├── Introduction to Liner algebra Syllabus.pdf ├── Introduction_to_Linear_algebra_for_AI.pdf └── README.md /Introduction to Liner algebra Syllabus.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/shining0611armor/Introduction_of_linear_algebra_for_AI/b976fa17edbe0158edce84a386abdf3433c7eacb/Introduction to Liner algebra Syllabus.pdf -------------------------------------------------------------------------------- /Introduction_to_Linear_algebra_for_AI.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/shining0611armor/Introduction_of_linear_algebra_for_AI/b976fa17edbe0158edce84a386abdf3433c7eacb/Introduction_to_Linear_algebra_for_AI.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 📘 Introduction to Linear Algebra for AI 2 | 3 | Welcome to the **Introduction to Linear Algebra for AI** course! This course is designed to provide a comprehensive understanding of linear algebra concepts crucial for artificial intelligence and machine learning. 4 | 5 | ## 📜 Syllabus 6 | 7 | ### Part A: Basics of Linear Algebra 8 | - **What is Vector, Matrix, Tensor?** 9 | - **Vector Space**: 10 | - Space, vector space 11 | - Linear combination 12 | - Span 13 | - Linear dependence and independence 14 | - Basis 15 | - Dimension 16 | - **Column and Row Vectors**: 17 | - Span in matrix form 18 | - Column space 19 | - Row space 20 | - Null vector and null space 21 | - Left null space 22 | - Operations on matrices (matrix multiplication, vectorization, and Hadamard product) 23 | - Inner and outer product 24 | - **Rank**: 25 | - Column rank, row rank, rank, full rank 26 | - Fat and thin matrix 27 | - Rank deficient, singular, nonsingular, inverse 28 | - **Orthogonality**: 29 | - Length of vector 30 | - Orthogonal vector, orthogonal basis 31 | - Orthonormal 32 | - Orthogonal matrix 33 | - Gram-Schmidt orthogonalization 34 | - **Functions in Linear Algebra**: 35 | - Affine function 36 | - Quadratic function 37 | 38 | ### Part B: Norms & Normalizations 39 | - **Vector Norms**: 40 | - LP-norms 41 | - **Matrix Norms**: 42 | - Frobenius norm 43 | - Spectral norm 44 | - Nuclear norm 45 | - **Importance of Normalization in Machine Learning**: 46 | - Batching data 47 | - Batch norm 48 | - Layer norm 49 | - Standardization 50 | - Comparison 51 | 52 | ### Part C: Equations 53 | - **Systems of Equations**: 54 | - Under-determined system 55 | - Over-determined system 56 | - **Linear Equations**: 57 | - Full rank case 58 | - Low rank (rank deficient) case 59 | - Noisy case 60 | - Least squares method 61 | 62 | ### Part D: Eigens and Positive Definity 63 | - **Eigenvalues and Eigenvectors**: 64 | - Algebraic multiplicity 65 | - Geometric multiplicity 66 | - Eigenspace 67 | - Eigen decomposition 68 | - **Positive Definite and Positive Semi-Definite**: 69 | - Properties of PD and PSD matrices 70 | 71 | ### Part E: SVD & Special Matrices 72 | - **Singular Value Decomposition (SVD)**: 73 | - SVD 74 | - Skinny SVD 75 | - Compact SVD 76 | - **Statistics and Matrices**: 77 | - Normal distribution 78 | - Variance 79 | - Covariance matrix 80 | - Correlation matrix 81 | - Modal matrix 82 | - Making features of datasets independent 83 | - Properties of eigenvalues and eigenvectors of covariance matrix 84 | - Scale invariant 85 | - Translation invariant 86 | - Rotation invariant 87 | 88 | 89 | ### Part F: Additional Topics 90 | - **Data Storage**: 91 | - Storing data row major 92 | - **Vectorization**: 93 | - Vectorization in numpy 94 | 95 | > **Note**: This course does not cover other study topics such as functions, transformations, eliminations, decompositions, projections, and multivariate calculus (Gradient, Hessian, Jacobian). 96 | 97 | ## 🌟 Key Features 98 | - 📚 Comprehensive content tailored for AI enthusiasts 99 | - 🔍 Detailed explanations with practical examples 100 | - 🧮 Mathematical foundations essential for machine learning 101 | 102 | ## 📫 Contact 103 | Feel free to reach out if you have any questions or suggestions: 104 | - **Email**: mehrant.0611@gmail.com 105 | - **GitHub**: [shining0611armor](https://github.com/shining0611armor) 106 | 107 | --- 108 | 109 | Happy Learning! 😊 110 | --------------------------------------------------------------------------------