├── LICENSE
├── README.md
└── py36-src
├── MC_double.py
├── Newton.py
├── Newton_demo.py
├── Newton_system.py
├── Newtons_method.py
├── SIR1.py
├── SIR2.py
├── SIRV1.py
├── SIRV2.py
├── Taylor_exp.py
├── average_height.py
├── ball.py
├── ball_angle.py
├── ball_angle_first_try.py
├── ball_angle_prefix.py
├── ball_function.py
├── ball_max_height.py
├── ball_plot.py
├── ball_position_xy.py
├── ball_time.py
├── beam_vib.py
├── bisection_method.py
├── bisection_method_with_timing.py
├── brute_force_optimizer.py
├── brute_force_root_finder_flat.py
├── brute_force_root_finder_function.py
├── check_functions.py
├── compare_integration_methods.py
├── example_symbolic.py
├── file_handling.py
├── file_handling_numpy.py
├── format_string.py
├── formatted_columns.py
├── formatted_print.py
├── function_as_argument.py
├── growth1.py
├── integration_methods_vec.py
├── logistic.py
├── midpoint.py
├── midpoint_double.py
├── midpoint_triple.py
├── naive_Newton.py
├── nonlinear_solvers.py
├── nonlinear_solvers_rates.py
├── ode_FE.py
├── ode_system_FE.py
├── osc_2nd_order.py
├── osc_EC.py
├── osc_EC_general.py
├── osc_FE.py
├── osc_Heun.py
├── osc_RK4.py
├── osc_odespy.py
├── osc_odespy_general.py
├── plot_multiple_curves.py
├── print_columns.py
├── print_rates.py
├── random_walk_2D.py
├── rate_exponential.py
├── rate_piecewise_constant.py
├── rod_BE.py
├── rod_FE.py
├── rod_FE_scaled.py
├── rod_FE_vec.py
├── rod_odespy.py
├── rod_units.py
├── search_solutions_1eqn.py
├── secant_method.py
├── swim_advisor.py
├── system_nonlin_eqns_Newton.py
├── test_diffusion_pde_exact_linear.py
├── test_ode_FE_exact_linear.py
├── test_trapezoidal.py
├── throw_2_dice.py
├── times_tables_1.py
├── times_tables_2.py
├── times_tables_3.py
├── times_tables_4.py
├── timing_function_call.py
├── timing_midpoint_vec.py
├── trapezoidal.py
├── trapezoidal_flat.py
├── trapezoidal_flat1.py
├── two_plots_one_fig.py
├── vertical_motion.py
├── viz_midpoint.py
├── viz_rectangle.py
└── viz_trapezoidal.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # prog4comp_2
2 | Resources for the 2nd edition of "Programming for Computations" by S. Linge and H.P. Langtangen
3 |
--------------------------------------------------------------------------------
/py36-src/MC_double.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def MonteCarlo_double(f, g, x0, x1, y0, y1, n):
4 | """
5 | Monte Carlo integration of f over a domain g>=0, embedded
6 | in a rectangle [x0,x1]x[y0,y1]. n^2 is the number of
7 | random points.
8 | """
9 | # Draw n**2 random points in the rectangle
10 | x = np.random.uniform(x0, x1, n)
11 | y = np.random.uniform(y0, y1, n)
12 | # Compute sum of f values inside the integration domain
13 | f_mean = 0
14 | num_inside = 0 # number of x,y points inside domain (g>=0)
15 | for i in range(len(x)):
16 | for j in range(len(y)):
17 | if g(x[i], y[j]) >= 0:
18 | num_inside = num_inside + 1
19 | f_mean = f_mean + f(x[i], y[j])
20 | f_mean = f_mean/num_inside
21 | area = num_inside/(n**2)*(x1 - x0)*(y1 - y0)
22 | return area*f_mean
23 |
24 | def test_MonteCarlo_double_rectangle_area():
25 | """Check the area of a rectangle."""
26 | def g(x, y):
27 | return (1 if (0 <= x <= 2 and 3 <= y <= 4.5) else -1)
28 |
29 | x0 = 0; x1 = 3; y0 = 2; y1 = 5 # embedded rectangle
30 | n = 1000
31 | np.random.seed(8) # must fix the seed!
32 | I_expected = 3.121092 # computed with this seed
33 | I_computed = MonteCarlo_double(
34 | lambda x, y: 1, g, x0, x1, y0, y1, n)
35 | assert abs(I_expected - I_computed) < 1E-14
36 |
37 | def test_MonteCarlo_double_circle_r():
38 | """Check the integral of r over a circle with radius 2."""
39 | def g(x, y):
40 | xc, yc = 0, 0 # center
41 | R = 2 # radius
42 | return R**2 - ((x-xc)**2 + (y-yc)**2)
43 |
44 | # Exact: integral of r*r*dr over circle with radius R becomes
45 | # 2*pi*1/3*R**3
46 | import sympy
47 | r = sympy.symbols('r')
48 | I_exact = sympy.integrate(2*sympy.pi*r*r, (r, 0, 2))
49 | print('Exact integral: {:g}'.format(I_exact.evalf()))
50 | x0 = -2; x1 = 2; y0 = -2; y1 = 2
51 | n = 1000
52 | np.random.seed(6)
53 | I_expected = 16.7970837117376384 # Computed with this seed
54 | I_computed = MonteCarlo_double(
55 | lambda x, y: np.sqrt(x**2 + y**2),
56 | g, x0, x1, y0, y1, n)
57 | print('MC approximation, {:d} samples: {:.16f}'\
58 | .format(n**2, I_computed))
59 | assert abs(I_expected - I_computed) < 1E-15
60 |
61 | if __name__ == '__main__':
62 | test_MonteCarlo_double_rectangle_area()
63 | test_MonteCarlo_double_circle_r()
--------------------------------------------------------------------------------
/py36-src/Newton.py:
--------------------------------------------------------------------------------
1 | def Newton(f, x, dfdx, epsilon=1.0E-7, N=100, store=False):
2 | f_value = f(x)
3 | n = 0
4 | if store: info = [(x, f_value)]
5 | while abs(f_value) > epsilon and n <= N:
6 | dfdx_value = float(dfdx(x))
7 | if abs(dfdx_value) < 1E-14:
8 | raise ValueError("Newton: f'(%g)=%g" % (x, dfdx_value))
9 |
10 | x = x - f_value/dfdx_value
11 |
12 | n += 1
13 | f_value = f(x)
14 | if store: info.append((x, f_value))
15 | if store:
16 | return x, info
17 | else:
18 | return x, n, f_value
19 |
20 |
21 | def _g(x):
22 | return exp(-0.1*x**2)*sin(pi/2*x)
23 |
24 | def _dg(x):
25 | return -2*0.1*x*exp(-0.1*x**2)*sin(pi/2*x) + \
26 | pi/2*exp(-0.1*x**2)*cos(pi/2*x)
27 |
28 | def _test():
29 | from scitools.std import sin, cos, exp, linspace, plot, pi
30 | import sys
31 |
32 | x0 = float(sys.argv[1])
33 | x, info = Newton(_g, x0, _dg, store=True)
34 | print 'root: %.16g' % x
35 | for i in range(len(info)):
36 | print 'Iteration %2d: f(%g)=%g' % \
37 | (i, info[i][0], info[i][1])
38 |
39 | x = linspace(-7, 7, 401)
40 | y = _g(x)
41 | plot(x, y)
42 |
43 | if __name__ == '__main__':
44 | _test()
45 |
46 |
47 |
--------------------------------------------------------------------------------
/py36-src/Newton_demo.py:
--------------------------------------------------------------------------------
1 | """
2 | This is a program for illustrating the convergence of Newton's method
3 | for solving nonlinear algebraic equations of the form f(x) = 0.
4 |
5 | Usage:
6 | python Newton_movie.py f_formula df_formula x0 xmin xmax
7 |
8 | where f_formula is a string formula for f(x); df_formula is
9 | a string formula for the derivative f'(x), or df_formula can
10 | be the string 'numeric', which implies that f'(x) is computed
11 | numerically; x0 is the initial guess of the root; and the
12 | x axis in the plot has extent [xmin, xmax].
13 | """
14 | from Newton import Newton
15 | from scitools.std import *
16 | import matplotlib.pyplot as plt
17 | plt.xkcd() # cartoon style
18 | import sys
19 |
20 | def line(x0, y0, dydx):
21 | """
22 | Find a and b for a line a*x+b that goes through (x0,y0)
23 | and has the derivative dydx at this point.
24 |
25 | Formula: y = y0 + dydx*(x - x0)
26 | """
27 | return dydx, y0 - dydx*x0
28 |
29 |
30 | def illustrate_Newton(info, f, df, xmin, xmax):
31 | # First make a plot f for the x values that are in info
32 | xvalues = linspace(xmin, xmax, 401)
33 | fvalues = f(xvalues)
34 | ymin = fvalues.min(); ymax = fvalues.max()
35 | frame_counter = 0
36 |
37 | # Go through all x points (roots) and corresponding values
38 | # for each iteration and plot a green line from the x axis up
39 | # to the point (root,value), construct and plot the tangent at
40 | # this point, then plot the function curve, the tangent,
41 | # and the green line,
42 | # repeat this for all iterations and store hardcopies for making
43 | # a movie.
44 |
45 | for root, value in info:
46 | a, b = line(root, value, df(root))
47 | y = a*xvalues + b
48 | raw_input('Type CR to continue: ')
49 | plt.figure()
50 | plt.plot(xvalues, fvalues, 'r-',
51 | [root, root], [ymin, value], 'g-',
52 | [xvalues[0], xvalues[-1]], [0,0], 'k--',
53 | xvalues, y, 'b-')
54 | plt.legend(['f(x)', 'approx. root', 'y=0', 'approx. line'])
55 | plt.axis([xmin, xmax, ymin, ymax])
56 | plt.title("Newton's method, iter. %d: x=%g; f(%g)=%.3E" % (frame_counter+1, root, root, value))
57 | plt.savefig('tmp_root_%04d.pdf' % frame_counter)
58 | plt.savefig('tmp_root_%04d.png' % frame_counter)
59 | frame_counter += 1
60 |
61 | try:
62 | f_formula = sys.argv[1]
63 | df_formula = sys.argv[2]
64 | x0 = float(sys.argv[3])
65 | xmin = float(sys.argv[4])
66 | xmax = float(sys.argv[5])
67 | except IndexError:
68 | print 'f_formula df_formula x0 xmin max'
69 | sys.exit(1)
70 |
71 | # Clean up all plot files
72 | import glob, os
73 | for filename in glob.glob('tmp_*.pdf'):
74 | os.remove(filename)
75 |
76 | f = StringFunction(f_formula)
77 | f.vectorize(globals())
78 | if df_formula == 'numeric':
79 | # Make a numerical differentiation formula
80 | h = 1.0E-7
81 | def df(x):
82 | return (f(x+h) - f(x-h))/(2*h)
83 | else:
84 | df = StringFunction(df_formula)
85 | df.vectorize(globals())
86 | x, info = Newton(f, x0, df, store=True)
87 | illustrate_Newton(info, f, df, xmin, xmax)
88 | plt.show()
89 |
--------------------------------------------------------------------------------
/py36-src/Newton_system.py:
--------------------------------------------------------------------------------
1 | """Use Newton's method to solve systems of nonlinear algebraic equations."""
2 | import numpy as np
3 |
4 | def Newton_system(F, J, x, eps):
5 | """
6 | Solve nonlinear system F=0 by Newton's method.
7 | J is the Jacobian of F. Both F and J must be functions of x.
8 | At input, x holds the start value. The iteration continues
9 | until ||F|| < eps.
10 | """
11 | F_value = F(x)
12 | F_norm = np.linalg.norm(F_value, ord=2) # l2 norm of vector
13 | iteration_counter = 0
14 | while abs(F_norm) > eps and iteration_counter < 100:
15 | delta = np.linalg.solve(J(x), -F_value)
16 | x = x + delta
17 | F_value = F(x)
18 | F_norm = np.linalg.norm(F_value, ord=2)
19 | iteration_counter = iteration_counter + 1
20 |
21 | # Here, either a solution is found, or too many iterations
22 | if abs(F_norm) > eps:
23 | iteration_counter = -1
24 | return x, iteration_counter
25 |
26 | def test_Newton_system1():
27 | from numpy import cos, sin, pi, exp
28 |
29 | def F(x):
30 | return np.array(
31 | [x[0]**2 - x[1] + x[0]*cos(pi*x[0]),
32 | x[0]*x[1] + exp(-x[1]) - x[0]**(-1.)])
33 |
34 | def J(x):
35 | return np.array(
36 | [[2*x[0] + cos(pi*x[0]) - pi*x[0]*sin(pi*x[0]), -1],
37 | [x[1] + x[0]**(-2.), x[0] - exp(-x[1])]])
38 |
39 | expected = np.array([1, 0])
40 | tol = 1e-4
41 | x, n = Newton_system(F, J, x=np.array([2, -1]), eps=0.0001)
42 | print(n, x)
43 | error_norm = np.linalg.norm(expected - x, ord=2)
44 | assert error_norm < tol, 'norm of error ={:g}'.format(error_norm)
45 | print('norm of error ={:g}'.format(error_norm))
46 |
47 | def test_Newton_system2():
48 |
49 | def F(x):
50 | return np.array(
51 | [x[0]**2 - x[1] + x[0] - 2,
52 | x[1]*x[0] + x[1]**2 + x[0] - 1])
53 |
54 | def J(x):
55 | return np.array(
56 | [[2*x[0] + 1, -1],
57 | [x[1] + 1, x[0] + 2*x[1]]])
58 |
59 | expected = np.array([1, 0])
60 | tol = 1e-4
61 | x, n = Newton_system(F, J, x=np.array([2, -0.5]), eps=0.0001)
62 | print(n, x)
63 | error_norm = np.linalg.norm(expected - x, ord=2)
64 | assert error_norm < tol, 'norm of error ={:g}'.format(error_norm)
65 | print('norm of error ={:g}'.format(error_norm))
66 |
67 | if __name__ == '__main__':
68 | test_Newton_system1()
69 | test_Newton_system2()
70 |
71 |
--------------------------------------------------------------------------------
/py36-src/Newtons_method.py:
--------------------------------------------------------------------------------
1 | import sys
2 |
3 | def Newton(f, dfdx, x, eps):
4 | f_value = f(x)
5 | iteration_counter = 0
6 | while abs(f_value) > eps and iteration_counter < 100:
7 | try:
8 | x = x - f_value/dfdx(x)
9 | except ZeroDivisionError:
10 | print('Error! - derivative zero for x = ', x)
11 | sys.exit(1) # Abort with error
12 |
13 | f_value = f(x)
14 | iteration_counter = iteration_counter + 1
15 |
16 | # Here, either a solution is found, or too many iterations
17 | if abs(f_value) > eps:
18 | iteration_counter = -1
19 | return x, iteration_counter
20 |
21 | if __name__ == '__main__':
22 | def f(x):
23 | return x**2 - 9
24 |
25 | def dfdx(x):
26 | return 2*x
27 |
28 | solution, no_iterations = Newton(f, dfdx, x=1000, eps=1.0e-6)
29 |
30 | if no_iterations > 0: # Solution found
31 | print('Number of function calls: {:d}'.format(1+2*no_iterations))
32 | print('A solution is: {:f}'.format(solution))
33 | else:
34 | print('Solution not found!')
35 |
--------------------------------------------------------------------------------
/py36-src/SIR1.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | # Time unit: 1 h
5 | beta = 10./(40*8*24)
6 | gamma = 3./(15*24)
7 | dt = 0.1 # 6 min
8 | D = 30 # Simulate for D days
9 | N_t = int(D*24/dt) # Corresponding no of time steps
10 |
11 | t = np.linspace(0, N_t*dt, N_t+1)
12 | S = np.zeros(N_t+1)
13 | I = np.zeros(N_t+1)
14 | R = np.zeros(N_t+1)
15 |
16 | # Initial condition
17 | S[0] = 50
18 | I[0] = 1
19 | R[0] = 0
20 |
21 | # Step equations forward in time
22 | for n in range(N_t):
23 | S[n+1] = S[n] - dt*beta*S[n]*I[n]
24 | I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]
25 | R[n+1] = R[n] + dt*gamma*I[n]
26 |
27 | fig = plt.figure()
28 | l1, l2, l3 = plt.plot(t, S, t, I, t, R)
29 | fig.legend((l1, l2, l3), ('S', 'I', 'R'), 'center right')
30 | plt.xlabel('hours')
31 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
32 | plt.show()
33 |
--------------------------------------------------------------------------------
/py36-src/SIR2.py:
--------------------------------------------------------------------------------
1 | """As the basic SIR1.py, but including loss of immunity."""
