├── BM68elc.acc ├── BraineryBytes_OpenSees_Examples_Manual_Example_1a_Elastic_Cantilever_Column_EQgroundMotion.ipynb ├── BraineryBytes_OpenSees_Examples_Manual_Example_1a_Elastic_Cantilever_Column_Pushover.ipynb ├── BraineryBytes_OpenSees_Examples_Manual_Example_1b_Elastic_Portal_Frame_EQgroundMotion.ipynb ├── BraineryBytes_OpenSees_Examples_Manual_Example_1b_Elastic_Portal_Frame_Pushover.ipynb ├── BraineryBytes_OpenSees_Examples_Manual_Example_9_MomentCurvaturAnalysis.ipynb ├── LICENSE ├── NHR3_CaliforniaUHSmap_SITE_SPECIFIC_Z25_km.html ├── README.md ├── requirements.in ├── requirements.txt ├── runtime.txt └── tt.md /BM68elc.acc: -------------------------------------------------------------------------------- 1 | -.1368849E-02 -.1659410E-02 -.1466880E-02 -.6865326E-03 -.6491235E-03 2 | -.6172128E-03 -.5942289E-03 -.5720329E-03 -.5517003E-03 -.5367939E-03 3 | -.5300330E-03 -.5315104E-03 -.5389920E-03 -.5492582E-03 -.5592027E-03 4 | -.5659958E-03 -.5672101E-03 -.5617805E-03 -.5502959E-03 -.5347288E-03 5 | -.5176619E-03 -.5013709E-03 -.4873454E-03 -.4763228E-03 -.4683559E-03 6 | -.4626830E-03 -.4579708E-03 -.4512405E-03 -.4376077E-03 -.4130071E-03 7 | -.3772566E-03 -.3363394E-03 -.3030926E-03 -.2926074E-03 -.3144186E-03 8 | -.3668375E-03 -.4373818E-03 -.5104884E-03 -.5745380E-03 -.6248976E-03 9 | -.6621411E-03 -.6878470E-03 -.7014600E-03 -.6985488E-03 -.6737667E-03 10 | -.6258232E-03 -.5616336E-03 -.4955459E-03 -.4432164E-03 -.4144737E-03 11 | -.4103149E-03 -.4251781E-03 -.4493034E-03 -.4742715E-03 -.4942019E-03 12 | -.5021476E-03 -.4907415E-03 -.4549906E-03 -.4008473E-03 -.3457893E-03 13 | -.3076823E-03 -.2975411E-03 -.3148410E-03 -.3469618E-03 -.3746677E-03 14 | -.3814194E-03 -.3598713E-03 -.3127679E-03 -.2503611E-03 -.1870004E-03 15 | -.1381307E-03 -.1166398E-03 -.1296596E-03 -.1730662E-03 -.2365307E-03 16 | -.3092055E-03 -.3795541E-03 -.4410602E-03 -.4886626E-03 -.5170590E-03 17 | -.5252823E-03 -.5139311E-03 -.4858098E-03 -.4459504E-03 -.3992677E-03 18 | -.3528575E-03 -.3119584E-03 -.2767747E-03 -.2493392E-03 -.2343354E-03 19 | -.2328132E-03 -.2443271E-03 -.2710242E-03 -.3142711E-03 -.3756243E-03 20 | -.4585760E-03 -.5641321E-03 -.6901264E-03 -.8277058E-03 -.9398496E-03 21 | -.9604577E-03 -.8289034E-03 -.5332316E-03 -.1380318E-03 .2342108E-03 22 | .4651973E-03 .5026886E-03 .3746881E-03 .1623773E-03 -.5159882E-04 23 | -.2224880E-03 -.3475301E-03 -.4529523E-03 -.5485990E-03 -.5963545E-03 24 | -.5423656E-03 -.3657646E-03 -.1048402E-03 .1563278E-03 .3291475E-03 25 | .3576328E-03 .2409380E-03 .2377646E-04 -.2316319E-03 -.4694656E-03 26 | -.6625028E-03 -.8119362E-03 -.9298628E-03 -.1028468E-02 -.1108383E-02 27 | -.1131224E-02 -.1020689E-02 -.7165112E-03 -.2327270E-03 .3181869E-03 28 | .7732246E-03 .1012043E-02 .1013671E-02 .8560355E-03 .6690806E-03 29 | .5646968E-03 .5919845E-03 .7377345E-03 .9490117E-03 .1157766E-02 30 | .1288701E-02 .1282487E-02 .1122759E-02 .8318915E-03 .4619941E-03 31 | .7578448E-04 -.2595554E-03 -.4939353E-03 -.6127490E-03 -.6275750E-03 32 | -.5752344E-03 -.4995743E-03 -.4264229E-03 -.3601404E-03 -.3004083E-03 33 | -.2406227E-03 -.1628483E-03 -.3998632E-04 .1649808E-03 .4539122E-03 34 | .7517190E-03 .9316287E-03 .8846478E-03 .5857181E-03 .1074495E-03 35 | -.4397852E-03 -.9508948E-03 -.1343749E-02 -.1561289E-02 -.1537678E-02 36 | -.1227062E-02 -.6359309E-03 .1519731E-03 .9751270E-03 .1659683E-02 37 | .2090323E-02 .2247826E-02 .2201305E-02 .2058203E-02 .1895573E-02 38 | .1737760E-02 .1553215E-02 .1242380E-02 .7156433E-03 .5001116E-04 39 | -.5054628E-03 -.6890887E-03 -.4238027E-03 .1011130E-03 .5498104E-03 40 | .6308834E-03 .2434936E-03 -.5144872E-03 -.1425978E-02 -.2207871E-02 41 | -.2588403E-02 -.2416130E-02 -.1701441E-02 -.6324158E-03 .4489725E-03 42 | .1181227E-02 .1316547E-02 .7973359E-03 -.2602228E-03 -.1657394E-02 43 | -.3151829E-02 -.4439463E-02 -.5178411E-02 -.5151548E-02 -.4419849E-02 44 | -.3294586E-02 -.2165649E-02 -.1266916E-02 -.5719502E-03 .1140084E-03 45 | .9530592E-03 .1899989E-02 .2754509E-02 .3333837E-02 .3558579E-02 46 | .3481950E-02 .3221851E-02 .2824910E-02 .2273374E-02 .1577169E-02 47 | .8367896E-03 .2027145E-03 -.2373641E-03 -.4614556E-03 -.4731789E-03 48 | -.2183073E-03 .4104828E-03 .1459868E-02 .2860114E-02 .4348360E-02 49 | .5528933E-02 .6097511E-02 .5985376E-02 .5383175E-02 .4639648E-02 50 | .4059716E-02 .3743902E-02 .3490429E-02 .2858654E-02 .1525807E-02 51 | -.3418321E-03 -.2117817E-02 -.3132606E-02 -.3067405E-02 -.2029459E-02 52 | -.4221254E-03 .1279269E-02 .2716792E-02 .3687018E-02 .4125139E-02 53 | .4074137E-02 .3662913E-02 .3043893E-02 .2233206E-02 .1065048E-02 54 | -.5910665E-03 -.2497506E-02 -.4059191E-02 -.4734788E-02 -.4355504E-02 55 | -.3183642E-02 -.1697557E-02 -.2707831E-03 .9875352E-03 .2151907E-02 56 | .3263816E-02 .4199429E-02 .4759887E-02 .4825527E-02 .4432848E-02 57 | .3760105E-02 .3017075E-02 .2350750E-02 .1810708E-02 .1373070E-02 58 | .9716151E-03 .5537977E-03 .1551401E-03 -.1146315E-03 -.1525016E-03 59 | .8037190E-04 .5542061E-03 .1173618E-02 .1820585E-02 .2425000E-02 60 | .2926893E-02 .3238843E-02 .3279656E-02 .2992806E-02 .2362163E-02 61 | .1372295E-02 .2313812E-04 -.1448616E-02 -.2543549E-02 -.2850379E-02 62 | -.2427525E-02 -.1864917E-02 -.1841201E-02 -.2558433E-02 -.3556204E-02 63 | -.4063939E-02 -.3529889E-02 -.1969941E-02 .1971637E-05 .1588542E-02 64 | .2244687E-02 .1873185E-02 .7977154E-03 -.5171107E-03 -.1717952E-02 65 | -.2648191E-02 -.3320288E-02 -.3766790E-02 -.3906620E-02 -.3602483E-02 66 | -.2795473E-02 -.1624758E-02 -.4698606E-03 .2144823E-03 .1413113E-03 67 | -.6730203E-03 -.1847835E-02 -.2630158E-02 -.2274249E-02 -.6524350E-03 68 | .1573817E-02 .3385189E-02 .4056466E-02 .3445002E-02 .1897480E-02 69 | -.7834726E-06 -.1758264E-02 -.3163954E-02 -.4224580E-02 -.4961730E-02 70 | -.5277184E-02 -.4996010E-02 -.4023828E-02 -.2450240E-02 -.5552267E-03 71 | .1274664E-02 .2708539E-02 .3615917E-02 .4076754E-02 .4278436E-02 72 | .4381952E-02 .4374117E-02 .4039416E-02 .3125690E-02 .1526682E-02 73 | -.6629957E-03 -.3174034E-02 -.5620508E-02 -.7393678E-02 -.7657670E-02 74 | -.5879189E-02 -.2309056E-02 .2104524E-02 .6124863E-02 .8661836E-02 75 | .9093149E-02 .7418333E-02 .4183904E-02 .1723107E-03 -.3926354E-02 76 | -.7599501E-02 -.1040893E-01 -.1196732E-01 -.1209718E-01 -.1098399E-01 77 | -.9148456E-02 -.7211587E-02 -.5598882E-02 -.4332776E-02 -.3016100E-02 78 | -.1208796E-02 .1051286E-02 .3165395E-02 .4405513E-02 .4396087E-02 79 | .3297939E-02 .1655353E-02 .7416014E-04 -.1064366E-02 -.1709471E-02 80 | -.2034871E-02 -.2232056E-02 -.2305923E-02 -.2068891E-02 -.1321939E-02 81 | -.8340139E-04 .1261539E-02 .2134704E-02 .2109285E-02 .1105460E-02 82 | -.5894554E-03 -.2470004E-02 -.4065335E-02 -.5114128E-02 -.5622219E-02 83 | -.5758567E-02 -.5625456E-02 -.5164963E-02 -.4249916E-02 -.2873503E-02 84 | -.1300094E-02 -.4597824E-05 .5635215E-03 .2430489E-03 -.7996342E-03 85 | -.2202475E-02 -.3517325E-02 -.4370145E-02 -.4594031E-02 -.4247630E-02 86 | -.3535756E-02 -.2695440E-02 -.1891009E-02 -.1114788E-02 -.2001966E-03 87 | .1063983E-02 .2729472E-02 .4506580E-02 .5904495E-02 .6538514E-02 88 | .6304454E-02 .5380864E-02 .4057021E-02 .2569189E-02 .1081627E-02 89 | -.2431288E-03 -.1132123E-02 -.1222615E-02 -.2623135E-03 .1692263E-02 90 | .4233489E-02 .6691237E-02 .8351827E-02 .8781418E-02 .7993135E-02 91 | .6368712E-02 .4417529E-02 .2553299E-02 .9862523E-03 -.2879211E-03 92 | -.1353996E-02 -.2215209E-02 -.2753861E-02 -.2802267E-02 -.2290656E-02 93 | -.1316115E-02 -.6447474E-04 .1257941E-02 .2452606E-02 .3298001E-02 94 | .3545191E-02 .3020925E-02 .1768330E-02 .1555108E-03 -.1161917E-02 95 | -.1511165E-02 -.5886191E-03 .1294113E-02 .3326199E-02 .4659119E-02 96 | .4817445E-02 .3850162E-02 .2221826E-02 .5993848E-03 -.3028908E-03 97 | .4499610E-04 .1757564E-02 .4515811E-02 .7747015E-02 .1080406E-01 98 | .1304353E-01 .1395124E-01 .1333330E-01 .1139073E-01 .8626151E-02 99 | .5657044E-02 .2991235E-02 .8765410E-03 -.7137361E-03 -.1944390E-02 100 | -.2910045E-02 -.3511966E-02 -.3524041E-02 -.2828079E-02 -.1517566E-02 101 | .1316982E-03 .1753455E-02 .3100957E-02 .4107929E-02 .4813638E-02 102 | .5258774E-02 .5355058E-02 .4944081E-02 .3965876E-02 .2490912E-02 103 | .6955959E-03 -.1175544E-02 -.2833030E-02 -.3900410E-02 -.3998603E-02 104 | -.2931521E-02 -.8106600E-03 .2012093E-02 .5086689E-02 .7945016E-02 105 | .1019194E-01 .1156584E-01 .1204074E-01 .1182632E-01 .1122714E-01 106 | .1050766E-01 .9726859E-02 .8686699E-02 .7115794E-02 .4980392E-02 107 | .2607636E-02 .4853645E-03 -.1043528E-02 -.2024556E-02 -.2885799E-02 108 | -.4165203E-02 -.6174022E-02 -.8735769E-02 -.1119461E-01 -.1278969E-01 109 | -.1308059E-01 -.1213089E-01 -.1045354E-01 -.8704736E-02 -.7365831E-02 110 | -.6595419E-02 -.6254681E-02 -.6079807E-02 -.5833011E-02 -.5404578E-02 111 | -.4812268E-02 -.4096855E-02 -.3282374E-02 -.2382386E-02 -.1371636E-02 112 | -.2345010E-03 .1029128E-02 .2427386E-02 .3910080E-02 .5297981E-02 113 | .6098532E-02 .5564267E-02 .3285883E-02 -.4251326E-03 -.4773041E-02 114 | -.8874927E-02 -.1201173E-01 -.1370493E-01 -.1378610E-01 -.1244907E-01 115 | -.1014931E-01 -.7440821E-02 -.4775990E-02 -.2391629E-02 -.3412078E-03 116 | .1422210E-02 .2980469E-02 .4361524E-02 .5424185E-02 .5920223E-02 117 | .5656604E-02 .4614099E-02 .2987099E-02 .1059008E-02 -.9265047E-03 118 | -.2832559E-02 -.4642235E-02 -.6381750E-02 -.7981423E-02 -.9160859E-02 119 | -.9536279E-02 -.8840301E-02 -.7065088E-02 -.4407939E-02 -.1073603E-02 120 | .2747630E-02 .6774304E-02 .1060120E-01 .1376236E-01 .1586998E-01 121 | .1671592E-01 .1635498E-01 .1510440E-01 .1335503E-01 .1139606E-01 122 | .9353882E-02 .7269033E-02 .5321099E-02 .3970154E-02 .3756399E-02 123 | .4945238E-02 .7369704E-02 .1047504E-01 .1341277E-01 .1519901E-01 124 | .1512407E-01 .1319094E-01 .1012762E-01 .6957527E-02 .4458216E-02 125 | .2895137E-02 .2114719E-02 .1841946E-02 .1945955E-02 .2461216E-02 126 | .3432909E-02 .4777061E-02 .6226826E-02 .7409148E-02 .8047544E-02 127 | .8084369E-02 .7690493E-02 .7230160E-02 .7136600E-02 .7601987E-02 128 | .8262116E-02 .8252509E-02 .6705430E-02 .3405972E-02 -.9392068E-03 129 | -.5076408E-02 -.7945572E-02 -.9148912E-02 -.8901434E-02 -.7674806E-02 130 | -.5875240E-02 -.3781398E-02 -.1573361E-02 .5790951E-03 .2473429E-02 131 | .3977300E-02 .5076070E-02 .5860220E-02 .6468372E-02 .6916667E-02 132 | .7024350E-02 .6537226E-02 .5305538E-02 .3436577E-02 .1270087E-02 133 | -.7914175E-03 -.2458895E-02 -.3683615E-02 -.4640394E-02 -.5600477E-02 134 | -.6752352E-02 -.8119755E-02 -.9593167E-02 -.1103590E-01 -.1236491E-01 135 | -.1357366E-01 -.1471308E-01 -.1572562E-01 -.1632927E-01 -.1607012E-01 136 | -.1455760E-01 -.1170511E-01 -.7707945E-02 -.2845726E-02 .2593552E-02 137 | .8239099E-02 .1371021E-01 .1861603E-01 .2247447E-01 .2484857E-01 138 | .2550516E-01 .2458508E-01 .2256438E-01 .2001827E-01 .1742999E-01 139 | .1506325E-01 .1292138E-01 .1082082E-01 .8621126E-02 .6408467E-02 140 | .4540162E-02 .3447775E-02 .3325761E-02 .4038313E-02 .5274964E-02 141 | .6656132E-02 .7902636E-02 .8921166E-02 .9655239E-02 .9989046E-02 142 | .9732258E-02 .8780388E-02 .7159844E-02 .4964532E-02 .2307752E-02 143 | -.6598585E-03 -.3801772E-02 -.7083769E-02 -.1046226E-01 -.1390451E-01 144 | -.1739559E-01 -.2086425E-01 -.2418894E-01 -.2721328E-01 -.2965826E-01 145 | -.3105506E-01 -.3092283E-01 -.2907427E-01 -.2567129E-01 -.2091488E-01 146 | -.1488636E-01 -.7665321E-02 .6185650E-03 .9603872E-02 .1826989E-01 147 | .2490295E-01 .2781942E-01 .2632389E-01 .2106028E-01 .1353917E-01 148 | .5409180E-02 -.2194669E-02 -.8995550E-02 -.1531422E-01 -.2164288E-01 149 | -.2810458E-01 -.3396651E-01 -.3805669E-01 -.3954256E-01 -.3823027E-01 150 | -.3463815E-01 -.2965534E-01 -.2389699E-01 -.1754370E-01 -.1032278E-01 151 | -.1798833E-02 .7899254E-02 .1774161E-01 .2585594E-01 .3026364E-01 152 | .3001526E-01 .2568086E-01 .1872162E-01 .1064011E-01 .2562814E-02 153 | -.5082948E-02 -.1227003E-01 -.1900838E-01 -.2517957E-01 -.3042440E-01 154 | -.3433626E-01 -.3669936E-01 -.3742471E-01 -.3640279E-01 -.3380826E-01 155 | -.3004120E-01 -.2557789E-01 -.2102416E-01 -.1677586E-01 -.1282777E-01 156 | -.8711441E-02 -.3827573E-02 .1826430E-02 .7539540E-02 .1232010E-01 157 | .1540526E-01 .1665511E-01 .1650193E-01 .1552809E-01 .1404259E-01 158 | .1197892E-01 .9178393E-02 .5548425E-02 .1189046E-02 -.3380682E-02 159 | -.7406748E-02 -.1015732E-01 -.1119443E-01 -.1066680E-01 -.9078330E-02 160 | -.6958574E-02 -.4656017E-02 -.2360902E-02 -.7646585E-04 .2316568E-02 161 | .4821873E-02 .7298118E-02 .9270378E-02 .9896334E-02 .8407688E-02 162 | .4582978E-02 -.1039746E-02 -.7169492E-02 -.1217499E-01 -.1481022E-01 163 | -.1481108E-01 -.1275542E-01 -.9714298E-02 -.6894851E-02 -.5083874E-02 164 | -.4659003E-02 -.5491210E-02 -.7023740E-02 -.8844939E-02 -.1069379E-01 165 | -.1250066E-01 -.1454846E-01 -.1707686E-01 -.1989536E-01 -.2233137E-01 166 | -.2337480E-01 -.2216943E-01 -.1848253E-01 -.1266237E-01 -.5488932E-02 167 | .1933627E-02 .8465627E-02 .1329814E-01 .1618511E-01 .1730439E-01 168 | .1705052E-01 .1586226E-01 .1402368E-01 .1162920E-01 .8715639E-02 169 | .5517490E-02 .2446470E-02 -.6760063E-04 -.1730739E-02 -.2643284E-02 170 | -.3230591E-02 -.4078908E-02 -.5544881E-02 -.7297788E-02 -.8575398E-02 171 | -.8701870E-02 -.7335231E-02 -.4596454E-02 -.1089148E-02 .2308446E-02 172 | .4930489E-02 .6542544E-02 .7365063E-02 .8007596E-02 .8993838E-02 173 | .1061887E-01 .1289529E-01 .1537708E-01 .1740325E-01 .1855977E-01 174 | .1879475E-01 .1823605E-01 .1728071E-01 .1636020E-01 .1557678E-01 175 | .1487995E-01 .1410674E-01 .1312163E-01 .1187395E-01 .1047366E-01 176 | .9401153E-02 .8976578E-02 .9189091E-02 .9935435E-02 .1091718E-01 177 | .1178125E-01 .1219021E-01 .1208668E-01 .1164181E-01 .1092886E-01 178 | .1033433E-01 .1044840E-01 .1168691E-01 .1398808E-01 .1657557E-01 179 | .1843491E-01 .1882112E-01 .1750543E-01 .1453506E-01 .1014117E-01 180 | .4922797E-02 -.1521883E-03 -.3943517E-02 -.5637022E-02 -.5201442E-02 181 | -.3427316E-02 -.1447996E-02 -.3824361E-03 -.9026158E-03 -.2899126E-02 182 | -.5725932E-02 -.8629017E-02 -.1101399E-01 -.1248361E-01 -.1285285E-01 183 | -.1218286E-01 -.1059188E-01 -.8178625E-02 -.4990100E-02 -.1028538E-02 184 | .3150664E-02 .6362955E-02 .7546259E-02 .6259687E-02 .2864968E-02 185 | -.1635834E-02 -.6229456E-02 -.1030984E-01 -.1363929E-01 -.1633579E-01 186 | -.1859400E-01 -.2033242E-01 -.2129428E-01 -.2115705E-01 -.1995381E-01 187 | -.1803703E-01 -.1572271E-01 -.1346108E-01 -.1157558E-01 -.1028342E-01 188 | -.9973393E-02 -.1088589E-01 -.1283440E-01 -.1521976E-01 -.1700754E-01 189 | -.1700241E-01 -.1464764E-01 -.1020196E-01 -.4479077E-02 .1320025E-02 190 | .6097918E-02 .9342135E-02 .1111878E-01 .1183866E-01 .1189031E-01 191 | .1125836E-01 .9810133E-02 .7402317E-02 .4095284E-02 .1828470E-03 192 | -.4088318E-02 -.8438761E-02 -.1270788E-01 -.1650415E-01 -.1902820E-01 193 | -.1941728E-01 -.1716774E-01 -.1240415E-01 -.5653437E-02 .2476229E-02 194 | .1130678E-01 .1996734E-01 .2754194E-01 .3310088E-01 .3597632E-01 195 | .3620774E-01 .3446190E-01 .3184828E-01 .2958874E-01 .2850179E-01 196 | .2876039E-01 .2975068E-01 .3013135E-01 .2831505E-01 .2328487E-01 197 | .1514390E-01 .4924578E-02 -.5911273E-02 -.1587064E-01 -.2387583E-01 198 | -.2952881E-01 -.3279504E-01 -.3384369E-01 -.3301784E-01 -.3063855E-01 199 | -.2689125E-01 -.2179400E-01 -.1538950E-01 -.7952897E-02 -.9614722E-06 200 | .7845226E-02 .1515901E-01 .2172301E-01 .2721474E-01 .3118629E-01 201 | .3321061E-01 .3315358E-01 .3141515E-01 .2869304E-01 .2566259E-01 202 | .2279068E-01 .2024065E-01 .1800577E-01 .1598535E-01 .1414388E-01 203 | .1245735E-01 .1078543E-01 .8834504E-02 .6219473E-02 .2691722E-02 204 | -.1693293E-02 -.6300586E-02 -.1002109E-01 -.1160434E-01 -.1034660E-01 205 | -.6522354E-02 -.1193026E-02 .4069759E-02 .7675377E-02 .8652136E-02 206 | .7037568E-02 .3689011E-02 -.1703597E-03 -.3524754E-02 -.5959860E-02 207 | -.7514396E-02 -.8400751E-02 -.8698959E-02 -.8162413E-02 -.6605212E-02 208 | -.4054499E-02 -.7536645E-03 .2726845E-02 .5629213E-02 .7297529E-02 209 | .7477676E-02 .6330082E-02 .4341098E-02 .2067891E-02 -.9504297E-04 210 | -.1997928E-02 -.3688179E-02 -.5087495E-02 -.5982067E-02 -.6480055E-02 211 | -.7252330E-02 -.9021151E-02 -.1171408E-01 -.1436533E-01 -.1583704E-01 212 | -.1554842E-01 -.1380533E-01 -.1170943E-01 -.1055543E-01 -.1110769E-01 213 | -.1302097E-01 -.1486034E-01 -.1504907E-01 -.1265275E-01 -.7609021E-02 214 | -.6534508E-03 .7069084E-02 .1429999E-01 .1976389E-01 .2237736E-01 215 | .2172482E-01 .1833358E-01 .1331135E-01 .7787639E-02 .2693778E-02 216 | -.1145081E-02 -.3063542E-02 -.2688044E-02 -.1992260E-03 .3516970E-02 217 | .7112396E-02 .9205986E-02 .8945032E-02 .6403670E-02 .2372275E-02 218 | -.2278300E-02 -.6769582E-02 -.1058472E-01 -.1341400E-01 -.1473648E-01 219 | -.1408597E-01 -.1135366E-01 -.6882144E-02 -.1458501E-02 .4002616E-02 220 | .8496996E-02 .1090352E-01 .1052907E-01 .7505903E-02 .2602705E-02 221 | -.3152815E-02 -.8746525E-02 -.1308470E-01 -.1511365E-01 -.1421543E-01 222 | -.1043071E-01 -.4478917E-02 .2554198E-02 .9666669E-02 .1596795E-01 223 | .2044187E-01 .2229090E-01 .2108773E-01 .1676433E-01 .9953076E-02 224 | .2087643E-02 -.4699501E-02 -.8461761E-02 -.8571464E-02 -.5788908E-02 225 | -.1529597E-02 .2786955E-02 .6275468E-02 .8679429E-02 .1002905E-01 226 | .1042510E-01 .1004069E-01 .9072301E-02 .7679290E-02 .6074455E-02 227 | .4473075E-02 .3067263E-02 .1876768E-02 .8717062E-03 .3874273E-04 228 | -.7671303E-03 -.1613149E-02 -.2440585E-02 -.3194246E-02 -.3793401E-02 229 | -.4178739E-02 -.4371920E-02 -.4428270E-02 -.4444974E-02 -.4507241E-02 230 | -.4583253E-02 -.4686428E-02 -.4835609E-02 -.4934173E-02 -.5009819E-02 231 | -.5108526E-02 -.5215524E-02 -.5363476E-02 -.5621534E-02 -.6092668E-02 232 | -.6926939E-02 -.8356982E-02 -.1046107E-01 -.1306359E-01 -.1585233E-01 233 | -.1816486E-01 -.1922537E-01 -.1863163E-01 -.1631364E-01 -.1262393E-01 234 | -.7983982E-02 -.2435903E-02 .3674736E-02 .9291033E-02 .1301129E-01 235 | .1388301E-01 .1192520E-01 .7868640E-02 .2877415E-02 -.2157623E-02 236 | -.6911937E-02 -.1124143E-01 -.1500486E-01 -.1768727E-01 -.1852320E-01 237 | -.1697383E-01 -.1298640E-01 -.7084300E-02 -.7721108E-04 .7034756E-02 238 | .1297544E-01 .1665017E-01 .1779682E-01 .1692438E-01 .1496840E-01 239 | .1272775E-01 .1023923E-01 .6891558E-02 .1983961E-02 -.4715016E-02 240 | -.1287864E-01 -.2164600E-01 -.2960101E-01 -.3515917E-01 -.3713777E-01 241 | -.3533459E-01 -.3063518E-01 -.2440813E-01 -.1781452E-01 -.1142552E-01 242 | -.5141503E-02 .1498338E-02 .8866538E-02 .1688690E-01 .2470682E-01 243 | .3058300E-01 .3238546E-01 .2889857E-01 .2094647E-01 .1083059E-01 244 | .9575448E-03 -.7089134E-02 -.1283213E-01 -.1619175E-01 -.1684417E-01 245 | -.1445279E-01 -.9549346E-02 -.3879482E-02 .4078140E-03 .1928972E-02 246 | .7526545E-03 -.1856707E-02 -.4191256E-02 -.4972957E-02 -.3965310E-02 247 | -.2070338E-02 -.7092010E-03 -.9489900E-03 -.3100835E-02 -.6707078E-02 248 | -.1080124E-01 -.1430832E-01 -.1612181E-01 -.1518834E-01 -.1123060E-01 249 | -.4823611E-02 .3024228E-02 .1071457E-01 .1645373E-01 .1889990E-01 250 | .1757643E-01 .1320395E-01 .7106346E-02 .5534812E-03 -.5513032E-02 251 | -.1061932E-01 -.1439279E-01 -.1645384E-01 -.1672504E-01 -.1540873E-01 252 | -.1275695E-01 -.9118096E-02 -.4867156E-02 -.2455867E-03 .4230080E-02 253 | .7672429E-02 .9142766E-02 .8019062E-02 .4453303E-02 -.8225852E-03 254 | -.6841658E-02 -.1275177E-01 -.1813499E-01 -.2261233E-01 -.2564713E-01 255 | -.2684913E-01 -.2616440E-01 -.2380227E-01 -.1977725E-01 -.1365101E-01 256 | -.5088131E-02 .5197379E-02 .1550537E-01 .2408050E-01 .3004262E-01 257 | .3360170E-01 .3521722E-01 .3522096E-01 .3380402E-01 .3094955E-01 258 | .2685286E-01 .2192577E-01 .1657763E-01 .1121935E-01 .6148842E-02 259 | .1575380E-02 -.2472731E-02 -.6185611E-02 -.9684531E-02 -.1308251E-01 260 | -.1661101E-01 -.2043943E-01 -.2465044E-01 -.2891475E-01 -.3214394E-01 261 | -.3306835E-01 -.3093236E-01 -.2593347E-01 -.1928827E-01 -.1274861E-01 262 | -.7825682E-02 -.5133567E-02 -.4425851E-02 -.4818741E-02 -.5252232E-02 263 | -.4930240E-02 -.3672806E-02 -.2020577E-02 -.8254652E-03 -.8623670E-03 264 | -.2420186E-02 -.5125718E-02 -.8013458E-02 -.9941214E-02 -.1001373E-01 265 | -.7816071E-02 -.3770037E-02 .1162191E-02 .6006638E-02 .9756063E-02 266 | .1172414E-01 .1180266E-01 .1034587E-01 .8106998E-02 .5764324E-02 267 | .3702295E-02 .2109327E-02 .8522273E-03 -.4087143E-03 -.1958545E-02 268 | -.3776898E-02 -.5280190E-02 -.5708328E-02 -.4667265E-02 -.2201315E-02 269 | .1272191E-02 .5028644E-02 .8190299E-02 .1023330E-01 .1121147E-01 270 | .1140253E-01 .1117003E-01 .1078246E-01 .1021337E-01 .9389039E-02 271 | .8031923E-02 .5774986E-02 .2565933E-02 -.1537241E-02 -.6345046E-02 272 | -.1170225E-01 -.1765976E-01 -.2419191E-01 -.3101631E-01 -.3736947E-01 273 | -.4232024E-01 -.4541069E-01 -.4652028E-01 -.4578869E-01 -.4361636E-01 274 | -.4038329E-01 -.3636168E-01 -.3167082E-01 -.2655599E-01 -.2157473E-01 275 | -.1738166E-01 -.1447114E-01 -.1283825E-01 -.1207965E-01 -.1171937E-01 276 | -.1129131E-01 -.1059250E-01 -.9596382E-02 -.8229236E-02 -.6418498E-02 277 | -.4035644E-02 -.1143476E-02 .2077366E-02 .5351418E-02 .8341142E-02 278 | .1100083E-01 .1331432E-01 .1519221E-01 .1643695E-01 .1674342E-01 279 | .1592628E-01 .1411161E-01 .1171599E-01 .9296672E-02 .7472793E-02 280 | .6577241E-02 .6637887E-02 .7456219E-02 .8644244E-02 .1005389E-01 281 | .1186538E-01 .1417436E-01 .1673345E-01 .1899539E-01 .2042756E-01 282 | .2091466E-01 .2054275E-01 .1939914E-01 .1767041E-01 .1535188E-01 283 | .1237763E-01 .8704570E-02 .4147236E-02 -.1360430E-02 -.7787316E-02 284 | -.1486702E-01 -.2177232E-01 -.2736238E-01 -.3066875E-01 -.3144420E-01 285 | -.3027946E-01 -.2814377E-01 -.2601297E-01 -.2455224E-01 -.2386868E-01 286 | -.2363605E-01 -.2353825E-01 -.2333943E-01 -.2288862E-01 -.2227907E-01 287 | -.2161968E-01 -.2099637E-01 -.2040827E-01 -.1973868E-01 -.1893775E-01 288 | -.1797027E-01 -.1667843E-01 -.1487935E-01 -.1246686E-01 -.9483893E-02 289 | -.6337230E-02 -.3506977E-02 -.1291572E-02 .2429348E-03 .1248035E-02 290 | .1976424E-02 .2601214E-02 .2968768E-02 .2795946E-02 .1798981E-02 291 | -.1659973E-03 -.2845534E-02 -.5849434E-02 -.8908303E-02 -.1182109E-01 292 | -.1452760E-01 -.1696396E-01 -.1883610E-01 -.1968982E-01 -.1901421E-01 293 | -.1669585E-01 -.1313140E-01 -.8861982E-02 -.4456569E-02 -.3243527E-03 294 | .3309549E-02 .6103826E-02 .7759009E-02 .8226937E-02 .7582430E-02 295 | .6252748E-02 .4737565E-02 .3470717E-02 .3108701E-02 .4169565E-02 296 | .6781691E-02 .1079032E-01 .1556154E-01 .2013236E-01 .2382233E-01 297 | .2626433E-01 .2745505E-01 .2788424E-01 .2811386E-01 .2843440E-01 298 | .2895634E-01 .2960218E-01 .3003924E-01 .3003745E-01 .2953782E-01 299 | .2847969E-01 .2723935E-01 .2630562E-01 .2600641E-01 .2686385E-01 300 | .2900223E-01 .3201463E-01 .3563619E-01 .3949034E-01 .4313774E-01 301 | .4661442E-01 .4993431E-01 .5291145E-01 .5533222E-01 .5665800E-01 302 | .5645912E-01 .5503413E-01 .5279327E-01 .5007040E-01 .4737852E-01 303 | .4487943E-01 .4235794E-01 .3974572E-01 .3686028E-01 .3368732E-01 304 | .3055061E-01 .2781146E-01 .2609253E-01 .2599445E-01 .2757407E-01 305 | .3018356E-01 .3314234E-01 .3576748E-01 .3741581E-01 .3763105E-01 306 | .3611741E-01 .3313879E-01 .2902728E-01 .2419680E-01 .1935050E-01 307 | .1467773E-01 .1004832E-01 .5684898E-02 .1508315E-02 -.2792435E-02 308 | -.7023769E-02 -.1107366E-01 -.1449093E-01 -.1658374E-01 -.1736586E-01 309 | -.1709493E-01 -.1650190E-01 -.1654562E-01 -.1754671E-01 -.1935994E-01 310 | -.2175887E-01 -.2421596E-01 -.2633406E-01 -.2826962E-01 -.3007234E-01 311 | -.3178528E-01 -.3368383E-01 -.3588525E-01 -.3838538E-01 -.4116496E-01 312 | -.4399211E-01 -.4660682E-01 -.4828366E-01 -.4786318E-01 -.4458027E-01 313 | -.3845997E-01 -.3070465E-01 -.2270198E-01 -.1560400E-01 -.1010790E-01 314 | -.5980578E-02 -.2772934E-02 -.1713775E-04 .2673980E-02 .5519567E-02 315 | .8460680E-02 .1130877E-01 .1401008E-01 .1656949E-01 .1883679E-01 316 | .2051101E-01 .2146666E-01 .2153975E-01 .2084240E-01 .1990095E-01 317 | .1882448E-01 .1767300E-01 .1666248E-01 .1545950E-01 .1377915E-01 318 | .1181045E-01 .9534539E-02 .7009097E-02 .4686050E-02 .2836866E-02 319 | .1815343E-02 .1898834E-02 .2840229E-02 .4322539E-02 .5996240E-02 320 | .7348233E-02 .7878039E-02 .7258954E-02 .5524328E-02 .2910175E-02 321 | -.1192840E-03 -.2709780E-02 -.4433065E-02 -.5095499E-02 -.4517425E-02 322 | -.3210972E-02 -.1762970E-02 -.3308239E-03 .6434073E-03 .5748676E-03 323 | -.3093338E-03 -.1867950E-02 -.4005723E-02 -.6188342E-02 -.8441897E-02 324 | -.1051722E-01 -.1218090E-01 -.1371676E-01 -.1513981E-01 -.1640948E-01 325 | -.1758842E-01 -.1881650E-01 -.2002446E-01 -.2117680E-01 -.2218898E-01 326 | -.2237774E-01 -.2098826E-01 -.1749785E-01 -.1199713E-01 -.5457907E-02 327 | .1176037E-02 .6830883E-02 .1082376E-01 .1318703E-01 .1378624E-01 328 | .1277508E-01 .1066039E-01 .7909360E-02 .4877214E-02 .1911501E-02 329 | -.9173029E-03 -.3531967E-02 -.5644893E-02 -.7227729E-02 -.8260763E-02 330 | -.8706863E-02 -.8740882E-02 -.8710160E-02 -.8780833E-02 -.8929077E-02 331 | -.9381925E-02 -.1024996E-01 -.1161204E-01 -.1344303E-01 -.1545313E-01 332 | -.1776305E-01 -.2021068E-01 -.2251479E-01 -.2493718E-01 -.2747284E-01 333 | -.2994092E-01 -.3222728E-01 -.3362418E-01 -.3316205E-01 -.2992824E-01 334 | -.2359221E-01 -.1504628E-01 -.5412169E-02 .4361812E-02 .1344546E-01 335 | .2143670E-01 .2826677E-01 .3386766E-01 .3807828E-01 .4080334E-01 336 | .4204068E-01 .4194099E-01 .4092351E-01 .3947267E-01 .3785792E-01 337 | .3639122E-01 .3513104E-01 .3384689E-01 .3237553E-01 .3047683E-01 338 | .2801395E-01 .2530326E-01 .2283371E-01 .2080132E-01 .1963958E-01 339 | .1924832E-01 .1914892E-01 .1924157E-01 .1914600E-01 .1868474E-01 340 | .1764816E-01 .1598250E-01 .1400698E-01 .1185010E-01 .9535737E-02 341 | .7303359E-02 .5424927E-02 .4099336E-02 .3602893E-02 .3813768E-02 342 | .4691968E-02 .5982851E-02 .7198455E-02 .8475807E-02 .9704463E-02 343 | .1079903E-01 .1199522E-01 .1309921E-01 .1375677E-01 .1337324E-01 344 | .1161517E-01 .8665868E-02 .4754639E-02 .3327197E-03 -.4175680E-02 345 | -.8638803E-02 -.1292470E-01 -.1677962E-01 -.2002213E-01 -.2245581E-01 346 | -.2394014E-01 -.2436307E-01 -.2341324E-01 -.2102749E-01 -.1757305E-01 347 | -.1357719E-01 -.9647067E-02 -.6237683E-02 -.3523645E-02 -.1619959E-02 348 | -.5938797E-03 -.5873712E-03 -.1729091E-02 -.3658303E-02 -.6054787E-02 349 | -.8687612E-02 -.1110900E-01 -.1329320E-01 -.1517378E-01 -.1627424E-01 350 | -.1622413E-01 -.1470082E-01 -.1182905E-01 -.8394616E-02 -.5225185E-02 351 | -.2862584E-02 -.1459262E-02 -.7402939E-03 -.3132338E-03 .1528705E-03 352 | .9427832E-03 .2164652E-02 .3504850E-02 .4956621E-02 .6561044E-02 353 | .7926335E-02 .9208951E-02 .1042562E-01 .1143696E-01 .1241714E-01 354 | .1325782E-01 .1376058E-01 .1387821E-01 .1354292E-01 .1270655E-01 355 | .1164777E-01 .1048626E-01 .8795471E-02 .5968882E-02 .1222028E-02 356 | -.5439779E-02 -.1263862E-01 -.1905841E-01 -.2380396E-01 -.2617362E-01 357 | -.2597806E-01 -.2335960E-01 -.1890640E-01 -.1330358E-01 -.7446688E-02 358 | -.2739187E-02 .2071204E-03 .1429036E-02 .1028736E-02 -.2401374E-03 359 | -.1668075E-02 -.2988337E-02 -.4067810E-02 -.5173909E-02 -.6483773E-02 360 | -.7750192E-02 -.8730304E-02 -.9183981E-02 -.8757737E-02 -.7443620E-02 361 | -.5621340E-02 -.3618324E-02 -.1583880E-02 .3090976E-03 .1956134E-02 362 | .3648367E-02 .5579855E-02 .7890413E-02 .1081725E-01 .1419929E-01 363 | .1720072E-01 .1915609E-01 .1985558E-01 .1925274E-01 .1788514E-01 364 | .1630675E-01 .1477740E-01 .1338977E-01 .1196436E-01 .1022575E-01 365 | .8064738E-02 .5583655E-02 .3000570E-02 .5331712E-03 -.1379636E-02 366 | -.2426841E-02 -.2616121E-02 -.2013066E-02 -.1077223E-02 -.2170750E-03 367 | .2452922E-03 -.1324171E-03 -.1388844E-02 -.3343876E-02 -.5693895E-02 368 | -.8076184E-02 -.1041739E-01 -.1256042E-01 -.1441242E-01 -.1609455E-01 369 | -.1746467E-01 -.1859309E-01 -.1958296E-01 -.2029965E-01 -.2088517E-01 370 | -.2118079E-01 -.2093396E-01 -.2022643E-01 -.1911941E-01 -.1776040E-01 371 | -.1627488E-01 -.1464481E-01 -.1261195E-01 -.9632813E-02 -.5389511E-02 372 | -.7220652E-04 .5642729E-02 .1097859E-01 .1545286E-01 .1863852E-01 373 | .2052978E-01 .2124407E-01 .2077740E-01 .1950230E-01 .1778722E-01 374 | .1596091E-01 .1415971E-01 .1250467E-01 .1113676E-01 .1000036E-01 375 | .9128085E-02 .8438501E-02 .7807495E-02 .7209282E-02 .6562780E-02 376 | .5611157E-02 .4104884E-02 .1836216E-02 -.1142869E-02 -.4689413E-02 377 | -.8478513E-02 -.1198585E-01 -.1467946E-01 -.1589029E-01 -.1564526E-01 378 | -.1418316E-01 -.1176374E-01 -.8850510E-02 -.5673143E-02 -.2510591E-02 379 | .1802678E-03 .2025823E-02 .3032400E-02 .3425292E-02 .3508645E-02 380 | .3676629E-02 .4091425E-02 .4682304E-02 .5472754E-02 .6452162E-02 381 | .7347295E-02 .7999419E-02 .8296611E-02 .7928995E-02 .6813268E-02 382 | .5011843E-02 .2802597E-02 .4992408E-03 -.1831118E-02 -.4069736E-02 383 | -.6046223E-02 -.7749683E-02 -.9061467E-02 -.9705197E-02 -.9636080E-02 384 | -.9016790E-02 -.8174797E-02 -.7198690E-02 -.6204959E-02 -.5373029E-02 385 | -.4344859E-02 -.2803768E-02 -.5525524E-03 .2538277E-02 .6235031E-02 386 | .1016038E-01 .1387329E-01 .1677467E-01 .1827768E-01 .1816112E-01 387 | .1658768E-01 .1412021E-01 .1139746E-01 .8696474E-02 .6208537E-02 388 | .3969926E-02 .1747097E-02 -.5591269E-03 -.2936676E-02 -.5368648E-02 389 | -.7513072E-02 -.8918480E-02 -.9102443E-02 -.7764897E-02 -.5171679E-02 390 | -.1761796E-02 .1879600E-02 .5135838E-02 .7591760E-02 .9053612E-02 391 | .9685827E-02 .9766829E-02 .9580221E-02 .9451962E-02 .9444144E-02 392 | .9532332E-02 .9651165E-02 .9750393E-02 .9941313E-02 .1041583E-01 393 | .1151542E-01 .1339452E-01 .1591906E-01 .1877037E-01 .2152736E-01 394 | .2384239E-01 .2559043E-01 .2692286E-01 .2806866E-01 .2907231E-01 395 | .2980794E-01 .3000675E-01 .2939602E-01 .2797701E-01 .2590633E-01 396 | .2358968E-01 .2134617E-01 .1922584E-01 .1733120E-01 .1554119E-01 397 | .1381606E-01 .1229399E-01 .1111732E-01 .1066441E-01 .1103057E-01 398 | .1204131E-01 .1338293E-01 .1450729E-01 .1504738E-01 .1478665E-01 399 | .1374486E-01 .1226510E-01 .1067453E-01 .9171079E-02 .7956521E-02 400 | .7243112E-02 .7133591E-02 .7548334E-02 .8351206E-02 .9329349E-02 401 | .1033786E-01 .1134440E-01 .1219463E-01 .1297151E-01 .1378645E-01 402 | .1454178E-01 .1516388E-01 .1552029E-01 .1536431E-01 .1441286E-01 403 | .1276976E-01 .1072529E-01 .8463387E-02 .6392266E-02 .4752372E-02 404 | .3457876E-02 .2437014E-02 .1596681E-02 .5628094E-03 -.1049293E-02 405 | -.3360829E-02 -.6548210E-02 -.1039057E-01 -.1454904E-01 -.1884158E-01 406 | -.2302796E-01 -.2708942E-01 -.3096956E-01 -.3458155E-01 -.3761068E-01 407 | -.3953193E-01 -.4003705E-01 -.3918434E-01 -.3738913E-01 -.3518965E-01 408 | -.3320436E-01 -.3165300E-01 -.3067854E-01 -.3044658E-01 -.3076029E-01 409 | -.3149571E-01 -.3248234E-01 -.3358702E-01 -.3468694E-01 -.3569531E-01 410 | -.3663265E-01 -.3748605E-01 -.3817463E-01 -.3864487E-01 -.3896101E-01 411 | -.3913047E-01 -.3926949E-01 -.3946818E-01 -.3963120E-01 -.3984169E-01 412 | -.4010381E-01 -.4030988E-01 -.4048733E-01 -.4068742E-01 -.4091181E-01 413 | -.4108314E-01 -.4134737E-01 -.4164515E-01 -.4191625E-01 -.4221260E-01 414 | -.4250566E-01 -.4284395E-01 -.4312954E-01 -.4330667E-01 -.4334183E-01 415 | -.4308501E-01 -.4222350E-01 -.4073786E-01 -.3880898E-01 -.3658534E-01 416 | -.3430503E-01 -.3193513E-01 -.2939320E-01 -.2643007E-01 -.2268951E-01 417 | -.1838666E-01 -.1380213E-01 -.9347827E-02 -.5776366E-02 -.3465915E-02 418 | -.2368894E-02 -.2129215E-02 -.2258109E-02 -.2351747E-02 -.2196853E-02 419 | -.1854580E-02 -.1449342E-02 -.9127997E-03 -.1951298E-03 .7112905E-03 420 | .2021865E-02 .3688877E-02 .5545756E-02 .7607521E-02 .9759494E-02 421 | .1173481E-01 .1307648E-01 .1348676E-01 .1280592E-01 .1113297E-01 422 | .8912421E-02 .6391149E-02 .3905114E-02 .1601427E-02 -.6692400E-03 423 | -.2717528E-02 -.4174201E-02 -.4627424E-02 -.3727393E-02 -.1547067E-02 424 | .1500089E-02 .4950034E-02 .8360430E-02 .1141537E-01 .1397295E-01 425 | .1600148E-01 .1754447E-01 .1868035E-01 .1966211E-01 .2055389E-01 426 | .2138742E-01 .2237416E-01 .2335756E-01 .2431197E-01 .2537448E-01 427 | .2656551E-01 .2791929E-01 .2965010E-01 .3174222E-01 .3383392E-01 428 | .3578273E-01 .3710474E-01 .3739960E-01 .3679326E-01 .3536805E-01 429 | .3346081E-01 .3159161E-01 .2981960E-01 .2811941E-01 .2658930E-01 430 | .2499555E-01 .2309543E-01 .2088378E-01 .1841231E-01 .1567525E-01 431 | .1284477E-01 .1015462E-01 .7788366E-02 .6110006E-02 .5402534E-02 432 | .5638440E-02 .6563084E-02 .7850387E-02 .9206303E-02 .1031194E-01 433 | .1098126E-01 .1114542E-01 .1074463E-01 .9957830E-02 .8947896E-02 434 | .7833102E-02 .6707737E-02 .5635129E-02 .4515381E-02 .3035268E-02 435 | .9134036E-03 -.1856914E-02 -.4957733E-02 -.8185762E-02 -.1104210E-01 436 | -.1317374E-01 -.1469623E-01 -.1536370E-01 -.1512908E-01 -.1424074E-01 437 | -.1287377E-01 -.1122237E-01 -.9534758E-02 -.7934308E-02 -.6283240E-02 438 | -.4473937E-02 -.2516351E-02 -.4075612E-03 .1761349E-02 .3631932E-02 439 | .5185014E-02 .6550926E-02 .7627133E-02 .8434078E-02 .8885753E-02 440 | .8896488E-02 .8412189E-02 .7505225E-02 .6435478E-02 .5327768E-02 441 | .4238728E-02 .3224385E-02 .2239655E-02 .1074355E-02 -.3118892E-03 442 | -.1826858E-02 -.3254363E-02 -.4210919E-02 -.4456596E-02 -.3901531E-02 443 | -.2794523E-02 -.1524628E-02 -.2957599E-03 .6724922E-03 .1142362E-02 444 | .1047438E-02 .4277500E-03 -.6598095E-03 -.1989157E-02 -.3279215E-02 445 | -.4515194E-02 -.5755661E-02 -.6996466E-02 -.8379105E-02 -.1009309E-01 446 | -.1231685E-01 -.1502015E-01 -.1803725E-01 -.2123054E-01 -.2439197E-01 447 | -.2726311E-01 -.2962468E-01 -.3126173E-01 -.3180346E-01 -.3114895E-01 448 | -.2959152E-01 -.2749439E-01 -.2527780E-01 -.2314585E-01 -.2111495E-01 449 | -.1910038E-01 -.1695931E-01 -.1471179E-01 -.1232559E-01 -.9847208E-02 450 | -.7431594E-02 -.5289531E-02 -.3606317E-02 -.2274182E-02 -.1241455E-02 451 | -.4807131E-03 .2867630E-03 .1090648E-02 .1916820E-02 .2861809E-02 452 | .3882653E-02 .5057116E-02 .6342610E-02 .7716291E-02 .9006579E-02 453 | .9757320E-02 .9773900E-02 .9016858E-02 .7676922E-02 .5968230E-02 454 | .4131218E-02 .2508963E-02 .1022927E-02 -.4677441E-03 -.1886409E-02 455 | -.3108552E-02 -.4005146E-02 -.4412478E-02 -.4230130E-02 -.3596251E-02 456 | -.2757693E-02 -.1864050E-02 -.9833094E-03 -.2448452E-03 .4160564E-03 457 | .1151147E-02 .1935780E-02 .2790786E-02 .3850240E-02 .5098510E-02 458 | .6396557E-02 .7825588E-02 .9341879E-02 .1066413E-01 .1168302E-01 459 | .1234519E-01 .1258490E-01 .1257384E-01 .1249794E-01 .1239264E-01 460 | .1241063E-01 .1266978E-01 .1319696E-01 .1395792E-01 .1486491E-01 461 | .1588669E-01 .1690460E-01 .1783274E-01 .1878446E-01 .1975388E-01 462 | .2068742E-01 .2156174E-01 .2217118E-01 .2235588E-01 .2188751E-01 463 | .2072463E-01 .1910627E-01 .1721580E-01 .1530059E-01 .1345308E-01 464 | .1165164E-01 .9748835E-02 .7580274E-02 .5059838E-02 .2181048E-02 465 | -.8965093E-03 -.4099195E-02 -.7276131E-02 -.1024968E-01 -.1300149E-01 466 | -.1535646E-01 -.1714553E-01 -.1836106E-01 -.1893160E-01 -.1906335E-01 467 | -.1897772E-01 -.1879010E-01 -.1873646E-01 -.1877756E-01 -.1881406E-01 468 | -.1889539E-01 -.1903846E-01 -.1927963E-01 -.1956152E-01 -.1993420E-01 469 | -.2044804E-01 -.2097104E-01 -.2152963E-01 -.2210045E-01 -.2261029E-01 470 | -.2293475E-01 -.2269995E-01 -.2165200E-01 -.1990207E-01 -.1767281E-01 471 | -.1514958E-01 -.1254377E-01 -.9940813E-02 -.7251846E-02 -.4495867E-02 472 | -.1834558E-02 .3952551E-03 .1854653E-02 .2588015E-02 .2849055E-02 473 | .2815094E-02 .2756684E-02 .2919244E-02 .3275645E-02 .3764375E-02 474 | .4392082E-02 .5123506E-02 .5873642E-02 .6631104E-02 .7435058E-02 475 | .8256780E-02 .9132857E-02 .1018645E-01 .1134536E-01 .1254313E-01 476 | .1377035E-01 .1493849E-01 .1591571E-01 .1646537E-01 .1650017E-01 477 | .1607343E-01 .1528927E-01 .1435211E-01 .1338305E-01 .1244231E-01 478 | .1162597E-01 .1083991E-01 .9958939E-02 .9008164E-02 .7897419E-02 479 | .6446123E-02 .4474120E-02 .2036402E-02 -.5182785E-03 -.2859306E-02 480 | -.4600725E-02 -.5509272E-02 -.5738853E-02 -.5606866E-02 -.5408165E-02 481 | -.5262522E-02 -.5301959E-02 -.5500603E-02 -.5615600E-02 -.5664186E-02 482 | -.5684226E-02 -.5563378E-02 -.5416233E-02 -.5361794E-02 -.5286615E-02 483 | -.5222926E-02 -.5182292E-02 -.5049308E-02 -.4734245E-02 -.4146149E-02 484 | -.3186759E-02 -.1834258E-02 -.3142676E-03 .1142894E-02 .2213497E-02 485 | .2677973E-02 .2576888E-02 .2049605E-02 .1353403E-02 .6370208E-03 486 | .7696284E-04 -.3840222E-03 -.8431719E-03 -.1240350E-02 -.1731362E-02 487 | -.2287197E-02 -.2781299E-02 -.3341096E-02 -.3964879E-02 -.4680874E-02 488 | -.5636460E-02 -.6760819E-02 -.7853342E-02 -.8590249E-02 -.8662570E-02 489 | -.8005848E-02 -.6810741E-02 -.5326752E-02 -.3841953E-02 -.2599307E-02 490 | -.1789202E-02 -.1618141E-02 -.2135000E-02 -.3277990E-02 -.4839744E-02 491 | -.6556841E-02 -.8289200E-02 -.9959017E-02 -.1153790E-01 -.1306828E-01 492 | -.1444045E-01 -.1538276E-01 -.1571496E-01 -.1526215E-01 -.1412375E-01 493 | -.1262103E-01 -.1094714E-01 -.9336365E-02 -.7883712E-02 -.6546693E-02 494 | -.5324920E-02 -.4283892E-02 -.3511433E-02 -.3010718E-02 -.2758518E-02 495 | -.2689395E-02 -.2642917E-02 -.2503958E-02 -.2262002E-02 -.1930234E-02 496 | -.1526137E-02 -.1090235E-02 -.7078323E-03 -.2727131E-03 .3235799E-03 497 | .1020995E-02 .1760420E-02 .2252078E-02 .2182029E-02 .1537890E-02 498 | .3984516E-03 -.1015696E-02 -.2421581E-02 -.3720552E-02 -.4914779E-02 499 | -.6040551E-02 -.7089596E-02 -.8104178E-02 -.9080414E-02 -.9967503E-02 500 | -.1081311E-01 -.1162745E-01 -.1241252E-01 -.1318338E-01 -.1396752E-01 501 | -.1476899E-01 -.1556185E-01 -.1630489E-01 -.1681531E-01 -.1693400E-01 502 | -.1658796E-01 -.1570630E-01 -.1448131E-01 -.1311323E-01 -.1171250E-01 503 | -.1040772E-01 -.9136133E-02 -.7879401E-02 -.6630753E-02 -.5363429E-02 504 | -.4198113E-02 -.3202102E-02 -.2458119E-02 -.1994086E-02 -.1713913E-02 505 | -.1527896E-02 -.1312832E-02 -.1087912E-02 -.8321918E-03 -.5112643E-03 506 | -.2468145E-03 -.8340905E-05 .2647129E-03 .5213375E-03 .7621085E-03 507 | .1038711E-02 .1405533E-02 .1871109E-02 .2460456E-02 .3220863E-02 508 | .4082577E-02 .4985384E-02 .5953673E-02 .6965389E-02 .8070290E-02 509 | .9368096E-02 .1078513E-01 .1215192E-01 .1331484E-01 .1415191E-01 510 | .1469661E-01 .1507143E-01 .1535172E-01 .1564179E-01 .1603185E-01 511 | .1647825E-01 .1692019E-01 .1734562E-01 .1772421E-01 .1808961E-01 512 | .1845048E-01 .1882569E-01 .1927590E-01 .1973504E-01 .2018737E-01 513 | .2068158E-01 .2115884E-01 .2163320E-01 .2215990E-01 .2268229E-01 514 | .2321502E-01 .2379547E-01 .2440197E-01 .2507779E-01 .2581341E-01 515 | .2655814E-01 .2736368E-01 .2822543E-01 .2905153E-01 .2983108E-01 516 | .3059166E-01 .3114084E-01 .3131671E-01 .3111218E-01 .3051305E-01 517 | .2968909E-01 .2874523E-01 .2782100E-01 .2703444E-01 .2629805E-01 518 | .2572662E-01 .2539096E-01 .2512752E-01 .2493473E-01 .2488788E-01 519 | .2479736E-01 .2464927E-01 .2455270E-01 .2447592E-01 .2439927E-01 520 | .2430172E-01 .2426220E-01 .2426375E-01 .2427464E-01 .2437629E-01 521 | .2463915E-01 .2505681E-01 .2559246E-01 .2620214E-01 .2672332E-01 522 | .2697367E-01 .2674980E-01 .2590527E-01 .2449912E-01 .2270682E-01 523 | .2072397E-01 .1872458E-01 .1681497E-01 .1489248E-01 .1273290E-01 524 | .1014357E-01 .6973620E-02 .3233493E-02 -.9093364E-03 -.5091927E-02 525 | -.8996452E-02 -.1249101E-01 -.1546102E-01 -.1801931E-01 -.2037502E-01 526 | -.2256763E-01 -.2452619E-01 -.2615070E-01 -.2741391E-01 -.2833618E-01 527 | -.2901275E-01 -.2964300E-01 -.3027277E-01 -.3094581E-01 -.3169998E-01 528 | -.3237588E-01 -.3285102E-01 -.3302768E-01 -.3291384E-01 -.3256415E-01 529 | -.3206932E-01 -.3161216E-01 -.3117883E-01 -.3075836E-01 -.3038615E-01 530 | -.2997476E-01 -.2949072E-01 -.2889738E-01 -.2808077E-01 -.2703998E-01 531 | -.2581368E-01 -.2444338E-01 -.2305014E-01 -.2163020E-01 -.2024749E-01 532 | -.1895732E-01 -.1765319E-01 -.1636023E-01 -.1508094E-01 -.1385074E-01 533 | -.1283443E-01 -.1209795E-01 -.1174222E-01 -.1181543E-01 -.1213725E-01 534 | -.1254287E-01 -.1296419E-01 -.1333252E-01 -.1364070E-01 -.1391640E-01 535 | -.1419105E-01 -.1445969E-01 -.1465255E-01 -.1477652E-01 -.1483936E-01 536 | -.1483403E-01 -.1476891E-01 -.1473926E-01 -.1479601E-01 -.1485080E-01 537 | -.1496509E-01 -.1515630E-01 -.1534250E-01 -.1553761E-01 -.1575086E-01 538 | -.1592756E-01 -.1601255E-01 -.1584265E-01 -.1520028E-01 -.1407137E-01 539 | -.1244699E-01 -.1044820E-01 -.8386543E-02 -.6500234E-02 -.5004164E-02 540 | -.4060089E-02 -.3704259E-02 -.3819263E-02 -.4212448E-02 -.4642108E-02 541 | -.5014184E-02 -.5350055E-02 -.5604700E-02 -.5835293E-02 -.6090989E-02 542 | -.6358608E-02 -.6583542E-02 -.6632757E-02 -.6375431E-02 -.5748163E-02 543 | -.4755098E-02 -.3513255E-02 -.2183013E-02 -.8565018E-03 .3689066E-03 544 | .1507668E-02 .2576427E-02 .3463083E-02 .4132497E-02 .4564437E-02 545 | .4712152E-02 .4682966E-02 .4604270E-02 .4516317E-02 .4480989E-02 546 | .4495280E-02 .4500414E-02 .4520279E-02 .4620587E-02 .4786315E-02 547 | .5036992E-02 .5389506E-02 .5790761E-02 .6240889E-02 .6682114E-02 548 | .7070261E-02 .7449444E-02 .7773744E-02 .7943765E-02 .7919061E-02 549 | .7642944E-02 .7139513E-02 .6501349E-02 .5792756E-02 .5122678E-02 550 | .4503649E-02 .3894988E-02 .3361803E-02 .2997071E-02 .2824104E-02 551 | .2904937E-02 .3302560E-02 .3891336E-02 .4538610E-02 .5184030E-02 552 | .5764024E-02 .6297548E-02 .6799505E-02 .7280018E-02 .7721628E-02 553 | .8008869E-02 .8101727E-02 .7967058E-02 .7636067E-02 .7217181E-02 554 | .6756832E-02 .6330422E-02 .5956595E-02 .5598731E-02 .5237896E-02 555 | .4858647E-02 .4459606E-02 .4042886E-02 .3623913E-02 .3331852E-02 556 | .3272202E-02 .3539817E-02 .4259329E-02 .5275553E-02 .6439381E-02 557 | .7688936E-02 .8888779E-02 .1003329E-01 .1115511E-01 .1226569E-01 558 | .1334822E-01 .1433992E-01 .1512568E-01 .1551267E-01 .1551125E-01 559 | .1519386E-01 .1465298E-01 .1409188E-01 .1356510E-01 .1306618E-01 560 | .1262291E-01 .1220510E-01 .1181274E-01 .1171580E-01 .1216633E-01 561 | .1331303E-01 .1524950E-01 .1777597E-01 .2057265E-01 .2329719E-01 562 | .2556155E-01 .2701758E-01 .2752620E-01 .2721820E-01 .2634695E-01 563 | .2523897E-01 .2414605E-01 .2319065E-01 .2235554E-01 .2145555E-01 564 | .2050957E-01 .1959173E-01 .1862220E-01 .1762740E-01 .1667050E-01 565 | .1579438E-01 .1496501E-01 .1416144E-01 .1341079E-01 .1265789E-01 566 | .1192034E-01 .1123068E-01 .1052241E-01 .9780018E-02 .9066127E-02 567 | .8375003E-02 .7732417E-02 .7280988E-02 .7107634E-02 .7182783E-02 568 | .7523201E-02 .8096221E-02 .8686772E-02 .9260346E-02 .9837201E-02 569 | .1037292E-01 .1092720E-01 .1152604E-01 .1217660E-01 .1289584E-01 570 | .1365187E-01 .1441366E-01 .1516193E-01 .1588677E-01 .1661195E-01 571 | .1731763E-01 .1802403E-01 .1874635E-01 .1947141E-01 .2022626E-01 572 | .2098042E-01 .2171716E-01 .2234676E-01 .2272494E-01 .2278279E-01 573 | .2250204E-01 .2195459E-01 .2123772E-01 .2048330E-01 .1978113E-01 574 | .1911287E-01 .1846887E-01 .1780861E-01 .1710777E-01 .1637331E-01 575 | .1562000E-01 .1489020E-01 .1419427E-01 .1352737E-01 .1287828E-01 576 | .1223727E-01 .1160183E-01 .1098388E-01 .1035602E-01 .9736413E-02 577 | .9122191E-02 .8497272E-02 .7891950E-02 .7262543E-02 .6617015E-02 578 | .5915304E-02 .5094611E-02 .4203631E-02 .3212819E-02 .2149947E-02 579 | .1075717E-02 -.2298022E-04 -.1061169E-02 -.2113488E-02 -.3225617E-02 580 | -.4313436E-02 -.5379884E-02 -.6293834E-02 -.6921222E-02 -.7212701E-02 581 | -.7168815E-02 -.6906375E-02 -.6550293E-02 -.6189936E-02 -.5934755E-02 582 | -.5930713E-02 -.6242107E-02 -.6902787E-02 -.7896883E-02 -.9142266E-02 583 | -.1054151E-01 -.1194656E-01 -.1327986E-01 -.1458012E-01 -.1583052E-01 584 | -.1691642E-01 -.1787921E-01 -.1868030E-01 -.1925149E-01 -.1966988E-01 585 | -.1994674E-01 -.2009811E-01 -.2020098E-01 -.2034127E-01 -.2048578E-01 586 | -.2063758E-01 -.2081370E-01 -.2104213E-01 -.2142617E-01 -.2201315E-01 587 | -.2286919E-01 -.2394956E-01 -.2515655E-01 -.2643643E-01 -.2769093E-01 588 | -.2888396E-01 -.3001620E-01 -.3110532E-01 -.3219363E-01 -.3319893E-01 589 | -.3405916E-01 -.3485087E-01 -.3563057E-01 -.3637475E-01 -.3708807E-01 590 | -.3781649E-01 -.3847712E-01 -.3887727E-01 -.3890360E-01 -.3847836E-01 591 | -.3756977E-01 -.3635029E-01 -.3502873E-01 -.3377670E-01 -.3253980E-01 592 | -.3136170E-01 -.3024498E-01 -.2883484E-01 -.2709108E-01 -.2495759E-01 593 | -.2241910E-01 -.1970108E-01 -.1696696E-01 -.1436926E-01 -.1195755E-01 594 | -.9720910E-02 -.7672811E-02 -.5682905E-02 -.3770845E-02 -.2103646E-02 595 | -.7040582E-03 .3173436E-03 .9817477E-03 .1355928E-02 .1659764E-02 596 | .2080315E-02 .2497159E-02 .3016884E-02 .3572530E-02 .4154701E-02 597 | .4847182E-02 .5578421E-02 .6394113E-02 .7215470E-02 .8141736E-02 598 | .9062471E-02 .9886537E-02 .1083171E-01 .1185518E-01 .1291593E-01 599 | .1388871E-01 .1453616E-01 .1471435E-01 .1416915E-01 .1297304E-01 600 | .1145868E-01 .9819351E-02 .8270624E-02 .6834504E-02 .5599903E-02 601 | .4676519E-02 .3879176E-02 .3234140E-02 .2802702E-02 .2398671E-02 602 | .1986406E-02 .1559084E-02 .1090037E-02 .5775177E-03 -.3815822E-04 603 | -.8359094E-03 -.1788261E-02 -.2690521E-02 -.3636459E-02 -.4751917E-02 604 | -.5712509E-02 -.6594045E-02 -.7534314E-02 -.8285085E-02 -.8825090E-02 605 | -.9027546E-02 -.8920334E-02 -.8616465E-02 -.8209239E-02 -.7895718E-02 606 | -.7546820E-02 -.7155055E-02 -.6639884E-02 -.5760295E-02 -.4302479E-02 607 | -.2278525E-02 .1790444E-03 .2898006E-02 .5379946E-02 .7395191E-02 608 | .8695836E-02 .9344333E-02 .9681676E-02 .9732507E-02 .9837005E-02 609 | .1003824E-01 .1015341E-01 .1022496E-01 .1000068E-01 .9404290E-02 610 | .8718918E-02 .7965965E-02 .7139967E-02 .6447437E-02 .5798382E-02 611 | .5082355E-02 .4318732E-02 .3301407E-02 .1877672E-02 -.6846301E-04 612 | -.2643313E-02 -.5544712E-02 -.8370909E-02 -.1083761E-01 -.1271198E-01 613 | -.1399774E-01 -.1479195E-01 -.1529283E-01 -.1580039E-01 -.1647093E-01 614 | -.1724617E-01 -.1791320E-01 -.1835852E-01 -.1849898E-01 -.1815983E-01 615 | -.1740111E-01 -.1643913E-01 -.1535994E-01 -.1430412E-01 -.1336712E-01 616 | -.1246845E-01 -.1155704E-01 -.1060923E-01 -.9638327E-02 -.8656718E-02 617 | -.7666105E-02 -.6681173E-02 -.5752546E-02 -.4931658E-02 -.4272852E-02 618 | -.3870866E-02 -.3667222E-02 -.3617013E-02 -.3704612E-02 -.3770654E-02 619 | -.3718759E-02 -.3655301E-02 -.3411307E-02 -.2840159E-02 -.2206053E-02 620 | -.1487967E-02 -.6835307E-03 .9757925E-04 .8886143E-03 .1693404E-02 621 | .2446109E-02 .3161164E-02 .3980987E-02 .4809609E-02 .5431513E-02 622 | .5752881E-02 .5650435E-02 .5032142E-02 .3868185E-02 .2294582E-02 623 | .6196050E-03 -.9887878E-03 -.2556106E-02 -.4106610E-02 -.5691645E-02 624 | -.7332418E-02 -.8953705E-02 -.1059824E-01 -.1221766E-01 -.1360945E-01 625 | -.1459371E-01 -.1494915E-01 -.1461667E-01 -.1387553E-01 -.1285067E-01 626 | -.1172563E-01 -.1076229E-01 -.9815928E-02 -.8952319E-02 -.8155768E-02 627 | -.7227701E-02 -.6300747E-02 -.5377636E-02 -.4484430E-02 -.3589152E-02 628 | -.2671803E-02 -.1892406E-02 -.1054205E-02 -.1201819E-03 .7704291E-03 629 | .1632170E-02 .2526696E-02 .3426523E-02 .4181529E-02 .5044319E-02 630 | .5875677E-02 .6575618E-02 .7400322E-02 .8108606E-02 .8789829E-02 631 | .9514649E-02 .1006948E-01 .1036924E-01 .1035038E-01 .9992362E-02 632 | .9336564E-02 .8514637E-02 .7772245E-02 .7086018E-02 .6330743E-02 633 | .5802475E-02 .5285529E-02 .4688325E-02 .4336251E-02 .3978414E-02 634 | .3639463E-02 .3396644E-02 .3074477E-02 .2787161E-02 .2511388E-02 635 | .2205691E-02 .1943480E-02 .1667270E-02 .1387161E-02 .1148147E-02 636 | .8478166E-03 .5463956E-03 .3801887E-03 .1880852E-03 .1437325E-03 637 | .3579065E-03 .8096251E-03 .1510281E-02 .2254199E-02 .2947614E-02 638 | .3376264E-02 .3449274E-02 .2978388E-02 .1971365E-02 .8025815E-03 639 | -.4945727E-03 -.1777486E-02 -.2912057E-02 -.4025415E-02 -.5113880E-02 640 | -.6114851E-02 -.7037254E-02 -.7985605E-02 -.8774682E-02 -.9440006E-02 641 | -.1019836E-01 -.1088072E-01 -.1158510E-01 -.1238042E-01 -.1306384E-01 642 | -.1371476E-01 -.1448139E-01 -.1514874E-01 -.1575684E-01 -.1638967E-01 643 | -.1690445E-01 -.1741117E-01 -.1795520E-01 -.1848447E-01 -.1900292E-01 644 | -.1950628E-01 -.2005206E-01 -.2061885E-01 -.2107893E-01 -.2133895E-01 645 | -.2135737E-01 -.2100709E-01 -.2014016E-01 -.1895980E-01 -.1767444E-01 646 | -.1630400E-01 -.1495259E-01 -.1374251E-01 -.1251072E-01 -.1122870E-01 647 | -.1001319E-01 -.8738274E-02 -.7539443E-02 -.6492908E-02 -.5519300E-02 648 | -.4694943E-02 -.3970272E-02 -.3286336E-02 -.2520465E-02 -.1748277E-02 649 | -.1022217E-02 -.2091931E-03 .5724945E-03 .1327017E-02 .2074191E-02 650 | .2838011E-02 .3598866E-02 .4373636E-02 .5175845E-02 .5918087E-02 651 | .6690399E-02 .7514947E-02 .8289509E-02 .9013026E-02 .9841878E-02 652 | .1068634E-01 .1144395E-01 .1221876E-01 .1296432E-01 .1370129E-01 653 | .1444306E-01 .1513911E-01 .1589179E-01 .1667051E-01 .1740415E-01 654 | .1817201E-01 .1894096E-01 .1971361E-01 .2051700E-01 .2131862E-01 655 | .2205118E-01 .2274641E-01 .2343906E-01 .2407451E-01 .2470104E-01 656 | .2529072E-01 .2593011E-01 .2659463E-01 .2723364E-01 .2786906E-01 657 | .2848375E-01 .2910891E-01 .2963695E-01 .3000056E-01 .2995937E-01 658 | .2951968E-01 .2888872E-01 .2799730E-01 .2700131E-01 .2607613E-01 659 | .2520082E-01 .2433173E-01 .2355243E-01 .2275422E-01 .2179665E-01 660 | .2091438E-01 .2000954E-01 .1896054E-01 .1789333E-01 .1672851E-01 661 | .1553590E-01 .1438577E-01 .1315009E-01 .1191806E-01 .1073388E-01 662 | .9582577E-02 .8481141E-02 .7482894E-02 .6801505E-02 .6427535E-02 663 | .6316712E-02 .6416042E-02 .6511312E-02 .6613763E-02 .6761348E-02 664 | .6778063E-02 .6754865E-02 .6793810E-02 .6827682E-02 .6888210E-02 665 | .6916816E-02 .6950606E-02 .6981167E-02 .6993561E-02 .7042773E-02 666 | .7046740E-02 .7059720E-02 .7114555E-02 .7161510E-02 .7167308E-02 667 | .7021681E-02 .6649175E-02 .6064092E-02 .5291766E-02 .4406959E-02 668 | .3457435E-02 .2510584E-02 .1687596E-02 .9352894E-03 .3782349E-03 669 | .1257357E-03 .1212414E-03 .4098958E-03 .8233052E-03 .1250195E-02 670 | .1674710E-02 .2032924E-02 .2381777E-02 .2719313E-02 .3040589E-02 671 | .3340891E-02 .3516452E-02 .3454116E-02 .3134428E-02 .2638280E-02 672 | .1988043E-02 .1291571E-02 .6513633E-03 .4115712E-04 -.5110257E-03 673 | -.9729956E-03 -.1252806E-02 -.1283499E-02 -.1028184E-02 -.5427602E-03 674 | .9048501E-04 .8000865E-03 .1351701E-02 .1608437E-02 .1422218E-02 675 | .5642980E-03 -.8702073E-03 -.2665578E-02 -.4659463E-02 -.6645737E-02 676 | -.8581648E-02 -.1042527E-01 -.1223105E-01 -.1400749E-01 -.1562581E-01 677 | -.1694479E-01 -.1765803E-01 -.1777538E-01 -.1742752E-01 -.1671990E-01 678 | -.1593158E-01 -.1524717E-01 -.1464345E-01 -.1407914E-01 -.1355395E-01 679 | -.1296656E-01 -.1226515E-01 -.1148702E-01 -.1071789E-01 -.9963704E-02 680 | -.9108515E-02 -.8094684E-02 -.6900508E-02 -.5413114E-02 -.3639058E-02 681 | -.1773502E-02 .9424512E-04 .1962628E-02 .3710333E-02 .5243191E-02 682 | .6386772E-02 .6831027E-02 .6553389E-02 .5645105E-02 .4306550E-02 683 | .2871868E-02 .1525925E-02 .2722562E-03 -.8360054E-03 -.1739573E-02 684 | -.2460971E-02 -.2890240E-02 -.2975844E-02 -.2823912E-02 -.2576770E-02 685 | -.2300651E-02 -.2067811E-02 -.1898546E-02 -.1851372E-02 -.2084421E-02 686 | -.2579161E-02 -.3336360E-02 -.4353439E-02 -.5507340E-02 -.6728171E-02 687 | -.7971964E-02 -.9286932E-02 -.1077157E-01 -.1236036E-01 -.1379893E-01 688 | -.1478611E-01 -.1501493E-01 -.1427981E-01 -.1275392E-01 -.1087813E-01 689 | -.8980823E-02 -.7400696E-02 -.6455729E-02 -.6091517E-02 -.6098226E-02 690 | -.6289263E-02 -.6479012E-02 -.6536858E-02 -.6364211E-02 -.5797897E-02 691 | -.4745136E-02 -.3211062E-02 -.1275368E-02 .7720732E-03 .2704702E-02 692 | .4414194E-02 .5800065E-02 .6879298E-02 .7692018E-02 .8150432E-02 693 | .8205491E-02 .7975042E-02 .7542872E-02 .6995942E-02 .6475484E-02 694 | .5984036E-02 .5545801E-02 .5125410E-02 .4596901E-02 .3936358E-02 695 | .2992405E-02 .1756064E-02 .2768444E-03 -.1385962E-02 -.3060575E-02 696 | -.4692069E-02 -.6210452E-02 -.7548923E-02 -.8608174E-02 -.9324367E-02 697 | -.9743044E-02 -.9966012E-02 -.1007410E-01 -.1016823E-01 -.1032774E-01 698 | -.1048900E-01 -.1067007E-01 -.1086707E-01 -.1102498E-01 -.1116417E-01 699 | -.1130411E-01 -.1145015E-01 -.1156416E-01 -.1161813E-01 -.1151396E-01 700 | -.1116910E-01 -.1062412E-01 -.9873373E-02 -.8987641E-02 -.8123078E-02 701 | -.7252574E-02 -.6277929E-02 -.5139615E-02 -.3758278E-02 -.2108786E-02 702 | -.3037877E-03 .1512916E-02 .3246851E-02 .4825347E-02 .6165732E-02 703 | .7053946E-02 .7407015E-02 .7306948E-02 .6824108E-02 .6126497E-02 704 | .5395605E-02 .4735706E-02 .4145562E-02 .3582880E-02 .3010571E-02 705 | .2429016E-02 .1852722E-02 .1268032E-02 .7790853E-03 .4163089E-03 706 | .1241426E-03 -.8256823E-04 -.2676551E-03 -.4565719E-03 -.6765935E-03 707 | -.9578543E-03 -.1333950E-02 -.1929485E-02 -.2799383E-02 -.3998797E-02 708 | -.5411238E-02 -.6809948E-02 -.8094199E-02 -.9140870E-02 -.9939898E-02 709 | -.1059492E-01 -.1120225E-01 -.1184145E-01 -.1246029E-01 -.1296932E-01 710 | -.1328528E-01 -.1330266E-01 -.1300279E-01 -.1249487E-01 -.1195061E-01 711 | -.1142438E-01 -.1091830E-01 -.1046579E-01 -.1002865E-01 -.9516446E-02 712 | -.8880209E-02 -.8162702E-02 -.7381981E-02 -.6569535E-02 -.5844293E-02 713 | -.5332524E-02 -.5127164E-02 -.5230984E-02 -.5580506E-02 -.6065199E-02 714 | -.6576555E-02 -.7055518E-02 -.7483169E-02 -.7857245E-02 -.8210891E-02 715 | -.8549536E-02 -.8784769E-02 -.8908805E-02 -.8965009E-02 -.8953785E-02 716 | -.8890542E-02 -.8812452E-02 -.8770742E-02 -.8713877E-02 -.8496546E-02 717 | -.8073468E-02 -.7415896E-02 -.6556235E-02 -.5609972E-02 -.4620983E-02 718 | -.3651461E-02 -.2776462E-02 -.2047861E-02 -.1570904E-02 -.1433280E-02 719 | -.1627593E-02 -.2091562E-02 -.2670573E-02 -.3159750E-02 -.3295051E-02 720 | -.2841774E-02 -.1722596E-02 -.3081415E-04 .2012427E-02 .4195846E-02 721 | .7759243E-02 .1009041E-01 .1234082E-01 .1430464E-01 .1580129E-01 722 | .1664470E-01 .1683972E-01 .1664863E-01 .1637586E-01 .1633187E-01 723 | .1673473E-01 .1755643E-01 .1865395E-01 .1977178E-01 .2065249E-01 724 | .2119936E-01 .2144359E-01 .2154501E-01 .2162092E-01 .2175057E-01 725 | .2198130E-01 .2222906E-01 .2246085E-01 .2266158E-01 .2281945E-01 726 | .2299220E-01 .2326148E-01 .2368028E-01 .2424810E-01 .2493331E-01 727 | .2567153E-01 .2640765E-01 .2709228E-01 .2770083E-01 .2828892E-01 728 | .2888795E-01 .2944563E-01 .2997140E-01 .3044045E-01 .3067170E-01 729 | .3057340E-01 .3011340E-01 .2927922E-01 .2827632E-01 .2726479E-01 730 | .2618787E-01 .2508466E-01 .2394896E-01 .2263012E-01 .2115497E-01 731 | .1961779E-01 .1812645E-01 .1682319E-01 .1590214E-01 .1546219E-01 732 | .1538958E-01 .1553484E-01 .1573604E-01 .1587445E-01 .1580009E-01 733 | .1544133E-01 .1481476E-01 .1392805E-01 .1286946E-01 .1175946E-01 734 | .1068899E-01 .9637313E-02 .8571257E-02 .7508245E-02 .6396172E-02 735 | .5176293E-02 .3871487E-02 .2513818E-02 .1133142E-02 -.2125730E-03 736 | -.1472745E-02 -.2621101E-02 -.3570533E-02 -.4262023E-02 -.4737111E-02 737 | -.5092072E-02 -.5395414E-02 -.5679843E-02 -.6017004E-02 -.6386026E-02 738 | -.6787382E-02 -.7300432E-02 -.7967211E-02 -.8808489E-02 -.9845551E-02 739 | -.1098767E-01 -.1203648E-01 -.1285782E-01 -.1330239E-01 -.1328962E-01 740 | -.1295417E-01 -.1244764E-01 -.1186071E-01 -.1131595E-01 -.1089068E-01 741 | -.1059892E-01 -.1049736E-01 -.1060687E-01 -.1094933E-01 -.1152811E-01 742 | -.1220358E-01 -.1289204E-01 -.1357616E-01 -.1423100E-01 -.1482947E-01 743 | -.1538425E-01 -.1592233E-01 -.1636338E-01 -.1656591E-01 -.1643236E-01 744 | -.1597662E-01 -.1527350E-01 -.1443529E-01 -.1357836E-01 -.1278392E-01 745 | -.1206561E-01 -.1137277E-01 -.1071076E-01 -.1017280E-01 -.9799921E-02 746 | -.9649394E-02 -.9757075E-02 -.1004074E-01 -.1042480E-01 -.1079276E-01 747 | -.1109372E-01 -.1136999E-01 -.1160094E-01 -.1178761E-01 -.1197894E-01 748 | -.1207333E-01 -.1193329E-01 -.1155171E-01 -.1093361E-01 -.1012867E-01 749 | -.9261098E-02 -.8423422E-02 -.7678327E-02 -.7119483E-02 -.6791939E-02 750 | -.6712115E-02 -.6843079E-02 -.7089660E-02 -.7379934E-02 -.7649899E-02 751 | -.7845475E-02 -.7915957E-02 -.7819283E-02 -.7499915E-02 -.6994798E-02 752 | -.6395132E-02 -.5723564E-02 -.5048186E-02 -.4439030E-02 -.3859009E-02 753 | -.3285826E-02 -.2720984E-02 -.2147649E-02 -.1564056E-02 -.9720655E-03 754 | -.3924482E-03 .1650661E-03 .7174124E-03 .1257095E-02 .1789369E-02 755 | .2359872E-02 .2957085E-02 .3528682E-02 .4030079E-02 .4409755E-02 756 | .4610036E-02 .4614296E-02 .4491448E-02 .4327655E-02 .4181567E-02 757 | .4104591E-02 .4130779E-02 .4265152E-02 .4465588E-02 .4693861E-02 758 | .4931583E-02 .5140223E-02 .5326284E-02 .5517676E-02 .5702954E-02 759 | .5880905E-02 .6067302E-02 .6213250E-02 .6267491E-02 .6210680E-02 760 | .6029982E-02 .5763171E-02 .5463723E-02 .5173041E-02 .4898239E-02 761 | .4639396E-02 .4397928E-02 .4151844E-02 .3904857E-02 .3663023E-02 762 | .3445871E-02 .3303808E-02 .3251068E-02 .3289394E-02 .3397992E-02 763 | .3510975E-02 .3548474E-02 .3458961E-02 .3214734E-02 .2803493E-02 764 | .2291440E-02 .1774944E-02 .1277190E-02 .7986186E-03 .3663494E-03 765 | -.3482560E-04 -.4354777E-03 -.8270837E-03 -.1209550E-02 -.1576519E-02 766 | -.1914450E-02 -.2243036E-02 -.2553874E-02 -.2851191E-02 -.3150080E-02 767 | -.3432364E-02 -.3706000E-02 -.3985497E-02 -.4265150E-02 -.4527991E-02 768 | -.4767252E-02 -.4964962E-02 -.5061370E-02 -.5023966E-02 -.4868896E-02 769 | -.4625376E-02 -.4352955E-02 -.4107218E-02 -.3938803E-02 -.3873476E-02 770 | -.3905834E-02 -.4019462E-02 -.4164923E-02 -.4317415E-02 -.4467577E-02 771 | -.4621323E-02 -.4794882E-02 -.4987393E-02 -.5198910E-02 -.5387553E-02 772 | -.5502042E-02 -.5509470E-02 -.5372261E-02 -.5121201E-02 -.4810435E-02 773 | -.4475207E-02 -.4173282E-02 -.3924784E-02 -.3747185E-02 -.3661682E-02 774 | -.3644232E-02 -.3678184E-02 -.3736803E-02 -.3780249E-02 -.3787912E-02 775 | -.3723627E-02 -.3553096E-02 -.3274377E-02 -.2914601E-02 -.2510209E-02 776 | -.2101883E-02 -.1725180E-02 -.1395088E-02 -.1110167E-02 -.8630921E-03 777 | -.6677471E-03 -.5430111E-03 -.4917591E-03 -.5032961E-03 -.5512626E-03 778 | -.6093181E-03 -.6585218E-03 -.6917868E-03 -.7160987E-03 -.7341155E-03 779 | -.7577296E-03 -.7942437E-03 -.8357234E-03 -.8798277E-03 -.9201046E-03 780 | -.9494655E-03 -.9693090E-03 -.9821635E-03 -.9870876E-03 -.9832932E-03 781 | -.9688699E-03 -.9330460E-03 -.8579200E-03 -.7386728E-03 -.5812859E-03 782 | -.3997294E-03 -.2121420E-03 -.3243040E-04 .1293954E-03 .2772012E-03 783 | .4166618E-03 .5497497E-03 .6796009E-03 .8076697E-03 .9376777E-03 784 | .1074204E-02 .1216486E-02 .1357106E-02 .1494193E-02 .1621883E-02 785 | .1732130E-02 .1829667E-02 .1911760E-02 .1975442E-02 .2025713E-02 786 | .2061568E-02 .2084805E-02 .2099837E-02 .2107158E-02 .2109271E-02 787 | .2105125E-02 .2094110E-02 .2077210E-02 .2051453E-02 .2012648E-02 788 | .1957224E-02 .1882890E-02 .1792851E-02 .1696231E-02 .1598098E-02 789 | .1503724E-02 .1416341E-02 .1333911E-02 .1256371E-02 .1182076E-02 790 | .1109747E-02 .1040603E-02 .9743627E-03 .9119862E-03 .8541323E-03 791 | .7998095E-03 .7486704E-03 .7007959E-03 .6561052E-03 .6137506E-03 792 | .5743657E-03 .5383776E-03 .5055391E-03 .4752999E-03 .4477320E-03 793 | .4230737E-03 .4005037E-03 .3795673E-03 .3579860E-03 .3348679E-03 794 | .3105352E-03 .2860160E-03 .2652565E-03 .2503434E-03 .2422912E-03 795 | .2417031E-03 .2476960E-03 .2604719E-03 .2802572E-03 .3068705E-03 796 | .3386556E-03 .3722990E-03 .4052977E-03 .4356823E-03 .4622546E-03 797 | .4852438E-03 .5057260E-03 .5246352E-03 .5425639E-03 .5599601E-03 798 | .5767023E-03 .5925052E-03 .6072328E-03 .6208209E-03 .6330554E-03 799 | .6435786E-03 .6521876E-03 .6587709E-03 .6634079E-03 .6663115E-03 800 | .6677464E-03 .6680027E-03 .6673014E-03 .6658006E-03 .6636009E-03 801 | -------------------------------------------------------------------------------- /BraineryBytes_OpenSees_Examples_Manual_Example_1a_Elastic_Cantilever_Column_Pushover.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "

