├── LICENSE
├── README-eng.md
├── README.md
├── crawl_data.py
├── dataset.py
├── evaluate.py
├── files
├── batang.ttf
├── cjk.json
├── credentials.json
├── hangeul_image.png
├── requirements.txt
└── ttf_links.txt
├── load_data.py
├── logs
└── debug.txt
├── model.py
├── pretrained
├── plain_melnyk
│ ├── saved_model.pb
│ └── variables
│ │ ├── variables.data-00000-of-00001
│ │ └── variables.index
└── plain_melnyk_evaluation
│ ├── CAM_handwritten.png
│ ├── CAM_printed.png
│ ├── handwritten_CHOSUNG.png
│ ├── handwritten_JONGSUNG.png
│ ├── handwritten_JUNGSUNG.png
│ ├── printed_CHOSUNG.png
│ ├── printed_JONGSUNG.png
│ └── printed_JUNGSUNG.png
├── train.py
└── utils
├── CustomLayers.py
├── MelnykNet.py
├── korean_manager.py
├── model_architectures.py
├── model_components.py
└── predict_char.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README-eng.md:
--------------------------------------------------------------------------------
1 | README.md
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # KoOCR-tensorflow (Korean README)
3 |
4 | Tensorflow 딥러닝 기반의 오픈 소스 한글 OCR 엔진.
5 | Open-source Korean OCR engine based on Tensorflow, deep-learning.
6 |
7 | 
8 |
9 | ## 개요
10 | - 중국어, 일본어 등 유사한 언어의 뛰어난 OCR 인식 성능에 비해 한글 인식에 대해서는 활발한 연구가 이루어지 않았다.
11 | - 쉽게 사용 가능한 고성능의 한글 OCR 프로젝트, 라이브러리가 많지 않았다.
12 | - 중국어 인식(HCCR)등에 사용된 학습 방법, Model Architecture를 한글 인식에 적용하고 성능을 비교하였다.
13 | - 한글의 특수한 구조에 기인해 초성, 중성, 종성을 각각 따로 예측하는 Multi-output 모델을 구성했다.
14 |
15 |
16 | ## Method and Plans
17 |
18 |
19 | - [x] DirectMap: Online and Offline Handwritten Chinese Character Recognition: A Comprehensive Study and New Benchmark
20 | - [x] Fire-module based model, GWAP: Building Efficient CNN Architecture for Offline Handwritten Chinese Character Recognition
21 | - [x] High-performance network architecture, CAM, GAP/GWAP/GWOAP: A High-Performance CNN Method for Offline Handwritten Chinese Character Recognition and Visualization
22 | - [ ] Hybrid learning loss: Improving Discrimination Ability of Convolutional Neural Networks by Hybrid Learning
23 | - [ ] Adaptive Drop Weight, GSLRE: Building Fast and Compact Convolutional Neural Networks for Offline Handwritten Chinese Character Recognition
24 | - [x] Adversarial Feature Learning: Robust offline handwritten character recognition through exploring writer-independent features under the guidance of printed data
25 | - [ ] DenseRAN style model: DenseRAN for Offline Handwritten Chinese Character Recognition
26 | - [x] Iterative Refinemet: Improving Offline Handwritten Chinese Character Recognition by Iterative Refinement
27 |
28 | 위 논문들에서 제시하는 method를 구현하고 한글 인식에 대한 성능 개선의 정도를 평가하는 논문을 작성할 계획이다.
29 |
30 | ## 모델 성능
31 |
32 | pretrained weights는 `pretrained/해당모델` 폴더 아래 저장되어 있다. 각 모델에 대한 추가적인 학습결과는 `pretrained/해당모델_evaluation`에 저장되어 있다. Class별 confusion matrix, Grad-CAM 결과 등이 저장되어 있다. 아래 표는 각 모델과 학습 방법의 비교 결과이다.
33 |
34 | model type | 인쇄체 정확도 | 손글씨 정확도 | 추론 시간(ms/image) | 모델 크기(mb)
35 | ----------------------- | ------------ | ------------- | ------------------- | --------------
36 | plain_melnyk_complete |99.94% |97.94% | |57.1
37 |
38 | ### plain_melnyk_complete
39 | High-performance network architecture(melnyk network) 의 baseline 모델. `0.001`의 학습률로 1 에포크, `0.00003`의 학습률로 2 에포크 학습한 결과이다. [Adabound optimizer](https://arxiv.org/abs/1902.09843)를 사용하였다. `fc_link`는 합성곱 신경망의 output feature map을 fully connected layer로 연결하는 방법을 의미하는데, 본 논문에서 제시한 GAP(Gradient Average Pooling)을 개선한 GWAP를 사용하였다.
40 | ```
41 | !python train.py --learning_rate=0.00003 --optimizer=adabound --image_size=96 --weights=./logs/weights/ --fc_link=GWAP --batch_size=128 --epochs=2 --patch_size=20
42 | ```
43 |
44 |
45 | ## 프로젝트 사용
46 |
47 | ### load_data.py
48 | ```
49 | !python load_data.py --sevenzip=true
50 | ```
51 | Google Drive에 업로드된 데이터셋을 다운로드 받아 `./data`, `./val_data` 에 저장한다. 데이터셋은 300여개의 .pickle 패치로 이루어져 있고, 데이터의 특성에 따라 `handwritten_*.pickle`, `printed_*.pickle`, `clova_*.pickle` 으로 이름지어져있다. 각각 손글씨, 인쇄체, 손글씨 폰트의 이미지를 나타낸다.
52 |
53 | `sevenzip` 변수는 압축된 데이터를 .7z 파일로 받을지 .zip 파일로 받을지를 나타낸다. True 값이 다운로드와 압축 속도가 빠르다.
54 |
55 | ### crawl_data.py
56 |
57 | ```
58 | !python crawl_data.py --AIHub=true
59 | --clova=true
60 | --image_size=96
61 | --x_offset=8
62 | --y_offset=8
63 | --char_size=80
64 | ```
65 | 데이터셋을 크롤링해서 다운로드받는다. load_data.py와 같은 역할을 한다. `x_offset`, `y_offset`, `char_size` 변수는 폰트를 이미지에 그릴 때 위치의 offset과 문자의 크기를 지정한다. 아래 표는 실험에서 사용한 이미지 크기에 따른 변수 설정값이다.
66 |
67 | image size | x_offset | y_offset | char_size
68 | ---------- | -------- | -------- | ---------
69 | 64 | 5| 5|50
70 | 96 |8 |8 |80
71 | 128 |14 |10 |100
72 | 256 |50 |10 |200
73 |
74 |
75 | ### model. py
76 | ```
77 | import model
78 | OCR_model=model.KoOCR(weights='C:\\...', split_components=True, ...)
79 |
80 | OCR_model.model.summary()
81 | OCR_model.train(epochs=10, lr=0.01, ...)
82 |
83 | pred=OCR_model.predict(image, n=5)
84 | ```
85 | 모델을 정의하는 모듈으로 `KoOCR` class가 정의되어 있다. **추론에 사용되는 메소드 `KoOCR.predict`는 이미지 혹은 이미지의 배치를 입력받아 가능성이 가장 높은 top-n 개의 한글 글자를 반환한다.** 모델의 추가적인 학습에 사용되는 메소드는 `KoOCR.train`으로, 입력받은 Hyperparameter를 바탕으로 학습을 진행한다.
86 |
87 | ### train. py
88 | ```
89 | !python train.py--split_components=true
90 | --network=melnyk
91 | --image_size=96
92 | --direct_map=true
93 | --epochs=10
94 | ...
95 | ```
96 | 학습을 진행하는 파이썬 모듈인지만, 모델을 정의하고 `KoOCR.train`을 호출하는 역할을 할 뿐, 직접 `model.py`를 import 하고 훈련하는 것과 차이가 없다. 학습결과와 과정에 대한 모든 정보는 `./logs`에 저장되고, 가중치는 매 에포크마다 `./logs/weights.h5`에 저장된다.
97 |
98 | ### evaluate. py
99 | ```
100 | python evaluate.py --weights='./logs/weights.h5'
101 | --accuracy=true
102 | --confusion_matrix=true
103 | --class_activation=true
104 | ```
105 | 모델을 정확도, confusion matrix, CAM 3가지 방법으로 분석한다. 각 방법을 선택 해제하거나 top-n 정확도 등 각 방법의 세부적인 parameter 또한 설정할 수 있다.
106 |
--------------------------------------------------------------------------------
/crawl_data.py:
--------------------------------------------------------------------------------
1 | import os
2 | import urllib.request
3 | import argparse
4 | import numpy as np
5 | from PIL import Image
6 | from PIL import ImageDraw
7 | from PIL import ImageFont
8 | import random
9 | import PIL
10 | import json
11 | import _pickle as pickle #cPickle
12 | import progressbar
13 | import threading
14 | import collections
15 | import tensorflow as tf
16 | import utils.korean_manager as korean_manager
17 | from google_drive_downloader import GoogleDriveDownloader as gdd
18 | #bool type for arguments
19 | def str2bool(v):
20 | if isinstance(v, bool):
21 | return v
22 | if v.lower() in ('yes', 'true', 't', 'y', '1'):
23 | return True
24 | elif v.lower() in ('no', 'false', 'f', 'n', '0'):
25 | return False
26 | else:
27 | raise argparse.ArgumentTypeError('Boolean value expected.')