2 |
3 | import numpy as np
4 | import matplotlib.pyplot as plt
5 |
6 | # Time unit: 1 h
7 | #beta = 10./(40*8*24)
8 | #beta = 0.00033 # ca. beta/4, i.e. reduced compared to SIR1.py
9 | beta = 0.00043
10 | gamma = 3./(15*24)
11 | dt = 0.1 # 6 min
12 | D = 300 # Simulate for D days
13 | N_t = int(D*24/dt) # Corresponding no of hours
14 | #nu = 1./(24*50) # Average loss of immunity: 50 days
15 | nu = 1./(24*90) # Average loss of immunity: 90 days
16 |
17 | t = np.linspace(0, N_t*dt, N_t+1)
18 | S = np.zeros(N_t+1)
19 | I = np.zeros(N_t+1)
20 | R = np.zeros(N_t+1)
21 |
22 | # Initial condition
23 | S[0] = 50
24 | I[0] = 1
25 | R[0] = 0
26 |
27 | # Step equations forward in time
28 | for n in range(N_t):
29 | S[n+1] = S[n] - dt*beta*S[n]*I[n] + dt*nu*R[n]
30 | I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]
31 | R[n+1] = R[n] + dt*gamma*I[n] - dt*nu*R[n]
32 |
33 | fig = plt.figure()
34 | l1, l2, l3 = plt.plot(t, S, t, I, t, R)
35 | fig.legend((l1, l2, l3), ('S', 'I', 'R'), 'upper right')
36 | plt.xlabel('hours')
37 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
38 | plt.show()
--------------------------------------------------------------------------------
/py36-src/SIRV1.py:
--------------------------------------------------------------------------------
1 | """As SIR2.py, but including constant vaccination."""
2 |
3 | import numpy as np
4 | import matplotlib.pyplot as plt
5 |
6 | # Time unit: 1 h
7 | beta = 10./(40*8*24)
8 | beta = beta=0.00033 # reduce beta to ca. beta/4 compared to SIR1.py
9 | print('beta:', beta)
10 | gamma = 3./(15*24)
11 | dt = 0.1 # 6 min
12 | D = 300 # Simulate for D days
13 | N_t = int(D*24/dt) # Corresponding no of hours
14 | nu = 1./(24*50) # Average loss of immunity: 50 days
15 | #p = 0.0005
16 | p = 0.0001
17 |
18 | t = np.linspace(0, N_t*dt, N_t+1)
19 | S = np.zeros(N_t+1)
20 | I = np.zeros(N_t+1)
21 | R = np.zeros(N_t+1)
22 | V = np.zeros(N_t+1)
23 |
24 | # Initial condition
25 | S[0] = 50
26 | I[0] = 1
27 | R[0] = 0
28 | V[0] = 0
29 |
30 | # Step equations forward in time
31 | for n in range(N_t):
32 | S[n+1] = S[n] - dt*beta*S[n]*I[n] + dt*nu*R[n] - dt*p*S[n]
33 | V[n+1] = V[n] + dt*p*S[n]
34 | I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]
35 | R[n+1] = R[n] + dt*gamma*I[n] - dt*nu*R[n]
36 | loss = int(V[n+1] + S[n+1] + R[n+1] + I[n+1]) - \
37 | int(V[0] + S[0] + R[0] + I[0])
38 | if loss > 0:
39 | print('loss: {:d}'.format(loss))
40 |
41 | fig = plt.figure()
42 | l1, l2, l3, l4 = plt.plot(t, S, t, I, t, R, t, V)
43 | fig.legend((l1, l2, l3, l4), ('S', 'I', 'R', 'V'), 'upper right')
44 | plt.xlabel('hours')
45 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
46 | plt.show()
--------------------------------------------------------------------------------
/py36-src/SIRV2.py:
--------------------------------------------------------------------------------
1 | """As SIRV1.py, but including time-dependent vaccination."""
2 |
3 | import numpy as np
4 | import matplotlib.pyplot as plt
5 |
6 | # Time unit: 1 h
7 | beta = 10./(40*8*24)
8 | beta /= 4 # Reduce beta compared to SIR1.py
9 | print('beta:', beta)
10 | gamma = 3./(15*24)
11 | dt = 0.1 # 6 min
12 | D = 100 # Simulate for D days
13 | N_t = int(D*24/dt) # Corresponding no of hours
14 | nu = 1./(24*50) # Average loss of immunity: 50 days
15 |
16 | t = np.linspace(0, N_t*dt, N_t+1)
17 | S = np.zeros(N_t+1)
18 | I = np.zeros(N_t+1)
19 | R = np.zeros(N_t+1)
20 | V = np.zeros(N_t+1)
21 |
22 | # Vaccination campaign
23 | p = np.zeros(N_t+1)
24 | start_index = int(6*24/dt) # 6 days = 6*24 h, div. by dt=0.1 gives intervals
25 | stop_index = int(15*24/dt)
26 | p[start_index:stop_index] = 0.005
27 |
28 | # Initial condition
29 | S[0] = 50
30 | I[0] = 1
31 | R[0] = 0
32 | V[0] = 0
33 |
34 | # Step equations forward in time
35 | for n in range(N_t):
36 | S[n+1] = S[n] - dt*beta*S[n]*I[n] + dt*nu*R[n] - dt*p[n]*S[n]
37 | V[n+1] = V[n] + dt*p[n]*S[n]
38 | I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]
39 | R[n+1] = R[n] + dt*gamma*I[n] - dt*nu*R[n]
40 | loss = int(V[n+1] + S[n+1] + R[n+1] + I[n+1]) - \
41 | int(V[0] + S[0] + R[0] + I[0])
42 | if loss > 0:
43 | print('loss: {:d}'.format(loss))
44 |
45 | fig = plt.figure()
46 | l1, l2, l3, l4 = plt.plot(t, S, t, I, t, R, t, V)
47 | fig.legend((l1, l2, l3, l4), ('S', 'I', 'R', 'V'), 'upper right')
48 | plt.xlabel('hours')
49 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
50 | plt.show()
--------------------------------------------------------------------------------
/py36-src/Taylor_exp.py:
--------------------------------------------------------------------------------
1 | from math import factorial
2 | from numpy import exp, linspace
3 | import matplotlib.pyplot as plt
4 |
5 | def f(x):
6 | """f(x) and its all its derivatives of higher order"""
7 | return exp(x)
8 |
9 | def T(x, c, N):
10 | """Builds the T.s. approxim. for f(x) = exp(x) with N + 1 terms"""
11 | sum = 0
12 | for n in range(N+1):
13 | # Note that f(c)=f'(c)=f''(c)..., when f(x) = exp(x)
14 | sum += (f(c)/factorial(n))*(x-c)**n
15 | return sum
16 |
17 | a = -3; b = 3; maxNoOfTerms = 4
18 | c = input('Give the parameter c: ')
19 | xPoints = linspace(a, b, 100)
20 |
21 | for i in range(maxNoOfTerms):
22 | Tapprox = T(xPoints, c, i)
23 | plt.plot(xPoints, f(xPoints), 'r', xPoints, Tapprox, '--')
24 | plt.axis([-4.0, 4.0, -2, 15])
25 | plt.hold('on')
26 | plt.hold('off')
27 | plt.show()
28 |
--------------------------------------------------------------------------------
/py36-src/average_height.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | N = 5
4 | h = np.zeros(N) # heights of family members (in meter)
5 | h[0] = 1.60; h[1] = 1.85; h[2] = 1.75; h[3] = 1.80; h[4] = 0.50
6 |
7 | sum = 0
8 | for i in [0, 1, 2, 3, 4]:
9 | sum = sum + h[i]
10 | average = sum/N
11 |
12 | print('Average height: {:g} meter'.format(average))
13 |
--------------------------------------------------------------------------------
/py36-src/ball.py:
--------------------------------------------------------------------------------
1 | # Program for computing the height of a ball in vertical motion
2 |
3 | v0 = 5 # Initial velocity
4 | g = 9.81 # Acceleration of gravity
5 | t = 0.6 # Time
6 |
7 | y = v0*t - 0.5*g*t**2 # Vertical position
8 |
9 | print(y)
10 |
--------------------------------------------------------------------------------
/py36-src/ball_angle.py:
--------------------------------------------------------------------------------
1 | from math import atan, pi
2 |
3 | x = 10.0 # Horizontal position
4 | y = 10.0 # Vertical position
5 |
6 | angle = atan(y/x)
7 |
8 | print((angle/pi)*180)
9 |
--------------------------------------------------------------------------------
/py36-src/ball_angle_first_try.py:
--------------------------------------------------------------------------------
1 | x = 10.0 # Horizontal position
2 | y = 10.0 # Vertical position
3 |
4 | angle = atan(y/x)
5 |
6 | print((angle/pi)*180)
7 |
--------------------------------------------------------------------------------
/py36-src/ball_angle_prefix.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | x = 10.0 # Horizontal position
4 | y = 10.0 # Vertical position
5 |
6 | angle = math.atan(y/x)
7 |
8 | print((angle/math.pi)*180)
9 |
--------------------------------------------------------------------------------
/py36-src/ball_function.py:
--------------------------------------------------------------------------------
1 | def y(v0, t):
2 | g = 9.81 # Acceleration of gravity
3 | return v0*t - 0.5*g*t**2
4 |
5 | v0 = 5 # Initial velocity
6 |
7 | time = 0.6 # Just pick one point in time
8 | print(y(v0, time))
9 | time = 0.9 # Pick another point in time
10 | print(y(v0, time))
11 |
--------------------------------------------------------------------------------
/py36-src/ball_max_height.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | v0 = 5 # Initial velocity
5 | g = 9.81 # Acceleration of gravity
6 | t = np.linspace(0, 1, 1000) # 1000 points in time interval
7 | y = v0*t - 0.5*g*t**2 # Generate all heights
8 |
9 | # At this point, the array y with all the heights is ready,
10 | # and we need to find the largest value within y.
11 |
12 | largest_height = y[0] # Starting value for search
13 | for i in range(1, len(y), 1):
14 | if y[i] > largest_height:
15 | largest_height = y[i]
16 |
17 | print('The largest height achieved was {:g} m'.format(largest_height))
18 |
19 | # We might also like to plot the path again just to compare
20 | plt.plot(t,y)
21 | plt.xlabel('Time (s)')
22 | plt.ylabel('Height (m)')
23 | plt.show()
24 |
25 |
--------------------------------------------------------------------------------
/py36-src/ball_plot.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | v0 = 5
5 | g = 9.81
6 | t = np.linspace(0, 1, 1001)
7 |
8 | y = v0*t - 0.5*g*t**2
9 |
10 | plt.plot(t, y) # plots all y coordinates vs. all t coordinates
11 | plt.xlabel('t (s)') # places the text t (s) on x-axis
12 | plt.ylabel('y (m)') # places the text y (m) on y-axis
13 | plt.show() # displays the figure
14 |
--------------------------------------------------------------------------------
/py36-src/ball_position_xy.py:
--------------------------------------------------------------------------------
1 | def xy(v0x=2.0, v0y=5.0, t=0.6):
2 | """Computes horizontal and vertical positions at time t"""
3 | g = 9.81 # acceleration of gravity
4 | return v0x*t, v0y*t - 0.5*g*t**2
5 |
6 | x, y = xy()
7 | print('Horizontal position: {:g} , Vertical position: {:g}'.format(x, y))
8 |
9 |
--------------------------------------------------------------------------------
/py36-src/ball_time.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | v0 = 4.5 # Initial velocity
4 | g = 9.81 # Acceleration of gravity
5 | t = np.linspace(0, 1, 1000) # 1000 points in time interval
6 | y = v0*t - 0.5*g*t**2 # Generate all heights
7 |
8 | # Find index where ball approximately has reached y=0
9 | i = 0
10 | while y[i] >= 0:
11 | i = i + 1
12 |
13 | # Since y[i] is the height at time t[i], we do know the
14 | # time as well when we have the index i...
15 | print('Time of flight (in seconds): {:g}'.format(t[i]))
16 |
17 | # We plot the path again just for comparison
18 | import matplotlib.pyplot as plt
19 | plt.plot(t, y)
20 | plt.plot(t, 0*t, 'g--')
21 | plt.xlabel('Time (s)')
22 | plt.ylabel('Height (m)')
23 | plt.show()
24 |
--------------------------------------------------------------------------------
/py36-src/beam_vib.py:
--------------------------------------------------------------------------------
1 | from numpy import *
2 | from matplotlib.pyplot import *
3 |
4 | def f(beta):
5 | return cosh(beta)*cos(beta) + 1
6 |
7 | def damped(beta):
8 | """Damp the amplitude of f. It grows like cosh, i.e. exp."""
9 | return exp(-beta)*f(beta)
10 |
11 | def plot_f():
12 | beta = linspace(0, 20, 501)
13 | #y = f(x)
14 | y = damped(beta)
15 | plot(beta, y, 'r', [beta[0], beta[-1]], [0, 0], 'b--')
16 | grid('on')
17 | xlabel(r'$\beta$')
18 | ylabel(r'$e^{-\beta}(\cosh\beta\cos\beta +1)$')
19 | savefig('tmp1.png'); savefig('tmp1.pdf')
20 | show()
21 |
22 | plot_f()
23 |
24 | from nonlinear_solvers import bisection
25 | # Set up suitable intervals
26 | intervals = [[1, 3], [4, 6], [7, 9]]
27 | betas = [] # roots
28 | for beta_L, beta_R in intervals:
29 | beta, it = bisection(f, beta_L, beta_R, eps=1E-6)
30 | betas.append(beta)
31 | print f(beta)
32 | print betas
33 |
34 | # Find corresponding frequencies
35 |
36 | def omega(beta, rho, A, E, I):
37 | return sqrt(beta**4/(rho*A/(E*I)))
38 |
39 | rho = 7850 # kg/m^3
40 | E = 1.0E+11 # Pa
41 | b = 0.025 # m
42 | h = 0.008 # m
43 | A = b*h
44 | I = b*h**3/12
45 |
46 | for beta in betas:
47 | print omega(beta, rho, A, E, I)
48 |
--------------------------------------------------------------------------------
/py36-src/bisection_method.py:
--------------------------------------------------------------------------------
1 | import sys
2 |
3 | def bisection(f, x_L, x_R, eps):
4 | f_L = f(x_L)
5 | if f_L*f(x_R) > 0:
6 | print("""Error! Function does not have opposite
7 | signs at interval endpoints!""")
8 | sys.exit(1)
9 | x_M = (x_L + x_R)/2.0
10 | f_M = f(x_M)
11 | iteration_counter = 1
12 |
13 | while abs(f_M) > eps:
14 | if f_L*f_M > 0: # i.e. same sign
15 | x_L = x_M
16 | f_L = f_M
17 | else:
18 | x_R = x_M
19 | x_M = (x_L + x_R)/2
20 | f_M = f(x_M)
21 | iteration_counter = iteration_counter + 1
22 | return x_M, iteration_counter
23 |
24 | if __name__ == '__main__':
25 | def f(x):
26 | return x**2 - 9
27 |
28 | a = 0; b = 1000
29 |
30 | solution, no_iterations = bisection(f, a, b, eps=1.0e-6)
31 |
32 | print('Number of function calls: {:d}'.format(1 + 2*no_iterations))
33 | print('A solution is: {:f}'.format(solution))
34 |
--------------------------------------------------------------------------------
/py36-src/bisection_method_with_timing.py:
--------------------------------------------------------------------------------
1 | from timeit import *
2 |
3 | t = Timer('bisection(f, a, b, eps=1.0e-6)',
4 | setup="""
5 | from nonlinear_solvers import bisection
6 | def f(x):
7 | return x**2 - 9
8 |
9 | a = 0; b = 1000
10 | """)
11 | no_runs = 100000
12 | print "CPU time (%d runs): %f" % (no_runs, t.timeit(no_runs))
13 |
14 |
--------------------------------------------------------------------------------
/py36-src/brute_force_optimizer.py:
--------------------------------------------------------------------------------
1 | def brute_force_optimizer(f, a, b, n):
2 | from numpy import linspace
3 | x = linspace(a, b, n)
4 | y = f(x)
5 | # Let maxima and minima hold the indices corresponding
6 | # to (local) maxima and minima points
7 | minima = []
8 | maxima = []
9 | for i in range(1, n-1):
10 | if y[i-1] < y[i] > y[i+1]:
11 | maxima.append(i)
12 | if y[i-1] > y[i] < y[i+1]:
13 | minima.append(i)
14 |
15 | # What about the end points?
