392 solver.cpp:214] Iteration 13100, loss = 9.7784e-005 1213 | I0805 14:54:23.392065 1392 solver.cpp:229] Train net output #0: loss = 9.80218e-005 (* 1 = 9.80218e-005 loss) 1214 | I0805 14:54:23.393064 1392 solver.cpp:486] Iteration 13100, lr = 0.0125667 1215 | I0805 14:54:24.134106 1392 solver.cpp:214] Iteration 13200, loss = 0.000102151 1216 | I0805 14:54:24.134106 1392 solver.cpp:229] Train net output #0: loss = 0.00010239 (* 1 = 0.00010239 loss) 1217 | I0805 14:54:24.135107 1392 solver.cpp:486] Iteration 13200, lr = 0.0125046 1218 | I0805 14:54:24.875149 1392 solver.cpp:214] Iteration 13300, loss = 0.013581 1219 | I0805 14:54:24.876148 1392 solver.cpp:229] Train net output #0: loss = 0.0135812 (* 1 = 0.0135812 loss) 1220 | I0805 14:54:24.877149 1392 solver.cpp:486] Iteration 13300, lr = 0.0124431 1221 | I0805 14:54:25.620192 1392 solver.cpp:214] Iteration 13400, loss = 0.000315848 1222 | I0805 14:54:25.621191 1392 solver.cpp:229] Train net output #0: loss = 0.000316088 (* 1 = 0.000316088 loss) 1223 | I0805 14:54:25.621191 1392 solver.cpp:486] Iteration 13400, lr = 0.0123822 1224 | I0805 14:54:26.360234 1392 solver.cpp:214] Iteration 13500, loss = 0.00148853 1225 | I0805 14:54:26.361233 1392 solver.cpp:229] Train net output #0: loss = 0.00148877 (* 1 = 0.00148877 loss) 1226 | I0805 14:54:26.362233 1392 solver.cpp:486] Iteration 13500, lr = 0.0123219 1227 | I0805 14:54:27.104276 1392 solver.cpp:214] Iteration 13600, loss = 9.85666e-005 1228 | I0805 14:54:27.104276 1392 solver.cpp:229] Train net output #0: loss = 9.88035e-005 (* 1 = 9.88035e-005 loss) 1229 | I0805 14:54:27.105276 1392 solver.cpp:486] Iteration 13600, lr = 0.0122623 1230 | I0805 14:54:27.846318 1392 solver.cpp:214] Iteration 13700, loss = 0.000936646 1231 | I0805 14:54:27.846318 1392 solver.cpp:229] Train net output #0: loss = 0.000936882 (* 1 = 0.000936882 loss) 1232 | I0805 14:54:27.847318 1392 solver.cpp:486] Iteration 13700, lr = 0.0122033 1233 | I0805 14:54:28.589361 1392 solver.cpp:214] Iteration 13800, loss = 0.00012109 1234 | I0805 14:54:28.589361 1392 solver.cpp:229] Train net output #0: loss = 0.000121322 (* 1 = 0.000121322 loss) 1235 | I0805 14:54:28.590361 1392 solver.cpp:486] Iteration 13800, lr = 0.0121448 1236 | I0805 14:54:29.332403 1392 solver.cpp:214] Iteration 13900, loss = 0.000808294 1237 | I0805 14:54:29.333403 1392 solver.cpp:229] Train net output #0: loss = 0.000808529 (* 1 = 0.000808529 loss) 1238 | I0805 14:54:29.333403 1392 solver.cpp:486] Iteration 13900, lr = 0.012087 1239 | I0805 14:54:30.072446 1392 solver.cpp:294] Iteration 14000, Testing net (#0) 1240 | I0805 14:54:30.489470 1392 solver.cpp:343] Test net output #0: accuracy = 0.9953 1241 | I0805 14:54:30.489470 1392 solver.cpp:343] Test net output #1: loss = 0.0178747 (* 1 = 0.0178747 loss) 1242 | I0805 14:54:30.494470 1392 solver.cpp:214] Iteration 14000, loss = 0.000820519 1243 | I0805 14:54:30.495471 1392 solver.cpp:229] Train net output #0: loss = 0.000820755 (* 1 = 0.000820755 loss) 1244 | I0805 14:54:30.495471 1392 solver.cpp:486] Iteration 14000, lr = 0.0120297 1245 | I0805 14:54:31.236512 1392 solver.cpp:214] Iteration 14100, loss = 0.00430224 1246 | I0805 14:54:31.237512 1392 solver.cpp:229] Train net output #0: loss = 0.00430247 (* 1 = 0.00430247 loss) 1247 | I0805 14:54:31.237512 1392 solver.cpp:486] Iteration 14100, lr = 0.011973 1248 | I0805 14:54:31.976555 1392 solver.cpp:214] Iteration 14200, loss = 0.000967773 1249 | I0805 14:54:31.977555 1392 solver.cpp:229] Train net output #0: loss = 0.000968004 (* 1 = 0.000968004 loss) 1250 | I0805 14:54:31.977555 1392 solver.cpp:486] Iteration 14200, lr = 0.0119169 1251 | I0805 14:54:32.724597 1392 solver.cpp:214] Iteration 14300, loss = 0.000148073 1252 | I0805 14:54:32.724597 1392 solver.cpp:229] Train net output #0: loss = 0.000148301 (* 1 = 0.000148301 loss) 1253 | I0805 14:54:32.725597 1392 solver.cpp:486] Iteration 14300, lr = 0.0118613 1254 | I0805 14:54:33.472640 1392 solver.cpp:214] Iteration 14400, loss = 0.000768556 1255 | I0805 14:54:33.472640 1392 solver.cpp:229] Train net output #0: loss = 0.000768787 (* 1 = 0.000768787 loss) 1256 | I0805 14:54:33.473640 1392 solver.cpp:486] Iteration 14400, lr = 0.0118062 1257 | I0805 14:54:34.214684 1392 solver.cpp:214] Iteration 14500, loss = 0.000170701 1258 | I0805 14:54:34.214684 1392 solver.cpp:229] Train net output #0: loss = 0.000170932 (* 1 = 0.000170932 loss) 1259 | I0805 14:54:34.215683 1392 solver.cpp:486] Iteration 14500, lr = 0.0117517 1260 | I0805 14:54:34.961725 1392 solver.cpp:214] Iteration 14600, loss = 0.0017472 1261 | I0805 14:54:34.962725 1392 solver.cpp:229] Train net output #0: loss = 0.00174743 (* 1 = 0.00174743 loss) 1262 | I0805 14:54:34.962725 1392 solver.cpp:486] Iteration 14600, lr = 0.0116978 1263 | I0805 14:54:35.704768 1392 solver.cpp:214] Iteration 14700, loss = 3.93064e-005 1264 | I0805 14:54:35.704768 1392 solver.cpp:229] Train net output #0: loss = 3.95355e-005 (* 1 = 3.95355e-005 loss) 1265 | I0805 14:54:35.705768 1392 solver.cpp:486] Iteration 14700, lr = 0.0116443 1266 | I0805 14:54:36.451812 1392 solver.cpp:214] Iteration 14800, loss = 0.0013484 1267 | I0805 14:54:36.452811 1392 solver.cpp:229] Train net output #0: loss = 0.00134863 (* 1 = 0.00134863 loss) 1268 | I0805 14:54:36.453811 1392 solver.cpp:486] Iteration 14800, lr = 0.0115914 1269 | I0805 14:54:37.200853 1392 solver.cpp:214] Iteration 14900, loss = 0.00275396 1270 | I0805 14:54:37.201853 1392 solver.cpp:229] Train net output #0: loss = 0.00275419 (* 1 = 0.00275419 loss) 1271 | I0805 14:54:37.201853 1392 solver.cpp:486] Iteration 14900, lr = 0.0115389 1272 | I0805 14:54:37.945896 1392 solver.cpp:361] Snapshotting to lenet_iter_15000.caffemodel 1273 | I0805 14:54:37.957897 1392 solver.cpp:369] Snapshotting solver state to lenet_iter_15000.solverstate 1274 | I0805 14:54:37.968897 1392 solver.cpp:276] Iteration 15000, loss = 8.69586e-005 1275 | I0805 14:54:37.969897 1392 solver.cpp:294] Iteration 15000, Testing net (#0) 1276 | I0805 14:54:38.396922 1392 solver.cpp:343] Test net output #0: accuracy = 0.9952 1277 | I0805 14:54:38.396922 1392 solver.cpp:343] Test net output #1: loss = 0.0172062 (* 1 = 0.0172062 loss) 1278 | I0805 14:54:38.397922 1392 solver.cpp:281] Optimization Done. 1279 | I0805 14:54:38.397922 1392 caffe.cpp:134] Optimization Done. 1280 | -------------------------------------------------------------------------------- /train_mnist_99.58.log: -------------------------------------------------------------------------------- 1 | I0806 09:45:15.961009 11748 caffe.cpp:113] Use GPU with device ID 0 2 | I0806 09:45:16.327029 11748 common.cpp:24] System entropy source not available, using fallback algorithm to generate seed instead. 3 | I0806 09:45:16.327029 11748 caffe.cpp:121] Starting Optimization 4 | I0806 09:45:16.327029 11748 solver.cpp:32] Initializing solver from parameters: 5 | test_iter: 100 6 | test_interval: 1000 7 | base_lr: 0.04 8 | display: 100 9 | max_iter: 15000 10 | lr_policy: "step" 11 | gamma: 0.1428571 12 | momentum: 0.8 13 | weight_decay: 0.0001 14 | stepsize: 6000 15 | snapshot: 5000 16 | snapshot_prefix: "lenet" 17 | solver_mode: GPU 18 | net: "lenet_train_test.prototxt" 19 | I0806 09:45:16.328030 11748 solver.cpp:70] Creating training net from net file: lenet_train_test.prototxt 20 | I0806 09:45:16.328030 11748 net.cpp:287] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist 21 | I0806 09:45:16.328030 11748 net.cpp:287] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy 22 | I0806 09:45:16.328030 11748 net.cpp:42] Initializing net from parameters: 23 | name: "LeNet" 24 | state { 25 | phase: TRAIN 26 | } 27 | layer { 28 | name: "mnist" 29 | type: "Data" 30 | top: "data" 31 | top: "label" 32 | include { 33 | phase: TRAIN 34 | } 35 | transform_param { 36 | scale: 0.00390625 37 | } 38 | data_param { 39 | source: "mnist-train-leveldb" 40 | batch_size: 64 41 | backend: LEVELDB 42 | } 43 | } 44 | layer { 45 | name: "conv1" 46 | type: "Convolution" 47 | bottom: "data" 48 | top: "conv1" 49 | param { 50 | lr_mult: 1 51 | } 52 | param { 53 | lr_mult: 2 54 | } 55 | convolution_param { 56 | num_output: 30 57 | kernel_size: 7 58 | stride: 1 59 | weight_filler { 60 | type: "xavier" 61 | } 62 | bias_filler { 63 | type: "constant" 64 | } 65 | } 66 | } 67 | layer { 68 | name: "relu1" 69 | type: "ReLU" 70 | bottom: "conv1" 71 | top: "conv1" 72 | } 73 | layer { 74 | name: "conv1_bn" 75 | type: "BN" 76 | bottom: "conv1" 77 | top: "conv1_bn" 78 | param { 79 | lr_mult: 1 80 | decay_mult: 0 81 | } 82 | param { 83 | lr_mult: 1 84 | decay_mult: 0 85 | } 86 | bn_param { 87 | scale_filler { 88 | type: "constant" 89 | value: 1 90 | } 91 | shift_filler { 92 | type: "constant" 93 | value: 0 94 | } 95 | } 96 | } 97 | layer { 98 | name: "pool1" 99 | type: "Pooling" 100 | bottom: "conv1_bn" 101 | top: "pool1" 102 | pooling_param { 103 | pool: MAX 104 | kernel_size: 2 105 | stride: 2 106 | } 107 | } 108 | layer { 109 | name: "conv2" 110 | type: "Convolution" 111 | bottom: "pool1" 112 | top: "conv2" 113 | param { 114 | lr_mult: 1 115 | } 116 | param { 117 | lr_mult: 2 118 | } 119 | convolution_param { 120 | num_output: 70 121 | kernel_size: 3 122 | stride: 1 123 | weight_filler { 124 | type: "xavier" 125 | } 126 | bias_filler { 127 | type: "constant" 128 | } 129 | } 130 | } 131 | layer { 132 | name: "relu2" 133 | type: "ReLU" 134 | bottom: "conv2" 135 | top: "conv2" 136 | } 137 | layer { 138 | name: "conv2_bn" 139 | type: "BN" 140 | bottom: "conv2" 141 | top: "conv2_bn" 142 | param { 143 | lr_mult: 1 144 | decay_mult: 0 145 | } 146 | param { 147 | lr_mult: 1 148 | decay_mult: 0 149 | } 150 | bn_param { 151 | scale_filler { 152 | type: "constant" 153 | value: 1 154 | } 155 | shift_filler { 156 | type: "constant" 157 | value: 0 158 | } 159 | } 160 | } 161 | layer { 162 | name: "drop1" 163 | type: "Dropout" 164 | bottom: "conv2_bn" 165 | top: "conv2_bn" 166 | dropout_param { 167 | dropout_ratio: 0.1 168 | } 169 | } 170 | layer { 171 | name: "conv2_1" 172 | type: "Convolution" 173 | bottom: "conv2_bn" 174 | top: "conv2_1" 175 | param { 176 | lr_mult: 1 177 | } 178 | param { 179 | lr_mult: 2 180 | } 181 | convolution_param { 182 | num_output: 70 183 | pad: 1 184 | kernel_size: 3 185 | stride: 1 186 | weight_filler { 187 | type: "xavier" 188 | } 189 | bias_filler { 190 | type: "constant" 191 | } 192 | } 193 | } 194 | layer { 195 | name: "relu2" 196 | type: "ReLU" 197 | bottom: "conv2_1" 198 | top: "conv2_1" 199 | } 200 | layer { 201 | name: "conv2_bn_1" 202 | type: "BN" 203 | bottom: "conv2_1" 204 | top: "conv2_bn_1" 205 | param { 206 | lr_mult: 1 207 | decay_mult: 0 208 | } 209 | param { 210 | lr_mult: 1 211 | decay_mult: 0 212 | } 213 | bn_param { 214 | scale_filler { 215 | type: "constant" 216 | value: 1 217 | } 218 | shift_filler { 219 | type: "constant" 220 | value: 0 221 | } 222 | } 223 | } 224 | layer { 225 | name: "drop1_1" 226 | type: "Dropout" 227 | bottom: "conv2_bn_1" 228 | top: "conv2_bn_1" 229 | dropout_param { 230 | dropout_ratio: 0.1 231 | } 232 | } 233 | layer { 234 | name: "pool2" 235 | type: "Pooling" 236 | bottom: "conv2_bn_1" 237 | top: "pool2" 238 | pooling_param { 239 | pool: MAX 240 | kernel_size: 2 241 | stride: 2 242 | } 243 | } 244 | layer { 245 | name: "ip1" 246 | type: "InnerProduct" 247 | bottom: "pool2" 248 | top: "ip1" 249 | param { 250 | lr_mult: 1 251 | } 252 | param { 253 | lr_mult: 2 254 | } 255 | inner_product_param { 256 | num_output: 300 257 | weight_filler { 258 | type: "xavier" 259 | } 260 | bias_filler { 261 | type: "constant" 262 | } 263 | } 264 | } 265 | layer { 266 | name: "relu3" 267 | type: "ReLU" 268 | bottom: "ip1" 269 | top: "ip1" 270 | } 271 | layer { 272 | name: "drop2" 273 | type: "Dropout" 274 | bottom: "ip1" 275 | top: "ip1" 276 | dropout_param { 277 | dropout_ratio: 0.3 278 | } 279 | } 280 | layer { 281 | name: "ip3" 282 | type: "InnerProduct" 283 | bottom: "ip1" 284 | top: "ip3" 285 | param { 286 | lr_mult: 1 287 | } 288 | param { 289 | lr_mult: 2 290 | } 291 | inner_product_param { 292 | num_output: 10 293 | weight_filler { 294 | type: "xavier" 295 | } 296 | bias_filler { 297 | type: "constant" 298 | } 299 | } 300 | } 301 | layer { 302 | name: "loss" 303 | type: "SoftmaxWithLoss" 304 | bottom: "ip3" 305 | bottom: "label" 306 | top: "loss" 307 | } 308 | I0806 09:45:16.377032 11748 layer_factory.hpp:74] Creating layer mnist 309 | I0806 09:45:16.378032 11748 net.cpp:90] Creating Layer mnist 310 | I0806 09:45:16.378032 11748 net.cpp:368] mnist -> data 311 | I0806 09:45:16.379032 11748 net.cpp:368] mnist -> label 312 | I0806 09:45:16.379032 11748 net.cpp:120] Setting up mnist 313 | I0806 09:45:16.386034 11748 db.cpp:20] Opened leveldb mnist-train-leveldb 314 | I0806 09:45:16.386034 11748 data_layer.cpp:52] output data size: 64,1,28,28 315 | I0806 09:45:16.387033 11748 net.cpp:127] Top shape: 64 1 28 28 (50176) 316 | I0806 09:45:16.387033 11748 net.cpp:127] Top shape: 64 (64) 317 | I0806 09:45:16.387033 11748 layer_factory.hpp:74] Creating layer conv1 318 | I0806 09:45:16.388033 11748 net.cpp:90] Creating Layer conv1 319 | I0806 09:45:16.388033 11748 net.cpp:410] conv1 <- data 320 | I0806 09:45:16.388033 11748 net.cpp:368] conv1 -> conv1 321 | I0806 09:45:16.388033 11748 net.cpp:120] Setting up conv1 322 | I0806 09:45:16.389034 11748 common.cpp:24] System entropy source not available, using fallback algorithm to generate seed instead. 323 | I0806 09:45:16.457037 11748 net.cpp:127] Top shape: 64 30 22 22 (929280) 324 | I0806 09:45:16.457037 11748 layer_factory.hpp:74] Creating layer relu1 325 | I0806 09:45:16.458037 11748 net.cpp:90] Creating Layer relu1 326 | I0806 09:45:16.458037 11748 net.cpp:410] relu1 <- conv1 327 | I0806 09:45:16.458037 11748 net.cpp:357] relu1 -> conv1 (in-place) 328 | I0806 09:45:16.459038 11748 net.cpp:120] Setting up relu1 329 | I0806 09:45:16.459038 11748 net.cpp:127] Top shape: 64 30 22 22 (929280) 330 | I0806 09:45:16.459038 11748 layer_factory.hpp:74] Creating layer conv1_bn 331 | I0806 09:45:16.460037 11748 net.cpp:90] Creating Layer conv1_bn 332 | I0806 09:45:16.460037 11748 net.cpp:410] conv1_bn <- conv1 333 | I0806 09:45:16.460037 11748 net.cpp:368] conv1_bn -> conv1_bn 334 | I0806 09:45:16.461037 11748 net.cpp:120] Setting up conv1_bn 335 | I0806 09:45:16.461037 11748 net.cpp:127] Top shape: 64 30 22 22 (929280) 336 | I0806 09:45:16.461037 11748 layer_factory.hpp:74] Creating layer pool1 337 | I0806 09:45:16.462038 11748 net.cpp:90] Creating Layer pool1 338 | I0806 09:45:16.462038 11748 net.cpp:410] pool1 <- conv1_bn 339 | I0806 09:45:16.462038 11748 net.cpp:368] pool1 -> pool1 340 | I0806 09:45:16.463037 11748 net.cpp:120] Setting up pool1 341 | I0806 09:45:16.463037 11748 net.cpp:127] Top shape: 64 30 11 11 (232320) 342 | I0806 09:45:16.463037 11748 layer_factory.hpp:74] Creating layer conv2 343 | I0806 09:45:16.464037 11748 net.cpp:90] Creating Layer conv2 344 | I0806 09:45:16.464037 11748 net.cpp:410] conv2 <- pool1 345 | I0806 09:45:16.464037 11748 net.cpp:368] conv2 -> conv2 346 | I0806 09:45:16.464037 11748 net.cpp:120] Setting up conv2 347 | I0806 09:45:16.465037 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 348 | I0806 09:45:16.466037 11748 layer_factory.hpp:74] Creating layer relu2 349 | I0806 09:45:16.466037 11748 net.cpp:90] Creating Layer relu2 350 | I0806 09:45:16.466037 11748 net.cpp:410] relu2 <- conv2 351 | I0806 09:45:16.466037 11748 net.cpp:357] relu2 -> conv2 (in-place) 352 | I0806 09:45:16.467038 11748 net.cpp:120] Setting up relu2 353 | I0806 09:45:16.467038 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 354 | I0806 09:45:16.467038 11748 layer_factory.hpp:74] Creating layer conv2_bn 355 | I0806 09:45:16.467038 11748 net.cpp:90] Creating Layer conv2_bn 356 | I0806 09:45:16.468039 11748 net.cpp:410] conv2_bn <- conv2 357 | I0806 09:45:16.468039 11748 net.cpp:368] conv2_bn -> conv2_bn 358 | I0806 09:45:16.468039 11748 net.cpp:120] Setting up conv2_bn 359 | I0806 09:45:16.468039 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 360 | I0806 09:45:16.469038 11748 layer_factory.hpp:74] Creating layer drop1 361 | I0806 09:45:16.469038 11748 net.cpp:90] Creating Layer drop1 362 | I0806 09:45:16.469038 11748 net.cpp:410] drop1 <- conv2_bn 363 | I0806 09:45:16.469038 11748 net.cpp:357] drop1 -> conv2_bn (in-place) 364 | I0806 09:45:16.470038 11748 net.cpp:120] Setting up drop1 365 | I0806 09:45:16.470038 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 366 | I0806 09:45:16.470038 11748 layer_factory.hpp:74] Creating layer conv2_1 367 | I0806 09:45:16.470038 11748 net.cpp:90] Creating Layer conv2_1 368 | I0806 09:45:16.471038 11748 net.cpp:410] conv2_1 <- conv2_bn 369 | I0806 09:45:16.471038 11748 net.cpp:368] conv2_1 -> conv2_1 370 | I0806 09:45:16.471038 11748 net.cpp:120] Setting up conv2_1 371 | I0806 09:45:16.472038 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 372 | I0806 09:45:16.472038 11748 layer_factory.hpp:74] Creating layer relu2 373 | I0806 09:45:16.473038 11748 net.cpp:90] Creating Layer relu2 374 | I0806 09:45:16.473038 11748 net.cpp:410] relu2 <- conv2_1 375 | I0806 09:45:16.473038 11748 net.cpp:357] relu2 -> conv2_1 (in-place) 376 | I0806 09:45:16.473038 11748 net.cpp:120] Setting up relu2 377 | I0806 09:45:16.474038 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 378 | I0806 09:45:16.474038 11748 layer_factory.hpp:74] Creating layer conv2_bn_1 379 | I0806 09:45:16.474038 11748 net.cpp:90] Creating Layer conv2_bn_1 380 | I0806 09:45:16.475039 11748 net.cpp:410] conv2_bn_1 <- conv2_1 381 | I0806 09:45:16.475039 11748 net.cpp:368] conv2_bn_1 -> conv2_bn_1 382 | I0806 09:45:16.475039 11748 net.cpp:120] Setting up conv2_bn_1 383 | I0806 09:45:16.475039 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 384 | I0806 09:45:16.476038 11748 layer_factory.hpp:74] Creating layer drop1_1 385 | I0806 09:45:16.476038 11748 net.cpp:90] Creating Layer drop1_1 386 | I0806 09:45:16.476038 11748 net.cpp:410] drop1_1 <- conv2_bn_1 387 | I0806 09:45:16.476038 11748 net.cpp:357] drop1_1 -> conv2_bn_1 (in-place) 388 | I0806 09:45:16.476038 11748 net.cpp:120] Setting up drop1_1 389 | I0806 09:45:16.477038 11748 net.cpp:127] Top shape: 64 70 9 9 (362880) 390 | I0806 09:45:16.477038 11748 layer_factory.hpp:74] Creating layer pool2 391 | I0806 09:45:16.477038 11748 net.cpp:90] Creating Layer pool2 392 | I0806 09:45:16.477038 11748 net.cpp:410] pool2 <- conv2_bn_1 393 | I0806 09:45:16.478039 11748 net.cpp:368] pool2 -> pool2 394 | I0806 09:45:16.478039 11748 net.cpp:120] Setting up pool2 395 | I0806 09:45:16.478039 11748 net.cpp:127] Top shape: 64 70 5 5 (112000) 396 | I0806 09:45:16.479038 11748 layer_factory.hpp:74] Creating layer ip1 397 | I0806 09:45:16.479038 11748 net.cpp:90] Creating Layer ip1 398 | I0806 09:45:16.479038 11748 net.cpp:410] ip1 <- pool2 399 | I0806 09:45:16.480038 11748 net.cpp:368] ip1 -> ip1 400 | I0806 09:45:16.480038 11748 net.cpp:120] Setting up ip1 401 | I0806 09:45:16.484038 11748 net.cpp:127] Top shape: 64 300 (19200) 402 | I0806 09:45:16.484038 11748 layer_factory.hpp:74] Creating layer relu3 403 | I0806 09:45:16.484038 11748 net.cpp:90] Creating Layer relu3 404 | I0806 09:45:16.485039 11748 net.cpp:410] relu3 <- ip1 405 | I0806 09:45:16.485039 11748 net.cpp:357] relu3 -> ip1 (in-place) 406 | I0806 09:45:16.485039 11748 net.cpp:120] Setting up relu3 407 | I0806 09:45:16.486039 11748 net.cpp:127] Top shape: 64 300 (19200) 408 | I0806 09:45:16.486039 11748 layer_factory.hpp:74] Creating layer drop2 409 | I0806 09:45:16.486039 11748 net.cpp:90] Creating Layer drop2 410 | I0806 09:45:16.486039 11748 net.cpp:410] drop2 <- ip1 411 | I0806 09:45:16.487040 11748 net.cpp:357] drop2 -> ip1 (in-place) 412 | I0806 09:45:16.487040 11748 net.cpp:120] Setting up drop2 413 | I0806 09:45:16.487040 11748 net.cpp:127] Top shape: 64 300 (19200) 414 | I0806 09:45:16.487040 11748 layer_factory.hpp:74] Creating layer ip3 415 | I0806 09:45:16.487040 11748 net.cpp:90] Creating Layer ip3 416 | I0806 09:45:16.488039 11748 net.cpp:410] ip3 <- ip1 417 | I0806 09:45:16.488039 11748 net.cpp:368] ip3 -> ip3 418 | I0806 09:45:16.488039 11748 net.cpp:120] Setting up ip3 419 | I0806 09:45:16.488039 11748 net.cpp:127] Top shape: 64 10 (640) 420 | I0806 09:45:16.489039 11748 layer_factory.hpp:74] Creating layer loss 421 | I0806 09:45:16.489039 11748 net.cpp:90] Creating Layer loss 422 | I0806 09:45:16.489039 11748 net.cpp:410] loss <- ip3 423 | I0806 09:45:16.489039 11748 net.cpp:410] loss <- label 424 | I0806 09:45:16.490039 11748 net.cpp:368] loss -> loss 425 | I0806 09:45:16.490039 11748 net.cpp:120] Setting up loss 426 | I0806 09:45:16.490039 11748 layer_factory.hpp:74] Creating layer loss 427 | I0806 09:45:16.491039 11748 net.cpp:127] Top shape: (1) 428 | I0806 09:45:16.491039 11748 net.cpp:129] with loss weight 1 429 | I0806 09:45:16.491039 11748 net.cpp:192] loss needs backward computation. 430 | I0806 09:45:16.491039 11748 net.cpp:192] ip3 needs backward computation. 431 | I0806 09:45:16.492039 11748 net.cpp:192] drop2 needs backward computation. 432 | I0806 09:45:16.492039 11748 net.cpp:192] relu3 needs backward computation. 433 | I0806 09:45:16.492039 11748 net.cpp:192] ip1 needs backward computation. 434 | I0806 09:45:16.492039 11748 net.cpp:192] pool2 needs backward computation. 435 | I0806 09:45:16.493039 11748 net.cpp:192] drop1_1 needs backward computation. 436 | I0806 09:45:16.493039 11748 net.cpp:192] conv2_bn_1 needs backward computation. 437 | I0806 09:45:16.493039 11748 net.cpp:192] relu2 needs backward computation. 438 | I0806 09:45:16.493039 11748 net.cpp:192] conv2_1 needs backward computation. 439 | I0806 09:45:16.494040 11748 net.cpp:192] drop1 needs backward computation. 440 | I0806 09:45:16.494040 11748 net.cpp:192] conv2_bn needs backward computation. 441 | I0806 09:45:16.494040 11748 net.cpp:192] relu2 needs backward computation. 442 | I0806 09:45:16.494040 11748 net.cpp:192] conv2 needs backward computation. 443 | I0806 09:45:16.494040 11748 net.cpp:192] pool1 needs backward computation. 