├── .gitignore ├── LICENSE ├── Q Notes.pdf ├── Qiskit ├── Q Notes.pdf ├── Qiskit.ipynb ├── README.md ├── Resources.ipynb └── Scratch.ipynb ├── README.md ├── Ryan30 ├── Notes.md ├── ch.1 │ ├── atoms-computation.ipynb │ ├── chapter1-practice-file.ipynb │ └── representing-qubit-states.ipynb └── setting-the-environment.ipynb ├── SunilK ├── BlochSphereAnimation.ipynb ├── Local Module Test.ipynb ├── bloch_anim.gif └── mymodules │ └── hello.py ├── Touny.md └── minhpham ├── Chapter 1 Code.ipynb ├── Chapter 1 Edit.pdf ├── Chapter 2 Edit.pdf ├── Q Notes.pdf ├── Qiskit.ipynb ├── README.md ├── Resources.ipynb └── Scratch.ipynb /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | 131 | 132 | # Apple folder stuff 133 | .DS_Store 134 | 135 | *.swp 136 | *.map 137 | 138 | config.rst 139 | *.iml 140 | /.project 141 | /.pydevproject 142 | 143 | package-lock.json 144 | geckodriver.log 145 | *.iml 146 | 147 | # jetbrains IDE stuff 148 | *.iml 149 | .idea/ 150 | 151 | # vscode IDE stuff 152 | *.code-workspace 153 | .history 154 | .vscode 155 | 156 | 157 | /.vs/QCStudyGroup/v16/TestStore/0/000.testlog 158 | /.vs/ProjectSettings.json 159 | /.vs/slnx.sqlite 160 | /.vs/QCStudyGroup/v16/.suo 161 | .vs/VSWorkspaceState.json 162 | 163 | 164 | # temp files for animations 165 | */temp_file.png 166 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /Q Notes.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sktxdev/Quantum-Computing/2d72a87d4b8268fafed8f1509d558d6625ef3adc/Q Notes.pdf -------------------------------------------------------------------------------- /Qiskit/Q Notes.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sktxdev/Quantum-Computing/2d72a87d4b8268fafed8f1509d558d6625ef3adc/Qiskit/Q Notes.pdf -------------------------------------------------------------------------------- /Qiskit/README.md: -------------------------------------------------------------------------------- 1 | Storing mathematical proofs of circuit components in quantum algorithms. 2 | -------------------------------------------------------------------------------- /Qiskit/Scratch.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# IMPORT THIS!!!" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 3, 13 | "metadata": {}, 14 | "outputs": [ 15 | { 16 | "name": "stderr", 17 | "output_type": "stream", 18 | "text": [ 19 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #2.\n", 20 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #3.\n" 21 | ] 22 | } 23 | ], 24 | "source": [ 25 | "import numpy as np\n", 26 | "import matplotlib\n", 27 | "import matplotlib.pyplot as plt\n", 28 | "import scipy.integrate as integrate\n", 29 | "import quadpy\n", 30 | "import random\n", 31 | "import math" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 247, 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "data": { 41 | "text/plain": [ 42 | "(5, 73, 365, 309)" 43 | ] 44 | }, 45 | "execution_count": 247, 46 | "metadata": {}, 47 | "output_type": "execute_result" 48 | } 49 | ], 50 | "source": [ 51 | "p = random.choice(prime_list)\n", 52 | "q = random.choice(prime_list)\n", 53 | "M = p*q\n", 54 | "guess = random.randint(2, M)\n", 55 | "\n", 56 | "p, q, M, guess" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": 248, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "def Shor(M, guess): \n", 66 | " pf = lambda guess, M: np.array([guess**b%M for b in range(2, 5000)]) \n", 67 | " \n", 68 | " if math.gcd(M, guess) !=1: \n", 69 | " \n", 70 | " return math.gcd(M, guess), int(M/math.gcd(M, guess)) \n", 71 | " \n", 72 | " peak = np.where(pf(guess, M)==1)[0]\n", 73 | " \n", 74 | " r = peak[1]-peak[0] \n", 75 | " return math.gcd(M, int(guess**(r/2)-1)), math.gcd(M, int(guess**(r/2)+1))" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": 249, 81 | "metadata": {}, 82 | "outputs": [ 83 | { 84 | "data": { 85 | "text/plain": [ 86 | "(1, 1)" 87 | ] 88 | }, 89 | "execution_count": 249, 90 | "metadata": {}, 91 | "output_type": "execute_result" 92 | } 93 | ], 94 | "source": [ 95 | "Shor(M, guess)" 96 | ] 97 | }, 98 | { 99 | "cell_type": "code", 100 | "execution_count": 246, 101 | "metadata": {}, 102 | "outputs": [ 103 | { 104 | "data": { 105 | "text/plain": [ 106 | "(array([ 2, 6, 10, ..., 4986, 4990, 4994]),)" 107 | ] 108 | }, 109 | "execution_count": 246, 110 | "metadata": {}, 111 | "output_type": "execute_result" 112 | } 113 | ], 114 | "source": [ 115 | "np.where(np.array([guess**r%M for r in range(2, 5000)]) ==1)" 116 | ] 117 | }, 118 | { 119 | "cell_type": "code", 120 | "execution_count": 236, 121 | "metadata": {}, 122 | "outputs": [ 123 | { 124 | "data": { 125 | "text/plain": [ 126 | "1" 127 | ] 128 | }, 129 | "execution_count": 236, 130 | "metadata": {}, 131 | "output_type": "execute_result" 132 | } 133 | ], 134 | "source": [ 135 | "math.gcd(M, 31-1)" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": 1, 141 | "metadata": {}, 142 | "outputs": [ 143 | { 144 | "name": "stderr", 145 | "output_type": "stream", 146 | "text": [ 147 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #2.\n", 148 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #3.\n" 149 | ] 150 | } 151 | ], 152 | "source": [ 153 | "from qiskit import *" 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "execution_count": 80, 159 | "metadata": {}, 160 | "outputs": [ 161 | { 162 | "data": { 163 | "text/plain": [ 164 | "" 165 | ] 166 | }, 167 | "execution_count": 80, 168 | "metadata": {}, 169 | "output_type": "execute_result" 170 | } 171 | ], 172 | "source": [ 173 | "circuit = QuantumCircuit(3, 3)\n", 174 | "circuit.h([0, 1, 2])\n", 175 | "circuit.measure([0, 1, 2], [0, 1, 2])" 176 | ] 177 | }, 178 | { 179 | "cell_type": "code", 180 | "execution_count": 81, 181 | "metadata": {}, 182 | "outputs": [], 183 | "source": [ 184 | "%matplotlib inline " 185 | ] 186 | }, 187 | { 188 | "cell_type": "code", 189 | "execution_count": 144, 190 | "metadata": {}, 191 | "outputs": [ 192 | { 193 | "data": { 194 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAADWCAYAAAC3+suJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZ4ElEQVR4nO3de1SUdeIG8GcGcIbLiAIKcvFCIMLEEAKKbgqIpJmZa4Z5wU1DDNGjlif1uB33ZAFeuliZq2aGqb8t8FqrnqRVjhu6C6koYiKhgYSYCCIIKDC/PxRyROYL7cy8XJ7POXPO8J33nXlGh4fve+FFptVqtSAiohbJpQ5ARNTesSiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAuZSByDTWLRTmtf9cPr/tr5MJjNMkDbQarUmf01q3zijJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSujQzMzNJTkGijoXnUVKnYG5ujtGjR2Po0KHw9fWFSqXC3bt3kZubix9//BGHDh1CWVmZzjpmZmb48ssvUV1djejoaJ4/SS1iUVKHZmlpiSVLluC1116Ds7Nzi8tVV1fjH//4B95++21cuXKlqSSnTp2KiooKJCYm4tKlSyZMTh0JN70f0tDQgHXr1sHT0xNKpRJ+fn5IS0uDl5cXYmJipI5nUp/Nd0b2sa06Y1qtFhujuyMvY69EqXQNGzYMWVlZePvtt+Hs7IycnBysXbsW06ZNw5gxYzBx4kS89dZbSE1NhaWlJWbNmoVz585h3rx5OiU5ZswYliTpxRnlQ2bPno29e/firbfeQkBAANLT0zF16lT89ttveP3116WOZzKVN4tQVV6MXn39dMZvXc/H3ZrbcHQPlCjZ755//nkkJydDoVDg3LlzWLhwIY4ePdpsuf379+Odd97BE088gfj4eERGRmLDhg0A0FSSJ0+eNHV86mA4o3xg165dSEpKwoEDB7BkyRKEhYVhxYoVGDZsGOrq6hAQEAAAKCkpwTPPPAMrKyv4+fnh9OnTEic3vJL8DMjkZrB3VeuM3yjIgpWtI1T2bhIlu2/o0KFNJblhwwYEBgY+tiQf9vPPP2PatGlIT09vGtuxYwdLklqFRflAQkICxo4di5CQEJ1xDw8PWFhYwNfXFwAQGxuLQYMGobS0FHFxcZg8eTLq6+uliGw0JfkZ6Ok0EObdLHXGfyvIQu8B0s4mlUolkpKSoFAo8Omnn2L+/Pm4e/eucL3GfZLDhw/HnTt3AADR0dFN/69E+nDTG8DVq1eRnZ2NxYsXN3usoKAAarUaCoUCt2/fxj//+U8UFRXB0tISMTExiI+Px8mTJ/GnP/3JIFmMdarKwh2tP6Jbkp+B8pI8bHrNQWf8Xm0lAp9f3qbXNfT7Wbx4Mby8vHD+/PnH/n89zqMHbsaMGYMZM2YgLi4On3zySbMfjjxdqOto7ZkOLErcL0oAcHJy0hmvrq5GWloaxo0bBwC4dOkS7O3t4eDwe4H4+voiJyfHYEXZHpRczsTQSX+D99MzdcZ3LveFo4QzSjMzM8TGxgK4X5htmUk+XJInT55EdnY2oqKiMHLkSPj6+uLcuXPGjk8dGDe9gabiy83N1Rlfs2YNiouLMXjwYABAVVUVunfvrrNM9+7dUVlZabAsWq3WKLfWKr+Wh9qqMvTTjIHK3rXpVn+vBrV3ytG7jQdyDJk7JCQEbm5uyM3NRWpqqvC1WypJAKisrERSUhIAICoqyqCZees4t9bijBKAu7s7NBoN4uPjYWdnBxcXF6SkpODgwYMA0HQgx9raGrdv39ZZt6KiAjY2NibPbCwl+RkwV1g1O+JdfCkdNvZusLZ1lCgZMGTIEADA4cOHhR9yfSXZ6PDhw1iwYAGCgoKMlpk6B84oAcjlciQnJ0OtViM2NhazZs2Cg4MD4uLiYG5uDo1GAwDw9PTEjRs3UFpa2rRudnY2fHx8pIpucCX5GXAcEAS5me7P0OK8E5JudgPAk08+CQDCMw1aU5IPP0/j/y9RSzijfGDgwIHNTjGJioqCt7c3LC3vH/1VqVR47rnnsGrVKiQmJmLHjh2QyWQIDg6WIrJRjJzx/mPHR83aaOIkzR0/fhw1NTU4e/as3uVWrlwpLEkAuHHjBrZt22bQXSfUOcm0bdlQ72K8vb0RHByMbdu2NY2VlJRgxowZ+Pe//w1PT08kJSXB399fwpSt05X+Zo6dnR327NmDZcuW/aHzJPktQY/ijLIFlZWVyM3Nxbx583TGHR0dceTIEYlSUWvcvHkToaGhUsegToRF2QIbG5tOdyI5Ef0xPJhDRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQB/M4c6lWWrNwMAEpfG6Nwn+l9wRklEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAP+udxexaKc0r/vhdGleV0oymUyS1+WlZY2HM0oiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKIkkJpPJ4OXlhfDwcIwePRp+fn6wsLBocXlLS0ssXrwYcjm/fU2F51ESSUAmk+GZZ55BbGwsRo0aBZVKpfN4bW0tTp48ic2bNyMlJQV3794FcL8k9+/fj4iICLi4uGDJkiVSxO9y+CPpIQ0NDVi3bh08PT2hVCrh5+eHtLQ0eHl5ISYmRup41En4+PjgP//5Dw4fPowXXngBKpUKhYWF+Ne//oXU1FTk5uZCoVAgJCQEO3fuRG5uLsLDw3VK8tq1a9i6davUb6XLYFE+ZPbs2Vi1ahXmzp2LQ4cOITIyElOnTkV+fj4CAgKkjmdSn813RvYx3W9ErVaLjdHdkZexV6JUHV9UVBROnTqFoKAgFBUVYfny5XBxcUHfvn0RHh6OiIgIeHl5oUePHpgzZw6ys7PRr18/pKam4vz5800lOWrUKFy4cEHqt9NlsCgf2LVrF5KSknDgwAEsWbIEYWFhWLFiBYYNG4a6urqmoly5ciV8fHwgl8uRkpIicWrjqLxZhKryYvTq66czfut6Pu7W3Iaje6BEyTq2GTNmYPv27VAoFNiyZQu8vb2RmJiIX3/9tdmyt27dwmeffQZ/f3+sXLkSDQ0NGDBgAKqqqliSEmBRPpCQkICxY8ciJCREZ9zDwwMWFhbw9fUFAHh6emL9+vUYMmSIFDFNoiQ/AzK5Gexd1TrjNwqyYGXrCJW9m0TJOq5BgwZhy5YtAIA333wTMTExuH37tnA9CwsLPP3005DL5dBqtbC2toanp6ex49IjWJQArl69iuzsbLz00kvNHisoKIBarYZCoQBwf1YQEREBpVJp6pgmU5KfgZ5OA2HezVJn/LeCLPQewNnkH7Ft2zYolUps3boVa9eubdU6j+6TTEhIAABs2rQJtra2xoxLj+BRb9wvSgBwcnLSGa+urkZaWhrGjRtnsizGuvLMwh2tv7JMSX4GykvysOk1B53xe7WVCHx+eZte19RX0lmauKnpdR++L6WwsDAEBwfj2rVreP3111u1zqMlOWrUKPz0008IDQ3F8OHD8corr2D9+vU660j9Pjui1l5xiTNKAA4O9wshNzdXZ3zNmjUoLi7G4MGDpYglmZLLmRg66W+Y9u4ZnZu5hSUcOaNss9jYWADAp59+ioqKCuHyjyvJCxcuQKvVYs2aNTrPSabBGSUAd3d3aDQaxMfHw87ODi4uLkhJScHBgwcBwKRHvI11TcHWXo+y/FoeaqvK0E8zBip7V93xO+Xo3cYDOaa+RuKy1ZubXvfh+6b06MwuPDwcALB9+3bhui2VZKNvv/0WZWVl8PLygouLC4qKipoe4/UojYczSgByuRzJyclQq9WIjY3FrFmz4ODggLi4OJibm0Oj0Ugd0WRK8jNgrrBqdsS7+FI6bOzdYG3rKFGyjql///6ws7NDSUkJfvnlF73LikoSAOrr65GZmQnAtD/AuzrOKB8YOHAgjh49qjMWFRUFb29vWFr+flDj3r17qK+vR0NDA+7du4eamhooFIpOs3+oJD8DjgOCIDfT/WgU553gZvcf4OzsDAD4+eef9S7XmpJslJeXh4iIiKbnJuNjUeqRmZmJ4OBgnbE5c+YgKSkJAHD8+HEAwOXLl9G/f39TxzOKkTPef+z4qFkbTZykczhx4gRUKhXMzMz0LqdUKtGrV69WnUz+5ptvYtmyZaiqqjJ0XGoBN71bUFlZidzc3GYHcr744gtotVqdW2cpSTI8rVaLyspK3Lp1S+9yZWVlCA8PR0hIiPBk8srKSlRUVKC+vt6QUUkPzihbYGNjww8imdTNmzdx8+ZNqWPQY3BGSUQkwKIkIhJgURIRCbAoiYgEWJRERAIsSiIiARYlEZEAz6PsIj6cLnWCruOPXJyi8QIeiUtjdO5T+8AZJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCvB5lF7FopzSvy+tgdhwymczkr/lHrt0pBc4oiYgEWJRERAIsSiIiARYlEZEAi5KISIBFSUQkwKIkIpNQqVSQyztm5fA8SiJqk169euHFF19EUFAQ1Go1rKysUFNTgwsXLiAzMxN79uxBUVGRzjo9evRAamoqzp49i+joaDQ0NEiU/o/pmPVuJA0NDVi3bh08PT2hVCrh5+eHtLQ0eHl5ISaGf4yeujZXV1ds374dhYWF2LhxI2bPno2hQ4fC19cXQUFBmDlzJj766CNcuXIFKSkp8PT0BPB7SQYEBGDEiBGws7OT+J20HYvyIbNnz8aqVaswd+5cHDp0CJGRkZg6dSry8/MREBAgdTyT+my+M7KPbdUZ02q12BjdHXkZeyVKRVKZOXMmsrOzERUVBQsLC3zzzTdYsGABRowYAY1Gg+HDhyM2NhbJycnQarV48cUXkZWVhaVLlzaVZF5eHkJDQ3Hjxg2p306bcdP7gV27diEpKQnHjh1DSEgIACAsLAynTp3Cnj17EBAQgNraWsydOxdHjhxBVVUVBg8ejA0bNsDb21vi9IZVebMIVeXF6NXXT2f81vV83K25DUf3QImSkRSWLVuGhIQEAMC+ffuwePFiXLlypdlyJ06cwN///nf06dMHCQkJ+Mtf/oLExEQAaCrJRzfJOwrOKB9ISEjA2LFjm0qykYeHBywsLODr64u6ujp4eHjgv//9L0pLSzF69GhMmTJFosTGU5KfAZncDPauap3xGwVZsLJ1hMreTaJkZGozZsxAQkIC6uvrMXfuXPz5z39+bEk+rLi4GIsWLUJ+fn7T2M6dOztsSQIsSgDA1atXkZ2djZdeeqnZYwUFBVCr1VAoFLC2tsZf//pXuLi4wMzMDAsWLMC5c+dQU1MjQWrjKcnPQE+ngTDvZqkz/ltBFnoP4Gyyq3B2dsbHH38MAIiLi8PmzZtbtV7jPkl3d3cUFxcDAJYuXYpBgwYZLauxsShxvygBwMnJSWe8uroaaWlpLe6fTE9PR//+/aFUKg2WRSaTGeXWFiX5GSgvycOm1xx0bj9+uxqO7kHt4v2I3uej99v7rT3kftQ777yDHj164MCBA9i0aVOr/r8fPnCTl5eHoKAgbN26FUqlEuvWrZP88yF6zy3hPkoADg4OAIDc3FyMGzeuaXzNmjUoLi7G4MGDm61TVlaGuLg4vPvuuybLaSollzMxdNLf4P30TJ3xnct94cgZZZdgZ2eHqVOnoqGhAYsXL27VOo+WZOM+yaVLl2L69Ol49tlnMWDAAFy+fNnI6Q2PM0oA7u7u0Gg0iI+Px/bt2/H9998jNjYWn3/+OQA0m1FWV1djwoQJmDJlCqZNm2bQLFqt1ii31iq/lofaqjL004yByt616VZ/rwa1d8rRu40Hcoz1fkTv89H77f3WHnI/bOLEiVAqlfjuu+909jW2pKWSBIDS0lKkpKRALpcjMjJS0s+HvvesD4sSgFwuR3JyMtRqNWJjYzFr1iw4ODggLi4O5ubm0Gg0TcvW1dUhMjISnp6enXM2mZ8Bc4VVsyPexZfSYWPvBmtbR4mSkSkFBt7/gZiamipcVl9JNjpy5IjO83Y03PR+YODAgTh69KjOWFRUFLy9vWFp+ftBjcbfKmjtju2OpiQ/A44DgiA30/1oFOed4GZ3F6JW3z/jISsrS+9yrSlJADhz5ozO83Y0LEo9MjMzERwc3PT1L7/8gqSkJCiVSvTo0aNpPCcnB3379pUiosGNnPH+Y8dHzdpo4iQkpaSkJBw/fhwXL17Uu9wHH3wgLEkAKCwsRHx8PK5du2aMuEbHomxBZWUlcnNzMW/evKaxfv36tWm/BlFH1bh/XuSNN96ASqXCwoUL9Z4nWVZWhhUrVhgqnsmxKFtgY2OD+vp6qWMQtWs3b97E5MmTpY5hdDyYQ0QkwKIkIhJgURIRCbAoiYgEWJRERAIsSiIiARYlEZEAi5KISIAnnHcRH06XOgG1d239rbNlq+9f7yBxaYzO/c6IM0oiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiU1GoRERHw8/ODRqPB5MmTUVFRIXUkgzt27BjUajU8PDwQHR2N+vp6qSMJLViwAK6urjA37ziXly0sLER4eDi8vb3x5JNPYvny5VJH0otFSa2WkpKCrKwsnD17Fn379sX7778vdSSDamhoQHR0NJKTk5GXl4eKigrs2LFD6lhCU6ZMwY8//ih1jDYxNzfH6tWrceHCBZw6dQrp6enYv3+/1LFaxKKkVrO1tQVwv1Cqqqogk8kkTmRYGRkZcHZ2ho+PDwDg1Vdfxe7duyVOJfb000/D0dFR6hht0qdPHwQGBgIAunXrBo1Gg4KCAolTtYxFSW0yYcIEODk54eLFi3jjjTekjmNQV69ehZubW9PXffv2RWFhoYSJuobS0lLs27cPERERUkdpkUzb1j+UQV1eQ0MDVqxYAQcHB8nL8k5NLbZ9fQh1D/YlFl8vBQD06W2vc7/Rc2HB8Ojv8tjnSklJwb59+5o2t3NycjB9+nScPn3a4LmPnjiNsz/lN32tL3ef3vaIfC5U+Jzm5uaoq6szeNZGZbdu48u936GxMUT/1pHPhep8/Ti1tbUYO3Ysxo8fL/lnSR/OKKnN5HI5XnnlFXzxxRdSR4GVUoEn+jmj+Hpp0zcrgGb3i6+Xwkwuh3s/5xafy83NTWfzr7CwEK6urkbJ7a/2xI2b5a3KHfDkQKNkaKuetir06WXfqsy2KmthSdbX12P69Onw9/dv1yUJsCiplSoqKlBcXNz09e7du6FWqyVM9Luw4KegsrYULjc+fBjkevarBgYGoqioCDk5OQCArVu3YtKkSQbL+bAe3W0QMvQp4XLqgf3xhJ5yN7UxIUPQzUL/0XW5XIbnwoKFzxUTEwOVSoX33nvPUPGMhkVJrXLr1i1MmDABvr6+0Gg0OHPmDNavXy91LACAQtENY0YO0buMZpA7+rs66V3GzMwMW7ZsweTJk/HEE0/AxsYGUVFRhoyqY+RQP9iqrPXkkWNcqLhw5s6dC1dXV9TX18PV1RVxcXGGjKmju40Vwob5611m2GA1etn30LvMDz/8gM8//xyZmZnw9/fHU089hY8++siQUQ2K+yjpf6bVaiU/At6g1eKTpD34taS02WPmZmZ4Y04ketqqJEim3+nzl/DVt0cf+1jIUD88GzrUxInE7t2rw3uffY3yispmj1kpFVgy92VYKRUSJDMezijbYP/+/Rg/fjx69+4NhUKBfv36Ydq0aTh37pzU0SR1/tIVbP6/b3C78o5kGeQyGZ4PH/7Yx0YM0bTLkgQAPx8PuPXp3WzcxspSOHOTioWFOca1UOARIwI7XUkCLMpWqaurw8svv4yJEyciKysLkyZNwsKFC+Hv74/du3ejqKhI6oiSadBq8f0Pp1BReQdWVkpJswxw6wNfL3edMZWNFUKDxfsCpXK/4Ic1G39mRCCUim4SJGod38fsyuht3xNDnvKWKJFxdZzfeZLQ/Pnz8dVXX2HOnDn44IMPYG39+36lwsJC9Oihf39MZ5Zz6QqKr5diyvgwmMml/7n7bOgQXMj7pel0obEjh0DRzULiVPr1dXHEUz4eOJOTBwBw6mWHQI2XxKn0k8lkGB8+DBuS9qJx39348GHt4jNgDNxHKXD8+HGMHDkSY8eOxcGDB42+L27Z6s1GfX4i+l3i0phWLdc569+APvzwQwBAYmKi5AcsiEganFEKdO/eHfb29rh8+bLUUdqVBq0WH3+xB/fq6rD41Zfa3SZXyY0yODr0lDpGm9y9V4fKO9Wwa6cHnlrSEf+t24pFqUd5eTl69uyJ0NBQHD36+FM4DI2b3kSmw01vA2j8GXL9+nWJkxCRlDijFPDw8EB+fj6+++47jB49WuexixcvwsurfR+dNIbs3MvYsfcIpowPg7/aU+o4REbHohT4+uuvMWXKFJiZmeGFF16Ah4cHrl+/jvT0dPj4+GDv3r1SRzSp9r5vksgYeB6lQGRkJGxtbbF27Vqkpqbi22+/Re/evTFkyBAsWrRI6ngmV3WnGmZyOUYOH8ySpC6DM0pqM61WCy2g90o8RJ0Ji5KISIDbTkREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkcD/A/Do+01p3baFAAAAAElFTkSuQmCC\n", 195 | "text/plain": [ 196 | "