28 | #Define arguments
29 | parser = argparse.ArgumentParser(description='Download dataset')
30 | parser.add_argument("--font_path", type=str,default='./fonts')
31 | parser.add_argument("--AIHub_path", type=str,default='./AIhub')
32 | parser.add_argument("--pickle_path", type=str,default='./data')
33 | parser.add_argument("--val_path", type=str,default='./val_data')
34 | parser.add_argument("--pickle_path_val", type=str,default='./data')
35 | parser.add_argument("--val_ratio", type=float,default=.1)
36 |
37 | parser.add_argument("--clova", type=str2bool,default=False)
38 | parser.add_argument("--image_test", type=str2bool,default=False)
39 | parser.add_argument("--image_size", type=int,default=96)
40 | parser.add_argument("--x_offset", type=int,default=8)
41 | parser.add_argument("--y_offset", type=int,default=8)
42 | parser.add_argument("--char_size", type=int,default=80)
43 |
44 | parser.add_argument("--AIHub", type=str2bool,default=False)
45 | parser.add_argument("--pickle_size", type=int,default=5000)
46 |
47 | def crawl_dataset():
48 | if args.clova:
49 | crawl_clova_fonts()
50 | charset=korean_manager.load_charset()
51 | convert_all_fonts(charset)
52 | if args.AIHub:
53 | download_AIHub_GoogleDrive()
54 | pickle_AIHub_images()
55 |
56 | def pickle_AIHub_images():
57 | #Pickle AIHub data into handwritten, printed
58 | if os.path.isdir(args.pickle_path)==False:
59 | os.mkdir(args.pickle_path)
60 | if os.path.isdir(args.val_path)==False:
61 | os.mkdir(args.val_path)
62 | random.seed(42)
63 | #Unpickle Handwritten files
64 | f = open(os.path.join(args.AIHub_path,'handwritten_label.json'))
65 | anno = json.load(f)
66 | f.close()
67 | random.shuffle(anno['annotations'])
68 |
69 | images_before_pickle=args.pickle_size
70 | pickle_idx=0
71 | image_arr,label_arr=[],[]
72 |
73 | for x in progressbar.progressbar(anno['annotations']):
74 | #Save data split into pickle
75 | if images_before_pickle==0:
76 | images_before_pickle=args.pickle_size
77 | #Split train and test data
78 | if random.random()>args.val_ratio:
79 | file_path=args.pickle_path
80 | else:
81 | file_path=args.val_path
82 |
83 | with open(os.path.join(file_path,'handwritten_'+str(pickle_idx)+'.pickle'),'wb') as handle:
84 | pickle.dump({'image':np.array(image_arr),'label':np.array(label_arr)},handle)
85 | pickle_idx+=1
86 | image_arr,label_arr=[],[]
87 | #Append to list if character type of data
88 | if (x['attributes']['type']=='글자(음절)'):
89 | #Find the path between 2 directories
90 | true_path=''
91 | path1=os.path.join(args.AIHub_path,'1_syllable/'+x['image_id']+'.png')
92 | path2=os.path.join(args.AIHub_path,'2_syllable/'+x['image_id']+'.png')
93 | if os.path.isfile(path1)==True:
94 | true_path=path1
95 | elif os.path.isfile(path2)==True:
96 | true_path=path2
97 | #Save image and text
98 | if true_path:
99 | im=tf.keras.preprocessing.image.load_img(true_path,color_mode='grayscale',target_size=(args.image_size,args.image_size))
100 | image_arr.append(tf.keras.preprocessing.image.img_to_array(im)[:,:,0])
101 | label_arr.append(x['text'])
102 |
103 | os.remove(true_path)
104 | images_before_pickle-=1
105 | #Unpickle Printed files
106 | f = open(os.path.join(args.AIHub_path,'printed_label.json'))
107 | anno = json.load(f)
108 | f.close()
109 | random.shuffle(anno['annotations'])
110 |
111 | images_before_pickle=args.pickle_size
112 | pickle_idx=0
113 | image_arr,label_arr=[],[]
114 |
115 | for x in progressbar.progressbar(anno['annotations']):
116 | #Save data split into pickle
117 | if images_before_pickle==0:
118 | images_before_pickle=args.pickle_size
119 | #Split train and test data
120 | if random.random()>args.val_ratio:
121 | file_path=args.pickle_path
122 | else:
123 | file_path=args.val_path
124 | with open(os.path.join(file_path,'printed_'+str(pickle_idx)+'.pickle'),'wb') as handle:
125 | pickle.dump({'image':np.array(image_arr),'label':np.array(label_arr)},handle)
126 | pickle_idx+=1
127 | image_arr,label_arr=[],[]
128 | #Append to list if character type of data
129 | if (x['attributes']['type']=='글자(음절)'):
130 | path=os.path.join(args.AIHub_path,'syllable/'+x['image_id']+'.png')
131 | if os.path.isfile(path)==True:
132 | im=tf.keras.preprocessing.image.load_img(path,color_mode='grayscale',target_size=(args.image_size,args.image_size))
133 | image_arr.append(tf.keras.preprocessing.image.img_to_array(im)[:,:,0])
134 | label_arr.append(x['text'])
135 |
136 | os.remove(path)
137 | images_before_pickle-=1
138 |
139 | def download_AIHub_GoogleDrive():
140 | #Download AIHUB OCR data from Google Drive
141 | handwritten_file_id_1='13GCWsztfD00mHxKGNVO_c6uxS_9J_JOY'
142 | handwritten_file_id_2='1N2dTwZ8TgYRFBeNDKgjxjDHqULk_JX6X'
143 | handwritten_label_id='1rX979OhUHCKSYRbBPaMIHtFQa0eVdSXt'
144 | printed_file_id_1='1MNYnv4aO0kWaDigb9iEcIdpxO_pF2s-m'
145 | printed_label_id='1ibZrGauMoM1E9Bx2fMGtiJEqQ6nh8Qy8'
146 |
147 | idlist_file=[[handwritten_file_id_1,'handwritten-1'],[handwritten_file_id_2,'handwritten-2'],[printed_file_id_1,'printed-1']]
148 | idlist_label=[[handwritten_label_id,'handwritten_label'],[printed_label_id,'printed_label']]
149 |
150 | if os.path.isdir(args.AIHub_path)==False:
151 | os.mkdir(args.AIHub_path)
152 |
153 | print("Downloading AIHUB OCR from Google Drive...")
154 |
155 | for file_id in idlist_file:
156 | zip_dest_path=os.path.join(args.AIHub_path,f'{file_id[1]}.zip')
157 | gdd.download_file_from_google_drive(file_id=file_id[0],dest_path=zip_dest_path,unzip=True)
158 | os.remove(zip_dest_path)
159 | for file_id in idlist_label:
160 | json_dest_path=os.path.join(args.AIHub_path,f'{file_id[1]}.json')
161 | gdd.download_file_from_google_drive(file_id=file_id[0],dest_path=json_dest_path)
162 |
163 | print("Download complete")
164 |
165 | def crawl_clova_fonts():
166 | #Crawl and download .ttf files listed in ttf_links.txt
167 | #Make directory
168 | print('Downloading fonts in', args.font_path)
169 | download_path=args.font_path
170 | if os.path.isdir(download_path)==False:
171 | os.mkdir(download_path)
172 |
173 | #Retrieve all file locations
174 | url_path='files/ttf_links.txt'
175 | f = open(url_path, 'r')
176 |
177 | while True:
178 | url = f.readline()
179 | # if line is empty -> EOF
180 | if not url:
181 | break
182 | file_name=url.split('/')[-1].replace('\n','')
183 | url=url.replace('https://','') #Parse 'https://'
184 | url=urllib.parse.quote(url.replace('\n','')) #Change encoding
185 |
186 | urllib.request.urlretrieve('https://'+url, os.path.join(download_path,file_name))
187 | f.close()
188 |
189 | def draw_single_char(ch, font):
190 | img = Image.new("L", (args.image_size, args.image_size), 255)
191 | draw = ImageDraw.Draw(img)
192 | draw.text((args.x_offset, args.y_offset), ch, 0, font=font)
193 | return img
194 |
195 | def font2img(font_path,font_idx,charset,save_dir):
196 | font=ImageFont.truetype(font_path,size=args.char_size)
197 | image_arr,label_arr=[],[]
198 |
199 | try:
200 | for c in charset:
201 | e = draw_single_char(c, font)
202 | image_arr.append(np.array(e))
203 | label_arr.append(c)
204 |
205 | with open(os.path.join(save_dir,'clova_'+str(font_idx)+'.pickle'),'wb') as handle:
206 | pickle.dump({'image':np.array(image_arr),'label':np.array(label_arr)},handle)
207 | except:
208 | pass
209 |
210 | def convert_all_fonts(charset):
211 | font_directory=args.font_path
212 | save_directory=args.pickle_path
213 |
214 | if os.path.isdir(save_directory)==False:
215 | os.mkdir(save_directory)
216 | if os.path.isdir(args.val_path)==False:
217 | os.mkdir(args.val_path)
218 |
219 | fonts=os.listdir(font_directory)
220 |
221 | for idx,font in progressbar.progressbar(enumerate(fonts)):
222 | full_path=os.path.join(font_directory,font)
223 |
224 | font2img(full_path,idx,charset,save_directory)
225 |
226 | if __name__=='__main__':
227 | args = parser.parse_args()
228 | if args.image_test==False:
229 | crawl_dataset()
230 |
231 | else:
232 | default_font=ImageFont.truetype('files/batang.ttf',size=args.char_size)
233 | arr=draw_single_char('가',default_font)
234 | arr=np.array(arr)
235 | result = Image.fromarray(arr.astype(np.uint8))
236 | result.save('./logs/가.jpg')
237 |
238 | arr=draw_single_char('나',default_font)
239 | arr=np.array(arr)
240 | result = Image.fromarray(arr.astype(np.uint8))
241 | result.save('./logs/나.jpg')
--------------------------------------------------------------------------------
/dataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import os
3 | import tensorflow as tf
4 | import fnmatch
5 | import _pickle as pickle #cPickle
6 | import utils.korean_manager as korean_manager
7 | import random
8 | import progressbar
9 |
10 | class DataPickleLoader():
11 | #Load data patch by patch
12 | def __init__(self,patch_size=10,data_path='./data',val_data_path='./val_data',split_components=True,val_data=.1,
13 | return_image_type=False,silent_mode=False):
14 | self.data_path=data_path
15 | self.val_data_path=val_data_path
16 | self.patch_size=patch_size
17 | self.split_components=split_components
18 | self.return_image_type=return_image_type
19 | self.current_idx=0
20 | self.silent_mode=silent_mode
21 |
22 | file_list=fnmatch.filter(os.listdir(data_path), '*.pickle')
23 | val_file_list=fnmatch.filter(os.listdir(val_data_path), '*.pickle')
24 |
25 | self.file_list=file_list
26 | self.val_file_list=val_file_list
27 | np.random.shuffle(self.val_file_list)
28 | self.mix_indicies()
29 |
30 | def load_pickle(self,path):
31 | with open(path,'rb') as handle:
32 | data=pickle.load(handle)
33 | return data
34 |
35 | def get_val(self,prob=0.3):
36 | data=self.load_pickle(os.path.join(self.val_data_path,self.val_file_list[0]))
37 | images=data['image']
38 |
39 | if self.split_components==True:
40 | cho,jung,jong=korean_manager.korean_split_numpy(data['label'])
41 | else:
42 | labels=korean_manager.korean_numpy(data['label'])
43 | types=np.repeat(int(self.val_file_list[0].split('_')[0]=='handwritten'),images.shape[0])
44 |
45 | for pkl in self.val_file_list[1:int(len(self.val_file_list)*prob)]:
46 | data=self.load_pickle(os.path.join(self.val_data_path,pkl))
47 | images=np.concatenate((images,data['image']),axis=0)
48 |
49 | if self.split_components==True:
50 | cho_,jung_,jong_=korean_manager.korean_split_numpy(data['label'])
51 |
52 | cho=np.concatenate((cho,cho_))
53 | jung=np.concatenate((jung,jung_))
54 | jong=np.concatenate((jong,jong_))
55 | types=np.concatenate((types, np.repeat(int(pkl.split('_')[0]=='handwritten'),data['image'].shape[0])))
56 | else:
57 | labels=np.concatenate((labels,korean_manager.korean_numpy(data['label'])))
58 |
59 | #Random shuffle data
60 | ind_list = list(range(types.shape[0]))
61 | random.shuffle(ind_list)
62 |
63 | if self.split_components==True:
64 | #One hot encode labels and return
65 | cho=tf.one_hot(cho,len(korean_manager.CHOSUNG_LIST))
66 | jung=tf.one_hot(jung,len(korean_manager.JUNGSUNG_LIST))
67 | jong=tf.one_hot(jong,len(korean_manager.JONGSUNG_LIST))
68 |
69 | if self.return_image_type:
70 | return images,{'CHOSUNG':cho,'JUNGSUNG':jung,'JONGSUNG':jong,'DISC':types}
71 | else:
72 | return images,{'CHOSUNG':cho,'JUNGSUNG':jung,'JONGSUNG':jong}
73 | else:
74 | return images,labels[ind_list]
75 |
76 | def get(self):
77 | print(f"Loading dataset patch {self.current_idx//self.patch_size}/{len(self.file_list)//self.patch_size+1}...")