444 | I0806 09:45:16.495039 11748 net.cpp:192] conv1_bn needs backward computation. 445 | I0806 09:45:16.495039 11748 net.cpp:192] relu1 needs backward computation. 446 | I0806 09:45:16.495039 11748 net.cpp:192] conv1 needs backward computation. 447 | I0806 09:45:16.495039 11748 net.cpp:194] mnist does not need backward computation. 448 | I0806 09:45:16.496039 11748 net.cpp:235] This network produces output loss 449 | I0806 09:45:16.496039 11748 net.cpp:482] Collecting Learning Rate and Weight Decay. 450 | I0806 09:45:16.496039 11748 net.cpp:247] Network initialization done. 451 | I0806 09:45:16.497040 11748 net.cpp:248] Memory required for data: 24574724 452 | I0806 09:45:16.497040 11748 solver.cpp:154] Creating test net (#0) specified by net file: lenet_train_test.prototxt 453 | I0806 09:45:16.498039 11748 net.cpp:287] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist 454 | I0806 09:45:16.498039 11748 net.cpp:42] Initializing net from parameters: 455 | name: "LeNet" 456 | state { 457 | phase: TEST 458 | } 459 | layer { 460 | name: "mnist" 461 | type: "Data" 462 | top: "data" 463 | top: "label" 464 | include { 465 | phase: TEST 466 | } 467 | transform_param { 468 | scale: 0.00390625 469 | } 470 | data_param { 471 | source: "mnist-test-leveldb" 472 | batch_size: 100 473 | backend: LEVELDB 474 | } 475 | } 476 | layer { 477 | name: "conv1" 478 | type: "Convolution" 479 | bottom: "data" 480 | top: "conv1" 481 | param { 482 | lr_mult: 1 483 | } 484 | param { 485 | lr_mult: 2 486 | } 487 | convolution_param { 488 | num_output: 30 489 | kernel_size: 7 490 | stride: 1 491 | weight_filler { 492 | type: "xavier" 493 | } 494 | bias_filler { 495 | type: "constant" 496 | } 497 | } 498 | } 499 | layer { 500 | name: "relu1" 501 | type: "ReLU" 502 | bottom: "conv1" 503 | top: "conv1" 504 | } 505 | layer { 506 | name: "conv1_bn" 507 | type: "BN" 508 | bottom: "conv1" 509 | top: "conv1_bn" 510 | param { 511 | lr_mult: 1 512 | decay_mult: 0 513 | } 514 | param { 515 | lr_mult: 1 516 | decay_mult: 0 517 | } 518 | bn_param { 519 | scale_filler { 520 | type: "constant" 521 | value: 1 522 | } 523 | shift_filler { 524 | type: "constant" 525 | value: 0 526 | } 527 | } 528 | } 529 | layer { 530 | name: "pool1" 531 | type: "Pooling" 532 | bottom: "conv1_bn" 533 | top: "pool1" 534 | pooling_param { 535 | pool: MAX 536 | kernel_size: 2 537 | stride: 2 538 | } 539 | } 540 | layer { 541 | name: "conv2" 542 | type: "Convolution" 543 | bottom: "pool1" 544 | top: "conv2" 545 | param { 546 | lr_mult: 1 547 | } 548 | param { 549 | lr_mult: 2 550 | } 551 | convolution_param { 552 | num_output: 70 553 | kernel_size: 3 554 | stride: 1 555 | weight_filler { 556 | type: "xavier" 557 | } 558 | bias_filler { 559 | type: "constant" 560 | } 561 | } 562 | } 563 | layer { 564 | name: "relu2" 565 | type: "ReLU" 566 | bottom: "conv2" 567 | top: "conv2" 568 | } 569 | layer { 570 | name: "conv2_bn" 571 | type: "BN" 572 | bottom: "conv2" 573 | top: "conv2_bn" 574 | param { 575 | lr_mult: 1 576 | decay_mult: 0 577 | } 578 | param { 579 | lr_mult: 1 580 | decay_mult: 0 581 | } 582 | bn_param { 583 | scale_filler { 584 | type: "constant" 585 | value: 1 586 | } 587 | shift_filler { 588 | type: "constant" 589 | value: 0 590 | } 591 | } 592 | } 593 | layer { 594 | name: "drop1" 595 | type: "Dropout" 596 | bottom: "conv2_bn" 597 | top: "conv2_bn" 598 | dropout_param { 599 | dropout_ratio: 0.1 600 | } 601 | } 602 | layer { 603 | name: "conv2_1" 604 | type: "Convolution" 605 | bottom: "conv2_bn" 606 | top: "conv2_1" 607 | param { 608 | lr_mult: 1 609 | } 610 | param { 611 | lr_mult: 2 612 | } 613 | convolution_param { 614 | num_output: 70 615 | pad: 1 616 | kernel_size: 3 617 | stride: 1 618 | weight_filler { 619 | type: "xavier" 620 | } 621 | bias_filler { 622 | type: "constant" 623 | } 624 | } 625 | } 626 | layer { 627 | name: "relu2" 628 | type: "ReLU" 629 | bottom: "conv2_1" 630 | top: "conv2_1" 631 | } 632 | layer { 633 | name: "conv2_bn_1" 634 | type: "BN" 635 | bottom: "conv2_1" 636 | top: "conv2_bn_1" 637 | param { 638 | lr_mult: 1 639 | decay_mult: 0 640 | } 641 | param { 642 | lr_mult: 1 643 | decay_mult: 0 644 | } 645 | bn_param { 646 | scale_filler { 647 | type: "constant" 648 | value: 1 649 | } 650 | shift_filler { 651 | type: "constant" 652 | value: 0 653 | } 654 | } 655 | } 656 | layer { 657 | name: "drop1_1" 658 | type: "Dropout" 659 | bottom: "conv2_bn_1" 660 | top: "conv2_bn_1" 661 | dropout_param { 662 | dropout_ratio: 0.1 663 | } 664 | } 665 | layer { 666 | name: "pool2" 667 | type: "Pooling" 668 | bottom: "conv2_bn_1" 669 | top: "pool2" 670 | pooling_param { 671 | pool: MAX 672 | kernel_size: 2 673 | stride: 2 674 | } 675 | } 676 | layer { 677 | name: "ip1" 678 | type: "InnerProduct" 679 | bottom: "pool2" 680 | top: "ip1" 681 | param { 682 | lr_mult: 1 683 | } 684 | param { 685 | lr_mult: 2 686 | } 687 | inner_product_param { 688 | num_output: 300 689 | weight_filler { 690 | type: "xavier" 691 | } 692 | bias_filler { 693 | type: "constant" 694 | } 695 | } 696 | } 697 | layer { 698 | name: "relu3" 699 | type: "ReLU" 700 | bottom: "ip1" 701 | top: "ip1" 702 | } 703 | layer { 704 | name: "drop2" 705 | type: "Dropout" 706 | bottom: "ip1" 707 | top: "ip1" 708 | dropout_param { 709 | dropout_ratio: 0.3 710 | } 711 | } 712 | layer { 713 | name: "ip3" 714 | type: "InnerProduct" 715 | bottom: "ip1" 716 | top: "ip3" 717 | param { 718 | lr_mult: 1 719 | } 720 | param { 721 | lr_mult: 2 722 | } 723 | inner_product_param { 724 | num_output: 10 725 | weight_filler { 726 | type: "xavier" 727 | } 728 | bias_filler { 729 | type: "constant" 730 | } 731 | } 732 | } 733 | layer { 734 | name: "accuracy" 735 | type: "Accuracy" 736 | bottom: "ip3" 737 | bottom: "label" 738 | top: "accuracy" 739 | include { 740 | phase: TEST 741 | } 742 | } 743 | layer { 744 | name: "loss" 745 | type: "SoftmaxWithLoss" 746 | bottom: "ip3" 747 | bottom: "label" 748 | top: "loss" 749 | } 750 | I0806 09:45:16.529042 11748 layer_factory.hpp:74] Creating layer mnist 751 | I0806 09:45:16.530041 11748 net.cpp:90] Creating Layer mnist 752 | I0806 09:45:16.530041 11748 net.cpp:368] mnist -> data 753 | I0806 09:45:16.530041 11748 net.cpp:368] mnist -> label 754 | I0806 09:45:16.531041 11748 net.cpp:120] Setting up mnist 755 | I0806 09:45:16.538043 11748 db.cpp:20] Opened leveldb mnist-test-leveldb 756 | I0806 09:45:16.539042 11748 data_layer.cpp:52] output data size: 100,1,28,28 757 | I0806 09:45:16.539042 11748 net.cpp:127] Top shape: 100 1 28 28 (78400) 758 | I0806 09:45:16.540042 11748 net.cpp:127] Top shape: 100 (100) 759 | I0806 09:45:16.540042 11748 layer_factory.hpp:74] Creating layer label_mnist_1_split 760 | I0806 09:45:16.540042 11748 net.cpp:90] Creating Layer label_mnist_1_split 761 | I0806 09:45:16.541043 11748 net.cpp:410] label_mnist_1_split <- label 762 | I0806 09:45:16.541043 11748 net.cpp:368] label_mnist_1_split -> label_mnist_1_split_0 763 | I0806 09:45:16.541043 11748 net.cpp:368] label_mnist_1_split -> label_mnist_1_split_1 764 | I0806 09:45:16.542042 11748 net.cpp:120] Setting up label_mnist_1_split 765 | I0806 09:45:16.542042 11748 net.cpp:127] Top shape: 100 (100) 766 | I0806 09:45:16.542042 11748 net.cpp:127] Top shape: 100 (100) 767 | I0806 09:45:16.542042 11748 layer_factory.hpp:74] Creating layer conv1 768 | I0806 09:45:16.543042 11748 net.cpp:90] Creating Layer conv1 769 | I0806 09:45:16.543042 11748 net.cpp:410] conv1 <- data 770 | I0806 09:45:16.543042 11748 net.cpp:368] conv1 -> conv1 771 | I0806 09:45:16.543042 11748 net.cpp:120] Setting up conv1 772 | I0806 09:45:16.544042 11748 net.cpp:127] Top shape: 100 30 22 22 (1452000) 773 | I0806 09:45:16.545042 11748 layer_factory.hpp:74] Creating layer relu1 774 | I0806 09:45:16.545042 11748 net.cpp:90] Creating Layer relu1 775 | I0806 09:45:16.545042 11748 net.cpp:410] relu1 <- conv1 776 | I0806 09:45:16.545042 11748 net.cpp:357] relu1 -> conv1 (in-place) 777 | I0806 09:45:16.546042 11748 net.cpp:120] Setting up relu1 778 | I0806 09:45:16.546042 11748 net.cpp:127] Top shape: 100 30 22 22 (1452000) 779 | I0806 09:45:16.547042 11748 layer_factory.hpp:74] Creating layer conv1_bn 780 | I0806 09:45:16.547042 11748 net.cpp:90] Creating Layer conv1_bn 781 | I0806 09:45:16.547042 11748 net.cpp:410] conv1_bn <- conv1 782 | I0806 09:45:16.547042 11748 net.cpp:368] conv1_bn -> conv1_bn 783 | I0806 09:45:16.548043 11748 net.cpp:120] Setting up conv1_bn 784 | I0806 09:45:16.548043 11748 net.cpp:127] Top shape: 100 30 22 22 (1452000) 785 | I0806 09:45:16.548043 11748 layer_factory.hpp:74] Creating layer pool1 786 | I0806 09:45:16.548043 11748 net.cpp:90] Creating Layer pool1 787 | I0806 09:45:16.549042 11748 net.cpp:410] pool1 <- conv1_bn 788 | I0806 09:45:16.549042 11748 net.cpp:368] pool1 -> pool1 789 | I0806 09:45:16.549042 11748 net.cpp:120] Setting up pool1 790 | I0806 09:45:16.549042 11748 net.cpp:127] Top shape: 100 30 11 11 (363000) 791 | I0806 09:45:16.550042 11748 layer_factory.hpp:74] Creating layer conv2 792 | I0806 09:45:16.550042 11748 net.cpp:90] Creating Layer conv2 793 | I0806 09:45:16.550042 11748 net.cpp:410] conv2 <- pool1 794 | I0806 09:45:16.550042 11748 net.cpp:368] conv2 -> conv2 795 | I0806 09:45:16.550042 11748 net.cpp:120] Setting up conv2 796 | I0806 09:45:16.551043 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 797 | I0806 09:45:16.551043 11748 layer_factory.hpp:74] Creating layer relu2 798 | I0806 09:45:16.552042 11748 net.cpp:90] Creating Layer relu2 799 | I0806 09:45:16.552042 11748 net.cpp:410] relu2 <- conv2 800 | I0806 09:45:16.553042 11748 net.cpp:357] relu2 -> conv2 (in-place) 801 | I0806 09:45:16.553042 11748 net.cpp:120] Setting up relu2 802 | I0806 09:45:16.553042 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 803 | I0806 09:45:16.554042 11748 layer_factory.hpp:74] Creating layer conv2_bn 804 | I0806 09:45:16.554042 11748 net.cpp:90] Creating Layer conv2_bn 805 | I0806 09:45:16.554042 11748 net.cpp:410] conv2_bn <- conv2 806 | I0806 09:45:16.554042 11748 net.cpp:368] conv2_bn -> conv2_bn 807 | I0806 09:45:16.555043 11748 net.cpp:120] Setting up conv2_bn 808 | I0806 09:45:16.555043 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 809 | I0806 09:45:16.555043 11748 layer_factory.hpp:74] Creating layer drop1 810 | I0806 09:45:16.556043 11748 net.cpp:90] Creating Layer drop1 811 | I0806 09:45:16.556043 11748 net.cpp:410] drop1 <- conv2_bn 812 | I0806 09:45:16.556043 11748 net.cpp:357] drop1 -> conv2_bn (in-place) 813 | I0806 09:45:16.556043 11748 net.cpp:120] Setting up drop1 814 | I0806 09:45:16.557044 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 815 | I0806 09:45:16.557044 11748 layer_factory.hpp:74] Creating layer conv2_1 816 | I0806 09:45:16.557044 11748 net.cpp:90] Creating Layer conv2_1 817 | I0806 09:45:16.557044 11748 net.cpp:410] conv2_1 <- conv2_bn 818 | I0806 09:45:16.558043 11748 net.cpp:368] conv2_1 -> conv2_1 819 | I0806 09:45:16.558043 11748 net.cpp:120] Setting up conv2_1 820 | I0806 