├── .gitignore ├── LICENSE ├── README.md ├── Untitled Diagram.drawio ├── data ├── __init__.py ├── aligned_dataset.py ├── base_dataset.py ├── colorization_dataset.py ├── image_folder.py ├── single_dataset.py ├── template_dataset.py └── unaligned_dataset.py ├── docs ├── Dockerfile ├── datasets.md ├── docker.md ├── overview.md ├── qa.md └── tips.md ├── environment.yml ├── imgs ├── edges2cats.jpg └── horse2zebra.gif ├── models ├── __init__.py ├── base_model.py ├── colorization_model.py ├── cycle_gan_model.py ├── networks.py ├── pix2pix_model.py ├── template_model.py └── test_model.py ├── options ├── __init__.py ├── base_options.py ├── test_options.py └── train_options.py ├── requirements.txt ├── scripts ├── conda_deps.sh ├── download_cyclegan_model.sh ├── download_pix2pix_model.sh ├── edges │ ├── PostprocessHED.m │ └── batch_hed.py ├── eval_cityscapes │ ├── caffemodel │ │ └── deploy.prototxt │ ├── cityscapes.py │ ├── download_fcn8s.sh │ ├── evaluate.py │ └── util.py ├── install_deps.sh ├── test_before_push.py ├── test_colorization.sh ├── test_cyclegan.sh ├── test_pix2pix.sh ├── test_single.sh ├── train_colorization.sh ├── train_cyclegan.sh └── train_pix2pix.sh ├── test.py ├── train.py └── util ├── __init__.py ├── get_data.py ├── html.py ├── image_pool.py ├── util.py └── visualizer.py /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | debug* 3 | datasets/ 4 | checkpoints/ 5 | results/ 6 | build/ 7 | dist/ 8 | *.png 9 | torch.egg-info/ 10 | */**/__pycache__ 11 | torch/version.py 12 | torch/csrc/generic/TensorMethods.cpp 13 | torch/lib/*.so* 14 | torch/lib/*.dylib* 15 | torch/lib/*.h 16 | torch/lib/build 17 | torch/lib/tmp_install 18 | torch/lib/include 19 | torch/lib/torch_shm_manager 20 | torch/csrc/cudnn/cuDNN.cpp 21 | torch/csrc/nn/THNN.cwrap 22 | torch/csrc/nn/THNN.cpp 23 | torch/csrc/nn/THCUNN.cwrap 24 | torch/csrc/nn/THCUNN.cpp 25 | torch/csrc/nn/THNN_generic.cwrap 26 | torch/csrc/nn/THNN_generic.cpp 27 | torch/csrc/nn/THNN_generic.h 28 | docs/src/**/* 29 | test/data/legacy_modules.t7 30 | test/data/gpu_tensors.pt 31 | test/htmlcov 32 | test/.coverage 33 | */*.pyc 34 | */**/*.pyc 35 | */**/**/*.pyc 36 | */**/**/**/*.pyc 37 | */**/**/**/**/*.pyc 38 | */*.so* 39 | */**/*.so* 40 | */**/*.dylib* 41 | test/data/legacy_serialized.pt 42 | *~ 43 | .idea 44 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Copyright (c) 2017, Jun-Yan Zhu and Taesung Park 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are met: 6 | 7 | * Redistributions of source code must retain the above copyright notice, this 8 | list of conditions and the following disclaimer. 9 | 10 | * Redistributions in binary form must reproduce the above copyright notice, 11 | this list of conditions and the following disclaimer in the documentation 12 | and/or other materials provided with the distribution. 13 | 14 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 15 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 17 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 18 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 20 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 21 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 22 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 | 25 | 26 | --------------------------- LICENSE FOR pix2pix -------------------------------- 27 | BSD License 28 | 29 | For pix2pix software 30 | Copyright (c) 2016, Phillip Isola and Jun-Yan Zhu 31 | All rights reserved. 32 | 33 | Redistribution and use in source and binary forms, with or without 34 | modification, are permitted provided that the following conditions are met: 35 | 36 | * Redistributions of source code must retain the above copyright notice, this 37 | list of conditions and the following disclaimer. 38 | 39 | * Redistributions in binary form must reproduce the above copyright notice, 40 | this list of conditions and the following disclaimer in the documentation 41 | and/or other materials provided with the distribution. 42 | 43 | ----------------------------- LICENSE FOR DCGAN -------------------------------- 44 | BSD License 45 | 46 | For dcgan.torch software 47 | 48 | Copyright (c) 2015, Facebook, Inc. All rights reserved. 49 | 50 | Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 51 | 52 | Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 53 | 54 | Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 55 | 56 | Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. 57 | 58 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 |


4 | 5 | # CycleGAN and pix2pix in PyTorch 6 | 克隆自 ; 7 | 8 | We provide PyTorch implementations for both unpaired and paired image-to-image translation. 9 | 10 | The code was written by [Jun-Yan Zhu](https://github.com/junyanz) and [Taesung Park](https://github.com/taesung), and supported by [Tongzhou Wang](https://ssnl.github.io/). 11 | 12 | This PyTorch implementation produces results comparable to or better than our original Torch software. If you would like to reproduce the same results as in the papers, check out the original [CycleGAN Torch](https://github.com/junyanz/CycleGAN) and [pix2pix Torch](https://github.com/phillipi/pix2pix) code 13 | 14 | **Note**: The current software works well with PyTorch 0.41+. Check out the older [branch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/tree/pytorch0.3.1) that supports PyTorch 0.1-0.3. 15 | 16 | You may find useful information in [training/test tips](docs/tips.md) and [frequently asked questions](docs/qa.md). To implement custom models and datasets, check out our [templates](#custom-model-and-dataset). To help users better understand and adapt our codebase, we provide an [overview](docs/overview.md) of the code structure of this repository. 17 | 18 | **CycleGAN: [Project](https://junyanz.github.io/CycleGAN/) | [Paper](https://arxiv.org/pdf/1703.10593.pdf) | [Torch](https://github.com/junyanz/CycleGAN)** 19 | 20 | 21 | 22 | **Pix2pix: [Project](https://phillipi.github.io/pix2pix/) | [Paper](https://arxiv.org/pdf/1611.07004.pdf) | [Torch](https://github.com/phillipi/pix2pix)** 23 | 24 | 25 | 26 | 27 | **[EdgesCats Demo](https://affinelayer.com/pixsrv/) | [pix2pix-tensorflow](https://github.com/affinelayer/pix2pix-tensorflow) | by [Christopher Hesse](https://twitter.com/christophrhesse)** 28 | 29 | 30 | 31 | If you use this code for your research, please cite: 32 | 33 | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.
34 | [Jun-Yan Zhu](https://people.eecs.berkeley.edu/~junyanz/)\*, [Taesung Park](https://taesung.me/)\*, [Phillip Isola](https://people.eecs.berkeley.edu/~isola/), [Alexei A. Efros](https://people.eecs.berkeley.edu/~efros). In ICCV 2017. (* equal contributions) [[Bibtex]](https://junyanz.github.io/CycleGAN/CycleGAN.txt) 35 | 36 | 37 | Image-to-Image Translation with Conditional Adversarial Networks.
38 | [Phillip Isola](https://people.eecs.berkeley.edu/~isola), [Jun-Yan Zhu](https://people.eecs.berkeley.edu/~junyanz), [Tinghui Zhou](https://people.eecs.berkeley.edu/~tinghuiz), [Alexei A. Efros](https://people.eecs.berkeley.edu/~efros). In CVPR 2017. [[Bibtex]](http://people.csail.mit.edu/junyanz/projects/pix2pix/pix2pix.bib) 39 | 40 | ## Talks and Course 41 | pix2pix slides: [keynote](http://efrosgans.eecs.berkeley.edu/CVPR18_slides/pix2pix.key) | [pdf](http://efrosgans.eecs.berkeley.edu/CVPR18_slides/pix2pix.pdf), 42 | CycleGAN slides: [pptx](http://efrosgans.eecs.berkeley.edu/CVPR18_slides/CycleGAN.pptx) | [pdf](http://efrosgans.eecs.berkeley.edu/CVPR18_slides/CycleGAN.pdf) 43 | 44 | CycleGAN course assignment [code](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/assignments/a4-code.zip) and [handout](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/assignments/a4-handout.pdf) designed by Prof. [Roger Grosse](http://www.cs.toronto.edu/~rgrosse/) for [CSC321](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/) "Intro to Neural Networks and Machine Learning" at University of Toronto. Please contact the instructor if you would like to adopt it in your course. 45 | 46 | ## Other implementations 47 | ### CycleGAN 48 |

[Tensorflow] (by Harry Yang), 49 | [Tensorflow] (by Archit Rathore), 50 | [Tensorflow] (by Van Huy), 51 | [Tensorflow] (by Xiaowei Hu), 52 | [Tensorflow-simple] (by Zhenliang He), 53 | [TensorLayer] (by luoxier), 54 | [Chainer] (by Yanghua Jin), 55 | [Minimal PyTorch] (by yunjey), 56 | [Mxnet] (by Ldpe2G), 57 | [lasagne/keras] (by tjwei)

58 | 59 | 60 | ### pix2pix 61 |

[Tensorflow] (by Christopher Hesse), 62 | [Tensorflow] (by Eyyüb Sariu), 63 | [Tensorflow (face2face)] (by Dat Tran), 64 | [Tensorflow (film)] (by Arthur Juliani), 65 | [Tensorflow (zi2zi)] (by Yuchen Tian), 66 | [Chainer] (by mattya), 67 | [tf/torch/keras/lasagne] (by tjwei), 68 | [Pytorch] (by taey16) 69 |

70 | 71 | 72 | ## Prerequisites 73 | - Linux or macOS 74 | - Python 3 75 | - CPU or NVIDIA GPU + CUDA CuDNN 76 | 77 | ## Getting Started 78 | ### Installation 79 | 80 | - Clone this repo: 81 | ```bash 82 | git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 83 | cd pytorch-CycleGAN-and-pix2pix 84 | ``` 85 | 86 | - Install [PyTorch](http://pytorch.org and) 0.4+ and other dependencies (e.g., torchvision, [visdom](https://github.com/facebookresearch/visdom) and [dominate](https://github.com/Knio/dominate)). 87 | - For pip users, please type the command `pip install -r requirements.txt`. 88 | - For Conda users, we provide a installation script `./scripts/conda_deps.sh`. Alternatively, you can create a new Conda environment using `conda env create -f environment.yml`. 89 | - For Docker users, we provide the pre-built Docker image and Dockerfile. Please refer to our [Docker](docs/docker.md) page. 90 | 91 | ### CycleGAN train/test 92 | - Download a CycleGAN dataset (e.g. maps): 93 | ```bash 94 | bash ./datasets/download_cyclegan_dataset.sh maps 95 | ``` 96 | - To view training results and loss plots, run `python -m visdom.server` and click the URL http://localhost:8097. 97 | - Train a model: 98 | ```bash 99 | #!./scripts/train_cyclegan.sh 100 | python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan 101 | ``` 102 | To see more intermediate results, check out `./checkpoints/maps_cyclegan/web/index.html`. 103 | - Test the model: 104 | ```bash 105 | #!./scripts/test_cyclegan.sh 106 | python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan 107 | ``` 108 | - The test results will be saved to a html file here: `./results/maps_cyclegan/latest_test/index.html`. 109 | 110 | ### pix2pix train/test 111 | - Download a pix2pix dataset (e.g.facades): 112 | ```bash 113 | bash ./datasets/download_pix2pix_dataset.sh facades 114 | ``` 115 | - Train a model: 116 | ```bash 117 | #!./scripts/train_pix2pix.sh 118 | python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA 119 | ``` 120 | - To view training results and loss plots, run `python -m visdom.server` and click the URL http://localhost:8097. To see more intermediate results, check out `./checkpoints/facades_pix2pix/web/index.html`. 121 | 122 | - Test the model (`bash ./scripts/test_pix2pix.sh`): 123 | ```bash 124 | #!./scripts/test_pix2pix.sh 125 | python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA 126 | ``` 127 | - The test results will be saved to a html file here: `./results/facades_pix2pix/test_latest/index.html`. You can find more scripts at `scripts` directory. 128 | - To train and test pix2pix-based colorization models, please add `--model colorization` and `--dataset_mode colorization`. See our training [tips](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md#notes-on-colorization) for more details. 129 | 130 | ### Apply a pre-trained model (CycleGAN) 131 | - You can download a pretrained model (e.g. horse2zebra) with the following script: 132 | ```bash 133 | bash ./scripts/download_cyclegan_model.sh horse2zebra 134 | ``` 135 | - The pretrained model is saved at `./checkpoints/{name}_pretrained/latest_net_G.pth`. Check [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/scripts/download_cyclegan_model.sh#L3) for all the available CycleGAN models. 136 | - To test the model, you also need to download the horse2zebra dataset: 137 | ```bash 138 | bash ./datasets/download_cyclegan_dataset.sh horse2zebra 139 | ``` 140 | 141 | - Then generate the results using 142 | ```bash 143 | python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout 144 | ``` 145 | - The option `--model test` is used for generating results of CycleGAN only for one side. This option will automatically set `--dataset_mode single`, which only loads the images from one set. On the contrary, using `--model cycle_gan` requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at `./results/`. Use `--results_dir {directory_path_to_save_result}` to specify the results directory. 146 | 147 | - For your own experiments, you might want to specify `--netG`, `--norm`, `--no_dropout` to match the generator architecture of the trained model. 148 | 149 | ### Apply a pre-trained model (pix2pix) 150 | Download a pre-trained model with `./scripts/download_pix2pix_model.sh`. 151 | 152 | - Check [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/scripts/download_pix2pix_model.sh#L3) for all the available pix2pix models. For example, if you would like to download label2photo model on the Facades dataset, 153 | ```bash 154 | bash ./scripts/download_pix2pix_model.sh facades_label2photo 155 | ``` 156 | - Download the pix2pix facades datasets: 157 | ```bash 158 | bash ./datasets/download_pix2pix_dataset.sh facades 159 | ``` 160 | - Then generate the results using 161 | ```bash 162 | python test.py --dataroot ./datasets/facades/ --direction BtoA --model pix2pix --name facades_label2photo_pretrained 163 | ``` 164 | - Note that we specified `--direction BtoA` as Facades dataset's A to B direction is photos to labels. 165 | 166 | - If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use `--model test` option. See `./scripts/test_single.sh` for how to apply a model to Facade label maps (stored in the directory `facades/testB`). 167 | 168 | - See a list of currently available models at `./scripts/download_pix2pix_model.sh` 169 | 170 | ## [Docker](docs/docker.md) 171 | We provide the pre-built Docker image and Dockerfile that can run this code repo. See [docker](docs/docker.md). 172 | 173 | ## [Datasets](docs/datasets.md) 174 | Download pix2pix/CycleGAN datasets and create your own datasets. 175 | 176 | ## [Training/Test Tips](docs/tips.md) 177 | Best practice for training and testing your models. 178 | 179 | ## [Frequently Asked Questions](docs/qa.md) 180 | Before you post a new question, please first look at the above Q & A and existing GitHub issues. 181 | 182 | ## Custom Model and Dataset 183 | If you plan to implement custom models and dataset for your new applications, we provide a dataset [template](data/template_dataset.py) and a model [template](models/template_model.py) as a starting point. 184 | 185 | ## [Code structure](docs/overview.md) 186 | To help users better understand and use our code, we briefly overview the functionality and implementation of each package and each module. 187 | 188 | ## Pull Request 189 | You are always welcome to contribute to this repository by sending a [pull request](https://help.github.com/articles/about-pull-requests/). 190 | Please run `flake8 --ignore E501 .` and `python ./scripts/test_before_push.py` before you commit the code. Please also update the code structure [overview](docs/overview.md) accordingly if you add or remove files. 191 | 192 | ## Citation 193 | If you use this code for your research, please cite our papers. 194 | ``` 195 | @inproceedings{CycleGAN2017, 196 | title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss}, 197 | author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A}, 198 | booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on}, 199 | year={2017} 200 | } 201 | 202 | 203 | @inproceedings{isola2017image, 204 | title={Image-to-Image Translation with Conditional Adversarial Networks}, 205 | author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A}, 206 | booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on}, 207 | year={2017} 208 | } 209 | ``` 210 | 211 | 212 | 213 | ## Related Projects 214 | **[CycleGAN-Torch](https://github.com/junyanz/CycleGAN) | 215 | [pix2pix-Torch](https://github.com/phillipi/pix2pix) | [pix2pixHD](https://github.com/NVIDIA/pix2pixHD) | 216 | [iGAN](https://github.com/junyanz/iGAN) | 217 | [BicycleGAN](https://github.com/junyanz/BicycleGAN) | [vid2vid](https://tcwang0509.github.io/vid2vid/)** 218 | 219 | ## Cat Paper Collection 220 | If you love cats, and love reading cool graphics, vision, and learning papers, please check out the Cat Paper [Collection](https://github.com/junyanz/CatPapers). 221 | 222 | ## Acknowledgments 223 | Our code is inspired by [pytorch-DCGAN](https://github.com/pytorch/examples/tree/master/dcgan). 224 | -------------------------------------------------------------------------------- /Untitled Diagram.drawio: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | -------------------------------------------------------------------------------- /data/__init__.py: -------------------------------------------------------------------------------- 1 | """This package includes all the modules related to data loading and preprocessing 2 | 3 | To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. 4 | You need to implement four functions: 5 | -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). 6 | -- <__len__>: return the size of dataset. 7 | -- <__getitem__>: get a data point from data loader. 8 | -- : (optionally) add dataset-specific options and set default options. 9 | 10 | Now you can use the dataset class by specifying flag '--dataset_mode dummy'. 11 | See our template dataset class 'template_dataset.py' for more details. 12 | """ 13 | import importlib 14 | import torch.utils.data 15 | from data.base_dataset import BaseDataset 16 | 17 | 18 | def find_dataset_using_name(dataset_name): 19 | """Import the module "data/[dataset_name]_dataset.py". 20 | 21 | In the file, the class called DatasetNameDataset() will 22 | be instantiated. It has to be a subclass of BaseDataset, 23 | and it is case-insensitive. 24 | """ 25 | dataset_filename = "data." + dataset_name + "_dataset" 26 | datasetlib = importlib.import_module(dataset_filename) 27 | 28 | dataset = None 29 | target_dataset_name = dataset_name.replace('_', '') + 'dataset' 30 | for name, cls in datasetlib.__dict__.items(): 31 | if name.lower() == target_dataset_name.lower() \ 32 | and issubclass(cls, BaseDataset): 33 | dataset = cls 34 | 35 | if dataset is None: 36 | raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) 37 | 38 | return dataset 39 | 40 | 41 | def get_option_setter(dataset_name): 42 | """Return the static method of the dataset class.""" 43 | dataset_class = find_dataset_using_name(dataset_name) 44 | return dataset_class.modify_commandline_options 45 | 46 | 47 | def create_dataset(opt): 48 | """Create a dataset given the option. 49 | 50 | This function wraps the class CustomDatasetDataLoader. 51 | This is the main interface between this package and 'train.py'/'test.py' 52 | 53 | Example: 54 | >>> from data import create_dataset 55 | >>> dataset = create_dataset(opt) 56 | """ 57 | data_loader = CustomDatasetDataLoader(opt) 58 | dataset = data_loader.load_data() 59 | return dataset 60 | 61 | 62 | class CustomDatasetDataLoader(): 63 | """Wrapper class of Dataset class that performs multi-threaded data loading""" 64 | 65 | def __init__(self, opt): 66 | """Initialize this class 67 | 68 | Step 1: create a dataset instance given the name [dataset_mode] 69 | Step 2: create a multi-threaded data loader. 70 | """ 71 | self.opt = opt 72 | dataset_class = find_dataset_using_name(opt.dataset_mode) 73 | self.dataset = dataset_class(opt) 74 | print("dataset [%s] was created" % type(self.dataset).