├── README.md
├── Yolov8_cs2_csgo_demo.py
├── best_cs2_model.pt
├── configuration_files
├── custom_data.yaml
└── yolov7-custom.yaml
├── model_history_curves
├── P_curve.png
├── R_curve.png
├── confusion_matrix.png
├── results.png
└── results.txt
└── test_images
├── a1.png
├── a3.png
├── a5.png
├── a6.png
├── a7.png
├── a9.png
└── test_batch2_pred.jpg
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | # About Project
4 | This project aims to detect enemy players inside the game in real-time and point the player’s aim directly to the enemy’s head to fire the weapon.
5 | I collected the dataset inside the game by taking screenshots from time to time while playing.
6 | After collecting images, annotation was done with LabelImg.
7 | You can find the dataset on my Kaggle page, link: https://www.kaggle.com/datasets/merfarukgnaydn/counter-strike-2-body-and-head-classification
8 |
9 |
10 | The dataset is small for now, but the results are really good. Lots of people gave me feedback about the data quality, and they were all positive because the images are from the game, not from real life. Therefore, there aren’t any differences in environments, there aren’t any sharp lighting changes between images, or shape differences in objects.
11 |
12 | Both YOLOv7 and YOLOv8 models are trained, and the best balance between real-time performance and accuracy was achieved by the YOLOv8m model. Depending on your GPU, for better FPS you can also train with the YOLOv8n model.
13 |
14 |
15 | # Demo video
16 |
17 |
18 |
19 |
20 |
21 | https://github.com/siromermer/CS2-Yolov7-Custom-ObjectDetection/assets/113242649/69525835-9c82-40b9-acf8-678272df9490
22 |
23 |
24 |
25 |
26 | # Why not CS2 ?
27 | there is no Raw input and Mouse acceleration options in cs2 , therefore even models can detect players without problem in cs2 there is problem with mouse movements . As soon as they add this setting options to CS2 , this will work without problem for sure
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
--------------------------------------------------------------------------------
/Yolov8_cs2_csgo_demo.py:
--------------------------------------------------------------------------------
1 |
2 | from mss import mss
3 | from PIL import Image, ImageGrab
4 |
5 | from ultralytics import YOLO
6 | import time
7 | import cv2
8 | import numpy as np
9 | import time
10 |
11 | import pyautogui
12 |
13 | """
14 | Raw input : off
15 | Mouse acceleration : off
16 | sensivity : 3.85
17 | screen_size : height=480 , width=640
18 |
19 | """
20 |
21 | avg_fps=0
22 |
23 | img = None
24 | t0 = time.time()
25 | n_frames = 1
26 |
27 | model = YOLO('yolov8_100epoch.pt')
28 |
29 | label_dict={1:"ct_body",2:"ct_head",3:"t_body",4:"t_head"}
30 |
31 | #pyautogui.FAILSAFE=False
32 |
33 | sct = mss()
34 | while True:
35 |
36 | img = np.array(sct.grab((0,0,640,480)))
37 |
38 |
39 | # img = cv.cvtColor(img, cv.COLOR_RGB2BGR)
40 | #img=img[:,:,:3]
41 | region_of_interest = img[:480, :640 ,:3]
42 | region_of_interest = np.ascontiguousarray(region_of_interest, dtype=np.uint8) # this solved my issue !!!!!!!!!!!
