├── Sans titre.png └── README.md /Sans titre.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/simonMadec/Wheat-Ears-Detection-Dataset/HEAD/Sans titre.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## Note / News 2 | For people interested about this work/dataset I recommand to check the Global Wheat Dataset : A more large and diverse dataset for wheat head detection 3 | http://www.global-wheat.com/ 4 | https://zenodo.org/record/5092309#.YaPEh9DMJPY 5 | The Wheat Ears Dection Dataset has been integrated in Global Wheat Dataset 6 | 7 | # Wheat-Ears-Detection-Dataset 8 | Dataset from the Ear density estimation from high resolution RGB imagery using deep learning technique paper 9 | 10 | [Simon Madec], [Frederic Baret], [Benoit de Solan], [Shouyang Liu] 11 | The Wheat-Ears-Dection-Dataset (WEDD) is a dataset is a image dataset designed fo wheat ears detection in field condition. 12 | ![Ex](https://github.com/simonMadec/Wheat-Ears-Dection-Dataset/blob/master/Sans%20titre.png?raw=true) 13 | ## Overview 14 | - [Highlights](#highlights) 15 | - [Research Paper](#research-paper) 16 | - [Downloads](#downloads) 17 | - [Labels](#labels) 18 | - [Results](#results) 19 | - [Annotation Tool](#annotation-tool) 20 | 21 | ## Highlights 22 | - 236 high resolution images images (6000*4000) 23 | - Wheat ears annotated with a bounding box 24 | - 30729 ears identified 25 | - Spatial resolution (GSD) of 0.13mm/pixel 26 | - Two images for each microplots 27 | - 20 contrasted genotype with 6 replicated growth in two environment 28 | 29 | ## Research Paper 30 | To cite the paper : 31 | 32 | Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al. (2019). Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 264, 225–234. doi:10.1016/j.agrformet.2018.10.013. 33 | 34 | 35 | ## Downloads 36 | Dataset avalaible [here](https://zenodo.org/record/1471626#.W9H_XFUzZjU) 37 | 38 | ## Labels 39 | Please download replicate information along with images used for training and testing [here] 40 | ## Results 41 | Below we present results. 42 | 43 | Method | Date | Source| AP | rRMSE | R² 44 | --- | --- | --- | --- | --- | --- 45 | Faster-RCNN [1] | 21/10/2018 |[2]| 0.85 | 5.3%|0.91 46 | 47 | ### Annotation Tool 48 | The LabelIMG tool were used, please refer to [this repository](https://github.com/tzutalin/labelImg). 49 | 50 | --------------------------------------------------------------------------------