OpenSees Examples Manual Examples for OpenSeesPy

\n", 8 | "

OpenSees Example 1a. 2D Elastic Cantilever Column -- Static Pushover

\n", 9 | "

\n", 10 | "\n", 11 | "You can find the original Examples:
\n", 12 | "https://opensees.berkeley.edu/wiki/index.php/Examples_Manual
\n", 13 | "Original Examples by By Silvia Mazzoni & Frank McKenna, 2006, in Tcl
\n", 14 | "Converted to OpenSeesPy by SilviaMazzoni, 2020
\n", 15 | "

\n", 16 | "\n", 17 | "

Simulation Process

\n", 18 | "\n", 19 | "Each example script does the following:\n", 20 | "

A. Build the model

\n", 21 | "
    \n", 22 | "
  1. model dimensions and degrees-of-freedom
  2. \n", 23 | "
  3. nodal coordinates
  4. \n", 24 | "
  5. nodal constraints -- boundary conditions
  6. \n", 25 | "
  7. nodal masses
  8. \n", 26 | "
  9. elements and element connectivity
  10. \n", 27 | "
  11. recorders for output
  12. \n", 28 | "
\n", 29 | "

B. Define & apply gravity load

\n", 30 | "
    \n", 31 | "
  1. nodal or element load
  2. \n", 32 | "
  3. static-analysis parameters (tolerances & load increments)
  4. \n", 33 | "
  5. analyze
  6. \n", 34 | "
  7. hold gravity loads constant
  8. \n", 35 | "
  9. reset time to zero
  10. \n", 36 | "
\n", 37 | "

C. Define and apply lateral load

\n", 38 | "
\n", 39 | "
  • Time Series and Load Pattern (nodal loads for static analysis, support ground motion for earthquake)
  • \n", 40 | "
  • lateral-analysis parameters (tolerances and displacement/time increments)
  • \n", 41 | "Static Lateral-Load Analysis\n", 42 | "
  • define the displacement increments and displacement path
  • \n", 43 | "Dynamic Lateral-Load Analysis\n", 44 | "
  • define the input motion and all associated parameters, such as scaling and input type
  • \n", 45 | "
  • define analysis duration and time increment
  • \n", 46 | "
  • define damping
  • \n", 47 | "
  • analyze
  • \n", 48 | "

    \n", 49 | "\n", 50 | "Introductory Examples\n", 51 | "The objective of Example 1a and Example 1b is to give an overview of input-file format in OpenSees using simple scripts.\n", 52 | "These scripts do not take advantage of the Tcl scripting capabilities shown in the later examples. However, they do provide starting a place where the input file is similar to that of more familiar Finite-Element Analysis software. Subsequent examples should be used as the basis for user input files.\n", 53 | " " 54 | ] 55 | }, 56 | { 57 | "cell_type": "markdown", 58 | "metadata": {}, 59 | "source": [ 60 | "