" 197 | ] 198 | }, 199 | "execution_count": 144, 200 | "metadata": {}, 201 | "output_type": "execute_result" 202 | } 203 | ], 204 | "source": [ 205 | "circuit.draw(output = 'mpl')" 206 | ] 207 | }, 208 | { 209 | "cell_type": "code", 210 | "execution_count": null, 211 | "metadata": {}, 212 | "outputs": [], 213 | "source": [ 214 | "provider = IBMQ.get_provider('ibm-q')\n", 215 | "\n", 216 | "qcomp = provider.get_backend('ibmq_vigo', )\n", 217 | "\n", 218 | "job = execute(circuit, backend = qcomp, shots = 1)\n", 219 | "\n", 220 | "job_monitor(job)\n", 221 | "\n", 222 | "results = job.result()\n", 223 | "\n", 224 | "plot_histogram(results.get_counts(circuit))" 225 | ] 226 | }, 227 | { 228 | "cell_type": "code", 229 | "execution_count": null, 230 | "metadata": {}, 231 | "outputs": [], 232 | "source": [ 233 | "a = list(results.get_counts().keys())[0]\n", 234 | "int(a, 2)" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": null, 240 | "metadata": {}, 241 | "outputs": [], 242 | "source": [] 243 | } 244 | ], 245 | "metadata": { 246 | "kernelspec": { 247 | "display_name": "Python 3", 248 | "language": "python", 249 | "name": "python3" 250 | }, 251 | "language_info": { 252 | "codemirror_mode": { 253 | "name": "ipython", 254 | "version": 3 255 | }, 256 | "file_extension": ".py", 257 | "mimetype": "text/x-python", 258 | "name": "python", 259 | "nbconvert_exporter": "python", 260 | "pygments_lexer": "ipython3", 261 | "version": "3.7.4" 262 | } 263 | }, 264 | "nbformat": 4, 265 | "nbformat_minor": 4 266 | } 267 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # QCStudyGroup 2 | QC Study Group Github Repository 3 | 4 | ## Resources 5 | 6 | | Title | Study Resources | Contributor | 7 | | ------| --------------- | ----------- | 8 | | QISKIT Book | https://qiskit.org/textbook/preface.html | | 9 | | Quantum algorithms for NLP: LSA, QSFA and CA | https://www.youtube.com/watch?v=d-Lfdfy-xw8 | | 10 | | Awesome Quantum Machine Learning | https://github.com/krishnakumarsekar/awesome-quantum-machine-learning (Thanks Ryan)| | 11 | | Quantum Logic and Probability Theory | https://plato.stanford.edu/entries/qt-quantlog/ | Ryan30 | 12 | | More Rigorous Overview of the Maths and Computer Science behind the algorithms | https://lapastillaroja.net/wp-content/uploads/2016/09/Intro_to_QC_Vol_1_Loceff.pdf | 13 | |Michael A. Nielsen & Isaac L. Chuang, “Quantum Computation and Quantum Information”| http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf | 14 | |Noson S. Yanofsky & Mirco A. Mannucci, “Quantum Computing for Computer Scientist”| https://www.mobt3ath.com/uplode/book/book-71712.pdf | 15 | |Abhijith J., et al., “Quantum Algorithm Implementations for Beginners”|https://arxiv.org/pdf/1804.03719.pdf | 16 | |Professor Vazirani's Video |https://www.youtube.com/channel/UCq9B8tT3oXl8BSyaoBPQXQw/playlists | 17 | |Guest Speaker Scott Aaronson, "Quantum Computing Since Democritus"| https://github.com/dmvaldman/library/blob/master/computer%20science/Aaronson%20-%20Quantum%20Computing%20Since%20Democritus.pdf| 18 | 19 | Add to this list as you see fit. 20 | 21 | 22 | 23 | My technique for learning. 24 | Watch a video on the topic I'm interested on, and do a deep dive if I dont understand something, until I'm satisfyed with my knowledge, then resurface and continue. Sometimes this can turn into as little as one slide or a couple of minutes of watching a segment of the video and a couple of days of filling in background knowledge. 25 | 26 | 27 | ## General 28 | 29 | For code editing I'll try to add juypter notebooks, but will use vscode for editing things like readme's and gitignore etc.,. 30 | 31 | If you wish to contribute on the markdown (this file), feel free to do so. I recommend a markdown previewer such as Markdown Preview Enhanced if you're using vscode. 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | -------------------------------------------------------------------------------- /Ryan30/Notes.md: -------------------------------------------------------------------------------- 1 | #I had access control issues when running the install command but it worked after using 2 | #the --user option 3 | pip3 install qiskit --user 4 | 5 | References: 6 | https://qiskit.org/textbook/ch-prerequisites/setting-the-environment.html 7 | https://qiskit.org/textbook/ch-appendix/linear_algebra.html -------------------------------------------------------------------------------- /Ryan30/ch.1/chapter1-practice-file.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [ 8 | { 9 | "data": { 10 | "text/html": [ 11 | "
     ┌─┐                     \n",
 12 |        "q_0: ┤M├─────────────────────\n",
 13 |        "     └╥┘┌─┐                  \n",
 14 |        "q_1: ─╫─┤M├──────────────────\n",
 15 |        "      ║ └╥┘┌─┐               \n",
 16 |        "q_2: ─╫──╫─┤M├───────────────\n",
 17 |        "      ║  ║ └╥┘┌─┐            \n",
 18 |        "q_3: ─╫──╫──╫─┤M├────────────\n",
 19 |        "      ║  ║  ║ └╥┘┌─┐         \n",
 20 |        "q_4: ─╫──╫──╫──╫─┤M├─────────\n",
 21 |        "      ║  ║  ║  ║ └╥┘┌─┐      \n",
 22 |        "q_5: ─╫──╫──╫──╫──╫─┤M├──────\n",
 23 |        "      ║  ║  ║  ║  ║ └╥┘┌─┐   \n",
 24 |        "q_6: ─╫──╫──╫──╫──╫──╫─┤M├───\n",
 25 |        "      ║  ║  ║  ║  ║  ║ └╥┘┌─┐\n",
 26 |        "q_7: ─╫──╫──╫──╫──╫──╫──╫─┤M├\n",
 27 |        "      ║  ║  ║  ║  ║  ║  ║ └╥┘\n",
 28 |        "c: 8/═╩══╩══╩══╩══╩══╩══╩══╩═\n",
 29 |        "      0  1  2  3  4  5  6  7 
" 30 | ], 31 | "text/plain": [ 32 | " ┌─┐ \n", 33 | "q_0: ┤M├─────────────────────\n", 34 | " └╥┘┌─┐ \n", 35 | "q_1: ─╫─┤M├──────────────────\n", 36 | " ║ └╥┘┌─┐ \n", 37 | "q_2: ─╫──╫─┤M├───────────────\n", 38 | " ║ ║ └╥┘┌─┐ \n", 39 | "q_3: ─╫──╫──╫─┤M├────────────\n", 40 | " ║ ║ ║ └╥┘┌─┐ \n", 41 | "q_4: ─╫──╫──╫──╫─┤M├─────────\n", 42 | " ║ ║ ║ ║ └╥┘┌─┐ \n", 43 | "q_5: ─╫──╫──╫──╫──╫─┤M├──────\n", 44 | " ║ ║ ║ ║ ║ └╥┘┌─┐ \n", 45 | "q_6: ─╫──╫──╫──╫──╫──╫─┤M├───\n", 46 | " ║ ║ ║ ║ ║ ║ └╥┘┌─┐\n", 47 | "q_7: ─╫──╫──╫──╫──╫──╫──╫─┤M├\n", 48 | " ║ ║ ║ ║ ║ ║ ║ └╥┘\n", 49 | "c: 8/═╩══╩══╩══╩══╩══╩══╩══╩═\n", 50 | " 0 1 2 3 4 5 6 7 " 51 | ] 52 | }, 53 | "execution_count": 1, 54 | "metadata": {}, 55 | "output_type": "execute_result" 56 | } 57 | ], 58 | "source": [ 59 | "#practice file for the qiskit book: https://qiskit.org/textbook/ch-states/introduction.html\n", 60 | "#Author: Ryan30\n", 61 | "#Date: 2020-10-25\n", 62 | "\n", 63 | "\n", 64 | "#https://qiskit.org/textbook/ch-states/atoms-computation.html\n", 65 | "#ch 1.2 - Atoms of computation\n", 66 | "\n", 67 | "#try the widget out\n", 68 | "#from qiskit_textbook.widgets import binary_widget\n", 69 | "#binary_widget(nbits=6)\n", 70 | "\n", 71 | "#Example 3 - First quantum circuit\n", 72 | "#import QC modules\n", 73 | "from qiskit import QuantumCircuit, execute, Aer\n", 74 | "from qiskit.visualization import plot_histogram\n", 75 | "\n", 76 | "#word of advice dont put a number this large because the server crashed, lol.\n", 77 | "#n = 8000\n", 78 | "\n", 79 | "n = 8\n", 80 | "#this represents the number of qubits in the circuit\n", 81 | "n_q = n\n", 82 | "\n", 83 | "#this represents the number of outputs in the circuit\n", 84 | "n_b = n\n", 85 | "qc_out = QuantumCircuit(n_q,n_b)\n", 86 | "\n", 87 | "for j in range(n):\n", 88 | " qc_out.measure(j,j)\n", 89 | " \n", 90 | "qc_out.draw()\n" 91 | ] 92 | }, 93 | { 94 | "cell_type": "code", 95 | "execution_count": 2, 96 | "metadata": {}, 97 | "outputs": [ 98 | { 99 | "data": { 100 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFrCAYAAACzANLuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfhklEQVR4nO3de7hdVXnv8e8LkZsJSkIJuRAxhGJNQJCtAm6uh4hgSxU9ogVzUg4gsRKR2lZbpEYRW7UItaWWtAcI2hbFU63lFqvEWAiJO2kjICZpwdSEXEgBIxISLu/5Y66ds9zsy1jJzl4re30/z7OerDXmmGO/85/8nnkZY0ZmIkmSBrZHswuQJGl3YWhKklTI0JQkqZChKUlSIUNTkqRCI5pdQDMdeOCBeeihhza7DElSC1m6dOmmzPyV3ra1dWgeeuihdHV1NbsMSVILiYjVfW3z8qwkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTGoYuuOACDjroIKZNm9br9sxk9uzZTJkyhaOOOoply5Zt33bzzTdz+OGHc/jhh3PzzTdvb1+6dClHHnkkU6ZMYfbs2WTmLj8OqdUYmtIwNHPmTO66664+t995552sWrWKVatWccMNNzBr1iwAnnjiCebMmcPixYtZsmQJc+bM4cknnwRg1qxZzJ07d/t+/Y0vDVeGpjQMnXTSSYwePbrP7d/85jeZMWMGEcFxxx3HU089xbp167j77ruZPn06o0eP5oADDmD69OncddddrFu3js2bN3PccccREcyYMYNvfOMbQ3dAUoswNKU2tHbtWg455JDtvydOnMjatWv7bZ84ceJL2qV2Y2hKklTI0JTa0IQJE/jpT3+6/feaNWuYMGFCv+1r1qx5SbvUbgxNqQ2dffbZzJs3j8zk/vvv5xWveAXjxo3jjDPOYP78+Tz55JM8+eSTzJ8/nzPOOINx48ax//77c//995OZzJs3j9/8zd9s9mFIQ25EswuQNPje+973smDBAjZt2sTEiROZM2cOzz33HACXXHIJZ511FnfccQdTpkxhv/3248YbbwRg9OjRfPzjH+cNb3gDAFdeeeX2B4quv/56Zs6cyZYtWzjzzDM588wzm3NwUhNFO8+16ujoyK6urmaXIUlqIRGxNDM7etvm5VlJkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYWGNDQj4qSI+KeIWBsRGREzC/Y5MiK+FxFbavtdGRHRo887I+JHEbG19u87dtlBSJLa1lCfaY4EHgQ+BGwZqHNE7A98G9gAvKG23+8Bl9f1OR64FfgKcHTt369FxJsGuXZJUpsb0rVnM/MO4A6AiLipYJfzgP2A/5WZW4AHI+I1wOURcU1WawBeBtyTmZ+u7fPpiDi11v7ewT0CSVI7a/V7mscD368FZre7gfHAoXV95vfY727ghF1enSSprbT6W04OBtb0aNtQt+3R2r8beulzcG8DRsTFwMUA48ePZ8GCBQBMnjyZUaNGsXz5cgDGjBnD1KlTWbhwIQAjRoygs7OTZcuWsXnzZgA6OjrYsGEDf/Ktw3bmGCVJg+CT565jxYoVQPXO2IkTJ7J48WIARo4cSUdHB4sWLWLr1q0AdHZ2snLlSjZu3AjAtGnTtm/rS9PechIRTwMfzMyb+ukzH1iTmRfUtU0CVgMnZOaiiNgGXJiZ8+r6zADmZube/dUwWG85uejanR5CkrST5l42OOPszm85WQ+M7dE2tm5bf33WI0nSIGr10FwEnBgR+9S1TQceA35S12d6j/2mA/ft8uokSW1lqOdpjoyIoyPi6NrfnlT7Pam2/TMR8Z26Xf4OeAa4KSKmRcQ5wEeB7idnAa4DTouIj0bEayLiY8CpwLVDdFiSpDYx1GeaHcC/1T77AnNq3z9Z2z4O2P5UTWb+jOqscTzQBfwl8GfANXV97gPeA8wEfgjMAM7NzMW79lAkSe1mqOdpLgCin+0ze2l7ADhpgHFvA27byfIkSepXq9/TlCSpZRiakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklSoodCMiD0iYo+63wdHxIUR8ebBL02SpNbS6Jnm7cClABExEugCPgcsiIgZg1ybJEktpdHQ7AC+W/t+DrAZOAi4CPhIyQAR8YGIeDQino2IpRFxYj99b4qI7OXzi7o+p/TR5zUNHpskSf1qNDRHAk/Vvr8F+MfMfI4qSA8baOeIOBe4DrgaOAa4D7gzIib1scuHgHE9Po8AX+2l79Qe/VYVHZEkSYUaDc3/At4cES8HzgC+XWsfDTxTsP/lwE2ZOTczH87MS4F1wKzeOmfmzzJzffeHKpgnA3N76b6xvm9mvtDgsUmS1K8RDfa/BrgFeBpYDSystZ8EPNDfjhGxF3As8Pkem+YDJxT+/YuAhzLzvl62dUXE3sCPgKsy854+6rgYuBhg/PjxLFiwAIDJkyczatQoli9fDsCYMWOYOnUqCxdWhzhixAg6OztZtmwZmzdvBqCjo4MNGzZQcJItSdrF1q1bx4oVKwCYMGECEydOZPHixQCMHDmSjo4OFi1axNatWwHo7Oxk5cqVbNy4EYBp06Zt39aXyMyGioqIDuAQ4NuZ+XSt7W3AU5l5bz/7jQfWAidn5sK69iuB8zLziAH+7iuozko/lpnX1bUfAZwK/ADYC3gfcEnt73y/vzE7Ojqyq6urvy5FLrp2p4eQJO2kuZcNzjgRsTQzO3rb1uiZJpnZRfXUbH3b7TtYWyPOp7qcfEuPv70CWFHXtCgiDgV+D+g3NCVJakTDixvUnn59KCKeiYjJtbY/iIh3D7DrJuAFYGyP9rHA+oI/fRHw9cx8oqDvYuDwgn6SJBVrdHGDy4ArgBuAqNv0GPDB/vbNzG3AUmB6j03TqZ6i7e/vvhF4Hb0/ANSbo6ku5UqSNGgavTx7CXBRZt4eEVfVtS+jmvIxkGuAWyJiCXBvbbzxwJcAImIeQGb2XCjhYmBVZi7oOWAtyH8CPER1T/N84O3AOwuPSZKkIo2G5quAB3tpfw7Yd6CdM/PWiBhDdbY6rjbWWZm5utblJfM1I2IU8B7gk30MuxfVqkQTgS1U4fm2zLxjoHokSWpEo6H5CPB6qukm9c6imuoxoMy8Hri+j22n9NL2c6pFFfoa77PAZ0v+tiRJO6PR0Pw88BcRsR/VPc3jI+J9wO8DFwx2cZIktZKGQjMzb4yIEVTL4O1HNf3jMWB2Zt66C+qTJKll7Mg8zbnA3Ig4ENgjMzcOflmSJLWehkOzW2ZuGsxCJElqdQOGZkT8kGpJuicj4gGgz3X3MvOowSxOkqRWUnKm+XVga933xharlSRpmBgwNDNzTt33T+zSaiRJamGNLqP33Yh4ZS/t+0fEdwetKkmSWlCjC7afQrUCT0/7ACfudDWSJLWwoqdnI+L1dT+Pioj6N43sCZxB9a5MSZKGrdIpJ11UDwAlML+X7VuASwerKEmSWlFpaL6aatm8R4A3Ao/XbdsGbMzMFwa5NkmSWkpRaNa9haThl1ZLkjRclCxucA7wrcx8rva9T5n5fwetMkmSWkzJmeZtwMHAxtr3viTVQ0GSJA1LJYsb7NHbd0mS2o0hKElSodJ7mkW8pylJGs5K72mW8J6mJGlYa+iepiRJ7cxAlCSpkPM0JUkq5DxNSZIKOU9TkqRChqAkSYUaDs2IeH1EzIuIrtrnlh7v25QkaVhqKDQj4jzgB8A44I7aZyywJCLOH/zyJElqHaXv0+z2aeDjmXl1fWNEfAy4CvjyYBUmSVKrafTy7K8AX+2l/WvAQTtfjiRJravR0LwHOKWX9lOA7+1sMZIktbJGF2y/E/hMRHQA99fajgPOAT4x6NVJktRCdnTB9otrn3pfBK7f6YokSWpRLtguSVIhA1GSpEKNTjkhIg4AzgQmAXvVb8vMTw5SXZIktZyGQjMijgNuB7ZSTT9ZS7XQwVbgJ4ChKUkathq9PPs54CvABOBZ4DSqM84u4E8HtzRJklpLo6F5FPAXmZnAC8DembkB+AOcciJJGuYaDc1tdd83AK+qfX8aGD8oFUmS1KIafRBoGfAGYCWwALgqIsYC5wM/HNzSJElqLY2eaf4R8Fjt+xXA41SLGhzASxc7kCRpWGnoTDMzu+q+P0419USSpLbQ8DxNgIg4DPi12s8fZeYjg1eSJEmtqdF5mmOAvwXOBl78/83xz8AFmfnfg1yfJEkto9F7mn8DTAFOBPapfU4CXg3MHdzSJElqLY2G5hnARZl5b2Y+X/vcC7y/tm1AEfGBiHg0Ip6NiKURcWI/fU+JiOzl85oe/d4ZET+KiK21f9/R4HFJkjSgRkPzceAXvbQ/Awx4aTYizgWuA64GjgHuA+6MiEkD7DqVarm+7s+qujGPB26lWqno6Nq/X4uINw1UjyRJjWg0ND8JXBsRE7obat//jLJ1Zy8HbsrMuZn5cGZeCqwDZg2w38bMXF/3eaFu22XAPZn56dqYn6aaQ3pZ8VFJklRgwAeBIuIBIOuaXg38JCLW1n53r0N7ENU9z77G2Qs4Fvh8j03zgRMGKKMrIvYGfgRclZn31G07nmquaL27gQ8OMKYkSQ0peXr2tkH6WwcCe1Itv1dvA3B6H/t0n4X+gOo1ZO8DvhMRJ2fm92t9Du5jzIN7GzAiLqa2EMP48eNZsGABAJMnT2bUqFEsX74cgDFjxjB16lQWLlwIwIgRI+js7GTZsmVs3rwZgI6ODjZs2AAcNuDBS5J2rXXr1rFixQoAJkyYwMSJE1m8eDEAI0eOpKOjg0WLFrF161YAOjs7WblyJRs3bgRg2rRp27f1Jaq113e9iBhP9SqxkzNzYV37lcB5mXlE4Th3AM9n5tm139uACzNzXl2fGcDczNy7v7E6Ojqyq6urvy5FLrp2p4eQJO2kuZcNzjgRsTQzO3rbtqOLG5wGvJbqsu1DmbmgYLdNVG9GGdujfSywvoE/vxh4T93v9YMwpiRJA2roQaCImBARS4BvU70O7KNUl0sX184k+5SZ24ClwPQem6ZTPUVb6miqy7bdFg3CmJIkDajRM80/pzpbnJKZjwJExGTgy7Vt7xpg/2uAW2rBey9wCdUrxb5UG2seQGbOqP2+DPgJ8BDVPc3zgbcD76wb8zpgYUR8FPgG8A7gVKCzwWOTJKlfjYbmdOCU7sAEyMxHImI28J2Bds7MW2tL8V1BNd/yQeCszFxd69JzvuZewOeAicAWqvB8W2beUTfmfRHxHuAqqmkv/wmcm5mLGzw2SZL6tSP3NHt7cqj4aaLMvB64vo9tp/T4/VngswVj3sbgPeUrSVKvGl3c4DvAFyPikO6G2mo+11JwpilJ0u6s0dCcDbwceCQiVkfEaqrLoS+vbZMkadhq9PLsfwNvBE4BuhdNfzgz/2Uwi5IkqRUVh2ZE7An8DHhdZn6batqJJElto/jybG2R9NVUT7RKktR2Gr2n+SngTyLiwF1RjCRJrazRe5ofoXrLydqIWEOPd2tm5lGDVZgkSa2m0dC8jWpOZuyCWiRJamlFoRkR+1GtzPN24GVUczIvzcxNu640SZJaS+k9zTnATOB24O+p3n/5V7uoJkmSWlLp5dlzgP+dmf8AEBFfAe6NiD1rT9VKkjTslZ5pHgJ8v/tHZi4Bnqd6Q4kkSW2hNDT3BLb1aHueHXyJtSRJu6PS0AvgyxGxta5tH2BuRDzT3ZCZZw9mcZIktZLS0Ly5l7YvD2YhkiS1uqLQzMzf3tWFSJLU6hpdRk+SpLZlaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhYY8NCPiAxHxaEQ8GxFLI+LEfvqeExHzI+LxiPh5RCyOiLN79JkZEdnLZ59dfzSSpHYypKEZEecC1wFXA8cA9wF3RsSkPnY5Gfgu8LZa/zuAf+wlaJ8BxtV/MvPZwT8CSVI7GzHEf+9y4KbMnFv7fWlEvBWYBXysZ+fM/FCPpjkR8Tbg7cD3f7lrrt8F9UqStN2QnWlGxF7AscD8HpvmAyc0MNQo4MkebftGxOqIWBMR/xwRx+xEqZIk9WoozzQPBPYENvRo3wCcXjJARPwOMBG4pa55BXABsJwqUD8E3BsRr8vMVb2McTFwMcD48eNZsGABAJMnT2bUqFEsX74cgDFjxjB16lQWLlwIwIgRI+js7GTZsmVs3rwZgI6ODjZs2AAcVlK+JGkXWrduHStWrABgwoQJTJw4kcWLFwMwcuRIOjo6WLRoEVu3bgWgs7OTlStXsnHjRgCmTZu2fVtfIjN34SHU/aGI8cBa4OTMXFjXfiVwXmYeMcD+76QKy3Mz81v99NsT+Hfgnsyc3d+YHR0d2dXVVX4Qfbjo2p0eQpK0k+ZeNjjjRMTSzOzobdtQPgi0CXgBGNujfSzQ7/3IiHgXVWDO6C8wATLzBaALOHzHS5Uk6aWGLDQzcxuwFJjeY9N0qqdoexUR76YKzJmZedtAfyciAjgKWLfj1UqS9FJD/fTsNcAtEbEEuBe4BBgPfAkgIuYBZOaM2u/3UAXmR4CFEXFwbZxtmflErc8fA/cDq4D9gdlUoTlriI5JktQmhjQ0M/PWiBgDXEE1n/JB4KzMXF3r0nO+5iVUNV5b+3T7HnBK7fsrgRuAg4GfAf8GnJSZSwb9ACRJbW2ozzTJzOuB6/vYdkp/v/vY58PAhwejNkmS+uPas5IkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUqEhD82I+EBEPBoRz0bE0og4cYD+J9f6PRsRj0TEJTs7piRJO2JIQzMizgWuA64GjgHuA+6MiEl99H81cEet3zHAZ4AvRsQ7d3RMSZJ21FCfaV4O3JSZczPz4cy8FFgHzOqj/yXAY5l5aa3/XOBm4CM7MaYkSTtkyEIzIvYCjgXm99g0Hzihj92O76X/3UBHRLxsB8eUJGmHjBjCv3UgsCewoUf7BuD0PvY5GPiXXvqPqI0XjY4ZERcDF9d+Ph0RK0qKl9rAgcCmZhch7ai/+fCgDfWqvjYMZWi2hMy8Abih2XVIrSYiujKzo9l1SK1sKENzE/ACMLZH+1hgfR/7rO+j//O18WIHxpQkaYcM2T3NzNwGLAWm99g0neqJ194s6qN/V2Y+t4NjSpK0Q4b68uw1wC0RsQS4l+rp2PHAlwAiYh5AZs6o9f8S8MGIuBb4a+DNwEzgvaVjSirmbQtpAEMampl5a0SMAa4AxgEPAmdl5upal0k9+j8aEWcBX6CaQvIYMDszv97AmJIK1O73S+pHZGaza5Akabfg2rOSJBUyNCVJKmRoSpJUyNCU1KeIiO5/u79L7czQlNSnzMyI2CNrutsNULUrn56V1KuIeCXwFqqXIhwGfAe4w+lcameGpqReRcTfAScB/wk8ARxHtaj794CrMnNB86qTmsPQlPQSEXEy8HXgRGAFMLL2OQ64EJgGXJmZNzWrRqkZDE1JLxERfwIck5ln9LJtLPBR4DygMzNXDnV9UrP4IJCk3nwP+LWIeF3PDZm5Afhj4MfAKUNcl9RUhqak3iwGVgF/HxHvj4jDIqL+/4sXgEOp7nVKbcPLs5J6FRFHAJ8AXg88CtxP9dKEnwNvBU7NzEl9DiANQ4ampD5FxJ7AGcD7gNfWmicA3wc+n5n3Nqs2qRkMTUm/JCJ+lSooH6e6RPtgZm6NiP2BX6N6mnZLZm5tYplSUxiakraLiE9RnVVupXo/7X7AQ8A/AF/MzKebWJ7UdD4IJAnYfg/zUuCPgNOBV1LNy+wCPgasiIiza31dRk9tyTNNSQBExMeB0zLz1NrvPTLzxdr3VwBfAI4C/kdm/qx5lUrN45mmpG5rgF+JiHEAmfliROwVEXvXQvI6qlWBzmlmkVIzGZqSut0NHAB8OSKOB8jMbd0P/GTmcuBZYETzSpSay8uzkoiIqL0G7HVUZ5QHAQ9