__name__) 75 | self.dataloader = torch.utils.data.DataLoader( 76 | self.dataset, 77 | batch_size=opt.batch_size, 78 | shuffle=not opt.serial_batches, 79 | num_workers=int(opt.num_threads)) 80 | 81 | def load_data(self): 82 | return self 83 | 84 | def __len__(self): 85 | """Return the number of data in the dataset""" 86 | return min(len(self.dataset), self.opt.max_dataset_size) 87 | 88 | def __iter__(self): 89 | """Return a batch of data""" 90 | for i, data in enumerate(self.dataloader): 91 | if i * self.opt.batch_size >= self.opt.max_dataset_size: 92 | break 93 | yield data 94 | -------------------------------------------------------------------------------- /data/aligned_dataset.py: -------------------------------------------------------------------------------- 1 | import os.path 2 | from data.base_dataset import BaseDataset, get_params, get_transform 3 | from data.image_folder import make_dataset 4 | from PIL import Image 5 | 6 | 7 | class AlignedDataset(BaseDataset): 8 | """A dataset class for paired image dataset. 9 | 10 | It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}. 11 | During test time, you need to prepare a directory '/path/to/data/test'. 12 | """ 13 | 14 | def __init__(self, opt): 15 | """Initialize this dataset class. 16 | 17 | Parameters: 18 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 19 | """ 20 | BaseDataset.__init__(self, opt) 21 | self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory 22 | self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths 23 | assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image 24 | self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc 25 | self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc 26 | 27 | def __getitem__(self, index): 28 | """Return a data point and its metadata information. 29 | 30 | Parameters: 31 | index - - a random integer for data indexing 32 | 33 | Returns a dictionary that contains A, B, A_paths and B_paths 34 | A (tensor) - - an image in the input domain 35 | B (tensor) - - its corresponding image in the target domain 36 | A_paths (str) - - image paths 37 | B_paths (str) - - image paths (same as A_paths) 38 | """ 39 | # read a image given a random integer index 40 | AB_path = self.AB_paths[index] 41 | AB = Image.open(AB_path).convert('RGB') 42 | # split AB image into A and B 43 | w, h = AB.size 44 | w2 = int(w / 2) 45 | A = AB.crop((0, 0, w2, h)) 46 | B = AB.crop((w2, 0, w, h)) 47 | 48 | # apply the same transform to both A and B 49 | transform_params = get_params(self.opt, A.size) 50 | A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1)) 51 | B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1)) 52 | 53 | A = A_transform(A) 54 | B = B_transform(B) 55 | 56 | return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path} 57 | 58 | def __len__(self): 59 | """Return the total number of images in the dataset.""" 60 | return len(self.AB_paths) 61 | -------------------------------------------------------------------------------- /data/base_dataset.py: -------------------------------------------------------------------------------- 1 | """This module implements an abstract base class (ABC) 'BaseDataset' for datasets. 2 | 3 | It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. 4 | """ 5 | import random 6 | import numpy as np 7 | import torch.utils.data as data 8 | from PIL import Image 9 | import torchvision.transforms as transforms 10 | from abc import ABC, abstractmethod 11 | 12 | 13 | class BaseDataset(data.Dataset, ABC): 14 | """This class is an abstract base class (ABC) for datasets. 15 | 16 | To create a subclass, you need to implement the following four functions: 17 | -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). 18 | -- <__len__>: return the size of dataset. 19 | -- <__getitem__>: get a data point. 20 | -- : (optionally) add dataset-specific options and set default options. 21 | """ 22 | 23 | def __init__(self, opt): 24 | """Initialize the class; save the options in the class 25 | 26 | Parameters: 27 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 28 | """ 29 | self.opt = opt 30 | self.root = opt.dataroot 31 | 32 | @staticmethod 33 | def modify_commandline_options(parser, is_train): 34 | """Add new dataset-specific options, and rewrite default values for existing options. 35 | 36 | Parameters: 37 | parser -- original option parser 38 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 39 | 40 | Returns: 41 | the modified parser. 42 | """ 43 | return parser 44 | 45 | @abstractmethod 46 | def __len__(self): 47 | """Return the total number of images in the dataset.""" 48 | return 0 49 | 50 | @abstractmethod 51 | def __getitem__(self, index): 52 | """Return a data point and its metadata information. 53 | 54 | Parameters: 55 | index - - a random integer for data indexing 56 | 57 | Returns: 58 | a dictionary of data with their names. It ususally contains the data itself and its metadata information. 59 | """ 60 | pass 61 | 62 | 63 | def get_params(opt, size): 64 | w, h = size 65 | new_h = h 66 | new_w = w 67 | if opt.preprocess == 'resize_and_crop': 68 | new_h = new_w = opt.load_size 69 | elif opt.preprocess == 'scale_width_and_crop': 70 | new_w = opt.load_size 71 | new_h = opt.load_size * h // w 72 | 73 | x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) 74 | y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) 75 | 76 | flip = random.random() > 0.5 77 | 78 | return {'crop_pos': (x, y), 'flip': flip} 79 | 80 | 81 | def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True): 82 | transform_list = [] 83 | if grayscale: 84 | transform_list.append(transforms.Grayscale(1)) 85 | if 'resize' in opt.preprocess: 86 | osize = [opt.load_size, opt.load_size] 87 | transform_list.append(transforms.Resize(osize, method)) 88 | elif 'scale_width' in opt.preprocess: 89 | transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) 90 | 91 | if 'crop' in opt.preprocess: 92 | if params is None: 93 | transform_list.append(transforms.RandomCrop(opt.crop_size)) 94 | else: 95 | transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) 96 | 97 | if opt.preprocess == 'none': 98 | transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) 99 | 100 | if not opt.no_flip: 101 | if params is None: 102 | transform_list.append(transforms.RandomHorizontalFlip()) 103 | elif params['flip']: 104 | transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) 105 | 106 | if convert: 107 | transform_list += [transforms.ToTensor()] 108 | if grayscale: 109 | transform_list += [transforms.Normalize((0.5,), (0.5,))] 110 | else: 111 | transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] 112 | return transforms.Compose(transform_list) 113 | 114 | 115 | def __make_power_2(img, base, method=Image.BICUBIC): 116 | ow, oh = img.size 117 | h = int(round(oh / base) * base) 118 | w = int(round(ow / base) * base) 119 | if (h == oh) and (w == ow): 120 | return img 121 | 122 | __print_size_warning(ow, oh, w, h) 123 | return img.resize((w, h), method) 124 | 125 | 126 | def __scale_width(img, target_width, method=Image.BICUBIC): 127 | ow, oh = img.size 128 | if (ow == target_width): 129 | return img 130 | w = target_width 131 | h = int(target_width * oh / ow) 132 | return img.resize((w, h), method) 133 | 134 | 135 | def __crop(img, pos, size): 136 | ow, oh = img.size 137 | x1, y1 = pos 138 | tw = th = size 139 | if (ow > tw or oh > th): 140 | return img.crop((x1, y1, x1 + tw, y1 + th)) 141 | return img 142 | 143 | 144 | def __flip(img, flip): 145 | if flip: 146 | return img.transpose(Image.FLIP_LEFT_RIGHT) 147 | return img 148 | 149 | 150 | def __print_size_warning(ow, oh, w, h): 151 | """Print warning information about image size(only print once)""" 152 | if not hasattr(__print_size_warning, 'has_printed'): 153 | print("The image size needs to be a multiple of 4. " 154 | "The loaded image size was (%d, %d), so it was adjusted to " 155 | "(%d, %d). This adjustment will be done to all images " 156 | "whose sizes are not multiples of 4" % (ow, oh, w, h)) 157 | __print_size_warning.has_printed = True 158 | -------------------------------------------------------------------------------- /data/colorization_dataset.py: -------------------------------------------------------------------------------- 1 | import os.path 2 | from data.base_dataset import BaseDataset, get_transform 3 | from data.image_folder import make_dataset 4 | from skimage import color # require skimage 5 | from PIL import Image 6 | import numpy as np 7 | import torchvision.transforms as transforms 8 | 9 | 10 | class ColorizationDataset(BaseDataset): 11 | """This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space. 12 | 13 | This dataset is required by pix2pix-based colorization model ('--model colorization') 14 | """ 15 | @staticmethod 16 | def modify_commandline_options(parser, is_train): 17 | """Add new dataset-specific options, and rewrite default values for existing options. 18 | 19 | Parameters: 20 | parser -- original option parser 21 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 22 | 23 | Returns: 24 | the modified parser. 25 | 26 | By default, the number of channels for input image is 1 (L) and 27 | the nubmer of channels for output image is 2 (ab). The direction is from A to B 28 | """ 29 | parser.set_defaults(input_nc=1, output_nc=2, direction='AtoB') 30 | return parser 31 | 32 | def __init__(self, opt): 33 | """Initialize this dataset class. 34 | 35 | Parameters: 36 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 37 | """ 38 | BaseDataset.__init__(self, opt) 39 | self.dir = os.path.join(opt.dataroot) 40 | self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size)) 41 | assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB') 42 | self.transform = get_transform(self.opt, convert=False) 43 | 44 | def __getitem__(self, index): 45 | """Return a data point and its metadata information. 46 | 47 | Parameters: 48 | index - - a random integer for data indexing 49 | 50 | Returns a dictionary that contains A, B, A_paths and B_paths 51 | A (tensor) - - the L channel of an image 52 | B (tensor) - - the ab channels of the same image 53 | A_paths (str) - - image paths 54 | B_paths (str) - - image paths (same as A_paths) 55 | """ 56 | path = self.AB_paths[index] 57 | im = Image.open(path).convert('RGB') 58 | im = self.transform(im) 59 | im = np.array(im) 60 | lab = color.rgb2lab(im).astype(np.float32) 61 | lab_t = transforms.ToTensor()(lab) 62 | A = lab_t[[0], ...] / 50.0 - 1.0 63 | B = lab_t[[1, 2], ...] / 110.0 64 | return {'A': A, 'B': B, 'A_paths': path, 'B_paths': path} 65 | 66 | def __len__(self): 67 | """Return the total number of images in the dataset.""" 68 | return len(self.AB_paths) 69 | -------------------------------------------------------------------------------- /data/image_folder.py: -------------------------------------------------------------------------------- 1 | """A modified image folder class 2 | 3 | We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) 4 | so that this class can load images from both current directory and its subdirectories. 5 | """ 6 | 7 | import torch.utils.data as data 8 | 9 | from PIL import Image 10 | import os 11 | import os.path 12 | 13 | IMG_EXTENSIONS = [ 14 | '.jpg', '.JPG', '.jpeg', '.JPEG', 15 | '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', 16 | ] 17 | 18 | 19 | def is_image_file(filename): 20 | return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) 21 | 22 | 23 | def make_dataset(dir, max_dataset_size=float("inf")): 24 | images = [] 25 | assert os.path.isdir(dir), '%s is not a valid directory' % dir 26 | 27 | for root, _, fnames in sorted(os.walk(dir)): 28 | for fname in fnames: 29 | if is_image_file(fname): 30 | path = os.path.join(root, fname) 31 | images.append(path) 32 | return images[:min(max_dataset_size, len(images))] 33 | 34 | 35 | def default_loader(path): 36 | return Image.open(path).convert('RGB') 37 | 38 | 39 | class ImageFolder(data.Dataset): 40 | 41 | def __init__(self, root, transform=None, return_paths=False, 42 | loader=default_loader): 43 | imgs = make_dataset(root) 44 | if len(imgs) == 0: 45 | raise(RuntimeError("Found 0 images in: " + root + "\n" 46 | "Supported image extensions are: " + 47 | ",".join(IMG_EXTENSIONS))) 48 | 49 | self.root = root 50 | self.imgs = imgs 51 | self.transform = transform 52 | self.return_paths = return_paths 53 | self.loader = loader 54 | 55 | def __getitem__(self, index): 56 | path = self.imgs[index] 57 | img = self.loader(path) 58 | if self.transform is not None: 59 | img = self.transform(img) 60 | if self.return_paths: 61 | return img, path 62 | else: 63 | return img 64 | 65 | def __len__(self): 66 | return len(self.imgs) 67 | -------------------------------------------------------------------------------- /data/single_dataset.py: -------------------------------------------------------------------------------- 1 | from data.base_dataset import BaseDataset, get_transform 2 | from data.image_folder import make_dataset 3 | from PIL import Image 4 | 5 | 6 | class SingleDataset(BaseDataset): 7 | """This dataset class can load a set of images specified by the path --dataroot /path/to/data. 8 | 9 | It can be used for generating CycleGAN results only for one side with the model option '-model test'. 10 | """ 11 | 12 | def __init__(self, opt): 13 | """Initialize this dataset class. 14 | 15 | Parameters: 16 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 17 | """ 18 | BaseDataset.__init__(self, opt) 19 | self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) 20 | input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc 21 | self.transform = get_transform(opt, grayscale=(input_nc == 1)) 22 | 23 | def __getitem__(self, index): 24 | """Return a data point and its metadata information. 25 | 26 | Parameters: 27 | index - - a random integer for data indexing 28 | 29 | Returns a dictionary that contains A and A_paths 30 | A(tensor) - - an image in one domain 31 | A_paths(str) - - the path of the image 32 | """ 33 | A_path = self.A_paths[index] 34 | A_img = Image.open(A_path).convert('RGB') 35 | A = self.transform(A_img) 36 | return {'A': A, 'A_paths': A_path} 37 | 38 | def __len__(self): 39 | """Return the total number of images in the dataset.""" 40 | return len(self.A_paths) 41 | -------------------------------------------------------------------------------- /data/template_dataset.py: -------------------------------------------------------------------------------- 1 | """Dataset class template 2 | 3 | This module provides a template for users to implement custom datasets. 4 | You can specify '--dataset_mode template' to use this dataset. 5 | The class name should be consistent with both the filename and its dataset_mode option. 6 | The filename should be _dataset.py 7 | The class name should be Dataset.py 8 | You need to implement the following functions: 9 | -- : Add dataset-specific options and rewrite default values for existing options. 10 | -- <__init__>: Initialize this dataset class. 11 | -- <__getitem__>: Return a data point and its metadata information. 12 | -- <__len__>: Return the number of images. 13 | """ 14 | from data.base_dataset import BaseDataset, get_transform 15 | # from data.image_folder import make_dataset 16 | # from PIL import Image 17 | 18 | 19 | class TemplateDataset(BaseDataset): 20 | """A template dataset class for you to implement custom datasets.""" 21 | @staticmethod 22 | def modify_commandline_options(parser, is_train): 23 | """Add new dataset-specific options, and rewrite default values for existing options. 24 | 25 | Parameters: 26 | parser -- original option parser 27 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 28 | 29 | Returns: 30 | the modified parser. 31 | """ 32 | parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option') 33 | parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values 34 | return parser 35 | 36 | def __init__(self, opt): 37 | """Initialize this dataset class. 38 | 39 | Parameters: 40 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 41 | 42 | A few things can be done here. 43 | - save the options (have been done in BaseDataset) 44 | - get image paths and meta information of the dataset. 45 | - define the image transformation. 46 | """ 47 | # save the option and dataset root 48 | BaseDataset.__init__(self, opt) 49 | # get the image paths of your dataset; 50 | self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root 51 | # define the default transform function. You can use ; You can also define your custom transform function 52 | self.transform = get_transform(opt) 53 | 54 | def __getitem__(self, index): 55 | """Return a data point and its metadata information. 56 | 57 | Parameters: 58 | index -- a random integer for data indexing 59 | 60 | Returns: 61 | a dictionary of data with their names. It usually contains the data itself and its metadata information. 62 | 63 | Step 1: get a random image path: e.g., path = self.image_paths[index] 64 | Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB'). 65 | Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image) 66 | Step 4: return a data point as a dictionary. 67 | """ 68 | path = 'temp' # needs to be a string 69 | data_A = None # needs to be a tensor 70 | data_B = None # needs to be a tensor 71 | return {'data_A': data_A, 'data_B': data_B, 'path': path} 72 | 73 | def __len__(self): 74 | """Return the total number of images.""" 75 | return len(self.image_paths) 76 | -------------------------------------------------------------------------------- /data/unaligned_dataset.py: -------------------------------------------------------------------------------- 1 | import os.path 2 | from data.base_dataset import BaseDataset, get_transform 3 | from data.image_folder import make_dataset 4 | from PIL import Image 5 | import random 6 | 7 | 8 | class UnalignedDataset(BaseDataset): 9 | """ 10 | This dataset class can load unaligned/unpaired datasets. 11 | 12 | It requires two directories to host training images from domain A '/path/to/data/trainA' 13 | and from domain B '/path/to/data/trainB' respectively. 14 | You can train the model with the dataset flag '--dataroot /path/to/data'. 15 | Similarly, you need to prepare two directories: 16 | '/path/to/data/testA' and '/path/to/data/testB' during test time. 17 | """ 18 | 19 | def __init__(self, opt): 20 | """Initialize this dataset class. 21 | 22 | Parameters: 23 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 24 | """ 25 | BaseDataset.__init__(self, opt) 26 | self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' 27 | self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB' 28 | 29 | self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' 30 | self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' 31 | self.A_size = len(self.A_paths) # get the size of dataset A 32 | self.B_size = len(self.B_paths) # get the size of dataset B 33 | btoA = self.opt.direction == 'BtoA' 34 | input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image 35 | output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image 36 | self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) 37 | self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1)) 38 | 39 | def __getitem__(self, index): 40 | """Return a data point and its metadata information. 41 | 42 | Parameters: 43 | index (int) -- a random integer for data indexing 44 | 45 | Returns a dictionary that contains A, B, A_paths and B_paths 46 | A (tensor) -- an image in the input domain 47 | B (tensor) -- its corresponding image in the target domain 48 | A_paths (str) -- image paths 49 | B_paths (str) -- image paths 50 | """ 51 | A_path = self.A_paths[index % self.A_size] # make sure index is within then range 52 | if self.opt.serial_batches: # make sure index is within then range 53 | index_B = index % self.B_size 54 | else: # randomize the index for domain B to avoid fixed pairs. 55 | index_B = random.randint(0, self.B_size - 1) 56 | B_path = self.B_paths[index_B] 57 | A_img = Image.open(A_path).convert('RGB') 58 | B_img = Image.open(B_path).convert('RGB') 59 | # apply image transformation 60 | A = self.transform_A(A_img) 61 | B = self.transform_B(B_img) 62 | 63 | return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} 64 | 65 | def __len__(self): 66 | """Return the total number of images in the dataset. 67 | 68 | As we have two datasets with potentially different number of images, 69 | we take a maximum of 70 | """ 71 | return max(self.A_size, self.B_size) 72 | -------------------------------------------------------------------------------- /docs/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM nvidia/cuda:9.0-base 2 | 3 | RUN apt update && apt install -y wget unzip curl bzip2 git 4 | RUN curl -LO http://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh 5 | RUN bash Miniconda-latest-Linux-x86_64.sh -p /miniconda -b 6 | RUN rm Miniconda-latest-Linux-x86_64.sh 7 | ENV PATH=/miniconda/bin:${PATH} 8 | RUN conda update -y conda 9 | 10 | RUN conda install -y pytorch torchvision -c pytorch 11 | RUN mkdir /workspace/ && cd /workspace/ && git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git && cd pytorch-CycleGAN-and-pix2pix && pip install -r requirements.txt 12 | 13 | WORKDIR /workspace -------------------------------------------------------------------------------- /docs/datasets.