09:45:16.559043 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 821 | I0806 09:45:16.559043 11748 layer_factory.hpp:74] Creating layer relu2 822 | I0806 09:45:16.559043 11748 net.cpp:90] Creating Layer relu2 823 | I0806 09:45:16.560044 11748 net.cpp:410] relu2 <- conv2_1 824 | I0806 09:45:16.560044 11748 net.cpp:357] relu2 -> conv2_1 (in-place) 825 | I0806 09:45:16.560044 11748 net.cpp:120] Setting up relu2 826 | I0806 09:45:16.560044 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 827 | I0806 09:45:16.561043 11748 layer_factory.hpp:74] Creating layer conv2_bn_1 828 | I0806 09:45:16.561043 11748 net.cpp:90] Creating Layer conv2_bn_1 829 | I0806 09:45:16.561043 11748 net.cpp:410] conv2_bn_1 <- conv2_1 830 | I0806 09:45:16.562043 11748 net.cpp:368] conv2_bn_1 -> conv2_bn_1 831 | I0806 09:45:16.562043 11748 net.cpp:120] Setting up conv2_bn_1 832 | I0806 09:45:16.562043 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 833 | I0806 09:45:16.562043 11748 layer_factory.hpp:74] Creating layer drop1_1 834 | I0806 09:45:16.562043 11748 net.cpp:90] Creating Layer drop1_1 835 | I0806 09:45:16.563043 11748 net.cpp:410] drop1_1 <- conv2_bn_1 836 | I0806 09:45:16.563043 11748 net.cpp:357] drop1_1 -> conv2_bn_1 (in-place) 837 | I0806 09:45:16.563043 11748 net.cpp:120] Setting up drop1_1 838 | I0806 09:45:16.563043 11748 net.cpp:127] Top shape: 100 70 9 9 (567000) 839 | I0806 09:45:16.564043 11748 layer_factory.hpp:74] Creating layer pool2 840 | I0806 09:45:16.564043 11748 net.cpp:90] Creating Layer pool2 841 | I0806 09:45:16.564043 11748 net.cpp:410] pool2 <- conv2_bn_1 842 | I0806 09:45:16.565043 11748 net.cpp:368] pool2 -> pool2 843 | I0806 09:45:16.565043 11748 net.cpp:120] Setting up pool2 844 | I0806 09:45:16.565043 11748 net.cpp:127] Top shape: 100 70 5 5 (175000) 845 | I0806 09:45:16.566043 11748 layer_factory.hpp:74] Creating layer ip1 846 | I0806 09:45:16.566043 11748 net.cpp:90] Creating Layer ip1 847 | I0806 09:45:16.566043 11748 net.cpp:410] ip1 <- pool2 848 | I0806 09:45:16.566043 11748 net.cpp:368] ip1 -> ip1 849 | I0806 09:45:16.567044 11748 net.cpp:120] Setting up ip1 850 | I0806 09:45:16.570044 11748 net.cpp:127] Top shape: 100 300 (30000) 851 | I0806 09:45:16.571043 11748 layer_factory.hpp:74] Creating layer relu3 852 | I0806 09:45:16.571043 11748 net.cpp:90] Creating Layer relu3 853 | I0806 09:45:16.571043 11748 net.cpp:410] relu3 <- ip1 854 | I0806 09:45:16.572044 11748 net.cpp:357] relu3 -> ip1 (in-place) 855 | I0806 09:45:16.572044 11748 net.cpp:120] Setting up relu3 856 | I0806 09:45:16.572044 11748 net.cpp:127] Top shape: 100 300 (30000) 857 | I0806 09:45:16.573045 11748 layer_factory.hpp:74] Creating layer drop2 858 | I0806 09:45:16.573045 11748 net.cpp:90] Creating Layer drop2 859 | I0806 09:45:16.573045 11748 net.cpp:410] drop2 <- ip1 860 | I0806 09:45:16.573045 11748 net.cpp:357] drop2 -> ip1 (in-place) 861 | I0806 09:45:16.574044 11748 net.cpp:120] Setting up drop2 862 | I0806 09:45:16.574044 11748 net.cpp:127] Top shape: 100 300 (30000) 863 | I0806 09:45:16.574044 11748 layer_factory.hpp:74] Creating layer ip3 864 | I0806 09:45:16.574044 11748 net.cpp:90] Creating Layer ip3 865 | I0806 09:45:16.575044 11748 net.cpp:410] ip3 <- ip1 866 | I0806 09:45:16.575044 11748 net.cpp:368] ip3 -> ip3 867 | I0806 09:45:16.575044 11748 net.cpp:120] Setting up ip3 868 | I0806 09:45:16.575044 11748 net.cpp:127] Top shape: 100 10 (1000) 869 | I0806 09:45:16.576045 11748 layer_factory.hpp:74] Creating layer ip3_ip3_0_split 870 | I0806 09:45:16.576045 11748 net.cpp:90] Creating Layer ip3_ip3_0_split 871 | I0806 09:45:16.576045 11748 net.cpp:410] ip3_ip3_0_split <- ip3 872 | I0806 09:45:16.576045 11748 net.cpp:368] ip3_ip3_0_split -> ip3_ip3_0_split_0 873 | I0806 09:45:16.577044 11748 net.cpp:368] ip3_ip3_0_split -> ip3_ip3_0_split_1 874 | I0806 09:45:16.577044 11748 net.cpp:120] Setting up ip3_ip3_0_split 875 | I0806 09:45:16.577044 11748 net.cpp:127] Top shape: 100 10 (1000) 876 | I0806 09:45:16.577044 11748 net.cpp:127] Top shape: 100 10 (1000) 877 | I0806 09:45:16.578044 11748 layer_factory.hpp:74] Creating layer accuracy 878 | I0806 09:45:16.578044 11748 net.cpp:90] Creating Layer accuracy 879 | I0806 09:45:16.578044 11748 net.cpp:410] accuracy <- ip3_ip3_0_split_0 880 | I0806 09:45:16.578044 11748 net.cpp:410] accuracy <- label_mnist_1_split_0 881 | I0806 09:45:16.579044 11748 net.cpp:368] accuracy -> accuracy 882 | I0806 09:45:16.579044 11748 net.cpp:120] Setting up accuracy 883 | I0806 09:45:16.579044 11748 net.cpp:127] Top shape: (1) 884 | I0806 09:45:16.579044 11748 layer_factory.hpp:74] Creating layer loss 885 | I0806 09:45:16.580044 11748 net.cpp:90] Creating Layer loss 886 | I0806 09:45:16.580044 11748 net.cpp:410] loss <- ip3_ip3_0_split_1 887 | I0806 09:45:16.580044 11748 net.cpp:410] loss <- label_mnist_1_split_1 888 | I0806 09:45:16.580044 11748 net.cpp:368] loss -> loss 889 | I0806 09:45:16.580044 11748 net.cpp:120] Setting up loss 890 | I0806 09:45:16.581044 11748 layer_factory.hpp:74] Creating layer loss 891 | I0806 09:45:16.581044 11748 net.cpp:127] Top shape: (1) 892 | I0806 09:45:16.581044 11748 net.cpp:129] with loss weight 1 893 | I0806 09:45:16.581044 11748 net.cpp:192] loss needs backward computation. 894 | I0806 09:45:16.582044 11748 net.cpp:194] accuracy does not need backward computation. 895 | I0806 09:45:16.582044 11748 net.cpp:192] ip3_ip3_0_split needs backward computation. 896 | I0806 09:45:16.582044 11748 net.cpp:192] ip3 needs backward computation. 897 | I0806 09:45:16.582044 11748 net.cpp:192] drop2 needs backward computation. 898 | I0806 09:45:16.583045 11748 net.cpp:192] relu3 needs backward computation. 899 | I0806 09:45:16.583045 11748 net.cpp:192] ip1 needs backward computation. 900 | I0806 09:45:16.583045 11748 net.cpp:192] pool2 needs backward computation. 901 | I0806 09:45:16.583045 11748 net.cpp:192] drop1_1 needs backward computation. 902 | I0806 09:45:16.584044 11748 net.cpp:192] conv2_bn_1 needs backward computation. 903 | I0806 09:45:16.584044 11748 net.cpp:192] relu2 needs backward computation. 904 | I0806 09:45:16.584044 11748 net.cpp:192] conv2_1 needs backward computation. 905 | I0806 09:45:16.585044 11748 net.cpp:192] drop1 needs backward computation. 906 | I0806 09:45:16.585044 11748 net.cpp:192] conv2_bn needs backward computation. 907 | I0806 09:45:16.585044 11748 net.cpp:192] relu2 needs backward computation. 908 | I0806 09:45:16.585044 11748 net.cpp:192] conv2 needs backward computation. 909 | I0806 09:45:16.586045 11748 net.cpp:192] pool1 needs backward computation. 910 | I0806 09:45:16.586045 11748 net.cpp:192] conv1_bn needs backward computation. 911 | I0806 09:45:16.586045 11748 net.cpp:192] relu1 needs backward computation. 912 | I0806 09:45:16.586045 11748 net.cpp:192] conv1 needs backward computation. 913 | I0806 09:45:16.587044 11748 net.cpp:194] label_mnist_1_split does not need backward computation. 914 | I0806 09:45:16.587044 11748 net.cpp:194] mnist does not need backward computation. 915 | I0806 09:45:16.587044 11748 net.cpp:235] This network produces output accuracy 916 | I0806 09:45:16.588044 11748 net.cpp:235] This network produces output loss 917 | I0806 09:45:16.588044 11748 net.cpp:482] Collecting Learning Rate and Weight Decay. 918 | I0806 09:45:16.588044 11748 net.cpp:247] Network initialization done. 919 | I0806 09:45:16.588044 11748 net.cpp:248] Memory required for data: 38406808 920 | I0806 09:45:16.589045 11748 solver.cpp:42] Solver scaffolding done. 921 | I0806 09:45:16.589045 11748 solver.cpp:250] Solving LeNet 922 | I0806 09:45:16.589045 11748 solver.cpp:251] Learning Rate Policy: step 923 | I0806 09:45:16.591045 11748 solver.cpp:294] Iteration 0, Testing net (#0) 924 | I0806 09:45:17.155077 11748 solver.cpp:343] Test net output #0: accuracy = 0.0602 925 | I0806 09:45:17.155077 11748 solver.cpp:343] Test net output #1: loss = 82.0789 (* 1 = 82.0789 loss) 926 | I0806 09:45:17.179078 11748 solver.cpp:214] Iteration 0, loss = 3.0437 927 | I0806 09:45:17.180078 11748 solver.cpp:229] Train net output #0: loss = 3.0437 (* 1 = 3.0437 loss) 928 | I0806 09:45:17.181078 11748 solver.cpp:486] Iteration 0, lr = 0.04 929 | I0806 09:45:18.149134 11748 solver.cpp:214] Iteration 100, loss = 0.113036 930 | I0806 09:45:18.149134 11748 solver.cpp:229] Train net output #0: loss = 0.113036 (* 1 = 0.113036 loss) 931 | I0806 09:45:18.150135 11748 solver.cpp:486] Iteration 100, lr = 0.04 932 | I0806 09:45:19.121189 11748 solver.cpp:214] Iteration 200, loss = 0.0645544 933 | I0806 09:45:19.122189 11748 solver.cpp:229] Train net output #0: loss = 0.0645544 (* 1 = 0.0645544 loss) 934 | I0806 09:45:19.122189 11748 solver.cpp:486] Iteration 200, lr = 0.04 935 | I0806 09:45:20.095245 11748 solver.cpp:214] Iteration 300, loss = 0.101794 936 | I0806 09:45:20.095245 11748 solver.cpp:229] Train net output #0: loss = 0.101794 (* 1 = 0.101794 loss) 937 | I0806 09:45:20.096246 11748 solver.cpp:486] Iteration 300, lr = 0.04 938 | I0806 09:45:21.066301 11748 solver.cpp:214] Iteration 400, loss = 0.0546454 939 | I0806 09:45:21.067301 11748 solver.cpp:229] Train net output #0: loss = 0.0546455 (* 1 = 0.0546455 loss) 940 | I0806 09:45:21.067301 11748 solver.cpp:486] Iteration 400, lr = 0.04 941 | I0806 09:45:22.036356 11748 solver.cpp:214] Iteration 500, loss = 0.0764314 942 | I0806 09:45:22.036356 11748 solver.cpp:229] Train net output #0: loss = 0.0764315 (* 1 = 0.0764315 loss) 943 | I0806 09:45:22.037356 11748 solver.cpp:486] Iteration 500, lr = 0.04 944 | I0806 09:45:23.016412 11748 solver.cpp:214] Iteration 600, loss = 0.0923337 945 | I0806 09:45:23.017412 11748 solver.cpp:229] Train net output #0: loss = 0.0923337 (* 1 = 0.0923337 loss) 946 | I0806 09:45:23.017412 11748 solver.cpp:486] Iteration 600, lr = 0.04 947 | I0806 09:45:23.988468 11748 solver.cpp:214] Iteration 700, loss = 0.10121 948 | I0806 09:45:23.989469 11748 solver.cpp:229] Train net output #0: loss = 0.10121 (* 1 = 0.10121 loss) 949 | I0806 09:45:23.990468 11748 solver.cpp:486] Iteration 700, lr = 0.04 950 | I0806 09:45:24.971524 11748 solver.cpp:214] Iteration 800, loss = 0.257519 951 | I0806 09:45:24.971524 11748 solver.cpp:229] Train net output #0: loss = 0.25752 (* 1 = 0.25752 loss) 952 | I0806 09:45:24.972524 11748 solver.cpp:486] Iteration 800, lr = 0.04 953 | I0806 09:45:25.956580 11748 solver.cpp:214] Iteration 900, loss = 0.112153 954 | I0806 09:45:25.957581 11748 solver.cpp:229] Train net output #0: loss = 0.112154 (* 1 = 0.112154 loss) 955 | I0806 09:45:25.958580 11748 solver.cpp:486] Iteration 900, lr = 0.04 956 | I0806 09:45:26.944638 11748 solver.cpp:294] Iteration 1000, Testing net (#0) 957 | I0806 09:45:27.495668 11748 solver.cpp:343] Test net output #0: accuracy = 0.9851 958 | I0806 09:45:27.495668 11748 solver.cpp:343] Test net output #1: loss = 0.0464547 (* 1 = 0.0464547 loss) 959 | I0806 09:45:27.501669 11748 solver.cpp:214] Iteration 1000, loss = 0.0401987 960 | I0806 09:45:27.501669 11748 solver.cpp:229] Train net output #0: loss = 