16 | y_max_inner = max([y[i] for i in maxima])
17 | y_min_inner = min([y[i] for i in minima])
18 | if y[0] > y_max_inner:
19 | maxima.append(0)
20 | if y[len(x)-1] > y_max_inner:
21 | maxima.append(len(x)-1)
22 | if y[0] < y_min_inner:
23 | minima.append(0)
24 | if y[len(x)-1] < y_min_inner:
25 | minima.append(len(x)-1)
26 |
27 | # Return x and y values
28 | return [(x[i], y[i]) for i in minima], \
29 | [(x[i], y[i]) for i in maxima]
30 |
31 | def demo():
32 | from numpy import exp, cos
33 | minima, maxima = brute_force_optimizer(
34 | lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)
35 | print('Minima:\n', minima)
36 | print('Maxima:\n', maxima)
37 |
38 | if __name__ == '__main__':
39 | demo()
40 |
--------------------------------------------------------------------------------
/py36-src/brute_force_root_finder_flat.py:
--------------------------------------------------------------------------------
1 | from numpy import linspace, exp, cos
2 |
3 | def f(x):
4 | return exp(-x**2)*cos(4*x)
5 |
6 | x = linspace(0, 4, 10001)
7 | y = f(x)
8 |
9 | root = None # Initialization
10 | for i in range(len(x)-1):
11 | if y[i]*y[i+1] < 0:
12 | root = x[i] - (x[i+1] - x[i])/(y[i+1] - y[i])*y[i]
13 | break # Jump out of loop
14 | elif y[i] == 0:
15 | root = x[i]
16 | break # Jump out of loop
17 |
18 | if root is None:
19 | print('Could not find any root in [{:g}, {:g}]'.format(x[0], x[-1]))
20 | else:
21 | print('Find (the first) root as x={:.17f}'.format(root))
22 |
--------------------------------------------------------------------------------
/py36-src/brute_force_root_finder_function.py:
--------------------------------------------------------------------------------
1 | def brute_force_root_finder(f, a, b, n):
2 | from numpy import linspace
3 | x = linspace(a, b, n)
4 | y = f(x)
5 | roots = []
6 | for i in range(n-1):
7 | if y[i]*y[i+1] < 0:
8 | root = x[i] - (x[i+1] - x[i])/(y[i+1] - y[i])*y[i]
9 | roots.append(root)
10 | elif y[i] == 0:
11 | root = x[i]
12 | roots.append(root)
13 | return roots
14 |
15 | def demo():
16 | from numpy import exp, cos
17 | roots = brute_force_root_finder(
18 | lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)
19 | if roots:
20 | print(roots)
21 | else:
22 | print('Could not find any roots')
23 |
24 | if __name__ == '__main__':
25 | demo()
26 |
--------------------------------------------------------------------------------
/py36-src/check_functions.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import math as m
3 |
4 | x = np.exp([0, 1, 2]) # do all 3 calculations
5 | print(x) # print all 3 results
6 |
7 | y = m.cos(0)
8 | print(y)
9 |
--------------------------------------------------------------------------------
/py36-src/compare_integration_methods.py:
--------------------------------------------------------------------------------
1 | from trapezoidal import trapezoidal
2 | from midpoint import midpoint
3 | from math import exp
4 |
5 | g = lambda y: exp(-y**2)
6 | a = 0
7 | b = 2
8 | print(' n midpoint trapezoidal')
9 | for i in range(1, 21):
10 | n = 2**i
11 | m = midpoint(g, a, b, n)
12 | t = trapezoidal(g, a, b, n)
13 | print('{:7d} {:.16f} {:.16f}'.format(n, m, t))
14 |
--------------------------------------------------------------------------------
/py36-src/example_symbolic.py:
--------------------------------------------------------------------------------
1 | import sympy as sym
2 |
3 | x, y = sym.symbols('x y')
4 |
5 | print(2*x + 3*x - y) # Algebraic computation
6 | print(sym.diff(x**2, x)) # Differentiates x**2 wrt. x
7 | print(sym.integrate(sym.cos(x), x)) # Integrates cos(x) wrt. x
8 | print(sym.simplify((x**2 + x**3)/x**2)) # Simplifies expression
9 | print(sym.limit(sym.sin(x)/x, x, 0)) # lim of sin(x)/x as x->0
10 | print(sym.solve(5*x - 15, x)) # Solves 5*x = 15
11 |
--------------------------------------------------------------------------------
/py36-src/file_handling.py:
--------------------------------------------------------------------------------
1 | filename = 'tmp.dat'
2 | infile = open(filename, 'r') # Open file for reading
3 | line = infile.readline() # Read first line
4 | # Read x and y coordinates from the file and store in lists
5 | x = []
6 | y = []
7 | for line in infile: # Read one line at a time
8 | words = line.split() # Split line into words
9 | x.append(float(words[0]))
10 | y.append(float(words[1]))
11 | infile.close()
12 |
13 | # Transform y coordinates
14 | from math import log
15 |
16 | def f(y):
17 | return log(y)
18 |
19 | for i in range(len(y)):
20 | y[i] = f(y[i])
21 |
22 | # Write out x and y to a two-column file
23 | filename = 'tmp_out.dat'
24 | outfile = open(filename, 'w') # Open file for writing
25 | outfile.write('# x and y coordinates\n')
26 | for xi, yi in zip(x, y):
27 | outfile.write('{:10.5f} {:10.5f}\n'.format(xi, yi))
28 | outfile.close()
29 |
30 |
--------------------------------------------------------------------------------
/py36-src/file_handling_numpy.py:
--------------------------------------------------------------------------------
1 | filename = 'tmp.dat'
2 | import numpy
3 | data = numpy.loadtxt(filename, comments='#')
4 | x = data[:,0]
5 | y = data[:,1]
6 | data[:,1] = numpy.log(y) # insert transformed y back in array
7 | filename = 'tmp_out.dat'
8 | outfile = open(filename, 'w') # open file for writing
9 | outfile.write('# x and y coordinates\n')
10 | numpy.savetxt(outfile, data, fmt='%10.5f')
11 |
12 |
--------------------------------------------------------------------------------
/py36-src/format_string.py:
--------------------------------------------------------------------------------
1 | time = 1.0
2 | height = 4.0
3 |
4 | # printf syntax (for comparison)
5 | print 'At t=%g s, y=%.2f m' % (time, height)
6 |
7 | # format string syntax
8 | print 'At t={t:g} s, y={y:.2f} m'.format(t=time, y=height)
9 |
10 | # format string syntax
11 | print 'At t={t:g} s, y={y:.2f} m'.format(y=height, t=time)
12 |
--------------------------------------------------------------------------------
/py36-src/formatted_columns.py:
--------------------------------------------------------------------------------
1 | from math import sin
2 |
3 | t0 = 2
4 | dt = 0.55
5 |
6 | t = t0 + 0*dt; g = t*sin(t)
7 | print('{:6.2f} {:8.3f}'.format(t, g))
8 |
9 | t = t0 + 1*dt; g = t*sin(t)
10 | print('{:6.2f} {:8.3f}'.format(t, g))
11 |
12 | t = t0 + 2*dt; g = t*sin(t)
13 | print('{:6.2f} {:8.3f}'.format(t, g))
14 |
--------------------------------------------------------------------------------
/py36-src/formatted_print.py:
--------------------------------------------------------------------------------
1 | r = 12.89643 # real number
2 | i = 42 # integer
3 | s = 'some message' # string (equivalent: s = "some message")
4 |
5 | print('real={:.3f}, integer={:d}, string={:s}'.format(r, i, s))
6 | print('real={:9.3e}, integer={:5d}, string={:s}'.format(r, i, s))
7 |
8 |
--------------------------------------------------------------------------------
/py36-src/function_as_argument.py:
--------------------------------------------------------------------------------
1 | def f(x):
2 | return x
3 |
4 | def g(x):
5 | return x**2
6 |
7 | def sum_function_values(f, start, stop):
8 | """Sum up function values for integer arguments as
9 | f(start) + f(start+1) + f(start+2) + ... + f(stop)"""
10 | S = 0
11 | for i in range(start, stop+1, 1):
12 | S = S + f(i)
13 | return S
14 |
15 | print('Sum with f becomes {:g}'.format(sum_function_values(f, 1, 3)))
16 | print('Sum with g becomes {:g}'.format(sum_function_values(g, 1, 3)))
17 |
18 |
--------------------------------------------------------------------------------
/py36-src/growth1.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | N_0 = int(input('Give initial population size N_0: '))
5 | r = float(input('Give net growth rate r: '))
6 | dt = float(input('Give time step size: '))
7 | N_t = int(input('Give number of steps: '))
8 |
9 | t = np.linspace(0, N_t*dt, N_t+1)
10 | N = np.zeros(N_t+1)
11 |
12 | N[0] = N_0
13 | for n in range(N_t):
14 | N[n+1] = N[n] + r*dt*N[n]
15 |
16 | numerical_sol = 'bo' if N_t < 70 else 'b-'
17 | plt.plot(t, N, numerical_sol, t, N_0*np.exp(r*t), 'r-')
18 | plt.legend(['numerical', 'exact'], loc='upper left')
19 | plt.xlabel('t'); plt.ylabel('N(t)')
20 | filestem = 'growth1_{:d}steps'.format(N_t)
21 | plt.savefig('{:s}.png'.format(filestem))
22 | plt.savefig('{:s}.pdf'.format(filestem))
--------------------------------------------------------------------------------
/py36-src/integration_methods_vec.py:
--------------------------------------------------------------------------------
1 | from numpy import linspace, sum
2 |
3 | def midpoint(f, a, b, n):
4 | h = (b-a)/n
5 | x = linspace(a + h/2, b - h/2, n)
6 | return h*sum(f(x))
7 |
8 | def trapezoidal(f, a, b, n):
9 | h = (b-a)/n
10 | x = linspace(a, b, n+1)
11 | s = sum(f(x)) - 0.5*f(a) - 0.5*f(b)
12 | return h*s
13 |
--------------------------------------------------------------------------------
/py36-src/logistic.py:
--------------------------------------------------------------------------------
1 | from ode_FE import ode_FE
2 | import matplotlib.pyplot as plt
3 |
4 | for dt, T in zip((0.5, 20), (60, 100)):
5 | u, t = ode_FE(f=lambda u, t: 0.1*(1 - u/500.)*u, \
6 | U_0=100, dt=dt, T=T)
7 | plt.figure() # Make separate figures for each pass in the loop
8 | plt.plot(t, u, 'b-')
9 | plt.xlabel('t'); plt.ylabel('N(t)')
10 | plt.savefig('tmp_{:g}.png'.format(dt))
11 | plt.savefig('tmp_{:g}.pdf'.format(dt))
12 |
--------------------------------------------------------------------------------
/py36-src/midpoint.py:
--------------------------------------------------------------------------------
1 | def midpoint(f, a, b, n):
2 | h = (b-a)/n
3 | f_sum = 0
4 | for i in range(0, n, 1):
5 | x = (a + h/2.0) + i*h
6 | f_sum = f_sum + f(x)
7 | return h*f_sum
8 |
9 | def application():
10 | from math import exp
11 | v = lambda t: 3*(t**2)*exp(t**3)
12 | n = int(input('n: '))
13 | numerical = midpoint(v, 0, 1, n)
14 |
15 | # Compare with exact result
16 | V = lambda t: exp(t**3)
17 | exact = V(1) - V(0)
18 | error = abs(exact - numerical)
19 | print('n={:d}: {:.16f}, error: {:g}'.format(n, numerical, error))
20 |
21 | if __name__ == '__main__':
22 | application()
23 |
--------------------------------------------------------------------------------
/py36-src/midpoint_double.py:
--------------------------------------------------------------------------------
1 | def midpoint_double1(f, a, b, c, d, nx, ny):
2 | hx = (b - a)/nx
3 | hy = (d - c)/ny
4 | I = 0
5 | for i in range(nx):
6 | for j in range(ny):
7 | xi = a + hx/2 + i*hx
8 | yj = c + hy/2 + j*hy
9 | I = I + hx*hy*f(xi, yj)
10 | return I
11 |
12 | def midpoint(f, a, b, n):
13 | h = (b-a)/n
14 | f_sum = 0
15 | for i in range(0, n, 1):
16 | x = (a + h/2.0) + i*h
17 | f_sum = f_sum + f(x)
18 | return h*f_sum
19 |
20 | def midpoint_double2(f, a, b, c, d, nx, ny):
21 | def g(x):
22 | return midpoint(lambda y: f(x, y), c, d, ny)
23 |
24 | return midpoint(g, a, b, nx)
25 |
26 | def test_midpoint_double():
27 | """Test that a linear function is integrated exactly."""
28 | def f(x, y):
29 | return 2*x + y
30 |
31 | a = 0; b = 2; c = 2; d = 3
32 | import sympy
33 | x, y = sympy.symbols('x y')
34 | I_expected = sympy.integrate(f(x, y), (x, a, b), (y, c, d))
35 | # Test three cases: nx < ny, nx = ny, nx > ny
36 | for nx, ny in (3, 5), (4, 4), (5, 3):
37 | I_computed1 = midpoint_double1(f, a, b, c, d, nx, ny)
38 | I_computed2 = midpoint_double2(f, a, b, c, d, nx, ny)
39 | tol = 1E-14
40 | #print I_expected, I_computed1, I_computed2
41 | assert abs(I_computed1 - I_expected) < tol
42 | assert abs(I_computed2 - I_expected) < tol
43 |
44 | if __name__ == '__main__':
45 | test_midpoint_double()
46 |
--------------------------------------------------------------------------------
/py36-src/midpoint_triple.py:
--------------------------------------------------------------------------------
1 | def midpoint_triple1(g, a, b, c, d, e, f, nx, ny, nz):
2 | hx = (b - a)/nx
3 | hy = (d - c)/ny
4 | hz = (f - e)/nz
5 | I = 0
6 | for i in range(nx):
7 | for j in range(ny):
8 | for k in range(nz):
9 | xi = a + hx/2 + i*hx
10 | yj = c + hy/2 + j*hy
11 | zk = e + hz/2 + k*hz
12 | I = I + hx*hy*hz*g(xi, yj, zk)
13 | return I
14 |
15 | def midpoint(f, a, b, n):
16 | h = (b-a)/n
17 | f_sum = 0
18 | for i in range(0, n, 1):
19 | x = (a + h/2.0) + i*h
20 | f_sum = f_sum + f(x)
21 | return h*f_sum
22 |
23 | def midpoint_triple2(g, a, b, c, d, e, f, nx, ny, nz):
24 | def p(x, y):
25 | return midpoint(lambda z: g(x, y, z), e, f, nz)
26 |
27 | def q(x):
28 | return midpoint(lambda y: p(x, y), c, d, ny)
29 |
30 | return midpoint(q, a, b, nx)
31 |
32 | def test_midpoint_triple():
33 | """Test that a linear function is integrated exactly."""