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | ### CycleGAN Datasets 4 | Download the CycleGAN datasets using the following script. Some of the datasets are collected by other researchers. Please cite their papers if you use the data. 5 | ```bash 6 | bash ./datasets/download_cyclegan_dataset.sh dataset_name 7 | ``` 8 | - `facades`: 400 images from the [CMP Facades dataset](http://cmp.felk.cvut.cz/~tylecr1/facade). [[Citation](datasets/bibtex/facades.tex)] 9 | - `cityscapes`: 2975 images from the [Cityscapes training set](https://www.cityscapes-dataset.com). [[Citation](datasets/bibtex/cityscapes.tex)] 10 | - `maps`: 1096 training images scraped from Google Maps. 11 | - `horse2zebra`: 939 horse images and 1177 zebra images downloaded from [ImageNet](http://www.image-net.org) using keywords `wild horse` and `zebra` 12 | - `apple2orange`: 996 apple images and 1020 orange images downloaded from [ImageNet](http://www.image-net.org) using keywords `apple` and `navel orange`. 13 | - `summer2winter_yosemite`: 1273 summer Yosemite images and 854 winter Yosemite images were downloaded using Flickr API. See more details in our paper. 14 | - `monet2photo`, `vangogh2photo`, `ukiyoe2photo`, `cezanne2photo`: The art images were downloaded from [Wikiart](https://www.wikiart.org/). The real photos are downloaded from Flickr using the combination of the tags *landscape* and *landscapephotography*. The training set size of each class is Monet:1074, Cezanne:584, Van Gogh:401, Ukiyo-e:1433, Photographs:6853. 15 | - `iphone2dslr_flower`: both classes of images were downlaoded from Flickr. The training set size of each class is iPhone:1813, DSLR:3316. See more details in our paper. 16 | 17 | To train a model on your own datasets, you need to create a data folder with two subdirectories `trainA` and `trainB` that contain images from domain A and B. You can test your model on your training set by setting `--phase train` in `test.py`. You can also create subdirectories `testA` and `testB` if you have test data. 18 | 19 | You should **not** expect our method to work on just any random combination of input and output datasets (e.g. `cats<->keyboards`). From our experiments, we find it works better if two datasets share similar visual content. For example, `landscape painting<->landscape photographs` works much better than `portrait painting <-> landscape photographs`. `zebras<->horses` achieves compelling results while `cats<->dogs` completely fails. 20 | 21 | ### pix2pix datasets 22 | Download the pix2pix datasets using the following script. Some of the datasets are collected by other researchers. Please cite their papers if you use the data. 23 | ```bash 24 | bash ./datasets/download_pix2pix_dataset.sh dataset_name 25 | ``` 26 | - `facades`: 400 images from [CMP Facades dataset](http://cmp.felk.cvut.cz/~tylecr1/facade). [[Citation](datasets/bibtex/facades.tex)] 27 | - `cityscapes`: 2975 images from the [Cityscapes training set](https://www.cityscapes-dataset.com). [[Citation](datasets/bibtex/cityscapes.tex)] 28 | - `maps`: 1096 training images scraped from Google Maps 29 | - `edges2shoes`: 50k training images from [UT Zappos50K dataset](http://vision.cs.utexas.edu/projects/finegrained/utzap50k). Edges are computed by [HED](https://github.com/s9xie/hed) edge detector + post-processing. [[Citation](datasets/bibtex/shoes.tex)] 30 | - `edges2handbags`: 137K Amazon Handbag images from [iGAN project](https://github.com/junyanz/iGAN). Edges are computed by [HED](https://github.com/s9xie/hed) edge detector + post-processing. [[Citation](datasets/bibtex/handbags.tex)] 31 | - `night2day`: around 20K natural scene images from [Transient Attributes dataset](http://transattr.cs.brown.edu/) [[Citation](datasets/bibtex/transattr.tex)]. To train a `day2night` pix2pix model, you need to add `--direction BtoA`. 32 | 33 | We provide a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene. For example, these might be pairs {label map, photo} or {bw image, color image}. Then we can learn to translate A to B or B to A: 34 | 35 | Create folder `/path/to/data` with subfolders `A` and `B`. `A` and `B` should each have their own subfolders `train`, `val`, `test`, etc. In `/path/to/data/A/train`, put training images in style A. In `/path/to/data/B/train`, put the corresponding images in style B. Repeat same for other data splits (`val`, `test`, etc). 36 | 37 | Corresponding images in a pair {A,B} must be the same size and have the same filename, e.g., `/path/to/data/A/train/1.jpg` is considered to correspond to `/path/to/data/B/train/1.jpg`. 38 | 39 | Once the data is formatted this way, call: 40 | ```bash 41 | python datasets/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data 42 | ``` 43 | 44 | This will combine each pair of images (A,B) into a single image file, ready for training. 45 | -------------------------------------------------------------------------------- /docs/docker.md: -------------------------------------------------------------------------------- 1 | # Docker image with pytorch-CycleGAN-and-pix2pix 2 | 3 | We provide both Dockerfile and pre-built Docker container that can run this code repo. 4 | 5 | ## Prerequisite 6 | 7 | - Install [docker-ce](https://docs.docker.com/install/linux/docker-ce/ubuntu/) 8 | - Install [nvidia-docker](https://github.com/NVIDIA/nvidia-docker#quickstart) 9 | 10 | ## Running pre-built Dockerfile 11 | 12 | - Pull the pre-built docker file 13 | 14 | ```bash 15 | docker pull taesungp/pytorch-cyclegan-and-pix2pix 16 | ``` 17 | 18 | - Start an interactive docker session. `-p 8097:8097` option is needed if you want to run `visdom` server on the Docker container. 19 | 20 | ```bash 21 | nvidia-docker run -it -p 8097:8097 taesungp/pytorch-cyclegan-and-pix2pix 22 | ``` 23 | 24 | - Now you are in the Docker environment. Go to our code repo and start running things. 25 | ```bash 26 | cd /workspace/pytorch-CycleGAN-and-pix2pix 27 | bash datasets/download_pix2pix_dataset.sh facades 28 | python -m visdom.server & 29 | bash scripts/train_pix2pix.sh 30 | ``` 31 | 32 | ## Running with Dockerfile 33 | 34 | We also posted the [Dockerfile](Dockerfile). To generate the pre-built file, download the Dockerfile in this directory and run 35 | ```bash 36 | docker build -t [target_tag] . 37 | ``` 38 | in the directory that contains the Dockerfile. 39 | -------------------------------------------------------------------------------- /docs/overview.md: -------------------------------------------------------------------------------- 1 | ## Overview of Code Structure 2 | To help users better understand and use our codebase, we briefly overview the functionality and implementation of each package and each module. Please see the documentation in each file for more details. If you have questions, you may find useful information in [training/test tips](tips.md) and [frequently asked questions](qa.md). 3 | 4 | [train.py](../train.py) is a general-purpose training script. It works for various models (with option `--model`: e.g., `pix2pix`, `cyclegan`, `colorization`) and different datasets (with option `--dataset_mode`: e.g., `aligned`, `unaligned`, `single`, `colorization`). See the main [README](.../README.md) and [training/test tips](tips.md) for more details. 5 | 6 | [test.py](../test.py) is a general-purpose test script. Once you have trained your model with `train.py`, you can use this script to test the model. It will load a saved model from `--checkpoints_dir` and save the results to `--results_dir`. See the main [README](.../README.md) and [training/test tips](tips.md) for more details. 7 | 8 | 9 | [data](../data) directory contains all the modules related to data loading and preprocessing. To add a custom dataset class called `dummy`, you need to add a file called `dummy_dataset.py` and define a subclass `DummyDataset` inherited from `BaseDataset`. You need to implement four functions: `__init__` (initialize the class, you need to first call `BaseDataset.__init__(self, opt)`), `__len__` (return the size of dataset), `__getitem__` (get a data point), and optionally `modify_commandline_options` (add dataset-specific options and set default options). Now you can use the dataset class by specifying flag `--dataset_mode dummy`. See our template dataset [class](../data/template_dataset.py) for an example. Below we explain each file in details. 10 | 11 | * [\_\_init\_\_.py](../data/__init__.py) implements the interface between this package and training and test scripts. `train.py` and `test.py` call `from data import create_dataset` and `dataset = create_dataset(opt)` to create a dataset given the option `opt`. 12 | * [base_dataset.py](../data/base_dataset.py) implements an abstract base class ([ABC](https://docs.python.org/3/library/abc.html)) for datasets. It also includes common transformation functions (e.g., `get_transform`, `__scale_width`), which can be later used in subclasses. 13 | * [image_folder.py](../data/image_folder.py) implements an image folder class. We modify the official PyTorch image folder [code](https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) so that this class can load images from both the current directory and its subdirectories. 14 | * [template_dataset.py](../data/template_dataset.py) provides a dataset template with detailed documentation. Check out this file if you plan to implement your own dataset. 15 | * [aligned_dataset.py](../data/aligned_dataset.py) includes a dataset class that can load image pairs. It assumes a single image directory `/path/to/data/train`, which contains image pairs in the form of {A,B}. See [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md#prepare-your-own-datasets-for-pix2pix) on how to prepare aligned datasets. During test time, you need to prepare a directory `/path/to/data/test` as test data. 16 | * [unaligned_dataset.py](../data/unaligned_dataset.py) includes a dataset class that can load unaligned/unpaired datasets. It assumes that two directories to host training images from domain A `/path/to/data/trainA` and from domain B `/path/to/data/trainB` respectively. Then you can train the model with the dataset flag `--dataroot /path/to/data`. Similarly, you need to prepare two directories `/path/to/data/testA` and `/path/to/data/testB` during test time. 17 | * [single_dataset.py](../data/single_dataset.py) includes a dataset class that can load a set of single images specified by the path `--dataroot /path/to/data`. It can be used for generating CycleGAN results only for one side with the model option `-model test`. 18 | * [colorization_dataset.py](../data/colorization_dataset.py) implements a dataset class that can load a set of nature images in RGB, and convert RGB format into (L, ab) pairs in [Lab](https://en.wikipedia.org/wiki/CIELAB_color_space) color space. It is required by pix2pix-based colorization model (`--model colorization`). 19 | 20 | 21 | [models](../models) directory contains modules related to objective functions, optimizations, and network architectures. To add a custom model class called `dummy`, you need to add a file called `dummy_model.py` and define a subclass `DummyModel` inherited from `BaseModel`. You need to implement four functions: `__init__` (initialize the class; you need to first call `BaseModel.__init__(self, opt)`), `set_input` (unpack data from dataset and apply preprocessing), `forward` (generate intermediate results), `optimize_parameters` (calculate loss, gradients, and update network weights), and optionally `modify_commandline_options` (add model-specific options and set default options). Now you can use the model class by specifying flag `--model dummy`. See our template model [class](../models/template_model.py) for an example. Below we explain each file in details. 22 | 23 | * [\_\_init\_\_.py](../models/__init__.py) implements the interface between this package and training and test scripts. `train.py` and `test.py` call `from models import create_model` and `model = create_model(opt)` to create a model given the option `opt`. You also need to call `model.setup(opt)` to properly initialize the model. 24 | * [base_model.py](../models/base_model.py) implements an abstract base class ([ABC](https://docs.python.org/3/library/abc.html)) for models. It also includes commonly used helper functions (e.g., `setup`, `test`, `update_learning_rate`, `save_networks`, `load_networks`), which can be later used in subclasses. 25 | * [template_model.py](../models/template_model.py) provides a model template with detailed documentation. Check out this file if you plan to implement your own model. 26 | * [pix2pix_model.py](../models/pix2pix_model.py) implements the pix2pix [model](https://phillipi.github.io/pix2pix/), for learning a mapping from input images to output images given paired data. The model training requires `--dataset_mode aligned` dataset. By default, it uses a `--netG unet256` [U-Net](https://arxiv.org/pdf/1505.04597.pdf) generator, a `--netD basic` discriminator (PatchGAN), and a `--gan_mode vanilla` GAN loss (standard cross-entropy objective). 27 | * [colorization_model.py](../models/colorization_model.py) implements a subclass of `Pix2PixModel` for image colorization (black & white image to colorful image). The model training requires `-dataset_model colorization` dataset. It trains a pix2pix model, mapping from L channel to ab channels in [Lab](https://en.wikipedia.org/wiki/CIELAB_color_space) color space. By default, the `colorization` dataset will automatically set `--input_nc 1` and `--output_nc 2`. 28 | * [cycle_gan_model.py](../models/cycle_gan_model.py) implements the CycleGAN [model](https://junyanz.github.io/CycleGAN/), for learning image-to-image translation without paired data. The model training requires `--dataset_mode unaligned` dataset. By default, it uses a `--netG resnet_9blocks` ResNet generator, a `--netD basic` discriminator (PatchGAN introduced by pix2pix), and a least-square GANs [objective](https://arxiv.org/abs/1611.04076) (`--gan_mode lsgan`). 29 | * [networks.py](../models/networks.py) module implements network architectures (both generators and discriminators), as well as normalization layers, initialization methods, optimization scheduler (i.e., learning rate policy), and GAN objective function (`vanilla`, `lsgan`, `wgangp`). 30 | * [test_model.py](../models/test_model.py) implements a model that can be used to generate CycleGAN results for only one direction. This model will automatically set `--dataset_mode single`, which only loads the images from one set. See the test [instruction](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix#apply-a-pre-trained-model-cyclegan) for more details. 31 | 32 | [options](../options) directory includes our option modules: training options, test options, and basic options (used in both training and test). `TrainOptions` and `TestOptions` are both subclasses of `BaseOptions`. They will reuse the options defined in `BaseOptions`. 33 | * [\_\_init\_\_.py](../options/__init__.py) is required to make Python treat the directory `options` as containing packages, 34 | * [base_options.py](../options/base_options.py) includes options that are used in both training and test. It also implements a few helper functions such as parsing, printing, and saving the options. It also gathers additional options defined in `modify_commandline_options` functions in both dataset class and model class. 35 | * [train_options.py](../options/train_options.py) includes options that are only used during training time. 36 | * [test_options.py](../options/test_options.py) includes options that are only used during test time. 37 | 38 | 39 | [util](../util) directory includes a miscellaneous collection of useful helper functions. 40 | * [\_\_init\_\_.py](../util/__init__.py) is required to make Python treat the directory `util` as containing packages, 41 | * [get_data.py](../util/get_data.py) provides a Python script for downloading CycleGAN and pix2pix datasets. Alternatively, You can also use bash scripts such as [download_pix2pix_model.sh](../scripts/download_pix2pix_model.sh) and [download_cyclegan_model.sh](../scripts/download_cyclegan_model.sh). 42 | * [html.py](../util/html.py) implements a module that saves images into a single HTML file. It consists of functions such as `add_header` (add a text header to the HTML file), `add_images` (add a row of images to the HTML file), `save` (save the HTML to the disk). It is based on Python library `dominate`, a Python library for creating and manipulating HTML documents using a DOM API. 43 | * [image_pool.py](../util/image_pool.py) implements an image buffer that stores previously generated images. This buffer enables us to update discriminators using a history of generated images rather than the ones produced by the latest generators. The original idea was discussed in this [paper](http://openaccess.thecvf.com/content_cvpr_2017/papers/Shrivastava_Learning_From_Simulated_CVPR_2017_paper.pdf). The size of the buffer is controlled by the flag `--pool_size`. 44 | * [visualizer.py](../util/visualizer.py) includes several functions that can display/save images and print/save logging information. It uses a Python library `visdom` for display and a Python library `dominate` (wrapped in `HTML`) for creating HTML files with images. 45 | * [util.py](../util/util.py) consists of simple helper functions such as `tensor2im` (convert a tensor array to a numpy image array), `diagnose_network` (calculate and print the mean of average absolute value of gradients), and `mkdirs` (create multiple directories). 46 | -------------------------------------------------------------------------------- /docs/qa.md: -------------------------------------------------------------------------------- 1 | ## Frequently Asked Questions 2 | Before you post a new question, please first look at the following Q & A and existing GitHub issues. You may also want to read [Training/Test tips](docs/tips.md) for more suggestions. 3 | 4 | #### Connection Error:HTTPConnectionPool ([#230](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/230), [#24](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/24), [#38](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/38)) 5 | Similar error messages include “Failed to establish a new connection/Connection refused”. 6 | 7 | Please start the visdom server before starting the training: 8 | ```bash 9 | python -m visdom.server 10 | ``` 11 | To install the visdom, you can use the following command: 12 | ```bash 13 | pip install visdom 14 | ``` 15 | You can also disable the visdom by setting `--display_id 0`. 16 | 17 | #### My PyTorch errors on CUDA related code. 18 | Try to run the following code snippet to make sure that CUDA is working (assuming using PyTorch >= 0.4): 19 | ```python 20 | import torch 21 | torch.cuda.init() 22 | print(torch.randn(1, device='cuda')) 23 | ``` 24 | 25 | If you met an error, it is likely that your PyTorch build does not work with CUDA, e.g., it is installl from the official MacOS binary, or you have a GPU that is too old and not supported anymore. You may run the the code with CPU using `--gpu_ids -1`. 26 | 27 | #### TypeError: Object of type 'Tensor' is not JSON serializable ([#258](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/258)) 28 | Similar errors: AttributeError: module 'torch' has no attribute 'device' ([#314](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/314)) 29 | 30 | The current code only works with PyTorch 0.4+. An earlier PyTorch version can often cause the above errors. 