0.0401988 (* 1 = 0.0401988 loss) 961 | I0806 09:45:27.502670 11748 solver.cpp:486] Iteration 1000, lr = 0.04 962 | I0806 09:45:28.481725 11748 solver.cpp:214] Iteration 1100, loss = 0.00360373 963 | I0806 09:45:28.481725 11748 solver.cpp:229] Train net output #0: loss = 0.00360381 (* 1 = 0.00360381 loss) 964 | I0806 09:45:28.482725 11748 solver.cpp:486] Iteration 1100, lr = 0.04 965 | I0806 09:45:29.468781 11748 solver.cpp:214] Iteration 1200, loss = 0.115456 966 | I0806 09:45:29.471781 11748 solver.cpp:229] Train net output #0: loss = 0.115456 (* 1 = 0.115456 loss) 967 | I0806 09:45:29.478782 11748 solver.cpp:486] Iteration 1200, lr = 0.04 968 | I0806 09:45:30.453838 11748 solver.cpp:214] Iteration 1300, loss = 0.0086775 969 | I0806 09:45:30.454838 11748 solver.cpp:229] Train net output #0: loss = 0.0086776 (* 1 = 0.0086776 loss) 970 | I0806 09:45:30.454838 11748 solver.cpp:486] Iteration 1300, lr = 0.04 971 | I0806 09:45:31.430893 11748 solver.cpp:214] Iteration 1400, loss = 0.00986404 972 | I0806 09:45:31.430893 11748 solver.cpp:229] Train net output #0: loss = 0.00986412 (* 1 = 0.00986412 loss) 973 | I0806 09:45:31.431893 11748 solver.cpp:486] Iteration 1400, lr = 0.04 974 | I0806 09:45:32.408949 11748 solver.cpp:214] Iteration 1500, loss = 0.0921006 975 | I0806 09:45:32.409950 11748 solver.cpp:229] Train net output #0: loss = 0.0921007 (* 1 = 0.0921007 loss) 976 | I0806 09:45:32.409950 11748 solver.cpp:486] Iteration 1500, lr = 0.04 977 | I0806 09:45:33.378005 11748 solver.cpp:214] Iteration 1600, loss = 0.111908 978 | I0806 09:45:33.379005 11748 solver.cpp:229] Train net output #0: loss = 0.111908 (* 1 = 0.111908 loss) 979 | I0806 09:45:33.381006 11748 solver.cpp:486] Iteration 1600, lr = 0.04 980 | I0806 09:45:34.351060 11748 solver.cpp:214] Iteration 1700, loss = 0.0105853 981 | I0806 09:45:34.352061 11748 solver.cpp:229] Train net output #0: loss = 0.0105854 (* 1 = 0.0105854 loss) 982 | I0806 09:45:34.352061 11748 solver.cpp:486] Iteration 1700, lr = 0.04 983 | I0806 09:45:35.321116 11748 solver.cpp:214] Iteration 1800, loss = 0.0114328 984 | I0806 09:45:35.322116 11748 solver.cpp:229] Train net output #0: loss = 0.0114329 (* 1 = 0.0114329 loss) 985 | I0806 09:45:35.322116 11748 solver.cpp:486] Iteration 1800, lr = 0.04 986 | I0806 09:45:36.299172 11748 solver.cpp:214] Iteration 1900, loss = 0.152364 987 | I0806 09:45:36.300173 11748 solver.cpp:229] Train net output #0: loss = 0.152365 (* 1 = 0.152365 loss) 988 | I0806 09:45:36.300173 11748 solver.cpp:486] Iteration 1900, lr = 0.04 989 | I0806 09:45:37.268228 11748 solver.cpp:294] Iteration 2000, Testing net (#0) 990 | I0806 09:45:37.825259 11748 solver.cpp:343] Test net output #0: accuracy = 0.9906 991 | I0806 09:45:37.826259 11748 solver.cpp:343] Test net output #1: loss = 0.0314774 (* 1 = 0.0314774 loss) 992 | I0806 09:45:37.832260 11748 solver.cpp:214] Iteration 2000, loss = 0.00243739 993 | I0806 09:45:37.833261 11748 solver.cpp:229] Train net output #0: loss = 0.00243742 (* 1 = 0.00243742 loss) 994 | I0806 09:45:37.833261 11748 solver.cpp:486] Iteration 2000, lr = 0.04 995 | I0806 09:45:38.817317 11748 solver.cpp:214] Iteration 2100, loss = 0.0282853 996 | I0806 09:45:38.818316 11748 solver.cpp:229] Train net output #0: loss = 0.0282853 (* 1 = 0.0282853 loss) 997 | I0806 09:45:38.819316 11748 solver.cpp:486] Iteration 2100, lr = 0.04 998 | I0806 09:45:39.798372 11748 solver.cpp:214] Iteration 2200, loss = 0.00365397 999 | I0806 09:45:39.798372 11748 solver.cpp:229] Train net output #0: loss = 0.003654 (* 1 = 0.003654 loss) 1000 | I0806 09:45:39.799372 11748 solver.cpp:486] Iteration 2200, lr = 0.04 1001 | I0806 09:45:40.769428 11748 solver.cpp:214] Iteration 2300, loss = 0.0638009 1002 | I0806 09:45:40.770428 11748 solver.cpp:229] Train net output #0: loss = 0.0638009 (* 1 = 0.0638009 loss) 1003 | I0806 09:45:40.770428 11748 solver.cpp:486] Iteration 2300, lr = 0.04 1004 | I0806 09:45:41.755484 11748 solver.cpp:214] Iteration 2400, loss = 0.00383741 1005 | I0806 09:45:41.756484 11748 solver.cpp:229] Train net output #0: loss = 0.00383742 (* 1 = 0.00383742 loss) 1006 | I0806 09:45:41.756484 11748 solver.cpp:486] Iteration 2400, lr = 0.04 1007 | I0806 09:45:42.744540 11748 solver.cpp:214] Iteration 2500, loss = 0.0213382 1008 | I0806 09:45:42.745542 11748 solver.cpp:229] Train net output #0: loss = 0.0213382 (* 1 = 0.0213382 loss) 1009 | I0806 09:45:42.745542 11748 solver.cpp:486] Iteration 2500, lr = 0.04 1010 | I0806 09:45:43.720597 11748 solver.cpp:214] Iteration 2600, loss = 0.061779 1011 | I0806 09:45:43.721596 11748 solver.cpp:229] Train net output #0: loss = 0.061779 (* 1 = 0.061779 loss) 1012 | I0806 09:45:43.722596 11748 solver.cpp:486] Iteration 2600, lr = 0.04 1013 | I0806 09:45:44.696652 11748 solver.cpp:214] Iteration 2700, loss = 0.170432 1014 | I0806 09:45:44.696652 11748 solver.cpp:229] Train net output #0: loss = 0.170432 (* 1 = 0.170432 loss) 1015 | I0806 09:45:44.697652 11748 solver.cpp:486] Iteration 2700, lr = 0.04 1016 | I0806 09:45:45.687710 11748 solver.cpp:214] Iteration 2800, loss = 8.17279e-005 1017 | I0806 09:45:45.688709 11748 solver.cpp:229] Train net output #0: loss = 8.17024e-005 (* 1 = 8.17024e-005 loss) 1018 | I0806 09:45:45.688709 11748 solver.cpp:486] Iteration 2800, lr = 0.04 1019 | I0806 09:45:46.695766 11748 solver.cpp:214] Iteration 2900, loss = 0.00378953 1020 | I0806 09:45:46.696768 11748 solver.cpp:229] Train net output #0: loss = 0.00378952 (* 1 = 0.00378952 loss) 1021 | I0806 09:45:46.696768 11748 solver.cpp:486] Iteration 2900, lr = 0.04 1022 | I0806 09:45:47.668823 11748 solver.cpp:294] Iteration 3000, Testing net (#0) 1023 | I0806 09:45:48.232854 11748 solver.cpp:343] Test net output #0: accuracy = 0.9903 1024 | I0806 09:45:48.233855 11748 solver.cpp:343] Test net output #1: loss = 0.0304012 (* 1 = 0.0304012 loss) 1025 | I0806 09:45:48.239856 11748 solver.cpp:214] Iteration 3000, loss = 0.00582517 1026 | I0806 09:45:48.240855 11748 solver.cpp:229] Train net output #0: loss = 0.00582515 (* 1 = 0.00582515 loss) 1027 | I0806 09:45:48.240855 11748 solver.cpp:486] Iteration 3000, lr = 0.04 1028 | I0806 09:45:49.222911 11748 solver.cpp:214] Iteration 3100, loss = 0.00272511 1029 | I0806 09:45:49.223912 11748 solver.cpp:229] Train net output #0: loss = 0.0027251 (* 1 = 0.0027251 loss) 1030 | I0806 09:45:49.223912 11748 solver.cpp:486] Iteration 3100, lr = 0.04 1031 | I0806 09:45:50.189966 11748 solver.cpp:214] Iteration 3200, loss = 0.00256651 1032 | I0806 09:45:50.189966 11748 solver.cpp:229] Train net output #0: loss = 0.00256648 (* 1 = 0.00256648 loss) 1033 | I0806 09:45:50.190966 11748 solver.cpp:486] Iteration 3200, lr = 0.04 1034 | I0806 09:45:51.165022 11748 solver.cpp:214] Iteration 3300, loss = 0.0640772 1035 | I0806 09:45:51.166023 11748 solver.cpp:229] Train net output #0: loss = 0.0640772 (* 1 = 0.0640772 loss) 1036 | I0806 09:45:51.166023 11748 solver.cpp:486] Iteration 3300, lr = 0.04 1037 | I0806 09:45:52.132077 11748 solver.cpp:214] Iteration 3400, loss = 0.00565631 1038 | I0806 09:45:52.133077 11748 solver.cpp:229] Train net output #0: loss = 0.00565632 (* 1 = 0.00565632 loss) 1039 | I0806 09:45:52.133077 11748 solver.cpp:486] Iteration 3400, lr = 0.04 1040 | I0806 09:45:53.087132 11748 solver.cpp:214] Iteration 3500, loss = 0.00180005 1041 | I0806 09:45:53.088132 11748 solver.cpp:229] Train net output #0: loss = 0.00180005 (* 1 = 0.00180005 loss) 1042 | I0806 09:45:53.088132 11748 solver.cpp:486] Iteration 3500, lr = 0.04 1043 | I0806 09:45:54.066189 11748 solver.cpp:214] Iteration 3600, loss = 0.0399373 1044 | I0806 09:45:54.066189 11748 solver.cpp:229] Train net output #0: loss = 0.0399373 (* 1 = 0.0399373 loss) 1045 | I0806 09:45:54.067188 11748 solver.cpp:486] Iteration 3600, lr = 0.04 1046 | I0806 09:45:55.081246 11748 solver.cpp:214] Iteration 3700, loss = 0.0252049 1047 | I0806 09:45:55.082247 11748 solver.cpp:229] Train net output #0: loss = 0.0252049 (* 1 = 0.0252049 loss) 1048 | I0806 09:45:55.083246 11748 solver.cpp:486] Iteration 3700, lr = 0.04 1049 | I0806 09:45:56.064302 11748 solver.cpp:214] Iteration 3800, loss = 0.027904 1050 | I0806 09:45:56.065302 11748 solver.cpp:229] Train net output #0: loss = 0.0279041 (* 1 = 0.0279041 loss) 1051 | I0806 09:45:56.065302 11748 solver.cpp:486] Iteration 3800, lr = 0.04 1052 | I0806 09:45:57.056360 11748 solver.cpp:214] Iteration 3900, loss = 0.00190786 1053 | I0806 09:45:57.057359 11748 solver.cpp:229] Train net output #0: loss = 0.00190791 (* 1 = 0.00190791 loss) 1054 | I0806 09:45:57.057359 11748 solver.cpp:486] Iteration 3900, lr = 0.04 1055 | I0806 09:45:58.024415 11748 solver.cpp:294] Iteration 4000, Testing net (#0) 1056 | I0806 09:45:58.572446 11748 solver.cpp:343] Test net output #0: accuracy = 0.9929 1057 | I0806 09:45:58.573446 11748 solver.cpp:343] Test net output #1: loss = 0.023563 (* 1 = 0.023563 loss) 1058 | I0806 09:45:58.579447 11748 solver.cpp:214] Iteration 4000, loss = 0.00774767 1059 | I0806 09:45:58.580446 11748 solver.cpp:229] Train net output #0: loss = 0.00774772 (* 1 = 0.00774772 loss) 1060 | I0806 09:45:58.580446 11748 solver.cpp:486] Iteration 4000, lr = 0.04 1061 | I0806 09:45:59.564503 11748 solver.cpp:214] Iteration 4100, loss = 0.0199576 1062 | I0806 09:45:59.565503 11748 solver.cpp:229] Train net output #0: loss = 0.0199576 (* 1 = 0.0199576 loss) 1063 | I0806 09:45:59.566504 11748 solver.cpp:486] Iteration 4100, lr = 0.04 1064 | I0806 09:46:00.550559 11748 solver.cpp:214] Iteration 4200, loss = 0.00111384 1065 | I0806 09:46:00.550559 11748 solver.cpp:229] Train net output #0: loss = 0.00111388 (* 1 = 0.00111388 loss) 1066 | I0806 09:46:00.551559 11748 solver.cpp:486] Iteration 4200, lr = 0.04 1067 | I0806 09:46:01.541616 11748 solver.cpp:214] Iteration 4300, loss = 0.0734202 1068 | I0806 09:46:01.541616 11748 solver.cpp:229] Train net output #0: loss = 0.0734203 (* 1 = 0.0734203 loss) 1069 | I0806 09:46:01.542616 11748 solver.cpp:486] Iteration 4300, lr = 0.04 1070 | I0806 09:46:02.519672 11748 solver.cpp:214] Iteration 4400, loss = 0.00497059 1071 | I0806 09:46:02.520673 11748 solver.cpp:229] Train net output #0: loss = 0.00497066 (* 1 = 0.00497066 loss) 1072 | I0806 09:46:02.521672 11748 solver.cpp:486] Iteration 4400, lr = 0.04 1073 | I0806 09:46:03.502728 11748 solver.cpp:214] Iteration 4500, loss = 0.00865547 1074 | I0806 09:46:03.502728 11748 solver.cpp:229] Train net output #0: loss = 0.00865555 (* 1 = 0.00865555 loss) 1075 | I0806 09:46:03.503728 11748 solver.cpp:486] Iteration 4500, lr = 0.04 1076 | I0806 09:46:04.480784 11748 solver.cpp:214] Iteration 4600, loss = 0.0100292 1077 | I0806 09:46:04.481784 11748 solver.cpp:229] Train net output #0: loss = 0.0100293 (* 1 = 0.0100293 loss) 1078 | I0806 09:46:04.481784 11748 solver.cpp:486] Iteration 4600, lr = 0.04 1079 | I0806 09:46:05.455840 11748 solver.cpp:214] Iteration 4700, loss = 0.00231772 1080 | I0806 09:46:05.456840 11748 solver.cpp:229] Train net output #0: loss = 0.00231777 (* 1 = 0.00231777 loss) 1081 | I0806 09:46:05.456840 11748 solver.cpp:486] Iteration 4700, lr = 0.04 1082 | I0806 09:46:06.430896 11748 solver.cpp:214] Iteration 4800, loss = 0.00851949 1083 | I0806 09:46:06.431895 11748 solver.cpp:229] Train net output #0: loss = 0.00851954 (* 1 = 0.00851954 loss) 1084 | I0806 09:46:06.432895 11748 solver.cpp:486] Iteration 4800, lr = 0.04 1085 | I0806 09:46:07.403951 11748 solver.cpp:214] Iteration 4900, loss = 0.00360017 1086 | I0806 09:46:07.404952 11748 solver.cpp:229] Train net output #0: loss = 0.00360022 (* 1 = 0.00360022 loss) 1087 | I0806 09:46:07.404952 11748 solver.cpp:486] Iteration 4900, lr = 0.04 1088 | I0806 09:46:08.380007 11748 solver.cpp:361] Snapshotting to lenet_iter_5000.caffemodel 1089 | I0806 09:46:08.393008 11748 solver.cpp:369] Snapshotting solver state to lenet_iter_5000.solverstate 1090 | I0806 09:46:08.400008 11748 solver.cpp:294] Iteration 5000, Testing net (#0) 1091 | I0806 09:46:08.951040 11748 solver.cpp:343] Test net output #0: accuracy = 0.9927 1092 | I0806 09:46:08.951040 11748 solver.cpp:343] Test net output #1: loss = 0.0290423 (* 1 = 0.0290423 loss) 1093 | I0806 09:46:08.958040 11748 solver.cpp:214] Iteration 5000, loss = 0.0136682 1094 | I0806 09:46:08.958040 11748 solver.cpp:229] Train net output #0: loss = 0.0136682 (* 1 = 0.0136682 loss) 1095 | I0806 09:46:08.959040 11748 solver.cpp:486] Iteration 5000, lr = 0.04 1096 | I0806 09:46:09.932096 11748 solver.cpp:214] Iteration 5100, loss = 0.0529536 1097 | I0806 09:46:09.932096 11748 solver.cpp:229] Train net output #0: loss = 0.0529536 (* 1 = 0.0529536 loss) 1098 | I0806 09:46:09.933096 11748 solver.cpp:486] Iteration 5100, lr = 0.04 1099 | I0806 09:46:10.906152 11748 solver.cpp:214] Iteration 5200, loss = 0.0437232 1100 | I0806 09:46:10.907151 11748 solver.cpp:229] Train net output #0: loss = 0.0437233 (* 1 = 0.0437233 loss) 1101 | I0806 09:46:10.907151 11748 solver.cpp:486] Iteration 5200, lr = 0.04 1102 | I0806 09:46:11.881207 11748 solver.cpp:214] Iteration 5300, loss = 0.00236913 1103 | I0806 09:46:11.882207 11748 solver.cpp:229] Train net output #0: loss = 0.00236919 (* 1 = 0.00236919 loss) 1104 | I0806 09:46:11.882207 11748 solver.cpp:486] Iteration 5300, lr = 0.04 1105 | I0806 09:46:12.897265 11748 solver.cpp:214] Iteration 5400, loss = 0.00589903 1106 | I0806 09:46:12.898265 11748 solver.cpp:229] Train net output #0: loss = 0.00589909 (* 1 = 0.00589909 loss) 1107 | I0806 09:46:12.899266 11748 solver.cpp:486] Iteration 5400, lr = 0.04 1108 | I0806 09:46:13.903323 11748 solver.cpp:214] Iteration 5500, loss = 0.00029134 1109 | I0806 09:46:13.903323 11748 solver.cpp:229] Train net output #0: loss = 0.000291403 (* 1 = 0.000291403 loss) 1110 | I0806 09:46:13.904323 11748 solver.cpp:486] Iteration 5500, lr = 0.04 1111 | I0806 09:46:14.897380 11748 solver.cpp:214] Iteration 5600, loss = 3.36899e-005 1112 | I0806 09:46:14.898380 11748 solver.cpp:229] Train net output #0: loss = 3.37618e-005 (* 1 = 3.37618e-005 loss) 1113 | I0806 09:46:14.899380 11748 solver.cpp:486] Iteration 5600, lr = 0.04 1114 | I0806 09:46:15.896437 11748 solver.cpp:214] Iteration 5700, loss = 0.00054144 1115 | I0806 09:46:15.896437 11748 solver.cpp:229] Train net output #0: loss = 0.000541514 (* 1 = 0.000541514 loss) 1116 | I0806 09:46:15.897438 11748 solver.cpp:486] Iteration 5700, lr = 0.04 1117 | I0806 09:46:16.900495 11748 solver.cpp:214] Iteration 5800, loss = 0.00385042 1118 | I0806 09:46:16.901494 11748 solver.cpp:229] Train net output #0: loss = 0.0038505 (* 1 = 0.0038505 loss) 1119 | I0806 09:46:16.901494 11748 solver.cpp:486] Iteration 5800, lr = 0.04 1120 | I0806 09:46:17.901551 11748 solver.cpp:214] Iteration 5900, loss = 0.0142767 1121 | I0806 09:46:17.902551 11748 solver.cpp:229] Train net output #0: loss = 0.0142767 (* 1 = 0.0142767 loss) 1122 | I0806 09:46:17.902551 11748 solver.cpp:486] Iteration 5900, lr = 0.04 1123 | I0806 09:46:18.895608 11748 solver.cpp:294] Iteration 6000, Testing net (#0) 1124 | I0806 09:46:19.465641 11748 solver.cpp:343] Test net output #0: accuracy = 0.9942 1125 | I0806 09:46:19.466641 11748 solver.cpp:343] Test net output #1: loss = 0.0240181 (* 1 = 0.0240181 loss) 1126 | I0806 09:46:19.473641 11748 solver.cpp:214] Iteration 6000, loss = 0.00354051 1127 | I0806 09:46:19.473641 11748 solver.cpp:229] Train net output #0: loss = 0.00354058 (* 1 = 0.00354058 loss) 1128 | I0806 09:46:19.474642 11748 solver.cpp:486] Iteration 6000, lr = 0.00571428 1129 | I0806 09:46:20.515702 11748 solver.cpp:214] Iteration 6100, loss = 0.0155916 1130 | I0806 09:46:20.516701 11748 solver.cpp:229] Train net output #0: loss = 0.0155917 (* 1 = 0.0155917 loss) 1131 | I0806 09:46:20.516701 11748 solver.cpp:486] Iteration 6100, lr = 0.00571428 1132 | I0806 09:46:21.540760 11748 solver.cpp:214] Iteration 6200, loss = 0.00375547 1133 | I0806 09:46:21.541760 11748 solver.cpp:229] Train net output #0: loss = 0.00375554 (* 1 = 0.00375554 loss) 1134 | I0806 09:46:21.541760 11748 solver.cpp:486] Iteration 6200, lr = 0.00571428 1135 | I0806 09:46:22.570818 11748 solver.cpp:214] Iteration 6300, loss = 0.000583074 1136 | I0806 09:46:22.571818 11748 solver.cpp:229] Train net output #0: loss = 0.00058313 (* 1 = 0.00058313 loss) 1137 | I0806 09:46:22.571818 11748 solver.cpp:486] Iteration 6300, lr = 0.00571428 1138 | I0806 09:46:23.591877 11748 solver.cpp:214] Iteration 6400, loss = 0.00156673 1139 | I0806 09:46:23.592877 11748 solver.cpp:229] Train net output #0: loss = 0.0015668 (* 1 = 0.0015668 loss) 1140 | I0806 09:46:23.593878 11748 solver.cpp:486] Iteration 6400, lr = 0.00571428 1141 | I0806 09:46:24.623936 11748 solver.cpp:214] Iteration 6500, loss = 0.0205161 1142 | I0806 09:46:24.623936 11748 solver.cpp:229] Train net output #0: loss = 0.0205162 (* 1 = 0.0205162 loss) 1143 | I0806 09:46:24.624936 11748 solver.cpp:486] Iteration 6500, lr = 0.00571428 1144 | I0806 09:46:25.647994 11748 solver.cpp:214] Iteration 6600, loss = 0.029536 1145 | I0806 09:46:25.648994 11748 solver.cpp:229] Train net output #0: loss = 0.0295361 (* 1 = 0.0295361 loss) 1146 | I0806 09:46:25.649996 11748 solver.cpp:486] Iteration 6600, lr = 0.00571428 1147 | I0806 09:46:26.673053 11748 solver.cpp:214] Iteration 6700, loss = 0.0291454 1148 | I0806 09:46:26.673053 11748 solver.cpp:229] Train net output #0: loss = 0.0291455 (* 1 = 0.0291455 loss) 1149 | I0806 09:46:26.674053 11748 solver.cpp:486] Iteration 6700, lr = 0.00571428 1150 | I0806 09:46:27.720113 11748 solver.cpp:214] Iteration 6800, loss = 0.00476583 1151 | I0806 09:46:27.720113 11748 solver.cpp:229] Train net output #0: loss = 0.00476589 (* 1 = 0.00476589 loss) 1152 | I0806 09:46:27.721113 11748 solver.cpp:486] Iteration 6800, lr = 0.00571428 1153 | I0806 09:46:28.755172 11748 solver.cpp:214] Iteration 6900, loss = 0.00049654 1154 | I0806 09:46:28.755172 11748 solver.cpp:229] Train net output #0: loss = 0.000496603 (* 1 = 0.000496603 loss) 1155 | I0806 09:46:28.756172 11748 solver.cpp:486] Iteration 6900, lr = 0.00571428 1156 | I0806 09:46:29.788231 11748 solver.cpp:294] Iteration 7000, Testing net (#0) 1157 | I0806 09:46:30.361264 11748 solver.cpp:343] Test net output #0: accuracy = 0.995 1158 | I0806 09:46:30.362264 11748 solver.cpp:343] Test net output #1: loss = 0.0197906 (* 1 = 0.0197906 loss) 1159 | I0806 09:46:30.368264 11748 solver.cpp:214] Iteration 7000, loss = 0.00150617 1160 | I0806 09:46:30.369264 11748 solver.cpp:229] Train net output #0: loss = 0.00150623 (* 1 = 0.00150623 loss) 1161 | I0806 09:46:30.369264 11748 solver.cpp:486] Iteration 7000, lr = 0.00571428 1162 | I0806 09:46:31.425325 11748 solver.cpp:214] Iteration 7100, loss = 0.00816915 1163 | I0806 09:46:31.426326 11748 solver.cpp:229] Train net output #0: loss = 0.00816921 (* 1 = 0.00816921 loss) 1164 | I0806 09:46:31.426326 11748 solver.cpp:486] Iteration 7100, lr = 0.00571428 1165 | I0806 09:46:32.473386 11748 solver.cpp:214] Iteration 7200, loss = 0.000406234 1166 | I0806 09:46:32.474385 11748 solver.cpp:229] Train net output #0: loss = 0.000406295 (* 1 = 0.000406295 loss) 1167 | I0806 09:46:32.474385 11748 solver.cpp:486] Iteration 7200, lr = 0.00571428 1168 | I0806 09:46:33.509444 11748 solver.cpp:214] Iteration 7300, loss = 0.0310881 1169 | I0806 09:46:33.509444 11748 solver.cpp:229] Train net output #0: loss = 0.0310881 (* 1 = 0.0310881 loss) 1170 | I0806 09:46:33.510444 11748 solver.cpp:486] Iteration 7300, lr = 0.00571428 1171 | I0806 09:46:34.544503 11748 solver.cpp:214] Iteration 7400, loss = 0.0430276 1172 | I0806 09:46:34.544503 11748 solver.cpp:229] Train net output #0: loss = 0.0430277 (* 1 = 0.0430277 loss) 1173 | I0806 09:46:34.545503 11748 solver.cpp:486] Iteration 7400, lr = 0.00571428 1174 | I0806 09:46:35.585563 11748 solver.cpp:214] Iteration 7500, loss = 0.00738295 1175 | I0806 09:46:35.586563 11748 solver.cpp:229] Train net output #0: loss = 0.007383 (* 1 = 0.007383 loss) 1176 | I0806 09:46:35.586563 11748 solver.cpp:486] Iteration 7500, lr = 0.00571428 1177 | I0806 09:46:36.647624 11748 solver.cpp:214] Iteration 7600, loss = 0.042879 1178 | I0806 09:46:36.648624 11748 solver.cpp:229] Train net output #0: loss = 0.0428791 (* 1 = 0.0428791 loss) 1179 | I0806 09:46:36.648624 11748 solver.cpp:486] Iteration 7600, lr = 0.00571428 1180 | I0806 09:46:37.710685 11748 solver.cpp:214] Iteration 7700, loss = 0.0216624 1181 | I0806 09:46:37.710685 11748 solver.cpp:229] Train net output #0: loss = 0.0216624 (* 1 = 0.0216624 loss) 1182 | I0806 09:46:37.711684 11748 solver.cpp:486] Iteration 7700, lr = 0.00571428 1183 | I0806 09:46:38.766746 11748 solver.cpp:214] Iteration 7800, loss = 0.000176566 1184 | I0806 09:46:38.767745 11748 solver.cpp:229] Train net output #0: loss = 0.000176614 (* 1 = 0.000176614 loss) 1185 | I0806 09:46:38.768745 11748 solver.cpp:486] Iteration 7800, lr = 0.00571428 1186 | I0806 09:46:39.812805 11748 solver.cpp:214] Iteration 7900, loss = 0.00075841 1187 | I0806 09:46:39.813805 11748 solver.cpp:229] Train net output #0: loss = 0.00075846 (* 1 = 0.00075846 loss) 1188 | I0806 09:46:39.813805 11748 solver.cpp:486] Iteration 7900, lr = 0.00571428 1189 | I0806 09:46:40.841863 11748 solver.cpp:294] Iteration 8000, Testing net (#0) 1190 | I0806 09:46:41.418896 11748 solver.cpp:343] Test net output #0: accuracy = 0.9954 1191 | I0806 09:46:41.419898 11748 solver.cpp:343] Test net output #1: loss = 0.0195827 (* 1 = 0.0195827 loss) 1192 | I0806 09:46:41.425897 11748 solver.cpp:214] Iteration 8000, loss = 0.000233271 1193 | I0806 09:46:41.425897 11748 solver.cpp:229] Train net output #0: loss = 0.000233324 (* 1 = 0.000233324 loss) 1194 | I0806 09:46:41.426898 11748 solver.cpp:486] Iteration 8000, lr = 0.00571428 1195 | I0806 09:46:42.468957 11748 solver.cpp:214] Iteration 8100, loss = 0.000942778 1196 | I0806 09:46:42.468957 11748 solver.cpp:229] Train net output #0: loss = 0.00094284 (* 1 = 0.00094284 loss) 1197 | I0806 09:46:42.469957 11748 solver.cpp:486] Iteration 8100, lr = 0.00571428 1198 | I0806 09:46:43.502017 11748 solver.cpp:214] Iteration 8200, loss = 0.00384913 