43 |
44 |
45 | # Run inference on the source
46 | results = model(region_of_interest)
47 |
48 | result_list=[]
49 | class_list=[]
50 | conf_list=[]
51 |
52 | k=0
53 | for result in results:
54 |
55 | for class_name in result.boxes.cls:
56 | class_list.append(int(class_name))
57 |
58 |
59 | for id,box in enumerate(result.boxes.xyxy) : # box with xyxy format, (N, 4)
60 | if k==0:
61 | if label_dict[class_list[id]]=="t_head" or label_dict[class_list[id]]=="ct_head":
62 | x1,y1,x2,y2=int(box[0]),int(box[1]),int(box[2]),int(box[3])
63 |
64 | x_mid=int((x1+x2)/2)
65 | y_mid=int((y1+y2)/2)
66 |
67 | pyautogui.moveTo(x_mid,y_mid)
68 | pyautogui.click(x1+5,y1)
69 |
70 | cv2.rectangle(region_of_interest,(x1,y1),(x2,y2),(0,0,255),2)
71 | cv2.putText(region_of_interest, str(avg_fps) , (20,50) , cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0), 1, cv2.LINE_AA)
72 | k+=1
73 |
74 |
75 |
76 |
77 | #region_of_interest=cv2.cvtColor(region_of_interest,cv2.COLOR_RGB2BGR)
78 | cv2.imshow("Computer Vision", region_of_interest)
79 |
80 | # Break loop and end test
81 | key = cv2.waitKey(1)
82 | if key == ord('q'):
83 | break
84 |
85 | elapsed_time = time.time() - t0
86 | avg_fps = (n_frames / elapsed_time)
87 | print("Average FPS: " + str(avg_fps))
88 | #cv2.putText(region_of_interest, str(avg_fps) , (50,50) , cv2.FONT_HERSHEY_SIMPLEX,3,(255,0,0), 3, cv2.LINE_AA)
89 | n_frames += 1
90 |
91 |
92 |
--------------------------------------------------------------------------------
/best_cs2_model.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/best_cs2_model.pt
--------------------------------------------------------------------------------
/configuration_files/custom_data.yaml:
--------------------------------------------------------------------------------
1 |
2 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
3 | train: ./data/train # 118287 images
4 | val: ./data/val # 5000 images
5 |
6 | # number of classes
7 | nc: 5
8 |
9 | # class names
10 | names: [ "none", "ct_body", "ct_head","t_body","t_head"]
11 |
--------------------------------------------------------------------------------
/configuration_files/yolov7-custom.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 4 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [64, 3, 1]],
19 |
20 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [[-1, -3, -5, -6], 1, Concat, [1]],
28 | [-1, 1, Conv, [256, 1, 1]], # 11
29 |
30 | [-1, 1, MP, []],
31 | [-1, 1, Conv, [128, 1, 1]],
32 | [-3, 1, Conv, [128, 1, 1]],
33 | [-1, 1, Conv, [128, 3, 2]],
34 | [[-1, -3], 1, Concat, [1]], # 16-P3/8
35 | [-1, 1, Conv, [128, 1, 1]],
36 | [-2, 1, Conv, [128, 1, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [[-1, -3, -5, -6], 1, Concat, [1]],
42 | [-1, 1, Conv, [512, 1, 1]], # 24
43 |
44 | [-1, 1, MP, []],
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-3, 1, Conv, [256, 1, 1]],
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, -3], 1, Concat, [1]], # 29-P4/16
49 | [-1, 1, Conv, [256, 1, 1]],
50 | [-2, 1, Conv, [256, 1, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [[-1, -3, -5, -6], 1, Concat, [1]],
56 | [-1, 1, Conv, [1024, 1, 1]], # 37