    OpenSees Example 1a. 2D Elastic Cantilever Column -- Static Pushover

    \n", 61 | "Introduction\n", 62 | "Example 1a is a simple model of an elastic cantilever column. \n", 63 | " Objectives of Example 1b \n", 64 | " - overview of basic OpenSees input structure
    \n", 65 | " - coordinates, boundary conditions, element connectivity, nodal masses, nodal loads, etc.
    \n", 66 | " - two-node, one element\n", 67 | "\n" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": 1, 73 | "metadata": {}, 74 | "outputs": [ 75 | { 76 | "name": "stdout", 77 | "output_type": "stream", 78 | "text": [ 79 | "Done!\n" 80 | ] 81 | } 82 | ], 83 | "source": [ 84 | "############################################################\n", 85 | "# EXAMPLE: \n", 86 | "# pyEx1a.Canti2D.Push.tcl.py\n", 87 | "# for OpenSeesPy\n", 88 | "# --------------------------------------------------------#\n", 89 | "# by: Silvia Mazzoni, 2020\n", 90 | "# silviamazzoni@yahoo.com\n", 91 | "############################################################\n", 92 | "# This file was obtained from a conversion of the updated Tcl script\n", 93 | "############################################################\n", 94 | "\n", 95 | "# configure Python workspace\n", 96 | "import openseespy.opensees as ops\n", 97 | "import eSEESminiPy\n", 98 | "import os\n", 99 | "import math\n", 100 | "import numpy as numpy\n", 101 | "import matplotlib.pyplot as plt\n", 102 | "ops.wipe()\n", 103 | "# --------------------------------------------------------------------------------------------------\n", 104 | "# Example 1. cantilever 2D\n", 105 | "# static pushover analysis with gravity.\n", 106 | "# all units are in kip, inch, second\n", 107 | "# elasticBeamColumn ELEMENT\n", 108 | "# Silvia Mazzoni and Frank McKenna, 2006\n", 109 | "#\n", 110 | "# ^Y\n", 111 | "# or\n", 112 | "# 2 __\n", 113 | "# or |\n", 114 | "# or |\n", 115 | "# or |\n", 116 | "# (1) 36'\n", 117 | "# or |\n", 118 | "# or |\n", 119 | "# or |\n", 120 | "# =1= ---- -------->X\n", 121 | "#\n", 122 | "\n", 123 | "# SET UP ----------------------------------------------------------------------------\n", 124 | "ops.wipe() # clear opensees model\n", 125 | "ops.model('basic','-ndm',2,'-ndf',3) # 2 dimensions, 3 dof per node\n", 126 | "if not os.path.exists('Data'):\n", 127 | " os.mkdir('Data')\n", 128 | "\n", 129 | "# define GEOMETRY -------------------------------------------------------------\n", 130 | "# nodal coordinates:\n", 131 | "ops.node(1,0,0) # node , X Y\n", 132 | "ops.node(2,0,432)\n", 133 | "\n", 134 | "# Single point constraints -- Boundary Conditions\n", 135 | "ops.fix(1,1,1,1) # node DX DY RZ\n", 136 | "\n", 137 | "# nodal masses:\n", 138 | "ops.mass(2,5.18,0.,0.) # node , Mx My Mz, Mass=Weight/g.\n", 139 | "\n", 140 | "# Define ELEMENTS -------------------------------------------------------------\n", 141 | "# define geometric transformation: performs a linear geometric transformation of beam stiffness\n", 142 | "# and resisting force from the basic system to the global-coordinate system\n", 143 | "ops.geomTransf('Linear',1) # associate a tag to transformation\n", 144 | "\n", 145 | "# connectivity: (make A very large, 10e6 times its actual value)\n", 146 | "# element elasticBeamColumn eleTag iNode jNode A E Iz transfTag\n", 147 | "ops.element('elasticBeamColumn',1,1,2,3600000000,4227,1080000,1) # element elasticBeamColumn 1 1 2 3600000000 4227 1080000 1;\n", 148 | "\n", 149 | "# Define RECORDERS -------------------------------------------------------------\n", 150 | "ops.recorder('Node','-file','Data/DFreeEx1aPush.out','-time','-node',2,'-dof',1,2,3,'disp') # displacements of free nodes\n", 151 | "ops.recorder('Node','-file','Data/DBaseEx1aPush.out','-time','-node',1,'-dof',1,2,3,'disp') # displacements of support nodes\n", 152 | "ops.recorder('Node','-file','Data/RBaseEx1aPush.out','-time','-node',1,'-dof',1,2,3,'reaction') # support reaction\n", 153 | "ops.recorder('Element','-file','Data/FColEx1aPush.out','-time','-ele',1,'globalForce') # element forces -- column\n", 154 | "ops.recorder('Element','-file','Data/DColEx1aPush.out','-time','-ele',1,'deformation') # element deformations -- column\n", 155 | "\n", 156 | "# define GRAVITY -------------------------------------------------------------\n", 157 | "ops.timeSeries('Linear',1) # timeSeries Linear 1;\n", 158 | "# define Load Pattern\n", 159 | "ops.pattern('Plain',1,1) # \n", 160 | "ops.load(2,0.,-2000.,0.) # node , FX FY MZ -- superstructure-weight\n", 161 | "\n", 162 | "ops.wipeAnalysis() # adding this to clear Analysis module \n", 163 | "ops.constraints('Plain') # how it handles boundary conditions\n", 164 | "ops.numberer('Plain') # renumber dofs to minimize band-width (optimization), if you want to\n", 165 | "ops.system('BandGeneral') # how to store and solve the system of equations in the analysis\n", 166 | "ops.test('NormDispIncr',1.0e-8,6) # determine if convergence has been achieved at the end of an iteration step\n", 167 | "ops.algorithm('Newton') # use Newtons solution algorithm: updates tangent stiffness at every iteration\n", 168 | "ops.integrator('LoadControl',0.1) # determine the next time step for an analysis, apply gravity in 10 steps\n", 169 | "ops.analysis('Static') # define type of analysis static or transient\n", 170 | "ops.analyze(10) # perform gravity analysis\n", 171 | "ops.loadConst('-time',0.0) # hold gravity constant and restart time\n", 172 | "\n", 173 | "# define LATERAL load -------------------------------------------------------------\n", 174 | "# Lateral load pattern\n", 175 | "ops.timeSeries('Linear',2) # timeSeries Linear 2;\n", 176 | "# define Load Pattern\n", 177 | "ops.pattern('Plain',2,2) # \n", 178 | "ops.load(2,2000.,0.0,0.0) # node , FX FY MZ -- representative lateral load at top node\n", 179 | "\n", 180 | "\n", 181 | "# pushover: diplacement controlled static analysis\n", 182 | "ops.integrator('DisplacementControl',2,1,0.1) # switch to displacement control, for node 11, dof 1, 0.1 increment\n", 183 | "ops.analyze(1000) # apply 100 steps of pushover analysis to a displacement of 10\n", 184 | "\n", 185 | "print('Done!')\n" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 2, 191 | "metadata": {}, 192 | "outputs": [ 193 | { 194 | "data": { 195 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARh0lEQVR4nO3df4xdZ33n8fcnNoRaJSWux1k3djwp9R84qQrUSul2RVFTIA2IRFBap9PiNNm1KkW7oXRVJeuVqko7Km2XbbSrompo0JriElkLhQillNRtqKg2ZCeQ0ObXxhD/Skw8lK4aEsnF4bt/zDG9ce7M3PlxfceP3y/p6pzzPM859/voSh8fn3vunFQVkqS2XDDqAiRJK89wl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuLUKS8SSVZO0AY29M8sWzUZd0JsNdTUtyKMk/J9lwRvtDXUiPj6YyabgMd50PngJuOL2R5EeB7xtdOdLwGe46H/wJ8L6e7V3Ax05vJPmBJB9LMpPkcJL/nOSCrm9Nkv+a5JtJvg68o/fA3b53Jjme5Okk/yXJmrMxKWk+hrvOB/cDFyV5XRe8vwh8vKf/fwA/APww8NPM/kPwq13fvwPeCbwB2AH8/BnH3gucAn6kG/M24N8OZxrS4Ax3nS9On72/FXgceLprPx32t1fVc1V1CPgQ8Ctd/y8Ad1TV0ar6FvA7pw+Y5BLg54D3V9XzVXUC+ANg51mYjzSvBb/xlxrxJ8DfAJfTc0kG2AC8Ejjc03YYuLRb/yHg6Bl9p20FXgEcT3K67YIzxksjYbjrvFBVh5M8BVwL3NzT9U3gO8wG9aNd22X8y5n9cWBLz/jLetaPAieBDVV1ahh1S0vlZRmdT24Gfqaqnu9pexHYD0wmeXWSrcAH+Jdr8vuB/5Bkc5KLgdtO71hVx4HPAx9KclGSC5K8NslPn5XZSPMw3HXeqKqvVdV0n65/DzwPfB34IvCnwEe7vo8AfwE8DHwZ+NQZ+76P2cs6jwL/CPwvYNOKFy8tUnxYhyS1xzN3SWqQ4S5JDTLcJalBhrskNWhV3Oe+YcOGGh8fH3UZknROefDBB79ZVWP9+lZFuI+PjzM93e8ONWkVOHoU3vc++MY34IILYPduuPXWUVclkeTwXH2rItylVW3tWvjQh+CNb4TnnoMf/3F461th+/ZRVybNyWvu0kI2bZoNdoBXvxpe9zp4+un595FGzHCXFuPQIfjKV+AnfmLUlUjzMtylQX372/Ce98Add8BFF426Gmlehrs0iO98ZzbYJybg3e8edTXSggx3aQ779u1jfHycCxI+efHFPJ7ABz4w6rKkgRjuUh/79u1j9+7dHD58mH8NvOf55zn1+c/zra1b4fWvh3vuGXWJ0ry8FVLqY8+ePbzwwgsA/C0QgCq2Jhx66KFRliYNxDN3qY8jR44sql1abQx3qY/LLrtsUe3SamO4S31MTk6ybt26l7StW7eOycnJEVUkLY7hLvUxMTHB1NQUF154IQBbt25lamqKiYmJEVcmDcYvVKU5TExM8JGPfASA++67b7TFSIvkmbskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0aONyTrEnylSSf7bbXJ7k3yZPd8uKesbcnOZjkiSRvH0bhkqS5LebM/VbgsZ7t24ADVbUNONBtk2Q7sBO4ArgG+HCSNStTriRpEAOFe5LNwDuAP+5pvg7Y263vBa7vab+rqk5W1VPAQeCqlSlXkjSIQc/c7wB+E/huT9slVXUcoFtu7NovBY72jDvWtb1Ekt1JppNMz8zMLLpwSdLcFgz3JO8ETlTVgwMeM33a6mUNVVNVtaOqdoyNjQ14aEnSIAb5w2E/BbwrybXAq4CLknwceDbJpqo6nmQTcKIbfwzY0rP/ZuCZlSxakjS/Bc/cq+r2qtpcVePMflH6V1X1y8DdwK5u2C7gM9363cDOJBcmuRzYBjyw4pVLkua0nD/5+0Fgf5KbgSPAewGq6pEk+4FHgVPALVX14rIrlSQNbFHhXlX3Afd16/8AXD3HuEnAR9ZI0oj4C1VJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNWjBcE/yqiQPJHk4ySNJfrtrX5/k3iRPdsuLe/a5PcnBJE8kefswJyBJerlBztxPAj9TVT8GvB64JsmbgNuAA1W1DTjQbZNkO7ATuAK4BvhwkjXDKF6S1N+C4V6zvt1tvqJ7FXAdsLdr3wtc361fB9xVVSer6ingIHDVilYtSZrXQNfck6xJ8hBwAri3qr4EXFJVxwG65cZu+KXA0Z7dj3VtkqSzZKBwr6oXq+r1wGbgqiRXzjM8/Q7xskHJ7iTTSaZnZmYGq1aSNJBF3S1TVf8PuI/Za+nPJtkE0C1PdMOOAVt6dtsMPNPnWFNVtaOqdoyNjS2hdEnSXAa5W2YsyWu69e8DfhZ4HLgb2NUN2wV8plu/G9iZ5MIklwPbgAdWunBJ0tzWDjBmE7C3u+PlAmB/VX02yf8G9ie5GTgCvBegqh5Jsh94FDgF3FJVLw6nfElSPwuGe1V9FXhDn/Z/AK6eY59JYHLZ1UmSlsRfqEpSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEsDuOkm2LgRrrxy1JVIgzHcpQHceCN87nOjrkIanOEuDeDNb4b160ddhTQ4w12SGmS4S1KDDHdJapDhLkkNMtylAdxwA/zkT8ITT8DmzXDnnaOuSJrf2lEXIJ0LPvGJUVcgLY5n7pLUIMNdkhpkuEtSgwx3SWrQguGeZEuSv07yWJJHktzata9Pcm+SJ7vlxT373J7kYJInkrx9mBOQJL3cIGfup4DfqKrXAW8CbkmyHbgNOFBV24AD3TZd307gCuAa4MNJ1gyjeElSfwuGe1Udr6ovd+vPAY8BlwLXAXu7YXuB67v164C7qupkVT0FHASuWunCJUlzW9Q19yTjwBuALwGXVNVxmP0HANjYDbsUONqz27Gu7cxj7U4ynWR6ZmZm8ZVLkuY0cLgn+X7gk8D7q+qf5hvap61e1lA1VVU7qmrH2NjYoGVIkgYwULgneQWzwb6vqj7VNT+bZFPXvwk40bUfA7b07L4ZeGZlypUkDWKQu2UC3Ak8VlX/rafrbmBXt74L+ExP+84kFya5HNgGPLByJUuSFjLI35b5KeBXgL9L8lDX9p+ADwL7k9wMHAHeC1BVjyTZDzzK7J02t1TViyteuSRpTguGe1V9kf7X0QGunmOfSWByGXVJkpbBX6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1aMFwT/LRJCeS/H1P2/ok9yZ5slte3NN3e5KDSZ5I8vZhFS5JmtsgZ+7/E7jmjLbbgANVtQ040G2TZDuwE7ii2+fDSdasWLWSpIEsGO5V9TfAt85ovg7Y263vBa7vab+rqk5W1VPAQeCqFapVkjSgpV5zv6SqjgN0y41d+6XA0Z5xx7q2l0myO8l0kumZmZklliFJ6melv1BNn7bqN7CqpqpqR1XtGBsbW+EyJOn8ttRwfzbJJoBueaJrPwZs6Rm3GXhm6eVJkpZiqeF+N7CrW98FfKanfWeSC5NcDmwDHlheiZKkxVq70IAknwDeAmxIcgz4LeCDwP4kNwNHgPcCVNUjSfYDjwKngFuq6sUh1S5JmsOC4V5VN8zRdfUc4yeByeUUJUlaHn+hKkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3aRA33QQbN8KVV466Emkghrs0iBtvhM99btRVSAMz3KVBvPnNsH79qKuQBma4S1KDDHdJapDhLkkNGlq4J7kmyRNJDia5bVjvIw3Lvn37uP/++/nCF77A+Pg4n/70p0ddkjSwoYR7kjXAHwI/B2wHbkiyfRjvJQ3Dvn372L17NydPngTgdw4f5k2//ut89/HHYfNmuPPOEVcozW/tkI57FXCwqr4OkOQu4Drg0SG9n7Si9uzZwwsvvPC97V/qlls3b+bQoUMjqUlajGFdlrkUONqzfaxr+54ku5NMJ5memZkZUhnS0hw5cmRR7dJqM6xwT5+2eslG1VRV7aiqHWNjY0MqQ1qayy67bFHt0mozrHA/Bmzp2d4MPDOk95JW3OTkJOvWrXtJ27p165icnBxRRdLiDCvc/w+wLcnlSV4J7ATuHtJ7SStuYmKCqakptm7dShK2bt3K1NQUExMToy5NGkiqauFRSzlwci1wB7AG+GhVzXnKs2PHjpqenh5KHZLUqiQPVtWOfn3DuluGqroHuGdYx5ckzc1fqEpSgwx3SWqQ4S5JDTLcJalBQ7tbZlFFJDPA4VHXsQQbgG+OuoizzDmfH863OZ+r891aVX1/Bboqwv1clWR6rtuQWuWczw/n25xbnK+XZSSpQYa7JDXIcF+eqVEXMALO+fxwvs25ufl6zV2SGuSZuyQ1yHCXpAYZ7gtIsj7JvUme7JYXzzFu3geCJ/mPSSrJhuFXvTzLnXOS30/yeJKvJvmzJK85e9UPboDPLEn+e9f/1SRvHHTf1Wqpc06yJclfJ3ksySNJbj371S/Ncj7nrn9Nkq8k+ezZq3oFVJWveV7A7wG3deu3Ab/bZ8wa4GvADwOvBB4Gtvf0bwH+gtkfam0Y9ZyGPWfgbcDabv13++0/6tdCn1k35lrgz5l9stibgC8Nuu9qfC1zzpuAN3brrwb+b+tz7un/APCnwGdHPZ/FvDxzX9h1wN5ufS9wfZ8x33sgeFX9M3D6geCn/QHwm5zxqMFVbFlzrqrPV9Wpbtz9zD6Ja7VZ6DOj2/5YzbofeE2STQPuuxotec5VdbyqvgxQVc8Bj3HGc5FXqeV8ziTZDLwD+OOzWfRKMNwXdklVHQfolhv7jJnzgeBJ3gU8XVUPD7vQFbSsOZ/hJmbPilabQeqfa8ygc19tljPn70kyDrwB+NKKV7jyljvnO5g9MfvusAoclqE9rONckuQvgX/Vp2vPoIfo01ZJ1nXHeNtSaxuWYc35jPfYA5wC9i2uurNiwfrnGTPIvqvRcuY825l8P/BJ4P1V9U8rWNuwLHnOSd4JnKiqB5O8ZcUrGzLDHaiqn52rL8mzp/9b2v1X7USfYXM9EPy1wOXAw0lOt385yVVV9Y0Vm8ASDHHOp4+xC3gncHV1Fy5XmUEe4j7XmFcOsO9qtJw5k+QVzAb7vqr61BDrXEnLmfPPA+/qHhn6KuCiJB+vql8eYr0rZ9QX/Vf7C/h9Xvrl4u/1GbMW+DqzQX76S5sr+ow7xLnxheqy5gxcAzwKjI16LvPMccHPjNlrrb1ftD2wmM97tb2WOecAHwPuGPU8ztaczxjzFs6xL1RHXsBqfwE/CBwAnuyW67v2HwLu6Rl3LbN3EHwN2DPHsc6VcF/WnIGDzF7DfKh7/dGo5zTHPF9WP/BrwK916wH+sOv/O2DHYj7v1fha6pyBf8Ps5Yyv9nyu1456PsP+nHuOcc6Fu39+QJIa5N0yktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ16P8DfIo8+L/ri9UAAAAASUVORK5CYII=\n", 196 | "text/plain": [ 197 | "
    " 198 | ] 199 | }, 200 | "metadata": { 201 | "needs_background": "light" 202 | }, 203 | "output_type": "display_data" 204 | } 205 | ], 206 | "source": [ 207 | "eSEESminiPy.drawModel()\n" 208 | ] 209 | }, 210 | { 211 | "cell_type": "code", 212 | "execution_count": 3, 213 | "metadata": {}, 214 | "outputs": [ 215 | { 216 | "data": { 217 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xUZfr38c8lsipSpOkiiOj+cH+ZhCYRRJFFQWGx4O6zBV1WdpmEIqy9oevDWlikSZEaEgSlF+md0HsNJIAUEQVBQFREQEpyP3/kuE8WgySQyclMvu/Xa145c59z5nzvEa+5cuZkxpxziIhIZLnC7wAiIpL3VNxFRCKQiruISARScRcRiUAq7iIiEUjFXUQkAqm4S4FmZu3N7JCZfW9mZf3Ok5WZDTezty9x371m1jivM4n8SMVdQsYrYKfM7LiZfWtmK82snZnl6N+dmRUF3gUecM4Vd84dDW3ivGNmvzCzXma233th+tTMevudSwoPFXcJtYedcyWAm4F3gJeBpBzuewNwNbA1twe1TH7+++4ExAJ1gBLAvcAmH/NIIaPiLvnCOXfMOTcN+DPQysxiAMzsKjPraWafe6dfBpvZNWZ2G7DD2/1bM1vobX+Xma0zs2Pez7t+PIaZLTazLma2AjgJ3GpmzsyeNLNd3m8Qb5nZr8xslZl9Z2bjzewXWR7jITNLyfKbRvUs62qZ2UbvccaR+cJzIXcAk51zB1ymvc65D87bpqaZbfHmMs7MrvaOU9rMZpjZETP7xluudN48u5rZWm/fqWZWJsv6O73s35rZZjNrmIv/VBIpnHO66RaSG7AXaJzN+OdAe2+5DzANKENmhzsd6OqtqwI44ErvfhngG+CvwJXAY979st76xd5jR3vri3r7TwNKeuOngWTgVqAUsA1o5e1/O3AYqAsUAVp5c7gK+AXwGfCs97h/AM4Cb19g7v/0sjwJVAMsm+dmLXCjN6/tQDtvXVng/wDFvOdkAjAly76LgS+AGOBaYBIw0ltXETgKNCOzebvfu1/e738PuuXvTZ27+OEAUMbMDIgHnnXOfe2cOw78G2hxgf0eBHY55z50zp1zzo0BPgYezrLNcOfcVm/9WW+sm3PuO+fcViANmOec2+OcOwbMBmp528UDQ5xza5xz6c65EWS+GNzp3YoCfZxzZ51zE4F1PzPHrkA34C/AeuALM2t13jb9XGZn/zWZL2o1AZxzR51zk5xzJ73npAvwm/P2/dA5l+acOwG8DvzJzIoALYFZzrlZzrkM59x87/jNfiarRKAr/Q4ghVJF4GugPJnd6YbMOg+Akdk1Z+dGMrvnrD7zHu9H+7LZ71CW5VPZ3P+lt3wzmaeM/pFl/S+84zrgC+dc1k/aOz/Lfzjn0oEBwAAzuwZoDQwzs7XOue3eZl9m2eWkdxzMrBjQG2gKlPbWlzCzIt7jnj/Pz8h84SnnzeGPZpb1Ba8osOhCWSUyqXOXfGVmd5BZjJcDX5FZXKOdc9d5t1LOueIX2P0AmcUrq8pknqL40eV8zOk+oEuWLNc554p5vyEcBCpallch79gX5Zw75ZwbQOYppEAOdnke+DVQ1zlXEmjgjWc99k3n5ThL5vO5j8yuPuscrnXOvZOTrBI5VNwlX5hZSTN7CBhL5vnhVOdcBjAU6G1m13vbVTSzJhd4mFnAbWb2uJldaWZ/JrNYzsijmEOBdmZW17va5loze9DMSgCrgHPAU96xf0/mlTAXmu8zZtbQe3P4Su+UTAlydsVMCTJf9L713ijtnM02Lc0s4HX5bwITva5+JPCwmTUxsyJmdrWXo1I2jyERTMVdQm26mR0ns6N8jczr1v+eZf3LwG5gtZl9Bywgs2v9CZd5nftDZHa2R4GXgIecc1/lRVDn3Hoyz7v3J7PL3g38zVt3Bvi9d/8bMq/6+ehnHu4U0IvMUy9fAR2A/+Oc25ODKH2Aa7z9VgNzstnmQ2C49/hXA095OfcBzYFXgSNkPu8vov/XCx3771OIIlLQmdliMn/7SfQ7ixRcejUXEYlAKu4iIhFIp2VERCKQOncRkQhUIP6IqVy5cq5KlSp+xxARCSsbNmz4yjlXPrt1BaK4V6lShfXr1/sdQ0QkrJjZBf9KWqdlREQikIq7iEgEUnEXEYlAKu4iIhFIxV1EJAKpuIuIRCAVdxGRCBT2xX3ChAlMmDDB7xgiIrninCMpKYnp06eH5PHDvrjv37+f/fv3+x1DRCTH9uzZQ+PGjYmLi2PUqFEhOUbYF3cRkXCRnp5Onz59qFatGuvWrWPw4MGMHj06JMcqEB8/ICIS6bZu3UowGGTNmjU8+OCDDB48mEqVQvfth+rcRURC6MyZM7z55pvUqlWLTz75hNGjRzN9+vSQFnZQ5y4iEjLr1q0jGAySmprKY489Rt++fSlfPtsPccxz6txFRPLYyZMnefHFF7nzzjv5+uuvmTZtGqNHj863wg7q3EVE8tTixYuJj49n9+7dtGnThu7du1OqVKl8z6HOXUQkDxw7dox27dpx77334pxj4cKFDBkyxJfCDiruIiKXbcaMGURHRzN06FBeeOEFtmzZwr333utrJhV3EZFLdOTIER5//HEefvhhSpcuzapVq+jRowfFihXzO5qKu4hIbjnnGDNmDIFAgIkTJ/LGG2+wYcMG6tSp43e0/9AbqiIiubB//37at2/PjBkzqFOnDklJScTExPgd6ydy3LmbWREz22RmM7z7Zcxsvpnt8n6WzrJtJzPbbWY7zKxJKIKLiOSnjIwMEhISiI6OJjk5mXfffZeVK1cWyMIOuTst8zSwPcv9V4Bk51xVINm7j5kFgBZANNAUGGhmRfImrohI/tu9ezeNGjWibdu2xMbGkpaWxrPPPkuRIgW3tOWouJtZJeBBIDHLcHNghLc8Ang0y/hY59xp59ynwG6g4JyIEhHJoXPnztGzZ0+qVavGxo0bGTp0KAsWLODWW2/1O9pF5fScex/gJaBElrEbnHMHAZxzB83sem+8IrA6y3b7vbH/YmZtgDYAlStXzmVsEZHQSk1NJRgMsm7dOh555BEGDhxIxYo/KWUF1kU7dzN7CDjsnNuQw8e0bMbcTwacS3DOxTrnYvPzT3JFRH7O6dOn6dy5M7fffjt79+5l7NixTJkyJawKO+Ssc78beMTMmgFXAyXNbCRwyMwqeF17BeCwt/1+4KYs+1cCDuRlaBGRUFizZg3BYJCtW7fSsmVLevfuTbly5fyOdUku2rk75zo55yo556qQ+UbpQudcS2Aa0MrbrBUw1VueBrQws6vM7BagKrA2z5OLiOSREydO8Nxzz1GvXj2OHTvGzJkz+fDDD8O2sMPlXef+DjDezILA58AfAZxzW81sPLANOAd0cM6lX3ZSEZEQWLhwIfHx8ezZs4f27dvzzjvvULJkSb9jXbZcFXfn3GJgsbd8FGh0ge26AF0uM5uISMh8++23vPjiiyQmJlK1alWWLFlCgwYN/I6VZ/TxAyJS6EydOpVAIMCwYcN46aWX2Lx5c0QVdlBxF5FC5PDhw7Ro0YJHH32U8uXLs2bNGrp168Y111zjd7Q8p+IuIhHPOcfIkSOJiopi8uTJvPXWW6xfv57Y2Fi/o4WMPjhMRCLavn37aNeuHbNmzaJevXokJiYSCAT8jhVy6txFJCJlZGQwaNAgAoEAixcvpm/fvixbtqxQFHZQ5y4iEWjnzp3ExcWxbNkyGjduTEJCArfccovfsfKVOncRiRjnzp2je/fu1KhRg9TUVIYNG8a8efMKXWEHde4iEiE2b95M69at2bhxI7/73e8YMGAAFSpU8DuWb9S5i0hYO336NK+//jqxsbHs37+fCRMmMGnSpEJd2EGdu4iEsZUrVxIXF8f27dtp1aoV7777LmXKlPE7VoGgzl1Ews7333/P008/Tf369Tlx4gRz5sxh+PDhKuxZqLiLSFiZP38+1apVo1+/fnTo0IG0tDSaNNFXNZ9PxV1EwsI333xD69ateeCBB7jqqqtYtmwZ7733HiVKlLj4zoWQiruIFHiTJ08mEAjwwQcf0KlTJ1JSUqhfv77fsQo0vaEqIgXWl19+yT/+8Q8mTpxIzZo1mTVrFrVq1fI7VlhQ5y4iBY5zjhEjRhAIBJg+fTr//ve/Wbt2rQp7LqhzF5EC5bPPPqNt27bMnTuXu+++m8TERP73f//X71hhR527iBQIGRkZ9O/fn+joaJYvX857773H0qVLVdgvkTp3EfHdjh07CAaDrFixgiZNmjBkyBBuvvlmv2OFNXXuIuKbs2fP0rVrV2rUqMG2bdsYPnw4s2fPVmHPA+rcRcQXmzZtonXr1qSkpPCHP/yB9957j1/+8pd+x4oY6txFJF/98MMPdOrUiTvuuIMvv/ySSZMmMWHCBBX2PKbOXUTyzfLlywkGg+zcuZO///3v9OrVi9KlS/sdKyKpcxeRkDt+/DgdO3bknnvu4cyZM8ybN49hw4apsIeQiruIhNTcuXOJiYlh4MCBPPXUU6SmpnL//ff7HSviqbiLSEgcPXqUVq1a0bRpU4oVK8by5cvp27cvxYsX9ztaoaDiLiJ5yjnHxIkTCQQCjB49mn/+859s2rSJu+66y+9ohYreUBWRPHPw4EE6dOjA5MmTqV27NvPmzaNGjRp+xyqU1LmLyGVzzvH+++8TCASYPXs23bp1Y/Xq1SrsPlLnLiKX5dNPP6VNmzYsWLCAe+65h8TERG677Ta/YxV66txF5JKkp6fTr18/YmJiWL16NQMHDmTx4sUq7AWEOncRybVt27YRFxfHqlWr+O1vf8vgwYOpXLmy37EkC3XuIpJjZ8+e5e2336ZWrVrs3LmTkSNHMnPmTBX2Akidu4jkyIYNG2jdujVbtmzhz3/+M/369eP666/3O5ZcgDp3EflZp06d4uWXX6ZOnTocOXKEKVOmMHbsWBX2Ak6du4hc0NKlS4mLi2PXrl3ExcXRo0cPrrvuOr9jSQ5ctHM3s6vNbK2ZbTazrWb2hjdexszmm9ku72fpLPt0MrPdZrbDzJqEcgIikve+++47nnzySX7zm99w7tw5FixYwNChQ1XYw0hOTsucBu5zztUAagJNzexO4BUg2TlXFUj27mNmAaAFEA00BQaaWZFQhBeRvDdr1iyio6MZMmQIzz33HKmpqTRq1MjvWJJLFy3uLtP33t2i3s0BzYER3vgI4FFvuTkw1jl32jn3KbAbqJOnqUUkz3311Ve0bNmSBx98kJIlS7Jy5Up69erFtdde63c0uQQ5ekPVzIqYWQpwGJjvnFsD3OCcOwjg/fzx3ZWKwL4su+/3xkSkAHLOMW7cOAKBAOPGjaNz585s3LiRunXr+h1NLkOO3lB1zqUDNc3sOmCymcX8zOaW3UP8ZCOzNkAbQNfIivjkwIEDtG/fnmnTphEbG0tycjLVqlXzO5bkgVxdCumc+xZYTOa59ENmVgHA+3nY22w/cFOW3SoBB7J5rATnXKxzLrZ8+fKXEF1ELpVzjsTERAKBAPPmzaNnz56sWrVKhT2C5ORqmfJex46ZXQM0Bj4GpgGtvM1aAVO95WlACzO7ysxuAaoCa/M6uIhcmk8++YTGjRsTHx9PzZo1SU1N5fnnn+fKK3VldCTJyX/NCsAI74qXK4DxzrkZZrYKGG9mQeBz4I8AzrmtZjYe2AacAzp4p3VExEfp6en07duXf/7znxQtWpQhQ4YQFxfHFVfobxkj0UWLu3NuC1Arm/GjQLbXRznnugBdLjudiOSJtLQ0gsEga9eu5aGHHmLQoEFUqlTJ71gSQnrJFolgZ86c4Y033uD2229nz549jB49mmnTpqmwFwI6ySYSodatW0fr1q1JS0vj8ccfp0+fPujihcJDnbtIhDl58iQvvPACd955J9988w3Tpk1j1KhRKuyFjDp3kQiyaNEi4uPj+eSTT2jbti3dunWjVKlSfscSH6hzF4kAx44do23bttx3331AZpEfPHiwCnshpuIuEuamT59OIBAgMTGRF154gS1bttCwYUO/Y4nPVNxFwtSRI0d4/PHHeeSRRyhbtiyrV6+mR48eFCtWzO9oUgCouIuEGecco0ePJioqiokTJ/LGG2+wfv167rjjDr+jSQGiN1RFwsj+/ftp3749M2bMoG7duiQlJREdHe13LCmA1LmLhIGMjAyGDBlCIBBg4cKF9O7dmxUrVqiwywWpcxcp4Hbt2kV8fDxLliyhUaNGJCQkcOutt/odSwo4de4iBdS5c+fo2bMn1atXJyUlhcTERObPn6/CLjmizl2kANqyZQvBYJD169fTvHlzBg4cyI033uh3LAkj6txFCpDTp0/TuXNnateuzWeffca4ceOYPHmyCrvkmjp3kQJi9erVBINBtm3bRsuWLenTpw9ly5b1O5aEKXXuIj47ceIEzz77LHfddRfHjx9n5syZfPjhhyrsclnUuYv4KDk5mfj4eD799FOefPJJunbtSsmSJf2OJRFAnbuID7799lvi4uJo3LgxV155JUuWLGHAgAEq7JJnVNxF8tnUqVMJBAIMHz6cl19+mc2bN9OgQQO/Y0mE0WkZkXxy6NAhnnrqKcaPH0+NGjWYPn06tWvX9juWRCh17iIh5pzjww8/JBAIMGXKFN5++23WrVunwi4hpc5dJIQ+//xz2rVrx+zZs6lXrx5JSUlERUX5HUsKAXXuIiGQkZHBwIEDiY6OZunSpfTr149ly5apsEu+Uecuksd27txJXFwcy5Yt4/777ychIYEqVar4HUsKGXXuInnk3LlzdOvWjerVq5Oamsr777/P3LlzVdjFF+rcRfJASkoKwWCQjRs38rvf/Y4BAwZQoUIFv2NJIabOXeQy/PDDD7z22mvExsbyxRdfMHHiRD766CMVdvGdOneRS7Ry5UqCwSAff/wxrVq14t1336VMmTJ+xxIB1LmL5Nr333/PU089Rf369Tl58iRz5sxh+PDhKuxSoKi4i+TCvHnziImJoX///nTo0IG0tDSaNGnidyyRn1BxF8mBb775hr///e80adKEq6++mqVLl/Lee+9RokQJv6OJZEvFXeQiPvroIwKBAB9++CGdOnUiJSWF+vXr+x1L5GfpDVWRC/jyyy/p2LEjkyZNolatWsyaNYtatWr5HUskR9S5i5zHOcfw4cMJBALMmDGDrl27smbNGhV2CSvq3EWy2Lt3L23btmXevHnUr1+fxMREfv3rX/sdSyTX1LmLkPlBX++99x4xMTGsXLmS/v37s2TJEhV2CVvq3KXQ+/jjj4mLi2PFihU0adKEIUOGcPPNN/sdS+SyXLRzN7ObzGyRmW03s61m9rQ3XsbM5pvZLu9n6Sz7dDKz3Wa2w8x0EbAUSGfPnuXf//43NWrUYNu2bYwYMYLZs2ersEtEyMlpmXPA8865KOBOoIOZBYBXgGTnXFUg2buPt64FEA00BQaaWZFQhBe5VBs3bqROnTq89tprNG/enO3bt/PEE09gZn5HE8kTFy3uzrmDzrmN3vJxYDtQEWgOjPA2GwE86i03B8Y650475z4FdgN18jq4yKU4deoUnTp1ok6dOnz55Zd89NFHjB8/nhtuuMHvaCJ5Klfn3M2sClALWAPc4Jw7CJkvAGZ2vbdZRWB1lt32e2PnP1YboA1A5cqVc5tbJNeWL19OMBhk586dtG7dmp49e1K6dOmL7ygShnJ8tYyZFQcmAc845777uU2zGXM/GXAuwTkX65yLLV++fE5jiOTa8ePH6dixI/fccw9nzpxh/vz5JCUlqbBLRMtRcTezomQW9lHOuY+84UNmVsFbXwE47I3vB27Ksnsl4EDexBXJndmzZxMdHc3AgQN5+umnSU1NpXHjxn7HEgm5nFwtY0ASsN05926WVdOAVt5yK2BqlvEWZnaVmd0CVAXW5l1kkYs7evQoTzzxBM2aNaN48eKsWLGCPn36ULx4cb+jieSLnJxzvxv4K5BqZine2KvAO8B4MwsCnwN/BHDObTWz8cA2Mq+06eCcS8/z5CLZcM4xceJEOnbsyNdff83rr7/Oa6+9xlVXXeV3NJF8ddHi7pxbTvbn0QEaXWCfLkCXy8glkmsHDx7kySefZMqUKdSuXZt58+ZRo0YNv2OJ+EIfPyBhzznHsGHDiIqKYs6cOXTv3p3Vq1ersEuhpo8fkLC2Z88e2rZty4IFC2jQoAFDhw7ltttu8zuWiO/UuUtYSk9Pp0+fPlSrVo01a9YwaNAgFi1apMIu4lHnLmFn27ZtBINBVq9eTbNmzRg8eDA33XTTxXcUKUTUuUvYOHPmDG+99Ra1atVi165djBw5khkzZqiwi2RDnbuEhfXr1xMMBtmyZQstWrSgb9++XH/99RffUaSQUucuBdqpU6d46aWXqFu3Ll999RVTp05lzJgxKuwiF6HOXQqsJUuWEBcXx+7du4mPj6d79+5cd911fscSCQvq3KXA+e6772jfvj0NGzYkIyOD5ORkEhISVNhFckHFXQqUmTNnEh0dTUJCAs899xxbtmzhvvvu8zuWSNhRcZcC4auvvqJly5Y89NBDlCpVipUrV9KrVy+uvfZav6OJhCUVd/GVc46xY8cSFRXF+PHj6dy5Mxs3bqRu3bp+RxMJa3pDVXzzxRdf8OSTTzJt2jTuuOMOkpKSqFatmt+xRCKCOnfJd845hg4dSiAQYP78+fTs2ZNVq1apsIvkIXXukq8++eQT4uPjWbRoEQ0bNmTo0KH8z//8j9+xRCKOOnfJF+np6bz77rtUq1aNDRs2kJCQQHJysgq7SIioc5eQS0tLIxgMsnbtWh5++GEGDRpExYoV/Y4lEtHUuUvInDlzhjfeeIPbb7+dPXv2MGbMGKZOnarCLpIP1LlLSKxdu5ZgMEhaWhqPP/44ffv2pVy5cn7HEik01LlLnjp58iTPP/889erV45tvvmH69OmMGjVKhV0kn6lzlzyzaNEi4uLi/vPVd926daNUqVJ+xxIplNS5y2U7duwYbdq04b777uOKK65g0aJFDB48WIVdxEcq7nJZpk+fTiAQICkpiRdffJHNmzfTsGFDv2OJFHoq7nJJjhw5wmOPPcYjjzxC2bJlWbNmDd27d6dYsWJ+RxMRVNwll5xzjBo1iqioKCZNmsSbb77J+vXriY2N9TuaiGShN1Qlx/bt20f79u2ZOXMmdevWJSkpiejoaL9jiUg21LnLRWVkZDB48GCio6NZtGgRvXv3ZsWKFSrsIgWYOnf5Wbt27SI+Pp4lS5bQqFEjEhISuPXWW/2OJSIXoc5dsnXu3Dl69OhB9erVSUlJISkpifnz56uwi4QJde7yE5s3byYYDLJhwwaaN2/OwIEDufHGG/2OJSK5oM5d/uP06dO8/vrrxMbGsm/fPsaPH8/kyZNV2EXCkDp3AWDVqlUEg0G2b9/OX//6V3r37k3ZsmX9jiUil0ideyF34sQJnnnmGe6++26+//57Zs2axQcffKDCLhLm1LkXYgsWLCA+Pp69e/fSoUMHunbtSokSJfyOJSJ5QJ17IfTtt98SDAa5//77KVq0KEuXLqV///4q7CIRRMW9kJkyZQqBQIARI0bwyiuvsHnzZu655x6/Y4lIHtNpmULi0KFD/OMf/2DChAnUqFGD6dOnU7t2bb9jiUiIXLRzN7NhZnbYzNKyjJUxs/lmtsv7WTrLuk5mttvMdphZk1AFl5xxzvHBBx8QFRXF1KlT6dKlC+vWrVNhF4lwOTktMxxoet7YK0Cyc64qkOzdx8wCQAsg2ttnoJkVybO0kiuff/45zZo1o1WrVkRFRZGSksKrr75K0aJF/Y4mIiF20eLunFsKfH3ecHNghLc8Ang0y/hY59xp59ynwG6gTh5llRzKyMhgwIABREdHs2zZMvr168eyZcuIioryO5qI5JNLPed+g3PuIIBz7qCZXe+NVwRWZ9luvzf2E2bWBmgDULly5UuMIefbsWMHcXFxLF++nPvvv5+EhASqVKnidywRyWd5fbWMZTPmstvQOZfgnIt1zsWWL18+j2MUPmfPnuWdd96hRo0apKWl8f777zN37lwVdpFC6lI790NmVsHr2isAh73x/cBNWbarBBy4nIBycZs2bSIYDLJp0yZ+//vfM2DAAH75y1/6HUtEfHSpnfs0oJW33AqYmmW8hZldZWa3AFWBtZcXUS7khx9+4LXXXuOOO+7gwIEDTJw4kUmTJqmwi8jFO3czGwM0BMqZ2X6gM/AOMN7MgsDnwB8BnHNbzWw8sA04B3RwzqWHKHuhtmLFCoLBIDt27OBvf/sbvXr1okyZMn7HEpEC4qLF3Tn32AVWNbrA9l2ALpcTSi7s+++/59VXX6V///5UrlyZuXPn8sADD/gdS0QKGH38QBiZO3cuMTEx9O/fn44dO5KWlqbCLiLZUnEPA19//TV/+9vfaNq0KVdfffV/rl0vXry439FEpIBScS/gJk2aRCAQYOTIkbz66qukpKRw9913+x1LRAo4fXBYAXXw4EE6duzIRx99RK1atZgzZw41a9b0O5aIhAl17gWMc47hw4cTCASYOXMm77zzDmvXrlVhF5FcUedegOzdu5c2bdowf/586tevT2JiIr/+9a/9jiUiYUidewGQnp5Ov379iImJYdWqVQwYMIAlS5aosIvIJVPn7rPt27cTFxfHypUradq0KYMHD+bmm2/2O5aIhDl17j45e/YsXbp0oWbNmnz88cd88MEHzJo1S4VdRPKEOncfbNy4kdatW7N582b+9Kc/0a9fP2644Qa/Y4lIBFHnno9OnTrFK6+8Qp06dTh06BCTJ09m3LhxKuwikufUueeTZcuWERcXx86dOwkGg/To0YPSpUtffEcRkUugzj3EvvvuOzp06ECDBg04c+YM8+fPJzExUYVdREJKxT2EZs+eTUxMDIMGDeKZZ54hLS2Nxo0b+x1LRAoBFfcQOHr0KE888QTNmjWjePHirFixgt69e3Pttdf6HU1ECgkV9zzknGP8+PFERUUxZswYXn/9dTZt2kS9evX8jiYihYzeUM0jBw4coEOHDkyZMoXatWuzYMECqlev7ncsESmk1LlfJuccSUlJBAIB5syZQ/fu3Vm9erUKu4j4Sp37ZdizZw/x8fEsXLiQBg0akOmr+9EAAAb+SURBVJiYSNWqVf2OJSKizv1SpKen06dPH6pVq8a6desYNGgQixYtUmEXkQJDnXsubd26lWAwyJo1a2jWrBmDBw/mpptu8juWiMh/UeeeQ2fOnOGtt96iVq1a7N69m1GjRjFjxgwVdhEpkNS558C6desIBoOkpqbSokUL+vXrR/ny5f2OJSJyQercf8bJkyd58cUXufPOOzl69ChTp05lzJgxKuwiUuCpc7+AxYsXEx8fz+7du4mPj6dHjx6UKlXK71giIjmizv08x44do127dtx7771kZGSQnJxMQkKCCruIhBUV9yxmzpxJdHQ0Q4cO5fnnnyc1NZX77rvP71giIrmm4g4cOXKEv/zlLzz00EOULl2aVatW0bNnT4oVK+Z3NBGRS1Koi7tzjjFjxhAIBJgwYQL/+te/2LBhA3Xq1PE7mojIZSm0b6ju37+f9u3bM2PGDOrUqUNSUhIxMTF+xxIRyROFrnPPyMggISGB6OhokpOT6dWrFytXrlRhF5GIUqg69x8va1y8eDH33nsvQ4cO5Ve/+pXfsURE8lyh6NzT09Pp1asX1atXZ+PGjSQkJJCcnKzCLiIRK+I799TUVILBIOvWrePhhx9m0KBBVKxY0e9YIiIhFbGd++nTp+ncuTO33347e/fuZezYsUydOlWFXUQKhYjs3NesWUMwGGTr1q385S9/oU+fPpQrV87vWCIi+SaiOvcTJ07w3HPPUa9ePY4dO8aMGTMYOXKkCruIFDohK+5m1tTMdpjZbjN7JVTH+dHChQupXr06vXv3pm3btmzdupUHH3ww1IcVESmQQlLczawIMAD4LRAAHjOzQCiOderUKcaNG0ejRo244oorWLx4MYMGDaJkyZKhOJyISFgI1Tn3OsBu59weADMbCzQHtuXlQdavX0+3bt04fvw4L730Ev/617+45ppr8vIQIiJhKVTFvSKwL8v9/UDdrBuYWRugDUDlypUv6SC33norVapU4bHHHuOVV0J+5kdEJGyEqrhbNmPuv+44lwAkAMTGxrpstr+oMmXKsHnz5kvZVUQkooXqDdX9QNZvjq4EHAjRsURE5DyhKu7rgKpmdouZ/QJoAUwL0bFEROQ8ITkt45w7Z2YdgblAEWCYc25rKI4lIiI/FbK/UHXOzQJmherxRUTkwiLqL1RFRCSTiruISARScRcRiUAq7iIiEcicu6S/H8rbEGZHgM8u4yHKAV/lUZxwUNjmC5pzYaE5587Nzrny2a0oEMX9cpnZeudcrN858kthmy9ozoWF5px3dFpGRCQCqbiLiESgSCnuCX4HyGeFbb6gORcWmnMeiYhz7iIi8t8ipXMXEZEsVNxFRCJQWBf3/P4S7vxiZsPM7LCZpWUZK2Nm881sl/ezdJZ1nbznYIeZNfEn9aUzs5vMbJGZbTezrWb2tDceyXO+2szWmtlmb85veOMRO+cfmVkRM9tkZjO8+xE9ZzPba2apZpZiZuu9sdDP2TkXljcyP0r4E+BW4BfAZiDgd648mlsD4HYgLctYd+AVb/kVoJu3HPDmfhVwi/ecFPF7DrmcbwXgdm+5BLDTm1ckz9mA4t5yUWANcGckzznL3J8DRgMzvPsRPWdgL1DuvLGQzzmcO/f/fAm3c+4M8OOXcIc959xS4OvzhpsDI7zlEcCjWcbHOudOO+c+BXaT+dyEDefcQefcRm/5OLCdzO/hjeQ5O+fc997dot7NEcFzBjCzSsCDQGKW4Yie8wWEfM7hXNyz+xLuij5lyQ83OOcOQmYxBK73xiPqeTCzKkAtMjvZiJ6zd3oiBTgMzHfORfycgT7AS0BGlrFIn7MD5pnZBjNr442FfM4h+7KOfHDRL+EuJCLmeTCz4sAk4Bnn3Hdm2U0tc9NsxsJuzs65dKCmmV0HTDazmJ/ZPOznbGYPAYedcxvMrGFOdslmLKzm7LnbOXfAzK4H5pvZxz+zbZ7NOZw798L2JdyHzKwCgPfzsDceEc+DmRUls7CPcs595A1H9Jx/5Jz7FlgMNCWy53w38IiZ7SXzNOp9ZjaSyJ4zzrkD3s/DwGQyT7OEfM7hXNwL25dwTwNaecutgKlZxluY2VVmdgtQFVjrQ75LZpktehKw3Tn3bpZVkTzn8l7HjpldAzQGPiaC5+yc6+Scq+Scq0Lm/68LnXMtieA5m9m1Zlbix2XgASCN/Jiz3+8kX+a70M3IvLLiE+A1v/Pk4bzGAAeBs2S+kgeBskAysMv7WSbL9q95z8EO4Ld+57+E+dYn81fPLUCKd2sW4XOuDmzy5pwG/F9vPGLnfN78G/L/r5aJ2DmTeTXfZu+29cc6lR9z1scPiIhEoHA+LSMiIheg4i4iEoFU3EVEIpCKu4hIBFJxFxGJQCruIiIRSMVdRCQC/T+RIupQXbr64QAAAABJRU5ErkJggg==\n", 218 | "text/plain": [ 219 | "
    " 220 | ] 221 | }, 222 | "metadata": { 223 | "needs_background": "light" 224 | }, 225 | "output_type": "display_data" 226 | } 227 | ], 228 | "source": [ 229 | "# plot deformed shape at end of analysis (it may have returned to rest)\n", 230 | "# amplify the deformtions by 5\n", 231 | "eSEESminiPy.drawDeformedShape(5)" 232 | ] 233 | }, 234 | { 235 | "cell_type": "code", 236 | "execution_count": 4, 237 | "metadata": {}, 238 | "outputs": [ 239 | { 240 | "data": { 241 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd5xcdb3/8dc7m95I21lCSE/IBpVQlhrKFlBABexgAxvitaBYLsj9qVjuxcZDhKuIoOJFzUUFRS6imM0AoSehs5teCITMbno2bcvn98c5s5ksW2ZmZ3Z2Zj7Px2MeO+fMOXM+391kvnPa+yszwznnnAMYkOsCnHPO9R/eKTjnnGvnnYJzzrl23ik455xr552Cc865dt4pOOeca+edgnMZIGmKpN2SSnJdS7IkVUramKX3/o2k72bjvV12eafgskLSOkl7ww/K+OPmHtYZLOlP4bomqbKXNUyUdLukTZJ2SaqXdJ2kEb153/C910k6Oz5tZhvMbKSZtYav/0jSyoTtfjRh3Wlh++K/l82S7pN0Tjfb67jOOklX97YdqejYZleYvFNw2fTO8IMy/vhcEussBj4MvN6bDUsaBzwODANONbNRwDnAGGBmb947SU3AO4HDgEuBGyWd1mGZMWY2EpgHPAjcI+myHt43vs4lwDcknZvZsl2x807B9SlJP5f0p4Tp70taKElmdsDMfmJmi4HWTtZ9u6RnJO2U9Iqkb3WzqauAXcCHzWwdgJm9YmZXmtnz4fvdGL7PTklLJZ2RsK1vSbpL0m/Db/svSaoIX/sfYArwt/Bb+9cSvskPDLf1TTOrN7M2M3sSeAQ4tbNCzex1M7sR+BbwfUk9/r80s8eBl4A3S7pM0uIOvyuTNCt8fr6kl8N2vCrpKx2W/bKkWLhH9bHOttdZm8P5p0t6TNL28Hd5WU+1u/7NOwXX174MHBN+kJ0BfAK41JLLW2kCPkrwbf/twGckXdTFsmcDd5tZWzfv9zRwLDAO+D3wR0lDE16/AFgQbu9e4GYAM/sIsIGDe0I/6K5oScOAEwk+xLtzNxAB5vTwfpI0H3gT8EwP7wlwO/DpcG/pzUBtwmuHE+zNTCL4W/y3pLEd36CzNkuaAvwduAkoJfhdPptEPa4f67FTkPS+ZOY514m/hN8g449PmdkegsNDNwB3Ap83s6ROdppZ1MxeCL99Pw/8ATiri8XHA5t6eL87zWyLmbWY2Y+BIRz6gbzYzO4PzxP8D8FhnnTcAjwH/KOH5V4Lf47rZplGYCtwG3C1mS1MYvvNwNGSRpvZNjNb1uG1b5tZs5ndD+ymh04pwYeAf5nZH8L1t5iZdwp5Lpk9hWuSnOdcRxeZ2ZiExy8BzOwpYA0g4K5k30zSyZIWSWqQtAO4ApjQxeJbgIk9vN+XJdVJ2iFpO8E35sT3SzyvsQcYGj88lELNPyT4dv7+JPaGJoU/t3azzAQzG2tmc83sp0mW8R7gfGC9pIckJR7G2mJmLQnTe4CRSb7vZGB1ksu6PNFlpyDpPEk3AZMk/TTh8Rugpav1nOuJpM8SfCt/DfhaCqv+nuAwzmQzO4zgG7i6WPZfwLu6Oj4fHrr6d+D9wFgzGwPs6Ob9OurxcJek64DzgLea2c4k3vNdQAxYnmQNcU3A8ITtHp74opk9bWYXEhya+gspdMQddGzzK/TNSXvXh7rbU3gNWALsA5YmPO4F3pb90lwhknQU8F2CQ0gfAb4m6diE14ckHNcfLGmopPgH9Shgq5ntk3QS8MFuNnUDMBq4Q9LU8L0nSbpB0jHhe7UADcBASd8Il0/WZmBGN+28JqzvHDPb0t0bSSqT9Dngm8A1PZwH6cxzwJskHRv+7r6V8N6DJX1I0mFm1gzspJOT+Enq2ObfAWdLer+kgZLGJ/4tXZ4ys24fwKCelvGHPzo+gHXAXoJj1PHHPcBTBMfC48t9BngBGJKwnnV4TAtfey+wnuCqovsITvzemfBeu4EzEqaPAH5FcBhoF1BP8ME7HCghOAG7k+Dcw9fCbZ8drvutDu89LaxlYDh9IcGJ1+3AVzp53YD9Hdr/9Q7vtZvgW34MuB84t8Pv8O+drDOwi9/3tQTnG14h6HANmAUMBh4AtoVtfRo4PVynEtjYyd8t/jv4OvD3hNcOaXM47wzgyfC9XyG4aADgN8B3c/3v0B+pPxT+AbsUXuXwLWAqMJBg99rMrMtvSc455/JTMp1CPfAlgkNH7bud1sMusXPOufyTzJUUO8zs71mvxDnnXM4ls6dwPcHx17sJjpECYIde6+ycc64AJNMpLOpktplZdXZKcs45lys9dgr92YQJE2zatGlpr9/U1MSIEb0OzMwb3t7CV2xt9vamZ+nSpY1mVtrZaz2eU5BUBvwncISZnSfpaILUydt7XVkvTZs2jSVLlqS9fjQapbKyMnMF9XPe3sJXbG329qZH0vquXksm5uI3BJktR4TTK4AvJrHRX4XJiy8mzBsn6UEFOfMPJgZvSbpG0ipJyyX5zXHOOZcDyXQKE8zsLqANwIKclGTuiPwN0DHr/WpgoZnNBhaG04R7HxcTpD6eC/xMeTSClXPO9bWW1lRvfE9OMp1Ck6TxhLknkk4hyIjplpk9zBuDvS4E7gif3wFclDB/gZntN7O1wCrgpCRqc865otDWZqza3sqP/rGc8258hOv+9nJWtpPMfQpXEeQdzZT0KEFu+nvT3F6ZmW0CMLNNkiLh/EnAEwnLbeRgYuQhJF0OXA5QVlZGNBpNsxTYvXt3r9bPN97ewldsbS709u5tMV5sbOW5hlaea2hh1wEYoFXMHjOAgbv3EY02ZnybPXYKZrZM0lkEGesCllsQrJVJnSVTdnpZlJndCtwKUFFRYb056eInqQpbsbUXiq/NhdjeDVv2sLB+MwvrYjy5dgvNrcZhwwZRffQRTGzbwhUXncmY4YOztv1krj4qIchinxYu/1ZJmNkNaWxvs6SJ4V7CRIIgMAj2DCYnLHckBwcccc65gtXS2sayDdtZWLeZhfUxVsV2AzCzdAQfnz+d6vIIJ0wdy8CSAUSj0ax2CJDc4aO/EcRnv0B4srkX7iUYxPz68OdfE+b/XtINBFc5zSZI03TOuYKzY08z0RUxautjRJc3sGNvM4NKxMnTx/PBk6ZQXR5h2oTc3H+RTKdwpJkdk+obS/oDQTTvBEkbCSKLrwfukvQJggje9wGY2UuS7gJeJsi4/6wFQyA651zeMzNWNzRRGx4WWrJ+G61txrgRgzl7bhk1cyOcMXsCo4YOynWpSXUKf5f0VjP7ZypvbGaXdPFSTRfLfw/4XirbcM65/upASxtPr9vKwroYtfWbWbdlDwDlh4/iirNmUDO3jHlHjqFkQLKD/fWNZDqFJ4B7wmENmzk4nkIqo1Q551zB27J7P9HlDdTWx3h4RQO79rcweOAATps5nk+cMYPq8giTxgzLdZndSqZT+DFwKvCC5XNQknPOZZiZsXzzrnBvIMayDdswg9JRQ3j7MROpmVvG/FnjGT44mY/a/iGZSlcCL3qH4JxzsK+5lSfWbKG2PsbCuhivbt8LwFsmHcaVNbOpKS/jTUeMZkA/OyyUrGQ6hU1AVNLfOXQ8hXQuSXXOubwT27mPRctj/KsuxuKVjextbmXYoBJOnz2Bz1fPoqo8QtnoobkuMyOS6RTWho/B4cM55wqamfHSazv5V91mautjPL8xSPY54rChvPeEI6meG+HUGeMZOqjwItqSuaP5OgBJI8ysKfslOedc39t7oJXFqxqprQ86gs079yPBcZPH8NW3zaG6PEL54aOQ8vOwULKSuaP5VOB2YCQwRdI84NNm9m/ZLs4557Lp1e17qa2PUVu3mcdWb2F/SxsjhwzkzKMmUF1eRtWcUsaPHJLrMvtUMoePfgK8jeCuY8zsOUlnZrUq55zLgrY249mN26mti7GwPkbdpp0ATBk3nA+ePIWz55Zx4rRxDB6YTIB0YUrqOikze6XDLpPfbeycywu79jWzeGUjC+tjLKqPsaXpACUDRMXUsXz9/HKqy8uYWTqi4A8LJSuZTuEVSacBJmkw8AWgLrtlOedc+rpKGq2cU0p1eYSzjirNerBcvkqmU7gCuJFgfIONwD+Bz2azKOecS0UqSaOue8lcfdQIfKgPanHOuaTt2NPME6+1cM+CZ/pd0mg+S+bqozuAK81sezg9FvixmX0828U551xc10mjjf0uaTSfJXP46Jh4hwBgZtskHZfFmpxzDug5aXTs3lf52AXV/S5pNJ8l0ykMkDTWzLYBSBqX5HrOOZeyVJJGo9HXvUPIsGRTUh+T9Kdw+n34uAfOuQzpKmk0MmoI75g3kery/EsazWfJnGj+raSlQBXBWArvNrOXs16Zc65gdZU0esyRhZE0ms+SvXntJUkNwFAASVPMbENWK3POFZRiShrNZ8lcfXQBwSGkI4AYMJXg5rU3Zbc051w+K+ak0XyWzJ7Cd4BTgH+Z2XGSqoCuxl92zhUxTxrNf8l0Cs1mtkXSAEkDzGyRpO9nvTLnXF7wpNHCkkynsF3SSOBh4HeSYkBLdstyzvVXnjRa2JLpFC4E9gFfIoi7OAz4djaLcs71L540WjySuSQ1cbS1O7JYi3OuH/Gk0eLUZacgaRdgibPCaQFmZqOzXJtzrg950qiDbjoFMxvVl4U45/rejj3NRFcEdxJ70qiDJG9ek3Q8cDrBnsJiM3smq1U557Ki66TRwZ406oDkbl77BkHe0d3hrN9I+qOZfTerlTnnMqKnpNGauWXMO3KMB8s5ILk9hUuA48xsH4Ck64FlgHcKzvVTqSSNOpcomU5hHUHm0b5wegiwOlsFOedSF08avW/1AW6qe8yTRl3akvkXsh94SdKDBOcUzgEWS/opgJl9IYv1Oee60HXSaJsnjbq0JdMp3BM+4qLZKcU515OekkaHbF3Fu849PddlujyWzM1r7TesheMzTzaz57NalXMOSD1pNBpdk8tyXQFI5uqjKHBBuOyzQIOkh8zsqizX5lxR8qRRl0vJHD46zMx2Svok8Gsz+6Yk31NwLoM8adT1F8l0CgMlTQTeD1yb5XqcKwqeNOr6q2Q6hW8D/yC4k/lpSTOAlb3ZqKR1wC6gFWgxswpJ44D/BaYRXAb7fjPb1pvtONefeNKoywfJnGj+I/DHhOk1wHsysO0qM2tMmL4aWGhm10u6Opz+9wxsx7mc8aRRl2+6S0n9mpn9QNJNHJqWCmTl/oQLgcrw+R0El756p+DySldJo7MiIz1p1OUFmb3h8z54QXqnmf1N0qWdvZ54qWrKG5XWAtsIOptfmNmtkrab2ZiEZbaZ2dhO1r0cuBygrKzshAULFqRbBrt372bkyJFpr59vvL3Z0dRsvNDQyrMNLbzQ2EpTM5QIyscNYF7pQI6NlBAZ3jedgP+NC1um2ltVVbXUzCo6e63LTiGbJB1hZq9JigAPAp8H7k2mU0hUUVFhS5YsSbuOaDRKZWVl2uvnG29vZnSXNFo1J5LTpFH/Gxe2TLVXUpedQrfnFMK9hCuBOeGsOuCnZvbb3hRkZq+FP2OS7gFOAjZLmmhmm8KrnWK92YZzmeRJo65YdHdO4aPAF4GrCFJRBRwP/FAS6XYMkkYAA8xsV/j8rQRXON0LXApcH/78azrv71ymeNKoK0bd7Sn8G/AuM1uXMK9W0nuABUC6ewtlwD3hZXcDgd+b2QOSngbukvQJYAPBGA7O9Zl40miwNxDzpFFXlLr71z26Q4cAgJmtk5T2+MzhJa3zOpm/BahJ932dS0fXSaOHedKoK0rddQp703zNuX6tp6TRqvIIZaOH5rpM53Kiu05hbhcZRwJmZKke5zIu1aRR54pZt51Cn1XhXIbtPdDKM7EW/nH385406lwKuuwUzGx9XxbiXG91njS6yZNGnUuBX0bh8lZPSaOlB17nkxdWedKocynwTsHllVSSRqPRBu8QnEtRUp2CpGHAFDNbnuV6nHsDTxp1ru8kMxznO4EfAYOB6ZKOBb5tZhdkuzhXnDxp1LncSWZP4VsE2URRADN7VtK0rFXkitKOPc1EVwR3EkeXN7BjbzODSsTJ08fzwZOmUDM3wtTxI3JdpnMFL5lOocXMdviley6TuksaPXtuWU6TRp0rZsl0Ci9K+iBQImk28AXgseyW5QqRJ4061/8l0yl8HrgW2A/8gWC85u9ksyhXODxp1Ln8kswYzXsIOoVrs1+Oy3eeNOpcfutuPIW/0cnYzHF+9ZGL86RR5wpHd1/XfhT+fDdwOHBnOH0JsC6LNbk84EmjzhWm7rKPHgKQ9B0zOzPhpb9Jejjrlbl+xZNGnSsOyRzYLZU0IxwcB0nTgdLsluX6g70HWlm8qpHa+s2dJo3WzI0wp8yTRp0rJMl0Cl8CopLWhNPTgMuzVpHLqc6TRgdy5lETqCkvo9KTRp0raMlcffRAeH9CeTir3sz2Z7cs11d6Sho9e24ZJ04b58FyzhWJZLKPBgGfBuLnFaKSfmFmzVmtzGVNKkmjzrnikszho58Dg4CfhdMfCed9MltFuczbsGUPD65r5rbbnvSkUedcl5LpFE40s3kJ07WSnstWQS4zuk4a3edJo865LiXTKbRKmmlmqwEkzQBas1uWS0dPSaMjd67l/eeflesynXP9WDKdwleBReHVRwKmAh/LalUuKakmjUajPuy2c657yVx9tDC8+mgOQafgVx/lkCeNOueyqbvsozO7eOlkSZiZ39XcRzxp1DnXV7rbU/hqJ/MMmAccCXieQZZ40qhzLle6yz56Z+K0pNMJ4rM3AZ/Lcl1Fx5NGnXP9QTI3r9UA/49gL+E/zezBrFdVJDxp1DnX33R3TuHtBHsGO4BrzezRPquqQHnSqHOuv+tuT+FvwEZgC/DvHSMPfJCd5HjSqHMun3TXKVT1WRUFxpNGnXP5qsdBdhJJOt7MlmW3pPzTVdLo1PHD+dDJU6mZG/GkUedcXkj1msbbgOOzUUi+8aRR51whSrVTKOpPuA1b9rAwjJTwpFHnXCFKtVO4LitV9FNdJ42O9KRR51xBSuY+BQEfAmaY2bclTQEON7OnslGQpHOBGwnumL7NzK7Pxna60lPSaM3cCFPHj+jLkpxzrs8ks6fwM6ANqAa+DewC/gycmOliJJUA/w2cQ3A57NOS7jWzlzO5nbY2Y29zK7sOGJt27GX7nmYeWdmQVNKoc84VsmQ6hZPN7HhJzwCY2TZJ2TpwfhKwyszWAEhaAFwIZLRTeG7jdt71s8eCidra9vmeNOqcK3bJdArN4Td4A5BUSrDnkA2TgFcSpjcCJycuIOly4HKAsrIyotFoyhvZvr+ND8wZTGvzfkYOG8KQEnHU2AGMH9YGvM7ONa/zyJq029Bv7d69O63fV74qtvZC8bXZ25t5yXQKPwXuAcokfQ94L/AfWaqns6/mdsiE2a3ArQAVFRVWWVmZ1oYuAqLRKOmun4+8vYWv2Nrs7c28ZAbZ+Z2kpUANwYf2RWZWl6V6NgKTE6aPBF7L0racc851kOy1lBOAPWZ2M9AoaXqW6nkamC1penje4mLg3ixtyznnXAcys+4XkL4JVABzzOwoSUcAfzSz+VkpSDof+AnBJam/MrPvdbNsA9CbgYcnAI29WD/feHsLX7G12dubnqlmVtrZC8l0Cs8CxwHLzOy4cN7zZnZMBgrLKUlLzKwi13X0FW9v4Su2Nnt7My+Zw0cHLOg54lcf+Z1bzjlXoJLpFO6S9AtgjKRPAf8CfpndspxzzuVCt1cfhREX/wuUAzuBOcA3CmhIzltzXUAf8/YWvmJrs7c3w5I5p7DUzE7IdiHOOedyL5nDR09IynjOkXPOuf4nmT2FlwkOG60DmghuYLNCuPrIOefcobrcUwgjsgHOA2YQpKS+E3hH+DNvSTpX0nJJqyRdnet6MkHSZEmLJNVJeknSleH8cZIelLQy/Dk2YZ1rwt/Bcklvy1316ZNUIukZSfeF04Xe3jGS/iSpPvxbn1rIbZb0pfDf84uS/iBpaKG1V9KvJMUkvZgwL+U2SjpB0gvhaz9VusM+mlmnD4L7EuLP/9zVcvn2ILgpbjVBRzcYeA44Otd1ZaBdE4Hjw+ejgBXA0cAPgKvD+VcD3w+fHx22fQgwPfydlOS6HWm0+yrg98B94XSht/cO4JPh88HAmEJtM0FA5lpgWDh9F3BZobUXOJNgmOMXE+al3EbgKeBUgqM5fwfOS6ee7s4pJPYyM7pZLt+0x3Ob2QEgHs+d18xsk5ktC5/vAuoI/lNdSPBBQvjzovD5hcACM9tvZmuBVQS/m7wh6Ujg7QRjh8cVcntHE3yA3A5gZgfMbDsF3GaCKySHSRoIDCfIQiuo9prZw8DWDrNTaqOkicBoM3vcgh7itwnrpKS7TsG6eJ7vOovnnpSjWrJC0jSCu9CfBMrMbBMEHQcQCRcrhN/DT4CvcWiUeyG3dwbQAPw6PGR2W3gzaUG22cxeBX4EbAA2ATvM7J8UaHs7SLWNk8LnHeenrLtOYZ6knZJ2AceEz3dK2iVpZzob6yd6jOfOZ5JGEoyM90Uz6+7vlNe/B0nvAGJmtjTZVTqZlzftDQ0kOMzwcwsiZ5oIDi10Ja/bHB5Hv5DgMMkRwAhJH+5ulU7m5U17k9RVGzPW9i47BTMrMbPRZjbKzAaGz+PTo9PZWD9RsPHckgYRdAi/M7O7w9mbw11Lwp+xcH6+/x7mAxdIWkdwCLBa0p0UbnshaMNGM3synP4TQSdRqG0+G1hrZg1m1gzcDZxG4bY3Uapt3Bg+7zg/ZclGZxeSgoznDq80uB2oM7MbEl66F7g0fH4p8NeE+RdLGqIgCn02wYmqvGBm15jZkWY2jeBvWGtmH6ZA2wtgZq8Dr0iaE86qIRiqtlDbvAE4RdLw8N93DcG5skJtb6KU2hgeYtol6ZTwd/XRhHVSk+sz77l4AOcTXJ2zGrg21/VkqE2nE+wuPg88Gz7OB8YDC4GV4c9xCetcG/4OlpPmlQr94QFUcvDqo4JuL3AssCT8O/8FGFvIbQauA+qBF4H/IbjqpqDaC/yB4JxJM8E3/k+k00aCIQ5eDF+7mfA+tFQfPd685pxzrngkM0bzISRFCI7nHgHsJeiZlphZW7crOuec6/eS3lOQVEVwpcM44BmCEx9DgaOAmQQnvX5s3V/x4pxzrh9LpVP4IXCTmW3o5LWBBPEXJWb258yW6Jxzrq/k9TmFCRMm2LRp09Jev6mpiREjimcguWJrL3ibi4W3OTVLly5ttC7GaE7nnEIZ8J/AJDM7V9LRwKlmdnta1fXCtGnTWLJkSdrrR6NRKisrM1dQP1ds7QVvc7HwNqdG0vquXkvnPoXfAP8gCGCD4NLOL6bxPs455/qZdDqFCWZ2F2HejJm1AK0Zrco551yn2tqMZ1/Zzpod2fnYTfnwEdAkaTxhroakU4AdGa3KOedcu137mlm8spHa+hiLljfQuHs/80pL+HgWtpVOp3AVwa3WMyU9CpQC781oVc45V+TWNTaxsD7GovoYT67dQnOrMWroQM46qpSauREGNqzMynZT7hTMbJmkswiG6BSw3IKwKuecc2lqbm3j6XVbqa2LUbs8xpqGJgBmRUby8fnTqSqPcMLUsQwqCY76R6OrslJHOlcffZYghfOlcHqspEvM7GcZr8455wrYlt37iS5voLY+xsMrGti1v4XBJQM4ecY4PnrKVKrLy5gyfnif1pTO4aNPmdl/xyfMbJukTwHeKTjnXDfMjJc37WRRfYyF9TGefWU7ZlA6agjnv2Ui1XMjnD5rAiOGpPPRnBnpbHmAJFl415ukEoKxYp1zznWw90Arj65qpHZ5cH5g0459ABxz5GFcWTObmvIy3nTEaAYM6GycnL6XTqfwT+AuSbcQXIF0BfBARqtyzrk8tnHbHhbVx6itj/HY6i3sb2ljxOASzphdypfOjlBZXkpk1NBcl9mpdDqFrwKfBj5DcKL5nxw6cLpzzhWV1jbjmQ3b2q8Wqn99FwBTxg3nkpOmUDM3wknTxzFkYEmOK+1ZSp2CpAHA82b2ZuCWFNabA/xvwqwZwDfM7CcJy1QSjBS0Npx1t5l9O5X6nHOur+zY08xDKxuordtMdEUD2/c0UzJAnDhtLNeeP5eq8ggzS0cQDISWP1LqFMysTdJzkqZ0lpbazXrLCUaMip+DeBW4p5NFHzGzd6RSk3PO9QUzY3XDbhbWBSeJl67fRmubMXb4IKrnRKieG+GM2aUcNmxQrkvtlXQOH00EXpL0FNAUn2lmFyS5fg2w2sy6DGRyzrn+YF9zK0+u3RpeLbSZV7buBaD88FFccdYMqsvLOHbyGEr6yUniTEg5Oju8ce0NzOyhJNf/FbDMzG7uML8S+DPBGKWvAV+J3wvRYbnLgcsBysrKTliwYEFK9SfavXs3I0eOTHv9fFNs7QVvc7HIZJu37Wvj+YZWnmto5aUtrexvhUED4OjxJcwrDR7jh6UTG5dZvWlzVVXVUjOr6Oy1tMZTCOOzTwwnnzKzWJLrDSb4wH+TmW3u8NpooM3Mdks6H7jRzGZ3934VFRXm0dnJK7b2gre5WPSmzW1txguv7mg/SfzCq0GU2xGHDaV6boTq8ginzpjAsMH96yRxL6Ozu+wU0rmj+f3AD4EowdVHN0n6qpn9KYnVzyPYS9jc8YXEYTzN7H5JP5M0wcwaU63ROee6s3t/C4tXNrCw7mDAnATHTxnLV982h+ryCOWHj8q7k8SZkM45hWuBE+N7B5JKgX8RjNHck0uAP3T2gqTDgc1mZpJOIoj13pJGfc459wbrGpuoDe8d6Cxg7qyjIowb4ffhpnVHc4fDRVtIYlwGScOBcwjucYjPuwLAzG4hSFr9jKQWYC9wsaVzbMs55zgYMBePlIgHzM0sHcHH5k+nukPAnAuk0yk8IOkfHPzG/wHg/p5WMrM9wPgO825JeH4zcHPH9ZxzLllbmw4QXR50Ag+vaGDXvoMBcx85ZSrV5RGmji+usZxTlU509lclvRs4neCcwq1m1tk9B845l1VmRt2mXdy7+gA/fflRnkkMmHvzRKrKI5w+ewIjcxgwl2+S/k1J+k8z+3o4ucvMrspSTc4516W9B1p5bHVj+9VCBwPmjO6BrMwAABekSURBVCtrZlNdHuHNRxzWbwLm8k0q3ee5QLxT+D7wYObLcc65N3p1+97gJHHd5vaAueGDSzhj9gS+dPZRDN6ykovOPT3XZRYE36dyzvU78YC5+NVCPQXMRaOrc1luQUmlU4hIuorgPEL8eTszuyGjlTnniko8YG5RfYzo8hjbwoC5iqlj+fr55VSXl+VlwFy+SaVT+CUwqpPnzjmXssSAudr6GEsSAuYq5wR3Ep95VP4HzOWbpDsFM7sum4U45wrf/pZWnlyztf2w0Iate4DEgLkIx04eW1ABc/kmrXMKkj4N/K+Zbc9wPc65AhPbuY9Fy2MsrIuxeFUjew60MmTgAObPmsDlZ86gqjzCpDHDcl2mC6V7onkr8FPgoxmsxTlXANrajBdf29F+WCgeMDfxsKG867hJ1MztnwFzLpBup/A84KOiOeeAeMBcI7X1m6mtPxgwd9zkMUUfMJdv0u0U3kMw9oFzrkit39IUpozGeGLNoQFz1eURzjqqlPEjh+S6TJei3nQKNZksxDnXvzW3trFk3bZwbyDG6g4Bc1VzIlRM84C5fJdup7Ad8ART5wpcZwFzg0rEKTPG82EPmCtI6XYK3wb+DfivDNbinMsxM6P+9V3U1sdYWLe5PWBuwsghnPfmw6kuL/OAuQKX1l82HI85qTGZnXP9294DrTy+prH9aqF4wNxbJh3GF6pnUzPXA+aKSSopqaeb2eJuXh8NTDGzFzNSmXMua16LB8zVx3h0VWN7wNzpsybwxbNnUzUnQmT00FyX6XIglT2F90j6AfAAsBRoAIYCs4AqYCrw5YxX6JzrtdY249lXtoWHhQ4GzE0eN4xLTppCdXmEk2ccDJhzxSuVmIsvSRpLMGzm+4CJBMNm1gG/6G4vAkDSOmAX0Aq0mFlFh9cF3AicD+wBLjOzZck3xTmXaMfeZh5e0UBtlwFzEWaWjvR7B9whUjqnYGbbCMLwfpnm9qrMrLGL184DZoePk4Gfhz+dc0kIAuaa+PvaZn6+/PH2gLkxwwdRFQ+Ym13KYcM9YM51rT9dQnAh8FszM+AJSWMkTTSzTbkuzLn+an9LK0+t3dp+kvhgwFwznz5zBjVzPWDOpUbBZ3AfbEhaC2wjuL/hF2Z2a4fX7wOujx+GkrQQ+HczW9JhucuBywHKyspOWLBgQdo17d69m5EjR6a9fr4ptvZCYbZ5+/42nm9o5bmGVl5qbGVfKwwaAHPHl3BsaQmzhu9nyoTCanNPCvHv3JPetLmqqmppx0P4cX25pzDfzF6TFAEelFRvZg8nvN7ZV5k39FhhZ3IrQEVFhVVWVqZdUDQapTfr55tiay8URpvjAXPxq4We33gwYO49FZOoLo9w2syDAXOF0OZUeZszJ+VOQdJwgquMppjZpyTNBuaY2X3drWdmr4U/Y5LuAU4CEjuFjcDkhOkjgddSrc+5QhAPmFtUH6N2eYyGXYcGzFXNiTB3ogfMucxLZ0/h1wSXpJ4aTm8E/gh02SlIGgEMMLNd4fO38saU1XuBz0laQHCCeYefT3DFZP2Wpva9gSfXbOVAaxujhgzkzDml1HjAnOsj6XQKM83sA5IuATCzver560oZcE+42EDg92b2gKQrwve4Bbif4HLUVQSXpH4sjdqcyxvNrW0sXb+tPVIiHjA3o3QEl542leryMg+Yc30unU7hgKRhhMf7Jc0E9ne3gpmtAeZ1Mv+WhOcGfDaNepzLG1ubDvDQiuAGsoc6BMx96OQgYG7aBA+Yc7mTTqfwTYK7midL+h0wH7gsk0U5VygSA+Zq62M8s2EbbWHA3LlvOpyauRFOn13qAXOu30j5X6KZPShpGXAKwRVDV3ZzQ5pzRWdfcyuPrW4MOoK6GK8lBMx9vno21eUR3jLJA+Zc/5Tu15NJQEm4/pmSMLO7M1eWc/klMWDusdWN7Gs+GDB3pQfMuTySziWpvwKOAV4C2sLZBnin4IpGEDC3vX1M4rpNO4EgYO7iEz1gzuWvdPYUTjGzozNeiXP93I69zTyysoHauhjRFQ1sbTpAyQBxwtSxXHNeOTVzPWDO5b90OoXHJR1tZi9nvBrn+pF4wNyi+hgL6zfz9LpDA+aqyiOc5QFzrsCk0yncQdAxvE5wKaoIrig9JqOVOZcD8YC5+PmB9VviAXOj+PSZM6guj3DcFA+Yc4UrnU7hV8BHgBc4eE7BubwV27WPaH0w7sAjKxtoOtDKkIEDOG3meD55xgyq5pRy5NjhuS7TuT6RTqewwczuzXglzvWRtjbjpdd2srB+M4vqYzwXBswdPnooFx43iZoOAXPOFZN0OoV6Sb8H/kbCncx+Sarrz5r2t7B4VSO1dYcGzB07eQxfeetRVJeXecCcc6TXKQwj6AzemjDPL0l1/c6GLXt4cH0zt9/+5BsC5qrnRKic4wFzznWUzh3NHlTn+qV4wFxwtVCMVbHdAMwo3culp02lqjzCidPGecCcc91IulOQ9DUz+4Gkm+h88JsvZLQy55KwrekA0RUxausbeGh5jJ1hwNzJ08fzwZOmMGLHWj7w9spcl+lc3khlTyF+X8KSbpdyLovMjOWbd7GwLsai+hjL2gPmBvO2MGBu/qwJjBoa3DsQja7PccXO5ZdUOoUvAPeZ2R3ZKsa5zuxrbuXx1VvCq4UaeHX7XgDePGk0n6ueTY0HzDmXMal0ChOyVoVzHWzasbc9ZfTRhIC5+bMm8PnqWVSVRyjzgDnnMi6VTmGMpHd39aJfkup6Ix4wFz9J3DFgrqo8wsnTxzF0kN874Fw2pdIpHAa8gyDWoiO/JNWlbOe+Zh5eEdxJHF3+xoC56vIIsyIeMOdcX0qlU1hvZh9PZyOSJgO/BQ4niMa41cxu7LBMJfBXYG04624z+3Y623P9k5mxprEpuIGsPsbT67bSEgbMVR5VSvXcMg+Ycy7HUukU3vB1TdLxZrYsiXVbgC+b2TJJo4Clkh7sJGn1ETN7Rwo1uX7uQEsbT63d2h4psS4MmJtTNopPnTmDmvIIx04ew0C/d8C5fiGVTuEjncy7DTi+pxXNbBOwKXy+S1IdwehtHr9dgBp27WfR8uAk8eJVjeze38LggQOYP3M8nzh9OlXlEQ+Yc66fktkb7kNLfmXpGTM7LsV1pgEPA282s50J8yuBPwMbgdeAr5jZS52sfzlwOUBZWdkJCxYsSLd8du/ezciRI9NeP99kq71tZmzY2cZzDa0829DK2h1BeO7YIWJepIR5pSUcPa6EIQP7/txAsf2NwdtcLHrT5qqqqqVmVtHZa73tFC4ys7+ksPxI4CHgex2vVpI0Gmgzs92SzgduNLPZ3b1fRUWFLVmS/r100WiUysrKtNfPN5lsbzxgblE47kAsIWCupjwYgOboiaNzfpK42P7G4G0uFr1ps6QuO4V0AvGQNA84I/7czJ5LYp1BBHsCv+vs8tXEvQYzu1/SzyRNMLPGdGp0mffK1j0srNtM7fIGnli95WDA3FGlVJd7wJxzhSDlTkHSlcCnOHgJ6p2SbjWzm7pZR8DtQJ2Z3dDFMocDm83MJJ0EDAC2pFqfy5yWMGAuPgrZynjA3IQRfPTUqVTP9YA55wpNOnsKnwBONrMmAEnfBx4HuuwUgPmEo7VJejac93VgCoCZ3QK8F/iMpBZgL3Cx9ebYlkvLtqYDPLSigYX1sTcEzF180hSqyyNMnzAi12U657IknU5BQGvCdCud39DWzswWJ7HMzcDNadTjesHMWLF5NwvrN1Nb98aAueryCKfPPhgw55wrbOl0Cr8GnpR0Tzh9EcGhIZcn9jW38viaLe03kXUMmKsuj3CMB8w5V5TSGWTnBklR4HSCb/8fM7NnMl2Yy6xNO/ayaEMzd97xNItXBQFzwwaVcPpsD5hzzh2UyiA74xIm14WP9tfMbGvmynK91dpmPLdxe/vewMthwNyRY3fxgYrJVM8t84A559wbpLKnsJQg+E4EJ4i3hc/HABuA6RmvzqVk575mHlnRyML6zTy0vIEt8YC5KWO5+rxyRu1azwffXpXzewecc/1X0p2CmU0HkHQLcK+Z3R9OnwecnZ3yXE/WNOymtj7Gwro3BsxVlUc466hSxgwfDEA0+op3CM65bqVzovlEM7siPmFmf5f0nQzW5LpxoKWNp9dtZWFdjNr6zW8ImKsuj3CcB8w559KUTqfQKOk/gDsJDid9GL/JLKsadu0nujw4N/DIyoMBc6d5wJxzLsPS6RQuAb4JxC9JfTic5zLEzHjptZ3B3sDyGM+9sh2AstFDeOe8I6gpj3DarPEMH5xWSolzznUpnUtStwJXZqGWorbnQAuLVzZSWx9j0fIYm3cGAXPzjhzDl885iuq5/SNgzjlX2NLJPlpEcNjoEGZWnZGK+sCr2/cy//parjstt9flv7J1T3CSuD7GE2u2cKAlCJg746gJVJeXUTmnlAkeMOec60PpHH/4SsLzocB7CEZWyxsPLW8AYOGGFi7tw+22tLaxbMP29kiJxIC5j5wylZryCBXTxjF4oJ8kds7lRjqHj5Z2mPWopIcyVE+fGBJ+6Da3ZT9vb/ueMGCuLsZDKxrYsbeZgQPEyTPGecCcc67fSefwUeKdzQOAE4DDM1ZRH4h/E29py/x7xwPmgrjpzSxdHwTMjR8xmHOOLqPGA+acc/1YOoePEu9sbgHWEsRp541MdwrxgLlF4U1k8YC5Nx0xms9VzaJ6bpkHzDnn8kI6h4/yPs6i/fBRaw8LduP1Hfva9wYeXbWFvc2tDBtUwvxZE/hc9Syq5kQ4/DAPmHPO5Zd0Dh8NB64CppjZ5ZJmA3PM7L6MV5clg9M4p9AWD5gL9wYOBswN4/0VR1JVHuGUGeM9YM45l9fSHU9hKXBaOL0R+COQN53CkIHBB3dzD4ePdu1r5pGVjSysixFdHmNL0wEGCCqmjuPq88qpLo8wOzLS7x1wzhWMdDqFmWb2AUmXAJjZXiXxqSjpXOBGoAS4zcyu7/C6wtfPB/YAl5nZsjTq69HA8Nh+Z+cU4gFztfUxnlobBMwdNmwQlXOCwekTA+acc67QpNMpHJA0jPAGNkkzgf3drSCpBPhv4ByCPYunJd1rZi8nLHYeMDt8nAz8PPyZNc1t1h4wF+8I1jY2AXBU2Ug+ecYMauZ6wJxzrnik0yl8E3gAmCzpd8B84LIe1jkJWGVmawAkLQAuBBI7hQuB35qZAU9IGiNpopltSqPGpGxqMo7/zoPtAXOnzhjPx+ZPo2pOhMnjPGDOOVd80rn66EFJy4BTCC5LvdLMGntYbRLwSsL0Rt64F9DZMpOAQzoFSZcDlwOUlZURjUZTbQItbUZkuGg60MYJpXBsZAhHjythyMA9sH8dq59fx+qU37X/2717d1q/r3zmbS4O3ubMSefqo/nAs2b2f5I+DHxd0o1mtr671TqZ1/HSn2SWwcxuBW4FqKiosMrKyuQK76CmyohGo1RVVaW1fj6KRqOk+/vKV97m4uBtzpx0DpT/HNgjaR7wVWA98Nse1tkITE6YPhJ4LY1lMkaSXzXknHMdpNMptITH/S8EfmpmNwKjeljnaWC2pOmSBgMXA/d2WOZe4KMKnALsyOb5BOecc2+UzonmXZKuIRhx7czwyqJug3zMrEXS54B/EFyS+isze0nSFeHrtwD3E1yOuorgktSPpVGbc865XlDwpT+FFaTDgQ8CT5vZI5KmAJVm1tMhpIyT1EBw+CpdE4CeTpIXkmJrL3ibi4W3OTVTzay0sxeS7hQkDQWuAGYBLwC3m1lejaPQkaQlZlaR6zr6SrG1F7zNxcLbnDmpnFO4A6gg6BDOA36c6WKcc87lVirnFI42s7cASLodeCo7JTnnnMuVVPYUmuNP8v2wUYJbc11AHyu29oK3uVh4mzMklXMKrUBTfBIYRnCVkAAzs9HZKNA551zfSfnqI+ecc4XLoz+dc861K8pOQdK5kpZLWiXp6lzXkw2SJktaJKlO0kuSrgznj5P0oKSV4c+xua41kySVSHpG0n3hdEG3FyBMFP6TpPrw731qIbdb0pfCf9MvSvqDpKGF1l5Jv5IUk/Riwrwu2yjpmvDzbLmkt/Vm20XXKSSM7XAecDRwiaSjc1tVVrQAXzazuQSJtp8N23k1sNDMZgMLw+lCciVQlzBd6O2FYHCqB8ysHJhH0P6CbLekScAXgAozezNBQsLFFF57fwOc22Fep20M/19fDLwpXOdn4edcWoquUyBhbAczOwDEx3YoKGa2KT5ynZntIvigmETQ1jvCxe4ALspNhZkn6Ujg7cBtCbMLtr0AkkYDZwK3A5jZATPbTmG3eyAwTNJAYDhBcGZBtdfMHga2dpjdVRsvBBaY2X4zW0sQFXRSutsuxk6hq3EbCpakacBxwJNAWTxoMPwZyV1lGfcT4GtA4kCrhdxegBlAA/Dr8LDZbZJGUKDtNrNXgR8BGwjGWtlhZv+kQNvbQVdtzOhnWjF2CkmN21AoJI0E/gx80cx25rqebJH0DiBmZktzXUsfGwgcD/zczI4juGw83w+ddCk8jn4hMB04AhgRjutSzDL6mVaMnUKfjtuQS5IGEXQIvzOzu8PZmyVNDF+fCMRyVV+GzQcukLSO4JBgtaQ7Kdz2xm0ENprZk+H0nwg6iUJt99nAWjNrMLNm4G7gNAq3vYm6amNGP9OKsVNIZmyHvKdgBKHbgTozuyHhpXuBS8PnlwJ/7evassHMrjGzI81sGsHftNbMPkyBtjfOzF4HXpE0J5xVQzD2eaG2ewNwiqTh4b/xGoLzZYXa3kRdtfFe4GJJQyRNB2bTmxgiMyu6B8G4DSuA1cC1ua4nS208nWAX8nng2fBxPjCe4MqFleHPcbmuNQttrwTuC58XQ3uPBZaEf+u/AGMLud3AdUA98CLwP8CQQmsv8AeCcybNBHsCn+iujcC14efZcuC83mzb72h2zjnXrhgPHznnnOuCdwrOOefaeafgnHOunXcKzjnn2nmn4Jxzrp13Ci6vSWqV9GzCY1qG379Skkl6Z8K8+yRVpvge96Ww/DRJe8PYijpJT0m6NOH1Cwo13dflXipjNDvXH+01s2M7eyG8uUlm1tbZ6ynYSHAd+N96+T6pWG1BbAWSZgB3SxpgZr82s3spwBsuXf/gewquoITfsusk/QxYBkyW9FVJT0t6XtJ1Cct+OPwW/qykX3QTN/wcsEPSOZ1sryb8Rv9CmIE/JJx/bji+wWLg3QnLjwiXezpcr8eEXjNbA1xFEBmNpMsk3Rw+f184rsBzkh5OeP2vkh4I8/W/meSvzznvFFzeG5Zw6OiecN4c4LfhN+05BLf9n0Rw5+8Jks6UNBf4ADA/3NNoBT7UzXa+C/xH4gxJQwly7z9gZm8h2PP+TDj/l8A7gTOAwxNWu5YgguNEoAr4YZhq2pNlQHkn878BvM3M5gEXJMw/KWzPscD7JFUksQ3n/PCRy3uHHD4KzymsN7MnwllvDR/PhNMjCTqJY4ATgKeDo0wMo5sQNTN7RBKSzkiYPYcgnG1FOH0H8FkgGs5fGdZ0J3B5Qj0XSPpKOD0UmMKhAwN1prMkTIBHgd9IuosgHC7uQTPbEm7/boLYkyU9bMM57xRcQWpKeC7gv8zsF4kLSPo8cIeZXdNh/ruA+OGWT3Z43+8RfNNvSXjvrnSVHyPgPWa2vJt1O3McnXQcZnaFpJMJBhd6VlK8g+y4fc+zcUnxw0eu0P0D+Hg4rgSSJkmKEASKvTd8Hh//dqqZ3WNmx4aPQ75ZWzCYy1iCIS8hCGWbJmlWOP0R4KFw/nRJM8P5l3So5/PhSXAkHddTA8K9nx8BN3Xy2kwze9LMvgE0cjBC+ZywTcMIRuh6tKftOAfeKbgCF36Q/x54XNILBOMNjDKzlwnOEfxT0vPAg8DEJN7yewR59ZjZPuBjwB/D924DbgnnXw78X3iieX3C+t8BBgHPKxiU/TtdbGdm/JJU4C7gJjP7dSfL/TA8yf0i8DDBSXGAxQQJos8Cf453cJLul3REEu10RcpTUp0rMJIuIxjY/nO5rsXlH99TcM451873FJxzzrXzPQXnnHPtvFNwzjnXzjsF55xz7bxTcM451847Beecc+3+P6IB3XewikMDAAAAAElFTkSuQmCC\n", 242 | "text/plain": [ 243 | "
    " 244 | ] 245 | }, 246 | "metadata": { 247 | "needs_background": "light" 248 | }, 249 | "output_type": "display_data" 250 | }, 251 | { 252 | "name": "stdout", 253 | "output_type": "stream", 254 | "text": [ 255 | "End of Run: pyEx1a.Canti2D.Push.tcl.py\n" 256 | ] 257 | } 258 | ], 259 | "source": [ 260 | "ops.wipe() # the wipe command here closes all recorder files\n", 261 | "plt.close('all')\n", 262 | "fname3 = 'Data/DFreeEx1aPush.out'\n", 263 | "dataDFree = numpy.loadtxt(fname3)\n", 264 | "plt.subplot(211)\n", 265 | "plt.title('Ex1a.Canti2D.Push.tcl')\n", 266 | "plt.grid(True)\n", 267 | "plt.plot(dataDFree[:,1])\n", 268 | "plt.xlabel('Step Number')\n", 269 | "plt.ylabel('Free-Node Displacement')\n", 270 | "plt.subplot(212)\n", 271 | "plt.grid(True)\n", 272 | "plt.plot(dataDFree[:,1],dataDFree[:,0])\n", 273 | "plt.xlabel('Free-Node Disp.')\n", 274 | "plt.ylabel('Pseudo-Time (~Force)')\n", 275 | "plt.show()\n", 276 | "print('End of Run: pyEx1a.Canti2D.Push.tcl.py')\n" 277 | ] 278 | }, 279 | { 280 | "cell_type": "code", 281 | "execution_count": null, 282 | "metadata": {}, 283 | "outputs": [], 284 | "source": [] 285 | } 286 | ], 287 | "metadata": { 288 | "kernelspec": { 289 | "display_name": "Python 3", 290 | "language": "python", 291 | "name": "python3" 292 | }, 293 | "language_info": { 294 | "codemirror_mode": { 295 | "name": "ipython", 296 | "version": 3 297 | }, 298 | "file_extension": ".py", 299 | "mimetype": "text/x-python", 300 | "name": "python", 301 | "nbconvert_exporter": "python", 302 | "pygments_lexer": "ipython3", 303 | "version": "3.8.3" 304 | } 305 | }, 306 | "nbformat": 4, 307 | "nbformat_minor": 4 308 | } 309 | -------------------------------------------------------------------------------- /BraineryBytes_OpenSees_Examples_Manual_Example_1b_Elastic_Portal_Frame_EQgroundMotion.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "

    OpenSees Examples Manual Examples for OpenSeesPy

    \n", 8 | "

    OpenSees Example 1b. Elastic Portal Frame -- Earthquake Ground Motion

    \n", 9 | "

    \n", 10 | "\n", 11 | "You can find the original Examples:
    \n", 12 | "https://opensees.berkeley.edu/wiki/index.php/Examples_Manual
    \n", 13 | "Original Examples by By Silvia Mazzoni & Frank McKenna, 2006, in Tcl
    \n", 14 | "Converted to OpenSeesPy by SilviaMazzoni, 2020
    \n", 15 | "

    \n", 16 | "\n", 17 | "

    Simulation Process

    \n", 18 | "\n", 19 | "Each example script does the following:\n", 20 | "

    A. Build the model

    \n", 21 | "
      \n", 22 | "
    1. model dimensions and degrees-of-freedom
    2. \n", 23 | "
    3. nodal coordinates
    4. \n", 24 | "
    5. nodal constraints -- boundary conditions
    6. \n", 25 | "
    7. nodal masses
    8. \n", 26 | "
    9. elements and element connectivity
    10. \n", 27 | "
    11. recorders for output
    12. \n", 28 | "
    \n", 29 | "

    B. Define & apply gravity load

    \n", 30 | "
      \n", 31 | "
    1. nodal or element load
    2. \n", 32 | "
    3. static-analysis parameters (tolerances & load increments)
    4. \n", 33 | "
    5. analyze
    6. \n", 34 | "
    7. hold gravity loads constant
    8. \n", 35 | "
    9. reset time to zero
    10. \n", 36 | "
    \n", 37 | "

    C. Define and apply lateral load

    \n", 38 | "
    \n", 39 | "
  • Time Series and Load Pattern (nodal loads for static analysis, support ground motion for earthquake)
  • \n", 40 | "
  • lateral-analysis parameters (tolerances and displacement/time increments)
  • \n", 41 | "Static Lateral-Load Analysis\n", 42 | "
  • define the displacement increments and displacement path
  • \n", 43 | "Dynamic Lateral-Load Analysis\n", 44 | "
  • define the input motion and all associated parameters, such as scaling and input type
  • \n", 45 | "
  • define analysis duration and time increment
  • \n", 46 | "
  • define damping
  • \n", 47 | "
  • analyze
  • \n", 48 | "

    \n", 49 | " \n", 50 | "Introductory Examples\n", 51 | "The objective of Example 1a and Example 1b is to give an overview of input-file format in OpenSees using simple scripts.\n", 52 | "These scripts do not take advantage of the Tcl scripting capabilities shown in the later examples. However, they do provide starting a place where the input file is similar to that of more familiar Finite-Element Analysis software. Subsequent examples should be used as the basis for user input files.\n", 53 | " " 54 | ] 55 | }, 56 | { 57 | "cell_type": "markdown", 58 | "metadata": {}, 59 | "source": [ 60 | "

    OpenSees Example 1b.
    \n", 61 | " 2D Elastic Portal Frame -- Earthquake Ground Motion