SrQw0H3gKmAVcDhySmT9vVq1SMxmakn5JRLwaeBfVEnnjgcnAvsC/Azdm5l81rTipyQxNSUTEaGAMVTg+TbUC0MupFjQYBbwIrMzMtU0rUmoB3puQ2lxEvBd4P9W7MzdRLWjwH1SXZW/PzKeaV53UWjzTlNpYRLySKiS/Avwl8CrgVOBNVIsb/BtweWZubFaNUisxNKU2FhGzgfMz84092vcF3g58imqB9pMzc/PQVyi1FqecSO1tb6qHZw+h+rJPRIzIzC2Z+ffAb1DNzexsZpFSqzA0pfb2VaoHgC4EyMxnM/P5iBhR+/0w8N9UC7VLbc/QlNrbT4FrgT+MiP+IiI9ExJhacI6JiLcARwLfaGaRUqvwnqYkImIK8PvA2cCBVFNOngLGAl/PzA83rzqpdRiaUhuLiL2AV2XmqtrvCcCxwNFU8zS/BvwwM7c1rUiphRiaUhuKiCOB3wXeCPwMeB5YCPxdZj7UzNqkVmZoSm0oIlYBDwOLqBY5GUsVoK8A7gL+NDMfa16FUmtyRSCpzUTEb1E9BHh+99zLiBgFHAG8FfhtYN+I+KCXZaVfZmhK7WcS8GOqRQsAqL21pAvoiogHgBuAvwGWNKVCqUU55URqPwuA04Dfr51h9vRPwErg9KEsStodGJpSm8nM+4GrqN6P+dmIeFNE7B8Re9e6TKKam7mgSSVKLcsHgaQ2EhF7ZOaLEfEy4GKql0pPonrh9L3AIcCvAv+Zmb/evEql1mRoSm0mIvbJzGfrfp8EnAt0UN3rXEK1oMH6JpUotSxDU2oTEXEw8C7g9VRryS4Bbs3M++r6/FKgSvplhqbUJiLidmAK1fzMx4A3A1OBR4DPATfW1pzdIzNfbF6lUutyyonUBiLiNKrFC47JzDURsQ/Va8GmUs3L/BgwCrjGwJT6ZmhK7eEk4IHMXAPVK8CAZ4H7IuJB4FLgkxGxIDOXNbFOqaU55URqD/8CHBkRb+25obYq0J8C9wEnD3Vh0u7E0JTaw1LgTuAvIuKjEXFsRLy8bvtI4LXA6qZUJ+0mfBBIahMRcQjVvcvTgSeBHwDrgReA44EjMvOI5lUotT5DU2ozEXEUcD5wAtVzDQdQXZq9JjMfaGZtUqszNKVhrLY03lHAOVQLtP8Q6OpeuCAijgB+AmxL/zOQBmRoSsNYRPw5VWCuA0YDh1Jdkv0m1TszvYcpNcAHgaRhKiJeC8wELgDempmHAQcDXwTOBH4cEe+PiGheldLuxTNNaZiKiD+kCsuTar9HZObzdduvpjoLPS0zH2tSmdJuxTNNafh6GBgXEVMAakvkjaitBgQwF3iGaj1aSQUMTWn4Wgg8D/xzRLw7IvbOzOe7F2TPzEeBPYGtzSxS2p14eVYaxiJiPPAFqpdKr6F6s8l3a99/B/gt4NDM/EXTipR2I4amNMxFxBjg14HpwGTgCKq5md8D/joz/6GJ5Um7FUNTGoYiYiLVa8AAfgH8CNhCFZojqe5lbsrMJ5pTobR7MjSlYSYiZlFNM3kdVTg+QnU59h7gtsz8aRPLk3ZrPggkDSO1S7FXUy1eMA44Dvg/wDbgIuDG2vxNnJ8pNc4zTWkYiYhLgfMz8029bOsEPgNMAN6YmZuGuj5pd+eZpjS8bANGRcQ0qNaejYi9ADLzX4HzqF4+/ZbmlSjtvgxNaXi5DXgRuCwiRmXm1szcFhF7AGTmfwFPARObWKO02zI0pWGido/yCeAKquklj0XE30bEsbXtkyLifKo5m19tXqXS7st7mtIwExGvBCZRvS/zHcCba5vWAwHckpmfaEpx0m7O0JSGgYg4CHgf8LvAJqo5mU8B/wrcD7yMat7mXZm5skllSrs9Q1MaBiLiJmAq8C2qS7SjqS7D/iqwEbgiMxc3rUBpmDA0pd1c7V7mz4GzMnNhXdsk4E3AhVQrAb07M5c1rVBpGPBBIGn391rgUarpJgBkZXVmfhX4DapLtf+zOeVJw4ehKe3+HqG6BPuFiDi8e3pJt8zcCtwMnNmM4qThxNCUdnOZuQX4I2BfYB4wIyIOiYiRABGxH3Ay8GDzqpSGB+9pSsNEbRWgjwNnU73ZZBHwOHA6sA64MDMfaF6F0u7P0JSGmdr0k7cBb6daMu9B4GuZ+eNm1iUNB4amNIxFxB6Z+WKz65CGC0NTkqRCPggkSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKvT/AMqMGO0XHVnPAAAAAElFTkSuQmCC\n", 101 | "text/plain": [ 102 | "
" 103 | ] 104 | }, 105 | "execution_count": 2, 106 | "metadata": {}, 107 | "output_type": "execute_result" 108 | } 109 | ], 110 | "source": [ 111 | "#According to the book we have initialized our qubits to output 0 and we can see that the result is all zeroes\n", 112 | "#based on the input so n= 8 has 8 zeros, etc. \n", 113 | "#TODO: read up on the Aer module. It looks like you can swap out your back end which is cool. \n", 114 | "counts = execute(qc_out, Aer.get_backend('qasm_simulator')).result().get_counts()\n", 115 | "plot_histogram(counts)" 116 | ] 117 | }, 118 | { 119 | "cell_type": "code", 120 | "execution_count": 3, 121 | "metadata": {}, 122 | "outputs": [ 123 | { 124 | "data": { 125 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAG5CAYAAABFgqdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7oklEQVR4nO3deXhU9aH/8c9MViDskUVWQyCSyGRMKIsoARQBC4osFdQUAzY2RBSxXrhSvIo0FxFopNcFFKSUihqIVipgFclgCYgBBsGFKEtZRKSAQggQkpzfH/mRErJMwCTznfB+Pc/3eSZnzpnzmUPIZ84yMzbLsiwBAACj2L0dAAAAlEZBAwBgIAoaAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA1HQAAAYiIIGAMBAFDQAAAaioAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAGoqABADAQBQ0AgIEoaAAADERBAwBgIH9vB0D1mDhxotxud42v1+l0KjU1tcbXCwC1DQVdS7ndbrlcLm/HAABcIQ5xAwBgIAoaAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAWNKxYWFqbAwEBvxwCAWomChm6++Wb96U9/0qZNm3Ty5Enl5eXpp59+UmZmpl544QX16NGj1DKRkZHauHGjVqxYQUkDQDXgg0quYn369FFqaqqio6NL3RcQEKCePXuqZ8+eeuSRR7R161Y98sgj2rBhgyIjI7Vu3To1a9ZM/v7+stlsXkgPALWb0XvQhYWFmj17tjp27Kjg4GBFR0fL5XIpIiJCiYmJ3o7ns/z8/PTCCy9o3bp1io6O1vfff6+UlBT169dPTZs2VUBAgEJDQ3Xbbbdp5syZ+uGHHxQTE6P169dr0aJFxeW8Zs0aDR06VOfOnfP2UwKA2scy2AMPPGA1aNDAev75562PP/7YmjFjhtWyZUvL39/feuWVV7wdz2hxcXGWpFLDz8/PSktLsyzLsvLy8qxp06ZZAQEBZc57YQQFBVnPPPOMdf78+eLHX7NmjRUUFFRq3ri4OC89YwCoXYw9xL1s2TItXrxYGRkZiouLkyT17dtXW7duVXp6umJiYryc0Df94Q9/0IgRI/Tjjz9q0KBB2rRpk8dlzp07p7feeksTJkxQ48aNJUmfffYZe84AUI2MPcSdkpKigQMHFpfzBeHh4QoICJDD4ZAk7du3T3FxcerUqZO6dOmiTz75xBtxfUL37t31u9/9TgUFBbrzzjsrVc6Sis85N27cWJ999pkkafLkyXI6ndWYFgCuct7ehS/LgQMHLEnWwoULS903atQoy+l0Fv98++23Wy+++KJlWZa1YcMG69prr7XOnTvncR2q4JBubR0ff/yxZVmWNXPmzEovExkZaR05csSyLMtavXq1FRQUZKWmplqWZVmrVq3y+nNiMBgMXxuVZWRBb9y40ZJkvf/++yWm5+bmWi1btrTGjh1rWZZlHT161Kpbt6519uzZ4nm6du1qrVmzxuM6vP0PVNOjc+fOlmVZ1qlTp6z69etXapmyylmS1aRJE+vMmTNWQUGBFRYW5vXnxmAwGL40KsvIQ9yhoaGSpOzs7BLTZ82apcOHDys2NlaStH//fjVv3lxBQUHF81x33XX617/+5XEdVtGLk1o7Lj01MHToUEnSm2++qVOnTnncPhe/lerSq7WPHz+u5cuXy26366677iqxXFxcnNefO4PBYJg8KsvIi8TCwsLkcDiUkpKiJk2aqFWrVlq+fLlWrVolScUFjcq7sM1cLpfHeSsq5wvWr1+v+++/n38LAKgmRu5B2+12paWlKSoqSklJSUpISFBoaKiSk5Pl5+dXfIFY27ZtdeTIkRLlsXfvXrVr185b0Y0VEREhSdq5c2eF81WmnC9+nAuPCwCoWkbuQUtSp06dtG7duhLT4uPjFRkZqTp16kgqOhTeq1cvLVy4UOPHj1dmZqYOHTqkvn37eiOy0Z544gmFhoZqz549Fc731FNPVepDSL7++mvFx8fryJEj1REXAK56xhZ0WbKyskp9LvQrr7yiBx54QKmpqQoMDNSyZcv4bOgyrFmzplLzjR07Vt98841mzJhR4fucT5w4oaVLl1ZVPADAJXymoHNycpSdna3x48eXmB4WFqb169d7KVXtk5ubq2nTpnk7BgBc9XymoENCQlRQUODtGAAA1AgjLxIDAOBqR0EDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAGoqABADCQz7wPGpfH6XRe9jJ79h+WJIW1bVnidnWvFwBQms26nO++Qq025bkFkqSZkxNL3AYA1DwOcQMAYCAKGgAAA1HQAAAYiIIGAMBAFDQAAAaioAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAG4usmYYyJEyfK7XZ7Zd1Op1OpqaleWTcAlIWChjHcbrdcLpe3YwCAETjEDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQLzNCj6rXr16iomJUWxsrK655hpZlqXvvvtOW7Zskdvt1rlz50ot07NnT02YMEEPPPCA8vLyvJAaACqHgobP6dy5syZOnKj77rtP9erVK3Oe48ePa9GiRZo3b54OHDggqaicP/jgA9WvX1+bN2/mg0kAGM3ogi4sLNTcuXM1f/58HThwQBEREZo3b54SExMVFxenBQsWeDsialBAQICefPJJTZ06VQEBAZKkrVu3KisrS//6179kt9vVoUMHde/eXZ07d9bvfvc7/fa3v9UTTzyhzz//XGvWrFH9+vX117/+VX/605+8/GwAoGJGF/S4ceOUnp6uadOmKTY2VpmZmRo9erSOHj2qSZMmeTsealDdunX1t7/9Tbfddpsk6dVXX9WcOXO0a9euMufv2rWrpkyZouHDh+vll1/W+fPnFRAQoL/+9a8aM2aMCgoKajI+AFw2Ywt62bJlWrx4sTIyMhQXFydJ6tu3r7Zu3ar09HTFxMR4OSFqit1u1zvvvKPbbrtN33//vUaNGuXxI0GzsrI0YsQIPfnkk5oxY4YCAgL07bffUs4AfIaxV3GnpKRo4MCBxeV8QXh4uAICAuRwOCRJTz31lDp16iS73a7ly5d7Iyqq2WOPPabbb79dR44cUe/evSv9ed09e/bUlClTZLPZlJ+fr/DwcN11113VnBYAqohloAMHDliSrIULF5a6b9SoUZbT6Sz+ecOGDdbu3butuLg4Ky0trdLrkMS4ZEyeOd+aPHN+qdveHG3atLHOnDljWZZlDRo0qNLL9ezZ0zp58qRlWZa1dOlS6+GHH7Ysy7KOHDli1a1b1+vPi8FgXL2jsozcgz548KAkqUWLFiWmnzlzRi6Xq8Th7ZtuuklhYWE1mg8156GHHlJwcLDS0tK0evXqSi1z8dXaF845v/jii9q8ebOaNWum0aNHV3NqAPj5jCzo0NBQSVJ2dnaJ6bNmzdLhw4cVGxv7s9dhWRbjknHxtvHGdrr0dIZUdKGgpEq/Jaqsci4oKJBlWZo3b16Jx7xYXFyc17c/g8G4OkZlGXmRWFhYmBwOh1JSUtSkSRO1atVKy5cv16pVqySpSgoa5gsLC1OLFi30/fffKzMz0+P85ZXzBe+++64KCwsVGxurwMBAPqgEgNGM3IO22+1KS0tTVFSUkpKSlJCQoNDQUCUnJ8vPz6/4AjHUbjfeeKOkovc6e+KpnCXp9OnT+vrrrxUYGKioqKhqyQwAVcXIPWhJ6tSpk9atW1diWnx8vCIjI1WnTh0vpUJNysvLU1ZWlrKysiqcz+l0eiznCzIzM3X69Gn5+flVR2QAqDLGFnRZsrKy1KNHjxLTpk2bptdff11Hjx7Vjh07NHHiRLlcLnXo0MFLKVFVVq5cqZUrV3qcLzs7W5999pkOHz7s8X3Ov/nNb6oyIgBUG58p6JycHGVnZ2v8+PElpj/77LN69tlnvZQKJsjNzdXgwYOVl5fHh5AAqDV8pqBDQkL444tynTlzxtsRAKBKGXmRGAAAVzsKGgAAA1HQAAAYiIIGAMBAFDQAAAaioAEAMBAFDQCAgXzmfdCo/ZxO52Uvs2f/YUlSWNuWJW7XxLoBoDpR0DBGZb9S8mJTnlsgSZo5ObHEbQDwdRziBgDAQBQ0AAAGoqABADAQBQ0AgIEoaAAADERBAwBgIAoaAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAAAzEt1kBP9PEiRPldrtrfL1Op/OKvgEMgG+goIGfye12y+VyeTsGgFqGQ9wAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAAAxEQQNeUr9+fTVt2lR16tTxOG/Pnj0VGBhYA6kAmIKCBmpIcHCwxowZo/fee0/fffedTp48qX//+9/Kzc1Vdna2li5dqgEDBshms5VYbvDgwcrIyNCKFSvk789HFwBXC6MLurCwULNnz1bHjh0VHBys6OhouVwuRUREKDEx0dvxgEqx2WxKSkrSoUOHtHjxYg0ZMkQtW7ZUbm6ujh07pry8PHXs2FH33Xef1qxZo127dunWW2+VVFTOK1asUGBgoLKzs5Wfn+/lZwOgphj9cnzcuHFKT0/XtGnTFBsbq8zMTI0ePVpHjx7VpEmTvB0P8Khx48Z6++23ddttt0mSNm/erAULFigjI0N79uyRZVny9/dXVFSUBg0apIceekgdO3bURx99pJUrV2rAgAEKDAzU3Llz9fjjj3v52QCoScYW9LJly7R48WJlZGQoLi5OktS3b19t3bpV6enpiomJ8XJCoGKNGjXSunXrFB0drR9++EHjx4/XihUrSs2Xn5+v7du3a/v27Zo9e7aeeOIJPfPMMxoyZIgk6Y9//CPlDFyFjC3olJQUDRw4sLicLwgPD1dAQIAcDodOnDih+Ph4ZWdnq06dOmrevLleeuklhYeHeyk18B9LlixRdHR08SHrQ4cOeVwmPz9fO3bsKDHthx9+qK6IAAxm5DnogwcPaufOnRo5cmSp+/bv36+oqCgFBQXJZrNp4sSJys7O1vbt2zV48GAlJCR4ITFQUnx8vIYMGaIff/xR/fv3r1Q5S/855xwQEKD09HRJ0tNPP63IyMjqjAvAQMYWtCS1aNGixPQzZ87I5XIVH95u1KhR8bk9Sbrpppu0d+/eSq3DZrMxLhkXbxtf2U4mZL70m6zsdrumT58uqeirKA8cOFCp38mLLwibO3euhg8frldffVVBQUGaNm1aqfldLpfXtz+Dwbj8UVlGFnRoaKgkKTs7u8T0WbNm6fDhw4qNjS1zudTUVA0dOrS64wEVuuOOO9S+fXvt3r1bS5YsqdQyl5bzhXPO06dPV0FBgYYPH67mzZtXZ2wAhjGyoMPCwuRwOJSSkqIlS5Zo7dq1SkpK0qJFiySpzIJ+5pln9O2332rWrFmVWodlWYxLxsXbxle2kwmZL71OYvDgwZKkRYsWlchVnvLKWSo6mrR69WoFBATo9ttvL7FcXFyc17c/g8G4/FFZRha03W5XWlqaoqKilJSUpISEBIWGhio5OVl+fn5yOBwl5p8xY4b+/ve/a82aNapbt66XUgNFLryA/Oc//+lx3orK+YLMzMwSjwvg6mDsVdydOnXSunXrSkyLj49XZGRkiY9GfOaZZ7Rq1Sp9+OGHatSoUQ2nBEoLCwuTJH355ZcVzleZcr74cTp06FC1QQEYzdiCLktWVpZ69OhR/PMXX3yhp59+Wh06dFCfPn2Kp7vd7poPB/x/gwcPVr169XTixIkK50tOTq7Uh5Bs2LBBt956q44cOVLVUQEYzGcKOicnR9nZ2Ro/fnzxtKioqMs6ng/UhI0bN1ZqvuHDhys+Pl7z58+vcL5///vf+vjjj6siGgAf4jMFHRISooKCAm/HAKpMbm6ux3IGcPUy8iIxAACudhQ0AAAGoqABADAQBQ0AgIEoaAAADERBAwBgIAoaAAADUdAAABjIZz6oBDCV0+m87GX27D8sSQpr27LE7epeLwDfQUEDP1NqauplLzPluQWSpJmTE0vcBoALOMQNAICBKGgAAAxEQQMAYCAKGgAAA1HQAAAYiIIGAMBAFDQAAAaioAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIhvswKuQhMnTpTb7fbKup1O5xV9AxhwtaGggauQ2+2Wy+XydgwAFeAQNwAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA/E2KwAeXXfddbrpppsUExOjJk2aqLCwUP/617+0ZcsWffLJJzp58mSpZR544AHdfffdGjlypPLy8ryQGvBtFDSAct1xxx2aNGmSbr311nLnOX36tN544w3NmjVL3377raSicl64cKHsdruGDBmiFStW1FRkoNYwuqALCws1d+5czZ8/XwcOHFBERITmzZunxMRExcXFacGCBd6OCNRKTZs21Ysvvqh77rlHUlEJ/+Mf/9CWLVv03Xffyc/PTxEREerZs6d69eql3/zmN7r//vs1depU/fjjj3rttddkt9s1efJkyhm4QkYX9Lhx45Senq5p06YpNjZWmZmZGj16tI4ePapJkyZ5Ox5QK7Vt21Zr165VeHi4cnJy9PTTT+vVV18t8zC2JEVERGjq1KmKj4/X3LlzZVmWbDabJk+erFmzZtVweqD2MLagly1bpsWLFysjI0NxcXGSpL59+2rr1q1KT09XTEyMlxMCtU/Dhg310UcfKTw8XFu2bNGIESO0b9++CpfZtWuXfv3rX+v48eN65JFHZLPZtHHjRsoZ+JmMvYo7JSVFAwcOLC7nC8LDwxUQECCHwyFJGjp0qBwOh2688UZ169ZNH330kTfiArXC3Llz1bFjR7ndbvXr189jOV/wwAMPaMKECbLZbDp//rx69uypO+64o3rDArWckQV98OBB7dy5UyNHjix13/79+xUVFaWgoCBJ0uLFi/X5559r27Ztmj9/voYPH66CggKP67DZbIxLxsXbxle2ky9mNiF3WV+U0atXL40dO1Znz57VqFGjyj2kfamLLwibPHmypkyZIkl65ZVX5O9f+iCdy+Xy+vZnMLw5KsvYgpakFi1alJh+5swZuVyuEoe3GzVqVHz7p59+ks1mk2VZNZITqE0mTJggSZozZ4527dpVqWUuLedZs2YpNTVVX3zxhdq0aaOhQ4dWY2KgdjOyoENDQyVJ2dnZJabPmjVLhw8fVmxsbInpycnJCgsL0/Dhw7VixYoyX7VfyrIsxiXj4m3jK9vJFzObkPvSU0cNGjTQsGHDlJ+fr5dfftnj/x+p7HKWit598dJLL0mSEhISSi0XFxfn9e3PYHhzVJaRF4mFhYXJ4XAoJSVFTZo0UatWrbR8+XKtWrVKkkoV9Isvviip6NDZY489pvXr1yskJKTGcwO+KiYmRgEBAfr000916NAhj/OXV84XvPfee3rxxRfVvXv36ooM1HpG7kHb7XalpaUpKipKSUlJSkhIUGhoqJKTk+Xn51d8gdil4uLiZLfbtWHDhhpODPi26OhoSdLWrVs9zuupnKWi01RHjx5V06ZN1bp16yrPC1wNjNyDlqROnTpp3bp1JabFx8crMjJSderUkSTl5OTo2LFjateunSRp27Zt2r17tzp37lzjeQFf9t133+nvf/+7Nm3aVOF8d9xxh8dyvuDdd99V8+bNqzoqcNUwtqDLkpWVpR49ehT/fPr0ad1zzz3KycmRv7+/goODtXTpUrVt29aLKQHfk5aWprS0NI/zZWRkKCMjQx988IHH9zknJiZWVTzgquQzBZ2Tk6Ps7GyNHz++eFrz5s09vuIHUHVyc3N1++23V+qtjAB+Hp8p6JCQEP4oAAbg/yFQM4y8SAwAgKsdBQ0AgIEoaAAADERBAwBgIAoaAAADUdAAABiIggYAwEA+8z5oAFXH6XRe9jJ79h+WJIW1bVnidk2sG7gaUdDAVSg1NfWyl5ny3AJJ0szJiSVuA6geHOIGAMBAFDQAAAaioAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAGoqABADAQBQ0AgIEoaAAADMS3WQHwGRMnTpTb7a7x9Tqdziv6BjDg56CgAfgMt9stl8vl7RhAjeAQNwAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA1HQAGq14OBgRURE6IYbblCbNm08zj9ixAgFBgbWQDKgYhQ0gFqnTZs2evbZZ7V9+3adOnVKX3/9tXbs2KH9+/fr+PHjWr16tX71q18pICCgxHJTpkxRWlqa3n77bS8lB/7D6IIuLCzU7Nmz1bFjRwUHBys6Oloul0sRERFKTEz0djwAhqlXr57mzZunvXv36ve//70cDodsNpu++eYb7dy5Uz/88IMaN26sgQMH6q233tKePXv0y1/+UlJROf/v//6vCgsLlZ6e7uVnAhj+SWLjxo1Tenq6pk2bptjYWGVmZmr06NE6evSoJk2a5O14AAzSuXNnrVy5Uh06dND58+f19ttv67XXXtPGjRt15syZ4vlatWqlO++8U8nJyYqKitLf//53bdq0ST169FBhYaESEhK0ZMkSLz4ToIixBb1s2TItXrxYGRkZiouLkyT17dtXW7duVXp6umJiYrycEIApIiIi5HK5dM0118jtdmvMmDH6/PPPy5z30KFDevnllzV//nw98sgjmjVrlnr06CHLsjR27FjKGcYw9hB3SkqKBg4cWFzOF4SHhysgIEAOh6PE9AULFshms2n58uU1GROAlwUFBSk9PV3XXHON1qxZo549e5ZbzhcrLCxUcHCwAgICZFmWbDabGjVqVP2BgUoysqAPHjyonTt3auTIkaXu279/v6KiohQUFFQ87ZtvvtHrr7+uHj161GRMAAb4n//5H0VGRurrr7/WsGHDdPbs2Uotd/E55xdeeEFS0Y5Bhw4dqjMuUGnGFrQktWjRosT0M2fOyOVylTi8nZ+fr7Fjx+rll18uUdqe2Gw2xiXj4m3jK9vJFzP7am4TMl/6TVaNGjXSo48+KklKSEgoca65IheXc0JCgh577DEtXbpUdevW1RNPPFFqfpfL5fXtz6g9o7KMLOjQ0FBJUnZ2donps2bN0uHDhxUbG1s87dlnn9WgQYPkdDprMiIAA4wZM0Z169bVhx9+qE2bNlVqmUvL+cI55xkzZkiS7r//fjVo0KDaMgOVZWRBh4WFyeFwKCUlRUuWLNHatWuVlJSkRYsWSVJxQX/66af6+OOPNXny5Mteh2VZjEvGxdvGV7aTL2b21dwmZL70mpQBAwZIkl5//fVK/b8vr5wladeuXcrMzFS9evXUq1evEsvFxcV5ffszas+oLCML2m63Ky0tTVFRUUpKSlJCQoJCQ0OVnJwsPz+/4gvE1q1bp927d6tDhw5q3769Nm3apPHjx2vOnDlefgYAasKFF+sbN270OG9F5XzBhb3wi4/SAd5i7NusOnXqpHXr1pWYFh8fr8jISNWpU0dS0X+4KVOmFN/fp08fPfzwwxoxYkSNZgVQ84KCgtSsWTPl5eVp3759Fc5bmXKWivaiJaldu3ZVHRe4bMYWdFmysrK4UhuAJCkvL0/h4eEeLw718/NT//79K/UhJGlpaVq/fr2OHTtW1XGBy+YzBZ2Tk6Ps7GyNHz++3HkyMjJqLhAAr7IsS7t37/Y4X0FBgYYMGaK4uDitXr26wnlPnDihEydOVFVE4GfxmYIOCQlRQUGBt2MA8EG5ubkeyxkwjZEXiQEAcLWjoAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGMhn3gcNAFfyrXV79h+WJIW1bVnidnWvF/i5KGgAPiM1NfWyl5ny3AJJ0szJiSVuA6bjEDcAAAaioAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAGoqABADAQBQ0AgIEoaAAADERBAwBgIL7NCgCq0cSJE+V2u72ybqfTeUXfAAYzUNAAUI3cbrdcLpe3Y8AHcYgbAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAqAX8/XnXbG3DvygAGMJutysuLk49evSQ0+lUo0aNlJ+fr927d2vLli364IMP9P3335daLjU1VR06dNDw4cOVl5fnheSoDhQ0AHiZv7+/Hn74YU2YMEFhYWHlznf+/Hmlp6dr+vTp+vLLLyUVlfOjjz6qc+fOKSYmRps2baqp2KhmRhd0YWGh5s6dq/nz5+vAgQOKiIjQvHnzlJiYqLi4OC1YsMDbEQHgZ7nhhhu0ZMkS3XjjjZKkPXv2aOXKldqyZYuOHDmioKAgRUZGqlevXho0aJDuueceDR06VM8884xatGihRx55ROfOndPw4cMp51rG6IIeN26c0tPTNW3aNMXGxiozM1OjR4/W0aNHNWnSJG/HA4Cf5aabbtLq1avVoEED7d27V48++qjef/99FRYWlphv5cqVkqRWrVrpqaeeUmJiolJSUiSpuJzff//9Gs+P6mVsQS9btkyLFy9WRkaG4uLiJEl9+/bV1q1blZ6erpiYGC8nBIAr17FjR61atUoNGjTQW2+9pXHjxun06dMVLnPo0CE99NBDatasmYYOHSpJ+uCDDyjnWsrYq7hTUlI0cODA4nK+IDw8XAEBAXI4HJKkPn366LrrrpPT6ZTT6dSUKVO8ERcAKs1ut2vx4sVq2LCh0tPTde+993os5wtSU1M1dOhQ5eXl6fz587rzzjvVr1+/ak4MbzCyoA8ePKidO3dq5MiRpe7bv3+/oqKiFBQUVDzt+eefl9vtltvt1syZMyu1DpvNxrhkXLxtfGU7+WJmX83ti5lNyF3WN1nFx8frpptu0qFDhzRu3LhSh7TLc/EFYcOGDdPTTz8tSXrppZdKPL8LXC6X17c/o/zfSU+MLWhJatGiRYnpZ86ckcvl4vA2AJ82YcIESdLUqVP1448/VmqZi8v5wjnn5557Tvv27VNERIRuu+22akwMbzCyoENDQyVJ2dnZJabPmjVLhw8fVmxsbInpU6dOVZcuXXTXXXfp888/r9Q6LMtiXDIu3ja+sp18MbOv5vbFzCbkvvQ03fXXX6/Y2FgdO3ZMb775ZqX+XpVVzpJUUFBQ/G6WX//616WWi4uL8/r2Z5T/O+mJkReJhYWFyeFwKCUlRU2aNFGrVq20fPlyrVq1SpJKFPSSJUvUpk0b2Ww2vfnmmxowYIC+/fZb1atXz1vxAaBc3bp1kyR9/PHHOnfunMf5yyvnC1avXq2UlBT94he/qJa88B4j96DtdrvS0tIUFRWlpKQkJSQkKDQ0VMnJyfLz8yu+QEyS2rZtW3xMf9SoUQoMDNSuXbu8FR0AKtSlSxdJ0rZt2zzO66mcJemLL77Q+fPnFRERoeDg4CrPC+8xcg9akjp16qR169aVmBYfH6/IyEjVqVNHknT27Fnl5OQUHxJfu3atTp06pfDw8BrPCwCVsWXLFr322mv69NNPK5wvKSnJYzlLRZ8utmDBAvn5+cluN3KfC1fI2IIuS1ZWlnr06FH888mTJzVo0CDl5eXJbrerQYMGeu+999SgQQMvpgSA8r355puVOvf85z//WXfeeaf+7//+z+P7nB9++OGqigeD+ExB5+TkKDs7W+PHjy+e1qxZM23ZssWLqQCgeuTm5mrQoEHejgEv8pmCDgkJUUFBgbdjAABQIzhhAQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAG8pn3QQOAL3I6nZe9zJ79hyVJYW1blrhdE+uGOShoAKhGqampl73MlOeKvkJy5uTEErdxdeEQNwAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA1HQAAAYiIIGAMBAFDQAAAaioAEAMBAFDQCAgShoAAAMREEDAGAgvs0KAFDCxIkT5Xa7vbJup9N5Rd8AVhtR0ACAEtxut1wul7djXPU4xA0AgIEoaAAADERBAwBgIAoaAAADUdAAABiIggYAwEAUNACgSoSFhalfv37q37+/YmNjFRQUVO68fn5+euyxxxQYGFiDCX0L74MGAFyxW265RePHj9eAAQPUuHHjEvfl5+dr69ateu211/TGG2/o9OnTkorK+S9/+YtGjx6trl276r777vNGdOMZvQddWFio2bNnq2PHjgoODlZ0dLRcLpciIiKUmJjo7XgAcNVq166dPvroI61fv16jRo1S48aN9f333ysjI0MffvihvvjiC9lsNnXr1k0LFizQnj17NHz48BLlfPLkSf3pT3/y9lMxltF70OPGjVN6erqmTZum2NhYZWZmavTo0Tp69KgmTZrk7XgAcFW644479Oabb6p+/fo6duyYXnrpJb3++uvau3dvifnq1aunu+66S48++qi6deum5cuXa/fu3erQoYNOnjypAQMGaNOmTV56FuYztqCXLVumxYsXKyMjQ3FxcZKkvn37auvWrUpPT1dMTIyXEwLA1WfAgAF69913FRAQoOXLl2v8+PE6evRomfOePn1ab7zxhpYtW6akpCS98MIL6tChg/Ly8jRw4EDK2QNjD3GnpKRo4MCBxeV8QXh4uAICAuRwOCRJeXl5mjRpkjp27KguXbqod+/e3ogLALVeixYt9MYbbyggIEBz587VyJEjyy3ni9ntdt18883y9/eXZVkKDAws/huO8hlZ0AcPHtTOnTs1cuTIUvft379fUVFRxVcHPvnkkzp16pS+/vpr7dixQ2+99VZNxwWAq8JLL72kJk2aaNWqVXr88ccrtcyl55x///vfS5Jmz56tNm3aVGdcn2dsQUtFr9YudubMGblcruLD27m5uZo/f76ef/55+fn5SZJatmxZqXXYbDbGJePibeMr28kXM/tqbl/M7Ku5vZ25rG+y6ty5s+6++27l5ORU+iLdS8t5wIABSklJUXp6ukJCQvTwww+XWsblcnl9+9fUv68nRhZ0aGioJCk7O7vE9FmzZunw4cOKjY2VJH377bdq2LCh5s6dq27duqlHjx56++23azwvANR2v/3tbyVJf/nLX3To0CGP85dVzhfOOc+cOVNS0YXAvA+6fEYWdFhYmBwOh1JSUrRkyRKtXbtWSUlJWrRokSQVF3R+fr4OHTqkli1bavPmzXrzzTc1ceJEbdu2zeM6LMtiXDIu3ja+sp18MbOv5vbFzL6a29uZL732R5JuvfVWSUUF7UlF5SxJn332mXbt2qWmTZsqOjq6xLJxcXFe3/419e/riZEFbbfblZaWpqioKCUlJSkhIUGhoaFKTk6Wn59f8cUFbdu2lSSNGTNGktS+fXv16tVLmzdv9lp2AKht6tatq+uvv17nz5/3uAPkqZwv+PTTTyX9Z4cLpRlZ0JLUqVMnrVu3TqdPn9b+/fv17LPPaseOHYqMjFSdOnUkFR0KHzhwoN5//31J0rFjx7R58+ZSr8gAAFeuefPm8vPz06FDh3T27Nly56tsOUtFpygl6dprr62WzLWBse+DLktWVpZ69OhRYtorr7yicePGafr06bIsS1OmTCk1DwDgyu3bt08hISEezxcHBgaqefPmlfoQkjlz5mjevHnFH/+J0nymoHNycpSdna3x48eXmH7h4+YAANXDsiydPn3aY5meOXNGQ4YMUceOHbV9+/YK583Nza3KiLWSzxR0SEiICgoKvB0DAFCB3Nxcj+WMyjH2HDQAAFczChoAAANR0AAAGIiCBgDAQBQ0AAAGoqABADAQBQ0AgIF85n3QAICa4XQ6r2i5PfsPS5LC2rYscbsm1l0bUdAAgBJSU1OvaLkpzy2QJM2cnFjiNq4Mh7gBADAQBQ0AgIEoaAAADERBAwBgIAoaAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA/FtVh48vutLbT91yivrjq5fX3MiIr2ybgDwNRMnTpTb7a7x9Tqdziv+BrCKUNAebD91SutPHPd2DACAB263Wy6Xy9sxqgyHuAEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgCgkoKDgxUYGFgj6+J90ACAq07Dhg01bNgwdevWTQ6HQ/Xr11deXp6ys7O1ZcsWvfvuu9q9e3eJZYKDg/Xee+8pLy9Pw4YNU15eXrVmpKABAFeNpk2b6tlnn9Wvf/1r1atXr9T9sbGxGj16tGbPnq01a9boySef1LZt24rLuX///vr+++/VqlUr7d27t1qzGn2Iu7CwULNnz1bHjh0VHBys6OhouVwuRUREKDEx0dvxymSdP6/zv31YBfNfLTG94J13df7+MbJycryUDACuboMHD9YXX3yhpKQk1atXT2vXrtWkSZPUt29fORwOde/eXQ8++KCWLFmiM2fOaODAgdq8ebNmzJihlStXFpdzv379qr2cJcP3oMeNG6f09HRNmzZNsbGxyszM1OjRo3X06FFNmjTJ2/HKZAsIkP+UJ5Q/YaJs3X4h+41OWXv3qnDRn+X3h+myhYR4OyIAXHUSEhL02muvyW63KyMjQ+PHj9dXX31Var7Nmzdr4cKFeuyxx/TUU09pwoQJmjp1qiQVl3NZy1UHY/egly1bpsWLF+u9997T7373O/Xt21dTp05Vz549lZ+fr5iYGG9HLJetfTvZx45Rwew/yjp+XPkzn5f9riGyO7p4OxoAXHX69+9fXM7Tpk2rVMkeP35cU6ZM0bZt24qnrV69usbKWTK4oFNSUjRw4EDFxcWVmB4eHq6AgAA5HA79+OOPcjqdxSMyMlI2m007duzwUur/sA+9S7a2bZT/ULLk5yf7mHhvRwKAq06DBg20cOFC2e12TZ8+XTNmzJBlWR6Xu3DOOTY2VseOHVN+fr7GjBmjXr161UDqIkYW9MGDB7Vz506NHDmy1H379+9XVFSUgoKC1KhRI7nd7uIxZcoURUdHq0sXz3uqNputUiMjI+OKnoPNZpPN0UX66SfZb+0nW0DAZT9GRkZGpXNWxbg4++VuJ28NX8zsq7l9MbOv5vbFzCbkLuubrP7rv/5Lbdq00aeffqrp06eXur8sl14Qdsstt2jmzJmy2+2aN29eqfldLtcVbSdPjC1oSWrRokWJ6WfOnJHL5Sr38Parr75qzMVj1t69KnzjTdnvGanCpW/I+uEHb0cCgKtKYGCgfvOb30iSJk2apIKCAo/LXFrOFw6Hz5gxQ0ePHlVMTIy6d+9e3dElGVrQoaGhkqTs7OwS02fNmqXDhw8rNja21DJff/21tm7dqvvuu69S67Asq1KjT58+l53fyjtfdN552FD5jUuQrVdPFTw/V1Zh4WU9Tp8+fSqdsyrGxdvmcreTt4YvZvbV3L6Y2Vdz+2JmE3Jfekq0X79+atasmT7//HNlZmaW+Xf2YuWVsySdO3dOr7/+uiRp9OjRJZaLi4u7ou3kiZEFHRYWJofDoZSUFC1ZskRr165VUlKSFi1aJEllFvSCBQv0q1/9Sg0bNqzpuKUULnpdNn9/2eOLXiz4jf+trO+PqHDFO15OBgBXj65du0qSPvzwQ4/zVlTOF1x4nAuPW92MLGi73a60tDRFRUUpKSlJCQkJCg0NVXJysvz8/ORwOErMf+7cOS1ZssSIw9uF29wqXLVGflP+Szb/onex2erWld/k36lwyVJZNfDeOQCAFBUVJUnavn17hfNVppwlye12l3jc6mbs+6A7deqkdevWlZgWHx+vyMhI1alTp8T0d955Ry1btlTPnj1rMmKZ7Dc6ZX8vvfT0G6JkX8keNADUlPT0dH377bfasmVLhfNNmzbNYzlL0okTJ5SSkqLTp09XR9xSjC3osmRlZalHjx6lpr/66qvFFwIAACBJaWlpSktL8zjfH/7wB4WFhWn69OkVvs+5oKCg+ENLaoLPFHROTo6ys7M1fvz4UvetXbvWC4kAALVBbm5uqQu/TOAzBR0SElKpS+QBAKgNjLxIDACAqx0FDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQD7zPmhvia5f/6pcNwD4GqfTednL7Nl/WJIU1rZlidvVvd7KoKA9mBMR6e0IAIBKSE1Nvexlpjy3QJI0c3Jiidsm4BA3AAAGoqABADAQBQ0AgIEoaAAADERBAwBgIAoaAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA1HQAAAYiIIux9KlS+VwOOR0OnXLLbdo165d3o5ktIyMDEVFRSk8PFwPPvigCgoKvB3Jo0cffVStW7eWv79vfS36gQMHdOutt6pz586KiorSf//3f3s7UqXcfvvtcjqd6tKli0aMGKGTJ096O1KlJScn+9TvSfv27RUVFSWn0ymn06kdO3Z4O5JHp0+f1pgxYxQREaHrr79e8+fP93Ykj3744Yfibex0OtWiRQvdfffdVfb4FHQZcnNz9eijj+rjjz+W2+3Wfffdp9///vfejmWswsJCPfjgg0pLS9O3336rkydPaunSpd6O5dHIkSOVlZXl7RiXzd/fX88995y++uorbdu2Tf/85z/1t7/9zduxPEpLS5Pb7daOHTvUunVrzZ0719uRKuWTTz5RTk6Ot2Nctg8++EBut1tut1tdunTxdhyPHn/8cUVFRWnXrl366quvqrToqkuzZs2Kt7Hb7dYNN9ygkSNHVtnjU9BlKCwslGVZxf8pf/rpJ7Vs2dLLqcz12Wef6dprr1VkZKQkady4cVqxYoWXU3l28803q0WLFt6Ocdlatmyprl27SpICAwN14403av/+/V5O5VnDhg0lFf3/Onv2rGw2m5cTeXbu3DlNmTJFs2fP9naUWu3UqVN67733NGnSJEmSzWZTs2bNvJzq8nz33XfKysrS0KFDq+wxbZZlWVX2aLXIG2+8ocTERDVs2FANGzbUxo0bi//A1BbHfzypv777kQr//6/A4R+OSZJaNmta4rYk+dntuv/u/mrUIKTU46xYsULp6en661//Kkn66quvdO+992rbtm3VknvlR5nac+Cwx8yS5IwMV1z36Aofz9/fX/n5+dWS9YJD3/9by1e7in+uKHdQYIB+PXyA6gYHeXzc48ePy+l06h//+Ieuv/76Ks1sWZbe+vs6Hfn3CY+ZJalX7A3q6oio8DHvvvtuffLJJ+rSpYtWrlypkJDSv08/V/aeA1rt2lz8c0W569ero/hhtyugnMPXU6dOVYcOHTR27Nhq/T3JLyjQ0nc+1E+nTnvMLEm339JVncPblft47du3V+PGjWVZln75y1/q6aefVkBAQJXn3vbFN1q/+fPinyvKfU2Thhp1562yl/HCbPv27XrggQfUvXt3bd68We3atVNqaqratSv/OV6ps+fy9OcVH+jsuTyPmSXp7ttvVttWzT0+7pw5c7Rjxw4tXry4yrKyB12G8+fP66WXXtJnn32mQ4cOacSIEZo8ebK3Y1W5Jo0aqFNYGx3+4VjxL6akUrcP/3BMnTu2K7OcpaI/5DXp5l900fEfT3rMfObsOXV3dq7RbOVp1SJUrZqHVmpbx97QqVLlnJeXpxEjRujRRx+t8nKWivZiendz6Id/n/CYWZKcUeEeH/Odd97Rd999p9atW2v58uVVnlmSOl7XWg1C6lZqW98Ue0O55fz555/r008/VUJCQrXkvJi/n596db2hUpnr1QlWRIe2FT7eJ598om3btmnDhg3atWtXtR0BcFzfQX52u8fcR44e1y3dHGWWsyTl5+fL7XZrxIgR2rp1q4YMGaKxY8dWS+bgoEB1i76+Utu6eWjjSpWzVHTd0v3331+lWSnoMrjdblmWpc6di/64jxo1SpmZmV5OVT1u7RWja5s3rXCettc2U58eznLvb9OmjQ4cOFD88/79+9W6deuqilhK44b1dedtvSqcxyZp5C/7KDgosNpyXK7Bt/ZU44b1K5ync3g7j3uhklRQUKB7771XTqdTjz/+eFVFLOXa5qHqf0vXCufx87PrnsF95e/nV6nHDAwM1KhRo/TOO+9URcRSbDabhg+K8/gip7uzs66voOg2bNigL7/8Utddd53at2+vgoICtW/fvtoubuvYvrVuir2hwnmCgwI14o64covugjZt2kiS6tWrpwcffLDa/n75+dn1q8F95e9f8b99v5ti1KZl+YesW7duraZNm+q2226TVPQ3d8uWLVWa9WLOyHB1ibiuwnka1q+nu/pX/Hfmgi+//FJHjx5Vv379qiJeMQq6DK1bt9auXbt06NAhSdKHH35YfH61tvH389M9g/uV+8c1IMBfvxrcV3728n9VunbtqoMHD+rLL7+UJC1cuFDDhg2rlrwXxNzQUVGd2pd7/82/cKhD22urNcPlCg4K1K9+2Ufl/WmtVzdYwwf2rtS52cTERNWvX19z5syp2pBl6N3NoXYV7EUM6N1NLa5pUuFjnDp1SocPF52WKCws1HvvvaeoqKgqzXmxBiF1dfeAW8q9v2mjBrqjb48KHyMpKUnfffed9u3bp3379snPz0/79u1TgwYNqjpusUFx3XRNk0bl3j/09pvLPZJ1wenTp4tfRBQUFGjFihVyOBxVGbOEZk0baVCf7uXe37rlNerb88YKH6N58+aKiorS1q1bJRX9za3O3w+bzaahA25R/ZC65c4z8o4+qlOJI1mS9Je//EX33nuv7BX8nbwSFHQZWrZsqZkzZ6p///6Kjo7WypUrNWvWLEk1fzi3JjQPbayBcd3KvG9wvx4KbVzxuXc/Pz+99tprGjFihDp06KCQkBDFx8dXR9RiNptNdw+4RSH16pS6r3loY93eu+K9Pkl66KGH1Lp1axUUFKh169ZKTk6ujqglXNempXqXc0582MDeZT6fS23YsEGLFi1SVlaWbrzxRjmdTs2bN6+qoxaz24v2kgIDS5/DvK5NS938C89XCJ86dUp33nmnHA6HHA6H8vPzq/2dEV2uD9ONUR1LTbfZbPrV4L4KKuP5eFtAgL/uGdxXdnvpF2mO68MU3bmDx8c4cuSIevfuXbytLcvS1KlTqyNusZ4xUerYvlWp6QH+frrnl33l5+e5al5++WUlJyfL4XBozpw5eu2116ojarF6dYI1YmDvMu/r1fUGhZfxfMpiWZbeeOONKj+8LXGR2GXL2OTWoe+P6p4h5e91+qJCy9LCt97X7n99VzwtIqyNHhgx0Oirbb/evV+Ll68p/tnPblfyr4fq2uahXkxVsfz8Av3fknf0/dHjxdO6donQiDvivJjKs83bv1b6mvXFPwcFBmji2BEeD9t709lzefrjwrTii68kqW/PGzWg9y+8mMqztRu26sN//uctgPVD6uqxsSNUt06wF1NV7KdTp/XHhWnFF19J0l39e6lnTPXtCVeFd//xT23a9mXxz82aNtKEMcMUEOD9972zB30Zzp3L0/pPtyvvfH6tKmdJsttsGnnHf87Z1q0TpOGD4owuZ0m6vkNbdYv+zwVS/W/panQ5S5K/v59GDelXvFfRpGF9Dbm1p5dTefYLR4Q6h//nnO2dt/UyupylC6cV+hb/3Kp5qG7tFePFRJXTp6ezxDnbkYPijC5nqeic7d2331z8c6frWqvHjeafGryjT/fio4R2u033DO5nRDlLtaCgd+zYoeHDhys0NFTBwcHq2LFjtR3Oydz6hXLPntNtvWKr5fG9rVGDkOKLIu4ecIsaVHB+xiS/7NdTTRs1ULtWzdW7W/Wda6tKLa5pottv+UXxxWxBBl3MVh6bzaZhA3urXt1gRXVqr5gbSh8+NlGHdtfq5q5d5O/nV3RBkw+8uPazF114FxDgrx43RqpTWBtvR6qU6MhwRXfuoDrBQRrhAy/wJSkwMKDo2hCbTbf1ilWrFua8wPfpQ9xbtmxR79691aZNG02ePFnt2rXT3r17lZmZqYULF1a47JTnFtRQSgAA/mPm5MRKzWfGfvwVevzxx1WvXj19+umnJT5EZNy4cV5MBQDAz+eze9C5ubmqX7++Hn74Yb3wwgvVuq5z5/L03CvL1ObaZkoYOaha1wUAgOTDe9AnTpxQYWHhFX8gxpUc4t615wCHxgEAP0tlD3H77EVijRs3lt1uL/4wEQAAahOfPcQtSX379tWXX36pb775pto+3Wfdxm36YP1nSo4fqjbX+ta3qwAAfJfP7kFL0uzZs5WTk6MePXpo8eLFWrdunf785z/rwQcfrJLHP3cuT59s/lwRYW0oZwBAjfLZc9CSFBsbq40bN2ratGl67LHHdPbsWbVp00ajRo2qksc//tMp1akTVGvf9wwAMJdPH+KuCYWFhVX+AegAAHhCQQMAYCB2DQEAMBAFDQCAgShoAAAMREEDAGAgChoAAANR0AAAGIiCBgDAQBQ0AAAGoqABADAQBQ0AgIEoaAAADERBAwBgIAoaAAADUdAAABiIggYAwEAUNAAABqKgAQAwEAUNAICBKGgAAAxEQQMAYCAKGgAAA1HQAAAYiIIGAMBAFDQAAAaioAEAMBAFDQCAgShoAAAM9P8AqsBsSDcWQsYAAAAASUVORK5CYII=\n", 126 | "text/plain": [ 127 | "
" 128 | ] 129 | }, 130 | "execution_count": 3, 131 | "metadata": {}, 132 | "output_type": "execute_result" 133 | } 134 | ], 135 | "source": [ 136 | "#Example 4.1 - Encoding an input\n", 137 | "#Not gate - most basic operation which flips the bits\n", 138 | "#I had to manually install a missing module named pylatexenc:\n", 139 | "#The class MatplotlibDrawer needs pylatexenc. to install, run \"pip install pylatexenc\".\n", 140 | "\n", 141 | "qc_encode = QuantumCircuit(n)\n", 142 | "qc_encode.x(7)\n", 143 | "qc_encode.draw()\n", 144 | "qc = qc_encode + qc_out\n", 145 | "qc.draw(output='mpl',justify='none')\n" 146 | ] 147 | }, 148 | { 149 | "cell_type": "code", 150 | "execution_count": 4, 151 | "metadata": {}, 152 | "outputs": [ 153 | { 154 | "data": { 155 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFrCAYAAACzANLuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAffElEQVR4nO3de7hdVXnv8e9LItcEhSCBZIMYQKgJCLqhoOHmaYrAKSr0iFRMIxoKVhA51stzhBoPYo9aCrallNQKQWupWLVqgHghhgMhcSc2CmLCKZCWkAvRQLRAuPieP+ZMutzsy1jJzl4re30/z7OerDXmmGO/85/8nnkZY0ZmIkmSBrdTqwuQJGlHYWhKklTI0JQkqZChKUlSIUNTkqRCo1tdQCvts88+edBBB7W6DElSG1myZMn6zHx5X9s6OjQPOuggenp6Wl2GJKmNRMTK/rZ5eVaSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpjUDnn38+++67L1OmTOlze2ZyySWXcMghh3DkkUeydOnSLdtuuukmDj30UA499FBuuummLe1LlizhiCOO4JBDDuGSSy4hM7f7cUjtxtCURqAZM2Zw++2397v9tttu48EHH+TBBx/khhtu4KKLLgLgF7/4BbNmzWLRokUsXryYWbNmsWHDBgAuuugiZs+evWW/gcaXRipDUxqBTjzxRPbee+9+t3/jG99g+vTpRATHHXccTzzxBKtXr+aOO+5g2rRp7L333uy1115MmzaN22+/ndWrV7Nx40aOO+44IoLp06fz9a9/ffgOSGoThqbUgVatWsUBBxyw5XdXVxerVq0asL2rq+tF7VKnMTQlSSpkaEodaOLEifzHf/zHlt+PPvooEydOHLD90UcffVG71GkMTakDnXnmmcyZM4fM5N577+WlL30p+++/P6eeeirz5s1jw4YNbNiwgXnz5nHqqaey//77s+eee3LvvfeSmcyZM4c3v/nNrT4MadiNbnUBkobeueeey/z581m/fj1dXV3MmjWL5557DoALL7yQ008/nblz53LIIYew++6784UvfAGAvffem8svv5xjjjkGgCuuuGLLA0XXXXcdM2bM4Omnn+a0007jtNNOa83BSS0UnTzXqru7O3t6elpdhiSpjUTEkszs7mubl2clSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUa1tCMiBMj4l8iYlVEZETMKNjniIj4QUQ8Xe93RURErz5nR8RPI2JT/e9bt9tBSJI61nCfaY4B7gPeDzw9WOeI2BP4DrAWOKbe70+Ayxr6HA/cAnwJOKr+9ysR8dtDXLskqcMN69qzmTkXmAsQETcW7PIOYHfgDzPzaeC+iDgcuCwirs5qDcBLgTsz85P1Pp+MiFPq9nOH9ggkSZ2s3e9pHg/cVQfmZncAE4CDGvrM67XfHcDrt3t1kqSO0u5vOdkPeLRX29qGbQ/X/67to89+fQ0YERcAFwBMmDCB+fPnAzBp0iTGjh3LsmXLABg3bhyTJ09mwYIFAIwePZqpU6eydOlSNm7cCEB3dzdr167lz7558LYcoyRpCHzinNUsX74cqN4Z29XVxaJFiwAYM2YM3d3dLFy4kE2bNgEwdepUVqxYwbp16wCYMmXKlm39adlbTiLiV8D7MvPGAfrMAx7NzPMb2g4EVgKvz8yFEfEs8J7MnNPQZzowOzN3GaiGoXrLycxrtnkISdI2mn3p0IyzI7/lZA0wvlfb+IZtA/VZgyRJQ6jdQ3MhcEJE7NrQNg14DHikoc+0XvtNA+7Z7tVJkjrKcM/THBMRR0XEUfXfPrD+fWC9/VMR8b2GXf4BeAq4MSKmRMRZwEeAzU/OAlwLvDEiPhIRh0fER4FTgGuG6bAkSR1iuM80u4Ef1Z/dgFn190/U2/cHtjxVk5lPUp01TgB6gL8G/hy4uqHPPcDbgRnAj4HpwDmZuWj7HookqdMM9zzN+UAMsH1GH20/AU4cZNxbgVu3sTxJkgbU7vc0JUlqG4amJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBVqKjQjYqeI2Knh934R8Z6IeMPQlyZJUntp9kzz28DFABExBugBPgPMj4jpQ1ybJEltpdnQ7Aa+X38/C9gI7AvMBD5YMkBEvDciHo6IZyJiSUScMEDfGyMi+/j8Z0Ofk/vpc3iTxyZJ0oCaDc0xwBP1998FvpaZz1EF6cGD7RwR5wDXAlcBRwP3ALdFxIH97PJ+YP9en4eAf+qj7+Re/R4sOiJJkgo1G5r/DrwhIvYATgW+U7fvDTxVsP9lwI2ZOTszH8jMi4HVwEV9dc7MJzNzzeYPVTBPAmb30X1dY9/MfKHJY5MkaUCjm+x/NXAz8CtgJbCgbj8R+MlAO0bEzsDrgM/22jQPeH3h358J3J+Z9/SxrScidgF+ClyZmXf2U8cFwAUAEyZMYP78+QBMmjSJsWPHsmzZMgDGjRvH5MmTWbCgOsTRo0czdepUli5dysaNGwHo7u5m7dq1FJxkS5K2s9WrV7N8+XIAJk6cSFdXF4sWLQJgzJgxdHd3s3DhQjZt2gTA1KlTWbFiBevWrQNgypQpW7b1JzKzqaIiohs4APhOZv6qbjsDeCIz7x5gvwnAKuCkzFzQ0H4F8I7MPGyQv/tSqrPSj2bmtQ3thwGnAD8EdgbeCVxY/527Bhqzu7s7e3p6BupSZOY12zyEJGkbzb50aMaJiCWZ2d3XtmbPNMnMHqqnZhvbvr2VtTXjPKrLyTf3+tvLgeUNTQsj4iDgT4ABQ1OSpGY0vbhB/fTr/RHxVERMqts+HBFvG2TX9cALwPhe7eOBNQV/eibw1cz8RUHfRcChBf0kSSrW7OIGlwIfA24AomHTY8D7Bto3M58FlgDTem2aRvUU7UB/91jgNfT9AFBfjqK6lCtJ0pBp9vLshcDMzPx2RFzZ0L6UasrHYK4Gbo6IxcDd9XgTgOsBImIOQGb2XijhAuDBzJzfe8A6yB8B7qe6p3ke8Bbg7MJjkiSpSLOh+Qrgvj7anwN2G2znzLwlIsZRna3uX491emaurLu8aL5mRIwF3g58op9hd6ZalagLeJoqPM/IzLmD1SNJUjOaDc2HgNdSTTdpdDrVVI9BZeZ1wHX9bDu5j7ZfUi2q0N94nwY+XfK3JUnaFs2G5meBv4qI3anuaR4fEe8EPgScP9TFSZLUTpoKzcz8QkSMploGb3eq6R+PAZdk5i3boT5JktrG1szTnA3Mjoh9gJ0yc93QlyVJUvtpOjQ3y8z1Q1mIJEntbtDQjIgfUy1JtyEifgL0u+5eZh45lMVJktROSs40vwpsavje3GK1kiSNEIOGZmbOavj+8e1ajSRJbazZZfS+HxEv66N9z4j4/pBVJUlSG2p2wfaTqVbg6W1X4IRtrkaSpDZW9PRsRLy24eeREdH4ppFRwKlU78qUJGnEKp1y0kP1AFAC8/rY/jRw8VAVJUlSOyoNzVdSLZv3EHAs8HjDtmeBdZn5whDXJklSWykKzYa3kDT90mpJkkaKksUNzgK+mZnP1d/7lZn/PGSVSZLUZkrONG8F9gPW1d/7k1QPBUmSNCKVLG6wU1/fJUnqNIagJEmFSu9pFvGepiRpJCu9p1nCe5qSpBGtqXuakiR1MgNRkqRCztOUJKmQ8zQlSSrkPE1JkgoZgpIkFWo6NCPitRExJyJ66s/Nvd63KUnSiNRUaEbEO4AfAvsDc+vPeGBxRJw39OVJktQ+St+nudkngcsz86rGxoj4KHAl8MWhKkySpHbT7OXZlwP/1Ef7V4B9t70cSZLaV7OheSdwch/tJwM/2NZiJElqZ80u2H4b8KmI6AburduOA84CPj7k1UmS1Ea2dsH2C+pPo78ErtvmiiRJalMu2C5JUiEDUZKkQs1OOSEi9gJOAw4Edm7clpmfGKK6JElqO02FZkQcB3wb2EQ1/WQV1UIHm4BHAENTkjRiNXt59jPAl4CJwDPAG6nOOHuA/zO0pUmS1F6aDc0jgb/KzAReAHbJzLXAh3HKiSRphGs2NJ9t+L4WeEX9/VfAhCGpSJKkNtXsg0BLgWOAFcB84MqIGA+cB/x4aEuTJKm9NHum+b+Ax+rvHwMep1rUYC9evNiBJEkjSlNnmpnZ0/D9caqpJ5IkdYSm52kCRMTBwG/VP3+amQ8NXUmSJLWnZudpjgM+D5wJ/Pq/muNbwPmZ+fMhrk+SpLbR7D3NvwMOAU4Adq0/JwKvBGYPbWmSJLWXZkPzVGBmZt6dmc/Xn7uBP6q3DSoi3hsRD0fEMxGxJCJOGKDvyRGRfXwO79Xv7Ij4aURsqv99a5PHJUnSoJoNzceB/+yj/Slg0EuzEXEOcC1wFXA0cA9wW0QcOMiuk6mW69v8ebBhzOOBW6hWKjqq/vcrEfHbg9UjSVIzmg3NTwDXRMTEzQ319z+nbN3Zy4AbM3N2Zj6QmRcDq4GLBtlvXWauafi80LDtUuDOzPxkPeYnqeaQXlp8VJIkFRj0QaCI+AmQDU2vBB6JiFX1783r0O5Ldc+zv3F2Bl4HfLbXpnnA6wcpoycidgF+ClyZmXc2bDueaq5oozuA9w0ypiRJTSl5evbWIfpb+wCjqJbfa7QW+J1+9tl8FvpDqteQvRP4XkSclJl31X3262fM/foaMCIuoF6IYcKECcyfPx+ASZMmMXbsWJYtWwbAuHHjmDx5MgsWLABg9OjRTJ06laVLl7Jx40YAuru7Wbt2LXDwoAcvSdq+Vq9ezfLlywGYOHEiXV1dLFq0CIAxY8bQ3d3NwoUL2bRpEwBTp05lxYoVrFu3DoApU6Zs2dafqNZe3/4iYgLVq8ROyswFDe1XAO/IzMMKx5kLPJ+ZZ9a/nwXek5lzGvpMB2Zn5i4DjdXd3Z09PT0DdSky85ptHkKStI1mXzo040TEkszs7mvb1i5u8Ebg1VSXbe/PzPkFu62nejPK+F7t44E1Tfz5RcDbG36vGYIxJUkaVFMPAkXExIhYDHyH6nVgH6G6XLqoPpPsV2Y+CywBpvXaNI3qKdpSR1Fdtt1s4RCMKUnSoJo90/wc1dniIZn5MEBETAK+WG/7/UH2vxq4uQ7eu4ELqV4pdn091hyAzJxe/74UeAS4n+qe5nnAW4CzG8a8FlgQER8Bvg68FTgFmNrksUmSNKBmQ3MacPLmwATIzIci4hLge4PtnJm31EvxfYxqvuV9wOmZubLu0nu+5s7AZ4Au4Gmq8DwjM+c2jHlPRLwduJJq2su/Aedk5qImj02SpAFtzT3Nvp4cKn6aKDOvA67rZ9vJvX5/Gvh0wZi3MnRP+UqS1KdmFzf4HvCXEXHA5oZ6NZ9rKDjTlCRpR9ZsaF4C7AE8FBErI2Il1eXQPeptkiSNWM1env05cCxwMrB50fQHMvO7Q1mUJEntqDg0I2IU8CTwmsz8DtW0E0mSOkbx5dl6kfSVVE+0SpLUcZq9p/m/gT+LiH22RzGSJLWzZu9pfpDqLSerIuJRer1bMzOPHKrCJElqN82G5q1UczJjO9QiSVJbKwrNiNidamWetwAvoZqTeXFmrt9+pUmS1F5K72nOAmYA3wa+TPX+y7/ZTjVJktSWSi/PngW8OzP/ESAivgTcHRGj6qdqJUka8UrPNA8A7tr8IzMXA89TvaFEkqSOUBqao4Bne7U9z1a+xFqSpB1RaegF8MWI2NTQtiswOyKe2tyQmWcOZXGSJLWT0tC8qY+2Lw5lIZIktbui0MzMd23vQiRJanfNLqMnSVLHMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpELDHpoR8d6IeDginomIJRFxwgB9z4qIeRHxeET8MiIWRcSZvfrMiIjs47Pr9j8aSVInGdbQjIhzgGuBq4CjgXuA2yLiwH52OQn4PnBG3X8u8LU+gvYpYP/GT2Y+M/RHIEnqZKOH+e9dBtyYmbPr3xdHxJuAi4CP9u6cme/v1TQrIs4A3gLc9Ztdc812qFeSpC2GLTQjYmfgdcBne22aB7y+iaHGAht6te0WESuBUcC/Apdn5o/6qeMC4AKACRMmMH/+fAAmTZrE2LFjWbZsGQDjxo1j8uTJLFiwAIDRo0czdepUli5dysaNGwHo7u5m7dq1wMFNlC9J2h5Wr17N8uXLAZg4cSJdXV0sWrQIgDFjxtDd3c3ChQvZtGkTAFOnTmXFihWsW7cOgClTpmzZ1p/IzO14CA1/KGICsAo4KTMXNLRfAbwjMw8rGOOPgT8DpmTmyrrteOBVwDKqQH0/cDrwmsx8cKDxuru7s6enZyuP6L/MvGabh5AkbaPZlw7NOBGxJDO7+9o23Jdnt1pEnA18Bjhnc2ACZOZCYGFDv3uozjYvBi4Z5jIlSSPYcD4ItB54ARjfq308MOD9yIj4feBmYHpmfnOgvpn5AtADHLr1pUqS9GLDFpqZ+SywBJjWa9M0qqdo+xQRb6MKzBmZeetgfyciAjgSWL311UqS9GLDfXn2auDmiFgM3A1cCEwArgeIiDkAmTm9/v12qsD8ILAgIvarx3k2M39R9/lT4F7gQWBPqkuyR1I9kStJ0pAZ1tDMzFsiYhzwMar5lPcBpzfco+w9X/NCqhqvqT+b/QA4uf7+MuAGYD/gSeBHwImZuXjID0CS1NGG/UGgzLwOuK6fbScP9LuffT4AfGAoapMkaSCuPStJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUa9tCMiPdGxMMR8UxELImIEwbpf1Ld75mIeCgiLtzWMSVJ2hrDGpoRcQ5wLXAVcDRwD3BbRBzYT/9XAnPrfkcDnwL+MiLO3toxJUnaWsN9pnkZcGNmzs7MBzLzYmA1cFE//S8EHsvMi+v+s4GbgA9uw5iSJG2VYQvNiNgZeB0wr9emecDr+9nt+D763wF0R8RLtnJMSZK2yuhh/Fv7AKOAtb3a1wK/088++wHf7aP/6Hq8aHbMiLgAuKD++auIWF5SvNQB9gHWt7oIaWv93QeGbKhX9LdhOEOzLWTmDcANra5DajcR0ZOZ3a2uQ2pnwxma64EXgPG92scDa/rZZ00//Z+vx4utGFOSpK0ybPc0M/NZYAkwrdemaVRPvPZlYT/9ezLzua0cU5KkrTLcl2evBm6OiMXA3VRPx04ArgeIiDkAmTm97n898L6IuAb4W+ANwAzg3NIxJRXztoU0iGENzcy8JSLGAR8D9gfuA07PzJV1lwN79X84Ik4H/oJqCsljwCWZ+dUmxpRUoL7fL2kAkZmtrkGSpB2Ca89KklTI0JQkqZChKUlSIUNTkqRChqakIhHh/xfqeB23jJ6k5kREAGTmr1tdi9RqTjmR1K+IOA74A6o3Dj0D3E71pqGlhqg6kaEpqU8RcQzw91RrPX8D6AJ+l2oRke8DH8vMH7auQmn4GZqS+hQRtwIbgXdn/R9FfV/zjVQvgj8C+KPM/FbrqpSGlzf2JfXnAGB5ZmZURmXmrzPzu8DbgcXAhyJiz9aWKQ0fQ1NSf74FvCsi9sjKC1CdbWbmE8DlVK/hO6h1JUrDy9CU1J9bqO5nLo6ID0TEZPiNp2i7gK7M/HGrCpSGm/c0JfUrIo4CLgWOAjYADwOrgbFU9zbnZ+b7WlSeNOwMTUkDioidgROA3wNeCexHFZqfAv4lM59sYXnSsDI0Jf2GiHgZcB4wBXgI+H/A4sx8NCLGAjtn5s9bWKLUMoampC0i4gDgH6ienH0YeBUQwEqqhQ2urR8CkjqSDwJJavRh4CngTZl5SmZOBM4GfgRcBtwbEce3skCplTzTlLRFRCwGbszM6yJidGY+37BtLPDPwIbMfFtERPofiDqMZ5qSAIiIUcBC4NyIeMnmwIyIXSJil8z8JfA54KiIONrAVCcyNCUBUC9e8DWqB4C+EhGvqds3ZeamutsDVPMzV7SmSqm1vDwrCaheAVYvmXci8Gmq6SUPAHOB24BjgXcCv8zM32tdpVLrGJqSXiQiXg6cCfw34BhgEvA48GXgbzLTM011JENTEgAR8QbgpcBewHJgKZDAPsAoYE/DUp3O0JQ6XETsDvw51ZtLdqFazOB5YB3VezS/lplr6r47+fJpdTIfBJL0x8BJwDmZuXv9ew7wBDATuLJeSg8DU53OM02pw0XEIuBLmfm5Xu0vA04H/gq4IzPPbUF5UlvxTFPqYBGxC9X0kVMiYo+6bVT9JO0TmfkPwHuAwyPi0FbWKrUDQ1PqUHUwbqJaa7YbeE/9wukXei1c8CPgYODpVtQptRMvz0odrj7D/AjVurMrgRupl8sDDqNae/bkzDyyVTVK7cLQlARAREwCPgC8Fdgf+Hdgd+B+4BOZOb911UntwdCUOlhE7En1+q/MzCV12yjgCKpLto8Bd2aml2YlDE2pY0XEHwEfp7oMuzvVAgZfA67LzJ/16usbTSQMTakjRcS5wFXA3wL3AbsBRwO/B+wL/CNwRWY+2bIipTZkaEodKCLuBBZn5ocb2nYBXgG8GbgA+EJmXtWiEqW25JQTqcPU9yzX9m6vXwG2IjM/Q7Ui0NkRMXHYC5TamKEpdZj6vZl3Av8zIt4dEfv00e0m4ACqBdwl1Ua3ugBJLfF54FDgT4BjI+JfqFYGWg08B/wP4PnM/GnrSpTaj/c0pQ6z+U0lEfFSYDrwPuAQ4F+BNcBvA48A12fm37WqTqkdGZpSh4mIlwBjMnNDQ9uRwNuAlwE/A34A3O9bTaTfZGhKHSQi3gS8C3gN1bszfwB8NTO/2dLCpB2EDwJJHSIipgLXAnsBnwP+Hvgt4OsR8UA9d1PSADzTlDpERNwKbMjMmb3aDwcuA84APpqZc1pRn7Qj8ExT6hx7Uz3oA0BEjK4fCvoZcAkwD7g0IvZtVYFSuzM0pc7xdWBmRLwKIDOfr5+ijcx8BrgC2BPoamGNUlszNKXO8WXgJ8BtEfHJiDgxIsY2LMR+DDA+M5e2rkSpvXlPU+ogEXEI8F7gJOB54FHgKWAP4HDgW5n5odZVKLU3Q1PqQBHxaqo3mrya6l7nbsBfUL0786lW1ia1M0NTGuEi4gDgfOBY4GHgfuCezFxWL96+W2b+qpU1SjsKQ1MawSLilcBXqc4kFwNHAOOBJ4D/C3wqMx9pVX3SjsbQlEawiLgemAjMzMw1dduBwLlU9zb3AN6dmd9oXZXSjsPQlEawiLgL+EZmfrZeczYz8/mG7V+mWm/2jHqb/yFIA3DKiTSyfQ84r55a8lxmPh8RL4mI3ertfw28CjjWwJQGZ2hKI9s3gX2BH0TEmQB1eD5db19Pdfn2xy2qT9qheHlWGqHqlX6ynpv5aeA44OfAXcBtVNNNfh94ODPf1rpKpR2HoSl1gIjYFfgdYBrV1JPJwC+A2cAXM3NlC8uTdhiGpjQCRcROwJuBl1NNN/k34K7MfLIO0ATGZub6FpYp7XAMTWmEiYixwOeBU4BfA6uAoFou77tUZ5YP1n13ysxft6pWaUczutUFSBpylwCHAadn5g/r92V2A28A/jvw2og4PzMfNzCl5nimKY0w9dzMr2Xm1b3aR1EF5+eBf8vMN7WiPmlH5pQTaQSJiNHAfcDZEfHyum1UfRn2hcxcAFwIdEXEa1pZq7QjMjSlEaRe7ecmYD/ggxExvg7LxsuwK4CDqOZoSmqCl2elEaR+anYn4F3AVVTPLXwVuAX4d+BIqvuar87MY1pVp7SjMjSlESoiXgbMAP4AOAr4JfAM8EOqt5ssalVt0o7K0JRGiIjYE/hl4xqy9ZnnrsAYYArwn4altPUMTWmEiIi/pXpn5mJgZWZu7KPPXpm5YfMSe8NepLSDMzSlESAizgW+BGykWh7vO8AdVAuxr8rMpyNiDPBF4PLM/EnLipV2YIamNAJExGzgBaqF2c8C/hA4GFgOzKV6RdhhwLWZuXOr6pR2dIamtIOr52Z+CNgzMz/S0D4ZmEn1JpNdqV42fVNmvrsVdUojgaEpjQARsRcwPjN/FhE7A8/1eiDoHODLwGsz819bVKa0w3PtWWkEyMwNwIb6+7Ow5cnZyMwXgD2BZwxMadsYmtII1WsVoLHAn7aqFmmk8PKs1AEi4iVA7+X0JDXJ0JQkqZALtkuSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhf4/YvyQPDDK5IIAAAAASUVORK5CYII=\n", 156 | "text/plain": [ 157 | "
" 158 | ] 159 | }, 160 | "execution_count": 4, 161 | "metadata": {}, 162 | "output_type": "execute_result" 163 | } 164 | ], 165 | "source": [ 166 | "counts = execute(qc,Aer.get_backend('qasm_simulator')).result().get_counts()\n", 167 | "plot_histogram(counts)" 168 | ] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "execution_count": 5, 173 | "metadata": {}, 174 | "outputs": [ 175 | { 176 | "data": { 177 | "text/html": [ 178 | "
          \n",
179 |        "q_0: ─────\n",
180 |        "     ┌───┐\n",
181 |        "q_1: ┤ X ├\n",
182 |        "     └───┘\n",
183 |        "q_2: ─────\n",
184 |        "          \n",
185 |        "q_3: ─────\n",
186 |        "          \n",
187 |        "q_4: ─────\n",
188 |        "     ┌───┐\n",
189 |        "q_5: ┤ X ├\n",
190 |        "     └───┘\n",
191 |        "q_6: ─────\n",
192 |        "          \n",
193 |        "q_7: ─────\n",
194 |        "          
" 195 | ], 196 | "text/plain": [ 197 | " \n", 198 | "q_0: ─────\n", 199 | " ┌───┐\n", 200 | "q_1: ┤ X ├\n", 201 | " └───┘\n", 202 | "q_2: ─────\n", 203 | " \n", 204 | "q_3: ─────\n", 205 | " \n", 206 | "q_4: ─────\n", 207 | " ┌───┐\n", 208 | "q_5: ┤ X ├\n", 209 | " └───┘\n", 210 | "q_6: ─────\n", 211 | " \n", 212 | "q_7: ─────\n", 213 | " " 214 | ] 215 | }, 216 | "execution_count": 5, 217 | "metadata": {}, 218 | "output_type": "execute_result" 219 | } 220 | ], 221 | "source": [ 222 | "qc_encode = QuantumCircuit(n)\n", 223 | "qc_encode.x(1)\n", 224 | "qc_encode.x(5)\n", 225 | "\n", 226 | "qc_encode.draw()" 227 | ] 228 | }, 229 | { 230 | "cell_type": "code", 231 | "execution_count": 6, 232 | "metadata": {}, 233 | "outputs": [ 234 | { 235 | "data": { 236 | "text/html": [ 237 | "
          \n",
238 |        "q_0: ──■──\n",
239 |        "     ┌─┴─┐\n",
240 |        "q_1: ┤ X ├\n",
241 |        "     └───┘
" 242 | ], 243 | "text/plain": [ 244 | " \n", 245 | "q_0: ──■──\n", 246 | " ┌─┴─┐\n", 247 | "q_1: ┤ X ├\n", 248 | " └───┘" 249 | ] 250 | }, 251 | "execution_count": 6, 252 | "metadata": {}, 253 | "output_type": "execute_result" 254 | } 255 | ], 256 | "source": [ 257 | "# 1.2 - Example 4.3 - Adding with Qiskit\n", 258 | "\n", 259 | "#bit addition samples from the book:\n", 260 | "\n", 261 | "#0+0 = 00\n", 262 | "#0+1 = 01\n", 263 | "#1+0 = 01\n", 264 | "#1+1 = 10\n", 265 | "\n", 266 | "#create a circuit with two qubits and try out the controlled-NOT gate (CNOT)\n", 267 | "# XOR gate\n", 268 | "qc_cnot = QuantumCircuit(2)\n", 269 | "qc_cnot.cx(0,1)\n", 270 | "qc_cnot.draw()\n", 271 | "\n", 272 | "#The first bit acts as the control bit with the black square (dot in the book)\n", 273 | "#q1 acts as the target bit with the box with X in side (+ inside a circle in the book)" 274 | ] 275 | }, 276 | { 277 | "cell_type": "code", 278 | "execution_count": 7, 279 | "metadata": {}, 280 | "outputs": [ 281 | { 282 | "data": { 283 | "text/html": [ 284 | "
     ┌───┐     ┌─┐   \n",
285 |        "q_0: ┤ X ├──■──┤M├───\n",
286 |        "     └───┘┌─┴─┐└╥┘┌─┐\n",
287 |        "q_1: ─────┤ X ├─╫─┤M├\n",
288 |        "          └───┘ ║ └╥┘\n",
289 |        "c: 2/═══════════╩══╩═\n",
290 |        "                0  1 
" 291 | ], 292 | "text/plain": [ 293 | " ┌───┐ ┌─┐ \n", 294 | "q_0: ┤ X ├──■──┤M├───\n", 295 | " └───┘┌─┴─┐└╥┘┌─┐\n", 296 | "q_1: ─────┤ X ├─╫─┤M├\n", 297 | " └───┘ ║ └╥┘\n", 298 | "c: 2/═══════════╩══╩═\n", 299 | " 0 1 " 300 | ] 301 | }, 302 | "execution_count": 7, 303 | "metadata": {}, 304 | "output_type": "execute_result" 305 | } 306 | ], 307 | "source": [ 308 | "\n", 309 | "qc = QuantumCircuit(2,2)\n", 310 | "qc.x(0)\n", 311 | "qc.cx(0,1)\n", 312 | "qc.measure(0,0)\n", 313 | "qc.measure(1,1)\n", 314 | "qc.draw()\n", 315 | "\n", 316 | "#table from the book:\n", 317 | "#Input (q1 q0)\tOutput (q1 q0)\n", 318 | "#00\t00\n", 319 | "#01\t11\n", 320 | "#10\t10\n", 321 | "#11\t01" 322 | ] 323 | }, 324 | { 325 | "cell_type": "code", 326 | "execution_count": 8, 327 | "metadata": {}, 328 | "outputs": [ 329 | { 330 | "data": { 331 | "text/html": [ 332 | "
     ┌───┐ ░            ░       \n",
333 |        "q_0: ┤ X ├─░───■────────░───────\n",
334 |        "     ├───┤ ░   │        ░       \n",
335 |        "q_1: ┤ X ├─░───┼────■───░───────\n",
336 |        "     └───┘ ░ ┌─┴─┐┌─┴─┐ ░ ┌─┐   \n",
337 |        "q_2: ──────░─┤ X ├┤ X ├─░─┤M├───\n",
338 |        "           ░ └───┘└───┘ ░ └╥┘┌─┐\n",
339 |        "q_3: ──────░────────────░──╫─┤M├\n",
340 |        "           ░            ░  ║ └╥┘\n",
341 |        "c: 2/══════════════════════╩══╩═\n",
342 |        "                           0  1 
" 343 | ], 344 | "text/plain": [ 345 | " ┌───┐ ░ ░ \n", 346 | "q_0: ┤ X ├─░───■────────░───────\n", 347 | " ├───┤ ░ │ ░ \n", 348 | "q_1: ┤ X ├─░───┼────■───░───────\n", 349 | " └───┘ ░ ┌─┴─┐┌─┴─┐ ░ ┌─┐ \n", 350 | "q_2: ──────░─┤ X ├┤ X ├─░─┤M├───\n", 351 | " ░ └───┘└───┘ ░ └╥┘┌─┐\n", 352 | "q_3: ──────░────────────░──╫─┤M├\n", 353 | " ░ ░ ║ └╥┘\n", 354 | "c: 2/══════════════════════╩══╩═\n", 355 | " 0 1 " 356 | ] 357 | }, 358 | "execution_count": 8, 359 | "metadata": {}, 360 | "output_type": "execute_result" 361 | } 362 | ], 363 | "source": [ 364 | "#4.3 continued - Using two CNOT gates\n", 365 | "\n", 366 | "#create a circuit with 4 input and two outputs\n", 367 | "qc_halfadder = QuantumCircuit(4,2)\n", 368 | "\n", 369 | "#now we need to encode the qubits 0 and 1\n", 370 | "qc_halfadder.x(0)\n", 371 | "qc_halfadder.x(1)\n", 372 | "qc_halfadder.barrier()\n", 373 | "\n", 374 | "#make use of the CNOT gates \n", 375 | "#write XOR of the given inputs on q2\n", 376 | "#q0 to q2\n", 377 | "qc_halfadder.cx(0,2)\n", 378 | "\n", 379 | "#q1 to q2\n", 380 | "qc_halfadder.cx(1,2)\n", 381 | "qc_halfadder.barrier()\n", 382 | "\n", 383 | "#now for the outputs of this circuit\n", 384 | "#q2 to output\n", 385 | "qc_halfadder.measure(2,0) # this is the XOR value we want\n", 386 | "qc_halfadder.measure(3,1)\n", 387 | "\n", 388 | "qc_halfadder.draw()" 389 | ] 390 | }, 391 | { 392 | "cell_type": "code", 393 | "execution_count": 9, 394 | "metadata": {}, 395 | "outputs": [ 396 | { 397 | "data": { 398 | "text/html": [ 399 | "
          \n",
400 |        "q_0: ──■──\n",
401 |        "       │  \n",
402 |        "q_1: ──■──\n",
403 |        "     ┌─┴─┐\n",
404 |        "q_2: ┤ X ├\n",
405 |        "     └───┘
" 406 | ], 407 | "text/plain": [ 408 | " \n", 409 | "q_0: ──■──\n", 410 | " │ \n", 411 | "q_1: ──■──\n", 412 | " ┌─┴─┐\n", 413 | "q_2: ┤ X ├\n", 414 | " └───┘" 415 | ] 416 | }, 417 | "execution_count": 9, 418 | "metadata": {}, 419 | "output_type": "execute_result" 420 | } 421 | ], 422 | "source": [ 423 | "#4.3 - Toffoli - AND/NAND gate\n", 424 | "#https://qiskit.org/textbook/ch-gates/more-circuit-identities.html#ccx\n", 425 | "#AND if the initial state of the target was |0>\n", 426 | "#NAND if target was |1>\n", 427 | "\n", 428 | "qc = QuantumCircuit(3)\n", 429 | "#a and b are the control bits\n", 430 | "a = 0\n", 431 | "b = 1\n", 432 | "#t is the target bit\n", 433 | "t = 2\n", 434 | "\n", 435 | "qc.ccx(a,b,t)\n", 436 | "qc.draw()" 437 | ] 438 | }, 439 | { 440 | "cell_type": "code", 441 | "execution_count": 15, 442 | "metadata": {}, 443 | "outputs": [ 444 | { 445 | "data": { 446 | "text/html": [ 447 | "
     ┌───┐ ░                 ░       \n",
448 |        "q_0: ┤ X ├─░───■─────────■───░───────\n",
449 |        "     ├───┤ ░   │         │   ░       \n",
450 |        "q_1: ┤ X ├─░───┼────■────■───░───────\n",
451 |        "     └───┘ ░ ┌─┴─┐┌─┴─┐  │   ░ ┌─┐   \n",
452 |        "q_2: ──────░─┤ X ├┤ X ├──┼───░─┤M├───\n",
453 |        "           ░ └───┘└───┘┌─┴─┐ ░ └╥┘┌─┐\n",
454 |        "q_3: ──────░───────────┤ X ├─░──╫─┤M├\n",
455 |        "           ░           └───┘ ░  ║ └╥┘\n",
456 |        "c: 2/═══════════════════════════╩══╩═\n",
457 |        "                                0  1 
" 458 | ], 459 | "text/plain": [ 460 | " ┌───┐ ░ ░ \n", 461 | "q_0: ┤ X ├─░───■─────────■───░───────\n", 462 | " ├───┤ ░ │ │ ░ \n", 463 | "q_1: ┤ X ├─░───┼────■────■───░───────\n", 464 | " └───┘ ░ ┌─┴─┐┌─┴─┐ │ ░ ┌─┐ \n", 465 | "q_2: ──────░─┤ X ├┤ X ├──┼───░─┤M├───\n", 466 | " ░ └───┘└───┘┌─┴─┐ ░ └╥┘┌─┐\n", 467 | "q_3: ──────░───────────┤ X ├─░──╫─┤M├\n", 468 | " ░ └───┘ ░ ║ └╥┘\n", 469 | "c: 2/═══════════════════════════╩══╩═\n", 470 | " 0 1 " 471 | ] 472 | }, 473 | "execution_count": 15, 474 | "metadata": {}, 475 | "output_type": "execute_result" 476 | } 477 | ], 478 | "source": [ 479 | "qc_ha = QuantumCircuit(4,2)\n", 480 | "# encode inputs in qubits 0 and 1\n", 481 | "qc_ha.x(0) # For a=0, remove the this line. For a=1, leave it.\n", 482 | "qc_ha.x(1) # For b=0, remove the this line. For b=1, leave it.