57 |
58 | [-1, 1, MP, []],
59 | [-1, 1, Conv, [512, 1, 1]],
60 | [-3, 1, Conv, [512, 1, 1]],
61 | [-1, 1, Conv, [512, 3, 2]],
62 | [[-1, -3], 1, Concat, [1]], # 42-P5/32
63 | [-1, 1, Conv, [256, 1, 1]],
64 | [-2, 1, Conv, [256, 1, 1]],
65 | [-1, 1, Conv, [256, 3, 1]],
66 | [-1, 1, Conv, [256, 3, 1]],
67 | [-1, 1, Conv, [256, 3, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [[-1, -3, -5, -6], 1, Concat, [1]],
70 | [-1, 1, Conv, [1024, 1, 1]], # 50
71 | ]
72 |
73 | # yolov7 head
74 | head:
75 | [[-1, 1, SPPCSPC, [512]], # 51
76 |
77 | [-1, 1, Conv, [256, 1, 1]],
78 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79 | [37, 1, Conv, [256, 1, 1]], # route backbone P4
80 | [[-1, -2], 1, Concat, [1]],
81 |
82 | [-1, 1, Conv, [256, 1, 1]],
83 | [-2, 1, Conv, [256, 1, 1]],
84 | [-1, 1, Conv, [128, 3, 1]],
85 | [-1, 1, Conv, [128, 3, 1]],
86 | [-1, 1, Conv, [128, 3, 1]],
87 | [-1, 1, Conv, [128, 3, 1]],
88 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89 | [-1, 1, Conv, [256, 1, 1]], # 63
90 |
91 | [-1, 1, Conv, [128, 1, 1]],
92 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93 | [24, 1, Conv, [128, 1, 1]], # route backbone P3
94 | [[-1, -2], 1, Concat, [1]],
95 |
96 | [-1, 1, Conv, [128, 1, 1]],
97 | [-2, 1, Conv, [128, 1, 1]],
98 | [-1, 1, Conv, [64, 3, 1]],
99 | [-1, 1, Conv, [64, 3, 1]],
100 | [-1, 1, Conv, [64, 3, 1]],
101 | [-1, 1, Conv, [64, 3, 1]],
102 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103 | [-1, 1, Conv, [128, 1, 1]], # 75
104 |
105 | [-1, 1, MP, []],
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-3, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 2]],
109 | [[-1, -3, 63], 1, Concat, [1]],
110 |
111 | [-1, 1, Conv, [256, 1, 1]],
112 | [-2, 1, Conv, [256, 1, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [-1, 1, Conv, [128, 3, 1]],
115 | [-1, 1, Conv, [128, 3, 1]],
116 | [-1, 1, Conv, [128, 3, 1]],
117 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118 | [-1, 1, Conv, [256, 1, 1]], # 88
119 |
120 | [-1, 1, MP, []],
121 | [-1, 1, Conv, [256, 1, 1]],
122 | [-3, 1, Conv, [256, 1, 1]],
123 | [-1, 1, Conv, [256, 3, 2]],
124 | [[-1, -3, 51], 1, Concat, [1]],
125 |
126 | [-1, 1, Conv, [512, 1, 1]],
127 | [-2, 1, Conv, [512, 1, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [-1, 1, Conv, [256, 3, 1]],
132 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133 | [-1, 1, Conv, [512, 1, 1]], # 101
134 |
135 | [75, 1, RepConv, [256, 3, 1]],
136 | [88, 1, RepConv, [512, 3, 1]],
137 | [101, 1, RepConv, [1024, 3, 1]],
138 |
139 | [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
140 | ]
141 |
--------------------------------------------------------------------------------
/model_history_curves/P_curve.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/model_history_curves/P_curve.png
--------------------------------------------------------------------------------
/model_history_curves/R_curve.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/model_history_curves/R_curve.png
--------------------------------------------------------------------------------