1199 | I0806 09:46:43.503016 11748 solver.cpp:229] Train net output #0: loss = 0.00384918 (* 1 = 0.00384918 loss) 1200 | I0806 09:46:43.503016 11748 solver.cpp:486] Iteration 8200, lr = 0.00571428 1201 | I0806 09:46:44.534075 11748 solver.cpp:214] Iteration 8300, loss = 0.00351136 1202 | I0806 09:46:44.535075 11748 solver.cpp:229] Train net output #0: loss = 0.00351142 (* 1 = 0.00351142 loss) 1203 | I0806 09:46:44.535075 11748 solver.cpp:486] Iteration 8300, lr = 0.00571428 1204 | I0806 09:46:45.561133 11748 solver.cpp:214] Iteration 8400, loss = 0.00693994 1205 | I0806 09:46:45.562134 11748 solver.cpp:229] Train net output #0: loss = 0.00694 (* 1 = 0.00694 loss) 1206 | I0806 09:46:45.562134 11748 solver.cpp:486] Iteration 8400, lr = 0.00571428 1207 | I0806 09:46:46.597193 11748 solver.cpp:214] Iteration 8500, loss = 0.00120612 1208 | I0806 09:46:46.598193 11748 solver.cpp:229] Train net output #0: loss = 0.00120618 (* 1 = 0.00120618 loss) 1209 | I0806 09:46:46.599194 11748 solver.cpp:486] Iteration 8500, lr = 0.00571428 1210 | I0806 09:46:47.630252 11748 solver.cpp:214] Iteration 8600, loss = 8.52296e-005 1211 | I0806 09:46:47.631253 11748 solver.cpp:229] Train net output #0: loss = 8.52914e-005 (* 1 = 8.52914e-005 loss) 1212 | I0806 09:46:47.631253 11748 solver.cpp:486] Iteration 8600, lr = 0.00571428 1213 | I0806 09:46:48.662312 11748 solver.cpp:214] Iteration 8700, loss = 0.000670265 1214 | I0806 09:46:48.662312 11748 solver.cpp:229] Train net output #0: loss = 0.000670326 (* 1 = 0.000670326 loss) 1215 | I0806 09:46:48.663311 11748 solver.cpp:486] Iteration 8700, lr = 0.00571428 1216 | I0806 09:46:49.693370 11748 solver.cpp:214] Iteration 8800, loss = 0.000801031 1217 | I0806 09:46:49.693370 11748 solver.cpp:229] Train net output #0: loss = 0.000801087 (* 1 = 0.000801087 loss) 1218 | I0806 09:46:49.694370 11748 solver.cpp:486] Iteration 8800, lr = 0.00571428 1219 | I0806 09:46:50.722429 11748 solver.cpp:214] Iteration 8900, loss = 3.64929e-005 1220 | I0806 09:46:50.723429 11748 solver.cpp:229] Train net output #0: loss = 3.65497e-005 (* 1 = 3.65497e-005 loss) 1221 | I0806 09:46:50.723429 11748 solver.cpp:486] Iteration 8900, lr = 0.00571428 1222 | I0806 09:46:51.749487 11748 solver.cpp:294] Iteration 9000, Testing net (#0) 1223 | I0806 09:46:52.327520 11748 solver.cpp:343] Test net output #0: accuracy = 0.9946 1224 | I0806 09:46:52.328521 11748 solver.cpp:343] Test net output #1: loss = 0.0210733 (* 1 = 0.0210733 loss) 1225 | I0806 09:46:52.335521 11748 solver.cpp:214] Iteration 9000, loss = 0.00595421 1226 | I0806 09:46:52.335521 11748 solver.cpp:229] Train net output #0: loss = 0.00595427 (* 1 = 0.00595427 loss) 1227 | I0806 09:46:52.336521 11748 solver.cpp:486] Iteration 9000, lr = 0.00571428 1228 | I0806 09:46:53.362581 11748 solver.cpp:214] Iteration 9100, loss = 0.00145497 1229 | I0806 09:46:53.363580 11748 solver.cpp:229] Train net output #0: loss = 0.00145502 (* 1 = 0.00145502 loss) 1230 | I0806 09:46:53.363580 11748 solver.cpp:486] Iteration 9100, lr = 0.00571428 1231 | I0806 09:46:54.402639 11748 solver.cpp:214] Iteration 9200, loss = 0.000898812 1232 | I0806 09:46:54.402639 11748 solver.cpp:229] Train net output #0: loss = 0.000898867 (* 1 = 0.000898867 loss) 1233 | I0806 09:46:54.403640 11748 solver.cpp:486] Iteration 9200, lr = 0.00571428 1234 | I0806 09:46:55.451699 11748 solver.cpp:214] Iteration 9300, loss = 0.000267679 1235 | I0806 09:46:55.451699 11748 solver.cpp:229] Train net output #0: loss = 0.000267737 (* 1 = 0.000267737 loss) 1236 | I0806 09:46:55.452699 11748 solver.cpp:486] Iteration 9300, lr = 0.00571428 1237 | I0806 09:46:56.487758 11748 solver.cpp:214] Iteration 9400, loss = 0.00857365 1238 | I0806 09:46:56.487758 11748 solver.cpp:229] Train net output #0: loss = 0.00857371 (* 1 = 0.00857371 loss) 1239 | I0806 09:46:56.488759 11748 solver.cpp:486] Iteration 9400, lr = 0.00571428 1240 | I0806 09:46:57.531818 11748 solver.cpp:214] Iteration 9500, loss = 3.51604e-005 1241 | I0806 09:46:57.532819 11748 solver.cpp:229] Train net output #0: loss = 3.5224e-005 (* 1 = 3.5224e-005 loss) 1242 | I0806 09:46:57.533818 11748 solver.cpp:486] Iteration 9500, lr = 0.00571428 1243 | I0806 09:46:58.569877 11748 solver.cpp:214] Iteration 9600, loss = 0.00436177 1244 | I0806 09:46:58.570878 11748 solver.cpp:229] Train net output #0: loss = 0.00436184 (* 1 = 0.00436184 loss) 1245 | I0806 09:46:58.570878 11748 solver.cpp:486] Iteration 9600, lr = 0.00571428 1246 | I0806 09:46:59.599936 11748 solver.cpp:214] Iteration 9700, loss = 0.00386922 1247 | I0806 09:46:59.600936 11748 solver.cpp:229] Train net output #0: loss = 0.00386929 (* 1 = 0.00386929 loss) 1248 | I0806 09:46:59.601936 11748 solver.cpp:486] Iteration 9700, lr = 0.00571428 1249 | I0806 09:47:00.625995 11748 solver.cpp:214] Iteration 9800, loss = 0.0061305 1250 | I0806 09:47:00.625995 11748 solver.cpp:229] Train net output #0: loss = 0.00613057 (* 1 = 0.00613057 loss) 1251 | I0806 09:47:00.626996 11748 solver.cpp:486] Iteration 9800, lr = 0.00571428 1252 | I0806 09:47:01.652055 11748 solver.cpp:214] Iteration 9900, loss = 0.00653837 1253 | I0806 09:47:01.652055 11748 solver.cpp:229] Train net output #0: loss = 0.00653844 (* 1 = 0.00653844 loss) 1254 | I0806 09:47:01.653054 11748 solver.cpp:486] Iteration 9900, lr = 0.00571428 1255 | I0806 09:47:02.689113 11748 solver.cpp:361] Snapshotting to lenet_iter_10000.caffemodel 1256 | I0806 09:47:02.701114 11748 solver.cpp:369] Snapshotting solver state to lenet_iter_10000.solverstate 1257 | I0806 09:47:02.709115 11748 solver.cpp:294] Iteration 10000, Testing net (#0) 1258 | I0806 09:47:03.297148 11748 solver.cpp:343] Test net output #0: accuracy = 0.9955 1259 | I0806 09:47:03.298148 11748 solver.cpp:343] Test net output #1: loss = 0.018672 (* 1 = 0.018672 loss) 1260 | I0806 09:47:03.305148 11748 solver.cpp:214] Iteration 10000, loss = 4.95403e-005 1261 | I0806 09:47:03.305148 11748 solver.cpp:229] Train net output #0: loss = 4.96036e-005 (* 1 = 4.96036e-005 loss) 1262 | I0806 09:47:03.306149 11748 solver.cpp:486] Iteration 10000, lr = 0.00571428 1263 | I0806 09:47:04.340208 11748 solver.cpp:214] Iteration 10100, loss = 0.00215863 1264 | I0806 09:47:04.341208 11748 solver.cpp:229] Train net output #0: loss = 0.0021587 (* 1 = 0.0021587 loss) 1265 | I0806 09:47:04.342208 11748 solver.cpp:486] Iteration 10100, lr = 0.00571428 1266 | I0806 09:47:05.393268 11748 solver.cpp:214] Iteration 10200, loss = 0.00600045 1267 | I0806 09:47:05.393268 11748 solver.cpp:229] Train net output #0: loss = 0.00600052 (* 1 = 0.00600052 loss) 1268 | I0806 09:47:05.394268 11748 solver.cpp:486] Iteration 10200, lr = 0.00571428 1269 | I0806 09:47:06.423327 11748 solver.cpp:214] Iteration 10300, loss = 4.12369e-006 1270 | I0806 09:47:06.423327 11748 solver.cpp:229] Train net output #0: loss = 4.19105e-006 (* 1 = 4.19105e-006 loss) 1271 | I0806 09:47:06.424327 11748 solver.cpp:486] Iteration 10300, lr = 0.00571428 1272 | I0806 09:47:07.465386 11748 solver.cpp:214] Iteration 10400, loss = 0.00123365 1273 | I0806 09:47:07.466387 11748 solver.cpp:229] Train net output #0: loss = 0.00123371 (* 1 = 0.00123371 loss) 1274 | I0806 09:47:07.466387 11748 solver.cpp:486] Iteration 10400, lr = 0.00571428 1275 | I0806 09:47:08.504446 11748 solver.cpp:214] Iteration 10500, loss = 0.0204815 1276 | I0806 09:47:08.505446 11748 solver.cpp:229] Train net output #0: loss = 0.0204815 (* 1 = 0.0204815 loss) 1277 | I0806 09:47:08.505446 11748 solver.cpp:486] Iteration 10500, lr = 0.00571428 1278 | I0806 09:47:09.542505 11748 solver.cpp:214] Iteration 10600, loss = 0.00135396 1279 | I0806 09:47:09.543505 11748 solver.cpp:229] Train net output #0: loss = 0.00135402 (* 1 = 0.00135402 loss) 1280 | I0806 09:47:09.543505 11748 solver.cpp:486] Iteration 10600, lr = 0.00571428 1281 | I0806 09:47:10.577564 11748 solver.cpp:214] Iteration 10700, loss = 0.000449026 1282 | I0806 09:47:10.578564 11748 solver.cpp:229] Train net output #0: loss = 0.000449085 (* 1 = 0.000449085 loss) 1283 | I0806 09:47:10.578564 11748 solver.cpp:486] Iteration 10700, lr = 0.00571428 1284 | I0806 09:47:11.613625 11748 solver.cpp:214] Iteration 10800, loss = 0.00105877 1285 | I0806 09:47:11.614624 11748 solver.cpp:229] Train net output #0: loss = 0.00105883 (* 1 = 0.00105883 loss) 1286 | I0806 09:47:11.614624 11748 solver.cpp:486] Iteration 10800, lr = 0.00571428 1287 | I0806 09:47:12.652683 11748 solver.cpp:214] Iteration 10900, loss = 0.00011861 1288 | I0806 09:47:12.653683 11748 solver.cpp:229] Train net output #0: loss = 0.000118666 (* 1 = 0.000118666 loss) 1289 | I0806 09:47:12.654683 11748 solver.cpp:486] Iteration 10900, lr = 0.00571428 1290 | I0806 09:47:13.681742 11748 solver.cpp:294] Iteration 11000, Testing net (#0) 1291 | I0806 09:47:14.255775 11748 solver.cpp:343] Test net output #0: accuracy = 0.9952 1292 | I0806 09:47:14.256775 11748 solver.cpp:343] Test net output #1: loss = 0.0186359 (* 1 = 0.0186359 loss) 1293 | I0806 09:47:14.262775 11748 solver.cpp:214] Iteration 11000, loss = 7.35691e-005 1294 | I0806 09:47:14.262775 11748 solver.cpp:229] Train net output #0: loss = 7.36296e-005 (* 1 = 7.36296e-005 loss) 1295 | I0806 09:47:14.263775 11748 solver.cpp:486] Iteration 11000, lr = 0.00571428 1296 | I0806 09:47:15.291834 11748 solver.cpp:214] Iteration 11100, loss = 0.00257495 1297 | I0806 09:47:15.292834 11748 solver.cpp:229] Train net output #0: loss = 0.00257502 (* 1 = 0.00257502 loss) 1298 | I0806 09:47:15.293834 11748 solver.cpp:486] Iteration 11100, lr = 0.00571428 1299 | I0806 09:47:16.341894 11748 solver.cpp:214] Iteration 11200, loss = 0.0151624 1300 | I0806 09:47:16.342895 11748 solver.cpp:229] Train net output #0: loss = 0.0151625 (* 1 = 0.0151625 loss) 1301 | I0806 09:47:16.342895 11748 solver.cpp:486] Iteration 11200, lr = 0.00571428 1302 | I0806 09:47:17.396955 11748 solver.cpp:214] Iteration 11300, loss = 0.0133236 1303 | I0806 09:47:17.397954 11748 solver.cpp:229] Train net output #0: loss = 0.0133236 (* 1 = 0.0133236 loss) 1304 | I0806 09:47:17.398954 11748 solver.cpp:486] Iteration 11300, lr = 0.00571428 1305 | I0806 09:47:18.447015 11748 solver.cpp:214] Iteration 11400, loss = 0.0005393 1306 | I0806 09:47:18.448014 11748 solver.cpp:229] Train net output #0: loss = 0.000539364 (* 1 = 0.000539364 loss) 1307 | I0806 09:47:18.448014 11748 solver.cpp:486] Iteration 11400, lr = 0.00571428 1308 | I0806 09:47:19.476073 11748 solver.cpp:214] Iteration 11500, loss = 0.00112776 1309 | I0806 09:47:19.476073 11748 solver.cpp:229] Train net output #0: loss = 0.00112783 (* 1 = 0.00112783 loss) 1310 | I0806 09:47:19.477073 11748 solver.cpp:486] Iteration 11500, lr = 0.00571428 1311 | I0806 09:47:20.511132 11748 solver.cpp:214] Iteration 11600, loss = 0.00162112 1312 | I0806 09:47:20.512132 11748 solver.cpp:229] Train net output #0: loss = 0.00162118 (* 1 = 0.00162118 loss) 1313 | I0806 09:47:20.512132 11748 solver.cpp:486] Iteration 11600, lr = 0.00571428 1314 | I0806 09:47:21.542191 11748 solver.cpp:214] Iteration 11700, loss = 