\n", 483 | "qc_ha.barrier()\n", 484 | "# use cnots to write the XOR of the inputs on qubit 2\n", 485 | "qc_ha.cx(0,2)\n", 486 | "qc_ha.cx(1,2)\n", 487 | "# use ccx to write the AND of the inputs on qubit 3\n", 488 | "qc_ha.ccx(0,1,3)\n", 489 | "qc_ha.barrier()\n", 490 | "# extract outputs\n", 491 | "qc_ha.measure(2,0) # extract XOR value\n", 492 | "qc_ha.measure(3,1) # extract AND value\n", 493 | "\n", 494 | "qc_ha.draw()" 495 | ] 496 | }, 497 | { 498 | "cell_type": "code", 499 | "execution_count": 16, 500 | "metadata": {}, 501 | "outputs": [ 502 | { 503 | "data": { 504 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAE6CAYAAAB00gm8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZZ0lEQVR4nO3df7BcZZ3n8feXRERMUAgScnNBDKF0JxFBGwfwAtEyw4BbqGCJrJrJoGSJIxEpd0ZrhZm4irM6srDOskrGEoLuLCOuuo4BwqAxFIQbbzITRd0kJZgxIdzAEI0KJBC/+8fpZHqa++PppHNvk36/qrpu9/M85+nv+SefnD7nPCcyE0mSNLpDxrsASZKeLwxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKnQxPEuYDwdffTRecIJJ4x3GZKkDrJmzZrHM/NlQ/V1dWiecMIJDAwMjHcZkqQOEhGbhuvz51lJkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDUzoIXXrppRxzzDHMnj17yP7MZNGiRcycOZOTTz6ZtWvX7u275ZZbOOmkkzjppJO45ZZb9ravWbOGV7/61cycOZNFixaRmQd8P6ROY2hKB6H58+dz5513Dtt/xx13sHHjRjZu3MhNN93EwoULAXjiiSdYvHgx/f39rF69msWLF7N9+3YAFi5cyJIlS/ZuN9L80sHK0JQOQmeffTZHHXXUsP3f+ta3mDdvHhHB6aefzi9/+Uu2bt3KXXfdxdy5cznqqKM48sgjmTt3LnfeeSdbt25lx44dnH766UQE8+bN45vf/ObY7ZDUIQxNqQtt2bKF4447bu/n3t5etmzZMmJ7b2/vc9qlbmNoSpJUyNCUutD06dP5xS9+sffz5s2bmT59+ojtmzdvfk671G0MTakLXXDBBSxdupTM5IEHHuAlL3kJ06ZN49xzz2X58uVs376d7du3s3z5cs4991ymTZvGEUccwQMPPEBmsnTpUt761reO925IY27ieBcgqf0uueQSVqxYweOPP05vby+LFy/mmWeeAeDyyy/n/PPPZ9myZcycOZPDDz+cL3/5ywAcddRRXH311Zx22mkAXHPNNXsvKLrxxhuZP38+Tz31FOeddx7nnXfe+OycNI6im++1qtVqOTAwMN5lSJI6SESsyczaUH3+PCtJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqdCYhmZEnB0R/zcitkRERsT8gm1eHRHfj4in6ttdExHRNOaiiPhJROys/337AdsJSVLXGusjzUnAg8CHgKdGGxwRRwB3A4PAafXt/hNwVcOYM4DbgK8Cp9T/fi0ifr/NtUuSutyYrj2bmcuAZQARcXPBJu8GDgf+KDOfAh6MiFcBV0XEdVmtAXgl8L3M/FR9m09FxBvr7Ze0dw8kSd2s089pngHcWw/MPe4CeoATGsYsb9ruLuDMA16dJKmrdPpTTo4FNje1DTb0PVz/OzjEmGOHmjAiFgALAHp6elixYgUAM2bMYPLkyaxbtw6AKVOmMGvWLFauXAnAxIkT6evrY+3atezYsQOAWq3G4OAgf/ntE/dnHyVJbfCJi7eyfv16oHpmbG9vL/39/QBMmjSJWq3GqlWr2LlzJwB9fX1s2LCBbdu2ATB79uy9fcMZt6ecRMRvgA9m5s0jjFkObM7MSxvajgc2AWdm5qqI2AW8PzOXNoyZByzJzBeOVEO7nnJy2fX7PYUkaT8tubI98zyfn3LyKDC1qW1qQ99IYx5FkqQ26vTQXAWcFRGHNbTNBR4Bft4wZm7TdnOB+w94dZKkrjLW92lOiohTIuKU+ncfX/98fL3/0xFxT8Mm/wt4Erg5ImZHxIXAR4E9V84C3AC8KSI+GhGvioiPAW8Erh+j3ZIkdYmxPtKsAf9Yf70IWFx//4l6/zRg71U1mfkrqqPGHmAA+B/A54DrGsbcD7wLmA/8EJgHXJyZ/Qd2VyRJ3Was79NcAcQI/fOHaPsRcPYo894O3L6f5UmSNKJOP6cpSVLHMDQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqVBLoRkRh0TEIQ2fj42I90fEG9pfmiRJnaXVI83vAFcARMQkYAD4LLAiIua1uTZJkjpKq6FZA75bf38hsAM4BrgM+EjJBBHxgYh4OCKejog1EXHWCGNvjogc4vXbhjFzhhnzqhb3TZKkEbUampOAX9bf/wHwjcx8hipITxxt44i4GLgBuBY4FbgfuCMijh9mkw8B05peDwF/N8TYWU3jNhbtkSRJhVoNzX8G3hARLwbOBe6utx8FPFmw/VXAzZm5JDN/mplXAFuBhUMNzsxfZeaje15UwTwDWDLE8G2NYzNzd4v7JknSiFoNzeuAW4HNwBZgZb39bOBHI20YEYcCrwOWN3UtB84s/P7LgB9n5v1D9A1ExNaIuCci3lg4nyRJxSa2MjgzvxgRa4DjgLsz83f1rp8BV4+y+dHABGCwqX0QePNo3x0RLwHeCXysqWvPkeoPgEOB9wL3RMQ5mXnvEPMsABYA9PT0sGLFCgBmzJjB5MmTWbduHQBTpkxh1qxZrFxZ/b9g4sSJ9PX1sXbtWnbs2AFArVZjcHCQgl+mJUkH2NatW1m/fj0A06dPp7e3l/7+fgAmTZpErVZj1apV7Ny5E4C+vj42bNjAtm3bAJg9e/bevuFEZh7AXWj4oogeqqPTczJzZUP7NcC7M/OVo2z/J8DngJ7MfGKUscuAZzPzgpHG1Wq1HBgYKN2FYV12/X5PIUnaT0uubM88EbEmM2tD9bW8uEH96tcfR8STETGj3vZnEfHOUTZ9HNgNTG1qnwo8WvDVlwFfHy0w6/qBkwrGSZJUrNXFDa4EPg7cBERD1yPAB0faNjN3AWuAuU1dc6muoh3pe18PvIahLwAayilUP9tKktQ2LZ3TBC4HLsvM70TEJxva11Ld8jGa64BbI2I1cF99vh7gCwARsRQgM5sXSlgAbMzMFc0T1oP858CPqc5pvgd4G3BR4T5JklSk1dB8OfDgEO3PAC8abePMvC0iplAdrU6rz3V+Zm6qD3nO/ZoRMRl4F/CJYaY9lGpVol7gKarwfEtmLhutHkmSWtFqaD4EvBbY1NR+PvCTkgky80bgxmH65gzR9muqRRWGm+8zwGdKvluSpP3Ramj+FfDXEXE41TnNMyLivcCfApe2uzhJkjpJq/dpfjkiJlItg3c41UIHjwCLMvO2A1CfJEkdo9UjTTJzCbAkIo4GDsnMbe0vS5KkztNyaO6RmY+3sxBJkjrdqKEZET+kWsVne0T8CBh2CaHMPLmdxUmS1ElKjjS/DuxseD826+5JktRhRg3NzFzc8P4vDmg1kiR1sFaX0ftuRLx0iPYjIuK7batKkqQO1OqC7XOoVuBpdhhw1n5XI0lSByu6ejYiXtvw8eSIaHzSyATgXKrHfkmSdNAqveVkgOoCoASWD9H/FHBFu4qSJKkTlYbmK6iWzXsIeD3wWEPfLmBbZu5uc22SJHWUotBseApJyw+tliTpYFGyuMGFwLcz85n6+2Fl5v9pW2WSJHWYkiPN24FjgW3198NJqouCJEk6KJUsbnDIUO8lSeo2hqAkSYVKz2kW8ZymJOlgVnpOs4TnNCVJB7WWzmlKktTNDERJkgp5n6YkSYW8T1OSpELepylJUiFDUJKkQi2HZkS8NiKWRsRA/XVr0/M2JUk6KLUUmhHxbuAHwDRgWf01FVgdEe9pf3mSJHWO0udp7vEp4OrMvLaxMSI+BnwS+Eq7CpMkqdO0+vPsy4C/G6L9a8Ax+1+OJEmdq9XQ/B4wZ4j2OcD397cYSZI6WasLtt8BfDoiasAD9bbTgQuBv2h7dZIkdZB9XbB9Qf3V6PPAjftdkSRJHcoF2yVJKmQgSpJUqNVbToiII4HzgOOBQxv7MvMTbapLkqSO01JoRsTpwHeAnVS3n2yhWuhgJ/BzwNCUJB20Wv159rPAV4HpwNPAm6iOOAeA/9re0iRJ6iythubJwF9nZgK7gRdm5iDwZ3jLiSTpINdqaO5qeD8IvLz+/jdAT1sqkiSpQ7V6IdBa4DRgA7AC+GRETAXeA/ywvaVJktRZWj3S/M/AI/X3Hwceo1rU4Eieu9iBJEkHlZaONDNzoOH9Y1S3nkiS1BVavk8TICJOBP5d/eNPMvOh9pUkSVJnavU+zSnAl4ALgN/9a3P8PXBpZv5Lm+uTJKljtHpO82+AmcBZwGH119nAK4Al7S1NkqTO0mpongtclpn3Zeaz9dd9wH+s940qIj4QEQ9HxNMRsSYizhph7JyIyCFer2oad1FE/CQidtb/vr3F/ZIkaVSthuZjwG+HaH8SGPWn2Yi4GLgBuBY4FbgfuCMijh9l01lUy/XteW1smPMM4DaqlYpOqf/9WkT8/mj1SJLUilZD8xPA9RExfU9D/f3nKFt39irg5sxckpk/zcwrgK3AwlG225aZjza8djf0XQl8LzM/VZ/zU1T3kF5ZvFeSJBUY9UKgiPgRkA1NrwB+HhFb6p/3rEN7DNU5z+HmORR4HfBXTV3LgTNHKWMgIl4I/AT4ZGZ+r6HvDKp7RRvdBXxwlDklSWpJydWzt7fpu44GJlAtv9doEHjzMNvsOQr9AdVjyN4L3BMR52TmvfUxxw4z57FDTRgRC6gvxNDT08OKFSsAmDFjBpMnT2bdunUATJkyhVmzZrFy5UoAJk6cSF9fH2vXrmXHjh0A1Go1BgcHgRNH3XlJ0oG1detW1q9fD8D06dPp7e2lv78fgEmTJlGr1Vi1ahU7d+4EoK+vjw0bNrBt2zYAZs+evbdvOFGtvX7gRUQP1aPEzsnMlQ3t1wDvzsxXFs6zDHg2My+of94FvD8zlzaMmQcsycwXjjRXrVbLgYGBkYYUuez6/Z5CkrSfllzZnnkiYk1m1obq29fFDd4E/B7Vz7Y/zswVBZs9TvVklKlN7VOBR1v4+n7gXQ2fH23DnJIkjaqlC4EiYnpErAbupnoc2Eepfi7trx9JDiszdwFrgLlNXXOprqItdQrVz7Z7rGrDnJIkjarVI83/TnW0ODMzHwaIiBnAV+p97xhl++uAW+vBex9wOdUjxb5Qn2spQGbOq3++Evg58GOqc5rvAd4GXNQw5w3Ayoj4KPBN4O3AG4G+FvdNkqQRtRqac4E5ewITIDMfiohFwD2jbZyZt9WX4vs41f2WDwLnZ+am+pDm+zUPBT4L9AJPUYXnWzJzWcOc90fEu4BPUt328jPg4szsb3HfJEka0b6c0xzqyqHiq4ky80bgxmH65jR9/gzwmYI5b6d9V/lKkjSkVhc3uAf4fEQct6ehvprP9RQcaUqS9HzWamguAl4MPBQRmyJiE9XPoS+u90mSdNBq9efZfwFeD8wB9iya/tPM/Id2FiVJUicqDs2ImAD8CnhNZt5NdduJJEldo/jn2foi6ZuormiVJKnrtHpO878AfxkRRx+IYiRJ6mStntP8CNVTTrZExGaanq2ZmSe3qzBJkjpNq6F5O9U9mXEAapEkqaMVhWZEHE61Ms/bgBdQ3ZN5RWY+fuBKkySps5Se01wMzAe+A/wt1fMv/+cBqkmSpI5U+vPshcD7MvN/A0TEV4H7ImJC/apaSZIOeqVHmscB9+75kJmrgWepnlAiSVJXKA3NCcCuprZn2ceHWEuS9HxUGnoBfCUidja0HQYsiYgn9zRk5gXtLE6SpE5SGpq3DNH2lXYWIklSpysKzcz84wNdiCRJna7VZfQkSepahqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVGjMQzMiPhARD0fE0xGxJiLOGmHshRGxPCIei4hfR0R/RFzQNGZ+ROQQr8MO/N5IkrrJmIZmRFwM3ABcC5wK3A/cERHHD7PJOcB3gbfUxy8DvjFE0D4JTGt8ZebT7d8DSVI3mzjG33cVcHNmLql/viIi/hBYCHyseXBmfqipaXFEvAV4G3Dvvx2ajx6AeiVJ2mvMjjQj4lDgdcDypq7lwJktTDUZ2N7U9qKI2BQRmyPi7yPi1P0oVZKkIY3lkebRwARgsKl9EHhzyQQR8SdAL3BrQ/N64FJgHVWgfgi4LyJek5kbh5hjAbAAoKenhxUrVgAwY8YMJk+ezLp16wCYMmUKs2bNYuXKlQBMnDiRvr4+1q5dy44dOwCo1WoMDg4CJ5aUL0k6gLZu3cr69esBmD59Or29vfT39wMwadIkarUaq1atYufOnQD09fWxYcMGtm3bBsDs2bP39g0nMvMA7kLDF0X0AFuAczJzZUP7NcC7M/OVo2x/EVVYXpyZ3x5h3ATgn4DvZeaikeas1Wo5MDBQvhPDuOz6/Z5CkrSfllzZnnkiYk1m1obqG8sLgR4HdgNTm9qnAiOej4yId1AF5ryRAhMgM3cDA8BJ+16qJEnPNWahmZm7gDXA3KauuVRX0Q4pIt5JFZjzM/P20b4nIgI4Gdi679VKkvRcY3317HXArRGxGrgPuBzoAb4AEBFLATJzXv3zu6gC8yPAyog4tj7Prsx8oj7mz4EHgI3AEcAiqtBcOEb7JEnqEmMampl5W0RMAT5OdT/lg8D5mbmpPqT5fs3LqWq8vv7a4/vAnPr7lwI3AccCvwL+ETg7M1e3fQckSV1trI80ycwbgRuH6Zsz0udhtvkw8OF21CZJ0khce1aSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSo05qEZER+IiIcj4umIWBMRZ40y/pz6uKcj4qGIuHx/55QkaV+MaWhGxMXADcC1wKnA/cAdEXH8MONfASyrjzsV+DTw+Yi4aF/nlCRpX431keZVwM2ZuSQzf5qZVwBbgYXDjL8ceCQzr6iPXwLcAnxkP+aUJGmfjFloRsShwOuA5U1dy4Ezh9nsjCHG3wXUIuIF+zinJEn7ZOIYftfRwARgsKl9EHjzMNscC/zDEOMn1ueLVueMiAXAgvrH30TE+pLipS5wNPD4eBch7au/+XDbpnr5cB1jGZodITNvAm4a7zqkThMRA5lZG+86pE42lqH5OLAbmNrUPhV4dJhtHh1m/LP1+WIf5pQkaZ+M2TnNzNwFrAHmNnXNpbridSirhhk/kJnP7OOckiTtk7H+efY64NaIWA3cR3V1bA/wBYCIWAqQmfPq478AfDAirge+CLwBmA9cUjqnpGKetpBGMaahmZm3RcQU4OPANOBB4PzM3FQfcnzT+Icj4nzgv1HdQvIIsCgzv97CnJIK1M/3SxpBZOZ41yBJ0vOCa89KklTI0JQkqZChKUlSIUNT6nIREY1/JQ3PC4Ek/Rt7wjP9x0F6jq5bRk9SJSIOAd4KvAw4HNgCfD8zt41rYVIH80hT6kIRMRn4EvBG4HfAZiCBp4HvA7dm5v+LiPCIU/pXHmlK3WkR8EqqhUB+EBGvAmpUq279AfDqiHhfZj42nkVKncYjTakLRcS9wDcy87qm9glUwfkl4GeZ+YfjUZ/Uqbx6VuoyETGRarnJiyLiZfW2CRFxSGbuzsyVVGs490bEa8azVqnTGJpSl8nMZ4FbqB7y/pGImFoPy981DNsAnIAPpZb+DX+elbpM/arZQ4A/Bq6lurbh68BtwD8DJwP/Hvi9zDxtvOqUOpGhKXWxiHgp1eP2/gNwCvBrqitofwB8OjP7x6s2qRMZmlIXiYgjgF833kZSP/I8DJgEzAZ+a1hKQzM0pS4SEV8EVtdfmzJzxxBjjszM7d6jKT2XoSl1iYi4BPgqsAN4ArgbuAv4IbAlM5+KiEnAV4CrM/NH41as1KEMTalLRMQSYDfwGeBC4I+AE4H1wDLgHqoFD27IzEPHq06pkxmaUheo35v5p8ARmfnRhvZZwGXAO6jOa74UuCUz3zcedUqdztCUukREHAlMra8peyjwTNMFQRcDfwu8NjP/aZzKlDqaa89KXSIztwPb6+93wd4rZyMzdwNHAE8bmNLwDE2pizWtAjQZ+PPxqkV6PvDnWUkARMQLgObl9CQ1MDQlSSrkgu2SJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQv8fAbojUovj32kAAAAASUVORK5CYII=\n", 505 | "text/plain": [ 506 | "
" 507 | ] 508 | }, 509 | "execution_count": 16, 510 | "metadata": {}, 511 | "output_type": "execute_result" 512 | } 513 | ], 514 | "source": [ 515 | "counts = execute(qc_ha,Aer.get_backend('qasm_simulator')).result().get_counts()\n", 516 | "plot_histogram(counts)" 517 | ] 518 | }, 519 | { 520 | "cell_type": "code", 521 | "execution_count": 17, 522 | "metadata": {}, 523 | "outputs": [ 524 | { 525 | "data": { 526 | "text/html": [ 527 | "
                ░                 ░       \n",
528 |        "q_0: ───────────░───■─────────■───░───────\n",
529 |        "     ┌───┐┌───┐ ░   │         │   ░       \n",
530 |        "q_1: ┤ X ├┤ X ├─░───┼────■────■───░───────\n",
531 |        "     └───┘└───┘ ░ ┌─┴─┐┌─┴─┐  │   ░ ┌─┐   \n",
532 |        "q_2: ───────────░─┤ X ├┤ X ├──┼───░─┤M├───\n",
533 |        "                ░ └───┘└───┘┌─┴─┐ ░ └╥┘┌─┐\n",
534 |        "q_3: ───────────░───────────┤ X ├─░──╫─┤M├\n",
535 |        "                ░           └───┘ ░  ║ └╥┘\n",
536 |        "c: 2/════════════════════════════════╩══╩═\n",
537 |        "                                     0  1 
" 538 | ], 539 | "text/plain": [ 540 | " ░ ░ \n", 541 | "q_0: ───────────░───■─────────■───░───────\n", 542 | " ┌───┐┌───┐ ░ │ │ ░ \n", 543 | "q_1: ┤ X ├┤ X ├─░───┼────■────■───░───────\n", 544 | " └───┘└───┘ ░ ┌─┴─┐┌─┴─┐ │ ░ ┌─┐ \n", 545 | "q_2: ───────────░─┤ X ├┤ X ├──┼───░─┤M├───\n", 546 | " ░ └───┘└───┘┌─┴─┐ ░ └╥┘┌─┐\n", 547 | "q_3: ───────────░───────────┤ X ├─░──╫─┤M├\n", 548 | " ░ └───┘ ░ ║ └╥┘\n", 549 | "c: 2/════════════════════════════════╩══╩═\n", 550 | " 0 1 " 551 | ] 552 | }, 553 | "execution_count": 17, 554 | "metadata": {}, 555 | "output_type": "execute_result" 556 | } 557 | ], 558 | "source": [ 559 | "#mess around with the inputs\n", 560 | "qc_ha = QuantumCircuit(4,2)\n", 561 | "# encode inputs in qubits 0 and 1\n", 562 | "qc_ha.x(1) # For a=0, remove the this line. For a=1, leave it.\n", 563 | "qc_ha.x(1) # For b=0, remove the this line. For b=1, leave it.\n", 564 | "qc_ha.barrier()\n", 565 | "# use cnots to write the XOR of the inputs on qubit 2\n", 566 | "qc_ha.cx(0,2)\n", 567 | "qc_ha.cx(1,2)\n", 568 | "# use ccx to write the AND of the inputs on qubit 3\n", 569 | "qc_ha.ccx(0,1,3)\n", 570 | "qc_ha.barrier()\n", 571 | "# extract outputs\n", 572 | "qc_ha.measure(2,0) # extract XOR value\n", 573 | "qc_ha.measure(3,1) # extract AND value\n", 574 | "\n", 575 | "qc_ha.draw()" 576 | ] 577 | }, 578 | { 579 | "cell_type": "code", 580 | "execution_count": 18, 581 | "metadata": {}, 582 | "outputs": [ 583 | { 584 | "data": { 585 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAE6CAYAAAB00gm8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZWUlEQVR4nO3df7SdVZ3f8fcXIiomqAlDyM0lYgzVmoggBwW8QHSZoeAqIkxFF5imVFLiSERqO7oGqLGKUx0ZGKfUITNLCNoWxQ7WMUAsEsNAuHiTaRSwSTpgxoTLDRmiUQkJ4Ld/PCeZ08v9sU9ycu8h5/1a66ycs/d+9v0+f33y/NpPZCaSJGl0h4x3AZIkvVQYmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSoQnjXcB4OvLII/PYY48d7zIkSW1kzZo12zLzd4bq6+jQPPbYY+nr6xvvMiRJbSQiNg3X5+lZSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1M6CF1yySUcddRRzJkzZ8j+zGTx4sXMmjWL448/nrVr1+7tu+WWWzjuuOM47rjjuOWWW/a2r1mzhre85S3MmjWLxYsXk5kHfD+kdmNoSgehBQsWcNdddw3bf+edd7Jx40Y2btzITTfdxKJFiwB4+umnWbJkCb29vTz00EMsWbKE7du3A7Bo0SKWLl26d7uR5pcOVoamdBA644wzmDx58rD93/nOd5g/fz4RwSmnnMIvfvEL+vv7ufvuu5k3bx6TJ0/mta99LfPmzeOuu+6iv7+fHTt2cMoppxARzJ8/nzvuuGPsdkhqE4am1IG2bNnCMcccs/d3d3c3W7ZsGbG9u7v7Re1SpzE0JUkqZGhKHWj69On8/Oc/3/t78+bNTJ8+fcT2zZs3v6hd6jSGptSBzj33XJYtW0Zm8uCDD/LqV7+aadOmcdZZZ7FixQq2b9/O9u3bWbFiBWeddRbTpk3jiCOO4MEHHyQzWbZsGe973/vGezekMTdhvAuQ1Hof+tCHWLlyJdu2baO7u5slS5bw3HPPAXDZZZdxzjnnsHz5cmbNmsXhhx/O1772NQAmT57M1VdfzcknnwzANddcs/eGohtvvJEFCxawc+dOzj77bM4+++zx2TlpHEUnP2tVq9Wyr69vvMuQJLWRiFiTmbWh+jw9K0lSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSp0JiGZkScERH/MyK2RERGxIKCbd4SET+MiJ317a6JiBg05oKIeDQidtX/ff8B2wlJUsca6yPNicDDwMeBnaMNjogjgO8DA8DJ9e3+HXBlw5hTgduAbwAn1P/9VkS8o8W1S5I63JiuPZuZy4HlABFxc8EmFwGHA/8yM3cCD0fEm4ArI+K6rNYAvAK4NzM/X9/m8xHxrnr7h1q7B5KkTtbu1zRPBe6rB+YedwNdwLENY1YM2u5u4LQDXp0kqaO0+1tOjgY2D2obaOh7vP7vwBBjjh5qwohYCCwE6OrqYuXKlQDMnDmTSZMmsW7dOgCmTJnC7NmzWbVqFQATJkygp6eHtWvXsmPHDgBqtRoDAwP80XffsD/7KElqgc9e2M/69euB6p2x3d3d9Pb2AjBx4kRqtRqrV69m165dAPT09LBhwwa2bt0KwJw5c/b2DWfc3nISEb8GPpaZN48wZgWwOTMvaWibAWwCTsvM1RGxG/hIZi5rGDMfWJqZLx+phla95eTS6/d7CknSflp6RWvmeSm/5eRJYOqgtqkNfSONeRJJklqo3UNzNXB6RLyioW0e8ATws4Yx8wZtNw944IBXJ0nqKGP9nObEiDghIk6o/+0Z9d8z6v1fiIh7Gjb5r8AzwM0RMScizgc+Bey5cxbgBuDdEfGpiHhTRHwaeBdw/RjtliSpQ4z1kWYN+Nv655XAkvr3z9b7pwF776rJzF9SHTV2AX3Afwa+DFzXMOYB4IPAAuDHwHzgwszsPbC7IknqNGP9nOZKIEboXzBE20+AM0aZ93bg9v0sT5KkEbX7NU1JktqGoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhZoKzYg4JCIOafh9dER8JCLe2frSJElqL80eaX4PuBwgIiYCfcCXgJURMb/FtUmS1FaaDc0a8IP69/OBHcBRwKXAJ0smiIiPRsTjEfFsRKyJiNNHGHtzROQQn980jJk7zJg3NblvkiSNqNnQnAj8ov79d4G/ysznqIL0DaNtHBEXAjcA1wInAg8Ad0bEjGE2+TgwbdDnMeCbQ4ydPWjcxqI9kiSpULOh+ffAOyPiVcBZwPfr7ZOBZwq2vxK4OTOXZuZPM/NyoB9YNNTgzPxlZj6550MVzDOBpUMM39o4NjNfaHLfJEkaUbOheR1wK7AZ2AKsqrefAfxkpA0j4jDgJGDFoK4VwGmFf/9S4JHMfGCIvr6I6I+IeyLiXYXzSZJUbEIzgzPzzyNiDXAM8P3M/G296++Aq0fZ/EjgUGBgUPsA8J7R/nZEvBr4APDpQV17jlR/BBwGfBi4JyLOzMz7hphnIbAQoKuri5UrVwIwc+ZMJk2axLp16wCYMmUKs2fPZtWq6v8FEyZMoKenh7Vr17Jjxw4AarUaAwMDFJyZliQdYP39/axfvx6A6dOn093dTW9vLwATJ06kVquxevVqdu3aBUBPTw8bNmxg69atAMyZM2dv33AiMw/gLjT8oYguqqPTMzNzVUP7NcBFmfnGUbb/feDLQFdmPj3K2OXA85l57kjjarVa9vX1le7CsC69fr+nkCTtp6VXtGaeiFiTmbWh+ppe3KB+9+sjEfFMRMyst/1BRHxglE23AS8AUwe1TwWeLPjTlwLfHi0w63qB4wrGSZJUrNnFDa4ArgJuAqKh6wngYyNtm5m7gTXAvEFd86juoh3p774deCtD3wA0lBOoTttKktQyTV3TBC4DLs3M70XE5xra11I98jGa64BbI+Ih4P76fF3AVwEiYhlAZg5eKGEhsDEzVw6esB7kPwMeobqmeTFwHnBB4T5JklSk2dB8HfDwEO3PAa8cbePMvC0iplAdrU6rz3VOZm6qD3nR85oRMQn4IPDZYaY9jGpVom5gJ1V4vjczl49WjyRJzWg2NB8D3gZsGtR+DvBoyQSZeSNw4zB9c4do+xXVogrDzfdF4Islf1uSpP3RbGj+MfBnEXE41TXNUyPiw8C/By5pdXGSJLWTZp/T/FpETKBaBu9wqoUOngAWZ+ZtB6A+SZLaRrNHmmTmUmBpRBwJHJKZW1tfliRJ7afp0NwjM7e1shBJktrdqKEZET+mWsVne0T8BBh2CaHMPL6VxUmS1E5KjjS/Dexq+D426+5JktRmRg3NzFzS8P0zB7QaSZLaWLPL6P0gIl4zRPsREfGDllUlSVIbanbB9rlUK/AM9grg9P2uRpKkNlZ092xEvK3h5/ER0fimkUOBs6he+yVJ0kGr9JGTPqobgBJYMUT/TuDyVhUlSVI7Kg3N11Mtm/cY8HbgqYa+3cDWzHyhxbVJktRWikKz4S0kTb+0WpKkg0XJ4gbnA9/NzOfq34eVmf+jZZVJktRmSo40bweOBrbWvw8nqW4KkiTpoFSyuMEhQ32XJKnTGIKSJBUqvaZZxGuakqSDWek1zRJe05QkHdSauqYpSVInMxAlSSrkc5qSJBXyOU1Jkgr5nKYkSYUMQUmSCjUdmhHxtohYFhF99c+tg963KUnSQamp0IyIi4AfAdOA5fXPVOChiLi49eVJktQ+St+nucfngasz89rGxoj4NPA54OutKkySpHbT7OnZ3wG+OUT7t4Cj9r8cSZLaV7OheS8wd4j2ucAP97cYSZLaWbMLtt8JfCEiasCD9bZTgPOBz7S8OkmS2si+Lti+sP5p9BXgxv2uSJKkNuWC7ZIkFTIQJUkq1OwjJ0TEa4GzgRnAYY19mfnZFtUlSVLbaSo0I+IU4HvALqrHT7ZQLXSwC/gZYGhKkg5azZ6e/RLwDWA68Czwbqojzj7gP7W2NEmS2kuzoXk88GeZmcALwMszcwD4A3zkRJJ0kGs2NHc3fB8AXlf//mugqyUVSZLUppq9EWgtcDKwAVgJfC4ipgIXAz9ubWmSJLWXZo80/xB4ov79KuApqkUNXsuLFzuQJOmg0tSRZmb2NXx/iurRE0mSOkLTz2kCRMQbgH9a//loZj7WupIkSWpPzT6nOQX4S+Bc4Lf/2Bx/DVySmf/Q4vokSWobzV7T/AtgFnA68Ir65wzg9cDS1pYmSVJ7aTY0zwIuzcz7M/P5+ud+4N/U+0YVER+NiMcj4tmIWBMRp48wdm5E5BCfNw0ad0FEPBoRu+r/vr/J/ZIkaVTNhuZTwG+GaH8GGPXUbERcCNwAXAucCDwA3BkRM0bZdDbVcn17Phsb5jwVuI1qpaIT6v9+KyLeMVo9kiQ1o9nQ/CxwfURM39NQ//5lytadvRK4OTOXZuZPM/NyoB9YNMp2WzPzyYbPCw19VwD3Zubn63N+nuoZ0iuK90qSpAKj3ggUET8BsqHp9cDPImJL/feedWiPorrmOdw8hwEnAX88qGsFcNooZfRFxMuBR4HPZea9DX2nUj0r2uhu4GOjzClJUlNK7p69vUV/60jgUKrl9xoNAO8ZZps9R6E/onoN2YeBeyLizMy8rz7m6GHmPHqoCSNiIfWFGLq6uli5ciUAM2fOZNKkSaxbtw6AKVOmMHv2bFatWgXAhAkT6OnpYe3atezYsQOAWq3GwMAA8IZRd16SdGD19/ezfv16AKZPn053dze9vb0ATJw4kVqtxurVq9m1axcAPT09bNiwga1btwIwZ86cvX3DiWrt9QMvIrqoXiV2Zmauami/BrgoM99YOM9y4PnMPLf+ezfwkcxc1jBmPrA0M18+0ly1Wi37+vpGGlLk0uv3ewpJ0n5aekVr5omINZlZG6pvXxc3eDfwZqrTto9k5sqCzbZRvRll6qD2qcCTTfz5XuCDDb+fbMGckiSNqqkbgSJiekQ8BHyf6nVgn6I6XdpbP5IcVmbuBtYA8wZ1zaO6i7bUCVSnbfdY3YI5JUkaVbNHmn9KdbQ4KzMfB4iImcDX632/N8r21wG31oP3fuAyqleKfbU+1zKAzJxf/30F8DPgEaprmhcD5wEXNMx5A7AqIj4F3AG8H3gX0NPkvkmSNKJmQ3MeMHdPYAJk5mMRsRi4Z7SNM/O2+lJ8V1E9b/kwcE5mbqoPGfy85mHAl4BuYCdVeL43M5c3zPlARHwQ+BzVYy9/B1yYmb1N7pskSSPal2uaQ905VHw3UWbeCNw4TN/cQb+/CHyxYM7bad1dvpIkDanZxQ3uAb4SEcfsaaiv5nM9BUeakiS9lDUbmouBVwGPRcSmiNhEdTr0VfU+SZIOWs2env0H4O3AXGDPouk/zcz/1cqiJElqR8WhGRGHAr8E3pqZ36d67ESSpI5RfHq2vkj6Jqo7WiVJ6jjNXtP8j8AfRcSRB6IYSZLaWbPXND9J9ZaTLRGxmUHv1szM41tVmCRJ7abZ0Lyd6pnMOAC1SJLU1opCMyIOp1qZ5zzgZVTPZF6emdsOXGmSJLWX0muaS4AFwPeA/0b1/sv/coBqkiSpLZWenj0f+NeZ+d8BIuIbwP0RcWj9rlpJkg56pUeaxwD37fmRmQ8Bz1O9oUSSpI5QGpqHArsHtT3PPr7EWpKkl6LS0Avg6xGxq6HtFcDSiHhmT0NmntvK4iRJaieloXnLEG1fb2UhkiS1u6LQzMx/daALkSSp3TW7jJ4kSR3L0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSCo15aEbERyPi8Yh4NiLWRMTpI4w9PyJWRMRTEfGriOiNiHMHjVkQETnE5xUHfm8kSZ1kTEMzIi4EbgCuBU4EHgDujIgZw2xyJvAD4L318cuBvxoiaJ8BpjV+MvPZ1u+BJKmTTRjjv3clcHNmLq3/vjwi/hmwCPj04MGZ+fFBTUsi4r3AecB9///QfPIA1CtJ0l5jdqQZEYcBJwErBnWtAE5rYqpJwPZBba+MiE0RsTki/joiTtyPUiVJGtJYHmkeCRwKDAxqHwDeUzJBRPw+0A3c2tC8HrgEWEcVqB8H7o+It2bmxiHmWAgsBOjq6mLlypUAzJw5k0mTJrFu3ToApkyZwuzZs1m1ahUAEyZMoKenh7Vr17Jjxw4AarUaAwMDwBtKypckHUD9/f2sX78egOnTp9Pd3U1vby8AEydOpFarsXr1anbt2gVAT08PGzZsYOvWrQDMmTNnb99wIjMP4C40/KGILmALcGZmrmpovwa4KDPfOMr2F1CF5YWZ+d0Rxh0K/G/g3sxcPNKctVot+/r6yndiGJdev99TSJL209IrWjNPRKzJzNpQfWN5I9A24AVg6qD2qcCI1yMj4veoAnP+SIEJkJkvAH3AcfteqiRJLzZmoZmZu4E1wLxBXfOo7qIdUkR8gCowF2Tm7aP9nYgI4Higf9+rlSTpxcb67tnrgFsj4iHgfuAyoAv4KkBELAPIzPn13x+kCsxPAqsi4uj6PLsz8+n6mP8APAhsBI4AFlOF5qIx2idJUocY09DMzNsiYgpwFdXzlA8D52TmpvqQwc9rXkZV4/X1zx4/BObWv78GuAk4Gvgl8LfAGZn5UMt3QJLU0cb6SJPMvBG4cZi+uSP9HmabTwCfaEVtkiSNxLVnJUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1JkgoZmpIkFTI0JUkqZGhKklTI0JQkqZChKUlSIUNTkqRChqYkSYUMTUmSChmakiQVMjQlSSpkaEqSVMjQlCSpkKEpSVIhQ1OSpEKGpiRJhQxNSZIKGZqSJBUyNCVJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQmMemhHx0Yh4PCKejYg1EXH6KOPPrI97NiIei4jL9ndOSZL2xZiGZkRcCNwAXAucCDwA3BkRM4YZ/3pgeX3cicAXgK9ExAX7OqckSftqrI80rwRuzsylmfnTzLwc6AcWDTP+MuCJzLy8Pn4pcAvwyf2YU5KkfTJmoRkRhwEnASsGda0AThtms1OHGH83UIuIl+3jnJIk7ZOxPNI8EjgUGBjUPgAcPcw2Rw8zfkJ9vn2ZU5KkfTJhvAsYaxGxEFhY//nriFg/nvVIbeRIYNt4FyHtq7/4RMumet1wHWMZmtuAF4Cpg9qnAk8Os82Tw4x/vj5fNDtnZt4E3FRctdQhIqIvM2vjXYfUzsbs9Gxm7gbWAPMGdc2juuN1KKuHGd+Xmc/t45ySJO2TsT49ex1wa0Q8BNxPdXdsF/BVgIhYBpCZ8+vjvwp8LCKuB/4ceCewAPhQ6ZySJLXKmIZmZt4WEVOAq4BpwMPAOZm5qT5kxqDxj0fEOcCfUD1C8gSwODO/3cScksp42UIaRWTmeNcgSdJLgmvPSpJUyNCUJKmQoSlJUiFDU5KkQh23IpCkSkR0A7OoFgn5LbA+M4dbaEQS3j0rdaSIWARcArwV+A3wf4HNwIPAHZm5PiIOyczfjmOZUtvx9KzUYerPNV8LfIfq2eZTqV659wIwH/jTiHhzZv42ImL8KpXaj0eaUoeJiMuBizPzHUP09VC97H068PbMdAF3qYFHmlLn2Q1Miog5ABHx8vq7acnMvwEuAp4Ffnf8SpTak6EpdZ7bqW78uSIiJmXmrszcHRGHAGTm3wO/ALrHsUapLRmaUgepX6N8mmqt5nnAExHxlxFxUr1/RkRcDLwF+Ob4VSq1J69pSh0oIl5D9YKE04D3U71BCKr30AZwa2Z+ZlyKk9qYoSl1iIg4Cvgw8G+pXuK+k+o07N9QPWryMqrnNu/KzA3jVKbU1gxNqUNExM3AbOC7VKdoJ1Odhv0nwFbgqszsHbcCpZcAQ1PqAPVrmb+ietfsqoa2GcA7gI8AM4EPZObacStUanPeCCR1hjcDj1M9bgJAVjZl5jeBf051qvZfjE950kuDoSl1hseoTsH+SUQct+fxkj0ycxfVqkBnj0dx0kuFoSl1gMzcCfwh8EpgGTA/Io6JiIkAEXE4cCbw8PhVKbU/r2lKHaS+CtDVwLlUC7WvBp4C3gP0Ax/JzJ+MX4VSezM0pQ5Uf/zkvcB5VEvmPQx8KzP/z3jWJbU7Q1PqcL4CTCpnaEqSVMgbgSRJKmRoSpJUyNCUJKmQoSlJUiFDU5KkQoamJEmFDE1Jkgr9P6nB8ZHblhrVAAAAAElFTkSuQmCC\n", 586 | "text/plain": [ 587 | "
" 588 | ] 589 | }, 590 | "execution_count": 18, 591 | "metadata": {}, 592 | "output_type": "execute_result" 593 | } 594 | ], 595 | "source": [ 596 | "counts = execute(qc_ha,Aer.get_backend('qasm_simulator')).result().get_counts()\n", 597 | "plot_histogram(counts)" 598 | ] 599 | }, 600 | { 601 | "cell_type": "code", 602 | "execution_count": 19, 603 | "metadata": {}, 604 | "outputs": [ 605 | { 606 | "data": { 607 | "text/plain": [ 608 | "{'qiskit-terra': '0.16.0',\n", 609 | " 'qiskit-aer': '0.7.0',\n", 610 | " 'qiskit-ignis': '0.5.0',\n", 611 | " 'qiskit-ibmq-provider': '0.11.0',\n", 612 | " 'qiskit-aqua': '0.8.0',\n", 613 | " 'qiskit': '0.23.0'}" 614 | ] 615 | }, 616 | "execution_count": 19, 617 | "metadata": {}, 618 | "output_type": "execute_result" 619 | } 620 | ], 621 | "source": [ 622 | "import qiskit\n", 623 | "qiskit.__qiskit_version__" 624 | ] 625 | }, 626 | { 627 | "cell_type": "code", 628 | "execution_count": null, 629 | "metadata": {}, 630 | "outputs": [], 631 | "source": [] 632 | } 633 | ], 634 | "metadata": { 635 | "kernelspec": { 636 | "display_name": "Python 3", 637 | "language": "python", 638 | "name": "python3" 639 | }, 640 | "language_info": { 641 | "codemirror_mode": { 642 | "name": "ipython", 643 | "version": 3 644 | }, 645 | "file_extension": ".py", 646 | "mimetype": "text/x-python", 647 | "name": "python", 648 | "nbconvert_exporter": "python", 649 | "pygments_lexer": "ipython3", 650 | "version": "3.8.5" 651 | } 652 | }, 653 | "nbformat": 4, 654 | "nbformat_minor": 4 655 | } 656 | -------------------------------------------------------------------------------- /Ryan30/setting-the-environment.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "tags": [ 7 | "remove_cell" 8 | ] 9 | }, 10 | "source": [ 11 | "## Environment Setup Guide to work with Qiskit Textbook" 12 | ] 13 | }, 14 | { 15 | "cell_type": "markdown", 16 | "metadata": {}, 17 | "source": [ 18 | "This is a comprehensive guide for setting up your environment on your personal computer for working with Qiskit Textbook. This will help you reproduce the results as you see them on the textbook website. The Qiskit Textbook is written in [Jupyter notebooks](https://jupyter.org/install). Notebooks and [the website](https://qiskit.org/textbook/preface.html) are the only media in which the Textbook is fully supported." 19 | ] 20 | }, 21 | { 22 | "cell_type": "markdown", 23 | "metadata": {}, 24 | "source": [ 25 | "## Installing the qiskit_textbook Package\n", 26 | "\n", 27 | "The Qiskit Textbook provides some tools and widgets specific to the Textbook. This is not part of Qiskit and is available through the `qiskit_textbook` package. The quickest way to install this with [Pip](http://pypi.org/project/pip/) and [Git](http://git-scm.com/) is through the command:\n", 28 | "\n", 29 | "```\n", 30 | "pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src\n", 31 | "```\n", 32 | "Alternatively, you can download the folder [qiskit-textbook-src](https://github.com/qiskit-community/qiskit-textbook) from the Github and run:\n", 33 | "\n", 34 | "```\n", 35 | "pip install ./qiskit-textbook-src\n", 36 | "```\n", 37 | "\n", 38 | "from the directory that contains this folder.\n" 39 | ] 40 | }, 41 | { 42 | "cell_type": "markdown", 43 | "metadata": {}, 44 | "source": [ 45 | "## Steps to reproduce exact prerendered output as given in qiskit textbook (Optional)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "markdown", 50 | "metadata": {}, 51 | "source": [ 52 | "### 1. Setting up default drawer to MatPlotLib\n", 53 | "\n", 54 | "The default backend for `QuantumCircuit.draw()` or `qiskit.visualization.circuit_drawer()` is the text backend. However, depending on your local environment you may want to change these defaults to something better suited for your use case. This is done with the user config file. By default the user config file should be located in `~/.qiskit/settings.conf` and is a `.ini` file.\n", 55 | "\n", 56 | "Qiskit Textbook uses default circuit drawer as MatPlotLib. To reproduce visualizations as given in qiskit textbook create a `settings.conf` file (usually found in `~/.qiskit/`) with contents:" 57 | ] 58 | }, 59 | { 60 | "cell_type": "markdown", 61 | "metadata": {}, 62 | "source": [ 63 | " [default]\n", 64 | " circuit_drawer = mpl" 65 | ] 66 | }, 67 | { 68 | "cell_type": "markdown", 69 | "metadata": {}, 70 | "source": [ 71 | "### 2. Setting up default image type to svg\n", 72 | "\n", 73 | "Optionally, you can add the following line of code to the `ipython_kernel_config.py` file (usually found in `~/.ipython/profile_default/`) to set the default image format from PNG to the more scaleable SVG format:" 74 | ] 75 | }, 76 | { 77 | "cell_type": "markdown", 78 | "metadata": {}, 79 | "source": [ 80 | " c.InlineBackend.figure_format = 'svg'" 81 | ] 82 | }, 83 | { 84 | "cell_type": "markdown", 85 | "metadata": {}, 86 | "source": [ 87 | "### 3. Syncing with the Qiskit versions used in the Textbook\n", 88 | "\n", 89 | "You will find a code snippet at the end of the most tutorials which will contain the information on which versions of qiskit packages are used in the tutorial. If you find inconsistency in syntax and/or outputs, try to use the same version.\n", 90 | "\n", 91 | "To check the version installed in your computer, run the following in Python shell or Jupyter Notebook:" 92 | ] 93 | }, 94 | { 95 | "cell_type": "markdown", 96 | "metadata": {}, 97 | "source": [ 98 | " import qiskit\n", 99 | " qiskit.__qiskit_version__" 100 | ] 101 | } 102 | ], 103 | "metadata": { 104 | "kernelspec": { 105 | "display_name": "Python 3", 106 | "language": "python", 107 | "name": "python3" 108 | }, 109 | "language_info": { 110 | "codemirror_mode": { 111 | "name": "ipython", 112 | "version": 3 113 | }, 114 | "file_extension": ".py", 115 | "mimetype": "text/x-python", 116 | "name": "python", 117 | "nbconvert_exporter": "python", 118 | "pygments_lexer": "ipython3", 119 | "version": "3.7.6" 120 | } 121 | }, 122 | "nbformat": 4, 123 | "nbformat_minor": 2 124 | } 125 | -------------------------------------------------------------------------------- /SunilK/BlochSphereAnimation.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# Very nicely done animation\n", 10 | "# https://sites.google.com/site/tanayroysite/articles/bloch-sphere-animation-using-qutip" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 9, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "import matplotlib as mpl\n", 20 | "from pylab import *\n", 21 | "from qutip import *\n", 22 | "from matplotlib import cm\n", 23 | "import imageio\n", 24 | "\n", 25 | "def animate_bloch(states, duration=0.1, save_all=False):\n", 26 | "\n", 27 | " b = Bloch()\n", 28 | " b.vector_color = ['r']\n", 29 | " b.view = [-40,30]\n", 30 | " images=[]\n", 31 | " try:\n", 32 | " length = len(states)\n", 33 | " except:\n", 34 | " length = 1\n", 35 | " states = [states]\n", 36 | " ## normalize colors to the length of data ##\n", 37 | " nrm = mpl.colors.Normalize(0,length)\n", 38 | " colors = cm.cool(nrm(range(length))) # options: cool, summer, winter, autumn etc.\n", 39 | "\n", 40 | " ## customize sphere properties ##\n", 41 | " b.point_color = list(colors) # options: 'r', 'g', 'b' etc.\n", 42 | " b.point_marker = ['o']\n", 43 | " b.point_size = [30]\n", 44 | " \n", 45 | " for i in range(length):\n", 46 | " b.clear()\n", 47 | " b.add_states(states[i])\n", 48 | " b.add_states(states[:(i+1)],'point')\n", 49 | " if save_all:\n", 50 | " b.save(dirc='tmp') #saving images to tmp directory\n", 51 | " filename=\"tmp/bloch_%01d.png\" % i\n", 52 | " else:\n", 53 | " filename='temp_file.png'\n", 54 | " b.save(filename)\n", 55 | " images.append(imageio.imread(filename))\n", 56 | " imageio.mimsave('bloch_anim.gif', images, duration=duration)" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": 10, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "states = []\n", 66 | "thetas = linspace(0,pi,21)\n", 67 | "for theta in thetas:\n", 68 | " states.append((cos(theta/2)*basis(2,0) + sin(theta/2)*basis(2,1)).unit())\n", 69 | "\n", 70 | "animate_bloch(states, duration=0.1, save_all=False)" 71 | ] 72 | }, 73 | { 74 | "cell_type": "markdown", 75 | "metadata": {}, 76 | "source": [ 77 | "![SegmentLocal](bloch_anim.gif \"segment\")" 78 | ] 79 | }, 80 | { 81 | "cell_type": "code", 82 | "execution_count": null, 83 | "metadata": {}, 84 | "outputs": [], 85 | "source": [] 86 | } 87 | ], 88 | "metadata": { 89 | "kernelspec": { 90 | "display_name": "Python 3", 91 | "language": "python", 92 | "name": "python3" 93 | }, 94 | "language_info": { 95 | "codemirror_mode": { 96 | "name": "ipython", 97 | "version": 3 98 | }, 99 | "file_extension": ".py", 100 | "mimetype": "text/x-python", 101 | "name": "python", 102 | "nbconvert_exporter": "python", 103 | "pygments_lexer": "ipython3", 104 | "version": "3.8.3" 105 | } 106 | }, 107 | "nbformat": 4, 108 | "nbformat_minor": 4 109 | } 110 | -------------------------------------------------------------------------------- /SunilK/Local Module Test.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# create a hello module inside a folder called mymodules (you name this folder anything you want)\n", 10 | "# bring up a terminal or command line prompt in that folder\n", 11 | "# Create your module. e.g., hello.py\n", 12 | "# def hello():\n", 13 | "# print ('hello')\n", 14 | "# return\n", 15 | "#\n", 16 | "# run this: python -m py_compile hello.py\n", 17 | "# Create a new notebook like this" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 18, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "# import the module\n", 27 | "from mymodules import hello" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 19, 33 | "metadata": {}, 34 | "outputs": [ 35 | { 36 | "name": "stdout", 37 | "output_type": "stream", 38 | "text": [ 39 | "hello\n" 40 | ] 41 | } 42 | ], 43 | "source": [ 44 | "#call the module\n", 45 | "hello.hello()" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": null, 51 | "metadata": {}, 52 | "outputs": [], 53 | "source": [] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "execution_count": null, 58 | "metadata": {}, 59 | "outputs": [], 60 | "source": [] 61 | } 62 | ], 63 | "metadata": { 64 | "kernelspec": { 65 | "display_name": "Python 3", 66 | "language": "python", 67 | "name": "python3" 68 | }, 69 | "language_info": { 70 | "codemirror_mode": { 71 | "name": "ipython", 72 | "version": 3 73 | }, 74 | "file_extension": ".py", 75 | "mimetype": "text/x-python", 76 | "name": "python", 77 | "nbconvert_exporter": "python", 78 | "pygments_lexer": "ipython3", 79 | "version": "3.8.3" 80 | } 81 | }, 82 | "nbformat": 4, 83 | "nbformat_minor": 4 84 | } 85 | -------------------------------------------------------------------------------- /SunilK/bloch_anim.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sktxdev/Quantum-Computing/2d72a87d4b8268fafed8f1509d558d6625ef3adc/SunilK/bloch_anim.gif -------------------------------------------------------------------------------- /SunilK/mymodules/hello.py: -------------------------------------------------------------------------------- 1 | def hello(): 2 | print ('hello') 3 | return 4 | -------------------------------------------------------------------------------- /Touny.md: -------------------------------------------------------------------------------- 1 | ### Quantum Phase Estimation 2 | For week 18 oct ~ 24 oct, I would like to talk about _Quantum Phase Estimation_. It is a critical promising subroutine for quantum algorithms. My apologies, but due to my limited time I won't be able to write full details here. However, We might discuss in details during the presentation. Here are some useful links, 3 | - [wikipedia](https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm) 4 | - [QuTech Academy](https://www.youtube.com/watch?v=v1AUILJz3RU) 5 | -------------------------------------------------------------------------------- /minhpham/Chapter 1 Edit.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sktxdev/Quantum-Computing/2d72a87d4b8268fafed8f1509d558d6625ef3adc/minhpham/Chapter 1 Edit.pdf -------------------------------------------------------------------------------- /minhpham/Chapter 2 Edit.