/model_history_curves/confusion_matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/model_history_curves/confusion_matrix.png
--------------------------------------------------------------------------------
/model_history_curves/results.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/model_history_curves/results.png
--------------------------------------------------------------------------------
/model_history_curves/results.txt:
--------------------------------------------------------------------------------
1 | 0/99 0.992G 0.09146 0.01391 0.02875 0.1341 3 640 0.0001739 0.01111 8.412e-06 1.406e-06 0.1392 0.01658 0.032
2 | 1/99 6.91G 0.06969 0.01127 0.0237 0.1047 0 640 0.005378 0.125 0.003143 0.001013 0.1267 0.01661 0.02844
3 | 2/99 7.33G 0.05768 0.00974 0.01912 0.08655 0 640 0.05462 0.1468 0.0413 0.01473 0.1238 0.01565 0.02514
4 | 3/99 7.33G 0.05891 0.008897 0.01892 0.08672 2 640 0.478 0.2403 0.1861 0.05073 0.1174 0.01526 0.02468
5 | 4/99 7.33G 0.04776 0.007921 0.01524 0.07092 2 640 0.6714 0.2344 0.1858 0.07385 0.1125 0.01475 0.02471
6 | 5/99 7.33G 0.04505 0.007255 0.01312 0.06543 2 640 0.7081 0.2736 0.2741 0.1151 0.1122 0.01435 0.02424
7 | 6/99 7.33G 0.03858 0.007174 0.01189 0.05764 2 640 0.5924 0.4953 0.3376 0.1391 0.1124 0.01311 0.02419
8 | 7/99 7.33G 0.04086 0.006599 0.01177 0.05923 4 640 0.7425 0.3264 0.3394 0.1195 0.1108 0.0131 0.02376
9 | 8/99 7.33G 0.04366 0.006335 0.01298 0.06297 2 640 0.7395 0.2417 0.2392 0.09994 0.1091 0.0142 0.02219
10 | 9/99 7.33G 0.04443 0.006404 0.01292 0.06376 4 640 0.7011 0.2572 0.2339 0.09802 0.1141 0.01241 0.02248
11 | 10/99 7.33G 0.04665 0.006066 0.01354 0.06625 3 640 0.7037 0.2722 0.2735 0.1172 0.1112 0.01315 0.02279
12 | 11/99 7.33G 0.05122 0.005519 0.01502 0.07176 2 640 0.6396 0.2331 0.1854 0.07113 0.1164 0.01243 0.02256
13 | 12/99 7.33G 0.04549 0.005372 0.0134 0.06426 5 640 0.398 0.1972 0.1316 0.03617 0.1188 0.0125 0.02282
14 | 13/99 7.33G 0.04668 0.005715 0.01343 0.06583 3 640 0.6641 0.1861 0.2049 0.07454 0.1167 0.0115 0.02293
15 | 14/99 7.33G 0.04891 0.005735 0.01474 0.06938 5 640 0.4916 0.1071 0.08051 0.03133 0.117 0.0134 0.02372
16 | 15/99 7.33G 0.04343 0.005652 0.01227 0.06135 7 640 0.652 0.2401 0.1951 0.07213 0.1126 0.01326 0.02393
17 | 16/99 7.33G 0.04736 0.005927 0.01351 0.0668 0 640 0.2203 0.1415 0.09527 0.04542 0.1163 0.01315 0.02309
18 | 17/99 7.33G 0.04982 0.005664 0.01481 0.07029 4 640 0.1287 0.1043 0.0197 0.00967 0.138 0.1057 0.05681
19 | 18/99 7.33G 0.05042 0.005552 0.01426 0.07023 7 640 0.3478 0.2539 0.1108 0.03586 0.1233 0.01113 0.03957
20 | 19/99 7.33G 0.04715 0.005365 0.01411 0.06662 2 640 0.1709 0.15 0.09031 0.03494 0.12 0.01291 0.02517
21 | 20/99 7.33G 0.04822 0.005654 0.01368 0.06755 4 640 0.3703 0.1859 0.08659 0.0331 0.1217 0.01208 0.04919
22 | 21/99 7.33G 0.04622 0.005366 0.01268 0.06427 2 640 0.4629 0.3347 0.2576 0.1021 0.1101 0.01306 0.02206
23 | 22/99 7.33G 0.04723 0.005305 0.01265 0.06518 1 640 0.7374 0.05139 0.06029 0.02067 0.1221 0.0122 0.02488
24 | 23/99 7.33G 0.04621 0.005215 0.01292 0.06434 0 640 0.1477 0.1658 0.09897 0.03764 0.1188 0.01198 0.02439
25 | 24/99 7.33G 0.04752 0.005693 0.01351 0.06672 3 640 0.2475 0.2213 0.1422 0.05956 0.1148 0.01289 0.0235