78 | #Check if end of list
79 | did_reset=False
80 | next_idx=self.current_idx+self.patch_size
81 | if next_idx>len(self.file_list):
82 | next_idx=len(self.file_list)
83 | did_reset=True
84 |
85 | data=self.load_pickle(os.path.join(self.data_path,self.file_list[self.current_idx]))
86 | images=data['image']
87 |
88 | if self.split_components==True:
89 | cho,jung,jong=korean_manager.korean_split_numpy(data['label'])
90 | else:
91 | labels=korean_manager.korean_numpy(data['label'])
92 | types=np.repeat(int(self.file_list[self.current_idx].split('_')[0]=='handwritten'),images.shape[0])
93 |
94 | path_slice=self.file_list[self.current_idx+1:next_idx]
95 |
96 | if self.silent_mode:
97 | prog=path_slice
98 | else:
99 | prog=progressbar.progressbar(path_slice)
100 | for pkl in prog:
101 | data=self.load_pickle(os.path.join(self.data_path,pkl))
102 | images=np.concatenate((images,data['image']),axis=0)
103 |
104 | if self.split_components==True:
105 | cho_,jung_,jong_=korean_manager.korean_split_numpy(data['label'])
106 |
107 | cho=np.concatenate((cho,cho_))
108 | jung=np.concatenate((jung,jung_))
109 | jong=np.concatenate((jong,jong_))
110 | types=np.concatenate((types, np.repeat(int(pkl.split('_')[0]=='handwritten'),data['image'].shape[0])))
111 | else:
112 | labels=np.concatenate((labels,korean_manager.korean_numpy(data['label'])))
113 |
114 |
115 | #Reset if final chunk of image
116 | self.current_idx=next_idx
117 | if self.current_idx==len(self.file_list):
118 | self.mix_indicies()
119 | self.current_idx=0
120 |
121 | ind_list = list(range(types.shape[0]))
122 | random.shuffle(ind_list)
123 | if self.split_components==True:
124 | #One hot encode labels and return
125 | cho=tf.one_hot(cho,len(korean_manager.CHOSUNG_LIST))
126 | jung=tf.one_hot(jung,len(korean_manager.JUNGSUNG_LIST))
127 | jong=tf.one_hot(jong,len(korean_manager.JONGSUNG_LIST))
128 | if self.return_image_type:
129 | return images,{'CHOSUNG':cho,'JUNGSUNG':jung,'JONGSUNG':jong,'DISC':types},did_reset
130 | else:
131 | return images,{'CHOSUNG':cho,'JUNGSUNG':jung,'JONGSUNG':jong},did_reset
132 | else:
133 | labels=tf.one_hot(labels,len(korean_manager.load_charset()))
134 | return images,labels,did_reset
135 |
136 | def mix_indicies(self):
137 | np.random.shuffle(self.file_list)
--------------------------------------------------------------------------------
/evaluate.py:
--------------------------------------------------------------------------------
1 | import model
2 | import dataset
3 | import tensorflow as tf
4 | import numpy as np
5 | import argparse
6 | import matplotlib.pyplot as plt
7 | import os
8 | import fnmatch
9 | import utils.korean_manager as korean_manager
10 | import progressbar
11 | import _pickle as pickle #cPickle
12 | from utils.CustomLayers import MultiOutputGradCAM
13 | from utils.model_components import PreprocessingPipeline
14 | from sklearn.metrics import confusion_matrix
15 | import seaborn as sn
16 | import pandas as pd
17 | import matplotlib.font_manager as font_manager
18 | #bool type for arguments
19 | def str2bool(v):
20 | if isinstance(v, bool):
21 | return v
22 | if v.lower() in ('yes', 'true', 't', 'y', '1'):
23 | return True
24 | elif v.lower() in ('no', 'false', 'f', 'n', '0'):
25 | return False
26 | else:
27 | raise argparse.ArgumentTypeError('Boolean value expected.')
28 | #Define arguments
29 | parser=argparse.ArgumentParser(description='Download dataset')
30 | parser.add_argument("--data_path", type=str,default='./val_data')
31 | parser.add_argument("--train_data_path", type=str,default='./data')
32 | parser.add_argument("--image_size", type=int,default=256)
33 | parser.add_argument("--split_components", type=str2bool,default=True)
34 | parser.add_argument("--patch_size", type=int,default=10)
35 |
36 | parser.add_argument("--show_augmentation", type=str2bool,default=False)
37 | parser.add_argument("--accuracy", type=str2bool,default=False)
38 | parser.add_argument("--confusion_matrix", type=str2bool,default=False)
39 | parser.add_argument("--class_activation", type=str2bool,default=False)
40 |
41 | parser.add_argument("--class_activation_n", type=int,default=10)
42 |
43 | parser.add_argument("--weights", type=str,default='')
44 | parser.add_argument("--top_n", type=int,default=5)
45 |
46 | def generate_CAM(model,key_text):
47 | #Pick one pickle, and load 10 data from file
48 | file_list=fnmatch.filter(os.listdir(args.data_path), f'{key_text}*.pickle')
49 | np.random.shuffle(file_list)
50 | with open(os.path.join(args.data_path,file_list[0]),'rb') as handle:
51 | data=pickle.load(handle)
52 | indicies=np.random.choice(len(data['image']), args.class_activation_n, replace=False)
53 |
54 | fig = plt.figure(figsize=(args.class_activation_n*2,8))
55 | for idx,data_idx in enumerate(indicies):
56 | #Get Class Activation Map
57 | cam=MultiOutputGradCAM(model.model,data['label'][data_idx])
58 | heatmap_list=cam.compute_heatmap(data['image'][data_idx])
59 | heatmap_list.append(None)
60 |
61 | for comp in range(4):
62 | plt.subplot(4,args.class_activation_n,idx+1+args.class_activation_n*comp)
63 | plt.imshow(data['image'][data_idx],cmap='gray')
64 | if comp!=3:
65 | plt.imshow(heatmap_list[comp],alpha=0.5,cmap='jet')
66 | plt.axis('off')
67 | plt.savefig(f'./logs/CAM_{key_text}.png')
68 | plt.clf()
69 |
70 | def plot_augmentation():
71 | images_per_type=3
72 | augment_times=5
73 | key_texts=['clova','handwritten','printed']
74 | width,height=images_per_type*3,augment_times+1
75 | #Define PreprocessingPipeline with data augmentation.
76 | aug_model=PreprocessingPipeline(False,True)
77 |
78 | fig = plt.figure(figsize=(width,height))
79 | for key_text_idx in range(3):
80 | #Read data from randomly selected batch
81 | key_text=key_texts[key_text_idx]
82 | file_list=fnmatch.filter(os.listdir(args.train_data_path), f'{key_text}*.pickle')
83 | np.random.shuffle(file_list)
84 | with open(os.path.join(args.train_data_path,file_list[0]),'rb') as handle:
85 | data=pickle.load(handle)
86 | #Plot first 3 images and augment_times augmented versions.
87 | for idx in range(images_per_type):
88 | plt.subplot(key_text_idx*3+idx+1,width,height)
89 | plt.imshow(data['image'][idx])
90 | plt.axis('off')
91 | for k in range(1,augment_times+1):
92 | plt.subplot(key_text_idx*3+idx+1 + width*k,width,height)
93 | new_image=aug_model(data['image'][idx].reshape(1,96,96,1))
94 | plt.imshow(new_image[0])
95 | plt.axis('off')
96 | plt.savefig('./logs/Augmentation_Sample.png')
97 | plt.clf()
98 |
99 | def generate_confusion_matrix(model,key_text):
100 | #Generate confusion matrix of each component based on sklearn,
101 | #Only call when split_components is True.
102 | if not args.split_components:
103 | return
104 | try:
105 | path = './files/batang.ttf'
106 | prop = font_manager.FontProperties(fname=path)
107 | except:
108 | print('No font in location, using default font.')
109 | prop=None
110 | types=['CHOSUNG','JUNGSUNG','JONGSUNG']
111 |
112 | confusion_list={'CHOSUNG':0,'JUNGSUNG':0,'JONGSUNG':0}
113 | index_list={'CHOSUNG':korean_manager.CHOSUNG_LIST,'JUNGSUNG':korean_manager.JUNGSUNG_LIST,'JONGSUNG':korean_manager.JONGSUNG_LIST}
114 | file_list=fnmatch.filter(os.listdir(args.data_path), f'{key_text}*.pickle')
115 | for x in progressbar.progressbar(file_list):
116 | #Read pickle
117 | path=os.path.join(args.data_path,x)
118 | with open(path,'rb') as handle:
119 | data=pickle.load(handle)
120 | #Predict image
121 | pred=model.model.predict(data['image'])
122 | pred_dict={}
123 | for idx,t in enumerate(types):
124 | pred_dict[t]=np.argmax(pred[idx],axis=1)
125 |
126 | cho,jung,jong=korean_manager.korean_split_numpy(data['label'])
127 | truth_label={'CHOSUNG':cho, 'JUNGSUNG':jung,'JONGSUNG':jong}
128 | #Add to confusion_matrix
129 | for t in types:
130 | labels=range(len(index_list[t]))
131 | confusion_list[t]=confusion_matrix(truth_label[t],pred_dict[t],labels=labels)+confusion_list[t]
132 |
133 | #Plot confusion matrix using seaborn
134 |
135 | for t in types:
136 | df_cm = pd.DataFrame(confusion_list[t], index=index_list[t], columns=index_list[t])
137 |
138 | sn.set(rc={'figure.figsize':(20,18)})
139 | ax = sn.heatmap(df_cm, cmap='Oranges', annot=True, fontproperties=prop)
140 | fig = ax.get_figure()
141 | fig.savefig(os.path.join('./logs','confusion_matrix_'+key_text+'_'+t+".png"))
142 | plt.clf()
143 |
144 | def evaluate(model,key_text,plot_wrong=True):
145 | #Evaluate top-n accuracy
146 | correct_num,total_num=0,0
147 | file_list=fnmatch.filter(os.listdir(args.data_path), f'{key_text}*.pickle')
148 |
149 | wrong_list=[]
150 | for x in progressbar.progressbar(file_list):
151 | #Read pickle
152 | path=os.path.join(args.data_path,x)
153 | with open(path,'rb') as handle:
154 | data=pickle.load(handle)
155 | #Predict image
156 | pred=model.predict(data['image'],n=args.top_n)
157 | #Compare/calculate acc
158 | for idx,pred_ in enumerate(pred):
159 | total_num+=1
160 | if data['label'][idx] in pred_:
161 | correct_num+=1
162 | else:
163 | wrong_list.append((data['image'][idx],data['label'][idx]))
164 |
165 | if plot_wrong:
166 | fig = plt.figure(figsize=(10,10))
167 | for x in range(100):
168 | plt.subplot(x,10,10)
169 | plt.imshow(wrong_list[x][0])
170 | plt.xlabel('Pred:'+str(wrong_list[x][1]))
171 | plt.savefig(f'./logs/{key_text}_Wrong_examples.png')
172 | plt.clf()
173 | return 100*correct_num/total_num
174 |
175 | if __name__=='__main__':
176 | args = parser.parse_args()
177 | plt.rc('font', family='NanumBarunGothic')
178 |
179 | KoOCR=model.KoOCR(split_components=args.split_components,weight_path=args.weights)
180 |
181 | if args.accuracy:
182 | acc=evaluate(KoOCR,'handwritten')
183 | print('Handwritten OCR Accuracy:',acc)
184 | acc=evaluate(KoOCR,'printed')
185 | print('Printed OCR Accuracy:',acc)
186 |
187 | if args.confusion_matrix:
188 | generate_confusion_matrix(KoOCR,'handwritten')
189 | print('Handwritten confusion matrix generated.')
190 | generate_confusion_matrix(KoOCR,'printed')
191 | print('Printed confusion matrix generated.')
192 |
193 | if args.class_activation:
194 | generate_CAM(KoOCR,'handwritten')
195 | print('Handwritten CAM image generated.')
196 | generate_CAM(KoOCR,'printed')
197 | print('Printed CAM image generated.')