34 | def g(x, y, z):
35 | return 2*x + y - 4*z
36 |
37 | a = 0; b = 2; c = 2; d = 3; e = -1; f = 2
38 | import sympy
39 | x, y, z = sympy.symbols('x y z')
40 | I_expected = sympy.integrate(
41 | g(x, y, z), (x, a, b), (y, c, d), (z, e, f))
42 | for nx, ny, nz in (3, 5, 2), (4, 4, 4), (5, 3, 6):
43 | I_computed1 = midpoint_triple1(
44 | g, a, b, c, d, e, f, nx, ny, nz)
45 | I_computed2 = midpoint_triple2(
46 | g, a, b, c, d, e, f, nx, ny, nz)
47 | tol = 1E-14
48 | print(I_expected, I_computed1, I_computed2)
49 | assert abs(I_computed1 - I_expected) < tol
50 | assert abs(I_computed2 - I_expected) < tol
51 |
52 | if __name__ == '__main__':
53 | test_midpoint_triple()
54 |
--------------------------------------------------------------------------------
/py36-src/naive_Newton.py:
--------------------------------------------------------------------------------
1 | def naive_Newton(f, dfdx, x, eps):
2 | while abs(f(x)) > eps:
3 | x = x - float(f(x))/dfdx(x)
4 | print(x)
5 | return x
6 |
7 | def app_sqrt():
8 | def f(x):
9 | return x**2 - 9
10 | def dfdx(x):
11 | return 2*x
12 | print(naive_Newton(f, dfdx, 1000, 0.001))
13 |
14 | if __name__ == '__main__':
15 | app_sqrt()
16 |
17 |
--------------------------------------------------------------------------------
/py36-src/nonlinear_solvers.py:
--------------------------------------------------------------------------------
1 | import sys
2 |
3 | def bisection(f, x_L, x_R, eps, return_x_list=False):
4 | f_L = f(x_L)
5 | if f_L*f(x_R) > 0:
6 | print("""Error! Function does not have opposite
7 | signs at interval endpoints!""")
8 | sys.exit(1)
9 | x_M = float(x_L + x_R)/2
10 | f_M = f(x_M)
11 | iteration_counter = 1
12 | if return_x_list:
13 | x_list = []
14 |
15 | while abs(f_M) > eps:
16 | if f_L*f_M > 0: # i.e., same sign
17 | x_L = x_M
18 | f_L = f_M
19 | else:
20 | x_R = x_M
21 | x_M = float(x_L + x_R)/2
22 | f_M = f(x_M)
23 | iteration_counter += 1
24 | if return_x_list:
25 | x_list.append(x_M)
26 | if return_x_list:
27 | return x_list, iteration_counter
28 | else:
29 | return x_M, iteration_counter
30 |
31 | def Newton(f, dfdx, x, eps, return_x_list=False):
32 | f_value = f(x)
33 | iteration_counter = 0
34 | if return_x_list:
35 | x_list = []
36 |
37 | while abs(f_value) > eps and iteration_counter < 100:
38 | try:
39 | x = x - float(f_value)/dfdx(x)
40 | except ZeroDivisionError:
41 | print('Error! - derivative zero for x = {:g}'.format(x))
42 | sys.exit(1) # Abort with error
43 |
44 | f_value = f(x)
45 | iteration_counter += 1
46 | if return_x_list:
47 | x_list.append(x)
48 |
49 | # Here, either a solution is found, or too many iterations
50 | if abs(f_value) > eps:
51 | iteration_counter = -1 # i.e., lack of convergence
52 |
53 | if return_x_list:
54 | return x_list, iteration_counter
55 | else:
56 | return x, iteration_counter
57 |
58 | def secant(f, x0, x1, eps, return_x_list=False):
59 | f_x0 = f(x0)
60 | f_x1 = f(x1)
61 | iteration_counter = 0
62 | if return_x_list:
63 | x_list = []
64 |
65 | while abs(f_x1) > eps and iteration_counter < 100:
66 | try:
67 | denominator = float(f_x1 - f_x0)/(x1 - x0)
68 | x = x1 - float(f_x1)/denominator
69 | except ZeroDivisionError:
70 | print('Error! - denominator zero for x = {:g}'.format(x))
71 | sys.exit(1) # Abort with error
72 | x0 = x1
73 | x1 = x
74 | f_x0 = f_x1
75 | f_x1 = f(x1)
76 | iteration_counter += 1
77 | if return_x_list:
78 | x_list.append(x)
79 | # Here, either a solution is found, or too many iterations
80 | if abs(f_x1) > eps:
81 | iteration_counter = -1
82 |
83 | if return_x_list:
84 | return x_list, iteration_counter
85 | else:
86 | return x, iteration_counter
87 |
88 | from math import log
89 |
90 | def rate(x, x_exact):
91 | e = [abs(x_ - x_exact) for x_ in x]
92 | q = [log(e[n+1]/e[n])/log(e[n]/e[n-1])
93 | for n in range(1, len(e)-1, 1)]
94 | return q
95 |
--------------------------------------------------------------------------------
/py36-src/nonlinear_solvers_rates.py:
--------------------------------------------------------------------------------
1 | from nonlinear_solvers import bisection, Newton, secant, rate
2 |
3 | def f(x):
4 | return x**2 - 9
5 |
6 | def dfdx(x):
7 | return 2*x
8 |
9 | def print_rates(method, x, x_exact):
10 | q = ['%.2f' % q_ for q_ in rate(x, x_exact)]
11 | print method + ':'
12 | for q_ in q:
13 | print q_,
14 | print
15 |
16 | eps = 1e-6
17 |
18 | x, it = Newton(f, dfdx, 1000, eps, return_x_list=True)
19 | print_rates('Newton', x, 3)
20 |
21 | x0 = 1000; x1 = x0 - 1
22 | x, it = secant(f, x0, x1, eps, return_x_list=True)
23 | print_rates('Secant', x, 3)
24 |
25 | # The error model does not work well for Bisection when
26 | # the solution is approached
27 | x, it = bisection(f, 0, 1000, eps, return_x_list=True)
28 | print_rates('Bisection', x, 3)
29 | #e = [abs(x_-3) for x_ in x]
30 | #print [e[i+1]/e[i] for i in range(len(e)-1)]
31 |
32 |
33 |
34 |
--------------------------------------------------------------------------------
/py36-src/ode_FE.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | def ode_FE(f, U_0, dt, T):
5 | N_t = int(round(T/dt))
6 | u = np.zeros(N_t+1)
7 | t = np.linspace(0, N_t*dt, len(u))
8 | u[0] = U_0
9 | for n in range(N_t):
10 | u[n+1] = u[n] + dt*f(u[n], t[n])
11 | return u, t
12 |
13 | def demo_population_growth():
14 | """Test case: u'=r*u, u(0)=100."""
15 | def f(u, t):
16 | return 0.1*u
17 |
18 | u, t = ode_FE(f=f, U_0=100, dt=0.5, T=20)
19 | plt.plot(t, u, t, 100*np.exp(0.1*t))
20 | plt.show()
21 |
22 | if __name__ == '__main__':
23 | demo_population_growth()
24 |
--------------------------------------------------------------------------------
/py36-src/ode_system_FE.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | def ode_FE(f, U_0, dt, T):
5 | N_t = int(round(T/dt))
6 | # Ensure that any list/tuple returned from f_ is wrapped as array
7 | f_ = lambda u, t: np.asarray(f(u, t))
8 | u = np.zeros((N_t+1, len(U_0)))
9 | t = np.linspace(0, N_t*dt, len(u))
10 | u[0] = U_0
11 | for n in range(N_t):
12 | u[n+1] = u[n] + dt*f_(u[n], t[n])
13 | return u, t
14 |
15 | def demo_SIR():
16 | """Test case using a SIR model."""
17 | def f(u, t):
18 | S, I, R = u
19 | return [-beta*S*I, beta*S*I - gamma*I, gamma*I]
20 |
21 | beta = 10./(40*8*24)
22 | gamma = 3./(15*24)
23 | dt = 0.1 # 6 min
24 | D = 30 # Simulate for D days
25 | N_t = int(D*24/dt) # Corresponding no of time steps
26 | T = dt*N_t # End time
27 | U_0 = [50, 1, 0]
28 |
29 | u, t = ode_FE(f, U_0, dt, T)
30 |
31 | S = u[:,0]
32 | I = u[:,1]
33 | R = u[:,2]
34 | fig = plt.figure()
35 | l1, l2, l3 = plt.plot(t, S, t, I, t, R)
36 | fig.legend((l1, l2, l3), ('S', 'I', 'R'), 'center right')
37 | plt.xlabel('hours')
38 | plt.show()
39 |
40 | # Consistency check:
41 | N = S[0] + I[0] + R[0]
42 | eps = 1E-12 # Tolerance for comparing real numbers
43 | for n in range(len(S)):
44 | SIR_sum = S[n] + I[n] + R[n]
45 | if abs(SIR_sum - N) > eps:
46 | print('*** consistency check failed: S+I+R={:g} != {:g}'\
47 | .format(SIR_sum, N))
48 |
49 | if __name__ == '__main__':
50 | demo_SIR()
51 |
--------------------------------------------------------------------------------
/py36-src/osc_2nd_order.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def osc_2nd_order(U_0, omega, dt, T):
4 | """
5 | Solve u'' + omega**2*u = 0 for t in (0,T], u(0)=U_0 and u'(0)=0,
6 | by a central finite difference method with time step dt.
7 | """
8 | Nt = int(round(T/dt))
9 | u = np.zeros(Nt+1)
10 | t = np.linspace(0, Nt*dt, Nt+1)
11 |
12 | u[0] = U_0
13 | u[1] = u[0] - 0.5*dt**2*omega**2*u[0]
14 | for n in range(1, Nt):
15 | u[n+1] = 2*u[n] - u[n-1] - dt**2*omega**2*u[n]
16 | return u, t
17 |
--------------------------------------------------------------------------------
/py36-src/osc_EC.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | omega = 2
5 | P = 2*np.pi/omega
6 | dt = P/20
7 | T = 40*P
8 | T = P
9 | N_t = int(round(T/dt))
10 | t = np.linspace(0, N_t*dt, N_t+1)
11 | print('N_t:', N_t)
12 |
13 | u = np.zeros(N_t+1)
14 | v = np.zeros(N_t+1)
15 |
16 | # Initial condition
17 | X_0 = 2
18 | u[0] = X_0
19 | v[0] = 0
20 |
21 | # Step equations forward in time
22 | for n in range(N_t):
23 | v[n+1] = v[n] - dt*omega**2*u[n]
24 | u[n+1] = u[n] + dt*v[n+1]
25 |
26 | # Plot the last four periods to illustrate the accuracy
27 | # in long time simulations
28 | N4l = int(round(4*P/dt)) # No of intervals to be plotted
29 | fig = plt.figure()
30 | l1, l2 = plt.plot(t[-N4l:], u[-N4l:], 'b-',
31 | t[-N4l:], X_0*np.cos(omega*t)[-N4l:], 'r--')
32 | fig.legend((l1, l2), ('numerical', 'exact'), 'upper left')
33 | plt.xlabel('t')
34 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
35 | plt.show()
36 | print('{:.16f} {:.16f}'.format(u[-1], v[-1]))
--------------------------------------------------------------------------------
/py36-src/osc_EC_general.py:
--------------------------------------------------------------------------------
1 | from matplotlib.pyplot import plot, hold, legend, \
2 | xlabel, ylabel, savefig, title, figure, show
3 |
4 | def EulerCromer(f, s, F, m, T, U_0, V_0, dt):
5 | import numpy as np
6 | N_t = int(round(T/dt))
7 | print('N_t:', N_t)
8 | t = np.linspace(0, N_t*dt, N_t+1)
9 |
10 | u = np.zeros(N_t+1)
11 | v = np.zeros(N_t+1)
12 |
13 | # Initial condition
14 | u[0] = U_0
15 | v[0] = V_0
16 |
17 | # Step equations forward in time
18 | for n in range(N_t):
19 | v[n+1] = v[n] + dt*(1./m)*(F(t[n]) - f(v[n]) - s(u[n]))
20 | u[n+1] = u[n] + dt*v[n+1]
21 | return u, v, t
22 |
23 | def test_undamped_linear():
24 | """Compare with data from osc_EC.py in a linear problem."""
25 | import numpy as np
26 | omega = 2
27 | P = 2*np.pi/omega
28 | dt = P/20
29 | T = 40*P
30 | exact_v = -3.5035725322034139
31 | exact_u = 0.7283057044967003
32 | computed_u, computed_v, t = EulerCromer(
33 | f=lambda v: 0, s=lambda u: omega**2*u,
34 | F=lambda t: 0, m=1, T=T, U_0=2, V_0=0, dt=dt)
35 | diff_u = abs(exact_u - computed_u[-1])
36 | diff_v = abs(exact_v - computed_v[-1])
37 | tol = 1E-14
38 | assert diff_u < tol and diff_v < tol
39 |
40 | def _test_manufactured_solution(damping=True):
41 | import sympy as sp
42 | t, m, k, b = sp.symbols('t m k b')
43 | # Choose solution
44 | u = sp.sin(t)
45 | v = sp.diff(u, t)
46 | # Choose f, s, F
47 | f = b*v
48 | s = k*sp.tanh(u)
49 | F = sp.cos(2*t)
50 |
51 | equation = m*sp.diff(v, t) + f + s - F
52 |
53 | # Adjust F (source term because of manufactured solution)
54 | F += equation
55 | print('F:', F)
56 |
57 | # Set values for the symbols m, b, k
58 | m = 0.5
59 | k = 1.5
60 | b = 0.5 if damping else 0
61 | F = F.subs('m', m).subs('b', b).subs('k', k)
62 |
63 | print(f, s, F)
64 | # Turn sympy expression into Python function
65 | F = sp.lambdify([t], F)
66 | # Define Python functions for f and s
67 | # (the expressions above are functions of t, we need
68 | # s(u) and f(v)
69 | from numpy import tanh
70 | s = lambda u: k*tanh(u)
71 | f = lambda v: b*v
72 |
73 | # Add modules='numpy' such that exact u and v work
74 | # with t as array argument
75 | exact_u = sp.lambdify([t], u, modules='numpy')
76 | exact_v = sp.lambdify([t], v, modules='numpy')
77 |
78 |
79 | # Solve problem for different dt
80 | from numpy import pi, sqrt, sum, log
81 | P = 2*pi
82 | time_intervals_per_period = [20, 40, 80, 160, 240]
83 | h = [] # store discretization parameters
84 | E_u = [] # store errors in u
85 | E_v = [] # store errors in v
86 |
87 | for n in time_intervals_per_period:
88 | dt = P/n
89 | T = 8*P
90 | computed_u, computed_v, t = EulerCromer(
91 | f=f, s=s, F=F, m=m, T=T,
92 | U_0=exact_u(0), V_0=exact_v(0), dt=dt)
93 |
94 | error_u = sqrt(dt*sum((exact_u(t) - computed_u)**2))
95 | error_v = sqrt(dt*sum((exact_v(t) - computed_v)**2))
96 | h.append(dt)
97 | E_u.append(error_u)
98 | E_v.append(error_v)
99 |
100 | """
101 | # Compare exact and computed curves for this resolution
102 | figure()
103 | plot_u(computed_u, t, show=False)
104 | hold('on')
105 | plot(t, exact_u(t), show=True)
106 | legend(['numerical', 'exact'])
107 | savefig('tmp_%d.pdf' % n); savefig('tmp_%d.png' % n)
108 | """
109 | # Compute convergence rates
110 | r_u = [log(E_u[i]/E_u[i-1])/log(h[i]/h[i-1])
111 | for i in range(1, len(h))]
112 | r_v = [log(E_u[i]/E_u[i-1])/log(h[i]/h[i-1])
113 | for i in range(1, len(h))]
114 | tol = 0.02
115 | exact_r_u = 1.0 if damping else 2.0
116 | exact_r_v = 1.0 if damping else 2.0
117 | success = abs(exact_r_u - r_u[-1]) < tol and \
118 | abs(exact_r_v - r_v[-1]) < tol
119 | msg = ' u rate: {:.2f}, v rate: {:.2f}'.format(r_u[-1], r_v[-1])
120 | assert success, msg
121 |
122 | def test_manufactured_solution():
123 | _test_manufactured_solution(damping=True)
124 | _test_manufactured_solution(damping=False)
125 |
126 | # Plot the a percentage of the time series, up to the end, to
127 | # illustrate the accuracy in long time simulations
128 | def plot_u(u, t, percentage=100, show_plot=True, heading='', labels=('t', 'u')):
129 | index = int(len(u)*percentage/100)
130 | plot(t[-index:], u[-index:], 'b-')
131 | xlabel(labels[0]); ylabel(labels[1])
132 | title(heading)
133 | savefig('tmp.pdf'); savefig('tmp.png')
134 | if show_plot:
135 | show()
136 |
137 | def linear_damping():
138 | import numpy as np
139 | b = 0.3
140 | f = lambda v: b*v
141 | s = lambda u: k*u
142 | F = lambda t: 0
143 |
144 | m = 1
145 | k = 1
146 | U_0 = 1
147 | V_0 = 0
148 |
149 | T = 12*np.pi
150 | dt = T/5000.
151 |
152 | u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,
153 | U_0=U_0, V_0=V_0, dt=dt)
154 | plot_u(u, t)
155 |
156 | def linear_damping_sine_excitation():
157 | b = 0.3
158 | f = lambda v: b*v
159 | s = lambda u: k*u
160 | import math
161 | w = 3
162 | A = 0.5
163 | F = lambda t: A*math.sin(w*t)
164 |
165 | m = 1
166 | k = 1
167 | U_0 = 1
168 | V_0 = 0
169 |
170 | T = 12*math.pi
171 | dt = T/5000.
172 |
173 | u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,
174 | U_0=U_0, V_0=V_0, dt=dt)
175 | plot_u(u, t)
176 |
177 | def sliding_friction():
178 | from numpy import tanh, sign
179 |
180 | f = lambda v: mu*m*g*sign(v)
181 | alpha = 60.0
182 | s = lambda u: k/alpha*tanh(alpha*u)
183 | F = lambda t: 0
184 |
185 | g = 9.81
186 | mu = 0.4
187 | m = 1
188 | k = 1000
189 |
190 | U_0 = 0.1
191 | V_0 = 0
192 |
193 | T = 2
194 | dt = T/5000.
195 |
196 | u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,
197 | U_0=U_0, V_0=V_0, dt=dt)
198 | plot_u(u, t)
199 |
200 | if __name__ == '__main__':
201 | #linear_damping()
202 | #test_undamped_linear()
203 | #test_manufactured_solution()
204 | #sliding_friction()
205 | linear_damping_sine_excitation()
206 |
--------------------------------------------------------------------------------
/py36-src/osc_FE.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | omega = 2
5 | P = 2*np.pi/omega
6 | dt = P/20
7 | T = 3*P
8 | N_t = int(round(T/dt))
9 | t = np.linspace(0, N_t*dt, N_t+1)
10 |
11 | u = np.zeros(N_t+1)
12 | v = np.zeros(N_t+1)
13 |
14 | # Initial condition
15 | X_0 = 2
16 | u[0] = X_0
17 | v[0] = 0
18 |
19 | # Step equations forward in time
20 | for n in range(N_t):
21 | u[n+1] = u[n] + dt*v[n]
22 | v[n+1] = v[n] - dt*omega**2*u[n]
23 |
24 | fig = plt.figure()
25 | l1, l2 = plt.plot(t, u, 'b-', t, X_0*np.cos(omega*t), 'r--')
26 | fig.legend((l1, l2), ('numerical', 'exact'), 'upper right')
27 | plt.xlabel('t')
28 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
29 | plt.show()
30 |
31 | # Exact analytical solution
32 | plt.figure()
33 | u_num_ex = np.array([X_0*(1+1j*omega*dt)**n for n in range(N_t+1)])
34 | plt.plot(t, u, 'b-', t, u_num_ex.real, 'r-')
35 | plt.show()
36 |
--------------------------------------------------------------------------------
/py36-src/osc_Heun.py:
--------------------------------------------------------------------------------
1 | #from numpy import zeros, linspace, pi, cos
2 | import numpy as np
3 | import matplotlib.pyplot as plt
4 |
5 | def osc_Heun(X_0, omega, dt, T):
6 | N_t = int(round(T/dt))
7 | u = np.zeros(N_t+1)
8 | v = np.zeros(N_t+1)
9 | t = np.linspace(0, N_t*dt, N_t+1)
10 |
11 | # Initial condition
12 | u[0] = X_0
13 | v[0] = 0
14 |
15 | # Step equations forward in time
16 | for n in range(N_t):
17 | u_star = u[n] + dt*v[n]
18 | v_star = v[n] - dt*omega**2*u[n]
19 | u[n+1] = u[n] + 0.5*dt*(v[n] + v_star)
20 | v[n+1] = v[n] - 0.5*dt*omega**2*(u[n] + u_star)
21 | return u, v, t
22 |
23 | def demo():
24 | omega = 2
25 | P = 2*np.pi/omega
26 | dt = P/20
27 | T = 10*P
28 | X_0 = 2
29 | u, v, t = osc_Heun(X_0, omega, dt, T)
30 |
31 | fig = plt.figure()
32 | l1, l2 = plt.plot(t, u, 'b-', t, X_0*np.cos(omega*t), 'r--')
33 | fig.legend((l1, l2), ('numerical', 'exact'), 'upper left')
34 | plt.xlabel('t')
35 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
36 | plt.show()
37 |
38 | if __name__ == '__main__':
39 | demo()
40 |
--------------------------------------------------------------------------------
/py36-src/osc_RK4.py:
--------------------------------------------------------------------------------
1 | # Just use odespy...
2 |
3 | import odespy
4 | import matplotlib.pyplot as plt
5 |
6 | def f(u, t, omega=2):
7 | u, v = u
8 | return [v, -omega**2*u]
9 |
10 | def demo():
11 | from numpy import pi, linspace, cos
12 | omega = 2
13 | P = 2*pi/omega
14 | dt = P/20
15 | T = 40*P
16 | X_0 = 2
17 | RK4 = odespy.RK4(f, f_args=[omega])
18 | RK4.set_initial_condition([X_0, 0])
19 | N_t = int(round(T/dt))
20 | u, t = RK4.solve(linspace(0, T, N_t+1))
21 | u, v = u[:,0], u[:,1]
22 |
23 | # Last p periods
24 | p = 10
25 | m = p*20
26 | fig = plt.figure()
27 | l1, l2 = plt.plot(t[-m:], u[-m:], 'b-', t[-m:], X_0*cos(omega*t)[-m:], 'r--')
28 | fig.legend((l1, l2), ('numerical', 'exact'), 'lower left')
29 | plt.xlabel('t')
30 | plt.show()
31 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
32 |
33 | demo()
34 |
--------------------------------------------------------------------------------
/py36-src/osc_odespy.py:
--------------------------------------------------------------------------------
1 | """Use odespy to solve undamped oscillation ODEs."""
2 |
3 | import odespy
4 | import numpy as np
5 | import matplotlib.pyplot as plt
6 |
7 | def f(u, t, omega=2):
8 | v, u = u
9 | return [-omega**2*u, v]
10 |
11 | def compare(odespy_methods,
12 | omega,
13 | X_0,
14 | number_of_periods,
15 | time_intervals_per_period=20):
16 |
17 | P = 2*np.pi/omega # length of one period
18 | dt = P/time_intervals_per_period
19 | T = number_of_periods*P
20 |
21 | # If odespy_methods is not a list, but just the name of
22 | # a single Odespy solver, we wrap that name in a list
23 | # so we always have odespy_methods as a list
24 | if type(odespy_methods) != type([]):
25 | odespy_methods = [odespy_methods]
26 |
27 | # Make a list of solver objects
28 | solvers = [method(f, f_args=[omega]) for method in
29 | odespy_methods]
30 | for solver in solvers:
31 | solver.set_initial_condition([0, X_0])
32 |
33 | # Compute the time points where we want the solution
34 | N_t = int(round(T/dt))
35 | time_points = np.linspace(0, N_t*dt, N_t+1)
36 |
37 | legends = []
38 | for solver in solvers:
39 | sol, t = solver.solve(time_points)
40 | v = sol[:,0]
41 | u = sol[:,1]
42 |
43 | # Plot only the last p periods
44 | p = 6
45 | m = p*time_intervals_per_period # no time steps to plot
46 | plt.plot(t[-m:], u[-m:])
47 | plt.hold('on')
48 | legends.append(solver.name())
49 | plt.xlabel('t')
50 | # Plot exact solution too
51 | plt.plot(t[-m:], X_0*np.cos(omega*t)[-m:], 'k--')
52 | legends.append('exact')
53 | plt.legend(legends, loc='lower left')
54 | plt.axis([t[-m], t[-1], -2*X_0, 2*X_0])
55 | plt.title('Simulation of {:d} periods with {:d} intervals per period'\
56 | .format(number_of_periods, time_intervals_per_period))
57 | plt.savefig('tmp.pdf'); plt.savefig('tmp.png')
58 | plt.show()
59 |
60 | # some relevant methods to use when calling campare: odespy.Heun,
61 | # odespy.EulerCromer, odespy.BackwardEuler, odespy.RKFehlberg,
62 |
63 | #compare(odespy_methods=[odespy.Heun, odespy.EulerCromer ],
64 | # omega=2, X_0=2, number_of_periods=20,
65 | # time_intervals_per_period=20)
66 |
67 | #compare(odespy_methods=[odespy.EulerCromer, odespy.RKFehlberg ],
68 | # omega=2, X_0=2, number_of_periods=200,
69 | # time_intervals_per_period=40)
70 |
71 | #compare(odespy_methods=[odespy.RK4],
72 | # omega=2, X_0=2, number_of_periods=200,
73 | # time_intervals_per_period=40)
74 |
75 | compare(odespy_methods=[odespy.EulerCromer, odespy.BackwardEuler],
76 | omega=2, X_0=2,number_of_periods=6,
77 | time_intervals_per_period=60)
78 |
--------------------------------------------------------------------------------
/py36-src/osc_odespy_general.py:
--------------------------------------------------------------------------------
1 | """Use odespy to solve general oscillation ODEs."""
2 |
3 | import odespy
4 | from matplotlib.pyplot import \
5 | plot, savefig, legend, xlabel, figure, title, hold, axis, show
6 |
7 | def compare(odespy_methods, f, s, F, m, U_0, V_0, T, dt,
8 | start_of_plot=0, umin=None, umax=None,
9 | exact_solution=None):
10 | from numpy import linspace, zeros
11 |
12 | def rhs(sol, t, m, f, s, F):
13 | # This function will remember the variables in the compare
14 | # function, such as m, F, s, and f, even when called from
15 | # odespy
16 | v, u = sol
17 | return [(1./m)*(F(t) - s(u) - f(v)),
18 | v]
19 |
20 | # If odespy_methods is not a list, but just the name of
21 | # a single Odespy solver, we wrap that name in a list
22 | # so we always have odespy_methods as a list
23 | if type(odespy_methods) != type([]):
24 | odespy_methods = [odespy_methods]
25 |
26 | # Make a list of solver objects
27 | solvers = [method(rhs, f_args=[m, f, s, F]) for method in
28 | odespy_methods]
29 | for solver in solvers:
30 | solver.set_initial_condition([V_0, U_0])
31 |
32 | # Compute the time points where we want the solution
33 | dt = float(dt) # avoid integer division
34 | N_t = int(round(T/dt))
35 | time_points = linspace(0, N_t*dt, N_t+1)
36 |
37 | # Convert start_of_plot to index m: m*dt = start_of_plot
38 | m = int(round(start_of_plot/dt))
39 |
40 | legends = []
41 | for solver in solvers:
42 | sol, t = solver.solve(time_points)
43 | v = sol[:,0]
44 | u = sol[:,1]
45 |
46 | if len(solvers) == 1:
47 | plot(t[m:], u[m:], 'b-') # blue line without markers
48 | else:
49 | plot(t[m:], u[m:]) # automatic line marker/color
50 | hold('on')
51 | legends.append(solver.name())
52 | xlabel('t')
53 | # Plot exact solution if available
54 | if exact_solution:
55 | plot(t[m:], exact_solution(t[m:]), 'k--')
56 | legends.append('exact')
57 | legend(legends, loc='lower left')
58 | if umin is not None and umax is not None:
59 | axis([t[m:], t[-1], umin, umax])
60 | savefig('tmp.pdf'); savefig('tmp.png')
61 | show()
62 |
63 | def undamped_linear():
64 | omega = 2
65 | number_of_periods = 60
66 | time_intervals_per_period = 20
67 |
68 | from numpy import pi, linspace, cos
69 | P = 2*pi/omega # length of one period
70 | dt = P/time_intervals_per_period
71 | T = number_of_periods*P
72 |
73 | methods = [odespy.EulerCromer]
74 | X_0 = 2
75 | compare(methods,
76 | f=lambda v: 0,
77 | s=lambda u: omega**2*u,
78 | F=lambda t: 0,
79 | m=1, U_0=X_0, V_0=0, T=T, dt=dt,
80 | start_of_plot=T-6*P,
81 | umin=-2*X_0, umax=2*X_0,
82 | exact_solution=lambda t: X_0*cos(omega*t))
83 |
84 | def sliding_friction():
85 | from numpy import tanh, sign
86 |
87 | f = lambda v: mu*m*g*sign(v)
88 | alpha = 60.0
89 | s = lambda u: k/alpha*tanh(alpha*u)
90 | #s = lambda u: k*u
91 | F = lambda t: 0
92 |
93 | g = 9.81
94 | mu = 0.4
95 | m = 1
96 | k = 1000
97 |
98 | U_0 = 0.1
99 | V_0 = 0
100 |
101 | T = 1
102 | dt = T/5000.
103 |
104 | methods = [odespy.EulerCromer, odespy.ForwardEuler]
105 | compare(methods, f=f, s=s, F=F, m=1, U_0=U_0, V_0=V_0,
106 | T=T, dt=dt, start_of_plot=0)
107 |
108 | #undamped_linear()
109 | sliding_friction()
110 |
--------------------------------------------------------------------------------
/py36-src/plot_multiple_curves.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | t = np.linspace(-2, 2, 100) # choose 100 points in time interval
5 |
6 | f_values = t**2
7 | g_values = np.exp(t)
8 |
9 | plt.plot(t, f_values, 'r', t, g_values, 'b--')
10 | plt.xlabel('t')
11 | plt.ylabel('f and g')
12 | plt.legend(['t**2', 'e**t'])
13 | plt.title('Plotting of two functions (t**2 and e**t)')
14 | plt.grid('on')
15 | plt.axis([-3, 3, -1, 10])
16 | plt.show()
--------------------------------------------------------------------------------
/py36-src/print_columns.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | from math import sin
4 |
5 | t0 = 2
6 | dt = 0.55
7 |
8 | t = t0 + 0*dt; g = t*sin(t)
9 | print('{:6.2f} {:8.3f}'.format(t, g))
10 |
11 | t = t0 + 1*dt; g = t*sin(t)
12 | print('{:6.2f} {:8.3f}'.format(t, g))
13 |
14 | t = t0 + 2*dt; g = t*sin(t)
15 | print('{:6.2f} {:8.3f}'.format(t, g))
16 |
17 | print("""hei1
18 | hei2 {}
19 | hei3 {} hei4
20 | yes!""".format(t, g))
--------------------------------------------------------------------------------
/py36-src/print_rates.py:
--------------------------------------------------------------------------------
1 | from nonlinear_solvers import rate
2 |
3 | def print_rates(method, x, x_exact):
4 | q = ['{:.2f}'.format(q_) for q_ in rate(x, x_exact)]
5 | print(method + ':')
6 | for q_ in q:
7 | print(q_, " ", end="") # end="" suppresses newline
8 |
9 | if __name__ == '__main__':
10 | print_rates('Newton', x = [1, 2, 3, 4, 5], x_exact = 3)
11 |
--------------------------------------------------------------------------------
/py36-src/random_walk_2D.py:
--------------------------------------------------------------------------------
1 | import random
2 | import numpy as np
3 | import matplotlib.pyplot as plt
4 |
5 | N = 1000 # number of steps
6 | d = 1 # step length (e.g., in meter)
7 | x = np.zeros(N+1) # x coordinates
8 | y = np.zeros(N+1) # y coordinates
9 | x[0] = 0; y[0] = 0 # set initial position
10 |
11 | for i in range(0, N, 1):
12 | r = random.random() # random number in [0,1)
13 | if 0 <= r < 0.25: # move north
14 | y[i+1] = y[i] + d
15 | x[i+1] = x[i]
16 | elif 0.25 <= r < 0.5: # move east
17 | x[i+1] = x[i] + d
18 | y[i+1] = y[i]
19 | elif 0.5 <= r < 0.75: # move south
20 | y[i+1] = y[i] - d
21 | x[i+1] = x[i]
22 | else: # move west
23 | x[i+1] = x[i] - d
24 | y[i+1] = y[i]
25 |
26 | # plot path (mark start and stop with blue o and *, respectively)
27 | plt.plot(x, y, 'r--', x[0], y[0], 'bo', x[-1], y[-1], 'b*')
28 | plt.xlabel('x'); plt.ylabel('y')
29 | plt.show()
30 |
--------------------------------------------------------------------------------
/py36-src/rate_exponential.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | a = 0.0; b = 3.0 # time interval
5 | N = 30 # number of time steps
6 | dt = (b - a)/N # time step (s)
7 | V = np.zeros(N+1) # numerically computed volume (L)
8 | V[0] = 1 # inital volume
9 |
10 | for i in range(0, N, 1):
11 | V[i+1] = V[i] + dt*V[i] # ...r is V now
12 |
13 | time_exact = np.linspace(a, b, 1000)
14 | V_exact = np.exp(time_exact) # make exact solution (for plotting)
15 | time = np.linspace(0, 3, N+1)
16 | plt.plot(time, V, 'bo-', time_exact, V_exact, 'r')
17 | plt.title('Case 2')
18 | plt.legend(['numerical','exact'], loc='upper left')
19 | plt.xlabel('t (s)')
20 | plt.ylabel('V (L)')
21 | plt.show()
--------------------------------------------------------------------------------
/py36-src/rate_piecewise_constant.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | a = 0.0; b = 3.0 # time interval
5 | N = 3 # number of time steps
6 | dt = (b - a)/N # time step (s)
7 | V_exact = [1.0, 2.0, 5.0, 12.0] # exact volumes (L)
8 | V = np.zeros(4) # numerically computed volume (L)
9 | V[0] = 1 # inital volume
10 | r = np.zeros(3) # rates of volume increase (L/s)
11 | r[0] = 1; r[1] = 3; r[2] = 7
12 |
13 | for i in [0, 1, 2]:
14 | V[i+1] = V[i] + dt*r[i]
15 |
16 | time = [0, 1, 2, 3]
17 | plt.plot(time, V, 'bo-', time, V_exact, 'r')
18 | plt.title('Case 1')
19 | plt.legend(['numerical','exact'], loc='upper left')
20 | plt.xlabel('t (s)')
21 | plt.ylabel('V (L)')
22 | plt.show()
23 |
--------------------------------------------------------------------------------
/py36-src/rod_BE.py:
--------------------------------------------------------------------------------
1 | """Temperature evolution in a rod, computed by a BackwardEuler method."""