26 | 25/99 7.33G 0.04252 0.005844 0.01245 0.06081 4 640 0.2457 0.302 0.1938 0.08601 0.1128 0.01382 0.04307
27 | 26/99 7.33G 0.04172 0.005359 0.01153 0.05861 2 640 0.6033 0.304 0.301 0.1416 0.1087 0.01303 0.02647
28 | 27/99 7.33G 0.04322 0.005721 0.01144 0.06038 2 640 0.3816 0.3079 0.2723 0.0907 0.1076 0.01343 0.02201
29 | 28/99 7.33G 0.04463 0.005511 0.01191 0.06205 6 640 0.6035 0.3063 0.3094 0.1355 0.1065 0.0133 0.02132
30 | 29/99 7.33G 0.0439 0.005248 0.01069 0.05983 2 640 0.7033 0.3694 0.4221 0.1718 0.1015 0.01377 0.01963
31 | 30/99 7.33G 0.04069 0.005446 0.00956 0.0557 2 640 0.6395 0.4929 0.5156 0.2469 0.09716 0.01402 0.01867
32 | 31/99 7.33G 0.04449 0.005654 0.01126 0.06141 2 640 0.6905 0.3209 0.3544 0.1765 0.1039 0.01365 0.02074
33 | 32/99 7.33G 0.0423 0.005285 0.009734 0.05732 2 640 0.6319 0.4342 0.4221 0.2082 0.1012 0.01385 0.01999
34 | 33/99 7.33G 0.04672 0.005236 0.01059 0.06255 2 640 0.6689 0.3765 0.3954 0.1807 0.1044 0.01387 0.02052
35 | 34/99 7.33G 0.04083 0.005177 0.009208 0.05521 3 640 0.6447 0.4687 0.4922 0.2638 0.101 0.01297 0.02125
36 | 35/99 7.33G 0.04332 0.00511 0.00964 0.05807 4 640 0.6652 0.5025 0.5395 0.2755 0.09768 0.01342 0.01767
37 | 36/99 7.33G 0.04325 0.005262 0.009083 0.05759 8 640 0.6438 0.5343 0.5499 0.275 0.09854 0.01298 0.01786
38 | 37/99 7.33G 0.04095 0.004986 0.00782 0.05376 2 640 0.6838 0.5688 0.5939 0.3024 0.09639 0.01282 0.01694
39 | 38/99 7.33G 0.0406 0.005156 0.00802 0.05378 4 640 0.7161 0.5531 0.6174 0.296 0.09489 0.01301 0.01699
40 | 39/99 7.33G 0.0383 0.005326 0.007088 0.05071 10 640 0.6544 0.6011 0.6041 0.2908 0.09502 0.01321 0.01654
41 | 40/99 7.33G 0.0409 0.005115 0.007467 0.05348 2 640 0.7769 0.5642 0.633 0.3505 0.09633 0.01233 0.01719
42 | 41/99 7.33G 0.03963 0.005121 0.008391 0.05314 2 640 0.6246 0.4138 0.4491 0.2296 0.09969 0.01438 0.01863
43 | 42/99 7.33G 0.03949 0.005019 0.008382 0.05289 4 640 0.7477 0.4333 0.5096 0.2694 0.09644 0.01425 0.01866
44 | 43/99 7.33G 0.0393 0.005314 0.008069 0.05269 4 640 0.7023 0.5426 0.5916 0.3197 0.09472 0.01311 0.01759
45 | 44/99 7.33G 0.04 0.004788 0.007851 0.05264 1 640 0.749 0.5212 0.5996 0.3249 0.09391 0.01327 0.01683
46 | 45/99 7.33G 0.03928 0.005214 0.008666 0.05316 2 640 0.684 0.6588 0.6606 0.3787 0.09149 0.01306 0.01643
47 | 46/99 7.33G 0.03609 0.005116 0.006485 0.04769 0 640 0.7678 0.6095 0.6687 0.3645 0.09141 0.013 0.01677
48 | 47/99 7.33G 0.03729 0.004989 0.006591 0.04887 6 640 0.8309 0.5867 0.6593 0.3325 0.09189 0.01305 0.01673
49 | 48/99 7.33G 0.03834 0.005242 0.006325 0.04991 2 640 0.8609 0.6347 0.6927 0.3749 0.09102 0.0131 0.01649
50 | 49/99 7.33G 0.03673 0.00461 0.007565 0.0489 4 640 0.8037 0.6541 0.7074 0.3911 0.08959 0.01296 0.01645
51 | 50/99 7.33G 0.03974 0.004679 0.007892 0.05231 2 640 0.7824 0.6798 0.7188 0.4193 0.08881 0.01277 0.01612
52 | 51/99 7.33G 0.04222 0.00493 0.007865 0.05502 3 640 0.8223 0.6426 0.7046 0.4083 0.08953 0.01305 0.01627
53 | 52/99 7.33G 0.03601 0.004765 0.006091 0.04687 4 640 0.7664 0.6646 0.6972 0.413 0.08881 0.0132 0.01633
54 | 53/99 7.33G 0.03658 0.004774 0.007057 0.04841 2 640 0.7426 0.6961 0.7115 0.4054 0.08788 0.01357 0.01623
