├── README.md ├── python.py └── shivam12315706 (1).pdf /README.md: -------------------------------------------------------------------------------- 1 | # python.project -------------------------------------------------------------------------------- /python.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import seaborn as sns 3 | import matplotlib.pyplot as plt 4 | 5 | # Load the Excel file into a DataFra 6 | data_path = r"C:\Users\ASUS\OneDrive\Desktop\DataSet Employment.xlsx" 7 | df = pd.read_excel(data_path) 8 | # Set up a plot style 9 | sns.set(style="whitegrid") 10 | # 1. Histogram 11 | plt.figure(figsize=(6, 4)) 12 | sns.histplot(df["Employment Rate"], kde=True, color="skyblue", bins=10) 13 | plt.title("Histogram of Employment Rate") 14 | plt.xlabel("Employment Rate") 15 | plt.ylabel("Frequency") 16 | plt.show() 17 | # 2. Bar Plot (Average Employment Rate by Region) 18 | plt.figure(figsize=(6, 4)) 19 | sns.barplot(x="Region", y="Employment Rate", data=df, palette="Set2") 20 | plt.title("Average Employment Rate by Region") 21 | plt.xlabel("Region") 22 | plt.ylabel("Employment Rate") 23 | plt.xticks(rotation=45) # In case region labels are long 24 | plt.show() 25 | 26 | # 3. Scatter Plot (Employment Rate vs GDP) 27 | plt.figure(figsize=(6, 4)) 28 | sns.scatterplot(x="GDP", y="Employment Rate", data=df, hue="Region", palette="coolwarm", s=100) 29 | plt.title("Employment Rate vs GDP") 30 | plt.xlabel("GDP") 31 | plt.ylabel("Employment Rate") 32 | plt.show() 33 | -------------------------------------------------------------------------------- /shivam12315706 (1).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/shivamgill9322/python.project/ffdc0b92731c5dd2172555baf9ce7e8a206c884d/shivam12315706 (1).pdf --------------------------------------------------------------------------------