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sktxdev/Quantum-Computing/2d72a87d4b8268fafed8f1509d558d6625ef3adc/minhpham/Chapter 2 Edit.pdf -------------------------------------------------------------------------------- /minhpham/Q Notes.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sktxdev/Quantum-Computing/2d72a87d4b8268fafed8f1509d558d6625ef3adc/minhpham/Q Notes.pdf -------------------------------------------------------------------------------- /minhpham/README.md: -------------------------------------------------------------------------------- 1 | Storing mathematical proofs of circuit components in quantum algorithms. 2 | -------------------------------------------------------------------------------- /minhpham/Scratch.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# IMPORT THIS!!!" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 3, 13 | "metadata": {}, 14 | "outputs": [ 15 | { 16 | "name": "stderr", 17 | "output_type": "stream", 18 | "text": [ 19 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #2.\n", 20 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #3.\n" 21 | ] 22 | } 23 | ], 24 | "source": [ 25 | "import numpy as np\n", 26 | "import matplotlib\n", 27 | "import matplotlib.pyplot as plt\n", 28 | "import scipy.integrate as integrate\n", 29 | "import quadpy\n", 30 | "import random\n", 31 | "import math" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 247, 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "data": { 41 | "text/plain": [ 42 | "(5, 73, 365, 309)" 43 | ] 44 | }, 45 | "execution_count": 247, 46 | "metadata": {}, 47 | "output_type": "execute_result" 48 | } 49 | ], 50 | "source": [ 51 | "p = random.choice(prime_list)\n", 52 | "q = random.choice(prime_list)\n", 53 | "M = p*q\n", 54 | "guess = random.randint(2, M)\n", 55 | "\n", 56 | "p, q, M, guess" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": 248, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "def Shor(M, guess): \n", 66 | " pf = lambda guess, M: np.array([guess**b%M for b in range(2, 5000)]) \n", 67 | " \n", 68 | " if math.gcd(M, guess) !=1: \n", 69 | " \n", 70 | " return math.gcd(M, guess), int(M/math.gcd(M, guess)) \n", 71 | " \n", 72 | " peak = np.where(pf(guess, M)==1)[0]\n", 73 | " \n", 74 | " r = peak[1]-peak[0] \n", 75 | " return math.gcd(M, int(guess**(r/2)-1)), math.gcd(M, int(guess**(r/2)+1))" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": 249, 81 | "metadata": {}, 82 | "outputs": [ 83 | { 84 | "data": { 85 | "text/plain": [ 86 | "(1, 1)" 87 | ] 88 | }, 89 | "execution_count": 249, 90 | "metadata": {}, 91 | "output_type": "execute_result" 92 | } 93 | ], 94 | "source": [ 95 | "Shor(M, guess)" 96 | ] 97 | }, 98 | { 99 | "cell_type": "code", 100 | "execution_count": 246, 101 | "metadata": {}, 102 | "outputs": [ 103 | { 104 | "data": { 105 | "text/plain": [ 106 | "(array([ 2, 6, 10, ..., 4986, 4990, 4994]),)" 107 | ] 108 | }, 109 | "execution_count": 246, 110 | "metadata": {}, 111 | "output_type": "execute_result" 112 | } 113 | ], 114 | "source": [ 115 | "np.where(np.array([guess**r%M for r in range(2, 5000)]) ==1)" 116 | ] 117 | }, 118 | { 119 | "cell_type": "code", 120 | "execution_count": 236, 121 | "metadata": {}, 122 | "outputs": [ 123 | { 124 | "data": { 125 | "text/plain": [ 126 | "1" 127 | ] 128 | }, 129 | "execution_count": 236, 130 | "metadata": {}, 131 | "output_type": "execute_result" 132 | } 133 | ], 134 | "source": [ 135 | "math.gcd(M, 31-1)" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": 1, 141 | "metadata": {}, 142 | "outputs": [ 143 | { 144 | "name": "stderr", 145 | "output_type": "stream", 146 | "text": [ 147 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #2.\n", 148 | "Duplicate key in file '/Users/minhpham/.matplotlib/matplotlibrc' line #3.\n" 149 | ] 150 | } 151 | ], 152 | "source": [ 153 | "from qiskit import *" 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "execution_count": 80, 159 | "metadata": {}, 160 | "outputs": [ 161 | { 162 | "data": { 163 | "text/plain": [ 164 | "" 165 | ] 166 | }, 167 | "execution_count": 80, 168 | "metadata": {}, 169 | "output_type": "execute_result" 170 | } 171 | ], 172 | "source": [ 173 | "circuit = QuantumCircuit(3, 3)\n", 174 | "circuit.h([0, 1, 2])\n", 175 | "circuit.measure([0, 1, 2], [0, 1, 2])" 176 | ] 177 | }, 178 | { 179 | "cell_type": "code", 180 | "execution_count": 81, 181 | "metadata": {}, 182 | "outputs": [], 183 | "source": [ 184 | "%matplotlib inline " 185 | ] 186 | }, 187 | { 188 | "cell_type": "code", 189 | "execution_count": 144, 190 | "metadata": {}, 191 | "outputs": [ 192 | { 193 | "data": { 194 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAADWCAYAAAC3+suJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZ4ElEQVR4nO3de1SUdeIG8GcGcIbLiAIKcvFCIMLEEAKKbgqIpJmZa4Z5wU1DDNGjlif1uB33ZAFeuliZq2aGqb8t8FqrnqRVjhu6C6koYiKhgYSYCCIIKDC/PxRyROYL7cy8XJ7POXPO8J33nXlGh4fve+FFptVqtSAiohbJpQ5ARNTesSiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAuZSByDTWLRTmtf9cPr/tr5MJjNMkDbQarUmf01q3zijJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSujQzMzNJTkGijoXnUVKnYG5ujtGjR2Po0KHw9fWFSqXC3bt3kZubix9//BGHDh1CWVmZzjpmZmb48ssvUV1djejoaJ4/SS1iUVKHZmlpiSVLluC1116Ds7Nzi8tVV1fjH//4B95++21cuXKlqSSnTp2KiooKJCYm4tKlSyZMTh0JN70f0tDQgHXr1sHT0xNKpRJ+fn5IS0uDl5cXYmJipI5nUp/Nd0b2sa06Y1qtFhujuyMvY69EqXQNGzYMWVlZePvtt+Hs7IycnBysXbsW06ZNw5gxYzBx4kS89dZbSE1NhaWlJWbNmoVz585h3rx5OiU5ZswYliTpxRnlQ2bPno29e/firbfeQkBAANLT0zF16lT89ttveP3116WOZzKVN4tQVV6MXn39dMZvXc/H3ZrbcHQPlCjZ755//nkkJydDoVDg3LlzWLhwIY4ePdpsuf379+Odd97BE088gfj4eERGRmLDhg0A0FSSJ0+eNHV86mA4o3xg165dSEpKwoEDB7BkyRKEhYVhxYoVGDZsGOrq6hAQEAAAKCkpwTPPPAMrKyv4+fnh9OnTEic3vJL8DMjkZrB3VeuM3yjIgpWtI1T2bhIlu2/o0KFNJblhwwYEBgY+tiQf9vPPP2PatGlIT09vGtuxYwdLklqFRflAQkICxo4di5CQEJ1xDw8PWFhYwNfXFwAQGxuLQYMGobS0FHFxcZg8eTLq6+uliGw0JfkZ6Ok0EObdLHXGfyvIQu8B0s4mlUolkpKSoFAo8Omnn2L+/Pm4e/eucL3GfZLDhw/HnTt3AADR0dFN/69E+nDTG8DVq1eRnZ2NxYsXN3usoKAAarUaCoUCt2/fxj//+U8UFRXB0tISMTExiI+Px8mTJ/GnP/3JIFmMdarKwh2tP6Jbkp+B8pI8bHrNQWf8Xm0lAp9f3qbXNfT7Wbx4Mby8vHD+/PnH/n89zqMHbsaMGYMZM2YgLi4On3zySbMfjjxdqOto7ZkOLErcL0oAcHJy0hmvrq5GWloaxo0bBwC4dOkS7O3t4eDwe4H4+voiJyfHYEXZHpRczsTQSX+D99MzdcZ3LveFo4QzSjMzM8TGxgK4X5htmUk+XJInT55EdnY2oqKiMHLkSPj6+uLcuXPGjk8dGDe9gabiy83N1Rlfs2YNiouLMXjwYABAVVUVunfvrrNM9+7dUVlZabAsWq3WKLfWKr+Wh9qqMvTTjIHK3rXpVn+vBrV3ytG7jQdyDJk7JCQEbm5uyM3NRWpqqvC1WypJAKisrERSUhIAICoqyqCZees4t9bijBKAu7s7NBoN4uPjYWdnBxcXF6SkpODgwYMA0HQgx9raGrdv39ZZt6KiAjY2NibPbCwl+RkwV1g1O+JdfCkdNvZusLZ1lCgZMGTIEADA4cOHhR9yfSXZ6PDhw1iwYAGCgoKMlpk6B84oAcjlciQnJ0OtViM2NhazZs2Cg4MD4uLiYG5uDo1GAwDw9PTEjRs3UFpa2rRudnY2fHx8pIpucCX5GXAcEAS5me7P0OK8E5JudgPAk08+CQDCMw1aU5IPP0/j/y9RSzijfGDgwIHNTjGJioqCt7c3LC3vH/1VqVR47rnnsGrVKiQmJmLHjh2QyWQIDg6WIrJRjJzx/mPHR83aaOIkzR0/fhw1NTU4e/as3uVWrlwpLEkAuHHjBrZt22bQXSfUOcm0bdlQ72K8vb0RHByMbdu2NY2VlJRgxowZ+Pe//w1PT08kJSXB399fwpSt05X+Zo6dnR327NmDZcuW/aHzJPktQY/ijLIFlZWVyM3Nxbx583TGHR0dceTIEYlSUWvcvHkToaGhUsegToRF2QIbG5tOdyI5Ef0xPJhDRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQB/M4c6lWWrNwMAEpfG6Nwn+l9wRklEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAP+udxexaKc0r/vhdGleV0oymUyS1+WlZY2HM0oiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKIkkJpPJ4OXlhfDwcIwePRp+fn6wsLBocXlLS0ssXrwYcjm/fU2F51ESSUAmk+GZZ55BbGwsRo0aBZVKpfN4bW0tTp48ic2bNyMlJQV3794FcL8k9+/fj4iICLi4uGDJkiVSxO9y+CPpIQ0NDVi3bh08PT2hVCrh5+eHtLQ0eHl5ISYmRup41En4+PjgP//5Dw4fPowXXngBKpUKhYWF+Ne//oXU1FTk5uZCoVAgJCQEO3fuRG5uLsLDw3VK8tq1a9i6davUb6XLYFE+ZPbs2Vi1ahXmzp2LQ4cOITIyElOnTkV+fj4CAgKkjmdSn813RvYx3W9ErVaLjdHdkZexV6JUHV9UVBROnTqFoKAgFBUVYfny5XBxcUHfvn0RHh6OiIgIeHl5oUePHpgzZw6ys7PRr18/pKam4vz5800lOWrUKFy4cEHqt9NlsCgf2LVrF5KSknDgwAEsWbIEYWFhWLFiBYYNG4a6urqmoly5ciV8fHwgl8uRkpIicWrjqLxZhKryYvTq66czfut6Pu7W3Iaje6BEyTq2GTNmYPv27VAoFNiyZQu8vb2RmJiIX3/9tdmyt27dwmeffQZ/f3+sXLkSDQ0NGDBgAKqqqliSEmBRPpCQkICxY8ciJCREZ9zDwwMWFhbw9fUFAHh6emL9+vUYMmSIFDFNoiQ/AzK5Gexd1TrjNwqyYGXrCJW9m0TJOq5BgwZhy5YtAIA333wTMTExuH37tnA9CwsLPP3005DL5dBqtbC2toanp6ex49IjWJQArl69iuzsbLz00kvNHisoKIBarYZCoQBwf1YQEREBpVJp6pgmU5KfgZ5OA2HezVJn/LeCLPQewNnkH7Ft2zYolUps3boVa9eubdU6j+6TTEhIAABs2rQJtra2xoxLj+BRb9wvSgBwcnLSGa+urkZaWhrGjRtnsizGuvLMwh2tv7JMSX4GykvysOk1B53xe7WVCHx+eZte19RX0lmauKnpdR++L6WwsDAEBwfj2rVreP3111u1zqMlOWrUKPz0008IDQ3F8OHD8corr2D9+vU660j9Pjui1l5xiTNKAA4O9wshNzdXZ3zNmjUoLi7G4MGDpYglmZLLmRg66W+Y9u4ZnZu5hSUcOaNss9jYWADAp59+ioqKCuHyjyvJCxcuQKvVYs2aNTrPSabBGSUAd3d3aDQaxMfHw87ODi4uLkhJScHBgwcBwKRHvI11TcHWXo+y/FoeaqvK0E8zBip7V93xO+Xo3cYDOaa+RuKy1ZubXvfh+6b06MwuPDwcALB9+3bhui2VZKNvv/0WZWVl8PLygouLC4qKipoe4/UojYczSgByuRzJyclQq9WIjY3FrFmz4ODggLi4OJibm0Oj0Ugd0WRK8jNgrrBqdsS7+FI6bOzdYG3rKFGyjql///6ws7NDSUkJfvnlF73LikoSAOrr65GZmQnAtD/AuzrOKB8YOHAgjh49qjMWFRUFb29vWFr+flDj3r17qK+vR0NDA+7du4eamhooFIpOs3+oJD8DjgOCIDfT/WgU553gZvcf4OzsDAD4+eef9S7XmpJslJeXh4iIiKbnJuNjUeqRmZmJ4OBgnbE5c+YgKSkJAHD8+HEAwOXLl9G/f39TxzOKkTPef+z4qFkbTZykczhx4gRUKhXMzMz0LqdUKtGrV69WnUz+5ptvYtmyZaiqqjJ0XGoBN71bUFlZidzc3GYHcr744gtotVqdW2cpSTI8rVaLyspK3Lp1S+9yZWVlCA8PR0hIiPBk8srKSlRUVKC+vt6QUUkPzihbYGNjww8imdTNmzdx8+ZNqWPQY3BGSUQkwKIkIhJgURIRCbAoiYgEWJRERAIsSiIiARYlEZEAz6PsIj6cLnWCruOPXJyi8QIeiUtjdO5T+8AZJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCvB5lF7FopzSvy+tgdhwymczkr/lHrt0pBc4oiYgEWJRERAIsSiIiARYlEZEAi5KISIBFSUQkwKIkIpNQqVSQyztm5fA8SiJqk169euHFF19EUFAQ1Go1rKysUFNTgwsXLiAzMxN79uxBUVGRzjo9evRAamoqzp49i+joaDQ0NEiU/o/pmPVuJA0NDVi3bh08PT2hVCrh5+eHtLQ0eHl5ISaGf4yeujZXV1ds374dhYWF2LhxI2bPno2hQ4fC19cXQUFBmDlzJj766CNcuXIFKSkp8PT0BPB7SQYEBGDEiBGws7OT+J20HYvyIbNnz8aqVaswd+5cHDp0CJGRkZg6dSry8/MREBAgdTyT+my+M7KPbdUZ02q12BjdHXkZeyVKRVKZOXMmsrOzERUVBQsLC3zzzTdYsGABRowYAY1Gg+HDhyM2NhbJycnQarV48cUXkZWVhaVLlzaVZF5eHkJDQ3Hjxg2p306bcdP7gV27diEpKQnHjh1DSEgIACAsLAynTp3Cnj17EBAQgNraWsydOxdHjhxBVVUVBg8ejA0bNsDb21vi9IZVebMIVeXF6NXXT2f81vV83K25DUf3QImSkRSWLVuGhIQEAMC+ffuwePFiXLlypdlyJ06cwN///nf06dMHCQkJ+Mtf/oLExEQAaCrJRzfJOwrOKB9ISEjA2LFjm0qykYeHBywsLODr64u6ujp4eHjgv//9L0pLSzF69GhMmTJFosTGU5KfAZncDPauap3xGwVZsLJ1hMreTaJkZGozZsxAQkIC6uvrMXfuXPz5z39+bEk+rLi4GIsWLUJ+fn7T2M6dOztsSQIsSgDA1atXkZ2djZdeeqnZYwUFBVCr1VAoFLC2tsZf//pXuLi4wMzMDAsWLMC5c+dQU1MjQWrjKcnPQE+ngTDvZqkz/ltBFnoP4Gyyq3B2dsbHH38MAIiLi8PmzZtbtV7jPkl3d3cUFxcDAJYuXYpBgwYZLauxsShxvygBwMnJSWe8uroaaWlpLe6fTE9PR//+/aFUKg2WRSaTGeXWFiX5GSgvycOm1xx0bj9+uxqO7kHt4v2I3uej99v7rT3kftQ777yDHj164MCBA9i0aVOr/r8fPnCTl5eHoKAgbN26FUqlEuvWrZP88yF6zy3hPkoADg4OAIDc3FyMGzeuaXzNmjUoLi7G4MGDm61TVlaGuLg4vPvuuybLaSollzMxdNLf4P30TJ3xnct94cgZZZdgZ2eHqVOnoqGhAYsXL27VOo+WZOM+yaVLl2L69Ol49tlnMWDAAFy+fNnI6Q2PM0oA7u7u0Gg0iI+Px/bt2/H9998jNjYWn3/+OQA0m1FWV1djwoQJmDJlCqZNm2bQLFqt1ii31iq/lofaqjL004yByt616VZ/rwa1d8rRu40Hcoz1fkTv89H77f3WHnI/bOLEiVAqlfjuu+909jW2pKWSBIDS0lKkpKRALpcjMjJS0s+HvvesD4sSgFwuR3JyMtRqNWJjYzFr1iw4ODggLi4O5ubm0Gg0TcvW1dUhMjISnp6enXM2mZ8Bc4VVsyPexZfSYWPvBmtbR4mSkSkFBt7/gZiamipcVl9JNjpy5IjO83Y03PR+YODAgTh69KjOWFRUFLy9vWFp+ftBjcbfKmjtju2OpiQ/A44DgiA30/1oFOed4GZ3F6JW3z/jISsrS+9yrSlJADhz5ozO83Y0LEo9MjMzERwc3PT1L7/8gqSkJCiVSvTo0aNpPCcnB3379pUiosGNnPH+Y8dHzdpo4iQkpaSkJBw/fhwXL17Uu9wHH3wgLEkAKCwsRHx8PK5du2aMuEbHomxBZWUlcnNzMW/evKaxfv36tWm/BlFH1bh/XuSNN96ASqXCwoUL9Z4nWVZWhhUrVhgqnsmxKFtgY2OD+vp6qWMQtWs3b97E5MmTpY5hdDyYQ0QkwKIkIhJgURIRCbAoiYgEWJRERAIsSiIiARYlEZEAi5KISIAnnHcRH06XOgG1d239rbNlq+9f7yBxaYzO/c6IM0oiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiUREQCLEoiIgEWJRGRAIuSiEiARUlEJMCiJCISYFESEQmwKImIBFiU1GoRERHw8/ODRqPB5MmTUVFRIXUkgzt27BjUajU8PDwQHR2N+vp6qSMJLViwAK6urjA37ziXly0sLER4eDi8vb3x5JNPYvny5VJH0otFSa2WkpKCrKwsnD17Fn379sX7778vdSSDamhoQHR0NJKTk5GXl4eKigrs2LFD6lhCU6ZMwY8//ih1jDYxNzfH6tWrceHCBZw6dQrp6enYv3+/1LFaxKKkVrO1tQVwv1Cqqqogk8kkTmRYGRkZcHZ2ho+PDwDg1Vdfxe7duyVOJfb000/D0dFR6hht0qdPHwQGBgIAunXrBo1Gg4KCAolTtYxFSW0yYcIEODk54eLFi3jjjTekjmNQV69ehZubW9PXffv2RWFhoYSJuobS0lLs27cPERERUkdpkUzb1j+UQV1eQ0MDVqxYAQcHB8nL8k5NLbZ9fQh1D/YlFl8vBQD06W2vc7/Rc2HB8Ojv8tjnSklJwb59+5o2t3NycjB9+nScPn3a4LmPnjiNsz/lN32tL3ef3vaIfC5U+Jzm5uaoq6szeNZGZbdu48u936GxMUT/1pHPhep8/Ti1tbUYO3Ysxo8fL/lnSR/OKKnN5HI5XnnlFXzxxRdSR4GVUoEn+jmj+Hpp0zcrgGb3i6+Xwkwuh3s/5xafy83NTWfzr7CwEK6urkbJ7a/2xI2b5a3KHfDkQKNkaKuetir06WXfqsy2KmthSdbX12P69Onw9/dv1yUJsCiplSoqKlBcXNz09e7du6FWqyVM9Luw4KegsrYULjc+fBjkevarBgYGoqioCDk5OQCArVu3YtKkSQbL+bAe3W0QMvQp4XLqgf3xhJ5yN7UxIUPQzUL/0XW5XIbnwoKFzxUTEwOVSoX33nvPUPGMhkVJrXLr1i1MmDABvr6+0Gg0OHPmDNavXy91LACAQtENY0YO0buMZpA7+rs66V3GzMwMW7ZsweTJk/HEE0/AxsYGUVFRhoyqY+RQP9iqrPXkkWNcqLhw5s6dC1dXV9TX18PV1RVxcXGGjKmju40Vwob5611m2GA1etn30LvMDz/8gM8//xyZmZnw9/fHU089hY8++siQUQ2K+yjpf6bVaiU/At6g1eKTpD34taS02WPmZmZ4Y04ketqqJEim3+nzl/DVt0cf+1jIUD88GzrUxInE7t2rw3uffY3yispmj1kpFVgy92VYKRUSJDMezijbYP/+/Rg/fjx69+4NhUKBfv36Ydq0aTh37pzU0SR1/tIVbP6/b3C78o5kGeQyGZ4PH/7Yx0YM0bTLkgQAPx8PuPXp3WzcxspSOHOTioWFOca1UOARIwI7XUkCLMpWqaurw8svv4yJEyciKysLkyZNwsKFC+Hv74/du3ejqKhI6oiSadBq8f0Pp1BReQdWVkpJswxw6wNfL3edMZWNFUKDxfsCpXK/4Ic1G39mRCCUim4SJGod38fsyuht3xNDnvKWKJFxdZzfeZLQ/Pnz8dVXX2HOnDn44IMPYG39+36lwsJC9Oihf39MZ5Zz6QqKr5diyvgwmMml/7n7bOgQXMj7pel0obEjh0DRzULiVPr1dXHEUz4eOJOTBwBw6mWHQI2XxKn0k8lkGB8+DBuS9qJx39348GHt4jNgDNxHKXD8+HGMHDkSY8eOxcGDB42+L27Z6s1GfX4i+l3i0phWLdc569+APvzwQwBAYmKi5AcsiEganFEKdO/eHfb29rh8+bLUUdqVBq0WH3+xB/fq6rD41Zfa3SZXyY0yODr0lDpGm9y9V4fKO9Wwa6cHnlrSEf+t24pFqUd5eTl69uyJ0NBQHD36+FM4DI2b3kSmw01vA2j8GXL9+nWJkxCRlDijFPDw8EB+fj6+++47jB49WuexixcvwsurfR+dNIbs3MvYsfcIpowPg7/aU+o4REbHohT4+uuvMWXKFJiZmeGFF16Ah4cHrl+/jvT0dPj4+GDv3r1SRzSp9r5vksgYeB6lQGRkJGxtbbF27Vqkpqbi22+/Re/evTFkyBAsWrRI6ngmV3WnGmZyOUYOH8ySpC6DM0pqM61WCy2g90o8RJ0Ji5KISIDbTkREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkQCLkohIgEVJRCTAoiQiEmBREhEJsCiJiARYlEREAixKIiIBFiURkcD/A/Do+01p3baFAAAAAElFTkSuQmCC\n", 195 | "text/plain": [ 196 | "
" 197 | ] 198 | }, 199 | "execution_count": 144, 200 | "metadata": {}, 201 | "output_type": "execute_result" 202 | } 203 | ], 204 | "source": [ 205 | "circuit.draw(output = 'mpl')" 206 | ] 207 | }, 208 | { 209 | "cell_type": "code", 210 | "execution_count": null, 211 | "metadata": {}, 212 | "outputs": [], 213 | "source": [ 214 | "provider = IBMQ.get_provider('ibm-q')\n", 215 | "\n", 216 | "qcomp = provider.get_backend('ibmq_vigo', )\n", 217 | "\n", 218 | "job = execute(circuit, backend = qcomp, shots = 1)\n", 219 | "\n", 220 | "job_monitor(job)\n", 221 | "\n", 222 | "results = job.result()\n", 223 | "\n", 224 | "plot_histogram(results.get_counts(circuit))" 225 | ] 226 | }, 227 | { 228 | "cell_type": "code", 229 | "execution_count": null, 230 | "metadata": {}, 231 | "outputs": [], 232 | "source": [ 233 | "a = list(results.get_counts().keys())[0]\n", 234 | "int(a, 2)" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": null, 240 | "metadata": {}, 241 | "outputs": [], 242 | "source": [] 243 | } 244 | ], 245 | "metadata": { 246 | "kernelspec": { 247 | "display_name": "Python 3", 248 | "language": "python", 249 | "name": "python3" 250 | }, 251 | "language_info": { 252 | "codemirror_mode": { 253 | "name": "ipython", 254 | "version": 3 255 | }, 256 | "file_extension": ".py", 257 | "mimetype": "text/x-python", 258 | "name": "python", 259 | "nbconvert_exporter": "python", 260 | "pygments_lexer": "ipython3", 261 | "version": "3.7.4" 262 | } 263 | }, 264 | "nbformat": 4, 265 | "nbformat_minor": 4 266 | } 267 | --------------------------------------------------------------------------------