55 | 54/99 7.33G 0.03938 0.004901 0.006135 0.05042 0 640 0.7994 0.6799 0.715 0.413 0.08698 0.01347 0.01572
56 | 55/99 7.33G 0.03701 0.004751 0.006188 0.04795 7 640 0.8403 0.6669 0.7378 0.4244 0.08656 0.01325 0.01564
57 | 56/99 7.33G 0.03862 0.00482 0.006483 0.04992 2 640 0.7547 0.6912 0.7201 0.4186 0.08643 0.01332 0.01588
58 | 57/99 7.33G 0.03864 0.00448 0.006793 0.04992 2 640 0.7056 0.6867 0.6941 0.4118 0.08621 0.01373 0.01574
59 | 58/99 7.33G 0.03755 0.004643 0.006282 0.04848 2 640 0.858 0.658 0.7058 0.4266 0.08697 0.01327 0.01603
60 | 59/99 7.33G 0.03845 0.004883 0.00696 0.05029 4 640 0.8437 0.6275 0.7071 0.4131 0.08676 0.0135 0.01623
61 | 60/99 7.33G 0.03745 0.004792 0.006273 0.04851 2 640 0.8713 0.6491 0.7291 0.4378 0.0854 0.01354 0.01583
62 | 61/99 7.33G 0.03472 0.005129 0.005484 0.04533 2 640 0.8071 0.6572 0.721 0.4237 0.08422 0.01397 0.0158
63 | 62/99 7.33G 0.03647 0.005011 0.005797 0.04728 2 640 0.7347 0.7393 0.7466 0.4491 0.08237 0.01451 0.0156
64 | 63/99 7.33G 0.03535 0.004894 0.004667 0.04491 4 640 0.8506 0.7043 0.7512 0.4453 0.08158 0.01432 0.01545
65 | 64/99 7.33G 0.03548 0.004688 0.005671 0.04584 2 640 0.8333 0.7017 0.7471 0.4527 0.08111 0.01427 0.01544
66 | 65/99 7.33G 0.03649 0.004666 0.004907 0.04606 4 640 0.8005 0.7379 0.7546 0.4665 0.08059 0.01408 0.01524
67 | 66/99 7.33G 0.03541 0.00468 0.005255 0.04535 0 640 0.8103 0.6939 0.7527 0.4417 0.08171 0.01419 0.01534
68 | 67/99 7.33G 0.03544 0.005168 0.004449 0.04506 0 640 0.8154 0.7213 0.7669 0.4529 0.08095 0.0143 0.01496
69 | 68/99 7.33G 0.03296 0.004756 0.004225 0.04194 6 640 0.7982 0.7099 0.7452 0.4597 0.08118 0.01443 0.01493
70 | 69/99 7.33G 0.03416 0.004529 0.004325 0.04301 2 640 0.9023 0.6887 0.7794 0.4738 0.08058 0.01443 0.01527
71 | 70/99 7.33G 0.03535 0.004601 0.004104 0.04405 2 640 0.8947 0.7019 0.7775 0.4776 0.08003 0.0144 0.0154
72 | 71/99 7.33G 0.03205 0.004805 0.003842 0.0407 2 640 0.8703 0.7283 0.7836 0.4678 0.07962 0.01446 0.01533
73 | 72/99 7.33G 0.03436 0.004694 0.004168 0.04322 2 640 0.9261 0.699 0.7809 0.4658 0.07961 0.01441 0.01545
74 | 73/99 7.33G 0.03373 0.004882 0.003985 0.0426 4 640 0.9259 0.708 0.7903 0.4777 0.07896 0.01445 0.01569
75 | 74/99 7.33G 0.03382 0.004731 0.003422 0.04197 2 640 0.8803 0.7388 0.8092 0.4937 0.07864 0.01425 0.01509
76 | 75/99 7.33G 0.03535 0.004595 0.004631 0.04458 2 640 0.8879 0.7448 0.807 0.4919 0.0778 0.0145 0.01499
77 | 76/99 7.33G 0.03118 0.004487 0.003596 0.03927 0 640 0.9013 0.7369 0.8067 0.4935 0.07727 0.01459 0.01525
78 | 77/99 7.33G 0.03138 0.00454 0.003536 0.03946 6 640 0.9352 0.7223 0.8163 0.5116 0.07697 0.01452 0.01516
79 | 78/99 7.33G 0.03211 0.004334 0.003389 0.03983 2 640 0.9568 0.7113 0.8103 0.501 0.07711 0.01452 0.01495
80 | 79/99 7.33G 0.03275 0.004637 0.003833 0.04122 4 640 0.9132 0.7284 0.8125 0.512 0.07692 0.01452 0.01519
81 | 80/99 7.33G 0.03282 0.004319 0.00466 0.0418 2 640 0.903 0.7016 0.7946 0.5005 0.07726 0.01446 0.0152
82 | 81/99 7.33G 0.03046 0.004587 0.003402 0.03845 0 640 0.8819 0.7475 0.8098 0.5078 0.07652 0.01463 0.01516
83 | 82/99 7.33G 0.03152 0.004456 0.003291 0.03927 3 640 0.8874 0.7443 0.8037 0.5281 0.07554 0.01481 0.01515