2 |
3 | from numpy import linspace, zeros, linspace
4 |
5 | def rhs(u, t):
6 | N = len(u) - 1
7 | rhs = zeros(N+1)
8 | rhs[0] = dsdt(t)
9 | for i in range(1, N):
10 | rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \
11 | g(x[i], t)
12 | rhs[N] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
13 | 2*u[i]) + g(x[N], t)
14 | return rhs
15 |
16 | def K(u, t):
17 | N = len(u) - 1
18 | K = zeros((N+1,N+1))
19 | K[0,0] = 0
20 | for i in range(1, N):
21 | K[i,i-1] = beta/dx**2
22 | K[i,i] = -2*beta/dx**2
23 | K[i,i+1] = beta/dx**2
24 | K[N,N-1] = (beta/dx**2)*2
25 | K[N,N] = (beta/dx**2)*(-2)
26 | return K
27 |
28 | def rhs_vec(u, t):
29 | N = len(u) - 1
30 | rhs = zeros(N+1)
31 | rhs[0] = dsdt(t)
32 | rhs[1:N] = (beta/dx**2)*(u[2:N+1] - 2*u[1:N] + u[0:N-1]) + \
33 | g(x[1:N], t)
34 | i = N
35 | rhs[i] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
36 | 2*u[i]) + g(x[N], t)
37 | return rhs
38 |
39 | def K_vec(u, t):
40 | """Vectorized computation of K."""
41 | N = len(u) - 1
42 | K = zeros((N+1,N+1))
43 | K[0,0] = 0
44 | K[1:N-1] = beta/dx**2
45 | K[1:N] = -2*beta/dx**2
46 | K[2:N+1] = beta/dx**2
47 | K[N,N-1] = (beta/dx**2)*2
48 | K[N,N] = (beta/dx**2)*(-2)
49 | return K
50 |
51 | def dudx(t):
52 | return 0
53 |
54 | def s(t):
55 | return 323
56 |
57 | def dsdt(t):
58 | return 0
59 |
60 | def g(x, t):
61 | return 0
62 |
63 | L = 0.5
64 | beta = 8.2E-5
65 | N = 40
66 | x = linspace(0, L, N+1)
67 | dx = x[1] - x[0]
68 | u = zeros(N+1)
69 |
70 | U_0 = zeros(N+1)
71 | U_0[0] = s(0)
72 | U_0[1:] = 283
73 | dt = dx**2/(2*beta)
74 | print('stability limit:', dt)
75 | dt = 600 # 10 min
76 |
77 | import odespy
78 | solver = odespy.BackwardEuler(rhs, f_is_linear=True, jac=K)
79 | solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)
80 | solver.set_initial_condition(U_0)
81 | T = 1*60*60
82 | N_t = int(round(T/dt))
83 | time_points = linspace(0, T, N_t+1)
84 | u, t = solver.solve(time_points)
85 |
86 | # Make movie
87 | import os
88 | os.system('rm tmp_*.png')
89 | import matplotlib.pyplot as plt
90 | import time
91 | plt.ion()
92 | y = u[0,:]
93 | lines = plt.plot(x, y)
94 | plt.axis([x[0], x[-1], 273, s(0)+10])
95 | plt.xlabel('x')
96 | plt.ylabel('u(x,t)')
97 | counter = 0
98 | for i in range(0, u.shape[0]):
99 | print(t[i])
100 | lines[0].set_ydata(u[i,:])
101 | plt.legend(['t=%.0f' % t[i]])
102 | plt.draw()
103 | plt.savefig('tmp_%04d.png' % counter)
104 | counter += 1
105 | time.sleep(0.2)
106 |
--------------------------------------------------------------------------------
/py36-src/rod_FE.py:
--------------------------------------------------------------------------------
1 | """Temperature evolution in a rod, computed by a ForwardEuler method."""
2 |
3 | import numpy as np
4 |
5 | def rhs(u, t):
6 | N = len(u) - 1
7 | rhs = np.zeros(N+1)
8 | rhs[0] = dsdt(t)
9 | for i in range(1, N):
10 | rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \
11 | g(x[i], t)
12 | i = N
13 | rhs[i] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
14 | 2*u[i]) + g(x[N], t)
15 | return rhs
16 |
17 | def dudx(t):
18 | return 0
19 |
20 | def s(t):
21 | return 323
22 |
23 | def dsdt(t):
24 | return 0
25 |
26 | def g(x, t):
27 | return 0
28 |
29 |
30 | L = 0.5
31 | beta = 8.2E-5
32 | N = 40
33 | x = np.linspace(0, L, N+1)
34 | dx = x[1] - x[0]
35 | u = np.zeros(N+1)
36 |
37 | U_0 = np.zeros(N+1)
38 | U_0[0] = s(0)
39 | U_0[1:] = 283
40 | dt = dx**2/(2*beta)
41 | print('stability limit:', dt)
42 | #dt = 0.00034375
43 |
44 | from ode_system_FE import ode_FE
45 | u, t = ode_FE(rhs, U_0, dt, T=1*60*60)
46 |
47 | # Make movie
48 | import os
49 | os.system('rm tmp_*.png')
50 | import matplotlib.pyplot as plt
51 | plt.ion()
52 | y = u[0,:]
53 | lines = plt.plot(x, y)
54 | plt.axis([x[0], x[-1], 273, s(0)+10])
55 | plt.xlabel('x')
56 | plt.ylabel('u(x,t)')
57 | counter = 0
58 | # Plot each of the first 100 frames, then increase speed by 10x
59 | change_speed = 100
60 | for i in range(0, u.shape[0]):
61 | print(t[i])
62 | plot = True if i <= change_speed else i % 10 == 0
63 | lines[0].set_ydata(u[i,:])
64 | if i > change_speed:
65 | plt.legend(['t={:.0f} 10x'.format(t[i])])
66 | else:
67 | plt.legend(['t={:.0f}'.format(t[i])])
68 | plt.draw()
69 | if plot:
70 | plt.savefig('tmp_{:04d}.png'.format(counter))
71 | counter += 1
72 | #time.sleep(0.2)
73 |
--------------------------------------------------------------------------------
/py36-src/rod_FE_scaled.py:
--------------------------------------------------------------------------------
1 | """Temperature evolution in a rod, computed by a ForwardEuler method."""
2 | # As rod_FE.py, but here physical parameters are set for the
3 | # scaled problem.
4 |
5 | from numpy import linspace, zeros, linspace
6 | import time
7 |
8 | def rhs(u, t):
9 | N = len(u) - 1
10 | rhs = zeros(N+1)
11 | rhs[0] = dsdt(t)
12 | for i in range(1, N):
13 | rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \
14 | f(x[i], t)
15 | i = N
16 | rhs[i] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
17 | 2*u[i]) + f(x[N], t)
18 | return rhs
19 |
20 | def dudx(t):
21 | return 0
22 |
23 | def s(t):
24 | return 1
25 |
26 | def dsdt(t):
27 | return 0
28 |
29 | def f(x, t):
30 | return 0
31 |
32 |
33 | L = 1
34 | beta = 1
35 | N = 40
36 | x = linspace(0, L, N+1)
37 | dx = x[1] - x[0]
38 | u = zeros(N+1)
39 |
40 | U_0 = zeros(N+1)
41 | U_0[0] = s(0)
42 | U_0[1:] = 0
43 | dt = dx**2/(2*beta)
44 | print 'stability limit:', dt
45 |
46 | t0 = time.clock()
47 | from ode_system_FE import ode_FE
48 | u, t = ode_FE(rhs, U_0, dt, T=1.2)
49 | t1 = time.clock()
50 | print 'CPU time: %.1fs' % (t1 - t0)
51 |
52 | # Make movie
53 | import os
54 | os.system('rm tmp_*.png')
55 | import matplotlib.pyplot as plt
56 | plt.ion()
57 | y = u[0,:]
58 | lines = plt.plot(x, y)
59 | plt.axis([x[0], x[-1], -0.1, 1.2*s(0)])
60 | plt.xlabel('x')
61 | plt.ylabel('u(x,t)')
62 | counter = 0
63 | # Plot each of the first 100 frames, then increase speed by 10x
64 | change_speed = 100
65 | for i in range(0, u.shape[0]):
66 | print t[i]
67 | plot = True if i <= change_speed else i % 10 == 0
68 | lines[0].set_ydata(u[i,:])
69 | if i > change_speed:
70 | plt.legend(['t=%.3f 10x' % t[i]])
71 | else:
72 | plt.legend(['t=%.3f' % t[i]])
73 | plt.draw()
74 | if plot:
75 | plt.savefig('tmp_%04d.png' % counter)
76 | counter += 1
77 | #time.sleep(0.2)
78 |
--------------------------------------------------------------------------------
/py36-src/rod_FE_vec.py:
--------------------------------------------------------------------------------
1 | """Temperature evolution in a rod, computed by a ForwardEuler method."""
2 |
3 | from numpy import linspace, zeros, linspace
4 |
5 | def rhs(u, t):
6 | N = len(u) - 1
7 | rhs = zeros(N+1)
8 | rhs[0] = dsdt(t)
9 | rhs[1:N] = (beta/dx**2)*(u[2:N+1] - 2*u[1:N] + u[0:N-1]) + \
10 | g(x[1:N], t)
11 | i = N
12 | rhs[i] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
13 | 2*u[i]) + g(x[i], t)
14 | return rhs
15 |
16 | def dudx(t):
17 | return 0
18 |
19 | def s(t):
20 | return 423
21 |
22 | def dsdt(t):
23 | return 0
24 |
25 | def g(x, t):
26 | return 0
27 |
28 |
29 | L = 1
30 | beta = 1
31 | N = 100
32 | x = linspace(0, L, N+1)
33 | dx = x[1] - x[0]
34 | u = zeros(N+1)
35 |
36 | U_0 = zeros(N+1)
37 | U_0[0] = s(0)
38 | U_0[1:] = 283
39 | dt = dx**2/(2*beta)
40 | print('stability limit:', dt)
41 | #dt = 0.00034375
42 |
43 | from ode_system_FE import ode_FE
44 | u, t = ode_FE(rhs, U_0, dt, T=1.2)
45 | import sys; sys.exit(0)
46 |
47 | # Make movie
48 | import os
49 | os.system('rm tmp_*.png')
50 | import matplotlib.pyplot as plt
51 | plt.ion()
52 | y = u[0,:]
53 | lines = plt.plot(x, y)
54 | plt.axis([x[0], x[-1], 273, 1.2*s(0)])
55 | plt.xlabel('x')
56 | plt.ylabel('u(x,t)')
57 | counter = 0
58 | for i in range(0, u.shape[0]):
59 | print(t[i])
60 | lines[0].set_ydata(u[i,:])
61 | plt.legend(['t={:.3f}'.format(t[i])])
62 | plt.draw()
63 | if i % 10 == 0: # plot every x steps
64 | plt.savefig('tmp_{:04d}.png'.format(counter))
65 | counter += 1
66 | #time.sleep(0.2)
67 |
--------------------------------------------------------------------------------
/py36-src/rod_odespy.py:
--------------------------------------------------------------------------------
1 | """Temperature evolution in a rod, computed by explicit odespy solvers."""