    \n", 62 | "\n", 63 | " Objectives of Example 1b \n", 64 | " - Two element types
    \n", 65 | " - Distributed element loads
    \n", 66 | " \n", 67 | "\n", 68 | "\n", 69 | " " 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "execution_count": 1, 75 | "metadata": {}, 76 | "outputs": [ 77 | { 78 | "name": "stdout", 79 | "output_type": "stream", 80 | "text": [ 81 | "Done!\n" 82 | ] 83 | } 84 | ], 85 | "source": [ 86 | "############################################################\n", 87 | "# EXAMPLE: \n", 88 | "# pyEx1b.Portal2D.EQ.tcl.py\n", 89 | "# for OpenSeesPy\n", 90 | "# --------------------------------------------------------#\n", 91 | "# by: Silvia Mazzoni, 2020\n", 92 | "# silviamazzoni@yahoo.com\n", 93 | "############################################################\n", 94 | "\n", 95 | "# configure Python workspace\n", 96 | "import openseespy.opensees as ops\n", 97 | "import eSEESminiPy\n", 98 | "import os\n", 99 | "import math\n", 100 | "import numpy as numpy\n", 101 | "import matplotlib.pyplot as plt\n", 102 | "ops.wipe()\n", 103 | "# --------------------------------------------------------------------------------------------------\n", 104 | "# Example 1. portal frame in 2D\n", 105 | "# dynamic earthquake analysis of Portal Frame, with gravity.\n", 106 | "# all units are in kip, inch, second\n", 107 | "# elasticBeamColumn ELEMENT\n", 108 | "# Silvia Mazzoni and Frank McKenna, 2006\n", 109 | "#\n", 110 | "# ^Y\n", 111 | "# or\n", 112 | "# 3_________(3)________4 __\n", 113 | "# or | |\n", 114 | "# or | |\n", 115 | "# or | |\n", 116 | "# (1) (2) LCol\n", 117 | "# or | |\n", 118 | "# or | |\n", 119 | "# or | |\n", 120 | "# =1= =2= _or_ -------->X\n", 121 | "# or----------LBeam------------|\n", 122 | "#\n", 123 | "\n", 124 | "# SET UP ----------------------------------------------------------------------------\n", 125 | "ops.wipe() # clear opensees model\n", 126 | "ops.model('basic','-ndm',2,'-ndf',3) # 2 dimensions, 3 dof per node\n", 127 | "if not os.path.exists('Data'):\n", 128 | " os.mkdir('Data')\n", 129 | "\n", 130 | "\n", 131 | "# define GEOMETRY -------------------------------------------------------------\n", 132 | "# nodal coordinates:\n", 133 | "ops.node(1,0,0) # node , X Y\n", 134 | "ops.node(2,504,0)\n", 135 | "ops.node(3,0,432)\n", 136 | "ops.node(4,504,432)\n", 137 | "\n", 138 | "# Single point constraints -- Boundary Conditions\n", 139 | "ops.fix(1,1,1,1) # node DX DY RZ\n", 140 | "ops.fix(2,1,1,1) # node DX DY RZ\n", 141 | "ops.fix(3,0,0,0)\n", 142 | "ops.fix(4,0,0,0)\n", 143 | "\n", 144 | "# nodal masses:\n", 145 | "ops.mass(3,5.18,0.,0.) # node , Mx My Mz, Mass=Weight/g.\n", 146 | "ops.mass(4,5.18,0.,0.)\n", 147 | "\n", 148 | "# Define ELEMENTS -------------------------------------------------------------\n", 149 | "# define geometric transformation: performs a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-coordinate system\n", 150 | "ops.geomTransf('Linear',1) # associate a tag to transformation\n", 151 | "\n", 152 | "# connectivity: (make A very large, 10e6 times its actual value)\n", 153 | "ops.element('elasticBeamColumn',1,1,3,3600000000,4227,1080000,1) # element elasticBeamColumn eleTag iNode jNode A E Iz transfTag\n", 154 | "ops.element('elasticBeamColumn',2,2,4,3600000000,4227,1080000,1)\n", 155 | "ops.element('elasticBeamColumn',3,3,4,5760000000,4227,4423680,1)\n", 156 | "\n", 157 | "# Define RECORDERS -------------------------------------------------------------\n", 158 | "ops.recorder('Node','-file','Data/DFreeEx1bEQ.out','-time','-node',3,4,'-dof',1,2,3,'disp') # displacements of free nodes\n", 159 | "ops.recorder('Node','-file','Data/DBaseEx1bEQ.out','-time','-node',1,2,'-dof',1,2,3,'disp') # displacements of support nodes\n", 160 | "ops.recorder('Node','-file','Data/RBaseEx1bEQ.out','-time','-node',1,2,'-dof',1,2,3,'reaction') # support reaction\n", 161 | "ops.recorder('Element','-file','Data/FColEx1bEQ.out','-time','-ele',1,2,'globalForce') # element forces -- column\n", 162 | "ops.recorder('Element','-file','Data/FBeamEx1bEQ.out','-time','-ele',3,'globalForce') # element forces -- beam\n", 163 | "\n", 164 | "# define GRAVITY -------------------------------------------------------------\n", 165 | "ops.timeSeries('Linear',1) # timeSeries Linear 1;\n", 166 | "# define Load Pattern\n", 167 | "ops.pattern('Plain',1,1) # \n", 168 | "ops.eleLoad('-ele',3,'-type','-beamUniform',-7.94) # distributed superstructure-weight on beam\n", 169 | "\n", 170 | "ops.wipeAnalysis() # adding this to clear Analysis module \n", 171 | "ops.constraints('Plain') # how it handles boundary conditions\n", 172 | "ops.numberer('Plain') # renumber dofs to minimize band-width (optimization), if you want to\n", 173 | "ops.system('BandGeneral') # how to store and solve the system of equations in the analysis\n", 174 | "ops.test('NormDispIncr',1.0e-8,6) # determine if convergence has been achieved at the end of an iteration step\n", 175 | "ops.algorithm('Newton') # use Newtons solution algorithm: updates tangent stiffness at every iteration\n", 176 | "ops.integrator('LoadControl',0.1) # determine the next time step for an analysis, apply gravity in 10 steps\n", 177 | "ops.analysis('Static') # define type of analysis static or transient\n", 178 | "ops.analyze(10) # perform gravity analysis\n", 179 | "ops.loadConst('-time',0.0) # hold gravity constant and restart time\n", 180 | "\n", 181 | "# DYNAMIC ground-motion analysis -------------------------------------------------------------\n", 182 | "# create load pattern\n", 183 | "accelSeries = 900\n", 184 | "ops.timeSeries('Path',accelSeries,'-dt',0.01,'-filePath','BM68elc.acc','-factor',1) # define acceleration vector from file (dt=0.01 is associated with the input file gm)\n", 185 | "ops.pattern('UniformExcitation',2,1,'-accel',accelSeries) # define where and how (pattern tag, dof) acceleration is applied\n", 186 | "ops.rayleigh(0.,0.,0.,2*0.02/math.pow(ops.eigen('-fullGenLapack',1)[0],0.5)) # set damping based on first eigen mode\n", 187 | "\n", 188 | "# create the analysis\n", 189 | "ops.wipeAnalysis() # clear previously-define analysis parameters\n", 190 | "ops.wipeAnalysis() # adding this to clear Analysis module \n", 191 | "ops.constraints('Plain') # how it handles boundary conditions\n", 192 | "ops.numberer('Plain') # renumber dofs to minimize band-width (optimization), if you want to\n", 193 | "ops.system('BandGeneral') # how to store and solve the system of equations in the analysis\n", 194 | "ops.test('NormDispIncr',1.0e-8,10) # determine if convergence has been achieved at the end of an iteration step\n", 195 | "ops.algorithm('Newton') # use Newtons solution algorithm: updates tangent stiffness at every iteration\n", 196 | "ops.integrator('Newmark',0.5,0.25) # determine the next time step for an analysis\n", 197 | "ops.analysis('Transient') # define type of analysis: time-dependent\n", 198 | "ops.analyze(1000,0.02) # apply 1000 0.02-sec time steps in analysis\n", 199 | "\n", 200 | "\n", 201 | "print('Done!')\n", 202 | "\n", 203 | "\n", 204 | "\n", 205 | "\n" 206 | ] 207 | }, 208 | { 209 | "cell_type": "code", 210 | "execution_count": 2, 211 | "metadata": {}, 212 | "outputs": [ 213 | { 214 | "data": { 215 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATaUlEQVR4nO3dfYxd9X3n8feHMSFhgQYXG7kYbLK1VB7aEjICqiBCSFMeggrK05p1WtPQ9R9GuyGsVMGy2lWktcpGSxe0AiRviNYNNJa1pcKiiJZCSQRawppgWrBhcYLBBhc7TaOEpHVt890/7jG5mBnPjOfOjOfn90u6uuf8ztP3O7r+zPG5Z+5NVSFJastRM12AJGnwDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7tIEJFmcpJLMGce61yZ5Yjrqkg5kuKtpSbYm+eckJx0wvrEL6cUzU5k0tQx3HQleAa7ZP5PkV4EPzFw50tQz3HUk+Abwu33zy4E/3j+T5BeS/HGSXUleTfIfkxzVLRtK8t+S/CDJ94FP9e+42/aeJDuSvJ7kvyQZmo6mpIMx3HUkeAo4IckZXfD+K+DevuX/A/gF4EPAx+j9Ivi9btm/Aa4EPgwMA589YN9rgL3AL3fr/Bbw+1PThjR+hruOFPvP3j8JvAi83o3vD/ubq+onVbUVuA34nW7554Hbq2pbVf0Q+MP9O0xyMnA5cENV/bSqdgL/HVg6Df1IBzXmO/5SI74BfBs4nb5LMsBJwPuAV/vGXgVO6aZ/Cdh2wLL9FgFHAzuS7B876oD1pRlhuOuIUFWvJnkFuAK4rm/RD4A99IJ6Uzd2Gj8/s98BnNq3/ml909uA3cBJVbV3KuqWDpWXZXQkuQ64pKp+2je2D1gHrEpyfJJFwI38/Jr8OuDfJVmY5ETgpv0bVtUO4C+B25KckOSoJP8yycempRvpIAx3HTGq6ntVtWGERf8W+CnwfeAJ4E+Ar3fL/ifwF8BzwHeB+w/Y9nfpXdbZBPwD8L+BBQMvXpqg+GUdktQez9wlqUGGuyQ1yHCXpAYZ7pLUoMPiPveTTjqpFi9ePNNlSNKs8swzz/ygquaNtOywCPfFixezYcNId6iN0z/9E1x0EezeDXv3wmc/C1/5yuAK1BHNl5emxb59MDwMp5wCDz44rk2SvDrassMi3CftmGPgscfguONgzx648EK4/HK44IKZrkwN8OWlaXHHHXDGGfDjHw9kd21cc096//Kg969vz57emDQAvrw05bZvhz//c/j9wX2gaBvhDr3/0pxzDsyfD5/8JJx//kxXpIb48tKUuuEG+OpX4ajBRXI74T40BBs39n4DPv00PP/8TFekhvjy0pR58MHeWcNHPjLQ3bYT7vt98INw8cXw8MMzXYka5MtLA/fkk7B+PSxeDEuX9t7g+cIXJr3bWR3uK1euZM6cOcxL+MWhIVauXAn/+I/wV38Fv/IrM12eGrFrF/zoR71pX14alP35lVtvZc7f/R0rr7gC1q6FSy6Be+8dewdjmLV3y6xcuZK7774b6H0E35q332bo7rt5Y+1afumGG+DKK2e2QDVjxw5Yvrx33f3tt+Hzn/flpcnpzy+Affv2cffdd7Pk9df58oCOcVh8KuTw8HBN9D73OXPmsG/fvhGXfexjfpy2pMPXt771rRHHh4aG2Lt3/N/7kuSZqhoeadmsvSwzWrBL0mw1yFybtZdlhoaGRvxBDA0N8fjjj09/QZI0TqNdeRgaGhrYMWbtmfuKFSsmNC5Jh4vpyK9Ze+Z+1113AbzzpsTQ0BArVqx4Z1ySDlfTkV+z9g3V/S6++GIAL8VImnUmm19NvqEqSRqd4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaNO5wTzKU5NkkD3bzc5M8kuTl7vnEvnVvTrIlyUtJLp2KwiVJo5vImfuXgM198zcBj1bVEuDRbp4kZwJLgbOAy4C7kgzuAxMkSWMaV7gnWQh8Cvha3/BVwJpueg1wdd/42qraXVWvAFuA8wZTriRpPMZ75n478AfA231jJ1fVDoDueX43fgqwrW+97d3YuyRZkWRDkg27du2acOGSpNGNGe5JrgR2VtUz49xnRhh7zwfYVNXqqhququF58+aNc9eSpPEYz6dCfhT47SRXAO8HTkhyL/BmkgVVtSPJAmBnt/524NS+7RcCbwyyaEnSwY155l5VN1fVwqpaTO+N0seq6gvAemB5t9py4IFuej2wNMkxSU4HlgBPD7xySdKoJvN57rcC65JcB7wGfA6gql5Isg7YBOwFrq8qvxNPkqbRhMK9qh4HHu+m/x74xCjrrQJWTbI2SdIh8i9UJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktSgMcM9yfuTPJ3kuSQvJPlKNz43ySNJXu6eT+zb5uYkW5K8lOTSqWxAkvRe4zlz3w1cUlW/DpwDXJbkAuAm4NGqWgI82s2T5ExgKXAWcBlwV5KhqShekjSyMcO9et7qZo/uHgVcBazpxtcAV3fTVwFrq2p3Vb0CbAHOG2jVkqSDGtc19yRDSTYCO4FHquo7wMlVtQOge57frX4KsK1v8+3dmCRpmowr3KtqX1WdAywEzkty9kFWz0i7eM9KyYokG5Js2LVr1/iqlSSNy4TulqmqHwGP07uW/maSBQDd885ute3AqX2bLQTeGGFfq6tquKqG582bdwilS5JGM567ZeYl+WA3/QHgN4EXgfXA8m615cAD3fR6YGmSY5KcDiwBnh504ZKk0c0ZxzoLgDXdHS9HAeuq6sEk/wdYl+Q64DXgcwBV9UKSdcAmYC9wfVXtm5ryJUkjGTPcq+pvgA+PMP73wCdG2WYVsGrS1UmSDol/oSpJDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWpQM+H+xS/C/Plw9tkzXYkkTcy2bfDxj8MZZ8BZZ8Edd0x+n82E+7XXwsMPz3QVkjRxc+bAbbfB5s3w1FNw552wadPk9tlMuF90EcydO9NVSNLELVgA557bmz7++N4Z/OuvT26fzYS7JLVg61Z49lk4//zJ7cdwl6TDxFtvwWc+A7ffDiecMLl9Ge6SdBjYs6cX7MuWwac/Pfn9Ge6SNMOq4Lrretfab7xxMPtsJtyvuQZ+4zfgpZdg4UK4556ZrkiSxufJJ+Eb34DHHoNzzuk9HnpocvucM5jSZt43vznTFUjSobnwwt7Z+yA1c+YuSfo5w12SGmS4S1KDDHdJatCY4Z7k1CR/nWRzkheSfKkbn5vkkSQvd88n9m1zc5ItSV5KculUNiBJeq/xnLnvBf59VZ0BXABcn+RM4Cbg0apaAjzazdMtWwqcBVwG3JVkaCqKlySNbMxwr6odVfXdbvonwGbgFOAqYE232hrg6m76KmBtVe2uqleALcB5gy5ckjS6CV1zT7IY+DDwHeDkqtoBvV8AwPxutVOAbX2bbe/GDtzXiiQbkmzYtWvXxCuXJI1q3OGe5DjgT4EbqurHB1t1hLH33J5fVaurariqhufNmzfeMiRJ4zCucE9yNL1gv6+q7u+G30yyoFu+ANjZjW8HTu3bfCHwxmDKlSSNx3julglwD7C5qv6ob9F6YHk3vRx4oG98aZJjkpwOLAGeHlzJkqSxjOezZT4K/A7wt0k2dmP/AbgVWJfkOuA14HMAVfVCknXAJnp32lxfVfsGXrkkaVRjhntVPcHI19EBPjHKNquAVZOoS5I0Cf6FqiQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoPGDPckX0+yM8nzfWNzkzyS5OXu+cS+ZTcn2ZLkpSSXTlXhkqTRjefM/X8Blx0wdhPwaFUtAR7t5klyJrAUOKvb5q4kQwOrVpI0LmOGe1V9G/jhAcNXAWu66TXA1X3ja6tqd1W9AmwBzhtQrZKkcTrUa+4nV9UOgO55fjd+CrCtb73t3dh7JFmRZEOSDbt27TrEMiRJIxn0G6oZYaxGWrGqVlfVcFUNz5s3b8BlSNKR7VDD/c0kCwC6553d+Hbg1L71FgJvHHp5kqRDcajhvh5Y3k0vBx7oG1+a5JgkpwNLgKcnV6IkaaLmjLVCkm8CFwMnJdkO/GfgVmBdkuuA14DPAVTVC0nWAZuAvcD1VbVvimqXJI1izHCvqmtGWfSJUdZfBayaTFGSpMnxL1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWpQO+H+xS/C/Plw9tkzXYkkTcy2bfDxj8MZZ8BZZ8Edd0x6l+2E+7XXwsMPz3QVkjRxc+bAbbfB5s3w1FNw552wadOkdtlOuF90EcydO9NVSNLELVgA557bmz7++N4Z/OuvT2qX7YS7JLVg61Z49lk4//xJ7cZwl6TDxVtvwWc+A7ffDiecMKldGe6SdDjYs6cX7MuWwac/PendzRlASSNKchlwBzAEfK2qbh30Me677z6eeuopdu/ezeLFi7n9hhu4etAHkaQp8K78WrSIx047jQ995CNw440D2f+UnLknGQLuBC4HzgSuSXLmII9x3333sWLFCnbv3g3AH776Khd8+cu8/eKLsHAh3HPPIA8nSQNzYH4tfO01PvTEE/zD/ffDOef0Hg89NKljTNWZ+3nAlqr6PkCStcBVwOTu7elzyy238LOf/eyd+X/dPS9auJCtW7cO6jCSNHAH5teTQIBFRx3F1o0bB3KMqbrmfgqwrW9+ezf2jiQrkmxIsmHXrl0TPsBrr702oXFJOlxMR35NVbhnhLF610zV6qoarqrhefPmTfgAp5122oTGJelwMR35NVXhvh04tW9+IfDGIA+watUqjj322HeNHXvssaxatWqQh5GkgZuO/JqqcP+/wJIkpyd5H7AUWD/IAyxbtozVq1ezaNEikrBo0SJWr17NsmXLBnkYSRq46civVNXYax3KjpMrgNvp3Qr59aoa9VfS8PBwbdiwYUrqkKRWJXmmqoZHWjZl97lX1UPA5O7lkSQdEv9CVZIaZLhLUoMMd0lqkOEuSQ2asrtlJlREsgt4dRK7OAn4wYDKmQ3st31HWs/2e2gWVdWIfwV6WIT7ZCXZMNrtQC2y3/YdaT3b7+B5WUaSGmS4S1KDWgn31TNdwDSz3/YdaT3b74A1cc1dkvRurZy5S5L6GO6S1KBZHe5JLkvyUpItSW6a6XoGIcnXk+xM8nzf2NwkjyR5uXs+sW/ZzV3/LyW5dGaqnpwkpyb56ySbk7yQ5EvdeJN9J3l/kqeTPNf1+5VuvMl+90sylOTZJA928633uzXJ3ybZmGRDNzZ9PVfVrHzQ+yjh7wEfAt4HPAecOdN1DaCvi4Bzgef7xr4K3NRN3wT81276zK7vY4DTu5/H0Ez3cAg9LwDO7aaPB/5f11uTfdP7prLjuumjge8AF7Tab1/fNwJ/AjzYzbfe71bgpAPGpq3n2Xzm/s6XcFfVPwP7v4R7VquqbwM/PGD4KmBNN70GuLpvfG1V7a6qV4At9H4us0pV7aiq73bTPwE20/vO3Sb7rp63utmju0fRaL8ASRYCnwK+1jfcbL8HMW09z+ZwH/NLuBtyclXtgF4QAvO78eZ+BkkWAx+mdzbbbN/dJYqNwE7gkapqul96X9zzB8DbfWMt9wu9X9h/meSZJCu6sWnrecq+rGMajPkl3EeApn4GSY4D/hS4oap+nIzUXm/VEcZmVd9VtQ84J8kHgT9LcvZBVp/V/Sa5EthZVc8kuXg8m4wwNmv67fPRqnojyXzgkSQvHmTdgfc8m8/cp/xLuA8jbyZZANA97+zGm/kZJDmaXrDfV1X3d8PN911VPwIeBy6j3X4/Cvx2kq30Lp9ekuRe2u0XgKp6o3veCfwZvcss09bzbA73Kf8S7sPIemB5N70ceKBvfGmSY5KcDiwBnp6B+iYlvVP0e4DNVfVHfYua7DvJvO6MnSQfAH4TeJFG+62qm6tqYVUtpvfv9LGq+gKN9guQ5F8kOX7/NPBbwPNMZ88z/Y7yJN+NvoLenRXfA26Z6XoG1NM3gR3AHnq/za8DfhF4FHi5e57bt/4tXf8vAZfPdP2H2POF9P4L+jfAxu5xRat9A78GPNv1+zzwn7rxJvs9oPeL+fndMs32S+8uvue6xwv782k6e/bjBySpQbP5sowkaRSGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQ/weCTboaHWIhiAAAAABJRU5ErkJggg==\n", 216 | "text/plain": [ 217 | "
    " 218 | ] 219 | }, 220 | "metadata": { 221 | "needs_background": "light" 222 | }, 223 | "output_type": "display_data" 224 | } 225 | ], 226 | "source": [ 227 | "eSEESminiPy.drawModel()" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": 3, 233 | "metadata": {}, 234 | "outputs": [ 235 | { 236 | "data": { 237 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASv0lEQVR4nO3dcbCddX3n8fenSQgoiIncsGmCBkvsbHC74KTI1J0urVooYsPYpcaunewulrFlt9rt1ELd3U53m4qdVpmd1WlBHVNtxbTqEhm2NY0yne5SY9CghMiSCpKQLAlgJBaHAn73j/Nj95jcm5zc3JNLfnm/Zs6c5/k9v+c53+8hfM5zn3vOPakqJEl9+YHZLkCSNPMMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuel5L8ktJHknynSQvme16hiX5aJLfmea+DyZ53UzXJD3HcNfYtAD7bpIDSfYn+V9J3p5kpH93SeYB7wN+qqpOr6rHxlvxzElySpI/SLKrvTA9kOT9s12XTh6Gu8btjVV1BvAy4AbgN4APj7jv2cCpwLajfdAMzOa/7+uBlcBFwBnATwBfmcV6dJIx3HVcVNW3q2oD8GZgTZJXAiSZn+T3kzzULr/8YZLTkrwCuK/tvj/J59v8H0vypSTfbvc/9txjJLkjydok/xN4Enh5kkryy0nubz9B/JckP5TkziRPJFmf5JShY1yRZOvQTxo/MrTtwiRfbsf5JIMXnqn8KPCZqtpdAw9W1R8fNOeCJF9tvXwyyantcRYkuS3JviTfastLD+rzPUk2t31vTbJwaPvFrfb9Se5OcslR/KdSL6rKm7ex3IAHgddNMv4Q8Ett+UZgA7CQwRnuZ4H3tG3LgALmtvWFwLeAXwDmAm9p6y9p2+9oxz6/bZ/X9t8AvKiNPwVsAl4OnAncC6xp+78K2Au8GpgDrGk9zAdOAb4J/Go77r8AngZ+Z4re/0Or5ZeBfwJkkudmM/CDra/twNvbtpcAPwu8oD0nfwb896F97wAeBl4JvBD4FPDxtm0J8BhwOYOTt9e39YnZ/vfg7fjePHPXbNgNLEwS4BeBX62qx6vqAPC7wOop9nsDcH9VfayqnqmqTwBfB944NOejVbWtbX+6jb23qp6oqm3APcDnquobVfVt4H8AF7Z5vwj8UVV9saqerap1DF4MLm63ecCNVfV0Vf058KXD9Pge4L3AvwS2AA8nWXPQnP9agzP7xxm8qF0AUFWPVdWnqurJ9pysBf75Qft+rKruqaq/B/4j8HNJ5gBvBW6vqtur6ntVtbE9/uWHqVUdmjvbBeiktAR4HJhgcHZ61yDnAQiDs+bJ/CCDs+dh32zHe87OSfZ7ZGj5u5Os/6O2/DIGl4z+3dD2U9rjFvBwVQ3/pb2Da/l/qupZ4APAB5KcBvwb4CNJNlfV9jbt/wzt8mR7HJK8AHg/cBmwoG0/I8mcdtyD+/wmgxees1oPVyUZfsGbB3xhqlrVJ8/cdVwl+VEGYfw3wKMMwvX8qnpxu51ZVadPsftuBuE17KUMLlE851j+zOlOYO1QLS+uqhe0nxD2AEsy9CrUHvuIquq7VfUBBpeQVoywy68BPwy8uqpeBPx4Gx9+7HMOquNpBs/nTgZn9cM9vLCqbhilVvXDcNdxkeRFSa4AbmFwffhrVfU94Gbg/UkWtXlLklw6xWFuB16R5OeTzE3yZgZhedsMlXkz8PYkr27vtnlhkjckOQO4E3gG+JX22G9i8E6Yqfp9Z5JL2i+H57ZLMmcw2jtmzmDwore//aL0tyaZ89YkK9pZ/n8G/ryd1X8ceGOSS5PMSXJqq2PpJMdQxwx3jdtnkxxgcEb5bgbvW//XQ9t/A9gB/G2SJ4C/YnDWeogavM/9CgZnto8B7wKuqKpHZ6LQqtrC4Lr7f2Nwlr0D+Fdt2z8Ab2rr32Lwrp9PH+Zw3wX+gMGll0eBa4GfrapvjFDKjcBpbb+/Bf5ikjkfAz7ajn8q8Cutzp3AKuA3gX0Mnvdfx//XTzr5/kuIkp7vktzB4KefD812LXr+8tVckjpkuEtSh7wsI0kd8sxdkjr0vPgQ01lnnVXLli2b7TIk6YRy1113PVpVE5Nte16E+7Jly9iyZctslyFJJ5QkU35K2ssyktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR16HnxPvfpevjhh3n961/PgQMHmD9//myXI0lH5cknn2TRokVs3bp1xo99Qof77t272b9//2yXIUnT8vTTT3PgwIGxHPuEDneAPXv28La3vY2bb755tkuRpKOyaNEizjzzzLEc22vuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjo0crgnmZPkK0lua+sLk2xMcn+7XzA09/okO5Lcl+TScRQuSZra0Zy5vwPYPrR+HbCpqpYDm9o6SVYAq4HzgcuADyaZMzPlSpJGMVK4J1kKvAH40NDwKmBdW14HXDk0fktVPVVVDwA7gItmplxJ0ihGPXO/EXgX8L2hsbOrag9Au1/UxpcAO4fm7Wpj3yfJNUm2JNmyb9++oy5ckjS1I4Z7kiuAvVV114jHzCRjdchA1U1VtbKqVk5MTIx4aEnSKEb5e+6vAX4myeXAqcCLknwceCTJ4qrak2QxsLfN3wWcM7T/UmD3TBYtSTq8I565V9X1VbW0qpYx+EXp56vqrcAGYE2btga4tS1vAFYnmZ/kXGA5sHnGK5ckTelYvonpBmB9kquBh4CrAKpqW5L1wL3AM8C1VfXsMVcqSRrZUYV7Vd0B3NGWHwNeO8W8tcDaY6xNkjRNfkJVkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR06YrgnOTXJ5iR3J9mW5Lfb+MIkG5Pc3+4XDO1zfZIdSe5Lcuk4G5AkHWqUM/engJ+sqn8KXABcluRi4DpgU1UtBza1dZKsAFYD5wOXAR9MMmccxUuSJnfEcK+B77TVee1WwCpgXRtfB1zZllcBt1TVU1X1ALADuGhGq5YkHdZI19yTzEmyFdgLbKyqLwJnV9UegHa/qE1fAuwc2n1XG5MkHScjhXtVPVtVFwBLgYuSvPIw0zPZIQ6ZlFyTZEuSLfv27RutWknSSI7q3TJVtR+4g8G19EeSLAZo93vbtF3AOUO7LQV2T3Ksm6pqZVWtnJiYmEbpkqSpjPJumYkkL27LpwGvA74ObADWtGlrgFvb8gZgdZL5Sc4FlgObZ7pwSdLU5o4wZzGwrr3j5QeA9VV1W5I7gfVJrgYeAq4CqKptSdYD9wLPANdW1bPjKV+SNJkjhntVfRW4cJLxx4DXTrHPWmDtMVcnSZoWP6EqSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUoSOGe5JzknwhyfYk25K8o40vTLIxyf3tfsHQPtcn2ZHkviSXjrMBSdKhRjlzfwb4tar6x8DFwLVJVgDXAZuqajmwqa3Ttq0GzgcuAz6YZM44ipckTe6I4V5Ve6rqy235ALAdWAKsAta1aeuAK9vyKuCWqnqqqh4AdgAXzXThkqSpHdU19yTLgAuBLwJnV9UeGLwAAIvatCXAzqHddrWxg491TZItSbbs27fv6CuXJE1p5HBPcjrwKeCdVfXE4aZOMlaHDFTdVFUrq2rlxMTEqGVIkkYwUrgnmccg2P+kqj7dhh9JsrhtXwzsbeO7gHOGdl8K7J6ZciVJoxjl3TIBPgxsr6r3DW3aAKxpy2uAW4fGVyeZn+RcYDmweeZKliQdydwR5rwG+AXga0m2trHfBG4A1ie5GngIuAqgqrYlWQ/cy+CdNtdW1bMzXrkkaUpHDPeq+hsmv44O8Nop9lkLrD2GuiRJx8BPqEpShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXoiOGe5CNJ9ia5Z2hsYZKNSe5v9wuGtl2fZEeS+5JcOq7CJUlTG+XM/aPAZQeNXQdsqqrlwKa2TpIVwGrg/LbPB5PMmbFqJUkjOWK4V9VfA48fNLwKWNeW1wFXDo3fUlVPVdUDwA7gohmqVZI0oulecz+7qvYAtPtFbXwJsHNo3q42dogk1yTZkmTLvn37plmGJGkyM/0L1UwyVpNNrKqbqmplVa2cmJiY4TIk6eQ23XB/JMligHa/t43vAs4ZmrcU2D398iRJ0zHdcN8ArGnLa4Bbh8ZXJ5mf5FxgObD52EqUJB2tuUeakOQTwCXAWUl2Ab8F3ACsT3I18BBwFUBVbUuyHrgXeAa4tqqeHVPtkqQpHDHcq+otU2x67RTz1wJrj6UoSdKx8ROqktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHRpbuCe5LMl9SXYkuW5cjyNJOtRYwj3JHOADwE8DK4C3JFkxjseSJB1qXGfuFwE7quobVfUPwC3AqjE9liTpIHPHdNwlwM6h9V3Aq4cnJLkGuAbgpS996bQeZMGCBVx88cWcd9550yxTkmbPypUrWbRo0ViOPa5wzyRj9X0rVTcBNwGsXLmyJpl/ROeddx533nnndHaVpFl3++23j+3Y47ossws4Z2h9KbB7TI8lSTrIuML9S8DyJOcmOQVYDWwY02NJkg4ylssyVfVMkn8L/CUwB/hIVW0bx2NJkg41rmvuVNXtwPguKEmSpuQnVCWpQ4a7JHXIcJekDhnuktShVE3r80MzW0SyD/jmMRziLODRGSrnRGC//TvZerbf6XlZVU1MtuF5Ee7HKsmWqlo523UcL/bbv5OtZ/udeV6WkaQOGe6S1KFewv2m2S7gOLPf/p1sPdvvDOvimrsk6fv1cuYuSRpiuEtSh07ocO/xS7iTfCTJ3iT3DI0tTLIxyf3tfsHQtutb//cluXR2qj42Sc5J8oUk25NsS/KONt5l30lOTbI5yd2t399u4132+5wkc5J8Jcltbb33fh9M8rUkW5NsaWPHr+eqOiFvDP6U8N8BLwdOAe4GVsx2XTPQ148DrwLuGRr7PeC6tnwd8N62vKL1PR84tz0fc2a7h2n0vBh4VVs+A/jfrbcu+2bwTWWnt+V5wBeBi3vtd6jvfw/8KXBbW++93weBsw4aO249n8hn7l1+CXdV/TXw+EHDq4B1bXkdcOXQ+C1V9VRVPQDsYPC8nFCqak9VfbktHwC2M/ge3i77roHvtNV57VZ02i9AkqXAG4APDQ132+9hHLeeT+Rwn+xLuJfMUi3jdnZV7YFBEALPfaNud89BkmXAhQzOZrvtu12i2ArsBTZWVdf9AjcC7wK+NzTWc78weMH+XJK7klzTxo5bz2P7so7j4Ihfwn0S6Oo5SHI68CngnVX1RDJZe4Opk4ydUH1X1bPABUleDHwmySsPM/2E7jfJFcDeqrorySWj7DLJ2AnT75DXVNXuJIuAjUm+fpi5M97ziXzmfjJ9CfcjSRYDtPu9bbyb5yDJPAbB/idV9ek23H3fVbUfuAO4jH77fQ3wM0keZHD59CeTfJx++wWgqna3+73AZxhcZjluPZ/I4X4yfQn3BmBNW14D3Do0vjrJ/CTnAsuBzbNQ3zHJ4BT9w8D2qnrf0KYu+04y0c7YSXIa8Drg63Tab1VdX1VLq2oZg/9PP19Vb6XTfgGSvDDJGc8tAz8F3MPx7Hm2f6N8jL+NvpzBOyv+Dnj3bNczQz19AtgDPM3g1fxq4CXAJuD+dr9waP67W//3AT892/VPs+d/xuBH0K8CW9vt8l77Bn4E+Err9x7gP7XxLvs9qPdL+P/vlum2Xwbv4ru73bY9l0/Hs2f//IAkdehEviwjSZqC4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI69H8BUU8iDVMsWLAAAAAASUVORK5CYII=\n", 238 | "text/plain": [ 239 | "
    " 240 | ] 241 | }, 242 | "metadata": { 243 | "needs_background": "light" 244 | }, 245 | "output_type": "display_data" 246 | } 247 | ], 248 | "source": [ 249 | "# plot deformed shape at end of analysis (it may have returned to rest)\n", 250 | "# amplify the deformtions by 5\n", 251 | "eSEESminiPy.drawDeformedShape(5)" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": 4, 257 | "metadata": {}, 258 | "outputs": [ 259 | { 260 | "name": "stdout", 261 | "output_type": "stream", 262 | "text": [ 263 | "End of Run: pyEx1b.Portal2D.EQ.tcl.py\n" 264 | ] 265 | }, 266 | { 267 | "data": { 268 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEWCAYAAAC9qEq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9d5xdZ3Xv/V2nTx+NZjTqlmTL3ZZsy3LBZRwg2CbEgbwQuIR2IbwQ4E3ycim55IYkhJAeAjEYAgS43BQcAthgZFw0tiRX2Sq2mjXqZaTR9H7qc//Y5ezy7DMjaUaj8nw/n/OZc/Z+9t7PHo32Omut31qPKKUwGAwGg+FMEJvpCRgMBoPhwsEYHYPBYDCcMYzRMRgMBsMZwxgdg8FgMJwxjNExGAwGwxnDGB2DwWAwnDGM0TEYDAbDGcMYHYMhAhH5roj8+UzPYzKIiBKRS2Z6HtOBiCyx7y8x03MxnD7G6BjOC0Rkv4iMiciw5/VPExyTEpH/tI9VItJ2GtdvE5GSfd0hEdklIh84jXMdPo25fEpEXrXnsU9EPhXYr0RkxJ5rj4g8ISK/NcE5vcc4r0979l8pIg+JyIB93SdF5OYK53u/iKw/1Xs0nLsYo2M4n3iLUqrW8/r4JI5ZD/w2cGwKrn9UKVUL1AOfAf5ZRK48mRNM0bd5Ad4LzALuBj4uIu8MjFlhz/Uy4LvAP4nI5yc474rA7/ev7TlfDGwAXgGWAvOBnwCPicjqKbgfw3mEMTqG8xoR+bqI/Kfn81/Z3+xFKZVTSn1ZKbUeKEacollEHrO/vT8lIhdNdE1l8ROgD7hSRNIi8mUROWq/viwiaXs+bSJyWEQ+IyLHgH8DfgHM93gU80VktYg8KyL9ItIpIv8kIqmI6/+1UuplpVRBKbUL+Cnwuoix3Uqp/w18FPhDEZk90f1p+BPgWaXU55RSvUqpIaXUV4AfAH8VHCwiVwAPALfY99dvb68Skb8TkQO2x7ReRKpOYT6GsxhjdAznO58ErrXDObcDHwTepybfdPDdwBeAZmAz8H8mOkBEYiLyVqAR69v/54CbgZXACmA18EeeQ+YCTcBFWB7KPdhek/06imUU/8Cexy3A64HfncRcBLgd2DbB0J8CCXtuJ8sbgQc1238I3C4iGe9GpdQO4CNYhqpWKdVo7/pb4AbgVqzfx6eB0inMx3AWYxJzhvOJn4hIwfP5U0qpfxaR3wbWAEPAJ5RSJ5Mv+blS6mkAEfkcMCAii5RShzRj59vf2kvAQeA9SqldIvJu+7pd9nn+FPgG8L/s40rA55VSWXt/6MRKqZc8H/eLyDeAO4EvTzD/P8H6cvkvlQYppfIi0o31sI/iZRHxGoHfUko9imUIOzXjO4G4fc6jla4vIjHgvwM3K6WO2JufsfdVOtRwjmGMjuF84jeUUo8HNyqlXhCRvcAcrG/fJ4NrXJRSwyLSi5Wz0Bmdo0qphZrt84EDns8H7G0OJ5RS45UmISKXAn8PrAKqsf7vvjTBMR/H8pxudwxahbFJoAXorTDseqVUh2Z7NzBPs30eoOz9E9EMZIA9kxhrOIcx4TXDeY+IfAxIY33b/vQEw4Ms8pynlkl8a9dwFCt05rA4cI5gqE8X+vs6sBNYrpSqB/4nlmBAi4j8d+CzwOsn6dndBxSAFyYxNsjjwNs1298BPKeUymn2Be+xGxgHLj6F6xvOIYzRMZzX2B7Cn2Mp1N4DfFpEVnr2pz05h5SIZMQfz7lXRG6zk/ZfAJ6PCK1V4t+APxKRFhFpBv4YK8kexXFgtog0eLbVAYPAsIhcjpX412KH8/4CeKNSam+liYlIkz3+fuCvlFI9k7ojP38K3CoiX7TPVycinwA+AEQp4o4DCx0xhFKqBHwH+HtbOBEXkVscwYXhPEIpZV7mdc6/gP3AGDDsef0Y65v7Zz3jPoqV3E97jlOB1xJ733exVFaP2ed7GljqOdc24N32+zbgcMTcMsBXsHIcnfb7TKXjsB7APUA/VijuDixPZxhYB/wZsN4zXgGX2O/3AfnA7+KBwNgRe3svsBb4b4HrP1DhGOf1Zc/+q4GfYRnGoj3vewLnHMYK9QGkgJ/b1++2t1Vh5aiOAAP277sKWGJfPzHTf2fmdfovsf+xDQaDYUoQkYXAc1jiiG/P9HwMZxcmvGYwGKYUZeWQ7gHm2Xkwg8HFeDoGg8FgOGMYT8dgMBgMZwxTpzMBzc3NasmSJad07MjICDU1NVM7oSnAzOvkMPM6Ocy8To7zdV4vvfRSt1KqJbRjppUMZ/vrhhtuUKfK2rVrT/nY6cTM6+Qw8zo5zLxOjvN1XsBGpXmmmvCawWAwGM4YxugYDAaD4YxhjI7BYDAYzhjG6BgMBoPhjGGMjsFgMBjOGMboGAwGg+GMYYyOwWAwGM4YxugYDAbDOcqWQ/2s231ipqdxUhijYzAYDOcoH/r+Rt7z7RcYGMvP9FQmjTE6BoPBcI5yYshahbx7uOJq5GcVxugYDAbDOc6g8XQMBoPBoEMpxW9941m++fSeKTvn4Hhhys413RijYzAYDGeQ0VyR5/f18heP7Dyt8+QKJfd9JU+nezjLaO7sMUrG6BgMBsMZpHckNyXnGcsX3fdDFTydVX/+OHd/ed2UXHMqMEbHYDAYziD9o2WvRJ3Gys3jHqPjfe/FOf/B3tFTvs5UY4yOwWAwnEF6R8uezmhObywmw5jn2Kwn1Oalz2PgSqVTN3BTiTE6BoPBcAYZzZZDYf2noTobL3iNjt54eaXUw2dJXmdGjY6I3C0iu0SkQ0Q+q9kvIvIVe/9WEbl+omNF5O0isk1ESiKyyrN9iYiMichm+/XA9N+hwWAw+PHmYsamyNMZz+s9HW+u52yRVc+Y0RGROHA/cA9wJfAuEbkyMOweYLn9+jDw9Ukc+yrwNuBpzWX3KKVW2q+PTPEtGQwGw4SMTSIXA7D7+BDbjg5M6jxRno7XMJ0tXQtm0tNZDXQopfYqpXLAvwP3BcbcB3zfXnL7OaBRROZVOlYptUMptevM3YbBYDBMHn8uJtrovPVrz/Dmr6yP3J/1eDdROR2vVHr4LKnlSczgtRcAhzyfDwM3TWLMgkkeq2OpiGwCBoE/UkppdYQi8mEsz4rW1lba29snceoww8PDp3zsdGLmdXKYeZ0cZl6V2bGnLCR4fuMmFqfHtPMatnM/jz6+lnRCQvs3HisbkQOHjtLe3hMa89LR8pgXXtrE2MHJP/Kn6/c1k0Yn/FuEoLwiasxkjg3SCSxWSvWIyA3AT0TkKqXUYOhESn0T+CbAqlWrVFtb2wSn1tPe3s6pHjudmHmdHGZeJ4eZV2U2ZnfB7g4ALr3iahJdO0LzyhaKsGYNAFdefxOLmqpD5xnYfAQ2byYm0NjcQlvb9aExnS8chK2vWNe68mrarpo76XlO1+9rJsNrh4FFns8LgaOTHDOZY30opbJKqR77/UvAHuDSU5q5wWAwnCK+nE5EeK1vpJx/6RvVF5Pmi9b37Np0gmxEbmg0N7n80ZlkJo3Oi8ByEVkqIingncBDgTEPAe+1VWw3AwNKqc5JHutDRFpsAQIisgxLnLB3am/JYDAYKuMXEuhzMd6kv7eY1Eu+aB1bk06QK+oDPWOenM7ZYnRmLLymlCqIyMeBR4E48B2l1DYR+Yi9/wHgEeBeoAMYBT5Q6VgAEXkr8FWgBfi5iGxWSr0JuAP4MxEpAEXgI0qp3jN3xwaDwQD5QolETCiUlM8AefHJqiPGOEanKhWnUNQbL68xijJwZ5qZzOmglHoEy7B4tz3gea+Aj032WHv7j4Efa7b/CPjRaU7ZYDBcwHQOjLGho4ffvH4BIrrUMvx402GaatLceWmLdn+uWKI2k6B/NO9r2unFqzqLquVxjq1OxSlEeDrFUvn8F7ynYzAYDGcTf/hfrzC3PsPvvWF55Jj3f+dFdh0f4tqFDVzaWqcd8wf/sQWA/X/5Zu3+fLFETcoyOvkID8VrIKJa5RTstjbVyQT5kv48hZIiGRfyRXXWeDqmDY7BYLjgGc4W+LcXDvIPj79Wcdyu40MAHBsY1+6fTH+zXEFRnYoDVqhNh9fQRC1L4BxbVcHTKRQVqXiMZFwiRQtnGmN0DAbDBU9n/5j7Psr7AIjHrJDa8UG90ekeKfc6i8qz5IslqhyjEzHGG1KLCq/liyViAulELPI8xZIiEY+RisciQ3lnGmN0DAbDBU/3cFmWXKldjJPF8Y734u11NlLBWKRsQ5CP8IzGJyEkyBUVyXiMZDza6OSLlmghWcEwARzqHa24fyoxRsdgMFzw9Hg8lP6IuphSSbl5lKiQl9dYjGQjwmLFEqmEFfKKCq85hiYm0Tkdx3gl4+LOK0ixpIjHxDZM+jGjuQK3//VaPvXgFu3+qcYYHYPBcMHT51nNM6ouxpsTGY4wKN4eaFFGx/VQKngfTiisLpOs6MUkEzES8Vh0TqdkXStVwRty8lM/2Vyxvn7KMOo1g8FwweMNhfVFGJ2R7MRejM/TifJQCiU3LBZV1OmVQ0flYvLFEsm42Oq0CPVasUQ8JsQkOn90LCI/NV0Yo2MwGC54JqMW8273GiAvk/F0rPCaVPQ+crbqLJWIkYv0hiwvJhGLRYbXCiVFIi7EJdowReWnpgtjdAwGwwXPZOpivNsjw2uTWCvH8lBiFT2Uct6nskggFY+RqOjpKBIxIRGLkSvoDVOUcZwuTE7HYDBc8IzmCiRsOXS00Slo33vxejrRYbHJqc6Scakodc4XSyTilkigUk4nEaucP/Le72TqjE4XY3QMBsMFz2iuyOzaFOBvkhkcA1ZX5yhD4F1YLTIsVvTkdCK8j5yT90lE530cjykRq+DplGzDVGGM935HIu59KjFGx2AwXPCM5YrUZ5IkYhLp6TgGpT6TiFyp06twq+ShpOKVa2ccw5SOx8hFdBLw1ukUSgqrVaUfv2Raf60R3/IH01+rY4yOwWC44BnNFalOxalKxSONjuO51GWSkUZnMp6Oo15LVczpKNKJGMmERNbX5AvlOh1AKyYoFBXJWGWPabLLZ08VxugYDIZzmhf29bLpYN9pnWMsV6QqFac6FY/M15RrZ6IXTfOKB6IKP/NFZdXXxCrV6RTd+pooj6lQKpFMCIm49RjX5XUKJUsynYpLZFser5DgTLTKMUbHYDCc07zjG8/y1q89c1rnGM0XqErGSSei62J8RifK0ylU9nSUUuWcTsV8jSKZEFIVQ3DKzekA2k7TjmS6UnjN22Yn6r6mEmN0DAbDOYs3HBTloUyGsVyR6lSiYl1MdhLhtfF8sWwEtJ6HtS0Vt7yPaG/ICZ1VUK95ikwhwtOxJdOV2uB4z2+MjsFgMFTgxFC5Z1rvyKkXOTrhtUrhLGd7bSYRmfvIFqwF2pz3UeeYSDLtqNcqGUFvnQ7ou1oXSop4bALj5TnOhNcMBoOhAt4+aX0j0d2hJ2I0bwkJUolY5Ld9b3gtX1QUNYn78XyRqmQ8stuAs82rOtNeyy4OnahOJxkXkjHrMa7rWF0s2fU+icqiBQcjJDAYDIYKeJch6IvoDj0ZRm1PJz0Jo1OfSfo+e8kWSpbqLC7a/Y7XkkxM7H1M7Ok4jUPtcJ7mXIWiJZmuLFooUWOv73PeezoicreI7BKRDhH5rGa/iMhX7P1bReT6iY4VkbeLyDYRKYnIqsD5/tAev0tE3jS9d2cwGKYbr9Hpr7AOTiWKJUWuULI8lESF8FqxSDwmVCWtB7TOK8gWimQqnMfxKlITeR8F5eZ0ovI+OafLtO3pFCKEBOVQXrRXVSkkONXMmNERkThwP3APcCXwLhG5MjDsHmC5/fow8PVJHPsq8Dbg6cD1rgTeCVwF3A18zT6PwWA4Rxn0GJqoXmcT4RiHTNLydCrldFLxGOmk9djUPaDH846nExFem2ROx1m2YKKcTjImbp2OVrhgd5lOJqRC49AStemE+366mUlPZzXQoZTaq5TKAf8O3BcYcx/wfWXxHNAoIvMqHauU2qGU2qW53n3AvyulskqpfUCHfR6DwXCOMjaJBpsT4TyMEzGprF4rWHmWdML2dDTV+9lC0crFRHo61rZyM0+995EtOMsWWGO03QaK1lLUrqcToZZzerhVWj671g4Znomczkx2mV4AHPJ8PgzcNIkxCyZ5rO56z2nOFUJEPozlWdHa2kp7e/sEp9YzPDx8ysdOJ2ZeJ4eZ18lxJue1bW85j/Pqztdoz+6PHBs1r8Gs9bDev3cPff1FBoZK2nH7D2WhVGTPazsBWPfscyyo9X9v7+kdIxGDQlZxuPNY6DwHBq2H+q4d2+nsLzGeLzA8nA+NGxkbp6frODJkeTGPr20nGRPfmGy+wNEjh9k+Zi2+9vzGjfR0+IM3Y+NZjnd2Mp4WSgqeXLuWmPjPMzA8SqpobXt1xy5aR/ZW/H2dLjNpdESzLWiqo8ZM5thTuZ61UalvAt8EWLVqlWpra5vg1Hra29s51WOnEzOvk8PM6+Q4k/N6ObcLXusAYP6iJbS1XXrS8+ocGIO1T3LVFZeRP9jP3pEu7biHjm+mdriX6669Era8xIrrbuDqBQ2+MV/etoG6TAI1lKWxqZq2Nl9amc2H+uGZDVy34hrkYD+/2N9BTU1N6Hry9C+5aNF8Fs6qgt07ueV1t7shMAf12CMsvWgxN1zSDC89z7UrrmP10ib/edofZfGihbTWZ6BjJ7fedgeZpN8wJZ59gkVzG9nWc4yLll5M2+3LKv6+TpeZNDqHgUWezwuB4HqpUWNSkzj2VK5nMBjOIUZzRWpScQol5Qu1nQx5u9OzqxaL6jZQtPI1aVdIoEvcl1VnunxNseSE8qzwmlKgU027dTp24WeuUIJ08FpOeC26TqdYcopDrTG5YilkdC4YIQHwIrBcRJaKSAoryf9QYMxDwHttFdvNwIBSqnOSxwZ5CHiniKRFZCmWOOGFqbwhg8FwZhnLW1LnqlRcm2OZDK6MOS6V1WtuTscREoSNnLcDgC435ORwEjFPzzSN0XHk0Ck7fxQ0YKWSQinrPEl7PtrrlRRx+75AL6v2CgnOhNGZMU9HKVUQkY8DjwJx4DtKqW0i8hF7/wPAI8C9WEn/UeADlY4FEJG3Al8FWoCfi8hmpdSb7HP/ENgOFICPKaWmP2tmMBimjbG8JVEuFJWvW/LJ4Cb3J1we2vZ0EtHqNbe+Jh5zPSgvTkFp3ON9BC/n9GdLJcodpIOG0OmzFo+Vi0N1QoJiye4ybRs4nXDBLUStYHCnkhldrlop9QiWYfFue8DzXgEfm+yx9vYfAz+OOOaLwBdPY8oGg+EswukAUIifRnjN0yUgZavFSiVFLJC4z01CveY22EzEGNXUDTkdCLxhsaAd8PVni/BiHONleUzO0gb+MUopdz2dcj84vfeVjAvpeMx0JDAYDIZKOD3TMsn46RudRLkGR+ftOB5BuU5HH16zlhLQew0FjzzbCa8F2+l4+7P5cjre8+iMV+ByBY9hqmS8iiVFKh4nnTwzno4xOgaD4ZzFCa9VJWOnURzqCAnEfchHNetMVTAEYAsJYrHIbgNlY+EJrwU8Ha/nFWWYip7cUDym93SccFsiHnPHBM9TNrjWvZ/vQgKDwWA4LcbyVvuaqlR8SnI6Tr5G2zetUHKLOiF6pc5EPNrTKYfFykWdUeG1ZDw6LObN6bjnCcynUPJ4VRF5H8fIWJ0WotcSmkqM0TEYDOcs4zkrp1M1FeE1W0gAlcJrcTeHEtVFupL02jkm7svF+Mc4hiEeKy9bEPJ0PKGzeMRy1UWPV5WYwNNxOlqf7x0JDAaD4bRwJNP5opyG0fHX6UAFTyceKy8lENF2xsnX6Dyhos+Lsc4THOZ6KPFy6Cx4LW/oLNqghA1TcHXRnMfTScRFq4CbaozRMRgM5yxOTicRk1Ou0yl/25eyMk3zjd9dvyYR7ekU7LqYRFHcQtDgfvB7OkUVYVDseh/ruGj1WjmnE+XpVDJM/vyRbk2eqcYYHYPBcM7ihNcK8dPxdCZWi0FZDl3Oj+jVaclYjFysFLl8NDgdCSZQnXm7DUTka7xy6GIw71MM532Cc3I9nUSMZEwim4JOJcboGAyGcxbL04mRL556l2nfap4Vwmv5YslnLIIhr1JJUVKOMi0qvFYOnUULCSYWABROxtPxelVBebbP0zkz4TUjJDAYDOckxZKiUFJkkvGKa9NMRM6T00lG5FDAevAn44KI5V1EKcqStkQ5alE1CBZ1hq8THBMM1ZXFBpXUa2HJdDCn49ynuwaQZs5TjfF0DAbDOYk3NFRSyl13RgKt+yci70mmO56O3mCU3LoZnSfjMxYxiZRUg9MGp7JkOuGTTOu9mKTHoESF4BKeVjnFiPBa0g7lGU/HYDAYIvAqr5wHeFTftEp4CyTLHZv9D19lGzXHE0rEJbJLgON9KGWF3HRjkt7kvgoalHIn6kSEkECb06lgBKMMUzm0aCnuTtVbPBmM0TEYDOck2aKVw3FqTEAfFpsIX07HPU+EWszn6QRDXv78CITDWUVvo06320BwPn6PyTp3tEGJxQQRnafj8Zgi+rM59+mIFnTe2VRjjI7BYDgn8YbXKrXun/A8mhxK1APc8RiScQl1kfY+5KPbzmjyNYHnvLcTddR8ioH5JGJhibbPY4qYj69uKB4L7Z8OTE7HYDCck3jDa4W49bA81fBaKh6zBQJ6T8fbmgasB3k4KW97OrFoqbPT9dl7rbCn4/U+9C13CgHPK67xUvwek14Fl/fmmDTiiOnAeDoGg+Gs5V3ffI5PPbhFu895YHo9nVPpHZYvlFxj4vwMh7PKXoNzzciQV7xCWMw2Ota5onI6uvCaPqeTiJWNYFAk4PWG4hHhNa8gwUimDQbDBU3X4DjP7u3hwZcOa4sW/UKC8nLMJ0u+WHJVa1GJ+3KrnLLBiPKG4t5VQTV5H9dQRITXtLmYCAPnGDCdp3PSRaaaPNV0cEpGR0TmTvVEDAaDwcvurmH3/cHe0dD+nFZIcGo5HSepH1WnU+6HVhYSRI3xKdM0hiDh5oX04TV/1wJ9eM3bzNMaKxr1mrfItLLCLRmL2eG1s9fT+faUzsJgMBgCdA6Mu++PD2ZD+7NaIcGpqddSHmPibPPiVYtZ4zSejk6irAl5OYYreuXQcMPPcHitbJgAbTGqv94nqrOB7enYQoIz0QbnlIyOUurNUz0Rg8Fg8HJ8sGx0ekbCRsfXN8yt0zn5VjhOI08gMpzllVVb48KhKJ30WhfOcnM6UcWhOsl0hcJP52e0rDoWmdNxBRK2Uu6safgpItcDtwEK2KCUenlaZ2UwGC54ekdy7vue4Vxov7Y49BQ9nWTQ06ngNVjjJiuZDntDyZhftBC5Vo6tqNN6McGcTlwTXtMUkEZ1UYjbXQvOCk9HRP4Y+B4wG2gG/kVE/mgqLi4id4vILhHpEJHPavaLiHzF3r/VNn4VjxWRJhF5TER22z9n2duXiMiYiGy2Xw9MxT0YDIbpYXi8QHNtGvAbIAdHNJD2htdOJadTKOd0olRn+aLfs9D1KfP3Q4tuXxP3yK4BgnYyPwkvJpzTCbfl8a/d43SijrgvW71W0nRRmGomE157F3CjUurzSqnPAzcD7z7dC4tIHLgfuAe4EniXiFwZGHYPsNx+fRj4+iSO/SzwhFJqOfCE/dlhj1Jqpf36yOneg8FgmD6GswUaqhJUp+KMZAuh/d6+YZWWJJgIr3otKodSDORQknGNZNorJHBFAoGHfEl5zqFf2sArmXavNUGxalwrJPBIpt2Gn9Hy7Cgvb6qZjNHZD2Q8n9PAnim49mqgQym1VymVA/4duC8w5j7g+8riOaBRROZNcOx9WJ4Z9s/fmIK5GgyGM8xwtkBtJklNOsFILtropBKxigurDY7n+R8PbqGjT5/vsYQE1vEiYoXOogotK0mmNbmYcDudsmTaCZ0Fczr5ot/AxTXr3Lgtd2JlDy0yX+MJ04XCfZrmotNdqzOZnE4W2CYij2HldN4IrBeRrwAopf6/U7z2AuCQ5/Nh4KZJjFkwwbGtSqlOe26dIjLHM26piGwCBoE/Ukqt001MRD6M5VnR2tpKe3v7SdxWmeHh4VM+djox8zo5zLxOjqma15GuMVJxiBUVew8epb2917d/28E8ABuff45RO0a1+ZVtVPXs8o3beKzAf27Ockm94pJZ4Xl1944RF9w5C4p9+w/Q3n7MHbOr1zJY2199BTrj9PeOMzBU8t3npuOWYdyy6WWG89Z8Nr70MgN74+6YY8fHGR9T7nExFOPZnO88r+2z7uvZZ9aTSQiqmOfg4SO0t3eX57PfGbOB6qQwNjrG8eKo7zzbD1hjnn/2WerTQgzFvv0HfffVsccKW25Y9zT7D1jzb396HTVJmba/r8kYnR/bL4epmoWu/3jQxEaNmcyxQTqBxUqpHhG5AfiJiFyllBoMnUipbwLfBFi1apVqa2ub4NR62tvbOdVjpxMzr4kZyxWpSlkPi7NpXl7O93l9adPTLGquJtY/Rk1dhra2G337O9bthe07aLvzNgZG87BuLZdcehltqxb5xm1b2wHsIqfi2nn9w7YNNFYlaWtbDUC6/VHmzl9IW9tV7phkRze88Dw3XLeSm5bN5ifHNnEs1+873+grnbDpZW6+6UYrB7Xxea5ZsZKbl812x3x//4vkhsZpa7vdutbaR4kl8J1nm+qAXbtou/MOMsk4Vc88zpzWObS1XeuO2fXUHti5k7Y7b6c6laDx1fU01qTcewDYu34f7NjOnbffRkN1ktSTa5i/YCFtbeUsxku5XcieDn7lrrs49Mx+2LmNm265leba9LT9fU1odJRSTqgKOym/SCm1dQqufRjw/nUsBI5OckyqwrHHRWSe7eXMA7rs+8hieW0opV4SkT3ApcDGKbgXw3nEV5/Yzd899hpPfvJOlrXUzvR0LliGswVq00lqUnmGdTmdYlm9lnaFBOHvnsfsep+RvP57qdUGp5xp0HWQ9ibcnZ/RtTOVV/x09oGdi6nQBsf6qREtTCan46nBccbockNuiC5CTTfVTEa91i4i9SLSBGzBUq/9/RRc+0VguYgsFZEU8E7gocCYh4D32iq2m4EBO3RW6diHgPfZ798H/NS+jxZbgICILMMSJ+ydgsJ9kJYAACAASURBVPswnGf86OXDADz92okZnsmFzdB4nrpMgtp0oqKQwC+ZDudtBsasMFOk0SmWSCXKwROtHDrQBicZj7ndqctjvOvgRPU6K+d0nPOF63TKUmd3TIVOAs41Ky1p7cxZ15bHvU5Es9OpZjLhtQal1KCIfAj4F6XU50XktD0dpVRBRD4OPArEge8opbaJyEfs/Q8AjwD3Ah3AKPCBSsfap/5L4Ici8kHgIPB2e/sdwJ+JSAEoAh9RSvmDxAYD5Ur3/T3h1iuGM4NSyvZ0EpaQIMLoJOPWejLJCp7O4LhldMaL/poch+A2vWfhb/iZjEfXzniT8rqlDeIeo5OIxbTJ/YTdiRocIUHQGyohArEKnk6x6Dc6em9IlcUREYWxU81kjE7CDlO9A/jcVF5cKfUIlmHxbnvA814BH5vssfb2HuD1mu0/An50mlM2nOeUSsqthD/SPzbDs7lwGc+XKCmozVhGZzgb9mByhXL7GlcyrfmW7ng6znun9schX/SHvJKabsvBhp86yXTeI5l2Jcqa+pqqZFlYkNB4OkWPIXCvFWGYvOfJBry8fCAEl9D0VisUy+eJalI61UxGMv1nWB5Fh1LqRTs0tXtaZ2UwzBD9Y3mcL4NHjdGZMYaylqGoSSeoTUfU6RRLblGo22VaU6cz6DE6/aP50P5cILyma3Hjre63xkjIwHkl08mIOh3v0gbWvMMLpwWNoN7T8Z9H6+nYoTzXY9J2LSj3gotqdjrVTGh0lFIPKqWuVUr9rv15r1LqN6d1VgbDDNEzbPX4aqhKRhqdQrHEF362nQ0d3dr9htNneNwyMnV2eG0sXww9MHMeAYBbX6P1dArMqbO8m1FNvU84vKb3CKDcJidVSUjg8XQqLW3gXCvs6ZR8nk4iHtPWDXkNk26p6UIglJfUdC3wL7WgFz9MNZFGR0Q+bf/8qt2Kxvea1lkZDDNEj91u5eoF9fSN5rUPqfUd3Xx7/T7e/a3nUWp6/4NeqDhqtdq0JSQAQgWiXk8HLEMQVRw6t8Gqbx/LhcN0WvVapEEpK8pKyu/J6JYS0HeZ9huUUHFoIHSWjFiK2nueyHxNyBsKd1oI5nRmsiPBDvvnRuAlzctgOO9wQjGXtdYDZbmtl21Hy6Vdh/vO7xDctqMDvPkr63hx/5nV3DiejpPTARgN5HVyBb/RSSZiofDaeL5IrlCitd42OnmN0fGspwPWw1fnEUBZSOA+oD3Gyb/4WnR4LZg/CrXB0YTXwmv3BHM6EV5MvPJ5fG15ImTeU02kkEAp9bD983tRYwyG840h+2G3vNWqzzk2GDY6XoHBtqMDLGqq9u0fzxd533de4PqLZvGZuy+fxtlOP9/dsJ9tRwf5h8de419/5+Yzdl2vp+Mk3oMGwyskAMvTCcqYnS8Rc+v1no5SyvKY4v4wVNBjCgoJvIvGZez55T2tadw2OBUkymB5RVkVNASlUN4neO/BnI52Ebegx6TJH3kl3GX12gwKCUTkfSLysoiM2K+NIvLeaZ2RwTCDDNny2uVzLKNzXGd0+sa4aLZlaA71hj2dZ/f28Py+Xr7evkdb1OjlteND3L+2g3HNN/Cp4KUDfXz+p6+ecu3FK0cGANh0sP+MtL13cH5vdZmE+1APGoxcseQWhYJdOxPwdAbtLxGt9VZOJ/jw9vYnc0jEdZ5FsDg0HD4rFBUxW8ZcXtogWqLsnC+ofSiWlGvcQN97TSs2qBA6K4+JlnAn3fDazOV03gv8PvBJYD5Wv7NPA79nDI/hfMV5SF3iGp3w4mFH+8e4fG4d9ZkEh/rCtTxbDw143vdXvN4n/nUTf/PoLr69ft/pTDuSD37vRb737AGe2nVqha6HekeZXZNiLF/ktePDEx8wRThGpyadcNsRaT0db04nEfZQHGPeVOMICQKyYsc7SVTO6eQ9yjRnDPg9Gb8STB+qKoa8D11xaFDhFjaCIbFBTDTLFmjEBpru2eVlHZw5z5yn87vAW5VSa5VSA0qpfqXUk8Bv2vsMhvOOofE8mWSMxuoUtelEKKejlOJo/xgLGqtZOKtam9M50DOCrVJlT/dI5LUO9Y6y6/gQwCkbhUoUiiVXIux4LCfDWK7ISK7IG65oBWDr4coGdCpxwpze8Fp2IqOjERI4RmdWddL32cHpPOAXEkysXnO9gqJfSOAWYkZ0JLA8C6+HEhYSFErhYtWJpNdx7Xo6QRWcztMp+WTgwXuaDioZnXql1P7gRntb/XRNyGCYSYbGC9RnrAdUa306FF4by1sP4pa6NAtnVXGoN+zpHOob5cYlTVQl4+w7EW10th21DMHKRY1s7xycciXcXo/B23NC76WM5gr8cOMhrUqv25aPr1zcSCImHNTc63QxnC2QjAvpRCw6p1P053SSCQmF15xjGqtTQNjTKfdv83cJ0NXpiHhb04S9Am8OJWqlzmKp5AudJWNCMJoV9HTicQnlhoIeky6nkw/lfTTGq1gO5ZWX2J45T6eSLOf8luwYLliGxgvUZSx9TWt9JmR0nG/gDVVJ5jdW0alRt/WM5GipS7O0uYZ93dEhqe2dQ8QE3nhlK8PZgrZw8XTY0Wmp7JpqUtrcFMA/PrGbT//nVu5f2xHa58jH59SlmdeYiVTqPbrtGLf/9ZM8seP4FM0cRuwWOCJCJmk9pnThtaDUOViwOZ63PtemE8RFl9MpdxFwSGg6EujUYuBXr3nrfaJW6gx6KIkJCjbBkUzrcjHBnE64DU5QMq0Lr3mbhsIM1ukAV9hLRAdfrwDntiTHYIhgcDxPne3pzK3PhHI6jhqqvipBS12a4WwhFLIZGM0zqzrJ0uaaiv3bdnYOsqS5xs0f6fJDlSiUFJ0D0d//DtjXvnHJLG1uCuDx7ZahaNeE95xC2ebaNAsaqyLbAn358d0c6h3jL3+xU+utPf3aCb7/7P5KtxJieLxArW38KwkJJhteyyRjpOPhc+jDa7qlqEt+qbOmer9QLCfuo1bqLBQ1UmdNeC0RDJ1pcjrJYE5nAnm2roA07wnluXmoGewyfQXwFs3r17CWiDYYzjsGxwvUV9nhtYYMXUPjlDwPUqd5ZF0myewaK2TjeARg5Xz6x/I0VqWY25Dh2MB4ZNjsUN8YS2fXsGhWtBKuEj/YnuOWLz3Jywf79OfvHWVOXZrFTdUcHwzP42j/GHtOjJCMC7u7hikFHjZOeG12bYoFjdUc0Xg6A6N5dh4bZEFjFbu7htly2J87Ukrx3u+8wB//dBtdAW9rYCzPV5/YzYmhsEEcyhaoSVlGxxESBI27Tkigq9MBy3Cl4qI1XOAXEiQ0bWfyxXA/NGt7MLxW7pCQiCzGDHox/nvXCwnCxarBEJwuJBjM6YQl0yqU05kxIYFS6kCl17TOymCYIZx2+gCtdWnyRcVw2aa46rb6TMJtHOl4BGA9LIslRWN1krn1GcbyRYYiZNPHBsaY15hhUVMVcHKejlKKZzqt8z6ytVM75lDfKIuaqmmtz5AtlNy5O+zuskJ/91w9j1yhFKpJ6rZvfHZNmgWzqjg+NB56+G080ItS8Lk3XwHAM3v8rYG8IblNASXf19v38HePvcbfP+Zf6RMsT8f5d6hUpxOUTAeT4OO2EUo7nk5QSKDL6WjOE0ru64QEmi4BOs8i6OmEhQR+yXSUsZgopxMeExYbeBVu5Y4EM9x7zWA4W1BKTftaH5aQwHrYOa1T+rLla5bDa0lm19qejscqDdh5mYaqJHPs2pDjmrzPeL5I32ieeQ1V1GWS1GUSdJ5Eg9ETw1mcL+3bO0OL3wKW57RoVhUtdt+xoKexzxYX3HV5C0BIKNAznKMmFacqFaelLo1S0Dea841xZNS3L2+2vJ2ArNortAiKLpwckC605yxrAN7wmv/fPigk0IXXsgFPJ1IyHVCv6ZYt8D7AUzohQTB0FvCYSiWFUoS8GJ3RifvCYuH7mox6LR8ICepzOuUwXfIskEwbDJOiUCzxLxv2hb7lTiVKKT7yg5dY/cXH6eiavnqRwbFyTsdpndI37g2vlYsWHU+n2+PpOGKAxuqUWwWv62rgSLGdMfMaMtpxYD08gqGxg3a+Zn5DRqt8yxdLdA6MuZ4OhGuO9nWPUJdOcMPiJt85HXpGsjTbBqvJVn/1jviNzoGeEZprU9RlkixuqmZ/j1+t580DeY3OiaEsu7uGaa1P0zkw7vMWwTY69r9DPCakEuGq/Mm2wQHIJOKk4xrJtNboxMgHzhNulRNevyfUODTQAUBbiKpRlBVLJTdnZI3RLeJWCuVrlMIXIg33eavcFPRMraczKaMjIlUictm0zsRwzvK9Zw/wpw9v57e/9TwHeqIlwqdDR9cwj247Tt9oni/8bPu0XCNXKJEtlMKejtfoOJ5OxuPpeB7E/WPW+8bqpHu8tsDUFgDMs8e01me0fd7W7+7mqs8/GlKXddl5kDsvm0P/aD5ksI72j1FSsGhWNc3uPANGp2eUJc01zG/MENdIonuGc27eqqlGb3T294xw0ewaAC6aXR0yXI5q7uKWGt/5dx6zvLO3Xb8QIFR46vV0wAqxTZjTiVCvxcTyKNLxcJfpnEZIkIhLWACgyY+AP6cTesjHJJDz8S+P4JxnouLQuGY+um4D1jW8RnByrXLKtUfhgtfpYDLLVb8F2AyssT+vFJHgstKG85i9J4a1D0SHBzceYl5DBgX8ZNPRaZmDkyz/bzct5qnXTvDsnp4pv8aQRyQA0FKbJibQl1WeMQVSiRiZZJzqVIJMMub7lu54OrOqkx4Po4KnYxudufVhT+dw3yiffHAzuUKJ/9h4yLfPSb7fevFsAPZ0+Y29I0pY2FTF7Bon9+Q3GCeGsrTWZ0jEY7TUpjU5nSyzbW/OMTp9I35Z94GeUbcl0KKmanpGcox55FjdwznqMgmWz6nzG51Oqyj211fMB6x2QF68OR2w1Gdeo1MqKQolRSpeXhAtpanTGc8XySTjbmI/G/JgSu6xDsmYpst0RHjNJ5kuhWXMOk8n3A/NdymfIYicjyanA/62O8GcTjymyVV5i0PPAsm0w58Aq4F+AKXUZmDJ9E3JcDbx3N4e3vD3T/HGf3hKu75M58AYO48N8cHblnLD4lms2XZsWuax+VA/DVVJ/vjXrqS5NsW31+895XN1dA1xzz+uC4UDhzyhM7DCI8216UB4Le8WjwLMqk7RN+pdJMx6sDdUpcgk4zRUJbVGx6nvmddQZf/McGIo6z5ciiXFx/91E6O5Im9ZMZ9DvWOucg4sgxETWLVkFgB7A/VAjihhcVM1DVVJ4jEJeTo9w1nXC5rbEK5J6h7Ouftn1Vj33OvJ6Yzni3QOjLPE4+kAdI+Vf189Izmaa9PMb6ziaH9ZQbfz2BBz6tJuO6HdXWWjUyiWGMsXXfUaWJ6ON7zmFnWGhAQBo1MoujmhZIxIoxP0dEqBUFU4dBb2LApFf1gsGej8HFw+GmzDFPJ0SiFvKDgf3SJu1nz0bXmc6+qWxnZyOuU6nZnP6RSUUiffQ8NwTrDnxDB/8+jOyIr1Lz2yg2Q8xtB4ga8+GV4wdovdZ+z6i2Zx1+Vz2NE5SF8gBDMVbDrYz4pFjWSScd563QKeeu3EhM00HQrFEut2n3CT/F99soMdnYN8+XH//TjLGjdUlY3K3IaMz9MZHMu74Tewcjf9o+GVKZ1zzI0Imx0bGKexOunKgVsbMpSUJRCw7rePzYf6+aM3X8G9V88FwjmR+pQwtz5DTSrOnkCe62DvKImYMK+hilhMaKpJ+TydUknRO5JzQ4Rz6zO+Qldrf9b1kmZVO55OzncNKBsbx4D2jpcfWj3DWZpqUsxvtJR8g2PWv9nOY4NcNrcOEWFZSy17PZ0bRuwlDGp9nk7cJ3d2jIdX5ZXSqdfyJTIJZ+E1zZLOETkd8IeZwl2dNZLpoqbBps8TssNrQcm0wpeTCzUF1YbOwjkdZ57l+QSVcpqcjue+3IXwzgL12qsi8t+AuIgsF5GvAs9MxcVF5G4R2SUiHSLyWc1+sReN67ALU6+f6FgRaRKRx0Rkt/1zlmffH9rjd4nIm6biHs52iiUVWSeSLRR577df4P61e3jPt553H8oOHV1DbDk8wGfuvpx337SYH718JGRQXjnSTyImXDmvntVLrYR0cO0VpRSPbT8+6TVZxvNF33/WkWyB144PsXJRIwCvv6KVfFGxfvfk+pX9xSM7ec+3X+CtX9/A5kP9PLzFCgHuOOpPwA94lGkOc+sz9HseooPjBeqqvJ5O0vVuwFruuiYVd7+Bz6lPc1xTh3J8cJzWuoz72cntOAaqfdcJ4jHh7qvnMccO03V5ckNdQ+M0pKX80O4OhtdGWTiryn2gzK5J+XJPg+N5CiXlGpW5DRmfys5ZttvxdJLxGHWZhC+ns9++ppPTmafJgTl5ISeM2Dk4RqFYYnfXMJfPrQNgWUuNz+g4S1XXeXM6Kb+n4zzs05MQEmRSHk8nH1TA6ZL74TBTPlhfo+syHeqZ5n/IFzXhNd26O7oC0uCYUE7HbWETHBP0dCYSJIRDeVPNZIzOJ4CrgCzwb8AgVvfp00JE4sD9wD1YxabvEpFg0ek9wHL79WHg65M49rPAE0qp5cAT9mfs/e+07+Vu4Gv2ec5bfvFKJ1d//lF+/Z82aL9tP7GjiyP9Y/z+G5ZzdGCcb2/wdzp+aEsnMYFfu3Ye771lCblCiQdf8ucWth4e4NLWOjLJONcubCCViPHCPr9xefClw/zO9zfyjm88G9oX5NjAOHf89Vru/co6N+m79fAAJQXX2UbnhotmUZWMTyqvM5wt8K8vHGD5nFqO9I3xG/dvIBGP8bttFzOULbgJeSgXfgY9nV7PQ3Ro3O/pWOE1j9EZzbt9vsDKC3VrjE7PSI7muvI4J//j/Ds9v6+Haxc20FCVdNvye8Nf3cM5GlLWQyf40AbL6HjX+Zldm/LlnhwDNNsTXhvKFlzvscctDE27xzTVpHxGZ59tdJY2W0anpS6NCL7fV89Ijtm1adcL6hwYZ3/PKLlCicvnWi0clzXXcGxwnBH72jpPJygkcIxLMLyWCyj9LE+nbHTCDT+dOp2wMs2/bEE4dAbh4tBKLW4KmvCaNkynMRYQ7mgdFAmA3zAFa4J0nQ3C7X3CzU6nmshF3ByUUqPA5+zXVLIa6FBK7QUQkX8H7gO80qT7gO8r66/oORFpFJF5WDmlqGPvA9rs478HtAOfsbf/u1IqC+wTkQ57Ds9O8X0B8OqRAd6/ZgTW/PyUjn//rUtYMrua6lSCRFwYz5c42j9GUSluu6SZm5Y2ERPhQO8oT+7s4pmObpa31vGOVQtZMKuKhzYf5Q//6xWWNtew98QwH/0/L/EfH77F95/0P186zNz6DJ/4leVsPzrIdzfs48N3LKM2nUApxc+2HOXmZbOZU59hTn2G1Uua+MFzB/md25chIiil2Hp4gHuvscI/6USclYsafR7NaK7A3zy6i0vm1JItFPnkg5tZ83t3uKtBesmXLFl011CWrqEsP9vSyTtuXMRmu6jQ8XSS8RjXX9TIC/v1lfhefrntGOP5El962zX0j+b5p7Ud/PbNFzGvIcPX2vewp2vYfeDrwmut9RlGC1b7lKpUnMGxPPPtByhYKjVveG1gLEdjdfn45ro03cNZlFKIlP9zdw9nWbGw0f3slVcrpdh5bIj7VlpJ9jl1YRXcwFieBbY9uLillp9uPurOEaxuB3cvaHDHz65Js6WvXJzZ4yn8BL+ndcmcWjfM5xgl615T9I+V73VftyWXdn5fSVuQ0DduPdidEF1zbco9f2d/2bhc5no6te75rl7QwLDt6QTVa96cls7oOF6PN0+RLRTd3m3JSuE1r5BAs2xzMHSmK6QMr3ETCxSPKt+xUK6N8S4GF2yDo/O8gt6QTr1W1HQ2CHctCHpw4WanU02k0RGRh4FIk6eU+vXTvPYCwPu1+TBw0yTGLJjg2FalVKc9x04RmeM513Oac4UQkQ9jeVa0trbS3t4+uTvy8Lcbo9Vek+G7z+wPzwuIiVXJnYlb/zjOCr6zM0L7ri4eeGoPcYGiguWNMf7gmhLbehLcv7mf3//247zjshTDw8P8eM2TtO8a496lSdY9/RSr64v8crzAX//HWn5lcZI9/UX2do9zR2vevf9r6/K8sD/Ht3/6JJc0xjk+UmJgLE965Lg7plVy/PxInjWPryWTENbsy3NiKMeHr7SSoV96YZxPfOsJ3ntVOnR///uVETZ3jvKxlWl+9FqObz/5KnNG9vD4pnFaq4UtL5ajui3keKYzz88fW0tNUkLncvjWi2M0VwlD+7aQEOH3rwKGOug6Yf3HemTDJnKHrYfmpr3Wg3jzi8+Sth8M/UetB91PH3uKuTUxugdHGU5n3fsdPJGjbzTP2rVrEREOdI6RjOPuHzieJ1soseaJdqo8D7bj/aOM1+bccUopEgIvvrqb+sF9DI0XkMFjtLdb3lxdCjbt3Et74ggAPUOjLEkr2tvbGe+yHuIPrmlncX2csYKVryn0dbrHj/Vn6RoouNd78Zh1zL6dWykcidHZa/0hPfr08xxujvO83e1g3/at5A5ZD6XS2DiHBpV7jk0dYzQl8f3/qInlOTFSpL29ncGcoqSgt/MgO14+igDPbd2Jwvo7PrrzZbp3Cz1D1r/Fz55+ke55CbaesK792vatlI5aD+Kh/nF6h0rutY7Yx+zetZP2AUtOfnC/9W/1xNqnyNi/6+PdY8TFmqMq5MgWxP23Ath20Drmxeeeoz5tbdt7yNq2bv0GZmWse+/pGyOTKN/rcM4WROx8jfZxK0IwMDRKTWnEHTM+MkZXofz56LA15107y3Peb8/5qafXU2t7rtlcnmNHj9Debgld9tpzfHrdehrt+YyOZ+k6doz2duuL1+4j1pgNzzzLnOrymBPHy2MOHcxRUvDk2rXE7PvPF0ocOXSQ9nZLAFQs5Dl0+Cjt7T0MDw+f0rNvIip5On9r/3wbMBf4gf35XcD+Kbi27kkRNHJRYyZz7Klcz9qo1DeBbwKsWrVKtbW1TXDqMLfeVuJbP13LdStXhvYVS4qjA2Ok7Di58+3UIRWPsXJRIwNjecbyRQpFRSoRY05dmlyxxFO7TvDs3h5iIlw2t46bl81maXMNXUPjPLT5KD0jOa5fPIu7LmshEY9xL3A8voWfbj7C/3jbrRzctpGXc/MoqQ4+/Zu3sXh2NXcqxY8PrueFXsWfvud21vzXK1Qlj/LJt7e5EuLrx/N8f/vjdCbm8aG2K/nhxkPAVt75xpvcUEls/gke3vsCNRddzesubuZPXmxn1UU1/M5bbwXgRGo731q/j1+75Sq3RgMsddq6NRt4/61L+NSvX0Xsl7u4f20HK268lUMbnubWS2fT1nZd+Xe0sJufdDxP9aKraLt8Djp2Hx9i+5qn+eQbL+Wuu5b79iml+J8bHiU9ewFtbVZk9tmxHaT27OdXf6XNfSgldnfzz688z5IrVnDzstlkn/gFly9bTFub1falI76Xh/fu4Pqbb6OhKsmfv/wUS1vraGuz0o+99Yf5j11buHzlajcMNZ4vMr5mDSsuv5i2tkvcOc178UmSDbNoWroAnnqRt9x+g5snW7hlHbHaDG1tN6KUYuzRR2ioStHW1saco4N8bcs6mpZcQdu1860lEx5fT9uN19B2zTwAXi3t5rEDr3HLbbeTTsQ59NwB2Pwqb7rzVubUZ1jSPcJfvtBO69LLaLthIfs27IMt27n7rte5IbYfH9vE5kP9OP8fPrXhce66rIW2thXuPfzboY28cqCLtrY2qxbnyXXcet3VvP7aebQ+9wTpxmb6RvMsaxnhV19/p/v7+ONn1lDVchFtbcsZ3noUXtrEHbes5tJWyxt6uGsLR/b2uNd+9cgAbFjPdddeQ9uV1no/+5P7YNd2br71dW6I8+9eWU9LXZq2thv52Z5fAnluvf0O0nbIbc/6fbB9O3fecZvrsZ3YeAi2bWXV6pvdEOXfvbKe5toUbW2rAVte/+QvWbLsYtruWAZAZmM78+Y2uH+n/7h9A7XpBG1t1vfhnccGYf06Vlx9lfvvcui5A7DzVVbfcovr0aonfsGSi8p/Y8deOAjbX2H1zbcwv9HysuNP/5LFi+bT1nY1AAObj8Arm1l142rXc4yte4xFC+fS1naN+zdAx2vcdvudpBIxq0PCmke4eNkS2touBaDm2SdoaW2mrW0F7e3tnMqzbyIijY5S6ikAEfmCUuoOz66HReTpKbj2YWCR5/NCIFjkETUmVeHY4yIyz/Zy5gFdJ3G9KSOViHHl7Di32HUUp4I3nu6QiMe455p53GP/0XqZU5fhQ7cv057rM3dfzppXj/HFn+/g3tYS//zMPu65ei6LbeWRiPCemy/is//1Co/v6OLhLUd587XzXIMDVkHkHZe28POtnXzu3itYt7ublro0l9kPBrDyLalEjCd2dCEI+3tG+b03lB/4n7nncrYeGeCTD27hm0/v5Wj/GG+9bgHP7e2lPi188letP/43XNHKV5/s4Fvr99I1lOVG++HrcN3iWSRiwgv7e7lLY3Se3Hmc//+HW6hLJ/it1YtC+0WEhbOqOOzpdzY4ZjX79IbBnPBS70iObKHIeL7kqx9xVF39ozkaqixRQYM3vObpWuAYnW63e3M5dAWwoLGKg72jbluby+fVec5TFgKM5IqUFFTbHp5zXiev43RscLpXW/eRdu9jXkMVvXZ4bVZNOacD5bxR11CWREzc+wNorCqHEofG85wYyrK0uXwNsMKET9s5HUf44LQDmtuQsXM6I6xYVA4tZpJx5jdUubJvXZizKuWv08nqcjr2e6+YwKrT8S+8li2UXKNT7r2mUa8Fli0IhqEAXzFqqK9aoA2O894X8tKEzkJKOV2OKUJNF1av+cN93jG6uqGEZtXUqWYyQoIWEXGfZCKyFGiZgmu/CCwXkaUiksJK8geLTh8C3mur2G4GBuzQWaVjHwLe3edEQAAAIABJREFUZ79/H/BTz/Z3ikjavoflwAtTcB/nBC11aT7+K5fwxM4uvvDcOArlNml0+PWV86nLJPid729kNF/kw3eEDdhbVszj2OA4P91yhCd3HOeuy1p8D+madII3XDGHh7cc5Z/W7qapJsU9V5cNZDIe41vvW8VH7ryYWdUprl3YyPeePcCu40O854qUa+SuWdDAnLo096/dA8Ady/1/clWpONcsbODFfb0opXj1yABrXu3kwY2H+Na6vXzwextZ0FjFf370VvcbZBBrEbZy7dHgWJ76Kv/3MG8naaeOx6tuc+pX+kbzVofp0TyNVRqj4xETOPmU5sCXiivm1bOzc4htRwdYOKvKVw/UVJNylYNOV4TqRPl3saCxypW97zo2RCImbv2Mc7z32j0jWRqrk+7DM5OM01iddJdK6BrMMqcuTczzQGqoTjE4nqdYUuzvtoz10uayWAFgbkMVYwVLwOEUsLbY97moqZpNB/s43DfGioUNvuOWtdS4woSg7Bw0dToaAYDOEIwXij4hAfjFBHmN9Doque9bfE0rNgg32NQWh8ajDYrVX1AFRAuaGpxJ5HSCIoFgrso5n0+0cAYk0xMKCYA/ANpFxKnGW4Kd7zgdlFIFEfk48CgQB76jlNomIh+x9z8APALcC3QAo8AHKh1rn/ovgR+KyAeBg8Db7WO2icgPscQGBeBjSil/VvE85wOvW8IvXj3GtsP9fPldK1k4y//AqE4l+F+/diVfemQHH3jdUje04eX1V7RSlYzzB/+xhYaqJB/1hIcc3n/rUh555Rg9e3v5zN2XuwlSh/pMks/cXV6S6Zk93ZRKUDjyqrstFhPevmoh96/dw1Xz631KLIfVS5r41vp9fPQHL4eKUu+6rIWvvfuGUOjSy6KmajYeKIsRBsbyvgcdlD2B3uGcrwWOQ0OVXb8ymmMkV6Rgd5h2cBRq3v5s3RplGMDV8xsYy+/nkVeO8at2yMidh0cl5yTUqz25LK+C7bXjQyxrqfF5AY5X5Vzb2+LGwaopsvZ3DY3TUu831o1VSZSyvJxyjU6Nb4xXkOAoA52Goxe31PDwFuu/3HWLZ/mOW9Zcw49ePmIb7hxVybjv78YxOo4go1wcWv4dOEICb/J+PF8infQbHa9sOl/0rwgK+hqcoqbbgIjfEFjLH/gf4OMe4YJTmOlblydgCFxZddx/LZhYDg1hb0h3nlIFT0fX/WCqmYx6bY2ILKe8cNtOWwF22iilHsEyLN5tD3jeK+Bjkz3W3t4DvD7imC8CXzyNKZ/TpBNxfvzRW3lsbTtvuna+dsw7Vi3iHavC4SiH2nSCL79zJY++eoyPtl3shna8rF7axBfuu4r9PaN84HVLJpzXrRc3A9B+xL/9E7+ynKaadOgB7HDTsia+8fRe1mw7xsfuuph7rp5HSSmOD2Zpu6zFVzOhY9GsaobGC66x6RnJMb/B/6BNxmNUJ6B3JBvqWABWnQ5Y4TWnXscrmW6qTiECJzyFmWVPx//QX7Go/O0/+FCeVZ1iaLxAvlhyCyy9AoqLW2p5cOMhlFJsOTzA6wJhXUel5kieu4fLhZ8OcxsyHBssezpO0adDo3uvZaMT/DIw12d0xqlJxV2l4rUe7+bq+UFPp9b1jvrsRfC8ZFJxlLJCY5lk3OPplA2T6+l4w2s5T3gtVg6vOeTsRp5eb11Xg5MPSKat8/nVacWQRNkvmc7rJNMxv6ej9YZ0hajBa2m9Ib0KzpmHTsIdnPN0MKHREZEk8P8CTl6nXUS+oZSa2rV1DWeEWExcZdap8qar5vKmq+ZWHPOeW5ac1jXACvl88LalkfvvvHQOn3rTZTTVpHjX6sUnff6Fs+x1bHpHaVjQwImhLCsXNYTG1aeE7pGcNtdQrtTPlztMe/Yn4jGaqlM+T+eEZ0VOLxe31HL78mZeOTLgyqUdmtwwXnke1Z7/vctaahjJFXluby8nhrKsXuo3Ok2BZRh6R3K+nA9YXsqrR6x8UtfQODcu9Rs+1+iMWUZndk3KJ2t2zgFWw9Guoazr5YD15eK2S5q5ZmFDyAN181LdI3ZezG+QnTV1nF5q5Z5p/oaf4H84+9rg2Jf0yqbzgeURwBPyqiCZts4nFTsSJEJGKZzTcVcYLTohL11/Nn8NTqlkqQIr1elox8SDOR1Nh4SzoU4HqyAzCXzN/vwee9uHpmtSBsNkiMeEj90VDu9NFudb+uG+MS6fW0fPSJYWTf6nLiX0DufcGhVv+MwSHliezoC73//AbA4UiDrr1ATDjiLCdz+wmmyhSHXK/19zlqfhppvTCXg6AN+xC3xXB4QXdekEqXiMbrv/Ws9IjpsCnlZrfYbu4SzD2QJ9o/lQLswJJfaP5kLFpw4LZ1WTicPWI/0c7PGPySTj/OBDwaoIi2UtZTFEv8bT8S7k1khEcaj93vFkiiUrPxLM6Xg9HaunWtiYQLkDNThdpsPGKdjmJtiRoBgo6HSOC17LNQTFcAguHvRQNIYpGIIrKqfTgm6MbeCcbgxBIcFM1el4uFEptcLz+UkR2TJdEzIYzhSOp3O4b5SekRxK4ftm7lCXEnpHcgx4mnk6xGNCQ1WSvtG8qy4LPjCb6/yejnedmiDxmIQMDvjXs3FzOp58xrULGxCBx7Yf54p59Vzc4g97igiza1P0DlsqvF67EacXx0t50e4aERVeG7A9nZUeBZp3/hc3xti4v49DvaP8PzcsDI3RMb+hinQixr7uYfpGc64E36G8ZLX1QNR3JPB7DeWlqgPhtXzQ6PiNSVLj6QST+871vEn3UHI/0OusbFA0QgL7Wo5h0YsWovM+QfVaWSkXnffRn2f6PZ3JqNeKInKx88FWsl1QCXjD+UlDVZK6dILDfWNleW+E0ekZyWlVVVBO8jtqraCH0Fybdpd+BsvTaQok8SfC8XT6R3NuTscrtKvLJHnTlVbI84O3LfXlKBxm27Jr5169nRWg3IrH6b4dzNc5YcPu4RxH+sdYrPF0AJbPirPz2BAjuaJPGl2JWExY2lxDR9cw/aN5n+wccCXOTtPPrEbqXBYSBI2OP7zmTe7nCipkdPQdADSejifprpQKq8UiljbQSabLXoxGURYInbljKng6zpikTilnj8lrjGAyHl5UbqqZjKfzKWCtrV4T4CJsFZnBcC4jIixqqmZf9wgnhq36lCij0zeao3c052vm6eC0wjkxlCUVj4Vk15bR8fc9W9Dof+BPhLuI2qjl6dSk4r6HF8CX37mSXceGfAl7/znS9Axn3W7ScwOiCWdO63brjY5jbHd0DlIsKRY16e/hjoUJnjhsPYDbLtMX7uq4cn49T+zoYmg8T3PAKDuejiObjuq95t03bv8sezrWuKCnE/z31NbplDQ5nUTZK9CrzmKh+hvv+b3jC8WghxLdckc7xjVMpUmMCc7Zb7zOBvXaE7Z67TIsozNl6jWDYaa5Yl49T+8+wdF+/YMYLCFBsaQ41DsayteAJTV+7fgQrfUZu+ml/+HUXJtmNFdkNFegOpWgZzgbqlOZCCe01TeSs+uJkqExmWS8omfRXJNi74lhtxZnfqP/Xpc0WzJrZ60bb2EwWA/IukzC7YW3uCmsXARoysR46lN3EZNwfqsSKxY28l8vWxLGoBTbKySAsmFJa4xOlKeTctVrfiFBMKejq9MJLogGjnotIAAILEngD9HpVw4Fb+1MOLxWVrgFr6WRVYdUcLrckD+UFxQtzFh4TUTucF5Yfc0agQbgJnubwXDOc/WCek4MZXlubw/VqbhvuQGHOrsn1t4TI9qHvdXZYIyuoXFtrsatkRnKhdaxmSzpRJyaVJzekXxoIbnJYnWaznk8Hb+nkozHuHq+lUu5PiDZdmitz7gdD4I5Hy9NNamTMjiAz2Aua9EbHSe8lnOLOj3qNacjgf3QdIyOE5orq9cml9PJe0JnltEJCgkk9JBPenMogS7TRY1BSQYl0xohQdAI6pdImDgEF+npBJc2mEEhwac02xSwAquFzHm9LIDhwuBquxPzz7Z2smJhg68C38E1Ot0j3LIs3NZo4axqsoUSO48N+TpHOziG6MRwlvqqhG8dm5NhVo2VO+ofdYpYTy7g0FSTZixfpKNrmLp0IiR3BvjQ7cv47I+28p5bLtKeo7U+TUfXMKl4zM0BTRXXLmhgUVMV+YLimgV+T7AqZT0Y3fBasUg8Jj6vIRUMr+WD4TV9nU4wV1Pu/Kx8P0MekecBXdB5MYGkvC6n4xqUgPeh93QCUmddJ+pKIbhgTseVTPvnM93LVVfqvfYW72cRuQ1reYNO4OPTOiuD4QyxclEj1ak4o7kiN2kMClgdnh0aq8MehpPbODGUdfuMeWnx9F9z8iIn6+lAeT2b/tE8S5qrOVmj46zL89RrJ7iktVY75t5r5nH3VXO1xhfKq4N6F4ibKmIx4dHfvyNUbQ/lEJljdPJFFaqvSQWEBNmgkMDN6fjb4KSiwmtuOCuc3Ad70bgKhikebINTDHsWyUC+Rut9BAo/9UWdfvWazqsKCRKKGu8sFl5ddKqZUL0mIq8XkXbgC8DfK6VuVko9PK2zMhjOEMl4jC+97RpWXTSL99+6RDumPlX+j6v7du9tJ7RM06HB2/TTXRztVDyd6hT9tqDhZNVvUF635sRQlivn1UeOizI4gLva5+IKobXToTqVCOWSoBxey3pyOlECgLKQQK9emyi8Fkzc63IfYHlOlQxTcP0atw1OhXyNzvsIheAipM7efWVvSJf3Cc45UKczU0ICEXkzlmczAHxOKbVhWmdiMMwQ961cwH0rtUsrAX6jM08jNPAamqsXhAUCsz05naZq/4qdJ0NTTYo9J4bpG8n5uj9PluWeDgSn2v38zdfO45fbj1fsFDEdBD2drNboBOt0rJ+OwUoIiAQ8nWIptKBgMpi4dxZ60xinoOosKGP2t9KxQ16iC69Fex/BFje6nE7c9WICggRt49DoOQdrj6aDSjmdh7GWA+gBPhNU5EzBIm4GwzmBN4ykS54n/m97Zx4tx13d+c/t5S3aJWuxLO9YYLyALQsZLGzaYIjtYWITMonBJzFkcciByQTCSTxDQpYTGJhkwoSEMDGMwSQsIUMAZ+JgbOP2gm1kW5ZtGWNLNpKsxZJlCUlPeksvd/6oqu7q6t+vXr+luqWn+znnnddd9auqX9frU/fd5fe9+RyfeNd5PPLTfaw5fVHb/mI+x4JZRfYOjTbkaCZjdBbO6mP7/qDybNHsvgmvlpvdX+D9a0/niRd/xhWvdevZjcfy+YN887feNKljp0LD6Iw1F4f6wmtjbdVrwXYRob+Qc2qvxSkmwnSuyjQI/q5D1ap3TLC6Xxsipa4S5YauWiI31NpdtHUtj7MKroOcTntrA9eaoN4Kfl6e6ZUN4xjiPWtO4evrXuTiM9wewvUXn8b1F7uT79Bcq7PgYJGcNBUGJkJc6WDBrD44NOFT8Mf/8dyJH3QUkM8JfYVcrJCg3lIuDU3voL2QoFnz1F/It4XX4krV4BDGdHgWEBidSsIbKjgUAOoKeWkaltZ1Oq15loorF5N352vcnk6acGirJ+jydHpdSHBvcpuIrFLV9ZnOyDCOQj5x7fl8+O2vbigDTJTFcwIpnIFinuXzB9uS0p0Qv/ai2cVJGZ1jmcFiPrZOp9YWXsvlJKwYS3g6hbjRyTnW6XhkcFLKmIP3zQe0u5Cg+ZDP5/LUXOGsRKVcLSUX0+55tcvgVBPncWm4jWeYel5IkOCLmczCMI5ycjnxNoPrhEgKZ/v+Iw3Nt4kSLx6YTE7nWGewmG9Zp5M0OhCE2KIHeFRI0F9sjusv5hoeUOM8CaOT7JXTKCRwhNciQ+CqOkuKeUZeTCcl0y6V6bR1OvnktTo4T9Ux524Ifk7U6ExvjaRhHCecvHAW2/cf4ad7DzvVmTshbnRcygkzncG+fEt4zdUvqZjPtYTXRFpVCwYK+XZPx2G84r1yqo6wWPBeUte8RN5KM88S9LcRVyFBsozZ6cWkrwmKn8cnyxPf5xIgLYZri1Sz83YmanT+NJNZGMYM57XL51KpKXuHxibt6cQ7uZ44zQszjwUGYi2rXR4KBJ5OVEgwWqnRX2ht0NZfzLVor416zhPvlePKfUDwQI/aXfvWvAT7mt5Qm7eUaNDmLGNuK4f2h/JqDe/Mb5jaPldK/igLOmniJsD1wJmq+mcicipwoqquy2xWhjHDiEv1R71vJsqi2X38woUrOHPJbKeK9ExnoJhr5nRqyqw+h9Fp8XRqbT2L3IUE7eeJr1epeEqm4+XFrqqztiKBWruUTi4nCO0l03EDl8sJOWlvSdCS9xG3p1NMmY87vNZ6nizoRGX674A68FbgzwjSl98C3pDZrAxjhhHXEks2WJsIf/XLF0zHdI5JWgsJ3MYi7qGMVOotRQTQXkjg85haDIqnZDpeXuyqcHMt2EyeAyCfiwt+utUPCvlcY4yrJUFkmJI5HVeX0uQC0jSvKgs6MToXq+oqEXkcQFX3i8jxl8U0jClQzOf42m9czIHhyrRrlh0vDBbzjQZ2ow4vBqJCguBhOlypNdboRPQXchwaCdbW1MKWzq7cUItBcTzAITguqYfmyqHElQSSng4Ei1bbquCSobycNKrfXG2vG3MeR8wzmE9aSLB1TBZ0ktOpiEieQOwTEVlC4PlMGhFZJCJ3isim8LdT0lZErhSRZ0Vks4jc1MnxIvJfw/HPisjPxbaXw20bwp/OG30YxjRwyVmLuer85b2exjHLQF+zem24UmOw6PJQ0sNrA8VmIYGrJ09Eq4K0P7w21lHVWbMAIJkXgsDTSRYJtDeMk9ScTnAecSz8HN/TaZHcaag69LaQ4LPAt4FlIvIJ4AHgk1O87k3A3aq6Erg7fN9CaOg+B1wFnAO8R0TOSTs+3H8dcC5wJfB34XkirlfVC8KfPVP8DIZhdJEgvNb0YlxtvYv5pgjnSLVOf1tOp6lIMNbI1bQbgmI+19Y0rb2QQFKrztrWxdTaCwkgWjiaHspzlWfnU9YN+SRu4se7DGWyfXYWjGt0VPWrwO8TGJpdwLWq+s9TvO41wK3h61uBax1j1gCbVfUFVR0DvhEel3b8NcA3VHVUVX8KbA7PYxjGMc5grHrtyJg/vDYWejIjlRoDhWR4Ld+oXnM1goso5qVRmeYrJCiEKtL1uqa2G4grG7hCeTmR1NxQdN6msWjP6UDgsdSS+myuRm9txQb+ZnBZ0ElOB2AxcERVvyQiS0TkjPChPlmWqeouAFXd5Ql1rQBejL3fTtBMLu34FcDDiWPiSo5fEpEaQSHEn6unGF1EbgRuBFi2bBnlcnkin63B0NDQpI/NEpvXxLB5TYys5vXyS2MMjVT4wT33MFats3vHNsrll1rGHD44zGgNyuUyL+8bZk5RGnMZGhpi755RhoarlMtlXhkOHtAvbN5EeXRLy3lGjgzz0p5hyuUyT7wU5IAeX/8Yezc1H9DbtwXirXeXy2zcFYxZ/+g6ts8KxjyzJ9i27pFH2DM/z86XRhgdrrfdmxx1dux8iXJ5P889H5zzwQfubzEqtcoYL+7YRbm8jx+/GOS1Hln3MM8PNOdTr1bYtn0H5fJent4WjFn38EMsDMfUw8fd5udfoCzb2fxCcK377i03qiE37wzm/MOHHmaOHsnk79hJyfQfA6sJ2lV/CSgC/wisHee4u4ATHbs+1uHcXDWh45nftGOuV9UdIjKXwOj8CvAV10lU9WbgZoDVq1drqVTqaMJJyuUykz02S2xeE8PmNTGymtf6ynPcsXUTay65FO64g9e++lWULntVy5h/3PoIO382Qql0Kf/98fs4afEsSqXVjXmdedpSHty1jVKpxJa9h+HeMuef+1pKq05uOc/CjQ8wf1YfpdIaDmzYARs28KaL13BWTKn7WXkeNv2ES9Zeyr4nd8JTT7H2kjexYkGwDkuf3QPrH+H1F67iwlMX8tVtjzIkRyiVWhsvF++7nROWLKVUupDHK8/Bpk287fJSS1n8nEfuYfHSBZRKF7L94a3w9EbevPaSFpWMwQfvYtmJSymVXse2h7bAj5/m0jevbbTWAJDv/xunnHoapdJr+NHITyhueYHLL2/KbB56Yic8+TgXrX4DO555LJO/YyeezruAC4H1AKq6M3xwp6KqV/j2ichuEVkeeinLAVd+ZTtwSuz9ycDO8LXveO8xqroj/H1IRL5GEHZzGh3DMI4+Boo5VOHAcPBf/KAjpzNQzDfkb0aq/kICVfWGzaBVDqaZr2lfHBrtd1WduVQCXNfKxyR3qvV6KMPTHl6LKxsE528P97XlmFx5n9h82ivyjo5CgrEwDBVVr7V3qZo4twE3hK9vAL7rGPMIsFJEzghLtK8Lj0s7/jbgOhHpF5EzgJXAOhEpiMjicP5F4J3Axmn4HIZhdImoL86+obGW93EGis2cTZDTaS8kqGtgCEbTqtdiraZ9JcrNrp9155ikCGcg/OmqXpOWvI9rTNGxJig5zlW9lndUuFVjuaF2o5S9IkEnRuebIvL3wAIR+U3gLuALU7zup4C3i8gm4O3he0TkJBG5HUBVqwRtse8AngG+qapPpx0f7v8m8GPge8AHVbUG9AN3iMiTwAZgxzR8BsMwukjD6BzxG514scFIpe5YpxN2IK3WG56OXzi0tZunT426Umueq0X5OakAUFNnpVxeWtfOJNfoROdKKhK0eV6Osur2bqe5lvMkq+TyMUOaFanhtVAC55+As4GDBHmdj6vqnVO5qKq+ArzNsX0ncHXs/e3A7Z0eH+77BPCJxLbDwEVTmbNhGL1lsC8wGPsPh0bHIYMTl8pxyuCERmi0Umuu03EuDk0vP46/r9Y0VQ+tEqsoc3o6khAF9c0nYVDcnk66Xly8wq1S07ay62Rr7CxINTqqqiLyHVW9CJiSoTEMw5gKkQHZFxodV8n0QCiVUw/DZ+3aa6HRqdYbIS2f9lolob2WNAZxT8fZ2iAKVUXhtXqdOcX2R24+R8yrcntDrhxTW06nRSHBp1rQqhfXnqdqFSnNgk7Caw+LiOmsGYbRUwYTRse1OHSgmKeuNORyZve3C35C4AWN1QKPyN0iYXwFgLg4pmvtTJsCQE3digQxGZxAtWC8HFPQssFlUOJtC5JtFKI5xeV0/Hmq3q7TuRz4gIhsAQ4TlCWrqr4us1kZhmEkmDsQPK52HxwB/IUEAK80QnCFxP6mpzNWDT2dcbXX3NVikbEaq9ap1pScBMKbjXMkZXDq7eEsCAsJYgbOWUiQb7bqDjTc3AUJaZVpjc8VayqXNLjNnjv1Cfe96RSv0RGRU1V1G4EMjWEYRk+JuqXuOpBmdIJHZcMbcrQ2gNDoNAoJPDI4CRHOtqR83NOpt+diovG1lHAWOAoJnErUTdUCv0GJV6+5y7MLLaoF7VpwcRWF/rajp4c0T+c7wCpV3Soi31LVd2c0B8MwjHFZMKsIwM4DwwAMOAoJkiG49vBas5Cg0igkaDde8RYJtXq7FwOtisw1R9VZsmS6WldnkUBeYCQmLuoaE8ynaQRdIbjA02l6Z97y7Jj2mks5O5pzVkYnzYOKz+bMjK5vGIbREfMGiuQEtu8PjM5sT04HmkYnGV7rj4fXosWhDk8nLubp8mKiMRA8vF1hsXxbeC1FZTpWUeYaE+m8QeihOIsNkp6Oe71PrRb3vJLFCK1zzoI0o6Oe14ZhGF0nlxPmDxYZqwZhqll97nU6EC82SCkkSC2Zblav+dbO9MWq10ardfoSC1GjYzoqJIjlYpxK1HmJNXrz5XRaFQl8nk68QMLfPrs3hQSvF5GDBB7PYPgamoUE8/yHGoZhTD8LZ/Wx/0iF+YN9zpbdkSfzike1IF5I0JDB8ahMt1SUeaRyIPAKxqr1NrXqttYG3vBa81oVT/VaMbFuqJOcjrMKLh8PwbUbr8g7q/Vicaiqtv8bYRiG0UOivE70O0kzvDYKwOz+RHgtVkgwmuLpxPvXeNfOxJLuY7X29tmFhNeQ1sStMk4hQSGfG9egtMrp+Fpjt0rltFXkJdoxZEFWVXGGYRjTTlTBttBjdJpSOcE6nfbwWuTp1Bip1BBx99MJFmMqqupdOxNPuo9Va23Gq5DwGnxN3ApxRQKHIYBonU6s6sxjBGst5dk+DTd/eK0pYtrbxaGGYRhHBcvmB1L+Jy+c5dyf9HQGPTmd0Uqd4bEag8W8M0wXz8f4jEVTkTkIryU9nXzCa/CVMbd4Op6cTkuXUp+cTnydTk3bxDyjMbWUHFN8wWtWmNExDOOY4TXLgq4qS+e5C3ojz2bvIc86nVhOZ6Rac671gda2Bb7EfVwGZ8wlKdOW0/GUMbcoEvir1+JredxjZNxrFZIFCUlpn6jMu8eKBIZhGEcF116wggPDFW645HTn/ki14KWDI/QVcm0P1SiUNlKpMTzWrs0WEW9b4Fs70yKDU1WvpxOF6SqeKri8CNV6oDZQ6VDw053TaQ2d+fJQSakc55xr9cxcEjM6hmEcM8yfVeR33rbSu3+wmG+EkFwl1SJCXyHX8HSSrQ8i4grSaWtngjF1Rmt15ve15plEJFSrrhM5Ds7qtVwQglNVv7HIx1sSpOV0xiuZTuZ0ktI+sZBgRkbHwmuGYcwYRIR5obcTeT1J+gu5oJBgrL31QURURl2p1Z2LKKFZ9TZW0yCn4zQogSGIcja+8BoEYTh/0UKs1NmX02nJ+/gLEuKLVZOeV2QoK1ZIYBiG0RlzBwKPY1FY6Zakv5AfN6fTXCQZtEBwex/NUNRYteasgiuGVXA+pWpoGp1onE/Ms65QjwobvDmdpnTPuAUJHm8o3sAuC8zoGIYxo2iu5fEZnVyjes3n6TQNijor01rG1N3rdKAp1BlJz/jW10Tn8VfKhUYwzDGNV73m0lULrt8MwVVq7sWqxXyuodaQBWZ0DMOYUSydG5RV+9byDBRzjFRrYTvrcarX6kG+JilxA01vaKxa94bXogKAqGL7DtwZAAAXnUlEQVTMuWAz8nTCttdOdehYJVylps75xA1KzVuencgNeTydMfN0DMMwOmPxnMDDWb5g0Lm/v5BntFIP21m7H4Hxlfk+g5LLBUUJI9VAx80nHFoLPRjweTq0XsvjMUVjKrU6fU61gVivHI/KdEtOx+NV9eVzjV5DWdAToyMii0TkThHZFP5e6Bl3pYg8KyKbReSm8Y4XkRNE5B4RGRKRv02c6yIReSo812fFtSLMMIxjnhWhsTl1kXsBaX8x11Ak8OZ08vGcTt3ZcwdgIAzVVWrqbJEQCIdq40Gf6uk0vKo09YN0b6jV0+lEidpRIDFDPZ2bgLtVdSVwd/i+BRHJA58jaCJ3DvAeETlnnONHgD8CPuq45ueBG4GV4c+V0/ZpDMM4avitt7yKT77rfN514Qrn/v6wZHq4UmtTLIiIty3weToQKCBEitU+D6VWr8c8nbTwWnCt/vHWBNV8obPAoESl164upa3rfdzeUF8+1+g1lAW9MjrXALeGr28FrnWMWQNsVtUXVHUM+EZ4nPd4VT2sqg8QGJ8GIrIcmKeqD6mqAl/xXNMwjGOcvkKO9158qjdf06heS8npxD0Ln0GBwOgMV2reQoKoWqzp6fhDZ1E7aud5YsUGQWuH9LyPv3dPkNNJW6xaLEimnk6vFocuU9VdAKq6S0SWOsasAF6Mvd8OXDyB45Pn2p44l/vfIEBEbiTwili2bBnlcnmc07sZGhqa9LFZYvOaGDaviXG0z2vowAivHK4zXFF273iRcnl329hn9wUG4LHHN3B4eIS9u1+iXN7fNq42NsyWHYHO245tWyiXd7bsHx0+wq7dIzz0o58F533mx5T3P9cypjo6Agj3PbQOgBe3bqFc3tEyZvOOQMD0hw8+FMxnT/t8tm4NpH9+UL6Xw0dG2Ltnd9vfYdfOMcYqVe4Jt7+4bSvl8q6WMSOHh9k9MsTQ4lomf8fMjI6I3AWc6Nj1sU5P4dg22ezWhM6lqjcDNwOsXr1aS6XSpC5aLpeZ7LFZYvOaGDaviXG0z+tfdj3Ori37gBFes/JMSqWz2sbO3bof1j3IOeedD08+zmmnnkypdG7buBM2PhB4Ji/v5+yVZ1G6rLXJ8rwn7mfhgkEuXLUSfvgArz//PErntj4WH9t9FzDK2ee+Hh7+Ea999VmU1p7RMubAhh3w1AZWrV6DPPogp51yEqXSeS1jnss9D8/9hLVvvpT8w2VOXrGUUul1LWPWjfyE+tYXuOTNl8Ed3+OsV7V//s8/+xAKzJkzmsnfMTOjo6pX+PaJyG4RWR56KcuBPY5h24FTYu9PBqJ/Izo5Pnmukz3nMgzjOKK/kGN/2PrAV0jQ7Aqq3uQ+wEAhz4Hh4FzuAoAgp9NoGOds4hb8PjxWDc/jLkiAZsm0rxwaghBczdfaIFys2pyPu2T60Ei1/cNOE73K6dwG3BC+vgH4rmPMI8BKETlDRPqA68LjOj2+QRiKOyQibwyr1n51vGMMw5iZDPblG/mTeQPutTytagPu5D4ElXAHRwKj48uzVGraqBhzGYJo05GG0fEXEjQVrcdby+OR7gnPHX1+V7FBX35mKhJ8Cni7iGwC3h6+R0ROEpHbAVS1CnwIuAN4Bvimqj6ddnx4ji3AXwHvE5HtsYq33wa+CGwGngf+PdNPaBjGUcn8waLzdZzIA0hL7kNQSHAw1dPJNaR0wF0yHRmLw6P+axVbqtd863SiMf6y6siDGx6rtZy3ZUwhW0WCnhQSqOorwNsc23cCV8fe3w7c3unx4b7TPdsfBc5z7TMM4/ghbmjmeYxOtOYmCjO5HuAQGJ3DY35j0VfIMTRabVSvpYXXGp5OSuhstFJD1e9VAY3FqC6DEm0bGvV/rqb2WjZLGU2RwDCM44q4Jtu8QY8SdahUcGjE78VAsDi0cUyKp1NNCa81jU7Nf57wuCOh51VMUS1oNp5zGZTAmDa8KtNeMwzDyJa4JptPiXqg0OrppIXXImb3tRuwYKFlUwbH3UI6+H0kxWMqtIXF/HmfkZSQYOTpHB71f66ZqkhgGIbRE05e2JTHWTLX3fY68nSiIgG/IkFzu0vdoBiGqmodyOCkGYLGAtLIMHm016CZh/KJeUIzvOY0OubpGIZhTB+nndA0Oj4Jxv5CDhE4ODwBT6ffYXTywmg1VkjgaUkAMU/HGfJKhNdScjojFb/6QXTuhtHpgfaatas2DOO4YqCY55b3rW7xeJKICP2FXAeeTtPQzCq2P077Q08n8hycXkwHnk607UhKAUCbnE5KX57Ua+VzDSOZBWZ0DMM47njr2cvGHTNQzI+b04kn/Z3htbCQIPIc0oxOWk6nP5FjchUSND2dMLzm8pgKkdFJy/vkqNWVumZjeCy8ZhiG4WCgkG96Oh6jEzc07vBartHkDdweU3Tqwykl0/3JXEzKOp2RlBBcs2Ta78FFn7WSUYTNjI5hGIaDgWKumdPxhNcWDDar31ySOsUwVDVaDcuhHWPyYV7pyKi/ZDralrZuKCqRbhqddsPUNF6dLERt2zUtmNExDMNw0B/zdFzhLIAT5jSNjqsoIUrKp3k6UW3B4RQZnCh3FHkoaTmdqJDA7emMn9OJDJMZHcMwjC4yUMylGguAE2a71/lERGGwwymyM52s00mG19LW6aSVTBc7rF4DGgtapxszOoZhGA7ioTBfh9HlYWvsq85zdXGJPeRHqvQVck5vKLIxaYagkM+RzwlDjcKGDnI6KVVwaet0Iq8qjMBNO1a9ZhiG4aClHNpjdOb0F3ji4+/wFhrEH/I+peqCBCG2sWrQ7dNVdQaBt3MozdNJlEy71A8ig5am8xblpsYyKps2T8cwDMNBXFfNtQYnYv6sotcTioez+ovux62IMCuU0PEZNwiMzlBKIUHk6YxW/L1ymjkdfygvmktWno4ZHcMwDAdxT2egb3KPyr5Y4t6XF4Jm+G6WQ78tor+QT8/pRDI4YynrdEJDlLb+KJrLqHk6hmEY3SPSVcvnJNVgpFEsNFsJ+EJw0PRwZjnW+kT0F3OpUjmNnE7VP6av0DSCIu5ig8GMczpmdAzDMBxEns6sYt6r0TYeUV+e8YxO9KB3KVVHxNfvuDyvQkIU1CUuGnlIw5UafXl3YUNkAC2nYxiG0UUio+PL13RCQwFgpDNPJ+1aLeE+1yLThqfjz+nEvZ/xVBbM0zEMw+giUYfRNGMxHsV49VrBb1Bm93dWSBDhUj9o9NNJ6bmTy0nDI/KFDOcNBJ/7SMU8HcMwjK4RLfzMTTK0BjTKpI+M1VLzQlE304WepnLQFP3M56QjlWlf6XV0bJqnM1jMc2jMjI5hGEbXWBQanSnYnJYFmmkeU2Tg0hQOIk/H5eVArHotRXstvj1tPotm93Go4t09JXpidERkkYjcKSKbwt8LPeOuFJFnRWSziNw03vEicoKI3CMiQyLyt4lzlcNzbQh/lmb7KQ3DOJaJ+u1ctnLJpM9R7CCHAs1OpVFIL23MgGe9T5sigWNxaHCewGileV5L5vazfneVlw6MeMdMll55OjcBd6vqSuDu8H0LIpIHPgdcBZwDvEdEzhnn+BHgj4CPeq57vapeEP7smbZPYxjGjOOck+Zx10fewk1XnT3pc8S9DZd6dMSqU4P/u89bMd87JgqvuYoI4uePyqp9IqWzw7xRmhH8b1e/lvOX5Fnqaec9FXpldK4Bbg1f3wpc6xizBtisqi+o6hjwjfA47/GqelhVHyAwPoZhGFPirKVzGkn+yRAvHkh7yP/cuSfy/Cev5vKz/QGYyKj4jE6yFbVrDQ7AYFiWnfa51pyxiA9eMEDOc46p0CvttWWqugtAVXd5Ql0rgBdj77cDF0/geBdfEpEa8C3gz1XdrfFE5EbgRoBly5ZRLpc7PH0rQ0NDkz42S2xeE8PmNTFsXk1eGW72B3hlz27n9Tud1749o8GLsSPe8flQww3gwQfucxZBVIeHARgZOpB63azuV2ZGR0TuAlzSqx/r9BSObVMpp7heVXeIyFwCo/MrwFdcA1X1ZuBmgNWrV2upVJrUBcvlMpM9NktsXhPD5jUxbF5NfnZkDO69E4DTT1lBqXTepOe1sb6J7299juVLFlEqXewcM3jPHQyNVskJvPXyy51jbnlhHZt+9jKnLl9KqbTKe72s7ldmRkdVr/DtE5HdIrI89FKWA678ynbglNj7k4Gd4etOjk/OZ0f4+5CIfI0gfOc0OoZhGNNBfLGnLyzWKQtSyqkj+go5GHWv0YmYFc5jzhTChlOhVzmd24Abwtc3AN91jHkEWCkiZ4hIH3BdeFynxzcQkYKILA5fF4F3Ahun9AkMwzDGIV4hNtWH/KJxGsbB+HkfaOq7TSVXNRV6ldP5FPBNEfl1YBvwnwBE5CTgi6p6tapWReRDwB1AHrhFVZ9OOz48xxZgHtAnItcC7wC2AneEBicP3AV8IfuPaRjG8Uxc22zuwNQet6tPW8hbXr2EP7jSX03XNDp+fyJSHOiVp9OTq6rqK8DbHNt3AlfH3t8O3N7p8eG+0z2XvWgyczUMw5gO5gz41+B0wtJ5A9z6a2tSx/R14OlUakGhwVSN4GQxRQLDMIwu0A3PorGWJ0Xn7dKViwF4w+mLMp+PC2tXbRiGkSE5gbrCvC54Fn0dhNeuPG85Gz7+9o4KE7LAPB3DMIwMqYcLPVYum5v5tSJdtv5xKuV6ZXDAPB3DMIxM+fL738D9m/ayJANJmSSz+9Olco4GzOgYhmFkSOk1Sym9pjv6wnP6g2KFgSn0AMqao3dmhmEYxoSYE3o6c3pUmdYJZnQMwzBmCNGCz0U9zNmMhxkdwzCMGULULTSt7XWvMaNjGIYxQzhx3gDQ7KlzNHL0Bv4MwzCMCfHui1awbd8R3r/29F5PxYsZHcMwjBlCfyE/pU6n3cDCa4ZhGEbXMKNjGIZhdA0zOoZhGEbXMKNjGIZhdA0zOoZhGEbXMKNjGIZhdA0zOoZhGEbXMKNjGIZhdA1R1V7P4ahGRF4Gtk7y8MXA3mmcznRh85oYNq+JYfOaGDN1Xqep6pLkRjM6GSIij6rq6l7PI4nNa2LYvCaGzWtiHG/zsvCaYRiG0TXM6BiGYRhdw4xOttzc6wl4sHlNDJvXxLB5TYzjal6W0zEMwzC6hnk6hmEYRtcwo2MYhmF0DTM6U0RErhSRZ0Vks4jc5NgvIvLZcP+TIrKqC3M6RUTuEZFnRORpEfkvjjElETkgIhvCn49nPa/YtbeIyFPhdR917O/FPXtN7F5sEJGDIvK7iTFduWcicouI7BGRjbFti0TkThHZFP5e6Dk29fuYwbz+QkR+Ev6dvi0iCzzHpv7NM5jXn4jIjtjf6mrPsd2+X/8Um9MWEdngOTbL++V8PnTtO6aq9jPJHyAPPA+cCfQBTwDnJMZcDfw7IMAbgR91YV7LgVXh67nAc455lYD/16P7tgVYnLK/6/fM8Xd9iWBxW9fvGXAZsArYGNv2P4Cbwtc3AZ+ezPcxg3m9AyiErz/tmlcnf/MM5vUnwEc7+Dt39X4l9v9P4OM9uF/O50O3vmPm6UyNNcBmVX1BVceAbwDXJMZcA3xFAx4GFojI8iwnpaq7VHV9+PoQ8AywIstrTjNdv2cJ3gY8r6qTVaKYEqp6H7Avsfka4Nbw9a3AtY5DO/k+Tuu8VPX7qloN3z4MnDxd15vKvDqk6/crQkQE+CXg69N1vU5JeT505TtmRmdqrABejL3fTvvDvZMxmSEipwMXAj9y7H6TiDwhIv8uIud2a06AAt8XkcdE5EbH/p7eM+A6/A+DXt2zZaq6C4KHBrDUMabX9+3XCDxUF+P9zbPgQ2HY7xZPqKiX9+tSYLeqbvLs78r9SjwfuvIdM6MzNcSxLVmD3smYTBCROcC3gN9V1YOJ3esJwkevB/4G+E435hSyVlVXAVcBHxSRyxL7e3nP+oCfB/7ZsbuX96wTennfPgZUga96hoz3N59uPg+8CrgA2EUQykrSs/sFvId0Lyfz+zXO88F7mGPbhO6ZGZ2psR04Jfb+ZGDnJMZMOyJSJPhCfVVV/yW5X1UPqupQ+Pp2oCgii7OeV3i9neHvPcC3CVz2OD25ZyFXAetVdXdyRy/vGbA7CjGGv/c4xvTqu3YD8E7geg0D/0k6+JtPK6q6W1VrqloHvuC5Xq/uVwH4BeCffGOyvl+e50NXvmNmdKbGI8BKETkj/A/5OuC2xJjbgF8NK7LeCByIXNisCOPF/wd4RlX/yjPmxHAcIrKG4LvwSpbzCq81W0TmRq8JEtEbE8O6fs9ieP8D7dU9C7kNuCF8fQPwXceYTr6P04qIXAn8AfDzqnrEM6aTv/l0zyueA3yX53pdv18hVwA/UdXtrp1Z36+U50N3vmNZVEccTz8ElVbPEVR0fCzc9gHgA+FrAT4X7n8KWN2FOb2ZwOV9EtgQ/lydmNeHgKcJqk8eBi7p0v06M7zmE+H1j4p7Fl53FoERmR/b1vV7RmD0dgEVgv8sfx04Abgb2BT+XhSOPQm4Pe37mPG8NhPE+KPv2f9Ozsv3N894Xv8QfneeJHgoLj8a7le4/cvRdyo2tpv3y/d86Mp3zGRwDMMwjK5h4TXDMAyja5jRMQzDMLqGGR3DMAyja5jRMQzDMLqGGR3DMAyja5jRMWY8IlIL1Xo3isg/i8isDK+1pZMFoyJyfkxteJ+I/DR8fZeI/Px0Kx7Hrvu/Ol3dLu1KzZ/KYk7htf5SRN6a1fmNowcrmTZmPCIypKpzwtdfBR5Tz6LZabjWFoJ1RXsncMyXCdSr/28Wc4pdZxHBeos3djj+T4AhVf3LCV4nr6q1CR5zGvAFVX3HRI4zjj3M0zGON+4HzhKR5SJyX8wDuhRARN4hIg+JyPrQK4qMVcODEZHVIlIOX58gIt8XkcdF5O+JaVOJyEfCc2+URG+eNETkfSLyt+HrL4vI5yXof/KCiLxFAgHLZ0JjFR3jnHeCXwS+N9EblpibSNBDZ6ME/V5+OdxeCuf4NeApEcmH3stTEohu/udw3EUicq8EQpZ3RMoBGih6nyAiJ05lfsbRjxkd47hBAs2rqwhWqr8XuENVLwBeD2wIjcofAldoILb4KPCRcU77x8ADqnohwcr3U8NrXQS8H7iYoCfQb4rIhZOc+kLgrcCHgX8FPgOcC5wvIhdMYN5rgceiN6Gh+EFoMP9QRM4WkV8Skd+OHfPhWHjt5wg0w6J7dgXwFzHJmTUEK9TPAW4EzgAuVNXXAV+VQO/rb4BfVNWLgFuAT8SutT6cozGDKfR6AobRBQal2aHxfgLdqTcCt4QPwu+o6gYReQtBM6sfBvJU9AEPjXPuywgexKjqv4nI/nD7m4Fvq+phABH5FwI5+8cnMf9/VVUVkacI5PCfCs/5NHA6gehiJ/NeDrwce78WeDeBd/Z7BFpbjwC/ExvzmXh4TUQ+A3w9DJ/tFpF7gTcAB4F1qvrTcOgVBJI4VQBV3Sci5wHnAXeG88wTyMRE7CGQXDFmMGZ0jOOB4dCjiXNfmFD/D8A/iMhfAPuBO1X1PY5zVGlGBgYS+1yJUZcEPCLyLgLvCOA3VLWTVsSj4e967HX0vgDUUuYdZ5jY3FU17mV8LPwZD+fnCjmcGOdq8/G0qr7Jc/xAOEdjBmPhNeO4JExc71HVLxB4PqsIRDzXishZ4ZhZIvLq8JAtwEXh63fHTnUfcH04/iqCUFi0/drwHLMJlI7vV9Vvq+oF4U8nBqcT0uYd5xngrCle6z7gl8OczRICT2+dY9z3gQ+EIc2oiOFZYImIvCncVpTWRnivJmP1aaP3mNExjldKBHmcxwmMyF+r6svA+4Cvi8iTBA/zs8Pxfwr8tYjcT+BZENt+mYisJ5Cg3wagQTvgLxM8kH8EfFFVJxNaG5dx5h3n3wg+91T4NoE68RPAD4DfV9WXHOO+SHAvnhSRJ4D3atDe+BeBT4fbNgCXQKO/y1kE+ShjBmMl04ZxHCEiDwDvVNWf9XouccKw4ypV/aNez8XIFvN0DOP44vcIK+yOMgq4W0obMwzzdAzDMIyuYZ6OYRiG0TXM6BiGYRhdw4yOYRiG0TXM6BiGYRhdw4yOYRiG0TX+P0KZYc/Lhx/FAAAAAElFTkSuQmCC\n", 269 | "text/plain": [ 270 | "
    " 271 | ] 272 | }, 273 | "metadata": { 274 | "needs_background": "light" 275 | }, 276 | "output_type": "display_data" 277 | } 278 | ], 279 | "source": [ 280 | "ops.wipe() # the wipe command here closes all recorder files\n", 281 | "plt.close('all')\n", 282 | "fname3 = 'Data/DFreeEx1bEQ.out'\n", 283 | "dataDFree = numpy.loadtxt(fname3)\n", 284 | "plt.plot(dataDFree[:,0],dataDFree[:,1])\n", 285 | "plt.xlabel('Pseudo-Time (~Force)')\n", 286 | "plt.ylabel('Free-Node Disp.')\n", 287 | "plt.title('Ex1b.Portal2D.EQ.tcl')\n", 288 | "plt.grid(True)\n", 289 | "print('End of Run: pyEx1b.Portal2D.EQ.tcl.py')" 290 | ] 291 | } 292 | ], 293 | "metadata": { 294 | "kernelspec": { 295 | "display_name": "Python 3", 296 | "language": "python", 297 | "name": "python3" 298 | }, 299 | "language_info": { 300 | "codemirror_mode": { 301 | "name": "ipython", 302 | "version": 3 303 | }, 304 | "file_extension": ".py", 305 | "mimetype": "text/x-python", 306 | "name": "python", 307 | "nbconvert_exporter": "python", 308 | "pygments_lexer": "ipython3", 309 | "version": "3.8.3" 310 | } 311 | }, 312 | "nbformat": 4, 313 | "nbformat_minor": 4 314 | } 315 | -------------------------------------------------------------------------------- /BraineryBytes_OpenSees_Examples_Manual_Example_1b_Elastic_Portal_Frame_Pushover.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "

    OpenSees Examples Manual Examples for OpenSeesPy

    \n", 8 | "

    OpenSees Example 1b. Elastic Portal Frame -- Static Pushover

    \n", 9 | "

    \n", 10 | "\n", 11 | "You can find the original Examples:
    \n", 12 | "https://opensees.berkeley.edu/wiki/index.php/Examples_Manual
    \n", 13 | "Original Examples by By Silvia Mazzoni & Frank McKenna, 2006, in Tcl
    \n", 14 | "Converted to OpenSeesPy by SilviaMazzoni, 2020
    \n", 15 | "

    \n", 16 | "\n", 17 | "

    Simulation Process

    \n", 18 | "\n", 19 | "Each example script does the following:\n", 20 | "

    A. Build the model

    \n", 21 | "
      \n", 22 | "
    1. model dimensions and degrees-of-freedom
    2. \n", 23 | "
    3. nodal coordinates
    4. \n", 24 | "
    5. nodal constraints -- boundary conditions
    6. \n", 25 | "
    7. nodal masses
    8. \n", 26 | "
    9. elements and element connectivity
    10. \n", 27 | "
    11. recorders for output
    12. \n", 28 | "
    \n", 29 | "

    B. Define & apply gravity load

    \n", 30 | "
      \n", 31 | "
    1. nodal or element load
    2. \n", 32 | "
    3. static-analysis parameters (tolerances & load increments)
    4. \n", 33 | "
    5. analyze
    6. \n", 34 | "
    7. hold gravity loads constant
    8. \n", 35 | "
    9. reset time to zero
    10. \n", 36 | "
    \n", 37 | "

    C. Define and apply lateral load

    \n", 38 | "
    \n", 39 | "
  • Time Series and Load Pattern (nodal loads for static analysis, support ground motion for earthquake)
  • \n", 40 | "
  • lateral-analysis parameters (tolerances and displacement/time increments)
  • \n", 41 | "Static Lateral-Load Analysis\n", 42 | "
  • define the displacement increments and displacement path
  • \n", 43 | "Dynamic Lateral-Load Analysis\n", 44 | "
  • define the input motion and all associated parameters, such as scaling and input type
  • \n", 45 | "
  • define analysis duration and time increment
  • \n", 46 | "
  • define damping
  • \n", 47 | "
  • analyze
  • \n", 48 | "

    \n", 49 | " \n", 50 | "Introductory Examples\n", 51 | "The objective of Example 1a and Example 1b is to give an overview of input-file format in OpenSees using simple scripts.\n", 52 | "These scripts do not take advantage of the Tcl scripting capabilities shown in the later examples. However, they do provide starting a place where the input file is similar to that of more familiar Finite-Element Analysis software. Subsequent examples should be used as the basis for user input files.\n" 53 | ] 54 | }, 55 | { 56 | "cell_type": "markdown", 57 | "metadata": {}, 58 | "source": [ 59 | "