198 |
199 | if args.show_augmentation:
200 | plot_augmentation()
--------------------------------------------------------------------------------
/files/batang.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/files/batang.ttf
--------------------------------------------------------------------------------
/files/credentials.json:
--------------------------------------------------------------------------------
1 | {"installed":{"client_id":"813774342851-v8j21ocifp4p03nhh6d28arro9rtacok.apps.googleusercontent.com","project_id":"koocr-1612166115153","auth_uri":"https://accounts.google.com/o/oauth2/auth","token_uri":"https://oauth2.googleapis.com/token","auth_provider_x509_cert_url":"https://www.googleapis.com/oauth2/v1/certs","client_secret":"4-VwR7EiiQnjl94_4FLh7pn6","redirect_uris":["urn:ietf:wg:oauth:2.0:oob","http://localhost"]}}
--------------------------------------------------------------------------------
/files/hangeul_image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/files/hangeul_image.png
--------------------------------------------------------------------------------
/files/requirements.txt:
--------------------------------------------------------------------------------
1 | progressbar2
2 | googledrivedownloader
3 | tensorflow
4 | numpy
5 | matplotlib
6 |
--------------------------------------------------------------------------------
/files/ttf_links.txt:
--------------------------------------------------------------------------------
1 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 가람연꽃.ttf
2 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 갈맷글.ttf
3 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 강부장님체.ttf
4 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 강인한 위로.ttf
5 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 고딕 아니고 고딩.ttf
6 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 고려글꼴.ttf
7 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 곰신체.ttf
8 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 규리의 일기.ttf
9 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 금은보화.ttf
10 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 기쁨밝음.ttf
11 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 김유이체.ttf
12 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 꽃내음.ttf
13 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 끄트머리체.ttf
14 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 나는 이겨낸다.ttf
15 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 나무정원.ttf
16 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 나의 아내 손글씨.ttf
17 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 노력하는 동희.ttf
18 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 느릿느릿체.ttf
19 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다시 시작해.ttf
20 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다진체.ttf
21 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다채사랑.ttf
22 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다행체.ttf
23 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 달의궤도.ttf
24 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 대광유리.ttf
25 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 대한민국 열사체.ttf
26 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 동화또박.ttf
27 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 둥근인연.ttf
28 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 따뜻한 작별.ttf
29 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 따악단단.ttf
30 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 딸에게 엄마가.ttf
31 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 가람연꽃.ttf
32 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 갈맷글.ttf
33 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 강부장님체.ttf
34 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 강인한 위로.ttf
35 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 고딕 아니고 고딩.ttf
36 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 고려글꼴.ttf
37 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 곰신체.ttf
38 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 규리의 일기.ttf
39 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 금은보화.ttf
40 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 기쁨밝음.ttf
41 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 김유이체.ttf
42 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 꽃내음.ttf
43 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 끄트머리체.ttf
44 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 나는 이겨낸다.ttf
45 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 나무정원.ttf
46 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 나의 아내 손글씨.ttf
47 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 노력하는 동희.ttf
48 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 느릿느릿체.ttf
49 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다시 시작해.ttf
50 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다진체.ttf
51 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다채사랑.ttf
52 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 다행체.ttf
53 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 달의궤도.ttf
54 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 대광유리.ttf
55 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 대한민국 열사체.ttf
56 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 동화또박.ttf
57 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 둥근인연.ttf
58 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 따뜻한 작별.ttf
59 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 따악단단.ttf
60 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 딸에게 엄마가.ttf
61 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 또박또박.ttf
62 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 마고체.ttf
63 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 맛있는체.ttf
64 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 몽돌.ttf
65 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 무궁화.ttf
66 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 무진장체.ttf
67 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 미니 손글씨.ttf
68 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 미래나무.ttf
69 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download_1008/나눔손글씨 바른정신.ttf
70 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 바른히피.ttf
71 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 반짝반짝 별.ttf
72 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 배은혜체.ttf
73 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 백의의 천사.ttf
74 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 버드나무.ttf
75 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 범솜체.ttf
76 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 부장님 눈치체.ttf
77 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 북극성.ttf
78 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 비상체.ttf
79 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 빵구니맘 손글씨.ttf
80 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 사랑해 아들.ttf
81 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 상해찬미체.ttf
82 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 성실체.ttf
83 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 세계적인 한글.ttf
84 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 세아체.ttf
85 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 세화체.ttf
86 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 소미체.ttf
87 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 소방관의 기도.ttf
88 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 손편지체.ttf
89 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 수줍은 대학생.ttf
90 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 시우 귀여워.ttf
91 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download_1015/나눔손글씨 신혼부부.ttf
92 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 아기사랑체.ttf
93 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 아름드리 꽃나무.ttf
94 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 아빠글씨.ttf
95 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 아빠의 연애편지.ttf
96 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 아인맘 손글씨.ttf
97 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 아줌마 자유.ttf
98 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 안쌍체.ttf
99 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 암스테르담.ttf
100 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 야근하는 김주임.ttf
101 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 야채장수 백금례.ttf
102 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 엄마사랑.ttf
103 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 엉겅퀴체.ttf
104 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 여름글씨.ttf
105 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 연지체.ttf
106 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 열아홉의 반짝임.ttf
107 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 열일체.ttf
108 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 예당체.ttf
109 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 예쁜 민경체.ttf
110 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 옥비체.ttf
111 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 와일드.ttf
112 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download_1008/나눔손글씨 외할머니글씨.ttf
113 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 왼손잡이도 예뻐.ttf
114 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 우리딸 손글씨.ttf
115 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 유니 띵땅띵땅.ttf
116 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 의미있는 한글.ttf
117 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 자부심지우.ttf
118 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 잘하고 있어.ttf
119 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 장미체.ttf
120 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 점꼴체.ttf
121 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 정은체.ttf
122 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 중학생.ttf
123 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 진주 박경아체.ttf
124 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 철필글씨.ttf
125 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 초딩희망.ttf
126 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download_1008/나눔손글씨 칼국수.ttf
127 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 코코체.ttf
128 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 하나되어 손글씨.ttf
129 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 하나손글씨.ttf
130 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 하람체.ttf
131 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 한윤체.ttf
132 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 할아버지의나눔.ttf
133 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 행복한 도비.ttf
134 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 혁이체.ttf
135 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 혜준체.ttf
136 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 효남 늘 화이팅.ttf
137 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 희망누리.ttf
138 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download_200310/나눔손글씨 흰꼬리수리.ttf
139 | https://ssl.pstatic.net/static/clova/service/clova_ai/event/handwriting/download/나눔손글씨 힘내라는 말보단.ttf
140 |
--------------------------------------------------------------------------------
/load_data.py:
--------------------------------------------------------------------------------
1 | from google_drive_downloader import GoogleDriveDownloader as gdd
2 | import concurrent.futures
3 | import os
4 | import zipfile
5 | from py7zr import unpack_7zarchive
6 | import shutil
7 |
8 | import argparse
9 |
10 |
11 | def str2bool(v):
12 | if isinstance(v, bool):
13 | return v
14 | if v.lower() in ('yes', 'true', 't', 'y', '1'):
15 | return True
16 | elif v.lower() in ('no', 'false', 'f', 'n', '0'):
17 | return False
18 | else:
19 | raise argparse.ArgumentTypeError('Boolean value expected.')
20 |
21 | parser = argparse.ArgumentParser(description='Download dataset')
22 | parser.add_argument("--sevenzip", type=str2bool,default=True)
23 |
24 | def unzip_7z():
25 | val_data_7z_link='17NusZQw2RKpBIvCKp6hW6RuJKY43SWqz'
26 | data_7z_link='1-I3BtCzYE7swpKERGygRhlMnim2xX0_2'
27 |
28 | print("Downloading data...")
29 |
30 | gdd.download_file_from_google_drive(file_id=data_7z_link,dest_path=os.path.join(data_path,'data.7z'),unzip=False)
31 | gdd.download_file_from_google_drive(file_id=val_data_7z_link,dest_path=os.path.join(val_data_path,'val_data.7z'),unzip=False)
32 |
33 | print('Unzipping data...')
34 | shutil.register_unpack_format('7zip', ['.7z'], unpack_7zarchive)
35 |
36 | shutil.unpack_archive(os.path.join(data_path,'data.7z'), data_path)
37 | os.remove(os.path.join(data_path,'data.7z'))
38 |
39 | shutil.unpack_archive(os.path.join(val_data_path,'val_data.7z'), val_data_path)
40 | os.remove(os.path.join(val_data_path,'val_data.7z'))
41 | print("Downloading complete...")
42 |
43 | def unzip_zip():
44 | val_data_link='1WOP_sQsu4vXCY739VGgiWIbHyOozcjHw'
45 | data_link='1HBu43eBO-vXJsJp8crEp_Iih3_U7QSR2'
46 |
47 | print("Downloading data...")
48 | gdd.download_file_from_google_drive(file_id=data_link,dest_path=os.path.join(data_path,'data.zip'),unzip=False)
49 | gdd.download_file_from_google_drive(file_id=val_data_link,dest_path=os.path.join(val_data_path,'val_data.zip'),unzip=False)
50 |
51 | print('Unzipping data...')
52 | with zipfile.ZipFile(os.path.join(data_path,'data.zip'), 'r') as zip_ref:
53 | zip_ref.extractall(data_path)
54 | os.remove(os.path.join(data_path,'data.zip'))
55 |
56 | with zipfile.ZipFile(os.path.join(val_data_path,'val_data.zip'), 'r') as zip_ref:
57 | zip_ref.extractall(val_data_path)
58 | os.remove(os.path.join(val_data_path,'val_data.zip'))
59 | print("Downloading complete...")