0.000946568 1315 | I0806 09:47:21.543191 11748 solver.cpp:229] Train net output #0: loss = 0.000946629 (* 1 = 0.000946629 loss) 1316 | I0806 09:47:21.543191 11748 solver.cpp:486] Iteration 11700, lr = 0.00571428 1317 | I0806 09:47:22.580251 11748 solver.cpp:214] Iteration 11800, loss = 0.00118122 1318 | I0806 09:47:22.581251 11748 solver.cpp:229] Train net output #0: loss = 0.00118128 (* 1 = 0.00118128 loss) 1319 | I0806 09:47:22.582252 11748 solver.cpp:486] Iteration 11800, lr = 0.00571428 1320 | I0806 09:47:23.636312 11748 solver.cpp:214] Iteration 11900, loss = 0.00110072 1321 | I0806 09:47:23.637311 11748 solver.cpp:229] Train net output #0: loss = 0.00110078 (* 1 = 0.00110078 loss) 1322 | I0806 09:47:23.638311 11748 solver.cpp:486] Iteration 11900, lr = 0.00571428 1323 | I0806 09:47:24.663370 11748 solver.cpp:294] Iteration 12000, Testing net (#0) 1324 | I0806 09:47:25.249403 11748 solver.cpp:343] Test net output #0: accuracy = 0.9958 1325 | I0806 09:47:25.249403 11748 solver.cpp:343] Test net output #1: loss = 0.0185153 (* 1 = 0.0185153 loss) 1326 | I0806 09:47:25.255404 11748 solver.cpp:214] Iteration 12000, loss = 0.00154361 1327 | I0806 09:47:25.256404 11748 solver.cpp:229] Train net output #0: loss = 0.00154368 (* 1 = 0.00154368 loss) 1328 | I0806 09:47:25.256404 11748 solver.cpp:486] Iteration 12000, lr = 0.000816326 1329 | I0806 09:47:26.292464 11748 solver.cpp:214] Iteration 12100, loss = 0.0158387 1330 | I0806 09:47:26.293463 11748 solver.cpp:229] Train net output #0: loss = 0.0158388 (* 1 = 0.0158388 loss) 1331 | I0806 09:47:26.293463 11748 solver.cpp:486] Iteration 12100, lr = 0.000816326 1332 | I0806 09:47:27.338523 11748 solver.cpp:214] Iteration 12200, loss = 0.000617221 1333 | I0806 09:47:27.338523 11748 solver.cpp:229] Train net output #0: loss = 0.000617289 (* 1 = 0.000617289 loss) 1334 | I0806 09:47:27.339524 11748 solver.cpp:486] Iteration 12200, lr = 0.000816326 1335 | I0806 09:47:28.385583 11748 solver.cpp:214] Iteration 12300, loss = 0.0116959 1336 | I0806 09:47:28.386584 11748 solver.cpp:229] Train net output #0: loss = 0.011696 (* 1 = 0.011696 loss) 1337 | I0806 09:47:28.386584 11748 solver.cpp:486] Iteration 12300, lr = 0.000816326 1338 | I0806 09:47:29.434643 11748 solver.cpp:214] Iteration 12400, loss = 0.0240795 1339 | I0806 09:47:29.435643 11748 solver.cpp:229] Train net output #0: loss = 0.0240796 (* 1 = 0.0240796 loss) 1340 | I0806 09:47:29.435643 11748 solver.cpp:486] Iteration 12400, lr = 0.000816326 1341 | I0806 09:47:30.479703 11748 solver.cpp:214] Iteration 12500, loss = 0.00880103 1342 | I0806 09:47:30.479703 11748 solver.cpp:229] Train net output #0: loss = 0.0088011 (* 1 = 0.0088011 loss) 1343 | I0806 09:47:30.480703 11748 solver.cpp:486] Iteration 12500, lr = 0.000816326 1344 | I0806 09:47:31.522763 11748 solver.cpp:214] Iteration 12600, loss = 0.0138287 1345 | I0806 09:47:31.523762 11748 solver.cpp:229] Train net output #0: loss = 0.0138288 (* 1 = 0.0138288 loss) 1346 | I0806 09:47:31.524762 11748 solver.cpp:486] Iteration 12600, lr = 0.000816326 1347 | I0806 09:47:32.566823 11748 solver.cpp:214] Iteration 12700, loss = 0.000691713 1348 | I0806 09:47:32.567822 11748 solver.cpp:229] Train net output #0: loss = 0.000691784 (* 1 = 0.000691784 loss) 1349 | I0806 09:47:32.567822 11748 solver.cpp:486] Iteration 12700, lr = 0.000816326 1350 | I0806 09:47:33.611882 11748 solver.cpp:214] Iteration 12800, loss = 0.000294084 1351 | I0806 09:47:33.611882 11748 solver.cpp:229] Train net output #0: loss = 0.000294157 (* 1 = 0.000294157 loss) 1352 | I0806 09:47:33.612882 11748 solver.cpp:486] Iteration 12800, lr = 0.000816326 1353 | I0806 09:47:34.655941 11748 solver.cpp:214] Iteration 12900, loss = 0.00121791 1354 | I0806 09:47:34.656942 11748 solver.cpp:229] Train net output #0: loss = 0.00121799 (* 1 = 0.00121799 loss) 1355 | I0806 09:47:34.656942 11748 solver.cpp:486] Iteration 12900, lr = 0.000816326 1356 | I0806 09:47:35.693001 11748 solver.cpp:294] Iteration 13000, Testing net (#0) 1357 | I0806 09:47:36.270035 11748 solver.cpp:343] Test net output #0: accuracy = 0.995 1358 | I0806 09:47:36.271034 11748 solver.cpp:343] Test net output #1: loss = 0.0213863 (* 1 = 0.0213863 loss) 1359 | I0806 09:47:36.277034 11748 solver.cpp:214] Iteration 13000, loss = 0.00027381 1360 | I0806 09:47:36.277034 11748 solver.cpp:229] Train net output #0: loss = 0.000273889 (* 1 = 0.000273889 loss) 1361 | I0806 09:47:36.277034 11748 solver.cpp:486] Iteration 13000, lr = 0.000816326 1362 | I0806 09:47:37.319094 11748 solver.cpp:214] Iteration 13100, loss = 2.43156e-005 1363 | I0806 09:47:37.320094 11748 solver.cpp:229] Train net output #0: loss = 2.43907e-005 (* 1 = 2.43907e-005 loss) 1364 | I0806 09:47:37.320094 11748 solver.cpp:486] Iteration 13100, lr = 0.000816326 1365 | I0806 09:47:38.358153 11748 solver.cpp:214] Iteration 13200, loss = 0.00137979 1366 | I0806 09:47:38.359153 11748 solver.cpp:229] Train net output #0: loss = 0.00137987 (* 1 = 0.00137987 loss) 1367 | I0806 09:47:38.359153 11748 solver.cpp:486] Iteration 13200, lr = 0.000816326 1368 | I0806 09:47:39.402214 11748 solver.cpp:214] Iteration 13300, loss = 0.000111218 1369 | I0806 09:47:39.402214 11748 solver.cpp:229] Train net output #0: loss = 0.000111291 (* 1 = 0.000111291 loss) 1370 | I0806 09:47:39.403213 11748 solver.cpp:486] Iteration 13300, lr = 0.000816326 1371 | I0806 09:47:40.449273 11748 solver.cpp:214] Iteration 13400, loss = 0.00097954 1372 | I0806 09:47:40.450273 11748 solver.cpp:229] Train net output #0: loss = 0.000979614 (* 1 = 0.000979614 loss) 1373 | I0806 09:47:40.451273 11748 solver.cpp:486] Iteration 13400, lr = 0.000816326 1374 | I0806 09:47:41.498333 11748 solver.cpp:214] Iteration 13500, loss = 0.00309913 1375 | I0806 09:47:41.499333 11748 solver.cpp:229] Train net output #0: loss = 0.0030992 (* 1 = 0.0030992 loss) 1376 | I0806 09:47:41.500334 11748 solver.cpp:486] Iteration 13500, lr = 0.000816326 1377 | I0806 09:47:42.548393 11748 solver.cpp:214] Iteration 13600, loss = 0.000776991 1378 | I0806 09:47:42.549393 11748 solver.cpp:229] Train net output #0: loss = 0.00077706 (* 1 = 0.00077706 loss) 1379 | I0806 09:47:42.549393 11748 solver.cpp:486] Iteration 13600, lr = 0.000816326 1380 | I0806 09:47:43.596453 11748 solver.cpp:214] Iteration 13700, loss = 0.00112871 1381 | I0806 09:47:43.596453 11748 solver.cpp:229] Train net output #0: loss = 0.00112879 (* 1 = 0.00112879 loss) 1382 | I0806 09:47:43.597453 11748 solver.cpp:486] Iteration 13700, lr = 0.000816326 1383 | I0806 09:47:44.646513 11748 solver.cpp:214] Iteration 13800, loss = 0.0127243 1384 | I0806 09:47:44.647513 11748 solver.cpp:229] Train net output #0: loss = 0.0127243 (* 1 = 0.0127243 loss) 1385 | I0806 09:47:44.647513 11748 solver.cpp:486] Iteration 13800, lr = 0.000816326 1386 | I0806 09:47:45.705574 11748 solver.cpp:214] Iteration 13900, loss = 0.00115382 1387 | I0806 09:47:45.705574 11748 solver.cpp:229] Train net output #0: loss = 0.00115388 (* 1 = 0.00115388 loss) 1388 | I0806 09:47:45.706574 11748 solver.cpp:486] Iteration 13900, lr = 0.000816326 1389 | I0806 09:47:46.750633 11748 solver.cpp:294] Iteration 14000, Testing net (#0) 1390 | I0806 09:47:47.342667 11748 solver.cpp:343] Test net output #0: accuracy = 0.9949 1391 | I0806 09:47:47.343667 11748 solver.cpp:343] Test net output #1: loss = 0.0194077 (* 1 = 0.0194077 loss) 1392 | I0806 09:47:47.349668 11748 solver.cpp:214] Iteration 14000, loss = 0.000690686 1393 | I0806 09:47:47.349668 11748 solver.cpp:229] Train net output #0: loss = 0.000690754 (* 1 = 0.000690754 loss) 1394 | I0806 09:47:47.350668 11748 solver.cpp:486] Iteration 14000, lr = 0.000816326 1395 | I0806 09:47:48.403728 11748 solver.cpp:214] Iteration 14100, loss = 0.010082 1396 | I0806 09:47:48.404728 11748 solver.cpp:229] Train net output #0: loss = 0.0100821 (* 1 = 0.0100821 loss) 1397 | I0806 09:47:48.404728 11748 solver.cpp:486] Iteration 14100, lr = 0.000816326 1398 | I0806 09:47:49.456789 11748 solver.cpp:214] Iteration 14200, loss = 0.0159314 1399 | I0806 09:47:49.457788 11748 solver.cpp:229] Train net output #0: loss = 0.0159315 (* 1 = 0.0159315 loss) 1400 | I0806 09:47:49.458788 11748 solver.cpp:486] Iteration 14200, lr = 0.000816326 1401 | I0806 09:47:50.519850 11748 solver.cpp:214] Iteration 14300, loss = 0.000589024 1402 | I0806 09:47:50.521849 11748 solver.cpp:229] Train net output #0: loss = 0.000589085 (* 1 = 0.000589085 loss) 1403 | I0806 09:47:50.521849 11748 solver.cpp:486] Iteration 14300, lr = 0.000816326 1404 | I0806 09:47:51.582911 11748 solver.cpp:214] Iteration 14400, loss = 9.12001e-005 1405 | I0806 09:47:51.583910 11748 solver.cpp:229] Train net output #0: loss = 9.1262e-005 (* 1 = 9.1262e-005 loss) 1406 | I0806 09:47:51.584910 11748 solver.cpp:486] Iteration 14400, lr = 0.000816326 1407 | I0806 09:47:52.641970 11748 solver.cpp:214] Iteration 14500, loss = 0.00137573 1408 | I0806 09:47:52.643970 11748 solver.cpp:229] Train net output #0: loss = 0.00137579 (* 1 = 0.00137579 loss) 1409 | I0806 09:47:52.644970 11748 solver.cpp:486] Iteration 14500, lr = 0.000816326 1410 | I0806 09:47:53.703032 11748 solver.cpp:214] Iteration 14600, loss = 0.00100744 1411 | I0806 09:47:53.704031 11748 solver.cpp:229] Train net output #0: loss = 0.00100749 (* 1 = 0.00100749 loss) 1412 | I0806 09:47:53.705031 11748 solver.cpp:486] Iteration 14600, lr = 0.000816326 1413 | I0806 09:47:54.756091 11748 solver.cpp:214] Iteration 14700, loss = 0.000341144 1414 | I0806 09:47:54.757091 11748 solver.cpp:229] Train net output #0: loss = 0.000341197 (* 1 = 0.000341197 loss) 1415 | I0806 09:47:54.758091 11748 solver.cpp:486] Iteration 14700, lr = 0.000816326 1416 | I0806 09:47:55.813153 11748 solver.cpp:214] Iteration 14800, loss = 0.00391233 1417 | I0806 09:47:55.814152 11748 solver.cpp:229] Train net output #0: loss = 0.00391239 (* 1 = 0.00391239 loss) 1418 | I0806 09:47:55.815152 11748 solver.cpp:486] Iteration 14800, lr = 0.000816326 1419 | I0806 09:47:56.871212 11748 solver.cpp:214] Iteration 14900, loss = 0.00247528 1420 | I0806 09:47:56.872212 11748 solver.cpp:229] Train net output #0: loss = 0.00247533 (* 1 = 0.00247533 loss) 1421 | I0806 09:47:56.872212 11748 solver.cpp:486] Iteration 14900, lr = 0.000816326 1422 | I0806 09:47:57.931273 11748 solver.cpp:361] Snapshotting to lenet_iter_15000.caffemodel 1423 | I0806 09:47:57.943274 11748 solver.cpp:369] Snapshotting solver state to lenet_iter_15000.solverstate 1424 | I0806 09:47:57.956274 11748 solver.cpp:276] Iteration 15000, loss = 0.00506475 1425 | I0806 09:47:57.956274 11748 solver.cpp:294] Iteration 15000, Testing net (#0) 1426 | I0806 09:47:58.545308 11748 solver.cpp:343] Test net output #0: accuracy = 0.9954 1427 | I0806 09:47:58.545308 11748 solver.cpp:343] Test net output #1: loss = 0.0178642 (* 1 = 0.0178642 loss) 1428 | I0806 09:47:58.546308 11748 solver.cpp:281] Optimization Done. 1429 | I0806 09:47:58.546308 11748 caffe.cpp:134] Optimization Done. 1430 | --------------------------------------------------------------------------------