31 | 32 | #### ValueError: empty range for randrange() ([#390](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/390), [#376](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/376), [#194](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/194)) 33 | Similar error messages include "ConnectionRefusedError: [Errno 111] Connection refused" 34 | 35 | It is related to data augmentation step. It often happens when you use `--preprocess crop`. The program will crop random `crop_size x crop_size` patches out of the input training images. But if some of your image sizes (e.g., `256x384`) are smaller than the `crop_size` (e.g., 512), you will get this error. A simple fix will be to use other data augmentation methods such as `resize_and_crop` or `scale_width_and_crop`. Our program will automatically resize the images according to `load_size` before apply `crop_size x crop_size` cropping. Make sure that `load_size >= crop_size`. 36 | 37 | 38 | #### Can I continue/resume my training? ([#350](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/350), [#275](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/275), [#234](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/234), [#87](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/87)) 39 | You can use the option `--continue_train`. Also set `--epoch_count` to specify a different starting epoch count. See more discussion in [training/test tips](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md#trainingtest-tips. 40 | 41 | #### Why does my training loss not converge? ([#335](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/335), [#164](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/164), [#30](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/30)) 42 | Many GAN losses do not converge (exception: WGAN, WGAN-GP, etc. ) due to the nature of minimax optimization. For DCGAN and LSGAN objective, it is quite normal for the G and D losses to go up and down. It should be fine as long as they do not blow up. 43 | 44 | #### How can I make it work for my own data (e.g., 16-bit png, tiff, hyperspectral images)? ([#309](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/309), [#320](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/), [#202](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/202)) 45 | The current code only supports RGB and grayscale images. If you would like to train the model on other data types, please follow the following steps: 46 | 47 | - change the parameters `--input_nc` and `--output_nc` to the number of channels in your input/output images. 48 | - Write your own custom data loader (It is easy as long as you know how to load your data with python). If you write a new data loader class, you need to change the flag `--dataset_mode` accordingly. Alternatively, you can modify the existing data loader. For aligned datasets, change this [line](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/data/aligned_dataset.py#L41); For unaligned datasets, change these two [lines](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/data/unaligned_dataset.py#L57). 49 | 50 | - If you use visdom and HTML to visualize the results, you may also need to change the visualization code. 51 | 52 | #### Multi-GPU Training ([#327](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/327), [#292](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/292), [#137](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/137), [#35](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/35)) 53 | You can use Multi-GPU training by setting `--gpu_ids` (e.g., `--gpu_ids 0,1,2,3` for the first four GPUs on your machine.) To fully utilize all the GPUs, you need to increase your batch size. Try `--batch_size 4`, `--batch_size 16`, or even a larger batch_size. Each GPU will process batch_size/#GPUs images. The optimal batch size depends on the number of GPUs you have, GPU memory per GPU, and the resolution of your training images. 54 | 55 | We also recommend that you use the instance normalization for multi-GPU training by setting `--norm instance`. The current batch normalization might not work for multi-GPUs as the batchnorm parameters are not shared across different GPUs. Advanced users can try [synchronized batchnorm](https://github.com/vacancy/Synchronized-BatchNorm-PyTorch). 56 | 57 | 58 | #### Can I run the model on CPU? ([#310](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/310)) 59 | Yes, you can set `--gpu_ids -1`. See [training/test tips](tips.md) for more details. 60 | 61 | 62 | #### Are pre-trained models available? ([#10](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/10)) 63 | Yes, you can download pretrained models with the bash script `./scripts/download_cyclegan_model.sh`. See [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix#apply-a-pre-trained-model-cyclegan) for more details. We are slowly adding more models to the repo. 64 | 65 | #### Out of memory ([#174](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/174)) 66 | CycleGAN is more memory-intensive than pix2pix as it requires two generators and two discriminators. If you would like to produce high-resolution images, you can do the following. 67 | 68 | - During training, train CycleGAN on cropped images of the training set. Please be careful not to change the aspect ratio or the scale of the original image, as this can lead to the training/test gap. You can usually do this by using `--preprocess crop` option, or `--preprocess scale_width_and_crop`. 69 | 70 | - Then at test time, you can load only one generator to produce the results in a single direction. This greatly saves GPU memory as you are not loading the discriminators and the other generator in the opposite direction. You can probably take the whole image as input. You can do this using `--model test --dataroot [path to the directory that contains your test images (e.g., ./datasets/horse2zebra/trainA)] --model_suffix _A --preprocess none`. You can use either `--preprocess none` or `--preprocess scale_width --crop_size [your_desired_image_width]`. Please see the [model_suffix](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/test_model.py#L16) and [preprocess](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/data/base_dataset.py#L24) for more details. 71 | 72 | #### What is the identity loss? ([#322](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/322), [#373](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/373), [#362](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/pull/362)) 73 | We use the identity loss for our photo to painting application. The identity loss can regularize the generator to be close to an identity mapping when fed with real samples from the *target* domain. If something already looks like from the target domain, you should preserve the image without making additional changes. The generator trained with this loss will often be more conservative for unknown content. Please see more details in Sec 5.2 ''Photo generation from paintings'' and Figure 12 in the CycleGAN [paper](https://arxiv.org/pdf/1703.10593.pdf). The loss was first proposed in the Equation 6 of the prior work [[Taigman et al., 2017]](https://arxiv.org/pdf/1611.02200.pdf). 74 | 75 | #### The color gets inverted from the beginning of training ([#249](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/249)) 76 | The authors also observe that the generator unnecessarily inverts the color of the input image early in training, and then never learns to undo the inversion. In this case, you can try two things. 77 | 78 | - First, try using identity loss `--lambda_identity 1.0` or `--lambda_identity 0.1`. We observe that the identity loss makes the generator to be more conservative and make fewer unnecessary changes. However, because of this, the change may not be as dramatic. 79 | 80 | - Second, try smaller variance when initializing weights by changing `--init_gain`. We observe that smaller variance in weight initialization results in less color inversion. 81 | 82 | #### For labels2photo Cityscapes evaluation, why does the pretrained FCN-8s model not work well on the original Cityscapes input images? ([#150](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/150)) 83 | The model was trained on 256x256 images that are resized/upsampled to 1024x2048, so expected input images to the network are very blurry. The purpose of the resizing was to 1) keep the label maps in the original high resolution untouched and 2) avoid the need of changing the standard FCN training code for Cityscapes. 84 | 85 | #### How do I get the `ground-truth` numbers on the labels2photo Cityscapes evaluation? ([#150](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/150)) 86 | You need to resize the original Cityscapes images to 256x256 before running the evaluation code. 87 | 88 | 89 | #### Using resize-conv to reduce checkerboard artifacts ([#190](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/190), [#64](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/64)) 90 | This Distill [blog](https://distill.pub/2016/deconv-checkerboard/) discussed one of the potential causes of the checkerboard artifacts. You can fix that issue by switching from "deconvolution" to nearest-neighbor upsampling followed by regular convolution. Here is one implementation provided by [@SsnL](https://github.com/SsnL). You can replace the ConvTranspose2d with the following layers. 91 | ```python 92 | nn.Upsample(scale_factor = 2, mode='bilinear'), 93 | nn.ReflectionPad2d(1), 94 | nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=0), 95 | ``` 96 | We have also noticed that sometimes the checkboard artifacts will go away if you train long enough. Maybe you can try training your model a bit longer. 97 | 98 | #### pix2pix/CycleGAN has no random noise z ([#152](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/152)) 99 | The current pix2pix/CycleGAN model does not take z as input. In both pix2pix and CycleGAN, we tried to add z to the generator: e.g., adding z to a latent state, concatenating with a latent state, applying dropout, etc., but often found the output did not vary significantly as a function of z. Conditional GANs do not need noise as long as the input is sufficiently complex so that the input can kind of play the role of noise. Without noise, the mapping is deterministic. 100 | 101 | Please check out the following papers that show ways of getting z to actually have a substantial effect: e.g., [BicycleGAN](https://github.com/junyanz/BicycleGAN), [AugmentedCycleGAN](https://arxiv.org/abs/1802.10151), [MUNIT](https://arxiv.org/abs/1804.04732), [DRIT](https://arxiv.org/pdf/1808.00948.pdf), etc. 102 | 103 | #### Experiment details (e.g., BW->color) ([#306](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/306)) 104 | You can find more training details and hyperparameter settings in the appendix of [CycleGAN](https://arxiv.org/abs/1703.10593) and [pix2pix](https://arxiv.org/abs/1611.07004) papers. 105 | 106 | #### Results with [Cycada](https://arxiv.org/pdf/1711.03213.pdf) 107 | We generated the [result of translating GTA images to Cityscapes-style images](https://junyanz.github.io/CycleGAN/) using our Torch repo. Our PyTorch and Torch implementation seemed to produce a little bit different results, although we have not measured the FCN score using the pytorch-trained model. To reproduce the result of Cycada, please use the Torch repo for now. 108 | -------------------------------------------------------------------------------- /docs/tips.md: -------------------------------------------------------------------------------- 1 | ## Training/test Tips 2 | #### Training/test options 3 | Please see `options/train_options.py` and `options/base_options.py` for the training flags; see `options/test_options.py` and `options/base_options.py` for the test flags. There are some model-specific flags as well, which are added in the model files, such as `--lambda_A` option in `model/cycle_gan_model.py`. The default values of these options are also adjusted in the model files. 4 | #### CPU/GPU (default `--gpu_ids 0`) 5 | Please set`--gpu_ids -1` to use CPU mode; set `--gpu_ids 0,1,2` for multi-GPU mode. You need a large batch size (e.g., `--batch_size 32`) to benefit from multiple GPUs. 6 | 7 | #### Visualization 8 | During training, the current results can be viewed using two methods. First, if you set `--display_id` > 0, the results and loss plot will appear on a local graphics web server launched by [visdom](https://github.com/facebookresearch/visdom). To do this, you should have `visdom` installed and a server running by the command `python -m visdom.server`. The default server URL is `http://localhost:8097`. `display_id` corresponds to the window ID that is displayed on the `visdom` server. The `visdom` display functionality is turned on by default. To avoid the extra overhead of communicating with `visdom` set `--display_id -1`. Second, the intermediate results are saved to `[opt.checkpoints_dir]/[opt.name]/web/` as an HTML file. To avoid this, set `--no_html`. 9 | 10 | #### Preprocessing 11 | Images can be resized and cropped in different ways using `--preprocess` option. The default option `'resize_and_crop'` resizes the image to be of size `(opt.load_size, opt.load_size)` and does a random crop of size `(opt.crop_size, opt.crop_size)`. `'crop'` skips the resizing step and only performs random cropping. `'scale_width'` resizes the image to have width `opt.crop_size` while keeping the aspect ratio. `'scale_width_and_crop'` first resizes the image to have width `opt.load_size` and then does random cropping of size `(opt.crop_size, opt.crop_size)`. `'none'` tries to skip all these preprocessing steps. However, if the image size is not a multiple of some number depending on the number of downsamplings of the generator, you will get an error because the size of the output image may be different from the size of the input image. Therefore, `'none'` option still tries to adjust the image size to be a multiple of 4. You might need a bigger adjustment if you change the generator architecture. Please see `data/base_datset.py` do see how all these were implemented. 12 | 13 | #### Fine-tuning/resume training 14 | To fine-tune a pre-trained model, or resume the previous training, use the `--continue_train` flag. The program will then load the model based on `epoch`. By default, the program will initialize the epoch count as 1. Set `--epoch_count ` to specify a different starting epoch count. 15 | 16 | 17 | #### Prepare your own datasets for CycleGAN 18 | You need to create two directories to host images from domain A `/path/to/data/trainA` and from domain B `/path/to/data/trainB`. Then you can train the model with the dataset flag `--dataroot /path/to/data`. Optionally, you can create hold-out test datasets at `/path/to/data/testA` and `/path/to/data/testB` to test your model on unseen images. 19 | 20 | #### Prepare your own datasets for pix2pix 21 | Pix2pix's training requires paired data. We provide a python script to generate training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene. For example, these might be pairs {label map, photo} or {bw image, color image}. Then we can learn to translate A to B or B to A: 22 | 23 | Create folder `/path/to/data` with subdirectories `A` and `B`. `A` and `B` should each have their own subdirectories `train`, `val`, `test`, etc. In `/path/to/data/A/train`, put training images in style A. In `/path/to/data/B/train`, put the corresponding images in style B. Repeat same for other data splits (`val`, `test`, etc). 24 | 25 | Corresponding images in a pair {A,B} must be the same size and have the same filename, e.g., `/path/to/data/A/train/1.jpg` is considered to correspond to `/path/to/data/B/train/1.jpg`. 26 | 27 | Once the data is formatted this way, call: 28 | ```bash 29 | python datasets/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data 30 | ``` 31 | 32 | This will combine each pair of images (A,B) into a single image file, ready for training. 33 | 34 | 35 | #### About image size 36 | Since the generator architecture in CycleGAN involves a series of downsampling / upsampling operations, the size of the input and output image may not match if the input image size is not a multiple of 4. As a result, you may get a runtime error because the L1 identity loss cannot be enforced with images of different size. Therefore, we slightly resize the image to become multiples of 4 even with `--preprocess none` option. For the same reason, `--crop_size` needs to be a multiple of 4. 37 | 38 | #### Training/Testing with high res images 39 | CycleGAN is quite memory-intensive as four networks (two generators and two discriminators) need to be loaded on one GPU, so a large image cannot be entirely loaded. In this case, we recommend training with cropped images. For example, to generate 1024px results, you can train with `--preprocess scale_width_and_crop --load_size 1024 --crop_size 360`, and test with `--preprocess scale_width --load_size 1024`. This way makes sure the training and test will be at the same scale. At test time, you can afford higher resolution because you don’t need to load all networks. 40 | 41 | #### About loss curve 42 | Unfortunately, the loss curve does not reveal much information in training GANs, and CycleGAN is no exception. To check whether the training has converged or not, we recommend periodically generating a few samples and looking at them. 43 | 44 | #### About batch size 45 | For all experiments in the paper, we set the batch size to be 1. If there is room for memory, you can use higher batch size with batch norm or instance norm. (Note that the default batchnorm does not work well with multi-GPU training. You may consider using [synchronized batchnorm](https://github.com/vacancy/Synchronized-BatchNorm-PyTorch) instead). But please be aware that it can impact the training. In particular, even with Instance Normalization, different batch sizes can lead to different results. Moreover, increasing `--crop_size` may be a good alternative to increasing the batch size. 46 | 47 | 48 | #### Notes on Colorization 49 | No need to run `combine_A_and_B.py` for colorization. Instead, you need to prepare natural images and set `--dataset_mode colorization` and `--model colorization` in the script. The program will automatically convert each RGB image into Lab color space, and create `L -> ab` image pair during the training. Also set `--input_nc 1` and `--output_nc 2`. The training and test directory should be organized as `/your/data/train` and `your/data/test`. See example scripts `scripts/train_colorization.sh` and `scripts/test_colorization` for more details. 50 | 51 | #### Notes on Extracting Edges 52 | We provide python and Matlab scripts to extract coarse edges from photos. Run `scripts/edges/batch_hed.py` to compute [HED](https://github.com/s9xie/hed) edges. Run `scripts/edges/PostprocessHED.m` to simplify edges with additional post-processing steps. Check the code documentation for more details. 53 | 54 | #### Evaluating Labels2Photos on Cityscapes 55 | We provide scripts for running the evaluation of the Labels2Photos task on the Cityscapes **validation** set. We assume that you have installed `caffe` (and `pycaffe`) in your system. If not, see the [official website](http://caffe.berkeleyvision.org/installation.html) for installation instructions. Once `caffe` is successfully installed, download the pre-trained FCN-8s semantic segmentation model (512MB) by running 56 | ```bash 57 | bash ./scripts/eval_cityscapes/download_fcn8s.sh 58 | ``` 59 | Then make sure `./scripts/eval_cityscapes/` is in your system's python path. If not, run the following command to add it 60 | ```bash 61 | export PYTHONPATH=${PYTHONPATH}:./scripts/eval_cityscapes/ 62 | ``` 63 | Now you can run the following command to evaluate your predictions: 64 | ```bash 65 | python ./scripts/eval_cityscapes/evaluate.py --cityscapes_dir /path/to/original/cityscapes/dataset/ --result_dir /path/to/your/predictions/ --output_dir /path/to/output/directory/ 66 | ``` 67 | Images stored under `--result_dir` should contain your model predictions on the Cityscapes **validation** split, and have the original Cityscapes naming convention (e.g., `frankfurt_000001_038418_leftImg8bit.png`). The script will output a text file under `--output_dir` containing the metric. 