60 |
61 | if __name__ =='__main__':
62 | args = parser.parse_args()
63 |
64 | val_data_path='./val_data'
65 | data_path='./data'
66 | #Create data directory
67 | if os.path.isdir(val_data_path)==False:
68 | os.makedirs(val_data_path)
69 | if os.path.isdir(data_path)==False:
70 | os.makedirs(data_path)
71 |
72 | if args.sevenzip:
73 | unzip_7z()
74 | else:
75 | unzip_zip()
--------------------------------------------------------------------------------
/logs/debug.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/logs/debug.txt
--------------------------------------------------------------------------------
/model.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import tensorflow as tf
3 | import matplotlib.pyplot as plt
4 | import dataset
5 | import utils.korean_manager as korean_manager
6 | from PIL import Image
7 | import random
8 | import os
9 | from IPython.display import clear_output
10 | import gc
11 | import wandb
12 | import datetime
13 | import shutil
14 | from tqdm import tqdm
15 | from keras_adabound import AdaBound
16 | import utils.predict_char as predict_char
17 | from utils.model_architectures import VGG16,InceptionResnetV2,MobilenetV3,EfficientCNN,AFL_Model
18 | from utils.MelnykNet import melnyk_net
19 | class KoOCR():
20 | def __init__(self,split_components=True,weight_path='',fc_link='',network_type='melnyk',image_size=96,direct_map=False,refinement_t=4,\
21 | iterative_refinement=False,data_augmentation=False,adversarial_learning=False):
22 | self.split_components=split_components
23 | self.iterative_refinement=iterative_refinement
24 | self.refinement_t=refinement_t
25 | self.charset=korean_manager.load_charset()
26 | self.adversarial_learning=adversarial_learning
27 | #Build and load model
28 | if weight_path:
29 | self.model = tf.keras.models.load_model(weight_path,compile=False)
30 | else:
31 | model_list={'VGG16':VGG16,'inception-resnet':InceptionResnetV2,'mobilenet':MobilenetV3,'efficient-net':EfficientCNN,'melnyk':melnyk_net,
32 | 'afl':AFL_Model}
33 | settings={'split_components':split_components,'input_shape':image_size,'direct_map':direct_map,'fc_link':fc_link,'refinement_t':refinement_t,\
34 | 'iterative_refinement':iterative_refinement,'data_augmentation':data_augmentation,'adversarial_learning':adversarial_learning}
35 | self.model=model_list[network_type](settings)
36 | if iterative_refinement:
37 | self.decoders=self.find_decoders()
38 |
39 | def find_decoders(self):
40 | return 0
41 |
42 | def predict(self,image,n=1):
43 | if self.split_components:
44 | return predict_char.predict_split(self.model,image,n)
45 | else:
46 | return predict_char.predict_complete(self.model,image,n)
47 |
48 | def plot_val_image(self,val_data):
49 | #Load validation data
50 | val_x,val_y=val_data
51 | #Predict classes
52 | indicies=random.sample(range(len(val_x)),10)
53 | val_x=val_x[indicies]
54 | pred_y=self.predict(val_x,10)
55 |
56 | fig = plt.figure(figsize=(10,1))
57 | for idx in range(10):
58 | plt.subplot(1,10,idx+1)
59 | plt.imshow(val_x[idx],cmap='gray')
60 | plt.axis('off')
61 | plt.savefig('./logs/image.png')
62 | print(pred_y)
63 |
64 | def compile_adversarial_model(self,lr,opt,adversarial_ratio=0):
65 | #build adversarial model for training
66 | input_image=self.model.input
67 | disc_output=self.model.get_layer('DISC')
68 |
69 | self.discriminator=tf.keras.models.Model(self.model.input,disc_output.output)
70 |
71 | for l in self.model.layers:
72 | l.trainable=False
73 |
74 | self.model.get_layer('disc_start').trainable=True
75 | self.model.get_layer('DISC').trainable=True
76 |
77 | lr=lr*adversarial_ratio*3
78 | if opt =='sgd':
79 | optimizer=tf.keras.optimizers.SGD(lr)
80 | elif opt=='adam':
81 | optimizer=tf.keras.optimizers.Adam(lr)
82 | elif opt=='adabound':
83 | optimizer=AdaBound(lr=lr,final_lr=lr*100)
84 |
85 | self.discriminator.compile(optimizer=optimizer,loss='binary_crossentropy')
86 |
87 | def compile_model(self,lr,opt,adversarial_ratio=0):
88 | def inverse_bce(y_true,y_pred):
89 | y_true=y_true*-1+1
90 | return tf.keras.losses.binary_crossentropy(y_true,y_pred)
91 |
92 | #Compile model
93 | if opt =='sgd':
94 | optimizer=tf.keras.optimizers.SGD(lr)
95 | elif opt=='adam':
96 | optimizer=tf.keras.optimizers.Adam(lr)
97 | elif opt=='adabound':
98 | optimizer=AdaBound(lr=lr,final_lr=lr*100)
99 |
100 | if self.iterative_refinement:
101 | losses="categorical_crossentropy"
102 | elif self.split_components:
103 | if self.adversarial_learning:
104 | losses = {
105 | "CHOSUNG": "categorical_crossentropy",
106 | "JUNGSUNG": "categorical_crossentropy",
107 | "JONGSUNG": "categorical_crossentropy",
108 | 'DISC':inverse_bce}
109 | if self.fit_discriminator:
110 | lossWeights = {"CHOSUNG": 1.0-adversarial_ratio, "JUNGSUNG": 1.0-adversarial_ratio,
111 | "JONGSUNG":1.0-adversarial_ratio,"DISC":3*adversarial_ratio}
112 | else:
113 | lossWeights = {"CHOSUNG": 1.0, "JUNGSUNG": 1.0,"JONGSUNG":1.0,"DISC":0}
114 | else:
115 | losses = {
116 | "CHOSUNG": "categorical_crossentropy",
117 | "JUNGSUNG": "categorical_crossentropy",
118 | "JONGSUNG": "categorical_crossentropy"}
119 | lossWeights = {"CHOSUNG": 1.0, "JUNGSUNG": 1.0,"JONGSUNG":1.0}
120 | else:
121 | losses="categorical_crossentropy"
122 | lossWeights=None
123 |
124 | if self.adversarial_learning:
125 | self.model.trainable=True
126 | self.model.get_layer('disc_start').trainable=False
127 | self.model.get_layer('DISC').trainable=False
128 |
129 | self.model.compile(optimizer=optimizer, loss=losses,metrics=["accuracy"],loss_weights=lossWeights)
130 |
131 | def fit_adversarial(self,train_x,train_y,val_x,val_y,batch_size):
132 | train_dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y)).batch(batch_size)
133 | loss_arr,total_p=0,0
134 |
135 | if self.verbose==1:
136 | pbar=tqdm(train_dataset)
137 | else:
138 | pbar=train_dataset
139 | for image,label in pbar:
140 | out=self.model.train_on_batch(image,label)
141 | loss_arr+=np.array(out)
142 | total_p+=1
143 |
144 | if self.fit_discriminator:
145 | self.discriminator.train_on_batch(image,label['DISC'])
146 | results = self.model.evaluate(val_x, val_y, batch_size=128,verbose=self.verbose)
147 | print("Training L:", list(loss_arr/total_p))
148 |
149 | loss_dict = {name+'_loss': pred for name, pred in zip(self.model.output_names, out[:len(out)//2])}
150 | acc_dict = {name+'_accuracy': pred for name, pred in zip(self.model.output_names, out[len(out)//2:])}
151 | z = {**loss_dict, **acc_dict}
152 | return z
153 |
154 | def train(self,epochs=10,lr=0.001,data_path='./data',patch_size=10,batch_size=32,optimizer='adabound',zip_weights=False,
155 | adversarial_ratio=0.15,log_tensorboard=True,log_wandb=False,setup_wandb=False,fit_discriminator=True,silent_mode=False):
156 | def write_tensorboard(summary_writer,history,step):
157 | with summary_writer.as_default():
158 | if self.split_components:
159 | tf.summary.scalar('training_loss', history.history['loss'][0], step=step)
160 | tf.summary.scalar('CHOSUNG_accuracy', history.history['CHOSUNG_accuracy'][0], step=step)
161 | tf.summary.scalar('JUNGSUNG_accuracy', history.history['JUNGSUNG_accuracy'][0], step=step)
162 | tf.summary.scalar('JONGSUNG_accuracy', history.history['JONGSUNG_accuracy'][0], step=step)
163 |
164 | tf.summary.scalar('val_loss', history.history['val_loss'][0], step=step)
165 | tf.summary.scalar('val_CHOSUNG_accuracy', history.history['val_CHOSUNG_accuracy'][0], step=step)
166 | tf.summary.scalar('val_JUNGSUNG_accuracy', history.history['val_JUNGSUNG_accuracy'][0], step=step)
167 | tf.summary.scalar('val_JONGSUNG_accuracy', history.history['val_JONGSUNG_accuracy'][0], step=step)
168 | else:
169 | tf.summary.scalar('training_loss', history.history['loss'][0], step=step)
170 | tf.summary.scalar('val_loss', history.history['accuracy'][0], step=step)
171 | tf.summary.scalar('training_accuracy', history.history['val_loss'][0], step=step)
172 | tf.summary.scalar('val_accuracy', history.history['val_accuracy'][0], step=step)
173 |
174 | def setup_wandboard():
175 | wandb.init(project="KoOCR", config={
176 | 'AFL': self.adversarial_learning,
177 | 'Iterative Refinement': self.iteratve_refinement,
178 | "optiminzer": optimizer,
179 | "batch_size": batch_size,
180 | 'learning_rate':lr,
181 | 'AFL ratio':adversarial_ratio,
182 | 'Split components':self.split_components
183 | })
184 | def write_wandb(history):
185 | wandb.log(history)
186 | train_dataset=dataset.DataPickleLoader(split_components=self.split_components,data_path=data_path,patch_size=patch_size,
187 | return_image_type=self.adversarial_learning,silent_mode=silent_mode)
188 | val_x,val_y=train_dataset.get_val()
189 | if self.iterative_refinement:
190 | val_y=[val_y['CHOSUNG'],val_y['JUNGSUNG'],val_y['JONGSUNG']]*self.refinement_t
191 | self.fit_discriminator=fit_discriminator
192 | self.compile_model(lr,optimizer,adversarial_ratio)
193 | if self.adversarial_learning:
194 | self.compile_adversarial_model(lr,optimizer,adversarial_ratio)
195 |
196 | summary_writer = tf.summary.create_file_writer("./logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
197 | if setup_wandb:
198 | setup_wandboard()
199 | step=0
200 |
201 | if silent_mode:
202 | self.verbose=2
203 | else:
204 | self.verbose=1
205 |
206 | for epoch in range(epochs):
207 | print('Training epoch',epoch)
208 | self.plot_val_image(val_data=(val_x,val_y))
209 | epoch_end=False
210 | while epoch_end==False:
211 | #Train on loaded dataset batch
212 | train_x,train_y,epoch_end=train_dataset.get()
213 | if self.iterative_refinement:
214 | train_y=[train_y['CHOSUNG'],train_y['JUNGSUNG'],train_y['JONGSUNG']]*self.refinement_t
215 |
216 | if self.adversarial_learning:
217 | history=self.fit_adversarial(train_x,train_y,val_x,val_y,batch_size)
218 | else:
219 | history=self.model.fit(x=train_x,y=train_y,epochs=1,validation_data=(val_x,val_y),batch_size=batch_size,verbose=self.verbose)
220 | #Log losses to Tensorboard
221 | if log_tensorboard:
222 | write_tensorboard(summary_writer,history,step)
223 | if log_wandb:
224 | write_wandb(history)
225 | step+=1
226 | #Clear garbage memory
227 | tf.keras.backend.clear_session()
228 | gc.collect()
229 |
230 | #Save weights in checkpoint
231 | self.model.save('./logs/weights', save_format='tf')
232 | if zip_weights:
233 | shutil.make_archive('weights_epoch_'+str(epoch), 'zip', './logs/weights')
--------------------------------------------------------------------------------
/pretrained/plain_melnyk/saved_model.pb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk/saved_model.pb
--------------------------------------------------------------------------------
/pretrained/plain_melnyk/variables/variables.data-00000-of-00001:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk/variables/variables.data-00000-of-00001
--------------------------------------------------------------------------------
/pretrained/plain_melnyk/variables/variables.index:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk/variables/variables.index
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/CAM_handwritten.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/CAM_handwritten.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/CAM_printed.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/CAM_printed.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/handwritten_CHOSUNG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/handwritten_CHOSUNG.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/handwritten_JONGSUNG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/handwritten_JONGSUNG.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/handwritten_JUNGSUNG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/handwritten_JUNGSUNG.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/printed_CHOSUNG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/printed_CHOSUNG.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/printed_JONGSUNG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/printed_JONGSUNG.png
--------------------------------------------------------------------------------
/pretrained/plain_melnyk_evaluation/printed_JUNGSUNG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sieu-n/KoOCR-tensorflow/e9d14bf1988441a8da2a7a91ddf5cb9be851af72/pretrained/plain_melnyk_evaluation/printed_JUNGSUNG.png
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import model
2 | import dataset
3 | import argparse
4 | import os
5 |
6 | #bool type for arguments
7 | def str2bool(v):
8 | if isinstance(v, bool):
9 | return v
10 | if v.lower() in ('yes', 'true', 't', 'y', '1'):
11 | return True
12 | elif v.lower() in ('no', 'false', 'f', 'n', '0'):
13 | return False
14 | else:
15 | raise argparse.ArgumentTypeError('Boolean value expected.')