84 | 83/99 7.33G 0.03125 0.004333 0.00289 0.03847 1 640 0.9066 0.7513 0.8159 0.525 0.07521 0.01474 0.01513
85 | 84/99 7.33G 0.03077 0.004546 0.003809 0.03912 5 640 0.8899 0.7765 0.8254 0.5095 0.07526 0.0147 0.01512
86 | 85/99 7.33G 0.03156 0.004523 0.003203 0.03928 4 640 0.8651 0.7844 0.8345 0.5131 0.07449 0.01489 0.01477
87 | 86/99 7.33G 0.03196 0.004654 0.00396 0.04057 6 640 0.9112 0.7485 0.8255 0.5233 0.07407 0.01506 0.01455
88 | 87/99 7.33G 0.03238 0.004512 0.004077 0.04096 2 640 0.9233 0.758 0.8222 0.5184 0.07403 0.01494 0.01439
89 | 88/99 7.33G 0.03063 0.004467 0.002669 0.03776 5 640 0.9242 0.7657 0.8339 0.526 0.0744 0.01485 0.01457
90 | 89/99 7.33G 0.03071 0.004654 0.003305 0.03867 3 640 0.925 0.7655 0.8317 0.5355 0.07461 0.01466 0.0146
91 | 90/99 7.33G 0.03042 0.00411 0.002398 0.03693 4 640 0.9318 0.7634 0.8355 0.5412 0.07428 0.0148 0.01447
92 | 91/99 7.33G 0.03087 0.004395 0.003196 0.03846 3 640 0.9336 0.758 0.8326 0.545 0.0743 0.01497 0.01449
93 | 92/99 7.33G 0.03004 0.004439 0.002773 0.03725 5 640 0.9311 0.7542 0.8294 0.5356 0.07406 0.01485 0.01445
94 | 93/99 7.33G 0.03051 0.004685 0.002747 0.03794 8 640 0.944 0.7624 0.834 0.54 0.07425 0.01465 0.01446
95 | 94/99 7.33G 0.02956 0.004144 0.003177 0.03688 2 640 0.9104 0.7915 0.8483 0.5459 0.07399 0.01467 0.01438
96 | 95/99 7.33G 0.02939 0.004349 0.002805 0.03654 2 640 0.9089 0.7851 0.8467 0.5396 0.07415 0.01462 0.01436
97 | 96/99 7.33G 0.03211 0.004552 0.003459 0.04012 2 640 0.9111 0.7751 0.8419 0.5448 0.07371 0.01466 0.01439
98 | 97/99 7.33G 0.02985 0.004441 0.003798 0.03809 0 640 0.9101 0.7697 0.8383 0.544 0.07318 0.01472 0.01435
99 | 98/99 7.33G 0.03016 0.004241 0.00384 0.03825 2 640 0.9392 0.7673 0.8409 0.5454 0.07269 0.01481 0.01415
100 | 99/99 7.33G 0.03119 0.004515 0.003677 0.03938 6 640 0.9552 0.7753 0.8483 0.5587 0.07223 0.01486 0.01392
101 |
--------------------------------------------------------------------------------
/test_images/a1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/a1.png
--------------------------------------------------------------------------------
/test_images/a3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/a3.png
--------------------------------------------------------------------------------
/test_images/a5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/a5.png
--------------------------------------------------------------------------------
/test_images/a6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/a6.png
--------------------------------------------------------------------------------
/test_images/a7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/a7.png
--------------------------------------------------------------------------------
/test_images/a9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/a9.png
--------------------------------------------------------------------------------
/test_images/test_batch2_pred.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/siromermer/CS2-CSGO-Yolov8-Yolov7-ObjectDetection/b025ca1e25e8d9a920b8b2c32ff2622fde68fb17/test_images/test_batch2_pred.jpg
--------------------------------------------------------------------------------