68 | 69 | **Further notes**: The pre-trained model is **not** supposed to work on Cityscapes in the original resolution (1024x2048) as it was trained on 256x256 images that are upsampled to 1024x2048. The purpose of the resizing was to 1) keep the label maps in the original high resolution untouched and 2) avoid the need of changing the standard FCN training code for Cityscapes. To get the *ground-truth* numbers in the paper, you need to resize the original Cityscapes images to 256x256 before running the evaluation code. 70 | -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | name: pytorch-CycleGAN-and-pix2pix 2 | channels: 3 | - peterjc123 4 | - defaults 5 | dependencies: 6 | - python=3.5.5 7 | - pytorch=0.4.1 8 | - scipy 9 | - pip: 10 | - dominate==2.3.1 11 | - git+https://github.com/pytorch/vision.git 12 | - Pillow==5.0.0 13 | - numpy==1.14.1 14 | - visdom==0.1.7 15 | -------------------------------------------------------------------------------- /imgs/edges2cats.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/smartadpole/CycleGAN_Pytorch/6e53bb65f94173c33956cc8af933b858804c830a/imgs/edges2cats.jpg -------------------------------------------------------------------------------- /imgs/horse2zebra.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/smartadpole/CycleGAN_Pytorch/6e53bb65f94173c33956cc8af933b858804c830a/imgs/horse2zebra.gif -------------------------------------------------------------------------------- /models/__init__.py: -------------------------------------------------------------------------------- 1 | """This package contains modules related to objective functions, optimizations, and network architectures. 2 | 3 | To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel. 4 | You need to implement the following five functions: 5 | -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). 6 | -- : unpack data from dataset and apply preprocessing. 7 | -- : produce intermediate results. 8 | -- : calculate loss, gradients, and update network weights. 9 | -- : (optionally) add model-specific options and set default options. 10 | 11 | In the function <__init__>, you need to define four lists: 12 | -- self.loss_names (str list): specify the training losses that you want to plot and save. 13 | -- self.model_names (str list): define networks used in our training. 14 | -- self.visual_names (str list): specify the images that you want to display and save. 15 | -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage. 16 | 17 | Now you can use the model class by specifying flag '--model dummy'. 18 | See our template model class 'template_model.py' for more details. 19 | """ 20 | 21 | import importlib 22 | from models.base_model import BaseModel 23 | 24 | 25 | def find_model_using_name(model_name): 26 | """Import the module "models/[model_name]_model.py". 27 | 28 | In the file, the class called DatasetNameModel() will 29 | be instantiated. It has to be a subclass of BaseModel, 30 | and it is case-insensitive. 31 | """ 32 | model_filename = "models." + model_name + "_model" 33 | modellib = importlib.import_module(model_filename) 34 | model = None 35 | target_model_name = model_name.replace('_', '') + 'model' 36 | for name, cls in modellib.__dict__.items(): 37 | if name.lower() == target_model_name.lower() \ 38 | and issubclass(cls, BaseModel): 39 | model = cls 40 | 41 | if model is None: 42 | print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) 43 | exit(0) 44 | 45 | return model 46 | 47 | 48 | def get_option_setter(model_name): 49 | """Return the static method of the model class.""" 50 | model_class = find_model_using_name(model_name) 51 | return model_class.modify_commandline_options 52 | 53 | 54 | def create_model(opt): 55 | """Create a model given the option. 56 | 57 | This function warps the class CustomDatasetDataLoader. 58 | This is the main interface between this package and 'train.py'/'test.py' 59 | 60 | Example: 61 | >>> from models import create_model 62 | >>> model = create_model(opt) 63 | """ 64 | model = find_model_using_name(opt.model) 65 | instance = model(opt) 66 | print("model [%s] was created" % type(instance).__name__) 67 | return instance 68 | -------------------------------------------------------------------------------- /models/base_model.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | from collections import OrderedDict 4 | from abc import ABC, abstractmethod 5 | from . import networks 6 | 7 | 8 | class BaseModel(ABC): 9 | """This class is an abstract base class (ABC) for models. 10 | To create a subclass, you need to implement the following five functions: 11 | -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). 12 | -- : unpack data from dataset and apply preprocessing. 13 | -- : produce intermediate results. 14 | -- : calculate losses, gradients, and update network weights. 15 | -- : (optionally) add model-specific options and set default options. 16 | """ 17 | 18 | def __init__(self, opt): 19 | """Initialize the BaseModel class. 20 | 21 | Parameters: 22 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 23 | 24 | When creating your custom class, you need to implement your own initialization. 25 | In this fucntion, you should first call 26 | Then, you need to define four lists: 27 | -- self.loss_names (str list): specify the training losses that you want to plot and save. 28 | -- self.model_names (str list): specify the images that you want to display and save. 29 | -- self.visual_names (str list): define networks used in our training. 30 | -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. 31 | """ 32 | self.opt = opt 33 | self.gpu_ids = opt.gpu_ids 34 | self.isTrain = opt.isTrain 35 | self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU 36 | self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir 37 | if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark. 38 | torch.backends.cudnn.benchmark = True 39 | self.loss_names = [] 40 | self.model_names = [] 41 | self.visual_names = [] 42 | self.optimizers = [] 43 | self.image_paths = [] 44 | self.metric = 0 # used for learning rate policy 'plateau' 45 | 46 | @staticmethod 47 | def modify_commandline_options(parser, is_train): 48 | """Add new model-specific options, and rewrite default values for existing options. 49 | 50 | Parameters: 51 | parser -- original option parser 52 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 53 | 54 | Returns: 55 | the modified parser. 56 | """ 57 | return parser 58 | 59 | @abstractmethod 60 | def set_input(self, input): 61 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 62 | 63 | Parameters: 64 | input (dict): includes the data itself and its metadata information. 65 | """ 66 | pass 67 | 68 | @abstractmethod 69 | def forward(self): 70 | """Run forward pass; called by both functions and .""" 71 | pass 72 | 73 | @abstractmethod 74 | def optimize_parameters(self): 75 | """Calculate losses, gradients, and update network weights; called in every training iteration""" 76 | pass 77 | 78 | def setup(self, opt): 79 | """Load and print networks; create schedulers 80 | 81 | Parameters: 82 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 83 | """ 84 | if self.isTrain: 85 | self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] 86 | if not self.isTrain or opt.continue_train: 87 | load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch 88 | self.load_networks(load_suffix) 89 | self.print_networks(opt.verbose) 90 | 91 | def eval(self): 92 | """Make models eval mode during test time""" 93 | for name in self.model_names: 94 | if isinstance(name, str): 95 | net = getattr(self, 'net' + name) 96 | net.eval() 97 | 98 | def test(self): 99 | """Forward function used in test time. 100 | 101 | This function wraps function in no_grad() so we don't save intermediate steps for backprop 102 | It also calls to produce additional visualization results 103 | """ 104 | with torch.no_grad(): 105 | self.forward() 106 | self.compute_visuals() 107 | 108 | def compute_visuals(self): 109 | """Calculate additional output images for visdom and HTML visualization""" 110 | pass 111 | 112 | def get_image_paths(self): 113 | """ Return image paths that are used to load current data""" 114 | return self.image_paths 115 | 116 | def update_learning_rate(self): 117 | """Update learning rates for all the networks; called at the end of every epoch""" 118 | for scheduler in self.schedulers: 119 | if self.opt.lr_policy == 'plateau': 120 | scheduler.step(self.metric) 121 | else: 122 | scheduler.step() 123 | 124 | lr = self.optimizers[0].param_groups[0]['lr'] 125 | print('learning rate = %.7f' % lr) 126 | 127 | def get_current_visuals(self): 128 | """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" 129 | visual_ret = OrderedDict() 130 | for name in self.visual_names: 131 | if isinstance(name, str): 132 | visual_ret[name] = getattr(self, name) 133 | return visual_ret 134 | 135 | def get_current_losses(self): 136 | """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" 137 | errors_ret = OrderedDict() 138 | for name in self.loss_names: 139 | if isinstance(name, str): 140 | errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number 141 | return errors_ret 142 | 143 | def save_networks(self, epoch): 144 | """Save all the networks to the disk. 145 | 146 | Parameters: 147 | epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) 148 | """ 149 | for name in self.model_names: 150 | if isinstance(name, str): 151 | save_filename = '%s_net_%s.pth' % (epoch, name) 152 | save_path = os.path.join(self.save_dir, save_filename) 153 | net = getattr(self, 'net' + name) 154 | 155 | if len(self.gpu_ids) > 0 and torch.cuda.is_available(): 156 | torch.save(net.module.cpu().state_dict(), save_path) 157 | net.cuda(self.gpu_ids[0]) 158 | else: 159 | torch.save(net.cpu().state_dict(), save_path) 160 | 161 | def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): 162 | """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" 163 | key = keys[i] 164 | if i + 1 == len(keys): # at the end, pointing to a parameter/buffer 165 | if module.__class__.__name__.startswith('InstanceNorm') and \ 166 | (key == 'running_mean' or key == 'running_var'): 167 | if getattr(module, key) is None: 168 | state_dict.pop('.'.join(keys)) 169 | if module.__class__.__name__.startswith('InstanceNorm') and \ 170 | (key == 'num_batches_tracked'): 171 | state_dict.pop('.'.join(keys)) 172 | else: 173 | self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) 174 | 175 | def load_networks(self, epoch): 176 | """Load all the networks from the disk. 177 | 178 | Parameters: 179 | epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) 180 | """ 181 | for name in self.model_names: 182 | if isinstance(name, str): 183 | load_filename = '%s_net_%s.pth' % (epoch, name) 184 | load_path = os.path.join(self.save_dir, load_filename) 185 | net = getattr(self, 'net' + name) 186 | if isinstance(net, torch.nn.DataParallel): 187 | net = net.module 188 | print('loading the model from %s' % load_path) 189 | # if you are using PyTorch newer than 0.4 (e.g., built from 190 | # GitHub source), you can remove str() on self.device 191 | state_dict = torch.load(load_path, map_location=str(self.device)) 192 | if hasattr(state_dict, '_metadata'): 193 | del state_dict._metadata 194 | 195 | # patch InstanceNorm checkpoints prior to 0.4 196 | for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop 197 | self.__patch_instance_norm_state_dict(state_dict, net, key.split('.')) 198 | net.load_state_dict(state_dict) 199 | 200 | def print_networks(self, verbose): 201 | """Print the total number of parameters in the network and (if verbose) network architecture 202 | 203 | Parameters: 204 | verbose (bool) -- if verbose: print the network architecture 205 | """ 206 | print('---------- Networks initialized -------------') 207 | for name in self.model_names: 208 | if isinstance(name, str): 209 | net = getattr(self, 'net' + name) 210 | num_params = 0 211 | for param in net.parameters(): 212 | num_params += param.numel() 213 | if verbose: 214 | print(net) 215 | print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) 216 | print('-----------------------------------------------') 217 | 218 | def set_requires_grad(self, nets, requires_grad=False): 219 | """Set requies_grad=Fasle for all the networks to avoid unnecessary computations 220 | Parameters: 221 | nets (network list) -- a list of networks 222 | requires_grad (bool) -- whether the networks require gradients or not 223 | """ 224 | if not isinstance(nets, list): 225 | nets = [nets] 226 | for net in nets: 227 | if net is not None: 228 | for param in net.parameters(): 229 | param.requires_grad = requires_grad 230 | -------------------------------------------------------------------------------- /models/colorization_model.py: -------------------------------------------------------------------------------- 1 | from .pix2pix_model import Pix2PixModel 2 | import torch 3 | from skimage import color # used for lab2rgb 4 | import numpy as np 5 | 6 | 7 | class ColorizationModel(Pix2PixModel): 8 | """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images). 9 | 10 | The model training requires '-dataset_model colorization' dataset. 11 | It trains a pix2pix model, mapping from L channel to ab channels in Lab color space. 12 | By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'. 13 | """ 14 | @staticmethod 15 | def modify_commandline_options(parser, is_train=True): 16 | """Add new dataset-specific options, and rewrite default values for existing options. 17 | 18 | Parameters: 19 | parser -- original option parser 20 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 21 | 22 | Returns: 23 | the modified parser. 24 | 25 | By default, we use 'colorization' dataset for this model. 26 | See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper) 27 | """ 28 | Pix2PixModel.modify_commandline_options(parser, is_train) 29 | parser.set_defaults(dataset_mode='colorization') 30 | return parser 31 | 32 | def __init__(self, opt): 33 | """Initialize the class. 34 | 35 | Parameters: 36 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 37 | 38 | For visualization, we set 'visual_names' as 'real_A' (input real image), 39 | 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image) 40 | We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'. 41 | we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'. 42 | """ 43 | # reuse the pix2pix model 44 | Pix2PixModel.__init__(self, opt) 45 | # specify the images to be visualized. 46 | self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb'] 47 | 48 | def lab2rgb(self, L, AB): 49 | """Convert an Lab tensor image to a RGB numpy output 50 | Parameters: 51 | L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array) 52 | AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array) 53 | 54 | Returns: 55 | rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array) 56 | """ 57 | AB2 = AB * 110.0 58 | L2 = (L + 1.0) * 50.0 59 | Lab = torch.cat([L2, AB2], dim=1) 60 | Lab = Lab[0].data.cpu().float().numpy() 61 | Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0)) 62 | rgb = color.lab2rgb(Lab) * 255 63 | return rgb 64 | 65 | def compute_visuals(self): 66 | """Calculate additional output images for visdom and HTML visualization""" 67 | self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B) 68 | self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B) 69 | -------------------------------------------------------------------------------- /models/cycle_gan_model.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import itertools 3 | from util.image_pool import ImagePool 4 | from .base_model import BaseModel 5 | from . import networks 6 | 7 | 8 | class CycleGANModel(BaseModel): 9 | """ 10 | This class implements the CycleGAN model, for learning image-to-image translation without paired data. 11 | 12 | The model training requires '--dataset_mode unaligned' dataset. 13 | By default, it uses a '--netG resnet_9blocks' ResNet generator, 14 | a '--netD basic' discriminator (PatchGAN introduced by pix2pix), 15 | and a least-square GANs objective ('--gan_mode lsgan'). 16 | 17 | CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf 18 | """ 19 | @staticmethod 20 | def modify_commandline_options(parser, is_train=True): 21 | """Add new dataset-specific options, and rewrite default values for existing options. 22 | 23 | Parameters: 24 | parser -- original option parser 25 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 26 | 27 | Returns: 28 | the modified parser. 29 | 30 | For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses. 31 | A (source domain), B (target domain). 32 | Generators: G_A: A -> B; G_B: B -> A. 33 | Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A. 34 | Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper) 35 | Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper) 36 | Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper) 37 | Dropout is not used in the original CycleGAN paper. 38 | """ 39 | parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout 40 | if is_train: 41 | parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') 42 | parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') 43 | parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1') 44 | 45 | return parser 46 | 47 | def __init__(self, opt): 48 | """Initialize the CycleGAN class. 49 | 50 | Parameters: 51 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 52 | """ 53 | BaseModel.__init__(self, opt) 54 | # specify the training losses you want to print out. The training/test scripts will call 55 | self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'] 56 | # specify the images you want to save/display. The training/test scripts will call 57 | visual_names_A = ['real_A', 'fake_B', 'rec_A'] 58 | visual_names_B = ['real_B', 'fake_A', 'rec_B'] 59 | if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B) 60 | visual_names_A.append('idt_B') 61 | visual_names_B.append('idt_A') 62 | 63 | self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B 64 | # specify the models you want to save to the disk. The training/test scripts will call and . 65 | if self.isTrain: 66 | self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] 67 | else: # during test time, only load Gs 68 | self.model_names = ['G_A', 'G_B'] 69 | 70 | # define networks (both Generators and discriminators) 71 | # The naming is different from those used in the paper. 72 | # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X) 73 | self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, 74 | not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 75 | self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, 76 | not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 77 | 78 | if self.isTrain: # define discriminators 79 | self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, 80 | opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) 81 | self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, 82 | opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) 83 | 84 | if self.isTrain: 85 | if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels 86 | assert(opt.input_nc == opt.output_nc) 87 | self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images 88 | self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images 89 | # define loss functions 90 | self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss. 91 | self.criterionCycle = torch.nn.L1Loss() 92 | self.criterionIdt = torch.nn.L1Loss() 93 | # initialize optimizers; schedulers will be automatically created by function . 94 | self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) 95 | self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) 96 | self.optimizers.append(self.optimizer_G) 97 | self.optimizers.append(self.optimizer_D) 98 | 99 | def set_input(self, input): 100 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 101 | 102 | Parameters: 103 | input (dict): include the data itself and its metadata information. 104 | 105 | The option 'direction' can be used to swap domain A and domain B. 106 | """ 107 | AtoB = self.opt.direction == 'AtoB' 108 | self.real_A = input['A' if AtoB else 'B'].to(self.device) 109 | self.real_B = input['B' if AtoB else 'A'].to(self.device) 110 | self.image_paths = input['A_paths' if AtoB else 'B_paths'] 111 | 112 | def forward(self): 113 | """Run forward pass; called by both functions and .""" 