16 | #Define arguments
17 | parser = argparse.ArgumentParser(description='Download dataset')
18 | parser.add_argument("--data_path", type=str,default='./data')
19 | parser.add_argument("--image_size", type=int,default=256)
20 | parser.add_argument("--split_components", type=str2bool,default=True)
21 | parser.add_argument("--patch_size", type=int,default=10)
22 | parser.add_argument("--zip_weights", type=str2bool,default=False)
23 | parser.add_argument("--network", type=str,default='melnyk',choices=['VGG16','inception-resnet','mobilenet','efficient-net','melnyk','afl'])
24 | parser.add_argument("--fc_link", type=str,default='',choices=['', 'GAP','GWAP','GWOAP'])
25 | parser.add_argument("--iterative_refinement", type=str2bool,default=False)
26 | parser.add_argument("--refinement_t", type=int,default=4)
27 | parser.add_argument("--data_augmentation", type=str2bool,default=False)
28 | parser.add_argument("--fit_discriminator", type=str2bool,default=True)
29 | parser.add_argument("--adversarial_learning", type=str2bool,default=False)
30 | parser.add_argument("--adversarial_ratio", type=float,default=0.15)
31 | parser.add_argument("--silent_mode", type=str2bool,default=False)
32 |
33 | parser.add_argument("--log_tensorboard", type=str2bool,default=True)
34 | parser.add_argument("--log_wandb", type=str2bool,default=False)
35 | parser.add_argument("--setup_wandb", type=str2bool,default=False)
36 |
37 | parser.add_argument("--optimizer", type=str,default='adabound',choices=['sgd', 'adam','adabound'])
38 | parser.add_argument("--direct_map", type=str2bool,default=False)
39 | parser.add_argument("--batch_size", type=int,default=32)
40 | parser.add_argument("--epochs", type=int,default=50)
41 | parser.add_argument("--weights", type=str,default='')
42 | parser.add_argument("--learning_rate", type=float,default=0.001)
43 |
44 | if __name__=='__main__':
45 | args = parser.parse_args()
46 |
47 | KoOCR=model.KoOCR(split_components=args.split_components,weight_path=args.weights,fc_link=args.fc_link,iterative_refinement=args.iterative_refinement,\
48 | network_type=args.network,image_size=args.image_size,direct_map=args.direct_map,refinement_t=args.refinement_t,data_augmentation=args.data_augmentation,
49 | adversarial_learning=args.adversarial_learning)
50 | KoOCR.train(epochs=args.epochs,lr=args.learning_rate,data_path=args.data_path,patch_size=args.patch_size,batch_size=args.batch_size,optimizer=args.optimizer,
51 | zip_weights=args.zip_weights,adversarial_ratio=args.adversarial_ratio,log_tensorboard=args.log_tensorboard,log_wandb=args.log_wandb,
52 | setup_wandb=args.setup_wandb,fit_discriminator=args.fit_discriminator,silent_mode=args.silent_mode)
--------------------------------------------------------------------------------
/utils/CustomLayers.py:
--------------------------------------------------------------------------------
1 | from tensorflow.keras.models import Model
2 | import tensorflow as tf
3 | import numpy as np
4 | import cv2
5 | import utils.korean_manager as korean_manager
6 |
7 | class BahdanauAttention(tf.keras.Model):
8 | def __init__(self, units):
9 | super(BahdanauAttention, self).__init__()
10 | self.W1 = tf.keras.layers.Dense(units)
11 | self.W2 = tf.keras.layers.Dense(units)
12 | self.V = tf.keras.layers.Dense(1)
13 |
14 | def __call__(self, features, hidden):
15 | # features(CNN_encoder output) shape == (batch_size, 36, embedding_dim)
16 |
17 | # hidden shape == (batch_size, hidden_size)
18 | # hidden_with_time_axis shape == (batch_size, 1, hidden_size)
19 | hidden_with_time_axis = tf.expand_dims(hidden, 1)
20 |
21 | # attention_hidden_layer shape == (batch_size, 36, units)
22 | attention_hidden_layer = (tf.nn.tanh(self.W1(features) +
23 | self.W2(hidden_with_time_axis)))
24 |
25 | # score shape == (batch_size, 36, 1)
26 | # This gives you an unnormalized score for each image feature.
27 | score = self.V(attention_hidden_layer)
28 |
29 | # attention_weights shape == (batch_size, 36, 1)
30 | attention_weights = tf.nn.softmax(score, axis=1)
31 |
32 | # context_vector shape after sum == (batch_size, hidden_size)
33 | context_vector = attention_weights * features
34 | context_vector = tf.reduce_sum(context_vector, axis=1)
35 |
36 | return context_vector, attention_weights
37 |
38 | class RNN_Decoder(tf.keras.Model):
39 | def __init__(self, units, class_types):
40 | #units: # classes
41 | super(RNN_Decoder, self).__init__()
42 | self.units = units
43 | self.gru = tf.keras.layers.GRU(self.units,
44 | return_sequences=True,
45 | return_state=True,
46 | recurrent_initializer='glorot_uniform')
47 | self.fc1 = tf.keras.layers.Dense(self.units)
48 | self.fc2 = tf.keras.layers.Dense(class_types)
49 |
50 | self.attention = BahdanauAttention(self.units)
51 |
52 | def __call__(self, features, hidden):
53 | # hidden: previous states features: feature map(conv output)
54 | # defining attention as a separate model
55 |
56 | context_vector, attention_weights = self.attention(features, hidden)
57 |
58 | # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
59 | x = tf.expand_dims(context_vector, 1)
60 |
61 | # passing the concatenated vector to the GRU
62 | output, state = self.gru(x)
63 |
64 | # shape == (batch_size, max_length, hidden_size)
65 | x = self.fc1(output)
66 |
67 | # x shape == (batch_size * max_length, hidden_size)
68 | x = tf.reshape(x, (-1, x.shape[2]))
69 |
70 | # output shape == (batch_size * max_length, class_types)
71 | x = self.fc2(x)
72 |
73 | return x, state, attention_weights
74 |
75 | class GlobalWeightedAveragePooling(tf.keras.Model):
76 | #Implementation of GlobalWeightedAveragePooling
77 | def __init__(self,kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),**kwargs):
78 | #self.num_outputs = num_outputs
79 | super(GlobalWeightedAveragePooling, self).__init__(**kwargs)
80 | self.kernel_initializer =kernel_initializer
81 |
82 |
83 | def build(self, input_shape):
84 | #input_shape=(w,h,c)
85 | self.kernel = self.add_weight("kernel",shape=input_shape[1:],initializer=self.kernel_initializer)
86 |
87 | def call(self, input):
88 | com=tf.math.multiply(input, self.kernel)
89 | return tf.math.reduce_sum(com,axis=[1,2])
90 |
91 | class GlobalWeightedOutputAveragePooling(tf.keras.layers.Layer):
92 | def __init__(self):
93 | #self.num_outputs = num_outputs
94 | super(GlobalWeightedOutputAveragePooling, self).__init__()
95 |
96 | def build(self, input_shape):
97 | #input_shape=(w,h,c)
98 | self.kernel = self.add_weight("kernel",shape=(input_shape[-1],))
99 |
100 | def call(self, input):
101 | out=tf.keras.layers.GlobalAveragePooling2D()(input)
102 | return tf.math.multiply(input, self.kernel)
103 |
104 | class MultiOutputGradCAM:
105 | #CAM Implementaion referenced from https://www.pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/
106 | def __init__(self, model, character):
107 | # store the model, the class index used to measure the class
108 | # activation map, and the layer to be used when visualizing
109 | # the class activation map
110 | self.model = model
111 | self.character_Idx= korean_manager.korean_split(character)
112 | # if the layer name is None, attempt to automatically find
113 | # the target output layer
114 | self.layerName = self.find_target_layer()
115 |
116 | def find_target_layer(self):
117 | # attempt to find the final convolutional layer in the network
118 | # by looping over the layers of the network in reverse order
119 | for layer in reversed(self.model.layers):
120 | # check to see if the layer has a 4D output
121 | if len(layer.output_shape) == 4:
122 | return layer.name
123 | # otherwise, we could not find a 4D layer so the GradCAM
124 | # algorithm cannot be applied
125 | raise ValueError("Could not find 4D layer. Cannot apply GradCAM.")
126 |
127 | def compute_heatmap(self, image, eps=1e-8):
128 | # construct our gradient model by supplying (1) the inputs
129 | # to our pre-trained model, (2) the output of the (presumably)
130 | # final 4D layer in the network, and (3) the output of the
131 | # softmax activations from the model
132 | gradModel = Model(inputs=[self.model.inputs],\
133 | outputs=[self.model.get_layer(self.layerName).output]+[self.model.output])
134 | image=image.reshape(1,image.shape[0],image.shape[1],1)
135 | heatmap_list=[]
136 |
137 | for component in range(3):
138 | # record operations for automatic differentiation
139 | with tf.GradientTape() as tape:
140 | # cast the image tensor to a float-32 data type, pass the
141 | # image through the gradient model, and grab the loss
142 | # associated with the specific class index
143 | inputs = tf.cast(image, tf.float32)
144 | (convOutputs, predictions) = gradModel(inputs)
145 | loss=predictions[component][:, self.character_Idx[component]]
146 | # use automatic differentiation to compute the gradients
147 | grads = tape.gradient(loss, convOutputs)
148 | # compute the guided gradients
149 | castConvOutputs = tf.cast(convOutputs > 0, "float32")
150 | castGrads = tf.cast(grads > 0, "float32")
151 | guidedGrads = castConvOutputs * castGrads * grads
152 | # the convolution and guided gradients have a batch dimension
153 | # (which we don't need) so let's grab the volume itself and
154 | # discard the batch
155 | convOutputs = convOutputs[0]
156 | guidedGrads = guidedGrads[0]
157 | # compute the average of the gradient values, and using them
158 | # as weights, compute the ponderation of the filters with
159 | # respect to the weights
160 | weights = tf.reduce_mean(guidedGrads, axis=(0, 1))
161 | cam = tf.reduce_sum(tf.multiply(weights, convOutputs), axis=-1).numpy()
162 | cam=cam.reshape(cam.shape[0],cam.shape[1],1)
163 | # reshape
164 | (w, h) = (image.shape[1], image.shape[2])
165 | heatmap = tf.image.resize(cam, (w, h)).numpy()
166 | # normalize the heatmap such that all values lie in the range
167 | # [0, 1], scale the resulting values to the range [0, 255],
168 | # and then convert to an unsigned 8-bit integer
169 | numer = heatmap - np.min(heatmap)
170 | denom = (heatmap.max() - heatmap.min()) + eps
171 | heatmap = numer / denom
172 | heatmap = (heatmap * 255).astype("uint8")
173 |
174 | heatmap_list.append(heatmap)
175 | return heatmap_list
--------------------------------------------------------------------------------
/utils/MelnykNet.py:
