├── LICENSE ├── README.md └── cohension_TMI.png /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2022 Yanda Meng 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Dual_Adaptive_Graph_Reasoning 2 | 3 | - please refer to the implementation code: https://doi.org/10.5281/zenodo.6539438 4 | 5 | - Prepare your data. 6 | 7 | - Download the pre-train Res2Net parameters and put it into ./lib/res_weight/ 8 | - https://drive.google.com/file/d/16_bh91WdaAKPFnwkMkDNMaQUTTIHboWi/view?usp=sharing 9 | 10 | # Train 11 | - run python train.py 12 | 13 | 14 | # Test 15 | - Download our pre-trained model's parameter then put it into your-own-path 16 | - https://drive.google.com/file/d/12uqe20GdX3-DxeszPqdlIB2o8svyh_vs/view?usp=sharing 17 | - run test.py 18 | 19 | # Qualitative Results of Coherence Comparison 20 | ![alt text](https://github.com/smallmax00/Dual_Adaptive_Graph_Reasoning/blob/main/cohension_TMI.png) 21 | 22 | 23 | 24 | # Citation 25 | If you find our work useful or our work gives you any insights, please cite: 26 | ``` 27 | @article{meng2022dual, 28 | title={Dual Consistency Enabled Weakly and Semi-Supervised Optic Disc and Cup Segmentation with Dual Adaptive Graph Convolutional Networks}, 29 | author={Meng, Yanda and Zhang, Hongrun and Zhao, Yitian and Gao, Dongxu and Hamill, Barbra and Patri, Godhuli and Peto, Tunde and Madhusudhan, Savita and Zheng, Yalin}, 30 | journal={IEEE Transactions on Medical Imaging}, 31 | year={2022}, 32 | publisher={IEEE} 33 | } 34 | 35 | ``` 36 | -------------------------------------------------------------------------------- /cohension_TMI.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/smallmax00/Dual_Adaptive_Graph_Reasoning/050da63dbd6f0040b993e4d7d7c379ba523d6175/cohension_TMI.png --------------------------------------------------------------------------------