114 | self.fake_B = self.netG_A(self.real_A) # G_A(A) 115 | self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A)) 116 | self.fake_A = self.netG_B(self.real_B) # G_B(B) 117 | self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B)) 118 | 119 | def backward_D_basic(self, netD, real, fake): 120 | """Calculate GAN loss for the discriminator 121 | 122 | Parameters: 123 | netD (network) -- the discriminator D 124 | real (tensor array) -- real images 125 | fake (tensor array) -- images generated by a generator 126 | 127 | Return the discriminator loss. 128 | We also call loss_D.backward() to calculate the gradients. 129 | """ 130 | # Real 131 | pred_real = netD(real) 132 | loss_D_real = self.criterionGAN(pred_real, True) 133 | # Fake 134 | pred_fake = netD(fake.detach()) 135 | loss_D_fake = self.criterionGAN(pred_fake, False) 136 | # Combined loss and calculate gradients 137 | loss_D = (loss_D_real + loss_D_fake) * 0.5 138 | loss_D.backward() 139 | return loss_D 140 | 141 | def backward_D_A(self): 142 | """Calculate GAN loss for discriminator D_A""" 143 | fake_B = self.fake_B_pool.query(self.fake_B) 144 | self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) 145 | 146 | def backward_D_B(self): 147 | """Calculate GAN loss for discriminator D_B""" 148 | fake_A = self.fake_A_pool.query(self.fake_A) 149 | self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) 150 | 151 | def backward_G(self): 152 | """Calculate the loss for generators G_A and G_B""" 153 | lambda_idt = self.opt.lambda_identity 154 | lambda_A = self.opt.lambda_A 155 | lambda_B = self.opt.lambda_B 156 | # Identity loss 157 | if lambda_idt > 0: 158 | # G_A should be identity if real_B is fed: ||G_A(B) - B|| 159 | self.idt_A = self.netG_A(self.real_B) 160 | self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt 161 | # G_B should be identity if real_A is fed: ||G_B(A) - A|| 162 | self.idt_B = self.netG_B(self.real_A) 163 | self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt 164 | else: 165 | self.loss_idt_A = 0 166 | self.loss_idt_B = 0 167 | 168 | # GAN loss D_A(G_A(A)) 169 | self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True) 170 | # GAN loss D_B(G_B(B)) 171 | self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True) 172 | # Forward cycle loss || G_B(G_A(A)) - A|| 173 | self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A 174 | # Backward cycle loss || G_A(G_B(B)) - B|| 175 | self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B 176 | # combined loss and calculate gradients 177 | self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B 178 | self.loss_G.backward() 179 | 180 | def optimize_parameters(self): 181 | """Calculate losses, gradients, and update network weights; called in every training iteration""" 182 | # forward 183 | self.forward() # compute fake images and reconstruction images. 184 | # G_A and G_B 185 | self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs 186 | self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero 187 | self.backward_G() # calculate gradients for G_A and G_B 188 | self.optimizer_G.step() # update G_A and G_B's weights 189 | # D_A and D_B 190 | self.set_requires_grad([self.netD_A, self.netD_B], True) 191 | self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero 192 | self.backward_D_A() # calculate gradients for D_A 193 | self.backward_D_B() # calculate graidents for D_B 194 | self.optimizer_D.step() # update D_A and D_B's weights 195 | -------------------------------------------------------------------------------- /models/pix2pix_model.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from .base_model import BaseModel 3 | from . import networks 4 | 5 | 6 | class Pix2PixModel(BaseModel): 7 | """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data. 8 | 9 | The model training requires '--dataset_mode aligned' dataset. 10 | By default, it uses a '--netG unet256' U-Net generator, 11 | a '--netD basic' discriminator (PatchGAN), 12 | and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper). 13 | 14 | pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf 15 | """ 16 | @staticmethod 17 | def modify_commandline_options(parser, is_train=True): 18 | """Add new dataset-specific options, and rewrite default values for existing options. 19 | 20 | Parameters: 21 | parser -- original option parser 22 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 23 | 24 | Returns: 25 | the modified parser. 26 | 27 | For pix2pix, we do not use image buffer 28 | The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1 29 | By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets. 30 | """ 31 | # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/) 32 | parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned') 33 | if is_train: 34 | parser.set_defaults(pool_size=0, gan_mode='vanilla') 35 | parser.add_argument('--lambda_L1', type=float, default=100.0, help='weight for L1 loss') 36 | 37 | return parser 38 | 39 | def __init__(self, opt): 40 | """Initialize the pix2pix class. 41 | 42 | Parameters: 43 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 44 | """ 45 | BaseModel.__init__(self, opt) 46 | # specify the training losses you want to print out. The training/test scripts will call 47 | self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake'] 48 | # specify the images you want to save/display. The training/test scripts will call 49 | self.visual_names = ['real_A', 'fake_B', 'real_B'] 50 | # specify the models you want to save to the disk. The training/test scripts will call and 51 | if self.isTrain: 52 | self.model_names = ['G', 'D'] 53 | else: # during test time, only load G 54 | self.model_names = ['G'] 55 | # define networks (both generator and discriminator) 56 | self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, 57 | not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 58 | 59 | if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc 60 | self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD, 61 | opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) 62 | 63 | if self.isTrain: 64 | # define loss functions 65 | self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) 66 | self.criterionL1 = torch.nn.L1Loss() 67 | # initialize optimizers; schedulers will be automatically created by function . 68 | self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 69 | self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 70 | self.optimizers.append(self.optimizer_G) 71 | self.optimizers.append(self.optimizer_D) 72 | 73 | def set_input(self, input): 74 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 75 | 76 | Parameters: 77 | input (dict): include the data itself and its metadata information. 78 | 79 | The option 'direction' can be used to swap images in domain A and domain B. 80 | """ 81 | AtoB = self.opt.direction == 'AtoB' 82 | self.real_A = input['A' if AtoB else 'B'].to(self.device) 83 | self.real_B = input['B' if AtoB else 'A'].to(self.device) 84 | self.image_paths = input['A_paths' if AtoB else 'B_paths'] 85 | 86 | def forward(self): 87 | """Run forward pass; called by both functions and .""" 88 | self.fake_B = self.netG(self.real_A) # G(A) 89 | 90 | def backward_D(self): 91 | """Calculate GAN loss for the discriminator""" 92 | # Fake; stop backprop to the generator by detaching fake_B 93 | fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator 94 | pred_fake = self.netD(fake_AB.detach()) 95 | self.loss_D_fake = self.criterionGAN(pred_fake, False) 96 | # Real 97 | real_AB = torch.cat((self.real_A, self.real_B), 1) 98 | pred_real = self.netD(real_AB) 99 | self.loss_D_real = self.criterionGAN(pred_real, True) 100 | # combine loss and calculate gradients 101 | self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 102 | self.loss_D.backward() 103 | 104 | def backward_G(self): 105 | """Calculate GAN and L1 loss for the generator""" 106 | # First, G(A) should fake the discriminator 107 | fake_AB = torch.cat((self.real_A, self.fake_B), 1) 108 | pred_fake = self.netD(fake_AB) 109 | self.loss_G_GAN = self.criterionGAN(pred_fake, True) 110 | # Second, G(A) = B 111 | self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1 112 | # combine loss and calculate gradients 113 | self.loss_G = self.loss_G_GAN + self.loss_G_L1 114 | self.loss_G.backward() 115 | 116 | def optimize_parameters(self): 117 | self.forward() # compute fake images: G(A) 118 | # update D 119 | self.set_requires_grad(self.netD, True) # enable backprop for D 120 | self.optimizer_D.zero_grad() # set D's gradients to zero 121 | self.backward_D() # calculate gradients for D 122 | self.optimizer_D.step() # update D's weights 123 | # update G 124 | self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G 125 | self.optimizer_G.zero_grad() # set G's gradients to zero 126 | self.backward_G() # calculate graidents for G 127 | self.optimizer_G.step() # udpate G's weights 128 | -------------------------------------------------------------------------------- /models/template_model.py: -------------------------------------------------------------------------------- 1 | """Model class template 2 | 3 | This module provides a template for users to implement custom models. 4 | You can specify '--model template' to use this model. 5 | The class name should be consistent with both the filename and its model option. 6 | The filename should be _dataset.py 7 | The class name should be Dataset.py 8 | It implements a simple image-to-image translation baseline based on regression loss. 9 | Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss: 10 | min_ ||netG(data_A) - data_B||_1 11 | You need to implement the following functions: 12 | : Add model-specific options and rewrite default values for existing options. 13 | <__init__>: Initialize this model class. 14 | : Unpack input data and perform data pre-processing. 15 | : Run forward pass. This will be called by both and . 16 | : Update network weights; it will be called in every training iteration. 17 | """ 18 | import torch 19 | from .base_model import BaseModel 20 | from . import networks 21 | 22 | 23 | class TemplateModel(BaseModel): 24 | @staticmethod 25 | def modify_commandline_options(parser, is_train=True): 26 | """Add new model-specific options and rewrite default values for existing options. 27 | 28 | Parameters: 29 | parser -- the option parser 30 | is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. 31 | 32 | Returns: 33 | the modified parser. 34 | """ 35 | parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset. 36 | if is_train: 37 | parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model. 38 | 39 | return parser 40 | 41 | def __init__(self, opt): 42 | """Initialize this model class. 43 | 44 | Parameters: 45 | opt -- training/test options 46 | 47 | A few things can be done here. 48 | - (required) call the initialization function of BaseModel 49 | - define loss function, visualization images, model names, and optimizers 50 | """ 51 | BaseModel.__init__(self, opt) # call the initialization method of BaseModel 52 | # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. 53 | self.loss_names = ['loss_G'] 54 | # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images. 55 | self.visual_names = ['data_A', 'data_B', 'output'] 56 | # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks. 57 | # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them. 58 | self.model_names = ['G'] 59 | # define networks; you can use opt.isTrain to specify different behaviors for training and test. 60 | self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids) 61 | if self.isTrain: # only defined during training time 62 | # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss. 63 | # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device) 64 | self.criterionLoss = torch.nn.L1Loss() 65 | # define and initialize optimizers. You can define one optimizer for each network. 66 | # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. 67 | self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 68 | self.optimizers = [self.optimizer] 69 | 70 | # Our program will automatically call to define schedulers, load networks, and print networks 71 | 72 | def set_input(self, input): 73 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 74 | 75 | Parameters: 76 | input: a dictionary that contains the data itself and its metadata information. 77 | """ 78 | AtoB = self.opt.direction == 'AtoB' # use to swap data_A and data_B 79 | self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A 80 | self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B 81 | self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths 82 | 83 | def forward(self): 84 | """Run forward pass. This will be called by both functions and .""" 85 | self.output = self.netG(self.data_A) # generate output image given the input data_A 86 | 87 | def backward(self): 88 | """Calculate losses, gradients, and update network weights; called in every training iteration""" 89 | # caculate the intermediate results if necessary; here self.output has been computed during function 90 | # calculate loss given the input and intermediate results 91 | self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression 92 | self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G 93 | 94 | def optimize_parameters(self): 95 | """Update network weights; it will be called in every training iteration.""" 96 | self.forward() # first call forward to calculate intermediate results 97 | self.optimizer.zero_grad() # clear network G's existing gradients 98 | self.backward() # calculate gradients for network G 99 | self.optimizer.step() # update gradients for network G 100 | -------------------------------------------------------------------------------- /models/test_model.py: -------------------------------------------------------------------------------- 1 | from .base_model import BaseModel 2 | from . import networks 3 | 4 | 5 | class TestModel(BaseModel): 6 | """ This TesteModel can be used to generate CycleGAN results for only one direction. 7 | This model will automatically set '--dataset_mode single', which only loads the images from one collection. 8 | 9 | See the test instruction for more details. 10 | """ 11 | @staticmethod 12 | def modify_commandline_options(parser, is_train=True): 13 | """Add new dataset-specific options, and rewrite default values for existing options. 14 | 15 | Parameters: 16 | parser -- original option parser 17 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 18 | 19 | Returns: 20 | the modified parser. 21 | 22 | The model can only be used during test time. It requires '--dataset_mode single'. 23 | You need to specify the network using the option '--model_suffix'. 24 | """ 25 | assert not is_train, 'TestModel cannot be used during training time' 26 | parser.set_defaults(dataset_mode='single') 27 | parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') 28 | 29 | return parser 30 | 31 | def __init__(self, opt): 32 | """Initialize the pix2pix class. 33 | 34 | Parameters: 35 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 36 | """ 37 | assert(not opt.isTrain) 38 | BaseModel.__init__(self, opt) 39 | # specify the training losses you want to print out. The training/test scripts will call 40 | self.loss_names = [] 41 | # specify the images you want to save/display. The training/test scripts will call 42 | self.visual_names = ['real_A', 'fake_B'] 43 | # specify the models you want to save to the disk. The training/test scripts will call and 44 | self.model_names = ['G' + opt.model_suffix] # only generator is needed. 45 | self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, 46 | opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 47 | 48 | # assigns the model to self.netG_[suffix] so that it can be loaded 49 | # please see 50 | setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. 51 | 52 | def set_input(self, input): 53 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 54 | 55 | Parameters: 56 | input: a dictionary that contains the data itself and its metadata information. 57 | 58 | We need to use 'single_dataset' dataset mode. It only load images from one domain. 59 | """ 60 | self.real_A = input['A'].to(self.device) 61 | self.image_paths = input['A_paths'] 62 | 63 | def forward(self): 64 | """Run forward pass.""" 65 | self.fake_B = self.netG(self.real_A) # G(A) 66 | 67 | def optimize_parameters(self): 68 | """No optimization for test model.""" 69 | pass 70 | -------------------------------------------------------------------------------- /options/__init__.py: -------------------------------------------------------------------------------- 1 | """This package options includes option modules: training options, test options, and basic options (used in both training and test).""" 2 | -------------------------------------------------------------------------------- /options/base_options.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import os 3 | from util import util 4 | import torch 5 | import models 6 | import data 7 | 8 | 9 | class BaseOptions(): 10 | """This class defines options used during both training and test time. 11 | 12 | It also implements several helper functions such as parsing, printing, and saving the options. 13 | It also gathers additional options defined in functions in both dataset class and model class. 14 | """ 15 | 16 | def __init__(self): 17 | """Reset the class; indicates the class hasn't been initailized""" 18 | self.initialized = False 19 | 20 | def initialize(self, parser): 21 | """Define the common options that are used in both training and test.""" 22 | # basic parameters 23 | parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)') 24 | parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') 25 | parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') 26 | parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') 27 | # model parameters 28 | parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]') 29 | parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale') 30 | parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale') 31 | parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer') 32 | parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer') 33 | parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator') 34 | parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]') 35 | parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers') 36 | parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]') 37 | parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]') 38 | parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') 39 | parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') 40 | # dataset parameters 41 | parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]') 42 | parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA') 43 | parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') 44 | parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data') 45 | parser.add_argument('--batch_size', type=int, default=1, help='input batch size') 46 | parser.add_argument('--load_size', type=int, default=286, help='scale images to this size') 47 | parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size') 48 | parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') 49 | parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]') 50 | parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') 51 | parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML') 52 | # additional parameters 53 | parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') 54 | parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]') 55 | parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') 56 | parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') 57 | self.initialized = True 58 | return parser 59 | 60 | def gather_options(self): 61 | """Initialize our parser with basic options(only once). 62 | Add additional model-specific and dataset-specific options. 63 | These options are defined in the function 64 | in model and dataset classes. 65 | """ 66 | if not self.initialized: # check if it has been initialized 67 | parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) 68 | parser = self.initialize(parser) 69 | 70 | # get the basic options 71 | opt, _ = parser.parse_known_args() 72 | 73 | # modify model-related parser options 74 | model_name = opt.model 75 | model_option_setter = models.get_option_setter(model_name) 76 | parser = model_option_setter(parser, self.isTrain) 77 | opt, _ = parser.parse_known_args() # parse again with new defaults 78 | 79 | # modify dataset-related parser options 80 | dataset_name = opt.dataset_mode 81 | dataset_option_setter = data.get_option_setter(dataset_name) 82 | parser = dataset_option_setter(parser, self.isTrain) 83 | 84 | # save and return the parser 85 | self.parser = parser 86 | return parser.parse_args() 87 | 88 | def print_options(self, opt): 89 | """Print and save options 90 | 91 | It will print both current options and default values(if different). 