--------------------------------------------------------------------------------
1 | #Referenced from original implementation of Melnyk-net: https://github.com/pavlo-melnyk/offline-HCCR/blob/master/src/melnyk_net.py
2 | import os
3 |
4 | import numpy as np
5 |
6 | from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Reshape, GlobalAveragePooling2D, Activation, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D
7 | from tensorflow.keras.models import Model
8 | from tensorflow.keras.regularizers import l2
9 | from tensorflow.keras.optimizers import SGD
10 | from tensorflow.keras.initializers import RandomNormal
11 |
12 | from utils.CustomLayers import GlobalWeightedAveragePooling
13 | from utils.model_components import build_FC,PreprocessingPipeline
14 |
15 | def melnyk_net(settings):
16 | random_normal = RandomNormal(stddev=0.001)
17 | reg=0
18 |
19 | input_image=Input(shape=(settings['input_shape'],settings['input_shape']),name='input_image')
20 | preprocessed=Reshape((settings['input_shape'],settings['input_shape'],1))(input_image)
21 | preprocessed=PreprocessingPipeline(settings['direct_map'],settings['data_augmentation'])(preprocessed)
22 |
23 | x = Conv2D(64, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
24 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(preprocessed)
25 | x = BatchNormalization()(x)
26 | x = Activation('relu')(x)
27 |
28 | x = Conv2D(64, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
29 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
30 | x = BatchNormalization()(x)
31 | x = Activation('relu')(x)
32 |
33 | x = AveragePooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
34 |
35 | x = Conv2D(96, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
36 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
37 | x = BatchNormalization()(x)
38 | x = Activation('relu')(x)
39 |
40 | x = Conv2D(64, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
41 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
42 | x = BatchNormalization()(x)
43 | x = Activation('relu')(x)
44 |
45 | x = Conv2D(96, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
46 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
47 | x = BatchNormalization()(x)
48 | x = Activation('relu')(x)
49 |
50 | x = AveragePooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
51 |
52 | x = Conv2D(128, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
53 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
54 | x = BatchNormalization()(x)
55 | x = Activation('relu')(x)
56 |
57 | x = Conv2D(96, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
58 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
59 | x = BatchNormalization()(x)
60 | x = Activation('relu')(x)
61 |
62 | x = Conv2D(128, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
63 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
64 | x = BatchNormalization()(x)
65 | x = Activation('relu')(x)
66 |
67 | x = AveragePooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
68 |
69 | x = Conv2D(256, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
70 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
71 | x = BatchNormalization()(x)
72 | x = Activation('relu')(x)
73 |
74 | x = Conv2D(192, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
75 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
76 | x = BatchNormalization()(x)
77 | x = Activation('relu')(x)
78 |
79 | x = Conv2D(256, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
80 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
81 | x = BatchNormalization()(x)
82 | x = Activation('relu')(x)
83 |
84 | x = AveragePooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
85 |
86 | x = Conv2D(448, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
87 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
88 | x = BatchNormalization()(x)
89 | x = Activation('relu')(x)
90 |
91 | x = Conv2D(256, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
92 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
93 | x = BatchNormalization()(x)
94 | x = Activation('relu')(x)
95 |
96 | x = Conv2D(448, (3, 3), padding='same', strides=(1, 1), kernel_initializer='he_normal', use_bias=False,
97 | kernel_regularizer=l2(reg), bias_regularizer=l2(reg))(x)
98 | x = BatchNormalization()(x)
99 | x = Activation('relu')(x)
100 |
101 | return build_FC(input_image,x,settings)
--------------------------------------------------------------------------------
/utils/korean_manager.py:
--------------------------------------------------------------------------------
1 | import json
2 | import numpy as np
3 |
4 | CHOSUNG_LIST = ['ㄱ', 'ㄲ', 'ㄴ', 'ㄷ', 'ㄸ', 'ㄹ', 'ㅁ', 'ㅂ', 'ㅃ', 'ㅅ', 'ㅆ', 'ㅇ', 'ㅈ', 'ㅉ', 'ㅊ', 'ㅋ', 'ㅌ', 'ㅍ', 'ㅎ', ' ']
5 | # 중성 리스트. 00 ~ 20
6 | JUNGSUNG_LIST = ['ㅏ', 'ㅐ', 'ㅑ', 'ㅒ', 'ㅓ', 'ㅔ', 'ㅕ', 'ㅖ', 'ㅗ', 'ㅘ', 'ㅙ', 'ㅚ', 'ㅛ', 'ㅜ', 'ㅝ', 'ㅞ', 'ㅟ', 'ㅠ', 'ㅡ', 'ㅢ', 'ㅣ', ' ']
7 | # 종성 리스트. 00 ~ 27 + 1(1개 없음)
8 | JONGSUNG_LIST = [' ', 'ㄱ', 'ㄲ', 'ㄳ', 'ㄴ', 'ㄵ', 'ㄶ', 'ㄷ', 'ㄹ', 'ㄺ', 'ㄻ', 'ㄼ', 'ㄽ', 'ㄾ', 'ㄿ', 'ㅀ', 'ㅁ', 'ㅂ', 'ㅄ', 'ㅅ', 'ㅆ', 'ㅇ', 'ㅈ', 'ㅊ', 'ㅋ', 'ㅌ', 'ㅍ', 'ㅎ']
9 |
10 | def load_charset(charset='kr',charset_path='files/cjk.json'):
11 | #Load charset(list of characters): charset[index] = korean
12 | #Charset referenced from zi2zi: kr, jp, gbk2312, gbk2312_t, gbk
13 |
14 | with open(charset_path) as json_file:
15 | data = json.load(json_file)
16 | charset=data[charset]
17 | return charset
18 | def inverse_charset(charset='kr',charset_path='files/cjk.json'):
19 | #Load the inverse of the charset: inverse[korean] = index
20 | charset=load_charset(charset=charset,charset_path=charset_path)
21 | inverse={}
22 | for x in range(len(charset)):
23 | inverse[charset[x]]=x
24 | return inverse
25 |
26 | def index_to_korean(l):
27 | cho,jung,jong=l
28 | characterValue = ( (cho * 21) + jung) * 28 + jong + 0xAC00
29 | return chr(characterValue)
30 |
31 | def korean_numpy(words):
32 | charset=inverse_charset()
33 | arr=[]
34 | for w in words:
35 | ch1,ch2,ch3=korean_split(w)
36 | arr.append(charset[w])
37 | return np.array(arr)
38 |
39 | def korean_split(w):
40 | ch1 = (ord(w) - ord('가'))//588
41 | ch2 = ((ord(w) - ord('가')) - (588*ch1)) // 28
42 | ch3 = (ord(w) - ord('가')) - (588*ch1) - 28*ch2
43 |
44 | #ㄱ,ㄴ,ㄷ,... 처리
45 | if ch1==-54:
46 | ch1,ch2,ch3=19,22,ord(w) - ord('ㄱ')+1
47 | return ch1,ch2,ch3
48 |
49 | def korean_split_numpy(words,to_text=False):
50 | # 한글 글자의 np array를 입력받아 초성, 중성, 종성을 각각의 array로 내보내는 함수
51 | cho,jung,jong=[],[],[]
52 | for w in words:
53 | ch1,ch2,ch3=korean_split(w)
54 |
55 | if to_text:
56 | cho.append(CHOSUNG_LIST[ch1])
57 | jung.append(JUNGSUNG_LIST[ch2])
58 | jong.append(JONGSUNG_LIST[ch3])
59 | else:
60 | cho.append(ch1)
61 | jung.append(ch2)
62 | jong.append(ch3)
63 |
64 | return np.array(cho),np.array(jung),np.array(jong)
--------------------------------------------------------------------------------
/utils/model_architectures.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 | import utils.korean_manager as korean_manager
4 | import utils.CustomLayers as CustomLayers
5 | from utils.model_components import build_FC,PreprocessingPipeline
6 |
7 | def VGG16(settings):
8 | if settings['direct_map']:
9 | input_channels=8
10 | else:
11 | input_channels=1
12 | VGG_net = tf.keras.applications.VGG16(input_shape=(settings['input_shape'],settings['input_shape'],input_channels),
13 | include_top=False,weights=None)
14 |
15 | input_image=tf.keras.layers.Input(shape=(settings['input_shape'],settings['input_shape']),name='input_image')
16 | preprocessed=tf.keras.layers.Reshape((settings['input_shape'],settings['input_shape'],1))(input_image)
17 | preprocessed=PreprocessingPipeline(settings['direct_map'],settings['data_augmentation'])(preprocessed)
18 |
19 | feature=VGG_net(preprocessed)
20 |
21 | return build_FC(input_image,x,settings)
22 |
23 | def EfficientCNN(settings):
24 | def fire_block(x,channels,stride=1):
25 | fire=tf.keras.layers.Conv2D(channels//8,kernel_size=1,padding='same')(x)
26 | firel=tf.keras.layers.BatchNormalization()(fire)
27 | fire=tf.keras.layers.LeakyReLU()(fire)
28 |
29 | fire1=tf.keras.layers.Conv2D(channels//2,kernel_size=3,padding='same',strides=(stride,stride))(fire)
30 | fire1=tf.keras.layers.BatchNormalization()(fire1)
31 | fire1=tf.keras.layers.LeakyReLU()(fire1)
32 |
33 | fire2=tf.keras.layers.Conv2D(channels//2,kernel_size=3,padding='same',strides=(stride,stride))(fire)
34 | fire2=tf.keras.layers.BatchNormalization()(fire2)
35 | fire2=tf.keras.layers.LeakyReLU()(fire2)
36 |
37 | fire=tf.keras.layers.concatenate([fire1,fire2])
38 | return fire
39 |
40 | input_image=tf.keras.layers.Input(shape=(settings['input_shape'],settings['input_shape']),name='input_image')
41 | preprocessed=tf.keras.layers.Reshape((settings['input_shape'],settings['input_shape'],1))(input_image)
42 | preprocessed=PreprocessingPipeline(settings['direct_map'],settings['data_augmentation'])(preprocessed)
43 |
44 | conv1=tf.keras.layers.Conv2D(64,kernel_size=3,padding='same')(preprocessed)
45 | conv1=tf.keras.layers.BatchNormalization()(conv1)
46 | conv1=tf.keras.layers.LeakyReLU()(conv1)
47 |
48 | fire1=fire_block(conv1,64,2)
49 | fire2=fire_block(fire1,128)
50 | fire3=fire_block(fire2,128)
51 | fire4=fire_block(fire3,128,2)
52 | fire5=fire_block(fire4,256)
53 | fire6=fire_block(fire5,256)
54 | fire7=fire_block(fire6,256,2)
55 | fire8=fire_block(fire7,512)
56 | fire9=fire_block(fire8,512)
57 | fire10=fire_block(fire9,512)
58 | fire11=fire_block(fire10,512)
59 |
60 | return build_FC(input_image,fire11,settings)
61 |
62 | def InceptionResnetV2(settings):
63 | if settings['direct_map']:
64 | input_channels=8
65 | else:
66 | input_channels=1
67 | InceptionResnet = tf.keras.applications.InceptionResNetV2(input_shape=(settings['input_shape'],settings['input_shape'],input_channels),
68 | include_top=False,weights=None)
69 |
70 | input_image=tf.keras.layers.Input(shape=(settings['input_shape'],settings['input_shape']),name='input_image')
71 | preprocessed=tf.keras.layers.Reshape((settings['input_shape'],settings['input_shape'],1))(input_image)
72 | preprocessed=PreprocessingPipeline(settings['direct_map'],settings['data_augmentation'])(preprocessed)
73 |
74 | feature=InceptionResnet(preprocessed)
75 |
76 | return build_FC(input_image,x,settings)
77 |