2 |
3 | from numpy import linspace, zeros, linspace, array
4 | import matplotlib.pyplot as plt
5 | import time
6 |
7 | def rhs(u, t):
8 | N = len(u) - 1
9 | rhs = zeros(N+1)
10 | rhs[0] = dsdt(t)
11 | for i in range(1, N):
12 | rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \
13 | f(x[i], t)
14 | rhs[N] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -
15 | 2*u[i]) + f(x[N], t)
16 | return rhs
17 |
18 | def dudx(t):
19 | return 0
20 |
21 | def s(t):
22 | return 423
23 |
24 | def dsdt(t):
25 | return 0
26 |
27 | def f(x, t):
28 | return 0
29 |
30 |
31 | L = 1
32 | beta = 1
33 | N = 40
34 | x = linspace(0, L, N+1)
35 | dx = x[1] - x[0]
36 | u = zeros(N+1)
37 |
38 | U_0 = zeros(N+1)
39 | U_0[0] = s(0)
40 | U_0[1:] = 283
41 | dt = dx**2/(2*beta)
42 | print 'stability limit:', dt
43 | dt *= 100
44 |
45 | import odespy
46 | solver = odespy.RKFehlberg(rhs, rtol=1E-6, atol=1E-8)
47 | solver.set_initial_condition(U_0)
48 | T = 1.2
49 | N_t = int(round(T/float(dt)))
50 | time_points = linspace(0, T, N_t+1)
51 | u, t = solver.solve(time_points)
52 |
53 | # Check how many time steps required by adaptive vs
54 | # fixed-step methods
55 | if hasattr(solver, 't_all'):
56 | print '# time steps:', len(solver.t_all)
57 | plt.figure()
58 | plt.plot(array(solver.t_all[1:]) - array(solver.t_all[:-1]))
59 | plt.title('Evolution of the time step in %s' % solver.__class__.__name__)
60 | plt.savefig('tmp.png'); plt.savefig('tmp.pdf')
61 | plt.show()
62 | else:
63 | print '# time steps:', len(t)
64 |
65 | # Make movie
66 | import os
67 | os.system('rm tmp_*.png')
68 | plt.figure()
69 | plt.ion()
70 | y = u[0,:]
71 | lines = plt.plot(x, y)
72 | plt.axis([x[0], x[-1], 273, 1.2*s(0)])
73 | plt.xlabel('x')
74 | plt.ylabel('u(x,t)')
75 | counter = 0
76 | for i in range(0, u.shape[0]):
77 | print t[i]
78 | lines[0].set_ydata(u[i,:])
79 | plt.legend(['t=%.3f' % t[i]])
80 | plt.draw()
81 | if i % 5 == 0: # plot every 5 steps
82 | plt.savefig('tmp_%04d.png' % counter)
83 | counter += 1
84 | #time.sleep(0.2)
85 |
--------------------------------------------------------------------------------
/py36-src/rod_units.py:
--------------------------------------------------------------------------------
1 | from PhysicalQuantities import PhysicalQuantity as PQ
2 | rho = PQ('2.7E+3 kg/m**3')
3 | kappa = PQ('200 W/(m*K)')
4 | c = PQ('900 J/(K*kg)')
5 | beta = kappa/(rho*c)
6 | beta = PQ('%g m**2/s' % beta.getValue())
7 | print beta
8 |
--------------------------------------------------------------------------------
/py36-src/search_solutions_1eqn.py:
--------------------------------------------------------------------------------
1 | from numpy import linspace, sin, cos, exp, sqrt
2 | import matplotlib.pyplot as plt
3 |
4 | def f(x):
5 | return exp(sqrt(x))*sin(2*x) + cos(x)**5 + 8
6 |
7 | a = 0; b = 7; n = 200000
8 | dx = float(b-a)/n
9 | eps = 0.001
10 |
11 | for i in range(0, n+1, 1):
12 | x = a + i*dx
13 | f_value = f(x)
14 | if abs(f_value) < eps:
15 | print "x: %f , f_value: %f " % (x, f_value)
16 |
17 | x_plot = linspace(a, b, n+1)
18 | plt.plot(x_plot, f(x_plot), 'b-')
19 | plt.xlabel('x')
20 | plt.ylabel('f(x)')
21 | plt.grid('on')
22 | plt.show()
23 | plt.savefig('search_solutions_1eqn.pdf')
24 |
--------------------------------------------------------------------------------
/py36-src/secant_method.py:
--------------------------------------------------------------------------------
1 | import sys
2 |
3 | def secant(f, x0, x1, eps):
4 | f_x0 = f(x0)
5 | f_x1 = f(x1)
6 | iteration_counter = 0
7 | while abs(f_x1) > eps and iteration_counter < 100:
8 | try:
9 | denominator = (f_x1 - f_x0)/(x1 - x0)
10 | x = x1 - f_x1/denominator
11 | except ZeroDivisionError:
12 | print('Error! - denominator zero for x = ', x)
13 | sys.exit(1) # Abort with error
14 | x0 = x1
15 | x1 = x
16 | f_x0 = f_x1
17 | f_x1 = f(x1)
18 | iteration_counter = iteration_counter + 1
19 | # Here, either a solution is found, or too many iterations
20 | if abs(f_x1) > eps:
21 | iteration_counter = -1
22 | return x, iteration_counter
23 |
24 | if __name__ == '__main__':
25 | def f(x):
26 | return x**2 - 9
27 |
28 | x0 = 1000; x1 = x0 - 1
29 |
30 | solution, no_iterations = secant(f, x0, x1, eps=1.0e-6)
31 |
32 | if no_iterations > 0: # Solution found
33 | print('Number of function calls: {:d}'.format(2+no_iterations))
34 | print('A solution is: {:f}'.format(solution))
35 | else:
36 | print('Solution not found!')
37 |
--------------------------------------------------------------------------------
/py36-src/swim_advisor.py:
--------------------------------------------------------------------------------
1 | T = float(input('What is the water temperature? '))
2 |
3 | if T > 24:
4 | # testing condition 1
5 | print('Great, jump in!')
6 | elif 20 <= T <= 24:
7 | # testing condition 2
8 | print('Not bad. Put your toe in first!')
9 | else:
10 | print('Do not swim. Too cold!')
11 | # First line after if-elif-else construction
--------------------------------------------------------------------------------
/py36-src/system_nonlin_eqns_Newton.py:
--------------------------------------------------------------------------------
1 | import sys
2 | from numpy import matrix, sqrt
3 |
4 | def f(x, y):
5 | return matrix([[y - x**2, y - 2 + x**4]])
6 |
7 | def J(x):
8 | return matrix([[-2*x, 1], [4*x**3, 1]])
9 |
10 | x = matrix([[2.0, 2.0]]).T # Starting values
11 | f_eval = f(float(x[[0],[0]]), float(x[[1],[0]]))
12 | error_limit = 0.001
13 | no_iterations = 0
14 | it_limit = 100
15 | while sqrt(f_eval[[0],[0]]**2 + f_eval[[0],[1]]**2) > error_limit and \
16 | no_iterations < it_limit:
17 | try:
18 | x = x - J(float(x[[0],[0]])).I*f(float(x[[0],[0]]),\
19 | float(x[[1],[0]])).T
20 | print x, '\n'
21 | f_eval = f(float(x[[0],[0]]), float(x[[1],[0]]))
22 | no_iterations += 1
23 | except:
24 | print "Error! - Jacobian not invertible for x = ", x
25 | sys.exit(1) # Abort with error
26 |
--------------------------------------------------------------------------------
/py36-src/test_diffusion_pde_exact_linear.py:
--------------------------------------------------------------------------------
1 | """Verify the implementation of the diffusion equation."""
2 |
3 | from ode_system_FE import ode_FE
4 | import numpy as np
5 |
6 | def rhs(u, t):
7 | N = len(u) - 1
8 | rhs = np.zeros(N+1)
9 | rhs[0] = dsdt(t)
10 | for i in range(1, N):
11 | rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \
12 | g(x[i], t)
13 | rhs[N] = (beta/dx**2)*(2*u[N-1] + 2*dx*dudx(t) -
14 | 2*u[N]) + g(x[N], t)
15 | return rhs
16 |
17 | def u_exact(x, t):
18 | return (3*t + 2)*(x - L)
19 |
20 | def dudx(t):
21 | return (3*t + 2)
22 |
23 | def s(t):
24 | return u_exact(0, t)
25 |
26 | def dsdt(t):
27 | return 3*(-L)
28 |
29 | def g(x, t):
30 | return 3*(x-L)
31 |
32 |
33 | def verify_sympy_ForwardEuler():
34 | import sympy as sp
35 | beta, x, t, dx, dt, L = sp.symbols('beta x t dx dt L')
36 | u = lambda x, t: (3*t + 2)*(x - L)**2
37 | f = lambda x, t, beta, L: 3*(x-L)**2 - (3*t + 2)*2*beta
38 | s = lambda t: (3*t + 2)*L**2
39 | N = 4
40 | rhs = [None]*(N+1)
41 | rhs[0] = sp.diff(s(t), t)
42 | for i in range(1, N):
43 | rhs[i] = (beta/dx**2)*(u(x+dx,t) - 2*u(x,t) + u(x-dx,t)) + \
44 | f(x, t, beta, L)
45 | rhs[N] = (beta/dx**2)*(u(x-dx,t) + 2*dx*(3*t+2) -
46 | 2*u(x,t) + u(x-dx,t)) + f(x, t, beta, L)
47 | for i in range(len(rhs)):
48 | rhs[i] = sp.simplify(sp.expand(rhs[i])).subs(x, i*dx)
49 | print(rhs[i])
50 | lhs = (u(x, t+dt) - u(x,t))/dt # Forward Euler difference
51 | lhs = sp.simplify(sp.expand(lhs.subs(x, i*dx)))
52 | print(lhs)
53 | print(sp.simplify(lhs - rhs[i]))
54 | print('---')
55 |
56 | def test_diffusion_exact_linear():
57 | global beta, dx, L, x # needed in rhs
58 | L = 1.5
59 | beta = 0.5
60 | N = 4
61 | x = np.linspace(0, L, N+1)
62 | dx = x[1] - x[0]
63 | u = np.zeros(N+1)
64 |
65 | U_0 = np.zeros(N+1)
66 | U_0[0] = s(0)
67 | U_0[1:] = u_exact(x[1:], 0)
68 | dt = 0.1
69 | print(dt)
70 |
71 | u, t = ode_FE(rhs, U_0, dt, T=1.2)
72 |
73 | tol = 1E-12
74 | for i in range(0, u.shape[0]):
75 | diff = np.abs(u_exact(x, t[i]) - u[i,:]).max()
76 | assert diff < tol, 'diff={:.16g}'.format(diff)
77 | print('diff={:g} at t={:g}'.format(diff, t[i]))
78 |
79 | if __name__ == '__main__':
80 | test_diffusion_exact_linear()
81 | verify_sympy_ForwardEuler()
82 |
--------------------------------------------------------------------------------
/py36-src/test_ode_FE_exact_linear.py:
--------------------------------------------------------------------------------
1 | from ode_FE import ode_FE
2 |
3 | def test_ode_FE():
4 | """Test that a linear u(t)=a*t+b is exactly reproduced."""
5 |
6 | def exact_solution(t):
7 | return a*t + b
8 |
9 | def f(u, t): # ODE
10 | return a + (u - exact_solution(t))**m
11 |
12 | a = 4
13 | b = -1
14 | m = 6
15 |
16 | dt = 0.5
17 | T = 20.0
18 |
19 | u, t = ode_FE(f, exact_solution(0), dt, T)
20 | diff = abs(exact_solution(t) - u).max()
21 | tol = 1E-15 # Tolerance for float comparison
22 | success = diff < tol
23 | assert success
24 |
25 | test_ode_FE()
26 |
--------------------------------------------------------------------------------
/py36-src/test_trapezoidal.py:
--------------------------------------------------------------------------------
1 | from trapezoidal import trapezoidal
2 |
3 | def test_trapezoidal_one_exact_result():
4 | """Compare one hand-computed result."""
5 | from math import exp
6 | v = lambda t: 3*(t**2)*exp(t**3)
7 | n = 2
8 | computed = trapezoidal(v, 0, 1, n)
9 | expected = 2.463642041244344
10 | error = abs(expected - computed)
11 | tol = 1E-14
12 | success = error < tol
13 | msg = 'error={:g} > tol={:g}'.format(error, tol)
14 | assert success, msg
15 |
16 | def test_trapezoidal_linear():
17 | """Check that linear functions are integrated exactly."""
18 | f = lambda x: 6*x - 4
19 | F = lambda x: 3*x**2 - 4*x # Anti-derivative
20 | a = 1.2; b = 4.4
21 | expected = F(b) - F(a)
22 | tol = 1E-14
23 | for n in 2, 20, 21:
24 | computed = trapezoidal(f, a, b, n)
25 | error = abs(expected - computed)
26 | success = error < tol
27 | msg = 'n={:d}, err={:g}'.format(n, error)
28 | assert success, msg
29 |
30 | def convergence_rates(f, F, a, b, num_experiments=14):
31 | from math import log
32 | from numpy import zeros
33 | expected = F(b) - F(a)
34 | n = zeros(num_experiments, dtype=int)
35 | E = zeros(num_experiments)
36 | r = zeros(num_experiments-1)
37 | for i in range(num_experiments):
38 | n[i] = 2**(i+1)
39 | computed = trapezoidal(f, a, b, n[i])
40 | E[i] = abs(expected - computed)
41 | if i > 0:
42 | r_im1 = -log(E[i]/E[i-1])/log(n[i]/n[i-1])
43 | # Truncate to two decimals:
44 | r[i-1] = float('{:.2f}'.format(r_im1))
45 | return r
46 |
47 | def test_trapezoidal_conv_rate():
48 | """Check empirical convergence rates against the expected value 2."""
49 | from math import exp
50 | v = lambda t: 3*(t**2)*exp(t**3)
51 | V = lambda t: exp(t**3)
52 | a = 1.1; b = 1.9
53 | r = convergence_rates(v, V, a, b, 14)
54 | print(r)
55 | tol = 0.01
56 | msg = str(r[-4:]) # show last 4 estimated rates
57 | assert (abs(r[-1]) - 2) < tol, msg
58 |
59 |
--------------------------------------------------------------------------------
/py36-src/throw_2_dice.py:
--------------------------------------------------------------------------------
1 | import random
2 |
3 | a = 1; b = 6
4 | r1 = random.randint(a, b) # first die
5 | r2 = random.randint(a, b) # second die
6 |
7 | print('The dice gave: {:d} and {:d}'.format(r1, r2))
8 |
--------------------------------------------------------------------------------
/py36-src/times_tables_1.py:
--------------------------------------------------------------------------------
1 | def ask_user(a, b): # preliminary
2 | """get answer from user: a*b = ?"""
3 | print('{:d}*{:d} = '.format(a, b))
4 | return a*b
5 |
6 | def points(a, b, answer_given): # preliminary
7 | """Check answer. Correct: 1 point, else 0"""
8 | print('{:d}*{:d} = {:d}'.format(a, b, a*b))
9 | return 1
10 |
11 | print('\n*** Welcome to the times tables test! ***\
12 | \n (To stop: ctrl-c)')
13 |
14 | # Ask user for a*b, ... a, b are in [1, N]
15 | N = 2
16 | score = 0
17 | for i in range(1, N+1, 1):
18 | for j in range(1, N+1, 1):
19 | user_answer = ask_user(i, j)
20 | score = score + points(i, j, user_answer)
21 | print('Your score is now: {:d}'.format(score))
22 |
23 | print('\nFinished! \nYour final score: {:d} (max: {:d})'\
24 | .format(score, N*N))
25 |
26 |
--------------------------------------------------------------------------------
/py36-src/times_tables_2.py:
--------------------------------------------------------------------------------
1 | def ask_user(a, b):
2 | """get answer from user: a*b = ?"""
3 | question = '{:d} * {:d} = '.format(a, b)
4 | answer = int(input(question))
5 | return answer
6 |
7 | def points(a, b, answer_given):
8 | """Check answer. Correct: 1 point, else 0"""
9 | true_answer = a*b
10 | if answer_given == true_answer:
11 | print('Correct!')
12 | return 1
13 | else:
14 | print('Sorry! Correct answer was: {:d}'.format(true_answer))
15 | return 0
16 |
17 | print('\n*** Welcome to the times tables test! ***\
18 | \n (To stop: ctrl-c)')
19 |
20 | # Ask user for a*b, ... a, b are in [1, N]
21 | N = 2
22 | score = 0
23 | for i in range(1, N+1, 1):
24 | for j in range(1, N+1, 1):
25 | user_answer = ask_user(i, j)
26 | score = score + points(i, j, user_answer)
27 | print('Your score is now: {:d}'.format(score))
28 |
29 | print('\nFinished! \nYour final score: {:d} (max: {:d})'\
30 | .format(score, N*N))
--------------------------------------------------------------------------------
/py36-src/times_tables_3.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def ask_user(a, b):
4 | """get answer from user: a*b = ?"""
5 | question = '{:d} * {:d} = '.format(a, b)
6 | answer = int(input(question))
7 | return answer
8 |
9 | def points(a, b, answer_given):
10 | """Check answer. Correct: 1 point, else 0"""
11 | true_answer = a*b
12 | if answer_given == true_answer:
13 | print('Correct!')
14 | return 1
15 | else:
16 | print('Sorry! Correct answer was: {:d}'.format(true_answer))
17 | return 0
18 |
19 | print('\n*** Welcome to the times tables test! ***\
20 | \n (To stop: ctrl-c)')
21 |
22 | N = 10
23 | NN = N*N
24 | score = 0
25 | index = list(range(0, NN, 1))
26 | np.random.shuffle(index) # randomize order of integers in index
27 | for i in range(0, NN, 1):
28 | a = (index[i]//N) + 1
29 | b = index[i]%N + 1
30 | user_answer = ask_user(a, b)
31 |
32 | score = score + points(a, b, user_answer)
33 | print('Your score is now: {:d}'.format(score))
34 |
35 | print('\nFinished! \nYour final score: {:d} (max: {:d})'\
36 | .format(score, N*N))
37 |
--------------------------------------------------------------------------------
/py36-src/times_tables_4.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def ask_user(a, b):
4 | """Get answer from user: a*b = ?"""
5 | question = '{:d} * {:d} = '.format(a, b)
6 | answer = int(input(question))
7 | return answer
8 |
9 | def points(a, b, answer_given):
10 | """Check answer. Correct answer gives 1 point, else zero"""
11 | true_answer = a*b
12 | if answer_given == true_answer:
13 | print('Correct!')