    OpenSees Example 1b.
    \n", 60 | " 2D Elastic Portal Frame -- Static Pushover

    \n", 61 | "Introduction\n", 62 | "\n", 63 | " Objectives of Example 1b \n", 64 | " - Two element types
    \n", 65 | " - Distributed element loads
    \n", 66 | "\n" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": 1, 72 | "metadata": {}, 73 | "outputs": [ 74 | { 75 | "name": "stdout", 76 | "output_type": "stream", 77 | "text": [ 78 | "Done!\n" 79 | ] 80 | } 81 | ], 82 | "source": [ 83 | "############################################################\n", 84 | "# EXAMPLE: \n", 85 | "# pyEx1b.Portal2D.Push.tcl.py\n", 86 | "# for OpenSeesPy\n", 87 | "# --------------------------------------------------------#\n", 88 | "# by: Silvia Mazzoni, 2020\n", 89 | "# silviamazzoni@yahoo.com\n", 90 | "############################################################\n", 91 | "\n", 92 | "# configure Python workspace\n", 93 | "import openseespy.opensees as ops\n", 94 | "import eSEESminiPy\n", 95 | "import os\n", 96 | "import math\n", 97 | "import numpy as numpy\n", 98 | "import matplotlib.pyplot as plt\n", 99 | "ops.wipe()\n", 100 | "# --------------------------------------------------------------------------------------------------\n", 101 | "# Example 1. portal frame in 2D\n", 102 | "# static pushover analysis of Portal Frame, with gravity.\n", 103 | "# all units are in kip, inch, second\n", 104 | "# elasticBeamColumn ELEMENT\n", 105 | "# Silvia Mazzoni and Frank McKenna, 2006\n", 106 | "#\n", 107 | "# ^Y\n", 108 | "# or\n", 109 | "# 3_________(3)________4 __\n", 110 | "# or | |\n", 111 | "# or | |\n", 112 | "# or | |\n", 113 | "# (1) (2) LCol\n", 114 | "# or | |\n", 115 | "# or | |\n", 116 | "# or | |\n", 117 | "# =1= =2= _or_ -------->X\n", 118 | "# or----------LBeam------------|\n", 119 | "#\n", 120 | "\n", 121 | "# SET UP ----------------------------------------------------------------------------\n", 122 | "ops.wipe() # clear opensees model\n", 123 | "ops.model('basic','-ndm',2,'-ndf',3) # 2 dimensions, 3 dof per node\n", 124 | "if not os.path.exists('Data'):\n", 125 | " os.mkdir('Data')\n", 126 | "\n", 127 | "# define GEOMETRY -------------------------------------------------------------\n", 128 | "# nodal coordinates:\n", 129 | "ops.node(1,0,0) # node , X Y\n", 130 | "ops.node(2,504,0)\n", 131 | "ops.node(3,0,432)\n", 132 | "ops.node(4,504,432)\n", 133 | "\n", 134 | "# Single point constraints -- Boundary Conditions\n", 135 | "ops.fix(1,1,1,1) # node DX DY RZ\n", 136 | "ops.fix(2,1,1,1) # node DX DY RZ\n", 137 | "ops.fix(3,0,0,0)\n", 138 | "ops.fix(4,0,0,0)\n", 139 | "\n", 140 | "# nodal masses:\n", 141 | "ops.mass(3,5.18,0.,0.) # node , Mx My Mz, Mass=Weight/g.\n", 142 | "ops.mass(4,5.18,0.,0.)\n", 143 | "\n", 144 | "# Define ELEMENTS -------------------------------------------------------------\n", 145 | "# define geometric transformation: performs a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-coordinate system\n", 146 | "ops.geomTransf('Linear',1) # associate a tag to transformation\n", 147 | "\n", 148 | "# connectivity: (make A very large, 10e6 times its actual value)\n", 149 | "ops.element('elasticBeamColumn',1,1,3,3600000000,4227,1080000,1) # element elasticBeamColumn eleTag iNode jNode A E Iz transfTag\n", 150 | "ops.element('elasticBeamColumn',2,2,4,3600000000,4227,1080000,1)\n", 151 | "ops.element('elasticBeamColumn',3,3,4,5760000000,4227,4423680,1)\n", 152 | "\n", 153 | "# Define RECORDERS -------------------------------------------------------------\n", 154 | "ops.recorder('Node','-file','Data/DFreeEx1bPush.out','-time','-node',3,4,'-dof',1,2,3,'disp') # displacements of free nodes\n", 155 | "ops.recorder('Node','-file','Data/DBaseEx1bPush.out','-time','-node',1,2,'-dof',1,2,3,'disp') # displacements of support nodes\n", 156 | "ops.recorder('Node','-file','Data/RBaseEx1bPush.out','-time','-node',1,2,'-dof',1,2,3,'reaction') # support reaction\n", 157 | "ops.recorder('Element','-file','Data/FColEx1bPush.out','-time','-ele',1,2,'globalForce') # element forces -- column\n", 158 | "ops.recorder('Element','-file','Data/FBeamEx1bPush.out','-time','-ele',3,'globalForce') # element forces -- beam\n", 159 | "\n", 160 | "# define GRAVITY -------------------------------------------------------------\n", 161 | "ops.timeSeries('Linear',1) # timeSeries Linear 1;\n", 162 | "# define Load Pattern\n", 163 | "ops.pattern('Plain',1,1) # \n", 164 | "ops.eleLoad('-ele',3,'-type','-beamUniform',-7.94) # distributed superstructure-weight on beam\n", 165 | "\n", 166 | "ops.wipeAnalysis() # adding this to clear Analysis module \n", 167 | "ops.constraints('Plain') # how it handles boundary conditions\n", 168 | "ops.numberer('Plain') # renumber dofs to minimize band-width (optimization), if you want to\n", 169 | "ops.system('BandGeneral') # how to store and solve the system of equations in the analysis\n", 170 | "ops.test('NormDispIncr',1.0e-8,6) # determine if convergence has been achieved at the end of an iteration step\n", 171 | "ops.algorithm('Newton') # use Newtons solution algorithm: updates tangent stiffness at every iteration\n", 172 | "ops.integrator('LoadControl',0.1) # determine the next time step for an analysis, apply gravity in 10 steps\n", 173 | "ops.analysis('Static') # define type of analysis static or transient\n", 174 | "ops.analyze(10) # perform gravity analysis\n", 175 | "ops.loadConst('-time',0.0) # hold gravity constant and restart time\n", 176 | "\n", 177 | "# define LATERAL load -------------------------------------------------------------\n", 178 | "# Lateral load pattern\n", 179 | "ops.timeSeries('Linear',2) # timeSeries Linear 2;\n", 180 | "# define Load Pattern\n", 181 | "ops.pattern('Plain',2,2) # \n", 182 | "ops.load(3,2000.,0.0,0.0) # node , FX FY MZ -- representative lateral load at top nodes\n", 183 | "ops.load(4,2000.,0.0,0.0) # place 1/2 of the weight for each node to get shear coefficient\n", 184 | " \n", 185 | "# pushover: diplacement controlled static analysis\n", 186 | "ops.integrator('DisplacementControl',3,1,0.1) # switch to displacement control, for node 11, dof 1, 0.1 increment\n", 187 | "ops.analyze(100) # apply 100 steps of pushover analysis to a displacement of 10\n", 188 | "\n", 189 | "print('Done!')\n", 190 | "\n", 191 | "\n", 192 | "\n" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 2, 198 | "metadata": {}, 199 | "outputs": [ 200 | { 201 | "data": { 202 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATaUlEQVR4nO3dfYxd9X3n8feHMSFhgQYXG7kYbLK1VB7aEjICqiBCSFMeggrK05p1WtPQ9R9GuyGsVMGy2lWktcpGSxe0AiRviNYNNJa1pcKiiJZCSQRawppgWrBhcYLBBhc7TaOEpHVt890/7jG5mBnPjOfOjOfn90u6uuf8ztP3O7r+zPG5Z+5NVSFJastRM12AJGnwDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7tIEJFmcpJLMGce61yZ5Yjrqkg5kuKtpSbYm+eckJx0wvrEL6cUzU5k0tQx3HQleAa7ZP5PkV4EPzFw50tQz3HUk+Abwu33zy4E/3j+T5BeS/HGSXUleTfIfkxzVLRtK8t+S/CDJ94FP9e+42/aeJDuSvJ7kvyQZmo6mpIMx3HUkeAo4IckZXfD+K+DevuX/A/gF4EPAx+j9Ivi9btm/Aa4EPgwMA589YN9rgL3AL3fr/Bbw+1PThjR+hruOFPvP3j8JvAi83o3vD/ubq+onVbUVuA34nW7554Hbq2pbVf0Q+MP9O0xyMnA5cENV/bSqdgL/HVg6Df1IBzXmO/5SI74BfBs4nb5LMsBJwPuAV/vGXgVO6aZ/Cdh2wLL9FgFHAzuS7B876oD1pRlhuOuIUFWvJnkFuAK4rm/RD4A99IJ6Uzd2Gj8/s98BnNq3/ml909uA3cBJVbV3KuqWDpWXZXQkuQ64pKp+2je2D1gHrEpyfJJFwI38/Jr8OuDfJVmY5ETgpv0bVtUO4C+B25KckOSoJP8yycempRvpIAx3HTGq6ntVtWGERf8W+CnwfeAJ4E+Ar3fL/ifwF8BzwHeB+w/Y9nfpXdbZBPwD8L+BBQMvXpqg+GUdktQez9wlqUGGuyQ1yHCXpAYZ7pLUoMPiPveTTjqpFi9ePNNlSNKs8swzz/ygquaNtOywCPfFixezYcNId6iN0z/9E1x0EezeDXv3wmc/C1/5yuAK1BHNl5emxb59MDwMp5wCDz44rk2SvDrassMi3CftmGPgscfguONgzx648EK4/HK44IKZrkwN8OWlaXHHHXDGGfDjHw9kd21cc096//Kg969vz57emDQAvrw05bZvhz//c/j9wX2gaBvhDr3/0pxzDsyfD5/8JJx//kxXpIb48tKUuuEG+OpX4ajBRXI74T40BBs39n4DPv00PP/8TFekhvjy0pR58MHeWcNHPjLQ3bYT7vt98INw8cXw8MMzXYka5MtLA/fkk7B+PSxeDEuX9t7g+cIXJr3bWR3uK1euZM6cOcxL+MWhIVauXAn/+I/wV38Fv/IrM12eGrFrF/zoR71pX14alP35lVtvZc7f/R0rr7gC1q6FSy6Be+8dewdjmLV3y6xcuZK7774b6H0E35q332bo7rt5Y+1afumGG+DKK2e2QDVjxw5Yvrx33f3tt+Hzn/flpcnpzy+Affv2cffdd7Pk9df58oCOcVh8KuTw8HBN9D73OXPmsG/fvhGXfexjfpy2pMPXt771rRHHh4aG2Lt3/N/7kuSZqhoeadmsvSwzWrBL0mw1yFybtZdlhoaGRvxBDA0N8fjjj09/QZI0TqNdeRgaGhrYMWbtmfuKFSsmNC5Jh4vpyK9Ze+Z+1113AbzzpsTQ0BArVqx4Z1ySDlfTkV+z9g3V/S6++GIAL8VImnUmm19NvqEqSRqd4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaNO5wTzKU5NkkD3bzc5M8kuTl7vnEvnVvTrIlyUtJLp2KwiVJo5vImfuXgM198zcBj1bVEuDRbp4kZwJLgbOAy4C7kgzuAxMkSWMaV7gnWQh8Cvha3/BVwJpueg1wdd/42qraXVWvAFuA8wZTriRpPMZ75n478AfA231jJ1fVDoDueX43fgqwrW+97d3YuyRZkWRDkg27du2acOGSpNGNGe5JrgR2VtUz49xnRhh7zwfYVNXqqhququF58+aNc9eSpPEYz6dCfhT47SRXAO8HTkhyL/BmkgVVtSPJAmBnt/524NS+7RcCbwyyaEnSwY155l5VN1fVwqpaTO+N0seq6gvAemB5t9py4IFuej2wNMkxSU4HlgBPD7xySdKoJvN57rcC65JcB7wGfA6gql5Isg7YBOwFrq8qvxNPkqbRhMK9qh4HHu+m/x74xCjrrQJWTbI2SdIh8i9UJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktSgMcM9yfuTPJ3kuSQvJPlKNz43ySNJXu6eT+zb5uYkW5K8lOTSqWxAkvRe4zlz3w1cUlW/DpwDXJbkAuAm4NGqWgI82s2T5ExgKXAWcBlwV5KhqShekjSyMcO9et7qZo/uHgVcBazpxtcAV3fTVwFrq2p3Vb0CbAHOG2jVkqSDGtc19yRDSTYCO4FHquo7wMlVtQOge57frX4KsK1v8+3dmCRpmowr3KtqX1WdAywEzkty9kFWz0i7eM9KyYokG5Js2LVr1/iqlSSNy4TulqmqHwGP07uW/maSBQDd885ute3AqX2bLQTeGGFfq6tquKqG582bdwilS5JGM567ZeYl+WA3/QHgN4EXgfXA8m615cAD3fR6YGmSY5KcDiwBnh504ZKk0c0ZxzoLgDXdHS9HAeuq6sEk/wdYl+Q64DXgcwBV9UKSdcAmYC9wfVXtm5ryJUkjGTPcq+pvgA+PMP73wCdG2WYVsGrS1UmSDol/oSpJDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWpQM+H+xS/C/Plw9tkzXYkkTcy2bfDxj8MZZ8BZZ8Edd0x+n82E+7XXwsMPz3QVkjRxc+bAbbfB5s3w1FNw552wadPk9tlMuF90EcydO9NVSNLELVgA557bmz7++N4Z/OuvT26fzYS7JLVg61Z49lk4//zJ7cdwl6TDxFtvwWc+A7ffDiecMLl9Ge6SdBjYs6cX7MuWwac/Pfn9Ge6SNMOq4Lrretfab7xxMPtsJtyvuQZ+4zfgpZdg4UK4556ZrkiSxufJJ+Eb34DHHoNzzuk9HnpocvucM5jSZt43vznTFUjSobnwwt7Z+yA1c+YuSfo5w12SGmS4S1KDDHdJatCY4Z7k1CR/nWRzkheSfKkbn5vkkSQvd88n9m1zc5ItSV5KculUNiBJeq/xnLnvBf59VZ0BXABcn+RM4Cbg0apaAjzazdMtWwqcBVwG3JVkaCqKlySNbMxwr6odVfXdbvonwGbgFOAqYE232hrg6m76KmBtVe2uqleALcB5gy5ckjS6CV1zT7IY+DDwHeDkqtoBvV8AwPxutVOAbX2bbe/GDtzXiiQbkmzYtWvXxCuXJI1q3OGe5DjgT4EbqurHB1t1hLH33J5fVaurariqhufNmzfeMiRJ4zCucE9yNL1gv6+q7u+G30yyoFu+ANjZjW8HTu3bfCHwxmDKlSSNx3julglwD7C5qv6ob9F6YHk3vRx4oG98aZJjkpwOLAGeHlzJkqSxjOezZT4K/A7wt0k2dmP/AbgVWJfkOuA14HMAVfVCknXAJnp32lxfVfsGXrkkaVRjhntVPcHI19EBPjHKNquAVZOoS5I0Cf6FqiQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoPGDPckX0+yM8nzfWNzkzyS5OXu+cS+ZTcn2ZLkpSSXTlXhkqTRjefM/X8Blx0wdhPwaFUtAR7t5klyJrAUOKvb5q4kQwOrVpI0LmOGe1V9G/jhAcNXAWu66TXA1X3ja6tqd1W9AmwBzhtQrZKkcTrUa+4nV9UOgO55fjd+CrCtb73t3dh7JFmRZEOSDbt27TrEMiRJIxn0G6oZYaxGWrGqVlfVcFUNz5s3b8BlSNKR7VDD/c0kCwC6553d+Hbg1L71FgJvHHp5kqRDcajhvh5Y3k0vBx7oG1+a5JgkpwNLgKcnV6IkaaLmjLVCkm8CFwMnJdkO/GfgVmBdkuuA14DPAVTVC0nWAZuAvcD1VbVvimqXJI1izHCvqmtGWfSJUdZfBayaTFGSpMnxL1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWpQO+H+xS/C/Plw9tkzXYkkTcy2bfDxj8MZZ8BZZ8Edd0x6l+2E+7XXwsMPz3QVkjRxc+bAbbfB5s3w1FNw552wadOkdtlOuF90EcydO9NVSNLELVgA557bmz7++N4Z/OuvT2qX7YS7JLVg61Z49lk4//xJ7cZwl6TDxVtvwWc+A7ffDiecMKldGe6SdDjYs6cX7MuWwac/PendzRlASSNKchlwBzAEfK2qbh30Me677z6eeuopdu/ezeLFi7n9hhu4etAHkaQp8K78WrSIx047jQ995CNw440D2f+UnLknGQLuBC4HzgSuSXLmII9x3333sWLFCnbv3g3AH776Khd8+cu8/eKLsHAh3HPPIA8nSQNzYH4tfO01PvTEE/zD/ffDOef0Hg89NKljTNWZ+3nAlqr6PkCStcBVwOTu7elzyy238LOf/eyd+X/dPS9auJCtW7cO6jCSNHAH5teTQIBFRx3F1o0bB3KMqbrmfgqwrW9+ezf2jiQrkmxIsmHXrl0TPsBrr702oXFJOlxMR35NVbhnhLF610zV6qoarqrhefPmTfgAp5122oTGJelwMR35NVXhvh04tW9+IfDGIA+watUqjj322HeNHXvssaxatWqQh5GkgZuO/JqqcP+/wJIkpyd5H7AUWD/IAyxbtozVq1ezaNEikrBo0SJWr17NsmXLBnkYSRq46civVNXYax3KjpMrgNvp3Qr59aoa9VfS8PBwbdiwYUrqkKRWJXmmqoZHWjZl97lX1UPA5O7lkSQdEv9CVZIaZLhLUoMMd0lqkOEuSQ2asrtlJlREsgt4dRK7OAn4wYDKmQ3st31HWs/2e2gWVdWIfwV6WIT7ZCXZMNrtQC2y3/YdaT3b7+B5WUaSGmS4S1KDWgn31TNdwDSz3/YdaT3b74A1cc1dkvRurZy5S5L6GO6S1KBZHe5JLkvyUpItSW6a6XoGIcnXk+xM8nzf2NwkjyR5uXs+sW/ZzV3/LyW5dGaqnpwkpyb56ySbk7yQ5EvdeJN9J3l/kqeTPNf1+5VuvMl+90sylOTZJA928633uzXJ3ybZmGRDNzZ9PVfVrHzQ+yjh7wEfAt4HPAecOdN1DaCvi4Bzgef7xr4K3NRN3wT81276zK7vY4DTu5/H0Ez3cAg9LwDO7aaPB/5f11uTfdP7prLjuumjge8AF7Tab1/fNwJ/AjzYzbfe71bgpAPGpq3n2Xzm/s6XcFfVPwP7v4R7VquqbwM/PGD4KmBNN70GuLpvfG1V7a6qV4At9H4us0pV7aiq73bTPwE20/vO3Sb7rp63utmju0fRaL8ASRYCnwK+1jfcbL8HMW09z+ZwH/NLuBtyclXtgF4QAvO78eZ+BkkWAx+mdzbbbN/dJYqNwE7gkapqul96X9zzB8DbfWMt9wu9X9h/meSZJCu6sWnrecq+rGMajPkl3EeApn4GSY4D/hS4oap+nIzUXm/VEcZmVd9VtQ84J8kHgT9LcvZBVp/V/Sa5EthZVc8kuXg8m4wwNmv67fPRqnojyXzgkSQvHmTdgfc8m8/cp/xLuA8jbyZZANA97+zGm/kZJDmaXrDfV1X3d8PN911VPwIeBy6j3X4/Cvx2kq30Lp9ekuRe2u0XgKp6o3veCfwZvcss09bzbA73Kf8S7sPIemB5N70ceKBvfGmSY5KcDiwBnp6B+iYlvVP0e4DNVfVHfYua7DvJvO6MnSQfAH4TeJFG+62qm6tqYVUtpvfv9LGq+gKN9guQ5F8kOX7/NPBbwPNMZ88z/Y7yJN+NvoLenRXfA26Z6XoG1NM3gR3AHnq/za8DfhF4FHi5e57bt/4tXf8vAZfPdP2H2POF9P4L+jfAxu5xRat9A78GPNv1+zzwn7rxJvs9oPeL+fndMs32S+8uvue6xwv782k6e/bjBySpQbP5sowkaRSGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQ/weCTboaHWIhiAAAAABJRU5ErkJggg==\n", 203 | "text/plain": [ 204 | "
    " 205 | ] 206 | }, 207 | "metadata": { 208 | "needs_background": "light" 209 | }, 210 | "output_type": "display_data" 211 | } 212 | ], 213 | "source": [ 214 | "eSEESminiPy.drawModel()" 215 | ] 216 | }, 217 | { 218 | "cell_type": "code", 219 | "execution_count": 3, 220 | "metadata": {}, 221 | "outputs": [ 222 | { 223 | "data": { 224 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd8UlEQVR4nO3df5Bdd33e8fejtXYtrWRrV78saaWV1nY8tWmKGcV4QielgcYOmJiJ68ZuYdSWxkNCE6CZEju0zaSNDXQazHQKQwkwqEBx3AC1Y2gb1+DJpCUYGQzYGNfn7Gq1+i3tSsK7krXS7qd/3LPORd7VrqRz9/y4z2vmzr333HPu+Xz3Ss/57tnPvVcRgZmZ1cuSogswM7P8OdzNzGrI4W5mVkMOdzOzGnK4m5nVkMPdzKyGHO5WapJ+Q9IhSeOSVhddTzNJn5P0hxe57W5Jb867JrMZDndrmSzATkl6SdJxSf9X0rslLejfnaSlwEeBX4qIFREx2tqK8yOpU9IfSdqbHZiGJD1YdF3WPhzu1mpvi4iVQD/wYeB3gc8scNv1wOXAcxe6UzUU+e/7PmA7cBOwEvi7wPcKrMfajMPdFkVEnIiIR4FfA3ZIeg2ApC5J/0HSnuz0yyclLZP0M8AL2ebHJX0jW//nJX1H0ons+udn9iHpSUn3S/o/wElgQFJI+k1JL2a/Qfw7SVdL+pakn0h6WFJn03PcJumZpt80frbpsRslfTd7nj+hceCZy88BX42I/dGwOyL+yznrvFbSD7Kx/Imky7P99Eh6TNIRScey233njPNDkp7Ktn1EUm/T4zdntR+X9H1Jb7yAl8rqIiJ88aUlF2A38OZZlu8BfiO7/THgUaCXxgz3z4APZY9tBQK4LLvfCxwD3glcBtyd3V+dPf5k9tw3ZI8vzbZ/FLgiW34aeAIYAK4EfgTsyLZ/HXAYeD3QAezIxtAFdALDwPuz5/37wBngD+cY+7/KavlN4G8CmuVn8xSwMRvX88C7s8dWA3cAy7OfyX8D/nvTtk8C+4DXAN3Al4EvZI9tAkaBt9CYvP297P7aov89+LK4F8/crQj7gV5JAn4deH9EjEXES8ADwF1zbPdW4MWI+HxEnI2ILwE/Bt7WtM7nIuK57PEz2bKPRMRPIuI54FngzyNiMCJOAP8DuDFb79eB/xwR346IqYjYSeNgcHN2WQp8LCLORMSfAt85zxg/BHwE+EfALmCfpB3nrPMfozGzH6NxUHstQESMRsSXI+Jk9jO5H/g752z7+Yh4NiImgH8N/ANJHcA7gK9HxNcjYjoiHs/2/5bz1Go1dFnRBVhb2gSMAWtpzE6fbuQ8AKIxa57NRhqz52bD2fPNGJllu0NNt0/Ncv+q7HY/jVNGv9X0eGe23wD2RUTzJ+2dW8srImIK+DjwcUnLgH8KfFbSUxHxfLbawaZNTmb7QdJy4EHgVqAne3ylpI7sec8d5zCNA8+abAx3Smo+4C0FvjlXrVZPnrnbopL0czTC+C+BozTC9YaIWJVdroyIFXNsvp9GeDXbQuMUxYxL+ZjTEeD+plpWRcTy7DeEA8AmNR2Fsn3PKyJORcTHaZxCun4Bm/wOcB3w+oi4AviFbHnzvjefU8cZGj/PERqz+uYxdEfEhxdSq9WHw90WhaQrJN0GPETj/PAPI2Ia+GPgQUnrsvU2Sbpljqf5OvAzkv6hpMsk/RqNsHwspzL/GHi3pNdn3Tbdkt4qaSXwLeAs8NvZvn+VRifMXON9n6Q3Zn8cviw7JbOShXXMrKRx0Due/aH092dZ5x2Srs9m+f8W+NNsVv8F4G2SbpHUIenyrI6+WZ7Daszhbq32Z5JeojGj/CCNvvV/0vT47wIJ8FeSfgL8bxqz1leJRp/7bTRmtqPAB4DbIuJoHoVGxC4a593/E41ZdgL84+yxSeBXs/vHaHT9fOU8T3cK+CMap16OAu8B7oiIwQWU8jFgWbbdXwH/c5Z1Pg98Lnv+y4HfzuocAW4Hfg84QuPn/i/x//W2o58+hWhmZSfpSRq//Xy66FqsvHw0NzOrIYe7mVkN+bSMmVkNeeZuZlZDpXgT05o1a2Lr1q1Fl2FmVilPP/300YhYO9tjpQj3rVu3smvXrqLLMDOrFElzvkvap2XMzGrI4W5mVkMOdzOzGnK4m5nVkMPdzKyGHO5mZjXkcDczq6FS9LlfigceeIDx8XHWrp21jz9XX/ziFzl8+DCdnZ3zr2xmlXPmzBk6OjrYsmVB38Nyyfbu3ct1113H1772tdyfu/LhPj4+zunTpxdlXxMTE0xOTjrczWpqenp6Ufc3MjLSsjypfLjPzNjf//73t3xfDzzwAHfccQef/OQnW74vM1t8Dz74ILA4eXLq1CmWL1/O3Xff3ZLn9zn3BTp+/DhHjx7l6quvLroUM6uBwcHGl3K1KlMc7guUpikA11xzTcGVmFkdJEkCtC5THO4LNBPunrmbWR5anSkO9wWaOco63M0sD0mSsGrVKnp7e1vy/A73BUrTlA0bNtDd3V10KWZWA2macs011yCpJc/vcF+gJEk8azez3LQ6UxzuC5Qkif+Yama5OHPmDMPDwy3NFIf7Apw8eZL9+/d75m5muRgeHmZqasoz96LN9KN65m5meWh1GyQ43BfEbZBmlqfFyJQFh7ukDknfk/RYdr9X0uOSXsyue5rWvU9SIukFSbe0ovDFtBhHWTNrH0mSsGzZMjZs2NCyfVzIzP29wPNN9+8FnoiIa4EnsvtIuh64C7gBuBX4hKSOfMotRpqm9Pb20tPTM//KZmbzaHUbJCww3CX1AW8FPt20+HZgZ3Z7J/D2puUPRcTpiBgCEuCmfMothtsgzSxPi5EpC525fwz4AND8eZjrI+IAQHa9Llu+CRhpWm9vtuynSLpH0i5Ju44cOXLBhS8mt0GaWV6mp6cZHBxseabMG+6SbgMOR8TTC3zO2X7PiFctiPhURGyPiO2L8UUbF2tycpLh4WHP3M0sF/v27eP06dMtz5SFfJ77G4BfkfQW4HLgCklfAA5J2hARByRtAA5n6+8FNjdt3wfsz7PoxTQ8PMz09LRn7maWi8Vq0Jh35h4R90VEX0RspfGH0m9ExDuAR4Ed2Wo7gEey248Cd0nqkrQNuBZ4KvfKF4nbIM0sT4uVKZfyTUwfBh6W9C5gD3AnQEQ8J+lh4EfAWeA9ETF1yZUWxG2QZpanJElYunQpmzdvnn/lS3BB4R4RTwJPZrdHgTfNsd79wP2XWFspJElCd3c369evL7oUM6uBNE3Ztm0bl13W2m859TtU55GmKVdffXVL+1HNrH0sVmu1w30eboM0s7xExKJlisP9PKamphgcHPQfU80sF0eOHGF8fNwz96Lt27ePyclJz9zNLBeL2aDhcD8Pt0GaWZ4WM1Mc7ufhNkgzy1OSJEhi27ZtLd+Xw/08kiShs7OTvr6+oksxsxpI05QtW7bQ1dXV8n053M9jph+1o6PSn1hsZiWxmJ8w63A/D7dBmlmeFjNTHO5ziIhX3sBkZnapjh8/zujoqGfuRTt8+DDj4+OeuZtZLmY6ZTxzL9hivxBmVm8O95KYaYP0aRkzy8NMpgwMDCzK/hzuc0iShCVLlrB169aiSzGzGkjTlKuuuooVK1Ysyv4c7nOY6Uft7OwsuhQzq4HFbIMEh/uc3AZpZnla7ExxuM/BbZBmlpeTJ0+yf/9+z9yLduzYMUZHRz1zN7NcDA4OAovbfedwn4XbIM0sT0VkisN9Fv6oXzPLUxGt1Q73WSx2P6qZ1VuapvT09NDb27to+3S4zyJNUzZs2EB3d3fRpZhZDSx2GyQ43GflNkgzy1MRmeJwn4XbIM0sL5OTkwwPD3vmXrSJiQn279/vmbuZ5WJ4eJjp6WnP3ItWRD+qmdVXUa3VDvdzuA3SzPJU1CfMOtzP4Y/6NbM8JUnC8uXLueqqqxZ1vw73c6RpSm9vLz09PUWXYmY1MNOgIWlR9+twP4fbIM0sT0VlisP9HG6DNLO8TE1NMTg4WEimONybzPSjeuZuZnnYt28fk5OTnrkXbffu3YX0o5pZPRX5CbMO9yZugzSzPBXZfedwbzLzQnjmbmZ5SJKEpUuXsnnz5kXft8O9SZqmdHd3s27duqJLMbMaSNOUbdu20dHRsej7njfcJV0u6SlJ35f0nKQ/yJb3Snpc0ovZdU/TNvdJSiS9IOmWVg4gTzMtS4vdj2pm9VRka/VCZu6ngV+MiL8FvBa4VdLNwL3AExFxLfBEdh9J1wN3ATcAtwKfkLT4h62LUMRnLptZPUVEoa3V84Z7NIxnd5dmlwBuB3Zmy3cCb89u3w48FBGnI2IISICbcq26BaamphgaGvL5djPLxeHDhxkfHy/1zB1JHZKeAQ4Dj0fEt4H1EXEAILueOVG9CRhp2nxvtqzU9u7dW1g/qpnVT5FtkLDAcI+IqYh4LdAH3CTpNedZfbYT1vGqlaR7JO2StOvIkSMLq7aF3AZpZnkq+kMIL6hbJiKOA0/SOJd+SNIGgOz6cLbaXqC576cP2D/Lc30qIrZHxPa1a9deROn5chukmeUpSRKWLFnC1q1bC9n/Qrpl1kpald1eBrwZ+DHwKLAjW20H8Eh2+1HgLkldkrYB1wJP5V143tI0pbOzk02bSn8GycwqIE1TNm/eTFdXVyH7v2wB62wAdmYdL0uAhyPiMUnfAh6W9C5gD3AnQEQ8J+lh4EfAWeA9ETHVmvLzkyQJAwMDhfSjmln9FP0Js/OGe0T8ALhxluWjwJvm2OZ+4P5Lrm4RuQ3SzPKUpil33HFHYfv3O1T5635Un283szwcP36c0dHRQjPF4Q4cOnSIiYkJh7uZ5aLoNkhwuANugzSzfBXdBgkOd8BtkGaWL4d7Scz0o/b39xddipnVQJqmXHXVVXR3dxdWg8OdxgvR399PZ2dn0aWYWQ0U3QYJDnegHC+EmdVHGbrvHO5Q6Mdymlm9nDx5kv379xeeKW0f7seOHWNsbKzwo6yZ1cPg4CBQfING24e72yDNLE9l6JQBh7vbIM0sV2XJFId79kIMDAwUXImZ1UGapvT09NDT0zP/yi3U9uGepikbN25k+fLlRZdiZjVQlu67tg/3srwQZlYPZWiDBIe72yDNLDeTk5MMDw+XIlPaOtwnJiY4cOBAKY6yZlZ9w8PDTE9PlyJT2jrcZ/pRy3CUNbPqK0sbJLR5uJelZcnM6qFMmeJwpxxHWTOrvjRN6e7uZv369UWX0t7hnqYpq1evZtWqVUWXYmY1MPNdzJKKLqW9w91tkGaWp7K0QUKbh7vbIM0sL1NTUwwODpYmU9o23E+fPs2ePXtKc5Q1s2rbu3cvk5OTpcmUtg333bt3Mz09XZqjrJlVW9k+YbZtw33mhSjLUdbMqq1MbZDQxuHuNkgzy1OapixdupS+vr6iSwHaONzTNGXFihWsW7eu6FLMrAaSJGFgYICOjo6iSwHaONxn2iDL0I9qZtVXpjZIaONwdxukmeUlIl55A1NZtGW4z/Sjlukoa2bVdejQISYmJkqVKW0Z7iMjI5w5c6ZUR1kzq66ytUFCm4a72yDNLE9la4OENg13t0GaWZ7SNGXJkiVs3bq16FJe0ZbhnqYpXV1dpelHNbNqS5KELVu20NnZWXQpr2jLcJ/pR12ypC2Hb2Y5K1sbJLRpuLsN0szyVLY2SGjDcJ/pRy3bUdbMqunYsWOMjY2VLlPmDXdJmyV9U9Lzkp6T9N5sea+kxyW9mF33NG1zn6RE0guSbmnlAC7UwYMHOXnyZOmOsmZWTWVsg4SFzdzPAr8TEX8DuBl4j6TrgXuBJyLiWuCJ7D7ZY3cBNwC3Ap+QVI4PW8BtkGaWrzK2QcICwj0iDkTEd7PbLwHPA5uA24Gd2Wo7gbdnt28HHoqI0xExBCTATXkXfrHcBmlmeZqZMA4MDBRcyU+7oHPukrYCNwLfBtZHxAFoHACAmY9X3ASMNG22N1t27nPdI2mXpF1Hjhy58MovUpqmdHR00N/fv2j7NLP6SpKEDRs20N3dXXQpP2XB4S5pBfBl4H0R8ZPzrTrLsnjVgohPRcT2iNi+du3ahZZxyZIkob+/v1T9qGZWXWVsg4QFhrukpTSC/YsR8ZVs8SFJG7LHNwCHs+V7gc1Nm/cB+/Mp99KVsWXJzKqrrJmykG4ZAZ8Bno+IjzY99CiwI7u9A3ikafldkrokbQOuBZ7Kr+RLU9ajrJlVz8TEBAcOHChlply2gHXeALwT+KGkZ7Jlvwd8GHhY0ruAPcCdABHxnKSHgR/R6LR5T0RM5V75RRgbG+PYsWOlPMqaWfUMDg4C5WzQmDfcI+Ivmf08OsCb5tjmfuD+S6irJdwGaWZ5KmsbJLTZO1TL/EKYWfWU9Q1M0GbhXtZ+VDOrpiRJ6O3tpaenZ/6VF1lbhXuSJGzatIlly5YVXYqZ1UCZGzTaLtzL+OuTmVVTmTOlrcK9zEdZM6uWyclJ9uzZU9pMaZtwHx8f5+DBg6U9yppZtezevZvp6enSZkrbhPtMP2pZj7JmVi1l775rm3Av+wthZtVS9vfNtF24l/VXKDOrliRJ6O7uZt26dfOvXIC2Cfc0TVmzZg1XXnll0aWYWQ3MNGg0Pn6rfNom3MvcsmRm1VP2TGmbcHcbpJnlZWpqisHBwVJnSluE++nTp9mzZ0+pj7JmVh179+7lzJkzpc6Utgj33bt3ExGlPsqaWXVUofuuLcK9Ci+EmVVH2dsgoc3Cvcy/QplZdSRJQmdnJ5s2bSq6lDm1RbinacrKlStZzC/iNrP6SpKEgYEBOjo6ii5lTm0R7jMtS2XtRzWzaknTtPRnAtoi3N0GaWZ5iYhKZErtw31qaoqhoaHSH2XNrBoOHTrExMRE6TOl9uE+MjLCmTNnSn+UNbNqqEr3Xe3DvSovhJlVQxXaIKGNwr3sv0KZWTUkScKSJUvo7+8vupTzqn24p2lKV1dXqftRzaw6kiShv7+fzs7Ooks5r9qH+0w/6pIltR+qmS2CKrRBQhuEexValsysOpIkqUSm1DrcI6L0n7lsZtUxNjbGsWPHKpEptQ73AwcOcOrUqUocZc2s/KrSKQM1D/cqvRBmVn5VypRah7vbIM0sTzOZMjAwUHAl86t1uKdpSkdHR+n7Uc2sGpIkYePGjSxfvrzoUuZV63Cf6UddunRp0aWYWQ1UpQ0Sah7uboM0szxVpQ0SahzuEcGLL75YmaOsmZXbxMQEBw8erEym1Dbcx8bGOHHiRGWOsmZWblXqlIEah3vVXggzK7eqZUptw91tkGaWp6plyrzhLumzkg5LerZpWa+kxyW9mF33ND12n6RE0guSbmlV4fOZOcpWoR/VzMovSRJWr17NqlWrii5lQRYyc/8ccOs5y+4FnoiIa4EnsvtIuh64C7gh2+YTkgr5evAkSdi0aRPLli0rYvdmVjNVaoOEBYR7RPwFMHbO4tuBndntncDbm5Y/FBGnI2IISICbcqr1grgN0szyVKU2SLj4c+7rI+IAQHa9Llu+CRhpWm9vtuxVJN0jaZekXUeOHLnIMuZWtRfCzMrr9OnTjIyMVCpT8v6DqmZZFrOtGBGfiojtEbF97dq1uRbx0ksvcejQoUr9CmVm5bV7926mp6crlSkXG+6HJG0AyK4PZ8v3Apub1usD9l98eRdncHAQqE7LkpmVW9XaIOHiw/1RYEd2ewfwSNPyuyR1SdoGXAs8dWklXriqtSyZWblVMVMum28FSV8C3giskbQX+H3gw8DDkt4F7AHuBIiI5yQ9DPwIOAu8JyKmWlT7nGaOslV6IcysvJIkYcWKFaxbt27+lUti3nCPiLvneOhNc6x/P3D/pRR1qZIkYc2aNVx55ZVFlmFmNTHTBinN9mfFcqrlO1TdKWNmeapiptQy3N3jbmZ5mZqaYmhoqHKZUrtwn+lH9fl2M8vDyMgIZ86cqVym1C7ch4aGiIjKHWXNrJyq2AYJNQz3KrYsmVl5VTVTahfuVT3Kmlk5JUlCV1cXfX19RZdyQWoX7kmSsHLlStasWVN0KWZWA2masm3bNpYsqVZcVqvaBZhpWapSP6qZlVcV2yChhuHuNkgzy0tEVDZTahXuZ8+eZWhoqHJ/+DCzcjp48CAnT56sZKbUKtxHRkY4e/ZsJY+yZlY+M50yVcyUWoV7VVuWzKycqvwhhLUM9yoeZc2sfJIkoaOjg/7+/qJLuWC1Cvc0Tenq6mLjxo1Fl2JmNZCmKVu2bKGzs7PoUi5YrcI9SRKuvvrqyvWjmlk5VbUNEmoW7lVtWTKzcqpyptQm3Gf6Uav4hw8zK5+xsTGOHTtW2UypTbgfOHCAU6dOVfYoa2blUvUGjdqEu9sgzSxPVW6DhBqGe1WPsmZWLjOZMjAwUHAlF6c24Z6mKR0dHWzZsqXoUsysBtI0ZePGjSxfvrzoUi5KbcI9SRK2bt3K0qVLiy7FzGqgym2QUKNwr3LLkpmVT9UzpRbhHhGvvIHJzOxSjY+Pc/DgwUpnSi3C/eTJk5w4caLSR1kzK486fF1nLcL96NGjQHVblsysXKreBgk1C/cqH2XNrDzq8L6Z2oS7pMr2o5pZuaRpypo1a1i1alXRpVy0WoT76OgomzZt4vLLLy+6FDOrgTo0aNQi3I8ePepTMmaWm6q3QUKNwr3qR1kzK4ezZ8+yZ8+eymdK5cP95ZdfZnx8vPJHWTMrh9HRUSKi8plS+XAfHR0Fqv1XbTMrj7pkSuXD3W2QZpanumRKbcK96kdZMyuHo0ePsnLlStauXVt0KZekFuG+YsUKrrjiiqJLMbMamGnQkFR0KZek8uE+OjrKmjVrii7DzGpidHS08qdkoIXhLulWSS9ISiTd26r9HD16lNWrV7fq6c2sjUxNTTE2NlaL07wtCXdJHcDHgV8GrgfulnR93vt5+eWXOXHihGfuZpaL48ePMzU15Zn7edwEJBExGBGTwEPA7XnvZGhoiIjwzN3MclGXNkhoXbhvAkaa7u/Nlr1C0j2SdknadeTIkYvaiSRuvvlmbrzxxouv1Mws09fXx0033cR1111XdCmXTBGR/5NKdwK3RMQ/y+6/E7gpIn5rtvW3b98eu3btyr0OM7M6k/R0RGyf7bFWzdz3Apub7vcB+1u0LzMzO0erwv07wLWStknqBO4CHm3RvszM7ByXteJJI+KspH8O/C+gA/hsRDzXin2ZmdmrtSTcASLi68DXW/X8ZmY2t8q/Q9XMzF7N4W5mVkMOdzOzGnK4m5nVUEvexHTBRUhHgOFLeIo1wNGcyimTuo4LPLaq8tjKpT8iZv3g+VKE+6WStGuud2lVWV3HBR5bVXls1eHTMmZmNeRwNzOrobqE+6eKLqBF6jou8NiqymOriFqcczczs59Wl5m7mZk1cbibmdVQpcN9sb6Eu1UkfVbSYUnPNi3rlfS4pBez656mx+7LxvqCpFuKqXphJG2W9E1Jz0t6TtJ7s+WVH5+kyyU9Jen72dj+IFte+bFB4zuQJX1P0mPZ/bqMa7ekH0p6RtKubFktxjariKjkhcZHCafAANAJfB+4vui6LnAMvwC8Dni2adm/B+7Nbt8LfCS7fX02xi5gWzb2jqLHcJ6xbQBel91eCfy/bAyVHx8gYEV2eynwbeDmOowtq/dfAP8VeKxm/yZ3A2vOWVaLsc12qfLMfVG+hLuVIuIvgLFzFt8O7Mxu7wTe3rT8oYg4HRFDQELjZ1BKEXEgIr6b3X4JeJ7G9+hWfnzRMJ7dXZpdghqMTVIf8Fbg002LKz+u86jt2Koc7vN+CXdFrY+IA9AISGBdtryy45W0FbiRxgy3FuPLTl08AxwGHo+IuoztY8AHgOmmZXUYFzQOwH8u6WlJ92TL6jK2V2nZl3UsAs2yrM59nZUcr6QVwJeB90XET6TZhtFYdZZlpR1fREwBr5W0CviqpNecZ/VKjE3SbcDhiHha0hsXssksy0o3riZviIj9ktYBj0v68XnWrdrYXqXKM/e6fgn3IUkbALLrw9nyyo1X0lIawf7FiPhKtrg24wOIiOPAk8CtVH9sbwB+RdJuGqc5f1HSF6j+uACIiP3Z9WHgqzROs9RibLOpcrjX9Uu4HwV2ZLd3AI80Lb9LUpekbcC1wFMF1LcgakzRPwM8HxEfbXqo8uOTtDabsSNpGfBm4MdUfGwRcV9E9EXEVhr/n74REe+g4uMCkNQtaeXMbeCXgGepwdjmVPRfdC/lAryFRhdGCnyw6Houov4vAQeAMzRmCu8CVgNPAC9m171N638wG+sLwC8XXf88Y/vbNH6N/QHwTHZ5Sx3GB/ws8L1sbM8C/yZbXvmxNdX7Rv66W6by46LRVff97PLcTF7UYWxzXfzxA2ZmNVTl0zJmZjYHh7uZWQ053M3MasjhbmZWQw53M7MacribmdWQw93MrIb+Py746pHvqljtAAAAAElFTkSuQmCC\n", 225 | "text/plain": [ 226 | "
    " 227 | ] 228 | }, 229 | "metadata": { 230 | "needs_background": "light" 231 | }, 232 | "output_type": "display_data" 233 | } 234 | ], 235 | "source": [ 236 | "# plot deformed shape at end of analysis (it may have returned to rest)\n", 237 | "# amplify the deformtions by 5\n", 238 | "eSEESminiPy.drawDeformedShape(5)" 239 | ] 240 | }, 241 | { 242 | "cell_type": "code", 243 | "execution_count": 4, 244 | "metadata": {}, 245 | "outputs": [ 246 | { 247 | "name": "stdout", 248 | "output_type": "stream", 249 | "text": [ 250 | "End of Run: pyEx1b.Portal2D.Push.tcl.py\n" 251 | ] 252 | }, 253 | { 254 | "data": { 255 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hc5ZX48e9Rs2zLcpNm5C7LRZItio0AGxsjWQbLkABpS1hCSCUFElKWLAn5hU2y2U02u3nSdpOQkECWbFhCwoawaxtchIHQbNMkJPeKLY3kpmKrzvn9ca/MYFRGUzSamfN5nnk8987ce89r2Weu3nnf94iqYowxJnmkxDoAY4wxw8sSvzHGJBlL/MYYk2Qs8RtjTJKxxG+MMUnGEr8xxiQZS/xmxBCR+0XkH2MdRzBEREVkbqzjCJaI5Lsxp0Xh3P8gIg9G+rwmeizxm5CIyH4ROSMirQGPnw5yTIaIPOIeqyJSFsb1y0TE7163RUR2iMhHwzjX4TBiuVNEqt049onInee8riLS5sZ6TEQ2isgNg5wz8Jg3ReQHIpIaaoxDJSJVIvKJ4bqeGV6W+E043q2qWQGP24M45hngQ0B9BK5/RFWzgGzg74FfisiCoZwgQnfAAnwYmAhUAreLyAfPec8FbqyFwP3AT0XknkHO23tMBfC3wCcjEKsxlvhNZInIz0TkkYDt77l3uKKqnar6Q1V9Bujp5xQ5IvKke/f8lIjMGuya6vgf4ASwQERGicgPReSI+/ihiIxy4ykTkcMi8vciUg/8HlgLTA34zWWqiFwiIs+JyEkROSoiPxWRjH6u/y+qul1Vu1V1B/BnYFk/721S1f8EPgN8VUQmB9G+OuBpoKSv307c36BWuc8vEZGtItIsIg0i8oNzTneTiBwUkSYRubuv64nId4DLcT6czv4mJyIL3Z/NcffcXxssdjMyWeI3kfZl4HwR+YiIXA58HLhFg18b5Cbg20AO8Arwu8EOEJEUEXkPMAF4HbgbWAJcCFwAXAJ8PeCQPGASMAvnTn0N7m8P7uMIzgfTF904luLcdX82iFgEJ2nWDPLWPwNpbmyDnXOBe86XB3sv8CPgR6qaDcwBHj7n9eU4v3VUAN8QkeJzT6Cqd+N80Nze+5uciIwDNgDrgKnAXGBjEPGYEWjQxC8iHwhmn0lK/+PeEfc+Pqmqp3G6cn4APAh8TlWH0n/+v6q6RVU7cBL4UhGZ0c97p4rISaAJuAe42b3jvgn4lqr6VLUR+CZwc8BxfuAeVe1Q1TN9nVhVt6nq8+5d/H7gF8AVQcT/Dzj/r34z0JtUtcuNe9IAb9suIieAvwC/Guycri5grojkqGqrqj5/zuvfVNUzqvoq8CrOB2Mw3gXUq+q/qWq7qrao6gtBHmtGmGD6N78K/CGIfSb5XK+qG87dqaovishewMM77zgHcyjgPK0ichznDvNQH+89oqrT+9g/FTgQsH3A3derUVXbBwpCRObjfHiVAmNw/q9sG+SY23F+g7jc/eAa6L3pQC5wfIC3LVbV3eccN9BpwfkN61tAnYjsw0n0jwe8Hvjdymkga7ATumYAe4J8rxnh+k38IrIGuBqYJiI/DngpG+iOdmAmfonIbcAo4AjwFeCfh3D42bt7EcnCuSM+MsQQjuB04/R2t8w85xzndjv11Q31M5yulRtVtUVEvgC8v78LisjHgLuAFUH+hnMdzv+jF4N4b6A2nA+i3uum4nyAAKCqu4AbRSQFeC/wSDDfI/Th3L+TQ8CNIZzHjEADdfUcAbYC7Th3Or2Px4DV0Q/NxCP3Tvkfcbp7bga+IiIXBrw+SkQy3c0MEcmUt9/GXi0iy90vUr8NvKCqfd3tD+T3wNdFJFdEcoBv4HQ79acBmCwi4wP2jQOagVYRKcL5MrZPInIT8E/Alaq6d6DARGSS+/5/B76nqseCatFbdgKZInKN+1vD13E+ZHvP/yERyVVVP3DS3d3fF+kDaQAKArYfB/JE5Avuz3CciFwawnnNSKCqAz6A9MHeY4/kewD7gTNAa8DjUZw72LsC3vcZnC9cRwUcp+c88t3X7gd+Djzpnm8LMDvgXDXATe7zMuBwP7FlAj8GjrqPHwOZAx0H/Bo4hpMspwIrgDo3jqdxuk+eCXi/AnPd5/tw+tYD/y5+fs5729z9x4HNwN+ec/2f93HM3H7a9xG3XT7g79y/01Xuaw+6+1vdv6/r3f357jnTAs5TBXzCfX4TUBPw2lKcD5kTwI/dfSU4X+iewOkyusvd/w/Ag7H+N2mP4B/i/uD6JSLL3B/sLJyuIcEZQVcw0HHGGGNGpmASfx3OsLZtBPzKqEP/FdUYY8wIEMyonlOqujbqkRhjjBkWwdzxfxdIBf4EnB2ipqrboxuaMcaYaAgm8W/uY7eq6srohGSMMSaaBk38I0FOTo7m5+eHdGxbWxtjx46NbEAjiLUvvln74lc8tG3btm1Nqpp77v5B+/hFxIszRnmqqq5x1w1Zqqr3RSHOPuXn57N169aQjq2qqqKsrCyyAY0g1r74Zu2LX/HQNhE50Nf+YBZpux9Yz1tT3ncCXwjigr8WEZ+IVAfsm+Su7rfL/XNiENc3xhgTQcEk/hxVfRhnYStUtZvgZgLej7M2eaC7gI2qOg9nIshdwYdqjDHJpcd/dkJdRAWT+NvctT4UQESWAKcGO0hVt/DOBaiuAx5wnz8AXB98qMYYk/g6u/1s3uHjrj++xiXf2cBrhwdNt0MWzKiexcBPcKZrV+MsCPV+VX1t0JOL5AOPq2qJu31SVScEvH5CVfvs7hGRW4FbAbxe70UPPfRQMO15h9bWVrKygl2AMP5Y++KbtS9+RbJtHT1KdVMPW+u7eaWxhzPdkJkKF3pSuaYggxnjQiudUl5evk1VS8/dH9SoHnHK0xXiLNewQ521xIM5Lp8QE3+g0tJStS93+2bti2/WvvgVbtua27vYXOdj7ev1VO300d7lZ+KYdFYVe1lzXh7L5uYwKi28Mssi0mfiD2ZUTyrO8sz57vuvEhFU9dySbsFoEJEpqnpURKbgLCZljDFJ4VhrBxtqG1hbXc+zu5vo6lE840bx/oums6ZkCpfOnkRaavQLIwazZMNfcJZmfh33C94wPAbcAnzX/fPPYZ7PGGNGtPpT7ayvqWdddT0v7DuGX2HGpNF85LJ8KkvyWDRjIikpgxbYiahgEv90VT1/qCcWkd/jLIGb4xaHvgcn4T8sIh8HDgJWwtEYk3AOHGtjXXU962rqefmgUxZhnieL28rnsnphHgunZgdTTS1qgkn8a0XkKlV9YignVtX+qvVUDOU8xhgz0qkqu3ytrH3dSfa1R5sBKJmWzZ2rC1m9MI+5npHzJXcwif954FG3lFsXb63Hnx3VyIwxZgRTVV47fNK5s6+uZ29TGyJw0cyJfP2aYipL8pg+cczgJ4qBYBL/v+FU43ld42FhH2OMiZIev7LtwAnWVdfz521nOLb+WVJThKUFk/nY8tlctdCLZ1zm4CeKsWAS/y6g2pK+MSYZdfX4eW7PMdbV1PNETQNNrR1kpKWwYGIKX313CauKPUwYkxHrMIckmMR/FKgSkbW8fT3+UIZzGmPMiNfe1cOWnY2sq6lnwxsNNLd3MyYjlfIiD2tK8igr9LD1uWcou2h6rEMNSTCJf5/7yHAfxhiTcFo7utlU52N9dT2bd/g43dnD+NHpXLkgj8qSPC6fl0NmengTqkaKQRO/qn4TQETGqmpb9EMyxpjhcaKtkydrG1hfXc/Tu5ro7PGTkzWK9yyaRmVJHksKJpM+DBOqhlswM3eXAvcBWcBMEbkA+JSqfjbawRljTKT5mttZ/0YD66qP8vze4/T4lWkTRnPz0llUluSxeOZEUod5QtVwC6ar54fAapxZt6jqqyKyIqpRGWNMBB06fpr1NfWsra5n+8ETqEJB7lg+fUUBlQunUDItthOqhlswiR9VPXTOX0ow6/EbY0zM7Pa1sK7aSfY1R5wJVQumZPOlVfOpLMljnndcjCOMnWAS/yERuQxQEckAPg/URjcsY4wZGlWl5kizm+yPsqfR+Upy8cwJ3H11MasX5jFz8sicUDXcgkn8nwZ+BEwDDgNPALdFMyhjjAmG369sP3ji7Lo4h0+cITVFuHT2JD5yWT5XLczDmz3yJ1QNt2BG9TQBNw1DLMYYM6iuHj8v7D3OupqjrK9poLGlg4zUFJbPy+HzFfNYVexl0lgbeT6QYEb1PADcoaon3e2JwL+p6seiHZwxxoAzoerZ3U2sra5nQ20DJ093MTo9lfKiXCpLplBemMu4zPRYhxk3gunqOb836QOo6gkRWRTFmIwxhraObqp2NLK2+iib63y0dfYwLjONK4u9rC7J44r5uQkzoWq4BZP4U0RkoqqeABCRSUEeZ4wxQ3LqdNfZClVbdjXS2e0nJyuDay90JlQtLZhMRlriTagabsGuzvlXEXnE3f4A8J3ohWSMSSa+lnaefKOBddX1PLfnGN1+Zer4TG66dCaVC/MozZ+U8BOqhlswX+7+VkS2AeU4a/G/V1XfiHpkxpiEdfjEadbXOLNntx5wJlTlTx7DJy4vYE1JHudPH59UE6qGW7ATuGpEpBHIBBCRmap6MKqRGWMSyp7GVtZV17O+pp7XDp8CoChvHHdUzGP1wjyK8sZZsh8mwYzquRanu2cq4ANm4UzgWhjd0Iwx8UxVOdDcww+e2MG6mnp2NrQCcMGMCdy1pojVC/OYnTM2xlEmp2Du+L8NLAE2qOoiESkH+quna4xJYn6/8vKhk6yvccoRHjzeTorspjR/Eve8ewGrF+YxdcLoWIeZ9IJJ/F2qekxEUkQkRVU3i8j3oh6ZMSYudPf4eXH/8bPdOA3NHaSnCkvn5LBySje3v2cFOVmjYh2mCRBM4j8pIlnAFuB3IuIDuqMbljFmJOvo7uGvu4+xtvooT77RwInTXWSmp7BiXi5rzstjZZGX8aPTqaqqsqQ/AgWT+K8D2oEv4izdMB74VjSDMsaMPKc7u3lqRyNrq+vZVOejtaObcaPSWFnsoXJhHlcU5jImw6b4xINghnMGVt16IIqxGGNGmFNnuthU54yxf2pnI+1dfiaOSeea86ZQWZLHZXMnMyrNZs/Gm34Tv4i0ABq4y90WQFU1O8qxGWNioKm14+yEqr/uaaKrR/Fmj+JvSmdQuTCPS2ZPIi0ByxEmk34Tv6omb5UCY5LMkZNnzo7EeWn/cfwKMyeN4aPLZrN6YR6LZkwgxWbPJoygOuREZDGwHOeO/xlVfTmqURljom5/Uxtr3XXsXz3krMM4z5PF7eVzqSyZQvEUm1CVqIKZwPUNnPV5/uTuul9E/qCq/xjVyIwxEaWq7GhwyhGuq66nrr4FgPOmjefO1YVUluQxJzcrxlGa4RDMHf+NwCJVbQcQke8C2wFL/MaMcKrKq4dPucn+KPuPnUYESmdN5P+9awGrF3qZPtHKESabYBL/fpw1etrd7VHAnmgFZIwJT49feSlgQtXRU+2kpQhL50zmkysKuGpBHrnjbGx9Mgsm8XcANSLyJE4f/5XAMyLyYwBV/XwU4zPGBKGz289f9zSxvqaeJ2oaONbWSUaaM6Hqy1cVsqrYw4QxVo7QOIJJ/I+6j15V0QnFGDMUZzp7eGpnI+trnHKELe3djM1IpbzIQ2VJHuWFHsaOsglV5p2CmcB1dtKWW293hqq+FtWojDF9amnvYlOdj3XV9VTtaORMVw8TxqSzemEelQvzWD4vx8oRmkEFM6qnCrjWfe8rQKOIPKWqX4pybMYY4HhbJ0++4YzEeXb3MTp7/OSOG8X7LppG5cIpXFowiXSbUGWGIJjfA8erarOIfAL4jareIyJ2x29MFNWfaueJN+pZ+3o9L+w7hl9h+sTRfHjpLCpL8lg8c6JNqDIhCybxp4nIFOBvgLujHI8xSevgsdOsrT7Kupp6Xj7oTKiakzuWz5bNpbIkj4VTs21ClYmIYBL/t4D1ODN2XxKRAmBXOBcVkf1AC9ADdKtqaTjnMyYeqSpvtvj58cZdrK2up/ZoMwAl07L5u6vmU1mSx1yPrZxiIi+YL3f/APwhYHsv8L4IXLtcVZsicB5j4oaq8vqbp87Ont3bdAaRnVw0cyJ3X11MZUkeMybZhCoTXQOtzvkVVf0XEfkJb1+lE7Dx+8YEq8evbD94grWvOxOq3jx5htQUYUnBJJZ5uvjc9Zfjyc6MdZgmiYjqO3K684LIu1X1LyJyS1+vBw7zHPJFRfYBJ3A+UH6hqvf28Z5bgVsBvF7vRQ899FBI12ptbSUrK3HXH7H2jUzdfqXuuJ+tDd1sb+ihuVNJS4GSyalc5E1lkSeNrAyJ2/YFK5HbFw9tKy8v39ZXV3q/iT+aRGSqqh4REQ/wJPA5Vd3S3/tLS0t169atIV2rqqqKsrKy0AKNA9a+kaO9q4endzWxrtqZUHXqTBdjMlIpL/SwuiSPlUUess6ZUBVP7QtFIrcvHtomIn0m/gH7+N27/TuAQndXLfBjVf1tOMGo6hH3T5+IPApcglPT15i40trRzeY6H+tq6tlc5+N0Zw/ZmWmsKvZSWZLHivm5NqHKjDgD9fF/GPgC8CWc1TgFWAx8X0QINfmLyFggRVVb3OdXYTV8TRw5ebqTJ99oYH1NPVt2NdHZ7ScnK4PrF01jTUkeSwom24QqM6INdMf/WeA9qro/YN8mEXkf8BAQ6l2/F3jUHY+cBvyXqq4L8VzGDAtfSzvraxpYX13Pc3uP0eNXpk0YzU2XzmRNyRQumjWRVJtQZeLEQIk/+5ykD4Cq7heRkOvtusNBLwj1eGOGy6Hjp8+WI9x28ASqUJAzlltXFLCmJI/zpo23CVUmLg2U+M+E+JoxcWu3r5X1NfWsrT5K9ZvOhKriKdl8ocKZUDXfm2XJ3sS9gRJ/cT9r8ghQEKV4jBlWqkrNkeazd/a7fK0ALJo5ga9dXcTqhXnMmjw2xlEaE1kDJv5hi8KYYeT3Ky8fOuHMnq2p59DxM6QIXDp7Mh9aMovVC/PIG28Tqkzi6jfxq+qB4QzEmGjq7vHzwr63yhH6WjpITxWWz83h9vK5rCr2MjnLyhGa5GDleUzCau/q4dndzoSqJ2sbOHm6i8z0FK6Yn8uakimsLPaQnZke6zCNGXaW+E1CaevopmpH49kJVa0d3YwblUZFsYfKkilcMT+X0Rk2ocokt6ASv4iMBmaq6o4ox2PMkJ063cXGugbWVtezZWcjHd1+Jo3N4JrzplB5Xh7L5uSQkWYTqozpFUzpxXcD/wpkALNF5ELgW6p6bbSDM6Y/jS0dPPlGA+tq6vnr7ia6/UpediY3XjKT1QvzuDh/Imk2e9aYPgVzx/8POGvpVAGo6isikh+1iIzpx5GTZ86OxHlp/3FUYdbkMXx8+WwqS/K4YPoEK0doTBCCSfzdqnrKJq2YWKhv8/Ozqj2sqz7Kq4dPAVDoHcfnV85jzXl5FHrH2YQqY4YomMRfLSJ/C6SKyDzg88BfoxuWSVaqSl19y9kKVTsazgB1XDB9PH9fWURlSR6zc2xClTHhCCbxfw6nyHoH8Huc+rvfjmZQJrn4/cqrh0+yrqae9dX17D92mhSBi/MncVNRBrddv5ypE0bHOkxjEkYwNXdP4yT+u6MfjkkW3T1+Xtp/4uxSCfXN7aSnCpfNyeFTV8zhygVecrJGUVVVZUnfmAgbaD3+v9BHrd1eNqrHDFVHdw9/3XOM9dX1PPFGA8fbOhmV5kyo+kpJIRXFXsaPtglVxkTbQHf8/+r++V4gD3jQ3b4R2B/FmEwCOdPZw1M7fayrrmdjrY+Wjm6yRqWxsshDZUkeZYW5jMmweYTGDKeB1up5CkBEvq2qKwJe+ouIWJlE06/m9i421/lY+3o9VTt9tHf5mTgmnTXn5VFZkseyuTmMSrPZs8bESjC3WrkiUuAWUEFEZgO50Q3LxJtjrR1sqHVmzz67u4muHsWbPYq/KZ1BZUkel+RPsglVxowQwST+LwJVIrLX3c4Hbo1aRCZuHD11hidqGlhbfZQX9x3HrzBj0mg+usyZUHWhTagyZkQKZlTPOnf8fpG7q05VO6IblhmpDhxrY111PWur63nl0EkA5nqyuK18LpUleSyYkm0TqowZ4YJZqycd+BTQ289fJSK/UNWuqEZmRgRVZWdDq5vsj1JX3wJAybRs7lxdyOqFXuZ6xsU4SmPMUATT1fMzIB34D3f7ZnffJ6IVlIktVeW1w6dY546x39fUhghcNHMiX7+mmNUL85gxaUyswzTGhCiYxH+xql4QsL1JRF6NVkAmNnr8ytb9x8/Onj1yqp3UFGFpwWQ+tnw2qxd48WRbOUJjEkEwib9HROao6h4AESkAeqIblhkOnd1+ntt7zKlQ9UY9Ta2dZKSlsGJeDl+8cj5XLvAyYUxGrMM0xkRYMIn/TmCzO6pHgFnAR6MalYma9q4etuxsZF11PRtqG2hu72ZMRirlRR4qF+ZRXuQha5RNqDImkQUzqmejO6qnECfx26ieONPS3sXmHY2sqz7K5rpGznT1MH50OlcuyGNNSR7L5+WQmW4TqoxJFgOt1bOin5cuFRFU1WbvjmAn2jp5sraBddX1PLOric4ePzlZo3jv4mlUluSxpGAy6TahypikNNAd/5197FPgAmA6YLeII4yvud1Z7bKmnuf3HqfHr0ybMJqbl86isiSPxTMnkmoTqoxJegOt1fPuwG0RWY6zNPNR4PYox2WC1Hjazy+37GVdTT3bD55AFQpyx/LpKwqoXDiFkmk2ocoY83bBTOCqAP4fzt3+P6nqk1GPygxoV0PL2dqzNUfOALUsnJrNF1fNZ01JHvO8NqHKGNO/gfr4r8G5wz8F3K2qzw5bVOZtVJWaI82srT7Kuup69jS2AbB45gRuKMzgtmuXMXOyTagyxgRnoDv+vwCHgWPA35/bXWCFWKLL71e2HzzBWrf27Jsnz5CaIlw6exK3XJbPVQvyyBufSVVVlSV9Y8yQDJT4y4ctCgNAV4+fF/YeZ231UZ54o4HGlg4yUlNYPi+HOyrmsWqBl0ljbUKVMSY8gxZiCSQii1V1e3RDSi7tXT08s6uJdTXOhKqTp7sYnZ5KeVEuqxfmsbLIw7hMK0dojImcoU7R/BWwOBqBJJPWjm6qdjjlCDfX+Wjr7GFcZhpXFntZXZLHinm5jM6w0bLGmOgYauK3cYEhOnm6kw21TrLfsquRzm4/k8dmcO2FU6ksmcLSgslkpNmEKmNM9A018X8zKlEkKF9LO0/UNLC+pp7n9hyj269MGZ/J314ykzUleZTmT7IJVcaYYRfMOH4BbgIKVPVbIjITyFPVF0O9qIhUAj/Cmf37K1X9bqjnGmkOnzjNuup61tfUs/WAM6Eqf/IYPnF5AWtK8jh/+nibUGWMialg7vj/A/ADK4FvAS3AH4GLQ7mgiKQC/w5ciTNc9CUReUxV3wjlfAPp6O6hvVtp6+iO9Knf5ugpd6mE6npef/MUAEV547ijYh5rSqYw35tlyd4YM2IEk/gvVdXFIvIygKqeEJFwxhReAuxW1b0AIvIQcB0Q8cT/j4/X8p/Pn4YN6yN96j5dOGMCd60ponJhHvk5Y4flmsYYM1TBJP4u9y5dAUQkF+c3gFBNAw4FbB8GLj33TSJyK3ArgNfrpaqqasgXyuvu4fp8ZdSoUaFFGqTRaXBeTiqTR3eBHmJ/9SH2R/WKb2ltbQ3p7yZeWPviWyK3L57bFkzi/zHwKOAVke8A7we+HsY1++rz0HfsUL0XuBegtLRUy8rKhnyhMqCqqopQjo0X1r74Zu2LX/HctmAKsfxORLYBFThJ+3pVrQ3jmoeBGQHb04EjYZzPGGPMEAQ7cDwHOK2qPwWaRGR2GNd8CZgnIrPd7wo+CDwWxvmMMcYMgai+o5fl7W8QuQcoBQpVdb6ITAX+oKrLQr6oyNXAD3GGc/5aVb8zyPsbgQMhXi4HaArx2Hhg7Ytv1r74FQ9tm6WquefuDCbxvwIsArar6iJ332uqen5UwowwEdmqqqWxjiNarH3xzdoXv+K5bcF09XSq8+nQO6rHxikaY0wcCybxPywivwAmiMgngQ3AL6MbljHGmGgZcFSPu1zDfwNFQDNQCHwjzsov3hvrAKLM2hffrH3xK27bFkwf/zZVvWiY4jHGGBNlwXT1PC8iIa3LY4wxZuQJ5o7/DZwunv1AG84kLo2XUT3GGGPert87fnf5ZYA1QAHO6pzvBt7l/jniiUiliOwQkd0icles4wmHiMwQkc0iUisiNSJyh7t/kog8KSK73D8nxjrWcIhIqoi8LCKPu9sJ0z4RmSAij4hInftzXJpg7fui+2+zWkR+LyKZ8dw+Efm1iPhEpDpgX7/tEZGvurlmh4isjk3UwRmoq+d/AFT1APADVT0Q+Bie8EIXsPzzGmABcKOILIhtVGHpBr6sqsXAEuA2tz13ARtVdR6w0d2OZ3cAgUuCJFL7fgSsU9Ui4AKcdiZE+0RkGvB5oFRVS3AmZ36Q+G7f/UDlOfv6bI/7f/GDwEL3mP9wc9CINFDiD1xMrSDagUTB2eWfVbUT6F3+OS6p6tHeQveq2oKTNKbhtOkB920PANfHJsLwich04Bqc2s69EqJ9IpINrADuA1DVTlU9SYK0z5UGjBaRNGAMzhpccds+Vd0CHD9nd3/tuQ54SFU7VHUfsBsnB41IAyV+7ed5vOhr+edpMYolokQkH2c29QuAV1WPgvPhAHhiF1nYfgh8hbcv+50o7SsAGoHfuF1Zv3InQyZE+1T1TeBfgYPAUeCUqj5BgrQvQH/tiat8M1Div0BEmkWkBTjffd4sIi0i0jxcAYYhqOWf442IZOFUQPuCqsbDzyEoIvIuwKeq22IdS5SkAYuBn7lLn7QRX90eA3L7uq8DZgNTgbEi8qHYRjWs4irf9Jv4VTVVVbNVdZyqprnPe7ezhzPIECXc8s8iko6T9H+nqn9ydzeIyBT39SmAL1bxhWkZcK2I7MfpllspIg+SOO07DBxW1Rfc7UdwPggSpX2rgH2q2qiqXcCfgMtInPb16q89cZVvgl2WOR4l1PLP7izq+4BaVf1BwEuPAbe4z28B/jzcsUWCqn5VVaerahBl4z0AAB3ASURBVD7Oz2qTqn6IxGlfPXBIRArdXRU45UYTon04XTxLRGSM+2+1Aud7qERpX6/+2vMY8EERGeUuWz8PeDEG8QVHVRP2AVwN7AT2AHfHOp4w27Ic51fH14BX3MfVwGSc0QW73D8nxTrWCLS1DHjcfZ4w7QMuBLa6P8P/ASYmWPu+CdQB1cB/AqPiuX3A73G+r+jCuaP/+EDtAe52c80OYE2s4x/oMegELmOMMYklmJq7/RIRD07f7FTgDM4n/VZVDacYuzHGmCgK6Y5fRMpxRiRMAl7G+YIjE5gPzMH54urfNIFGnRhjTKIINfF/H/iJqh7s47U0nGUdUlX1j+GHaIwxJpLioo8/JydH8/PzQzq2ra2NsWOTq2iYtTk5WJuTQzht3rZtW5P2UXM33D5+L/BPwDRVrXTXq1iqqvcNcEwmsAXnG/804BFVvWeg6+Tn57N169aQYqyqqqKsrCykY+OVtTk5WJuTQzhtFpE+11ULdxz//cB6YIq7vRP4wiDHdAArVfUCnOFtlSKyJMw4jDHGBCncxJ+jqg/jrq2iqt1Az0AHqKPV3Ux3HyO/v8kYY4ZRa0c366qPcqY78ukxrK4eoE1EJuMmbvfO/dRgB7nLlW4D5gL/rm9NYw98z63ArQBer5eqqqqQAmxtbQ352HhlbU4O1ubE03jazyuNPbzq66HueA/dCh8vUkZHuM1hfbkrIouBnwAlOGP4c4H3q+prQR4/AXgU+JyqVvf3vtLSUrU+/uBZm5ODtTn+9fiVlw+eYEOtj011DexscDpDCnLHsqrYy8oiD637X2PVyvKQzu/WTC89d39Yd/yqul1ErsApzSjADnUWaAr2+JMiUoVTuKDfxG+MMYmiub2LLTsb2VTrY/MOHydOd5GWIlwyexI3XDyTlUUeZue8NYqn6mBfC3+GJ9xRPbfhrBRZ425PFJEbVfU/BjgmF+hyk/5onFX9vhdOHMYYM5Lta2pjY20DG2t9vLT/ON1+ZeKYdMoLPVQUe7l8fg7ZmenDFk+4ffyfVNV/791Q1RMi8kmg38SPMwLoAbefPwV4WFUfDzMOY4wZMbp6/Gzdf4JNdU6y39vUBsB8bxafXFFARZGHRTMnkpoS+bv5YISb+FNERNT9osBN5hkDHeD2/y8K87rGGDOinGjr5KmdjWys8/HUDh/N7d1kpKZwacEkbrksn5VFHmZMGhPrMIHwE/8TwMMi8nOckT2fBtaFHZUxxoxwqsqexlY21PrYWNvAtgMn8CvkZI1i9cI8Koq9LJ+XQ9aocNNs5IUb0Z3Ap4DP4Hy5+wRvL5RtjDEJo7Pbz4v7jrOhtoFNdT4OHj8NwIIp2dxWPpeKYi/nTxtPSoy6cIIVcuIXkRTgNVUtAX4euZCMMWbkaGrtYHOdj011Pp7e1URrRzej0lJYNjeHW1cUUFHsYcr40bEOc0hCTvyq6heRV0VkZl+rdBpjTDxSVerqW5xROHU+Xjl0ElXIy87k2gunsrLQw7K5OYzOSI11qCELt6tnClAjIi8Cbb07VfXaMM9rjDHDpr2rh+f2HmNjbQOban0cOdUOwAXTx/OFivlUFHtYODUbp5xw/As38X8zIlEYY8ww8zW3s7HOx8ZaH8/ubuJMVw+j01O5fF4Od6yaR3mhB092ZqzDjIpwZ+4+5S7NfLG760VV9YUfljHGRJaqUv1mMxvdsfWvv+ksKzZtwmg+UDqdlUUelhRMJjM9frtwghXuzN2/Ab4PVOGM6vmJiNypqo9EIDZjjAnL6c5unt19jE11ziichuYORGDRjAncubqQimIPhd5xCdOFE6xwu3ruBi7uvct3l2PYgFNz1xhjht2bJ8+wqc7HptoGnt1zjM5uP1mj0lgxP4eKIi9lhblMzhoV6zBjKuyZu+d07Rwj/DX+jTEmaH6/8srhk2yq9bGxzkft0WYAZk0ew02XzmRVsZeL8yeRkWapqVe4iX+diKwHfu9u3wD8X5jnNMaYAbV2dPO0uzxC1Q4fTa2dpKYIF82ayFfXFFFR7GVO7tik68IJVrhf7t4pIu8FluP08d+rqo9GJDJjjAlw6PhpntzfxX33vcDze4/R1aNkZ6ZxRaGHVcUerpify4QxAy4VZlwhJX4R+SdV/Zq72aKqX4pgTMYYQ3ePn5cPnWSjuxbOLp9TpGRO7hk+umw2FUUeLpo1kbRU68IZqlDv+CuB3sT/PeDJyIRjjElmp844RUo21jZQtbORk26RkksLJnHDxTMY17yfG64pi3WYcW/kLRtnjEkqextb2VTnY0NtAy/tP0GPX5k0NoOVRR4qit5epKSqylaHiYRQE79HRL6E06/f+/wsVf1B2JEZYxJSV4+fl/YfPzsKZ59bpKTQO45PuYueXTgjdkVKkkGoif+XwLg+nhtjzDucaOukaqePDbU+tuxopKXDKVKyZM5kProsn/LCkVOkJBmElPhV1dboMcb0S1XZ7XOKlGyqe3uRkqvPm8LKYg/L5+YwdgQWKUkGYf+ti8ingP9W1ZMRiMcYE6c6unt4Ye9xNtX52FjXwKHjZwCnSMntbpGS8+KgSEkyiMTH7XHgx8CHI3AuY0wcaWrtcJdH8PH0rkbaOnsYlZbC8rk5fOaKuZQX5cZdkZJkEInE/xrwrQicxxgzwqkqtUdb2FTXwIZaH68efqtIyXWLprGq2MPSgvguUpIMIpH43wf8Mdg3i8gM4LdAHuDHme37owjEYYyJgvauHv66p4mNtU75waO9RUpmTEjIIiXJIFKJv2II7+8Gvqyq20VkHLBNRJ5U1TciEIsxJgIamtudvvraBp7Z3UR7l58xGU6Rki+smkd5kQfPuMQsUpIMIpH4TwIa7JtV9Shw1H3eIiK1wDTAEr8xMeL3K9VHTp29qw8sUnJD6QxWFntZUjCJUWnWhZMIIpH4vwV8FvjnoR4oIvnAIuCFCMRhjBmC053dPLOryflyts6Hr6WDFIHFMyfylcpCVhYlZ5GSZCCqQd+sR/bCIlnAU8B3VPVPfbx+K3ArgNfrveihhx4K6Tqtra1kZWWFE2rcsTYnh1DafOyMn1cae3jV18Mbx3vo9sPoNDgvJ5ULclM5PzeNcRkjN9Hbz3loysvLt6lq6bn7Q0r8IrJcVZ8Z4PVsYKaqVvfzejrwOLA+mOUdSktLdevWrUOOE6CqqoqysrKQjo1X1ubkEEybe/zKK4dOssmtM1tX3wJA/uQxVBR7qSjyUBpHRUrs5zw0ItJn4g+1q+d9IvIvwDpgG9AIZAJzgXJgFvDlfgIR4D6g1tb0MSbyWtq7eHqXMwqnaoePY21vFSn52tVOkZKCHCtSksxCXbLhiyIyEXg/8AFgCnAGqAV+MdBvA8Ay4GbgdRF5xd33NVW1yl3GhOjgsdNsqHUKir+wzylSMn50OmWFuVQUe7liXi7jx6THOkwzQoT85a6qnsBZoO2XQzzuGZxVPY0xIeru8bPjeA/Pra1lY62P3W6RkrmeLD62bDblRR5KrUiJ6YetkGRMnDh1poundjayKaBISXrqPi6dPZkbL5nJqmIPsyaPjXWYJg5Y4jdmBNvT2OquW//2IiUVRV7y/I18+vorGJdpXThmaCzxGzOC9BYp6Z1I1VukpCivt0iJlwtnTCA1RaiqqrKkb0ISVuIXkTE4o3dmquonRWQeUKiqj0ckOmOSwPG2Tp7qo0jJUrdIycoiD9MnWpESEznh3vH/Bmc451J3+zDwB5wx+saYPqgqOxta2VjXwKZaH9sPvr1ISXmRh8vnWZESEz3h/suao6o3iMiNAKp6RmxwsDHv0FukZGNtAxvrfBw+4RQpWTg1m9tXzmNVsYeSqVakxAyPcBN/p4iMxl2kTUTmAB1hR2VMAmhs6WDzDmeFy6d3NXG6s4fMdKdIyWfL5rKyyEPeeFvh0gy/cBP/PTizd2eIyO9wJmd9JNygjIlHqsobR5vZVOtjQ52PVw851UjzsjN5z6JpVBR7uGxODpnptsKlia2wEr+qPiki24ElOJOy7lDVpohEZkwc6KtIiQicP30CX75yPiuLPSyYYkVKzMgSiW+PpgGp7rlWiAh9rbZpTKKoP9XuLmX89iIly+fm8MVV8ykv8pA7blSswzSmX+EO5/w1cD5Qg1NGEZz+fkv8JmH0FinZUOsk++o3mwGYPnE0H7x4JuVFHitSYuJKuHf8S1R1QUQiMWYECSxSsrHOR6NbpOSiWU6RklXFXuZ5sqwLx8SlcBP/cyKywOrlmkRw+MRpt86sj+f2HqOz28+4UWmsKMxlVbGHK+Z7mDQ2I9ZhGhO2cBP/AzjJvx5nGKcAqqrnhx2ZMVE2UJGSm5fMoqLIw8WzJ5FuK1yaBBNu4v817tr6vNXHb8yI1V+RkovzJ3L31cWsLPYwJze5SvuZ5BNu4j+oqo9FJBJjouTAsTY2uitcvrjvuBUpMUkv3MRfJyL/BfyFgBm7NpzTxFJ3j59tB06wqc7HhtoG9jQ6K1zO9WTxseWzqSjysnjmBCtSYpJWuIl/NE7Cvypgnw3nNMOurUv58ytvsqnOR9WORk6d6SI9Vbh09mQ+tGQWFUVeZk62FS6NgfBn7n40UoEYMxSqyp7GNjbVNbCh1sfW/afx6ytMHptBRbGHVcVeLp+XY+vVG9OHkBK/iHxFVf9FRH6Cu0BbIFX9fNiRGXOOzu7AIiUN7D92GnCKlFw9O52PVV7MBdOdIiXGmP6FesffO25/a6QCMaYvx9s62VznrIOzZadbpCQthcvmTObjy2ezstjLtAmjqaqqYvHMibEO15i4EGri/zzwuKo+EMlgjOktUrKhtoFNdU6RElXIHTeKa86fwsoiD8vn5TAmw4qUGBOqUP/35IRzUXeNn3cBPlUtCedcJv61d/Xwwr7jbDqnSEnJtGw+v3Ieq4q9LJyabUVKjImQUBP/BBF5b38vBjGc837gp8BvQ7y+iXO+lnaq6hrZUOuscPlWkZJcbiufS3mhFSkxJlpCTfzjce7Y+7oFG3Q4p6puEZH8EK8dtIe3HuLBbe2UlUX7SmYwvUVKnIlUbxUpmTo+k/cunsbKIitSYsxwEdV3DMoZ/CCR7aq6OKwLO4n/8f66ekTkVuBWAK/Xe9FDDz005Gt8ZJ0zcefXq8eQkkSrKLa2tpKVFftlBzp7lDeO9fBKYw+v+no40aEIMHt8Chd6UrkwN5UZ41IissLlSGnzcLI2J4dw2lxeXr5NVUvP3R/qHf87/qeKyGJV3R7i+d5BVe8F7gUoLS3VslBu29f9LwDnlV6WVIUxqqqqCOnvKwLqT7Wzsa6BTbU+nt3jFCkZm5HK5fO8VBR7KCuMTpGSWLY5VqzNySEabQ418d/cx75fAWH9FhBpnnGj8LV00NDcnlSJfzj5/crrb55io/vFbM2RtxcpqSj2cMlsK1JizEgSUuJX1eo+do+4vhRvdubZxF8ybXysw0kYbR3dPLO7iY21DWyqa6Sp1SlSsnjmRP6+soiKYo8VKTFmBIvkYOhvBvtGEfk9UAbkiMhh4B5VvS+CsQBO4n/9zVM0NHcM/mYzoN4iJRtqfTy/5xidPX7GZaaxYr5TpKRsvoeJVqTEmLgQduIXkQuAy3ufq+qrgx2jqjeGe91g5I5zElF9c/twXC6hOEVKTrjLI7xVpKQgZywfXjqLimIvpfkTrUiJMXEo3GLrdwCf5K3hmw+KyL2q+pOwI4uAtBQnKfks8Qelub2Lp3c6XTibd/g4cbqL1BThkvxJ3H11MRXFHgqsSIkxcS/cO/6PA5eqahuAiHwPeA4YEYm/l93x929/Uxsb63xsrHWKlHT7lQlj0ikv9FBe5OGK+bmMH20rXBqTSMJN/AL0BGz3MAK/5LU+/rd09/jZGlCkZK9bpGSeJ4tPXF5ARbGHxTMn2gqXxiSwcBP/b4AXRORRd/t6IOJf0oarIcnv+E+d7qJqp+9sndnm9m7SU4UlBZP58JJZrLQiJcYklXALsfxARKqA5Th3+h9V1ZcjEVgkHW/rpKO7J2nGkqsqu32tZ4uUbDtwgh6/MnlsBlctzKOiyMPl83PJGmUrXBqTjEItxDIpYHO/+zj7mqoeDy+syGts6WD6xMS9q+0tUrKhtoH/ffkMvvVPAU6Rks9cMYeVxR4rUmKMAUK/49+GsxibADOBE+7zCcBBYHZEooughub2hEv8x1o7qNrR+I4iJUUTUvjcVcWsLPIwbcLoWIdpjBlhQp25OxtARH4OPKaq/+durwFWRS68yEmEL3hVlR0NLc4Kl7UNvHzoJKrO0hTXnD+FimIvy+ZO5sW/PkPZklmxDtcYM0KF28l7sap+undDVdeKyLfDPGdU1J+Kzy9427t6eH7vMTbVOV/OvnnSKVJy3rTxVqTEGBOScBN/k4h8HXgQp+vnQ8CxsKOKoKx06PSn0NASP4nf19LOZjfRn1uk5PaVc1lZ5MGbbUVKjDGhCTfx3wjcA/QO59zi7hsxBPBkj6JhBN/xqyo1R5rd5REaePXwKeCtIiUVRV6WzplsRUqMMRER7nDO48AdEYolavKyM0dcH/+Zzh7+uqeJDW6yb2juQAQWzZjAnasLKS/0UDxlnK1waYyJuHDX6tmM08XzNqq6MpzzRpo3O5Pao82xDoOjp86c7at/dncTHd1OkZIV83NZWeQskZCTZXUDjDHRFW5Xz98FPM8E3gd0h3nOiPNmZ1K1wzfs1/X7ldd6i5TU+njD/fCZMWk0N14yk5VFHi4tsCIlxpjhFW5Xz7Zzdj0rIk+Fc85o8GaPoq2zh5b2LsZlRnfBsbaObp7e1cSmurcXKSmdNYm71hRRUeRhrhUpMcbEULhdPYEzeFOAi4C8sCKKgrzxzgiYhuaOqCT+Q8edIiUb695epOSK+bmsKvZSVpjLhDFWpMQYMzKE29UTOIO3G9iHs1TziOIZ5yR+X3M7cz3hryff41dePnji7HLGOxtaAadIyS2XOYueWZESY8xIFW5Xz4hbmqEvvXf84azL39zexZadjWyq9Z0tUpKWIlycP4mvXzODimIvs3PGRipkY4yJmnC7esYAXwJmquqtIjIPKFTVxyMSXYR4s52RMkMd0rmvqc0tKO57W5GSsvm5VBR7WWFFSowxcSgS6/FvAy5ztw8DfwBGVOIfk5HGuMy0Qdfl7+rxs+3ACWcUTp3vbJGS+V6nSMmqYg+LrEiJMSbOhZv456jqDSJyI4CqnpEROlzFm53ZZ+I/ebqTp3Y2sqHWx1NukZKM1BQuLZjEh5c4RcVnTEqsVT2NMckt3MTfKSKjcSdxicgcYND+FBGpBH4EpAK/UtXvhhlHn0ZnpDIm3fkc8maPor65HVVlT2Oru8Klj60HjuNXyMnKYPXCPFZakRJjTIILN7vdA6wDZojI74BlwEcGOkBEUoF/B67E6Rp6SUQeU9U3wozlHb52dTGXjWkAnDv+ddX1XPH9Kg4ePw3AginZ3FbuLHp2wfQJtsKlMSYphDuq50kR2Q4swRnSeYeqNg1y2CXAblXdCyAiDwHXARFP/IEumD6B/3v9KHM9Wdy6ooCVRR6mWpESY0wSEtV3LLUT/MEiy4BXVLVNRD4ELAZ+pKoHBjjm/UClqn7C3b4ZuFRVbz/nfbcCtwJ4vd6LHnrooZBibG1tJSvLGbuvqkkxYzawzcnC2pwcrM1DU15evk1VS8/dH25Xz8+AC0TkAuBO4NfAb4ErBjimr8zb10Jv9wL3ApSWlmpZWVlIAVZVVRHqsfHK2pwcrM3JIRptDndqabc6vzJcB/xYVX8EjBvkmMPAjIDt6cCRMOMwxhgTpHATf4uIfBWn8tb/ul/cDjaj6SVgnojMFpEM4IPAY2HGYYwxJkjh9vHnAX8LvKSqT4vITKBMVX87yHFXAz/EGc75a1X9ziDvbwT6/d5gEDnAYF84Jxprc3KwNieHcNo8S1Vzz90ZUuIXkUzg08Bc4HXgPlUdcevwA4jI1r6+3Ehk1ubkYG1ODtFoc6hdPQ8ApThJfw3wbxGLyBhjTFSFOqpngaqeByAi9wEvRi4kY4wx0RTqHX9X75OR2sUT4N5YBxAD1ubkYG1ODhFvc6h9/D1AW+8mMBo47T5XVc2OWITGGGMiKqxRPcYYY+KP1QY0xpgkk9CJX0QqRWSHiOwWkbtiHU+0icgMEdksIrUiUiMid8Q6puEgIqki8rKIjKgCQNEiIhNE5BERqXN/1ktjHVO0icgX3X/T1SLye3dIeUIRkV+LiE9EqgP2TRKRJ0Vkl/vnxEhcK2ETf8Dyz2uABcCNIrIgtlFFXTfwZVUtxlkx9bYkaDPAHUBtrIMYRj8C1qlqEXABCd52EZkGfB4oVdUSnImfH4xtVFFxP1B5zr67gI2qOg/Y6G6HLWETPwHLP6tqJ9C7/HPCUtWjqrrdfd6CkxCmxTaq6BKR6cA1wK9iHctwEJFsYAVwH4CqdqrqydhGNSzSgNEikgaMIQHX91LVLcDxc3ZfhzNvCvfP6yNxrURO/NOAQwHbh0nwJBhIRPKBRcALsY0k6n4IfAXwxzqQYVIANAK/cbu3fiUiY2MdVDSp6pvAvwIHgaPAKVV9IrZRDRuvqh4F58YO8ETipImc+INa/jkRiUgW8EfgC6raHOt4okVE3gX4VHVbrGMZRmk4dS9+pqqLcIZVJ/T3V26/9nXAbGAqMNat/2FClMiJPymXfxaRdJyk/ztV/VOs44myZcC1IrIfpytvpYg8GNuQou4wcFhVe3+TewTngyCRrQL2qWqjqnYBfwIui3FMw6VBRKYAuH/6InHSRE78Sbf8szjlxe4DalX1B7GOJ9pU9auqOl1V83F+vptUNaHvBFW1HjgkIoXurgqiXLZ0BDgILBGRMe6/8QoS/AvtAI8Bt7jPbwH+HImThluBa8RS1W4RuR1Yz1vLP9fEOKxoWwbcDLwuIq+4+76mqv8Xw5hM5H0O+J17Q7MX+GiM44kqVX1BRB4BtuOMXHuZBFy6QUR+D5QBOSJyGLgH+C7wsIh8HOcD8AMRuZbN3DXGmOSSyF09xhhj+mCJ3xhjkowlfmOMSTKW+I0xJslY4jfGmCRjid/EBRHpEZFXAh75ET5/mYioiLw7YN/jIlI2xHMEvUKoiOSLyBl36YVaEXlRRG4JeP3aZFhV1gy/hB3HbxLOGVW9sK8X3Ek9oqrhrtdzGLgb+EuY5xmKPe7SC4hIAfAnEUlR1d+o6mMk+KRDExt2x2/iknu3XCsi/4EzsWeGiNwpIi+JyGsi8s2A937IvZt+RUR+4S7Z3ZdXgVMicmUf16tw78xfd9dNH+Xur3TXxX8GeG/A+8e673vJPW7QlWFVdS/wJZwliBGRj4jIT93nH3DXon9VRLYEvP5nEVnn1p24J8i/PpPkLPGbeDE6oJvnUXdfIfBb9465EJiHsxz3hcBFIrJCRIqBG4Bl7m8MPcBNA1znH4GvB+5wi37cD9ygqufh/Kb8GXf/L4F3A5cDeQGH3Y2zhMTFQDnw/SBX0dwOFPWx/xvAalW9ALg2YP8lbnsuBD4gIqVBXMMkOevqMfHibV09bh//AVV93t11lft42d3OwvkgOB+4CHjJ6RFiNAMsdKWqT4sIInJ5wO5CnEXCdrrbDwC3AVXu/l1uTA8CtwbEc62I/J27nQnMZPA1ZvpaVRbgWeB+EXkYZ5GyXk+q6jH3+n8ClgNbB7mGSXKW+E08awt4LsA/q+ovAt8gIp8DHlDVr56z/z04a6EAfOKc834H5469O+Dc/elvzRMB3qeqOwY4ti+L6OPDQVU/LSKX4hSdeUVEej8Ez72+rcFiBmVdPSZRrAc+5tYiQESmiYgHp1zd+93nvTVMZ6nqo6p6oft42x2yW+RjIk5ZQ4A6IF9E5rrbNwNPuftni8gcd/+N58TzOfeLZ0Rk0WANcH+L+VfgJ328NkdVX1DVbwBNvLXk+JVum0bjVGd6drDrGGOJ3yQEN1n/F/CciLyOs079OFV9A6fP/gkReQ14EpgSxCm/g1PDAVVtx1kB8w/uuf3Az939twL/6365eyDg+G8D6cBr4hTP/nY/15nTO5wTeBj4iar+po/3fd/9Yrka2ILzRTTAM8B/Aq8Af+z9EBOR/xORqUG00yQhW53TmDglIh/BKUB+e6xjMfHF7viNMSbJ2B2/McYkGbvjN8aYJGOJ3xhjkowlfmOMSTKW+I0xJslY4jfGmCTz/wFAwIX6y645qgAAAABJRU5ErkJggg==\n", 256 | "text/plain": [ 257 | "
    " 258 | ] 259 | }, 260 | "metadata": { 261 | "needs_background": "light" 262 | }, 263 | "output_type": "display_data" 264 | } 265 | ], 266 | "source": [ 267 | "ops.wipe() # the wipe command here closes all recorder files\n", 268 | "plt.close('all')\n", 269 | "fname3 = 'Data/DFreeEx1bPush.out'\n", 270 | "dataDFree = numpy.loadtxt(fname3)\n", 271 | "plt.subplot(211)\n", 272 | "plt.title('Ex1b.Portal2D.Push.tcl')\n", 273 | "plt.grid(True)\n", 274 | "plt.plot(dataDFree[:,1])\n", 275 | "plt.xlabel('Step Number')\n", 276 | "plt.ylabel('Free-Node Displacement')\n", 277 | "plt.subplot(212)\n", 278 | "plt.grid(True)\n", 279 | "plt.plot(dataDFree[:,1],dataDFree[:,0])\n", 280 | "plt.xlabel('Free-Node Disp.')\n", 281 | "plt.ylabel('Pseudo-Time (~Force)')\n", 282 | "print('End of Run: pyEx1b.Portal2D.Push.tcl.py')" 283 | ] 284 | } 285 | ], 286 | "metadata": { 287 | "kernelspec": { 288 | "display_name": "Python 3", 289 | "language": "python", 290 | "name": "python3" 291 | }, 292 | "language_info": { 293 | "codemirror_mode": { 294 | "name": "ipython", 295 | "version": 3 296 | }, 297 | "file_extension": ".py", 298 | "mimetype": "text/x-python", 299 | "name": "python", 300 | "nbconvert_exporter": "python", 301 | "pygments_lexer": "ipython3", 302 | "version": "3.8.3" 303 | } 304 | }, 305 | "nbformat": 4, 306 | "nbformat_minor": 4 307 | } 308 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | BSD 3-Clause License 2 | 3 | Copyright (c) 2018-, Jupyter Development Team 4 | All rights reserved. 5 | 6 | Redistribution and use in source and binary forms, with or without 7 | modification, are permitted provided that the following conditions are met: 8 | 9 | * Redistributions of source code must retain the above copyright notice, this 10 | list of conditions and the following disclaimer. 11 | 12 | * Redistributions in binary form must reproduce the above copyright notice, 13 | this list of conditions and the following disclaimer in the documentation 14 | and/or other materials provided with the distribution. 15 | 16 | * Neither the name of the copyright holder nor the names of its 17 | contributors may be used to endorse or promote products derived from 18 | this software without specific prior written permission. 19 | 20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 23 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 24 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 26 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 27 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 28 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Python environment with a requirements.txt 2 | 3 | [![Binder](http://mybinder.org/badge_logo.svg)](http://mybinder.org/v2/gh/binder-examples/requirements/master) 4 | 5 | A Binder-compatible repo with a `requirements.txt` file. 6 | 7 | Access this Binder at the following URL 8 | 9 | http://mybinder.org/v2/gh/binder-examples/requirements/master 10 | 11 | https://mybinder.org/v2/gh/silviamazzoni/eSEESmini_OpenSeesElasticFrameStaticAnalysis/HEAD?filepath=eSEESmini_OpenSeesElasticFrameStaticAnalysis_workbook.ipynb 12 | 13 | ## Notes 14 | The `requirements.txt` file should list all Python libraries that your notebooks 15 | depend on, and they will be installed using: 16 | 17 | ``` 18 | pip install -r requirements.txt 19 | ``` 20 | 21 | The base Binder image contains no extra dependencies, so be as 22 | explicit as possible in defining the packages that you need. This includes 23 | specifying explicit versions wherever possible. 24 | 25 | If you do specify strict versions, it is important to do so for *all* 26 | your dependencies, not just direct dependencies. 27 | Strictly specifying only some dependencies is a recipe for environments 28 | breaking over time. 29 | 30 | [pip-compile](https://github.com/jazzband/pip-tools/) is a handy 31 | tool for combining loosely specified dependencies with a fully frozen environment. 32 | You write a requirements.in with just the dependencies you need 33 | and pip-compile will generate a requirements.txt with all the strict packages and versions that would come from installing that package right now. 34 | That way, you only need to specify what you actually know you need, 35 | but you also get a snapshot of your environment. 36 | 37 | In this example we include the library `seaborn` which will be installed in 38 | the environment, and our notebook uses it to plot a figure. 39 | -------------------------------------------------------------------------------- /requirements.in: -------------------------------------------------------------------------------- 1 | numpy 2 | matplotlib==3.* 3 | seaborn==0.10.1 4 | pandas 5 | openseespy 6 | eSEESminiPy ~=0.0.24 7 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | 2 | # 3 | # This file is autogenerated by pip-compile 4 | # To update, run: 5 | # 6 | # pip-compile 7 | # 8 | matplotlib ~=3.2.1 9 | numpy ~=1.18.5 10 | pandas ~=1.0.4 11 | eSEESminiPy ~=0.0.28 12 | openseespy ~=3.2.2.10 13 | 14 | 15 | -------------------------------------------------------------------------------- /runtime.txt: -------------------------------------------------------------------------------- 1 | python-3.8 2 | --------------------------------------------------------------------------------