78 | def MobilenetV3(settings):
79 | if settings['direct_map']:
80 | input_channels=8
81 | else:
82 | input_channels=1
83 | Mobilenet = tf.keras.applications.MobileNetV3Small(input_shape=(settings['input_shape'],settings['input_shape'],input_channels),
84 | include_top=False, weights=None)
85 |
86 | input_image=tf.keras.layers.Input(shape=(settings['input_shape'],settings['input_shape']),name='input_image')
87 | preprocessed=tf.keras.layers.Reshape((settings['input_shape'],settings['input_shape'],1))(input_image)
88 | preprocessed=PreprocessingPipeline(settings['direct_map'],settings['data_augmentation'])(preprocessed)
89 |
90 | feature=Mobilenet(preprocessed)
91 |
92 | return build_FC(input_image,x,settings)
93 |
94 | def AFL_Model(settings):
95 | if settings['direct_map']:
96 | input_channels=8
97 | else:
98 | input_channels=1
99 | input_image=tf.keras.layers.Input(shape=(settings['input_shape'],settings['input_shape']),name='input_image')
100 | preprocessed=tf.keras.layers.Reshape((settings['input_shape'],settings['input_shape'],1))(input_image)
101 | preprocessed=PreprocessingPipeline(settings['direct_map'],settings['data_augmentation'])(preprocessed)
102 |
103 | def conv_block(channels,kernel_size=3,strides=1,bn=True):
104 | m=tf.keras.models.Sequential([
105 | tf.keras.layers.Conv2D(channels,kernel_size,strides=strides,padding='same'),
106 | tf.keras.layers.BatchNormalization(),
107 | tf.keras.layers.LeakyReLU()
108 | ])
109 | return m
110 |
111 | x=conv_block(96)(preprocessed)
112 | x=conv_block(96,strides=2)(x)
113 | x=conv_block(128)(x)
114 | x=conv_block(128,strides=2)(x)
115 | x=conv_block(160)(x)
116 | x=conv_block(160,strides=2)(x)
117 | x=conv_block(256)(x)
118 | x=conv_block(256,strides=2)(x)
119 | x=conv_block(256)(x)
120 |
121 | return build_FC(input_image,x,settings)
--------------------------------------------------------------------------------
/utils/model_components.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 | from tensorflow.keras.models import Model
4 | import utils.korean_manager as korean_manager
5 | import utils.CustomLayers as CustomLayers
6 |
7 | def build_FC(input_image,x,settings):
8 | if settings['iterative_refinement']==True:
9 | preds=build_ir_split(input_image,x,settings)
10 | return Model(inputs=input_image,outputs=preds)
11 |
12 | if settings['split_components']:
13 | model=build_FC_split(input_image,x,settings)
14 | return model
15 | else:
16 | x=build_FC_regular(x)
17 | return Model(inputs=input_image,outputs=x)
18 |
19 | def build_FC_split(input_image,x,settings):
20 | if settings['fc_link']=='':
21 | x=tf.keras.layers.Flatten()(x)
22 | elif settings['fc_link']=='GAP':
23 | x=tf.keras.layers.GlobalAveragePooling2D()(x)
24 | elif settings['fc_link']=='GWAP':
25 | x=CustomLayers.GlobalWeightedAveragePooling()(x)
26 |
27 | dense=tf.keras.layers.Dropout(0.5)(x)
28 | dense=tf.keras.layers.Dense(2048)(dense)
29 | dense=tf.keras.layers.BatchNormalization()(dense)
30 | dense=tf.keras.layers.LeakyReLU()(dense)
31 |
32 | CHO=tf.keras.layers.Dense(len(korean_manager.CHOSUNG_LIST),activation='softmax',name='CHOSUNG')(dense)
33 | JUNG=tf.keras.layers.Dense(len(korean_manager.JUNGSUNG_LIST),activation='softmax',name='JUNGSUNG')(dense)
34 | JONG=tf.keras.layers.Dense(len(korean_manager.JONGSUNG_LIST),activation='softmax',name='JONGSUNG')(dense)
35 | #Define discriminator
36 | if settings['adversarial_learning']:
37 | disc=tf.keras.layers.Dense(512,name='disc_start')(x)
38 | disc=tf.keras.layers.LeakyReLU()(disc)
39 | disc=tf.keras.layers.Dropout(0.5)(disc)
40 | disc=tf.keras.layers.Dense(1,activation='sigmoid',name='DISC')(disc)
41 |
42 | return Model(inputs=input_image,outputs=[CHO,JUNG,JONG,disc])
43 |
44 | return Model(inputs=input_image,outputs=[CHO,JUNG,JONG])
45 |
46 | def build_ir_split(input_image,x,settings):
47 | units=512
48 | _,width,height,channels=x.shape
49 | x=tf.keras.layers.Reshape((width*height,channels))(x)
50 | #Define attention + GRU for each component
51 | CHO_RNN=CustomLayers.RNN_Decoder(units,len(korean_manager.CHOSUNG_LIST))
52 | JUNG_RNN=CustomLayers.RNN_Decoder(units,len(korean_manager.JUNGSUNG_LIST))
53 | JONG_RNN=CustomLayers.RNN_Decoder(units,len(korean_manager.JONGSUNG_LIST))
54 |
55 | #Build RNN by looping the decoder t times
56 | zero_list=tf.tile(tf.zeros_like(input_image)[:,0:1,1],tf.constant([1,512]))
57 | hidden_CHO, hidden_JUNG, hidden_JONG = zero_list,zero_list,zero_list
58 | pred_list=[]
59 |
60 | for timestep in range(settings['refinement_t']):
61 | pred_CHO, hidden_CHO,_ = CHO_RNN(x, hidden_CHO)
62 | pred_JUNG, hidden_CHO,_ = JUNG_RNN(x, hidden_JUNG)
63 | pred_JONG, hidden_CHO,_ = JONG_RNN(x, hidden_JONG)
64 |
65 | if not timestep==settings['refinement_t']-1:
66 | index=str(timestep)
67 | else:
68 | index=''
69 | #Rename layers by mapping tensors into layers
70 | pred_CHO = tf.keras.layers.Lambda(lambda val:val,name='CHOSUNG'+index)(pred_CHO)
71 | pred_JUNG = tf.keras.layers.Lambda(lambda val:val,name='JUNGSUNG'+index)(pred_JUNG)
72 | pred_JONG = tf.keras.layers.Lambda(lambda val:val,name='JONGSUNG'+index)(pred_JONG)
73 | pred_list+=[pred_CHO,pred_JUNG,pred_JONG]
74 |
75 | return pred_list
76 |
77 | def build_FC_regular(x):
78 | x=tf.keras.layers.Flatten()(x)
79 | x=tf.keras.layers.Dense(1024)(x)
80 | x=tf.keras.layers.Dense(len(korean_manager.load_charset()),activation='softmax',name='output')(x)
81 | return x
82 |
83 | def PreprocessingPipeline(direct_map,data_augmentation):
84 | preprocessing=tf.keras.models.Sequential()
85 |
86 | #[0, 255] to [0, 1] with black white reversed
87 | preprocessing.add(tf.keras.layers.experimental.preprocessing.Rescaling(scale=-1/255,offset=1))
88 | #Whether to perform data augmentation
89 | if data_augmentation==True:
90 | preprocessing.add(DataAugmentation())
91 | #DirectMap normalization
92 | if direct_map==True:
93 | preprocessing.add(DirectMapGeneration())
94 | return preprocessing
95 |
96 | def DataAugmentation():
97 | augment = tf.keras.Sequential([
98 | tf.keras.layers.experimental.preprocessing.RandomZoom( height_factor=(-0.2, 0.1),width_factor=(-0.2, 0.1),fill_mode='constant'),
99 | tf.keras.layers.experimental.preprocessing.RandomRotation(0.1,fill_mode='constant'),
100 | tf.keras.layers.experimental.preprocessing.RandomTranslation(0.1,0.1,fill_mode='constant')
101 |
102 | ])
103 | return augment
104 |
105 | def DirectMapGeneration():
106 | #Generate sobel filter for 8 direction maps
107 | sobel_filters=[
108 | [[-1,0,1],
109 | [-2,0,2],
110 | [-1,0,1]],
111 |
112 | [[1,0,-1],
113 | [2,0,-2],
114 | [1,0,-1]],
115 |
116 | [[1,2,1],
117 | [0,0,0],
118 | [-1,-2,-1]],
119 |
120 | [[-1,-2,-1],
121 | [0,0,0],
122 | [1,2,1]],
123 |
124 | [[0,1,2],
125 | [-1,0,1],
126 | [-2,-1,0]],
127 |
128 | [[0,-1,-2],
129 | [1,0,-1],
130 | [2,1,0]],
131 |
132 | [[-2,-1,0],
133 | [-1,0,1],
134 | [0,1,2]],
135 |
136 | [[2,1,0],
137 | [1,0,-1],
138 | [0,-1,-2]]]
139 | sobel_filters=np.array(sobel_filters).astype(np.float).reshape(8,3,3,1)
140 | sobel_filters=np.moveaxis(sobel_filters, 0, -1)
141 |
142 | DirectMap = tf.keras.models.Sequential()
143 | DirectMap.add(tf.keras.layers.Conv2D(8, (3,3), padding='same',input_shape=(None, None, 1),use_bias=False))
144 | DirectMap.set_weights([sobel_filters])
145 | return DirectMap
--------------------------------------------------------------------------------
/utils/predict_char.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import utils.korean_manager as korean_manager
3 |
4 | def predict_complete(model,image,n=1):
5 | #Predict the top-n classes of the image
6 | #Returns top n characters that maximize the probability
7 | charset=korean_manager.load_charset()
8 | if image.shape==(256,256):
9 | image=image.reshape((1,256,256))
10 | pred_class=model.predict(image)
11 | pred_class=np.argsort(pred_class,axis=1)[:,-n:]
12 | pred_hangeul=[]
13 | for idx in range(image.shape[0]):
14 | pred_hangeul.append([])
15 | for char in pred_class[idx]:
16 | pred_hangeul[-1].append(charset[char])
17 | return pred_hangeul
18 |
19 | def split_topn(cho_pred,jung_pred,jong_pred,n):
20 | k=int(n**(1/3))+2
21 | cho_idx,jung_idx,jong_idx=np.argsort(cho_pred,axis=1)[:,-k:],np.argsort(jung_pred,axis=1)[:,-k:],np.argsort(jong_pred,axis=1)[:,-k:]
22 | cho_pred,jung_pred,jong_pred=np.sort(cho_pred,axis=1)[:,-k:],np.sort(jung_pred,axis=1)[:,-k:],np.sort(jong_pred,axis=1)[:,-k:]
23 | #Convert indicies to korean character
24 | pred_hangeul=[]
25 | for idx in range(cho_pred.shape[0]):
26 | pred_hangeul.append([])
27 |
28 | cho_prob,jung_prob,jong_prob=cho_pred[idx],jung_pred[idx].reshape(-1,1),jong_pred[idx].reshape(-1,1)
29 |
30 | mult=((cho_prob*jung_prob).flatten()*jong_prob).flatten().argsort()[-5:][::-1]
31 | for max_idx in mult:
32 | pred_hangeul[-1].append(korean_manager.index_to_korean((cho_idx[idx][max_idx%k],jung_idx[idx][(max_idx%(k*k))//k]\
33 | ,jong_idx[idx][max_idx//(k*k)])))
34 |
35 | return pred_hangeul
36 |
37 | def predict_ir(model,image,n=1, t=4):
38 | def find_target_layer(model):
39 | # attempt to find the final convolutional layer in the network
40 | # by looping over the layers of the network in reverse order
41 | for layer in reversed(model.layers):
42 | # check to see if the layer has a 4D output
43 | if len(layer.output_shape) == 4:
44 | return layer.name
45 | # otherwise, we could not find a 4D layer so the GradCAM
46 | # algorithm cannot be applied
47 | raise ValueError("Could not find 4D layer. Cannot apply GradCAM.")
48 | return 0
49 |
50 | def predict_split(model,image,n=1):
51 | #Predict the top-n classes of the image
52 | #k: top classes for each component to generate
53 | #Returns top n characters that maximize pred(chosung)*pred(jungsung)*pred(jongsung)
54 |
55 | if image.shape==(256,256):
56 | image=image.reshape((1,256,256))
57 | #Predict top n classes
58 |
59 | prediction_list=model.predict(image)
60 | prediction_dict = {name: pred for name, pred in zip(model.output_names, prediction_list)}
61 | #cho_pred,jung_pred,jong_pred=prediction_dict['CHOSUNG'],prediction_dict['JUNGSUNG'],prediction_dict['JONGSUNG']
62 | cho_pred,jung_pred,jong_pred=prediction_list[0],prediction_list[1],prediction_list[2]
63 | return split_topn(cho_pred,jung_pred,jong_pred,n)
--------------------------------------------------------------------------------