14 | return 1
15 | else:
16 | print('Sorry! Correct answer was: {:d}'.format(true_answer))
17 | return 0
18 |
19 | print('\n*** Welcome to the times tables test! ***\
20 | \n (To stop: ctrl-c)')
21 |
22 | N = 10
23 | NN = N*N
24 | score = 0
25 | index = list(range(0, NN, 1))
26 | np.random.shuffle(index) # randomize order of integers in index
27 | for i in range(0, NN, 1):
28 | a = index[i]//N + 1
29 | b = index[i]%N + 1
30 | try:
31 | user_answer = ask_user(a, b)
32 | except KeyboardInterrupt:
33 | print('\nOk, you want to stop!')
34 | break
35 | except ValueError:
36 | print('You must give a valid number!')
37 | continue # jump to next loop iteration
38 |
39 | score = score + points(a, b, user_answer)
40 | print('Your score is now: {:d}'.format(score))
41 |
42 | print('\nFinished! \nYour final score: {:d} (max: {:d})'\
43 | .format(score, N*N))
44 |
45 |
--------------------------------------------------------------------------------
/py36-src/timing_function_call.py:
--------------------------------------------------------------------------------
1 | import timeit
2 | import numpy as np
3 |
4 | def add(a, b):
5 | return a + b
6 |
7 | x = np.zeros(1000)
8 | y = np.zeros(1000)
9 |
10 | # ...use the function add
11 | t = timeit.Timer('for i in range(len(x)): x[i] = add(i, i+1)', \
12 | setup='from __main__ import add, x')
13 | x_time = t.timeit(10000) # Time 10000 runs of the whole loop
14 | print('Time, function call: {:g} seconds'.format(x_time))
15 |
16 | # ...no use of function add
17 | t = timeit.Timer('for i in range(len(y)): y[i] = i + (i+1)', \
18 | setup='from __main__ import y')
19 | y_time = t.timeit(10000) # Time 10000 runs of the whole loop
20 | print('Time: {:g} seconds'.format(y_time))
21 |
--------------------------------------------------------------------------------
/py36-src/timing_midpoint_vec.py:
--------------------------------------------------------------------------------
1 | import timeit
2 | from integration_methods_vec import midpoint as midpoint_vec
3 | from midpoint import midpoint
4 | from numpy import exp
5 |
6 | v = lambda t: 3*t**2*exp(t**3)
7 |
8 | t = timeit.Timer('midpoint(v, 0, 1, 1000000)', \
9 | setup='from __main__ import midpoint, v')
10 | time_midpoint = t.timeit(10)
11 | print('Time, midpoint: {:g} seconds'.format(time_midpoint))
12 |
13 | # Vectorized version
14 | t = timeit.Timer('midpoint_vec(v, 0, 1, 1000000)', \
15 | setup='from __main__ import midpoint_vec, v')
16 | time_midpoint_vec = t.timeit(10)
17 | print('Time, midpoint vec: {:g} seconds'.format(time_midpoint_vec))
18 |
19 | print('Efficiency factor: {:g}'.format(time_midpoint/time_midpoint_vec))
20 |
--------------------------------------------------------------------------------
/py36-src/trapezoidal.py:
--------------------------------------------------------------------------------
1 | def trapezoidal(f, a, b, n):
2 | h = (b-a)/n
3 | f_sum = 0
4 | for i in range(1, n, 1):
5 | x = a + i*h
6 | f_sum = f_sum + f(x)
7 | return h*(0.5*f(a) + f_sum + 0.5*f(b))
8 |
9 | def application():
10 | from math import exp
11 | v = lambda t: 3*(t**2)*exp(t**3)
12 | n = int(input('n: '))
13 | numerical = trapezoidal(v, 0, 1, n)
14 |
15 | # Compare with exact result
16 | V = lambda t: exp(t**3)
17 | exact = V(1) - V(0)
18 | error = abs(exact - numerical)
19 | print('n={:d}: {:.16f}, error: {:g}'.format(n, numerical, error))
20 |
21 | if __name__ == '__main__':
22 | application()
--------------------------------------------------------------------------------
/py36-src/trapezoidal_flat.py:
--------------------------------------------------------------------------------
1 | from math import exp
2 |
3 | v = lambda t: 3*(t**2)*exp(t**3) # Define integrand
4 | a = 0.0; b = 1.0
5 | n = int(input('n: '))
6 | dt = (b - a)/n
7 |
8 | # Integral by the trapezoidal method
9 | v_sum = 0
10 | for i in range(1, n, 1):
11 | t = a + i*dt
12 | v_sum = v_sum + v(t)
13 | numerical = dt*(0.5*v(a) + v_sum + 0.5*v(b))
14 |
15 | V = lambda t: exp(t**3)
16 | exact_value = V(b) - V(a)
17 | error = abs(exact_value - numerical)
18 | rel_error = (error/exact_value)*100
19 | print('n={:d}: {:.16f}, error: {:g}'.format(n, numerical, error))
20 |
--------------------------------------------------------------------------------
/py36-src/trapezoidal_flat1.py:
--------------------------------------------------------------------------------
1 | from math import exp
2 |
3 | a = 0.0; b = 1.0
4 | n = int(input('n: '))
5 | dt = (b - a)/n
6 |
7 | # Integral by the trapezoidal method
8 | v_sum = 0
9 | for i in range(1, n, 1):
10 | t = a + i*dt
11 | v_sum = v_sum + 3*(t**2)*exp(t**3)
12 |
13 | numerical = dt*(0.5*3*(a**2)*exp(a**3) +
14 | v_sum +
15 | 0.5*3*(b**2)*exp(b**3))
16 |
17 | exact_value = exp(1**3) - exp(0**3)
18 | error = abs(exact_value - numerical)
19 | rel_error = (error/exact_value)*100
20 | print('n={:d}: {:.16f}, error: {:g}'.format(n, numerical, error))
21 |
--------------------------------------------------------------------------------
/py36-src/two_plots_one_fig.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | plt.subplot(2, 1, 1) # 2 rows, 1 column, plot number 1
5 | v0 = 5
6 | g = 9.81
7 | t = np.linspace(0, 1, 11)
8 | y = v0*t - 0.5*g*t**2
9 | plt.plot(t, y, '*')
10 | plt.xlabel('t (s)')
11 | plt.ylabel('y (m)')
12 | plt.title('Ball moving vertically')
13 |
14 | plt.subplot(2, 1, 2) # 2 rows, 1 column, plot number 2
15 | t = np.linspace(-2, 2, 100)
16 | f_values = t**2
17 | g_values = np.exp(t)
18 | plt.plot(t, f_values, 'r', t, g_values, 'b--')
19 | plt.xlabel('t')
20 | plt.ylabel('f and g')
21 | plt.legend(['t**2', 'e**t'])
22 | plt.title('Plotting of two functions (t**2 and e**t)')
23 | plt.grid('on')
24 | plt.axis([-3, 3, -1, 10])
25 |
26 | plt.tight_layout() # make subplots fit figure area
27 | plt.show()
28 |
--------------------------------------------------------------------------------
/py36-src/vertical_motion.py:
--------------------------------------------------------------------------------
1 | """
2 | Module for computing vertical motion
3 | characteristics for a projectile.
4 | """
5 | def y(v0, t):
6 | """
7 | Compute vertical position at time t, given the initial vertical
8 | velocity v0. Assume negligible air resistance.
9 | """
10 | g = 9.81
11 | return v0*t - 0.5*g*t**2
12 |
13 | def time_of_flight(v0):
14 | """
15 | Compute time in the air, given the initial vertical
16 | velocity v0. Assume negligible air resistance.
17 | """
18 | g = 9.81
19 | return 2*v0/g
20 |
21 | def max_height(v0):
22 | """
23 | Compute maximum height reached, given the initial vertical
24 | velocity v0. Assume negligible air resistance.
25 | """
26 | g = 9.81
27 | return v0**2/(2*g)
28 |
29 | def application():
30 | import numpy as np
31 | import matplotlib.pyplot as plt
32 | import sys
33 |
34 | print("""This program computes vertical motion characteristics for a
35 | projectile. Given the intial vertical velocity, it computes height
36 | (as it develops with time), maximum height reached, as well as time
37 | of flight.""")
38 |
39 | try:
40 | v_initial = float(input('Give the initial velocity: '))
41 | except:
42 | print('You must give a valid number!')
43 | sys.exit(1)
44 |
45 | H = max_height(v_initial)
46 | T = time_of_flight(v_initial)
47 | print('Maximum height: {:g} m, \nTime of flight: {:g} s'.format(H, T))
48 |
49 | # compute and plot position as function of time
50 | dt = 0.001
51 | # just pick a "small" time step
52 | N = int(T/dt)
53 | # number of time steps
54 | t = np.linspace(0, N*dt, N+1)
55 | position = y(v_initial, t)
56 | # compute all positions (over T)
57 | plt.plot(t, position, 'b--')
58 | plt.xlabel('Time (s)')
59 | plt.ylabel('Vertical position (m)')
60 | plt.show()
61 | return
62 |
63 | if __name__ == '__main__':
64 | application()
--------------------------------------------------------------------------------
/py36-src/viz_midpoint.py:
--------------------------------------------------------------------------------
1 | """Visualize the Midpoint integration method."""
2 |
3 | import matplotlib.pyplot as plt
4 | import numpy as np
5 |
6 | def viz_midpoint(f, x_points):
7 |
8 | def midpoint(x_points, f, samples_per_interval=31):
9 | # Compute element by element in case f does not work with array x
10 | x = []
11 | y = []
12 | y_exact = []
13 | for i in range(len(x_points)-1):
14 | mid = 0.5*(x_points[i] + x_points[i+1])
15 | yi = f(mid)
16 | dx = (x_points[i+1] - x_points[i])/float(samples_per_interval-1)
17 | for j in range(samples_per_interval):
18 | xi = x_points[i] + j*dx
19 | x.append(xi)
20 | y.append(yi)
21 | y_exact.append(f(xi))
22 | return np.array(x), np.array(y), np.array(y_exact)
23 |
24 | def midpoint_geometry(x_points, f):
25 | x = []
26 | y = []
27 | for i in range(len(x_points)-1):
28 | x.append(x_points[i])
29 | y.append(0)
30 | mid = 0.5*(x_points[i] + x_points[i+1])
31 | fmid = f(mid)
32 | x.append(x_points[i])
33 | y.append(fmid)
34 | x.append(x_points[i+1])
35 | y.append(fmid)
36 | x.append(x_points[i+1])
37 | y.append(0)
38 | return np.array(x), np.array(y)
39 |
40 | x, y, y_e = midpoint(x_points, f, 31)
41 | bx, by = midpoint_geometry(x_points, f)
42 | plt.plot(x, y_e, 'k-', linewidth=3)
43 | #plt.fill_between(x, y, y_e)
44 | #plt.plot(bx, by, 'r-')
45 | plt.fill(bx, by, 'r--')
46 | plt.savefig('tmp_midpoint.pdf'); plt.savefig('tmp_midpoint.png')
47 | plt.show()
48 |
49 | if __name__ == '__main__':
50 | def v(t):
51 | return 3*t**2*np.exp(t**3)
52 |
53 | x_points = np.array([0, 0.2, 0.6, 0.8, 1.0])
54 | viz_midpoint(v, x_points)
55 |
--------------------------------------------------------------------------------
/py36-src/viz_rectangle.py:
--------------------------------------------------------------------------------
1 | """Visualize the Midpoint integration method."""
2 |
3 | import matplotlib.pyplot as plt
4 | import numpy as np
5 |
6 | def viz_rectangle(f, x_points, height='mid'):
7 |
8 | def rectangle(x_points, f, samples_per_interval=31):
9 | # Compute element by element in case f does not work with array x
10 | x = []
11 | y = []
12 | y_exact = []
13 | for i in range(len(x_points)-1):
14 | if height == 'mid':
15 | mid = 0.5*(x_points[i] + x_points[i+1])
16 | elif height == 'left':
17 | mid = x_points[i]
18 | elif height == 'right':
19 | mid = x_points[i+1]
20 |
21 | yi = f(mid)
22 | dx = (x_points[i+1] - x_points[i])/float(samples_per_interval-1)
23 | for j in range(samples_per_interval):
24 | xi = x_points[i] + j*dx
25 | x.append(xi)
26 | y.append(yi)
27 | y_exact.append(f(xi))
28 | return np.array(x), np.array(y), np.array(y_exact)
29 |
30 | def rectangle_geometry(x_points, f):
31 | x = []
32 | y = []
33 | for i in range(len(x_points)-1):
34 | x.append(x_points[i])
35 | y.append(0)
36 | if height == 'mid':
37 | mid = 0.5*(x_points[i] + x_points[i+1])
38 | elif height == 'left':
39 | mid = x_points[i]
40 | elif height == 'right':
41 | mid = x_points[i+1]
42 | fmid = f(mid)
43 | x.append(x_points[i])
44 | y.append(fmid)
45 | x.append(x_points[i+1])
46 | y.append(fmid)
47 | x.append(x_points[i+1])
48 | y.append(0)
49 | return np.array(x), np.array(y)
50 |
51 | x, y, y_e = rectangle(x_points, f, 31)
52 | bx, by = rectangle_geometry(x_points, f)
53 | plt.plot(x, y_e, 'k-', linewidth=3)
54 | #plt.fill_between(x, y, y_e)
55 | #plt.plot(bx, by, 'r-')
56 | plt.fill(bx, by, 'r--')
57 | plt.savefig('tmp_rectangle.pdf'); plt.savefig('tmp_rectangle.png')
58 | plt.show()
59 |
60 | if __name__ == '__main__':
61 | def v(t):
62 | return 3*t**2*np.exp(t**3)
63 |
64 | x_points = np.array([0, 0.2, 0.6, 0.8, 1.0])
65 | import sys
66 | viz_rectangle(v, x_points, sys.argv[1])
67 |
--------------------------------------------------------------------------------
/py36-src/viz_trapezoidal.py:
--------------------------------------------------------------------------------
1 | """Visualize the Trapezoidal integration method."""
2 |
3 | import matplotlib.pyplot as plt
4 | import numpy as np
5 |
6 | def viz_trapezoidal(f, x_points):
7 |
8 | def trapezoidal(x_points, f, samples_per_interval=31):
9 | # Compute element by element in case f does not work with x
10 | x = []
11 | y = []
12 | y_exact = []
13 | for i in range(len(x_points)-1):
14 | dx = (x_points[i+1] - x_points[i])/float(samples_per_interval-1)
15 |
16 | def trapez(x):
17 | return f(x_points[i]) + \
18 | (f(x_points[i+1])-f(x_points[i]))/\
19 | (x_points[i+1]-x_points[i])*(x - x_points[i])
20 |
21 | for j in range(samples_per_interval):
22 | xi = x_points[i] + j*dx
23 | x.append(xi)
24 | y.append(trapez(xi))
25 | y_exact.append(f(xi))
26 | return x, np.array(y), np.array(y_exact)
27 |
28 | def trapez_geometry(x_points, f):
29 | x = []
30 | y = []
31 | for i in range(len(x_points)-1):
32 | x.append(x_points[i])
33 | y.append(0)
34 | x.append(x_points[i])
35 | y.append(f(x_points[i]))
36 | x.append(x_points[i+1])
37 | y.append(f(x_points[i+1]))
38 | x.append(x_points[i+1])
39 | y.append(0)
40 | return np.array(x), np.array(y)
41 |
42 | x, y, y_e = trapezoidal(x_points, f, 31)
43 | bx, by = trapez_geometry(x_points, f)
44 | plt.plot(x, y_e, 'k-', linewidth=3)
45 | #plt.fill_between(x, y, y_e)
46 | #plt.plot(bx, by, 'r--')
47 | plt.fill(bx, by, 'r--')
48 | plt.savefig('tmp_trapezoidal.pdf'); plt.savefig('tmp_trapezoidal.png')
49 | # Show integral of f
50 | plt.figure()
51 | x = np.linspace(x_points[0], x_points[-1], 501)
52 | y = f(x)
53 | plt.fill_between(x, y, 0, facecolor='white', hatch='/')
54 | plt.savefig('tmp_intf.pdf'); plt.savefig('tmp_intf.png')
55 | plt.show()
56 |
57 | if __name__ == '__main__':
58 | def v(t):
59 | return 3*t**2*np.exp(t**3)
60 |
61 | x_points = np.array([0, 0.2, 0.6, 0.8, 1.0])
62 | viz_trapezoidal(v, x_points)
63 |
--------------------------------------------------------------------------------