92 | It will save options into a text file / [checkpoints_dir] / opt.txt 93 | """ 94 | message = '' 95 | message += '----------------- Options ---------------\n' 96 | for k, v in sorted(vars(opt).items()): 97 | comment = '' 98 | default = self.parser.get_default(k) 99 | if v != default: 100 | comment = '\t[default: %s]' % str(default) 101 | message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) 102 | message += '----------------- End -------------------' 103 | print(message) 104 | 105 | # save to the disk 106 | expr_dir = os.path.join(opt.checkpoints_dir, opt.name) 107 | util.mkdirs(expr_dir) 108 | file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) 109 | with open(file_name, 'wt') as opt_file: 110 | opt_file.write(message) 111 | opt_file.write('\n') 112 | 113 | def parse(self): 114 | """Parse our options, create checkpoints directory suffix, and set up gpu device.""" 115 | opt = self.gather_options() 116 | opt.isTrain = self.isTrain # train or test 117 | 118 | # process opt.suffix 119 | if opt.suffix: 120 | suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' 121 | opt.name = opt.name + suffix 122 | 123 | self.print_options(opt) 124 | 125 | # set gpu ids 126 | str_ids = opt.gpu_ids.split(',') 127 | opt.gpu_ids = [] 128 | for str_id in str_ids: 129 | id = int(str_id) 130 | if id >= 0: 131 | opt.gpu_ids.append(id) 132 | if len(opt.gpu_ids) > 0: 133 | torch.cuda.set_device(opt.gpu_ids[0]) 134 | 135 | self.opt = opt 136 | return self.opt 137 | -------------------------------------------------------------------------------- /options/test_options.py: -------------------------------------------------------------------------------- 1 | from .base_options import BaseOptions 2 | 3 | 4 | class TestOptions(BaseOptions): 5 | """This class includes test options. 6 | 7 | It also includes shared options defined in BaseOptions. 8 | """ 9 | 10 | def initialize(self, parser): 11 | parser = BaseOptions.initialize(self, parser) # define shared options 12 | parser.add_argument('--ntest', type=int, default=float("inf"), help='# of test examples.') 13 | parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') 14 | parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') 15 | parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') 16 | # Dropout and Batchnorm has different behavioir during training and test. 17 | parser.add_argument('--eval', action='store_true', help='use eval mode during test time.') 18 | parser.add_argument('--num_test', type=int, default=50, help='how many test images to run') 19 | # rewrite devalue values 20 | parser.set_defaults(model='test') 21 | # To avoid cropping, the load_size should be the same as crop_size 22 | parser.set_defaults(load_size=parser.get_default('crop_size')) 23 | self.isTrain = False 24 | return parser 25 | -------------------------------------------------------------------------------- /options/train_options.py: -------------------------------------------------------------------------------- 1 | from .base_options import BaseOptions 2 | 3 | 4 | class TrainOptions(BaseOptions): 5 | """This class includes training options. 6 | 7 | It also includes shared options defined in BaseOptions. 8 | """ 9 | 10 | def initialize(self, parser): 11 | parser = BaseOptions.initialize(self, parser) 12 | # visdom and HTML visualization parameters 13 | parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen') 14 | parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.') 15 | parser.add_argument('--display_id', type=int, default=1, help='window id of the web display') 16 | parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display') 17 | parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")') 18 | parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') 19 | parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html') 20 | parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') 21 | parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') 22 | # network saving and loading parameters 23 | parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') 24 | parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs') 25 | parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration') 26 | parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') 27 | parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by , +, ...') 28 | parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') 29 | # training parameters 30 | parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate') 31 | parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero') 32 | parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') 33 | parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') 34 | parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.') 35 | parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') 36 | parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]') 37 | parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations') 38 | 39 | self.isTrain = True 40 | return parser 41 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | torch>=0.4.1 2 | torchvision>=0.2.1 3 | dominate>=2.3.1 4 | visdom>=0.1.8.3 5 | -------------------------------------------------------------------------------- /scripts/conda_deps.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | conda install numpy pyyaml mkl mkl-include setuptools cmake cffi typing 3 | conda install pytorch torchvision -c pytorch # add cuda90 if CUDA 9 4 | conda install visdom dominate -c conda-forge # install visdom and dominate 5 | -------------------------------------------------------------------------------- /scripts/download_cyclegan_model.sh: -------------------------------------------------------------------------------- 1 | FILE=$1 2 | 3 | echo "Note: available models are apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower" 4 | 5 | echo "Specified [$FILE]" 6 | 7 | mkdir -p ./checkpoints/${FILE}_pretrained 8 | MODEL_FILE=./checkpoints/${FILE}_pretrained/latest_net_G.pth 9 | URL=http://efrosgans.eecs.berkeley.edu/cyclegan/pretrained_models/$FILE.pth 10 | 11 | wget -N $URL -O $MODEL_FILE 12 | -------------------------------------------------------------------------------- /scripts/download_pix2pix_model.sh: -------------------------------------------------------------------------------- 1 | FILE=$1 2 | 3 | echo "Note: available models are edges2shoes, sat2map, map2sat, facades_label2photo, and day2night" 4 | echo "Specified [$FILE]" 5 | 6 | mkdir -p ./checkpoints/${FILE}_pretrained 7 | MODEL_FILE=./checkpoints/${FILE}_pretrained/latest_net_G.pth 8 | URL=http://efrosgans.eecs.berkeley.edu/pix2pix/models-pytorch/$FILE.pth 9 | 10 | wget -N $URL -O $MODEL_FILE 11 | -------------------------------------------------------------------------------- /scripts/edges/PostprocessHED.m: -------------------------------------------------------------------------------- 1 | %%% Prerequisites 2 | % You need to get the cpp file edgesNmsMex.cpp from https://raw.githubusercontent.com/pdollar/edges/master/private/edgesNmsMex.cpp 3 | % and compile it in Matlab: mex edgesNmsMex.cpp 4 | % You also need to download and install Piotr's Computer Vision Matlab Toolbox: https://pdollar.github.io/toolbox/ 5 | 6 | %%% parameters 7 | % hed_mat_dir: the hed mat file directory (the output of 'batch_hed.py') 8 | % edge_dir: the output HED edges directory 9 | % image_width: resize the edge map to [image_width, image_width] 10 | % threshold: threshold for image binarization (default 25.0/255.0) 11 | % small_edge: remove small edges (default 5) 12 | 13 | function [] = PostprocessHED(hed_mat_dir, edge_dir, image_width, threshold, small_edge) 14 | 15 | if ~exist(edge_dir, 'dir') 16 | mkdir(edge_dir); 17 | end 18 | fileList = dir(fullfile(hed_mat_dir, '*.mat')); 19 | nFiles = numel(fileList); 20 | fprintf('find %d mat files\n', nFiles); 21 | 22 | for n = 1 : nFiles 23 | if mod(n, 1000) == 0 24 | fprintf('process %d/%d images\n', n, nFiles); 25 | end 26 | fileName = fileList(n).name; 27 | filePath = fullfile(hed_mat_dir, fileName); 28 | jpgName = strrep(fileName, '.mat', '.jpg'); 29 | edge_path = fullfile(edge_dir, jpgName); 30 | 31 | if ~exist(edge_path, 'file') 32 | E = GetEdge(filePath); 33 | E = imresize(E,[image_width,image_width]); 34 | E_simple = SimpleEdge(E, threshold, small_edge); 35 | E_simple = uint8(E_simple*255); 36 | imwrite(E_simple, edge_path, 'Quality',100); 37 | end 38 | end 39 | end 40 | 41 | 42 | 43 | 44 | function [E] = GetEdge(filePath) 45 | load(filePath); 46 | E = 1-predict; 47 | end 48 | 49 | function [E4] = SimpleEdge(E, threshold, small_edge) 50 | if nargin <= 1 51 | threshold = 25.0/255.0; 52 | end 53 | 54 | if nargin <= 2 55 | small_edge = 5; 56 | end 57 | 58 | if ndims(E) == 3 59 | E = E(:,:,1); 60 | end 61 | 62 | E1 = 1 - E; 63 | E2 = EdgeNMS(E1); 64 | E3 = double(E2>=max(eps,threshold)); 65 | E3 = bwmorph(E3,'thin',inf); 66 | E4 = bwareaopen(E3, small_edge); 67 | E4=1-E4; 68 | end 69 | 70 | function [E_nms] = EdgeNMS( E ) 71 | E=single(E); 72 | [Ox,Oy] = gradient2(convTri(E,4)); 73 | [Oxx,~] = gradient2(Ox); 74 | [Oxy,Oyy] = gradient2(Oy); 75 | O = mod(atan(Oyy.*sign(-Oxy)./(Oxx+1e-5)),pi); 76 | E_nms = edgesNmsMex(E,O,1,5,1.01,1); 77 | end 78 | -------------------------------------------------------------------------------- /scripts/edges/batch_hed.py: -------------------------------------------------------------------------------- 1 | # HED batch processing script; modified from https://github.com/s9xie/hed/blob/master/examples/hed/HED-tutorial.ipynb 2 | # Step 1: download the hed repo: https://github.com/s9xie/hed 3 | # Step 2: download the models and protoxt, and put them under {caffe_root}/examples/hed/ 4 | # Step 3: put this script under {caffe_root}/examples/hed/ 5 | # Step 4: run the following script: 6 | # python batch_hed.py --images_dir=/data/to/path/photos/ --hed_mat_dir=/data/to/path/hed_mat_files/ 7 | # The code sometimes crashes after computation is done. Error looks like "Check failed: ... driver shutting down". You can just kill the job. 8 | # For large images, it will produce gpu memory issue. Therefore, you better resize the images before running this script. 9 | # Step 5: run the MATLAB post-processing script "PostprocessHED.m" 10 | 11 | 12 | import numpy as np 13 | from PIL import Image 14 | import os 15 | import argparse 16 | import sys 17 | import scipy.io as sio 18 | 19 | 20 | def parse_args(): 21 | parser = argparse.ArgumentParser(description='batch proccesing: photos->edges') 22 | parser.add_argument('--caffe_root', dest='caffe_root', help='caffe root', default='../../', type=str) 23 | parser.add_argument('--caffemodel', dest='caffemodel', help='caffemodel', default='./hed_pretrained_bsds.caffemodel', type=str) 24 | parser.add_argument('--prototxt', dest='prototxt', help='caffe prototxt file', default='./deploy.prototxt', type=str) 25 | parser.add_argument('--images_dir', dest='images_dir', help='directory to store input photos', type=str) 26 | parser.add_argument('--hed_mat_dir', dest='hed_mat_dir', help='directory to store output hed edges in mat file', type=str) 27 | parser.add_argument('--border', dest='border', help='padding border', type=int, default=128) 28 | parser.add_argument('--gpu_id', dest='gpu_id', help='gpu id', type=int, default=1) 29 | args = parser.parse_args() 30 | return args 31 | 32 | 33 | args = parse_args() 34 | for arg in vars(args): 35 | print('[%s] =' % arg, getattr(args, arg)) 36 | # Make sure that caffe is on the python path: 37 | caffe_root = args.caffe_root # this file is expected to be in {caffe_root}/examples/hed/ 38 | sys.path.insert(0, caffe_root + 'python') 39 | import caffe 40 | 41 | 42 | if not os.path.exists(args.hed_mat_dir): 43 | print('create output directory %s' % args.hed_mat_dir) 44 | os.makedirs(args.hed_mat_dir) 45 | 46 | imgList = os.listdir(args.images_dir) 47 | nImgs = len(imgList) 48 | print('#images = %d' % nImgs) 49 | 50 | caffe.set_mode_gpu() 51 | caffe.set_device(args.gpu_id) 52 | # load net 53 | net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) 54 | # pad border 55 | border = args.border 56 | 57 | for i in range(nImgs): 58 | if i % 500 == 0: 59 | print('processing image %d/%d' % (i, nImgs)) 60 | im = Image.open(os.path.join(args.images_dir, imgList[i])) 61 | 62 | in_ = np.array(im, dtype=np.float32) 63 | in_ = np.pad(in_, ((border, border), (border, border), (0, 0)), 'reflect') 64 | 65 | in_ = in_[:, :, 0:3] 66 | in_ = in_[:, :, ::-1] 67 | in_ -= np.array((104.00698793, 116.66876762, 122.67891434)) 68 | in_ = in_.transpose((2, 0, 1)) 69 | # remove the following two lines if testing with cpu 70 | 71 | # shape for input (data blob is N x C x H x W), set data 72 | net.blobs['data'].reshape(1, *in_.shape) 73 | net.blobs['data'].data[...] = in_ 74 | # run net and take argmax for prediction 75 | net.forward() 76 | fuse = net.blobs['sigmoid-fuse'].data[0][0, :, :] 77 | # get rid of the border 78 | fuse = fuse[border:-border, border:-border] 79 | # save hed file to the disk 80 | name, ext = os.path.splitext(imgList[i]) 81 | sio.savemat(os.path.join(args.hed_mat_dir, name + '.mat'), {'predict': fuse}) 82 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/caffemodel/deploy.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "Input" 4 | top: "data" 5 | input_param { 6 | shape { 7 | dim: 1 8 | dim: 3 9 | dim: 500 10 | dim: 500 11 | } 12 | } 13 | } 14 | layer { 15 | name: "conv1_1" 16 | type: "Convolution" 17 | bottom: "data" 18 | top: "conv1_1" 19 | param { 20 | lr_mult: 1 21 | decay_mult: 1 22 | } 23 | param { 24 | lr_mult: 2 25 | decay_mult: 0 26 | } 27 | convolution_param { 28 | num_output: 64 29 | pad: 100 30 | kernel_size: 3 31 | stride: 1 32 | weight_filler { 33 | type: "gaussian" 34 | std: 0.01 35 | } 36 | bias_filler { 37 | type: "constant" 38 | value: 0 39 | } 40 | } 41 | } 42 | layer { 43 | name: "relu1_1" 44 | type: "ReLU" 45 | bottom: "conv1_1" 46 | top: "conv1_1" 47 | } 48 | layer { 49 | name: "conv1_2" 50 | type: "Convolution" 51 | bottom: "conv1_1" 52 | top: "conv1_2" 53 | param { 54 | lr_mult: 1 55 | decay_mult: 1 56 | } 57 | param { 58 | lr_mult: 2 59 | decay_mult: 0 60 | } 61 | convolution_param { 62 | num_output: 64 63 | pad: 1 64 | kernel_size: 3 65 | stride: 1 66 | weight_filler { 67 | type: "gaussian" 68 | std: 0.01 69 | } 70 | bias_filler { 71 | type: "constant" 72 | value: 0 73 | } 74 | } 75 | } 76 | layer { 77 | name: "relu1_2" 78 | type: "ReLU" 79 | bottom: "conv1_2" 80 | top: "conv1_2" 81 | } 82 | layer { 83 | name: "pool1" 84 | type: "Pooling" 85 | bottom: "conv1_2" 86 | top: "pool1" 87 | pooling_param { 88 | pool: MAX 89 | kernel_size: 2 90 | stride: 2 91 | } 92 | } 93 | layer { 94 | name: "conv2_1" 95 | type: "Convolution" 96 | bottom: "pool1" 97 | top: "conv2_1" 98 | param { 99 | lr_mult: 1 100 | decay_mult: 1 101 | } 102 | param { 103 | lr_mult: 2 104 | decay_mult: 0 105 | } 106 | convolution_param { 107 | num_output: 128 108 | pad: 1 109 | kernel_size: 3 110 | stride: 1 111 | weight_filler { 112 | type: "gaussian" 113 | std: 0.01 114 | } 115 | bias_filler { 116 | type: "constant" 117 | value: 0 118 | } 119 | } 120 | } 121 | layer { 122 | name: "relu2_1" 123 | type: "ReLU" 124 | bottom: "conv2_1" 125 | top: "conv2_1" 126 | } 127 | layer { 128 | name: "conv2_2" 129 | type: "Convolution" 130 | bottom: "conv2_1" 131 | top: "conv2_2" 132 | param { 133 | lr_mult: 1 134 | decay_mult: 1 135 | } 136 | param { 137 | lr_mult: 2 138 | decay_mult: 0 139 | } 140 | convolution_param { 141 | num_output: 128 142 | pad: 1 143 | kernel_size: 3 144 | stride: 1 145 | weight_filler { 146 | type: "gaussian" 147 | std: 0.01 148 | } 149 | bias_filler { 150 | type: "constant" 151 | value: 0 152 | } 153 | } 154 | } 155 | layer { 156 | name: "relu2_2" 157 | type: "ReLU" 158 | bottom: "conv2_2" 159 | top: "conv2_2" 160 | } 161 | layer { 162 | name: "pool2" 163 | type: "Pooling" 164 | bottom: "conv2_2" 165 | top: "pool2" 166 | pooling_param { 167 | pool: MAX 168 | kernel_size: 2 169 | stride: 2 170 | } 171 | } 172 | layer { 173 | name: "conv3_1" 174 | type: "Convolution" 175 | bottom: "pool2" 176 | top: "conv3_1" 177 | param { 178 | lr_mult: 1 179 | decay_mult: 1 180 | } 181 | param { 182 | lr_mult: 2 183 | decay_mult: 0 184 | } 185 | convolution_param { 186 | num_output: 256 187 | pad: 1 188 | kernel_size: 3 189 | stride: 1 190 | weight_filler { 191 | type: "gaussian" 192 | std: 0.01 193 | } 194 | bias_filler { 195 | type: "constant" 196 | value: 0 197 | } 198 | } 199 | } 200 | layer { 201 | name: "relu3_1" 202 | type: "ReLU" 203 | bottom: "conv3_1" 204 | top: "conv3_1" 205 | } 206 | layer { 207 | name: "conv3_2" 208 | type: "Convolution" 209 | bottom: "conv3_1" 210 | top: "conv3_2" 211 | param { 212 | lr_mult: 1 213 | decay_mult: 1 214 | } 215 | param { 216 | lr_mult: 2 217 | decay_mult: 0 218 | } 219 | convolution_param { 220 | num_output: 256 221 | pad: 1 222 | kernel_size: 3 223 | stride: 1 224 | weight_filler { 225 | type: "gaussian" 226 | std: 0.01 227 | } 228 | bias_filler { 229 | type: "constant" 230 | value: 0 231 | } 232 | } 233 | } 234 | layer { 235 | name: "relu3_2" 236 | type: "ReLU" 237 | bottom: "conv3_2" 238 | top: "conv3_2" 239 | } 240 | layer { 241 | name: "conv3_3" 242 | type: "Convolution" 243 | bottom: "conv3_2" 244 | top: "conv3_3" 245 | param { 246 | lr_mult: 1 247 | decay_mult: 1 248 | } 249 | param { 250 | lr_mult: 2 251 | decay_mult: 0 252 | } 253 | convolution_param { 254 | num_output: 256 255 | pad: 1 256 | kernel_size: 3 257 | stride: 1 258 | weight_filler { 259 | type: "gaussian" 260 | std: 0.01 261 | } 262 | bias_filler { 263 | type: "constant" 264 | value: 0 265 | } 266 | } 267 | } 268 | layer { 269 | name: "relu3_3" 270 | type: "ReLU" 271 | bottom: "conv3_3" 272 | top: "conv3_3" 273 | } 274 | layer { 275 | name: "pool3" 276 | type: "Pooling" 277 | bottom: "conv3_3" 278 | top: "pool3" 279 | pooling_param { 280 | pool: MAX 281 | kernel_size: 2 282 | stride: 2 283 | } 284 | } 285 | layer { 286 | name: "conv4_1" 287 | type: "Convolution" 288 | bottom: "pool3" 289 | top: "conv4_1" 290 | param { 291 | lr_mult: 1 292 | decay_mult: 1 293 | } 294 | param { 295 | lr_mult: 2 296 | decay_mult: 0 297 | } 298 | convolution_param { 299 | num_output: 512 300 | pad: 1 301 | kernel_size: 3 302 | stride: 1 303 | weight_filler { 304 | type: "gaussian" 305 | std: 0.01 306 | } 307 | bias_filler { 308 | type: "constant" 309 | value: 0 310 | } 311 | } 312 | } 313 | layer { 314 | name: "relu4_1" 315 | type: "ReLU" 316 | bottom: "conv4_1" 317 | top: "conv4_1" 318 | } 319 | layer { 320 | name: "conv4_2" 321 | type: "Convolution" 322 | bottom: "conv4_1" 323 | top: "conv4_2" 324 | param { 325 | lr_mult: 1 326 | decay_mult: 1 327 | } 328 | param { 329 | lr_mult: 2 330 | decay_mult: 0 331 | } 332 | convolution_param { 333 | num_output: 512 334 | pad: 1 335 | kernel_size: 3 336 | stride: 1 337 | weight_filler { 338 | type: "gaussian" 339 | std: 0.01 340 | } 341 | bias_filler { 342 | type: "constant" 343 | value: 0 344 | } 345 | } 346 | } 347 | layer { 348 | name: "relu4_2" 349 | type: "ReLU" 350 | bottom: "conv4_2" 351 | top: "conv4_2" 352 | } 353 | layer { 354 | name: "conv4_3" 355 | type: "Convolution" 356 | bottom: "conv4_2" 357 | top: "conv4_3" 358 | param { 359 | lr_mult: 1 360 | decay_mult: 1 361 | } 362 | param { 363 | lr_mult: 2 364 | decay_mult: 0 365 | } 366 | convolution_param { 367 | num_output: 512 368 | pad: 1 369 | kernel_size: 3 370 | stride: 1 371 | weight_filler { 372 | type: "gaussian" 373 | std: 0.01 374 | } 375 | bias_filler { 376 | type: "constant" 377 | value: 0 378 | } 379 | } 380 | } 381 | layer { 382 | name: "relu4_3" 383 | type: "ReLU" 384 | bottom: "conv4_3" 385 | top: "conv4_3" 386 | } 387 | layer { 388 | name: "pool4" 389 | type: "Pooling" 390 | bottom: "conv4_3" 391 | top: "pool4" 392 | pooling_param { 393 | pool: MAX 394 | kernel_size: 2 395 | stride: 2 396 | } 397 | } 398 | layer { 399 | name: "conv5_1" 400 | type: "Convolution" 401 | bottom: "pool4" 402 | top: "conv5_1" 403 | param { 404 | lr_mult: 1 405 | decay_mult: 1 406 | } 407 | param { 408 | lr_mult: 2 409 | decay_mult: 0 410 | } 411 | convolution_param { 412 | num_output: 512 413 | pad: 1 414 | kernel_size: 3 415 | stride: 1 416 | weight_filler { 417 | type: "gaussian" 418 | std: 0.01 419 | } 420 | bias_filler { 421 | type: "constant" 422 | value: 0 423 | } 424 | } 425 | } 426 | layer { 427 | name: "relu5_1" 428 | type: "ReLU" 429 | bottom: "conv5_1" 430 | top: "conv5_1" 431 | } 432 | layer { 433 | name: "conv5_2" 434 | type: "Convolution" 435 | bottom: "conv5_1" 436 | top: "conv5_2" 437 | param { 438 | lr_mult: 1 439 | decay_mult: 1 440 | } 441 | param { 442 | lr_mult: 2 443 | decay_mult: 0 444 | } 445 | convolution_param { 446 | num_output: 512 447 | pad: 1 448 | kernel_size: 3 449 | stride: 1 450 | weight_filler { 451 | type: "gaussian" 452 | std: 0.01 453 | } 454 | bias_filler { 455 | type: "constant" 456 | value: 0 457 | } 458 | } 459 | } 460 | layer { 461 | name: "relu5_2" 462 | type: "ReLU" 463 | bottom: "conv5_2" 464 | top: "conv5_2" 465 | } 466 | layer { 467 | name: "conv5_3" 468 | type: "Convolution" 469 | bottom: "conv5_2" 470 | top: "conv5_3" 471 | param { 472 | lr_mult: 1 473 | decay_mult: 1 474 | } 475 | param { 476 | lr_mult: 2 477 | decay_mult: 0 478 | } 479 | convolution_param { 480 | num_output: 512 481 | pad: 1 482 | kernel_size: 3 483 | stride: 1 484 | weight_filler { 485 | type: "gaussian" 486 | std: 0.01 487 | } 488 | bias_filler { 489 | type: "constant" 490 | value: 0 491 | } 492 | } 493 | } 494 | layer { 495 | name: "relu5_3" 496 | type: "ReLU" 497 | bottom: "conv5_3" 498 | top: "conv5_3" 499 | } 500 | layer { 501 | name: "pool5" 502 | type: "Pooling" 503 | bottom: "conv5_3" 504 | top: "pool5" 505 | pooling_param { 506 | pool: MAX 507 | kernel_size: 2 508 | stride: 2 509 | } 510 | } 511 | layer { 512 | name: "fc6_cs" 513 | type: "Convolution" 514 | bottom: "pool5" 515 | top: "fc6_cs" 516 | param { 517 | lr_mult: 1 518 | decay_mult: 1 519 | } 520 | param { 521 | lr_mult: 2 522 | decay_mult: 0 523 | } 524 | convolution_param { 525 | num_output: 4096 526 | pad: 0 527 | kernel_size: 7 528 | stride: 1 529 | weight_filler { 530 | type: "gaussian" 531 | std: 0.01 532 | } 533 | bias_filler { 534 | type: "constant" 535 | value: 0 536 | } 537 | } 538 | } 539 | layer { 540 | name: "relu6_cs" 541 | type: "ReLU" 542 | bottom: "fc6_cs" 543 | top: "fc6_cs" 544 | } 545 | layer { 546 | name: "fc7_cs" 547 | type: "Convolution" 548 | bottom: "fc6_cs" 549 | top: "fc7_cs" 550 | param { 551 | lr_mult: 1 552 | decay_mult: 1 553 | } 554 | param { 555 | lr_mult: 2 556 | decay_mult: 0 557 | } 558 | convolution_param { 559 | num_output: 4096 560 | pad: 0 561 | kernel_size: 1 562 | stride: 1 563 | weight_filler { 564 | type: "gaussian" 565 | std: 0.01 566 | } 567 | bias_filler { 568 | type: "constant" 569 | value: 0 570 | } 571 | } 572 | } 573 | layer { 574 | name: "relu7_cs" 575 | type: "ReLU" 576 | bottom: "fc7_cs" 577 | top: "fc7_cs" 578 | } 579 | layer { 580 | name: "score_fr" 581 | type: "Convolution" 582 | bottom: "fc7_cs" 583 | top: "score_fr" 584 | param { 585 | lr_mult: 1 586 | decay_mult: 1 587 | } 588 | param { 589 | lr_mult: 2 590 | decay_mult: 0 591 | } 592 | convolution_param { 593 | num_output: 20 594 | pad: 0 595 | kernel_size: 1 596 | weight_filler { 597 | type: "xavier" 598 | } 599 | bias_filler { 600 | type: "constant" 601 | } 602 | } 603 | } 604 | layer { 605 | name: "upscore2" 606 | type: "Deconvolution" 607 | bottom: "score_fr" 608 | top: "upscore2" 609 | param { 610 | lr_mult: 1 611 | } 612 | convolution_param { 613 | num_output: 20 614 | bias_term: false 615 | kernel_size: 4 616 | stride: 2 617 | weight_filler { 618 | type: "xavier" 619 | } 620 | bias_filler { 621 | type: "constant" 622 | } 623 | } 624 | } 625 | layer { 626 | name: "score_pool4" 627 | type: "Convolution" 628 | bottom: "pool4" 629 | top: "score_pool4" 630 | param { 631 | lr_mult: 1 632 | decay_mult: 1 633 | } 634 | param { 635 | lr_mult: 2 636 | decay_mult: 0 637 | } 638 | convolution_param { 639 | num_output: 20 640 | pad: 0 641 | kernel_size: 1 642 | weight_filler { 643 | type: "xavier" 644 | } 645 | bias_filler { 646 | type: "constant" 647 | } 648 | } 649 | } 650 | layer { 651 | name: "score_pool4c" 652 | type: "Crop" 653 | bottom: "score_pool4" 654 | bottom: "upscore2" 655 | top: "score_pool4c" 656 | crop_param { 657 | axis: 2 658 | offset: 5 659 | } 660 | } 661 | layer { 662 | name: "fuse_pool4" 663 | type: "Eltwise" 664 | bottom: "upscore2" 665 | bottom: "score_pool4c" 666 | top: "fuse_pool4" 667 | eltwise_param { 668 | operation: SUM 669 | } 670 | } 671 | layer { 672 | name: "upscore_pool4" 673 | type: "Deconvolution" 674 | bottom: "fuse_pool4" 675 | top: "upscore_pool4" 676 | param { 677 | lr_mult: 1 678 | } 679 | convolution_param { 680 | num_output: 20 681 | bias_term: false 682 | kernel_size: 4 683 | stride: 2 684 | weight_filler { 685 | type: "xavier" 686 | } 687 | bias_filler { 688 | type: "constant" 689 | } 690 | } 691 | } 692 | layer { 693 | name: "score_pool3" 694 | type: "Convolution" 695 | bottom: "pool3" 696 | top: "score_pool3" 697 | param { 698 | lr_mult: 1 699 | decay_mult: 1 700 | } 701 | param { 702 | lr_mult: 2 703 | decay_mult: 0 704 | } 705 | convolution_param { 706 | num_output: 20 707 | pad: 0 708 | kernel_size: 1 709 | weight_filler { 710 | type: "xavier" 711 | } 712 | bias_filler { 713 | type: "constant" 714 | } 715 | } 716 | } 717 | layer { 718 | name: "score_pool3c" 719 | type: "Crop" 720 | bottom: "score_pool3" 721 | bottom: "upscore_pool4" 722 | top: "score_pool3c" 723 | crop_param { 724 | axis: 2 725 | offset: 9 726 | } 727 | } 728 | layer { 729 | name: "fuse_pool3" 730 | type: "Eltwise" 731 | bottom: "upscore_pool4" 732 | bottom: "score_pool3c" 733 | top: "fuse_pool3" 734 | eltwise_param { 735 | operation: SUM 736 | } 737 | } 738 | layer { 739 | name: "upscore8" 740 | type: "Deconvolution" 741 | bottom: "fuse_pool3" 742 | top: "upscore8" 743 | param { 744 | lr_mult: 1 745 | } 746 | convolution_param { 747 | num_output: 20 748 | bias_term: false 749 | kernel_size: 16 750 | stride: 8 751 | weight_filler { 752 | type: "xavier" 753 | } 754 | bias_filler { 755 | type: "constant" 756 | } 757 | } 758 | } 759 | layer { 760 | name: "score" 761 | type: "Crop" 762 | bottom: "upscore8" 763 | bottom: "data" 764 | top: "score" 765 | crop_param { 766 | axis: 2 767 | offset: 31 768 | } 769 | } 770 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/cityscapes.py: -------------------------------------------------------------------------------- 1 | # The following code is modified from https://github.com/shelhamer/clockwork-fcn 2 | import sys 3 | import os 4 | import glob 5 | import numpy as np 6 | from PIL import Image 7 | 8 | 9 | class cityscapes: 10 | def __init__(self, data_path): 11 | # data_path something like /data2/cityscapes 12 | self.dir = data_path 13 | self.classes = ['road', 'sidewalk', 'building', 'wall', 'fence', 14 | 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 15 | 'sky', 'person', 'rider', 'car', 'truck', 16 | 'bus', 'train', 'motorcycle', 'bicycle'] 17 | self.mean = np.array((72.78044, 83.21195, 73.45286), dtype=np.float32) 18 | # import cityscapes label helper and set up label mappings 19 | sys.path.insert(0, '{}/scripts/helpers/'.format(self.dir)) 20 | labels = __import__('labels') 21 | self.id2trainId = {label.id: label.trainId for label in labels.labels} # dictionary mapping from raw IDs to train IDs 22 | self.trainId2color = {label.trainId: label.color for label in labels.labels} # dictionary mapping train IDs to colors as 3-tuples 23 | 24 | def get_dset(self, split): 25 | ''' 26 | List images as (city, id) for the specified split 27 | 28 | TODO(shelhamer) generate splits from cityscapes itself, instead of 29 | relying on these separately made text files. 30 | ''' 31 | if split == 'train': 32 | dataset = open('{}/ImageSets/segFine/train.txt'.format(self.dir)).read().splitlines() 33 | else: 34 | dataset = open('{}/ImageSets/segFine/val.txt'.format(self.dir)).read().splitlines() 35 | return [(item.split('/')[0], item.split('/')[1]) for item in dataset] 36 | 37 | def load_image(self, split, city, idx): 38 | im = Image.open('{}/leftImg8bit_sequence/{}/{}/{}_leftImg8bit.png'.format(self.dir, split, city, idx)) 39 | return im 40 | 41 | def assign_trainIds(self, label): 42 | """ 43 | Map the given label IDs to the train IDs appropriate for training 44 | Use the label mapping provided in labels.py from the cityscapes scripts 45 | """ 46 | label = np.array(label, dtype=np.float32) 47 | if sys.version_info[0] < 3: 48 | for k, v in self.id2trainId.iteritems(): 49 | label[label == k] = v 50 | else: 51 | for k, v in self.id2trainId.items(): 52 | label[label == k] = v 53 | return label 54 | 55 | def load_label(self, split, city, idx): 56 | """ 57 | Load label image as 1 x height x width integer array of label indices. 58 | The leading singleton dimension is required by the loss. 59 | """ 60 | label = Image.open('{}/gtFine/{}/{}/{}_gtFine_labelIds.png'.format(self.dir, split, city, idx)) 61 | label = self.assign_trainIds(label) # get proper labels for eval 62 | label = np.array(label, dtype=np.uint8) 63 | label = label[np.newaxis, ...] 64 | return label 65 | 66 | def preprocess(self, im): 67 | """ 68 | Preprocess loaded image (by load_image) for Caffe: 69 | - cast to float 70 | - switch channels RGB -> BGR 71 | - subtract mean 72 | - transpose to channel x height x width order 73 | """ 74 | in_ = np.array(im, dtype=np.float32) 75 | in_ = in_[:, :, ::-1] 76 | in_ -= self.mean 77 | in_ = in_.transpose((2, 0, 1)) 78 | return in_ 79 | 80 | def palette(self, label): 81 | ''' 82 | Map trainIds to colors as specified in labels.py 83 | ''' 84 | if label.ndim == 3: 85 | label = label[0] 86 | color = np.empty((label.shape[0], label.shape[1], 3)) 87 | if sys.version_info[0] < 3: 88 | for k, v in self.trainId2color.iteritems(): 89 | color[label == k, :] = v 90 | else: 91 | for k, v in self.trainId2color.items(): 92 | color[label == k, :] = v 93 | return color 94 | 95 | def make_boundaries(label, thickness=None): 96 | """ 97 | Input is an image label, output is a numpy array mask encoding the boundaries of the objects 98 | Extract pixels at the true boundary by dilation - erosion of label. 99 | Don't just pick the void label as it is not exclusive to the boundaries. 100 | """ 101 | assert(thickness is not None) 102 | import skimage.morphology as skm 103 | void = 255 104 | mask = np.logical_and(label > 0, label != void)[0] 105 | selem = skm.disk(thickness) 106 | boundaries = np.logical_xor(skm.dilation(mask, selem), 107 | skm.erosion(mask, selem)) 108 | return boundaries 109 | 110 | def list_label_frames(self, split): 111 | """ 112 | Select labeled frames from a split for evaluation 113 | collected as (city, shot, idx) tuples 114 | """ 115 | def file2idx(f): 116 | """Helper to convert file path into frame ID""" 117 | city, shot, frame = (os.path.basename(f).split('_')[:3]) 118 | return "_".join([city, shot, frame]) 119 | frames = [] 120 | cities = [os.path.basename(f) for f in glob.glob('{}/gtFine/{}/*'.format(self.dir, split))] 121 | for c in cities: 122 | files = sorted(glob.glob('{}/gtFine/{}/{}/*labelIds.png'.format(self.dir, split, c))) 123 | frames.extend([file2idx(f) for f in files]) 124 | return frames 125 | 126 | def collect_frame_sequence(self, split, idx, length): 127 | """ 128 | Collect sequence of frames preceding (and including) a labeled frame 129 | as a list of Images. 130 | 131 | Note: 19 preceding frames are provided for each labeled frame. 132 | """ 133 | SEQ_LEN = length 134 | city, shot, frame = idx.split('_') 135 | frame = int(frame) 136 | frame_seq = [] 137 | for i in range(frame - SEQ_LEN, frame + 1): 138 | frame_path = '{0}/leftImg8bit_sequence/val/{1}/{1}_{2}_{3:0>6d}_leftImg8bit.png'.format( 139 | self.dir, city, shot, i) 140 | frame_seq.append(Image.open(frame_path)) 141 | return frame_seq 142 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/download_fcn8s.sh: -------------------------------------------------------------------------------- 1 | URL=http://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/fcn-8s-cityscapes/fcn-8s-cityscapes.caffemodel 2 | OUTPUT_FILE=./scripts/eval_cityscapes/caffemodel/fcn-8s-cityscapes.caffemodel 3 | wget -N $URL -O $OUTPUT_FILE 4 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/evaluate.py: -------------------------------------------------------------------------------- 1 | import os 2 | import caffe 3 | import argparse 4 | import numpy as np 5 | import scipy.misc 6 | from PIL import Image 7 | from util import segrun, fast_hist, get_scores 8 | from cityscapes import cityscapes 9 | 10 | parser = argparse.ArgumentParser() 11 | parser.add_argument("--cityscapes_dir", type=str, required=True, help="Path to the original cityscapes dataset") 12 | parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated") 13 | parser.add_argument("--output_dir", type=str, required=True, help="Where to save the evaluation results") 14 | parser.add_argument("--caffemodel_dir", type=str, default='./scripts/eval_cityscapes/caffemodel/', help="Where the FCN-8s caffemodel stored") 15 | parser.add_argument("--gpu_id", type=int, default=0, help="Which gpu id to use") 16 | parser.add_argument("--split", type=str, default='val', help="Data split to be evaluated") 17 | parser.add_argument("--save_output_images", type=int, default=0, help="Whether to save the FCN output images") 18 | args = parser.parse_args() 19 | 20 | 21 | def main(): 22 | if not os.path.isdir(args.output_dir): 23 | os.makedirs(args.output_dir) 24 | if args.save_output_images > 0: 25 | output_image_dir = args.output_dir + 'image_outputs/' 26 | if not os.path.isdir(output_image_dir): 27 | os.makedirs(output_image_dir) 28 | CS = cityscapes(args.cityscapes_dir) 29 | n_cl = len(CS.classes) 30 | label_frames = CS.list_label_frames(args.split) 31 | caffe.set_device(args.gpu_id) 32 | caffe.set_mode_gpu() 33 | net = caffe.Net(args.caffemodel_dir + '/deploy.prototxt', 34 | args.caffemodel_dir + 'fcn-8s-cityscapes.caffemodel', 35 | caffe.TEST) 36 | 37 | hist_perframe = np.zeros((n_cl, n_cl)) 38 | for i, idx in enumerate(label_frames): 39 | if i % 10 == 0: 40 | print('Evaluating: %d/%d' % (i, len(label_frames))) 41 | city = idx.split('_')[0] 42 | # idx is city_shot_frame 43 | label = CS.load_label(args.split, city, idx) 44 | im_file = args.result_dir + '/' + idx + '_leftImg8bit.png' 45 | im = np.array(Image.open(im_file)) 46 | # im = scipy.misc.imresize(im, (256, 256)) 47 | im = scipy.misc.imresize(im, (label.shape[1], label.shape[2])) 48 | out = segrun(net, CS.preprocess(im)) 49 | hist_perframe += fast_hist(label.flatten(), out.flatten(), n_cl) 50 | if args.save_output_images > 0: 51 | label_im = CS.palette(label) 52 | pred_im = CS.palette(out) 53 | scipy.misc.imsave(output_image_dir + '/' + str(i) + '_pred.jpg', pred_im) 54 | scipy.misc.imsave(output_image_dir + '/' + str(i) + '_gt.jpg', label_im) 55 | scipy.misc.imsave(output_image_dir + '/' + str(i) + '_input.jpg', im) 56 | 57 | mean_pixel_acc, mean_class_acc, mean_class_iou, per_class_acc, per_class_iou = get_scores(hist_perframe) 58 | with open(args.output_dir + '/evaluation_results.txt', 'w') as f: 59 | f.write('Mean pixel accuracy: %f\n' % mean_pixel_acc) 60 | f.write('Mean class accuracy: %f\n' % mean_class_acc) 61 | f.write('Mean class IoU: %f\n' % mean_class_iou) 62 | f.write('************ Per class numbers below ************\n') 63 | for i, cl in enumerate(CS.classes): 64 | while len(cl) < 15: 65 | cl = cl + ' ' 66 | f.write('%s: acc = %f, iou = %f\n' % (cl, per_class_acc[i], per_class_iou[i])) 67 | 68 | 69 | main() 70 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/util.py: -------------------------------------------------------------------------------- 1 | # The following code is modified from https://github.com/shelhamer/clockwork-fcn 2 | import numpy as np 3 | 4 | 5 | def get_out_scoremap(net): 6 | return net.blobs['score'].data[0].argmax(axis=0).astype(np.uint8) 7 | 8 | 9 | def feed_net(net, in_): 10 | """ 11 | Load prepared input into net. 12 | """ 13 | net.blobs['data'].reshape(1, *in_.shape) 14 | net.blobs['data'].data[...] = in_ 15 | 16 | 17 | def segrun(net, in_): 18 | feed_net(net, in_) 19 | net.forward() 20 | return get_out_scoremap(net) 21 | 22 | 23 | def fast_hist(a, b, n): 24 | k = np.where((a >= 0) & (a < n))[0] 25 | bc = np.bincount(n * a[k].astype(int) + b[k], minlength=n**2) 26 | if len(bc) != n**2: 27 | # ignore this example if dimension mismatch 28 | return 0 29 | return bc.reshape(n, n) 30 | 31 | 32 | def get_scores(hist): 33 | # Mean pixel accuracy 34 | acc = np.diag(hist).sum() / (hist.sum() + 1e-12) 35 | 36 | # Per class accuracy 37 | cl_acc = np.diag(hist) / (hist.sum(1) + 1e-12) 38 | 39 | # Per class IoU 40 | iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist) + 1e-12) 41 | 42 | return acc, np.nanmean(cl_acc), np.nanmean(iu), cl_acc, iu 43 | -------------------------------------------------------------------------------- /scripts/install_deps.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | pip install visdom 3 | pip install dominate 4 | -------------------------------------------------------------------------------- /scripts/test_before_push.py: -------------------------------------------------------------------------------- 1 | # Simple script to make sure basic usage 2 | # such as training, testing, saving and loading 3 | # runs without errors. 4 | import os 5 | 6 | 7 | def run(command): 8 | print(command) 9 | exit_status = os.system(command) 10 | if exit_status > 0: 11 | exit(1) 12 | 13 | 14 | if __name__ == '__main__': 15 | # download mini datasets 16 | if not os.path.exists('./datasets/mini'): 17 | run('bash ./datasets/download_cyclegan_dataset.sh mini') 18 | 19 | if not os.path.exists('./datasets/mini_pix2pix'): 20 | run('bash ./datasets/download_cyclegan_dataset.sh mini_pix2pix') 21 | 22 | # pretrained cyclegan model 23 | if not os.path.exists('./checkpoints/horse2zebra_pretrained/latest_net_G.pth'): 24 | run('bash ./scripts/download_cyclegan_model.sh horse2zebra') 25 | run('python test.py --model test --dataroot ./datasets/mini --name horse2zebra_pretrained --no_dropout --num_test 1 --no_dropout') 26 | 27 | # pretrained pix2pix model 28 | if not os.path.exists('./checkpoints/facades_label2photo_pretrained/latest_net_G.pth'): 29 | run('bash ./scripts/download_pix2pix_model.sh facades_label2photo') 30 | if not os.path.exists('./datasets/facades'): 31 | run('bash ./datasets/download_pix2pix_dataset.sh facades') 32 | run('python test.py --dataroot ./datasets/facades/ --direction BtoA --model pix2pix --name facades_label2photo_pretrained --num_test 1') 33 | 34 | # cyclegan train/test 35 | run('python train.py --model cycle_gan --name temp_cyclegan --dataroot ./datasets/mini --niter 1 --niter_decay 0 --save_latest_freq 10 --print_freq 1 --display_id -1') 36 | run('python test.py --model test --name temp_cyclegan --dataroot ./datasets/mini --num_test 1 --model_suffix "_A" --no_dropout') 37 | 38 | # pix2pix train/test 39 | run('python train.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --niter 1 --niter_decay 5 --save_latest_freq 10 --display_id -1') 40 | run('python test.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --num_test 1') 41 | 42 | # template train/test 43 | run('python train.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --niter 1 --niter_decay 0 --save_latest_freq 10 --display_id -1') 44 | run('python test.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --num_test 1') 45 | 46 | # colorization train/test (optional) 47 | if not os.path.exists('./datasets/mini_colorization'): 48 | run('bash ./datasets/download_cyclegan_dataset.sh mini_colorization') 49 | 50 | run('python train.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --niter 1 --niter_decay 0 --save_latest_freq 5 --display_id -1') 51 | run('python test.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --num_test 1') 52 | -------------------------------------------------------------------------------- /scripts/test_colorization.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/colorization --name color_pix2pix --model colorization 3 | -------------------------------------------------------------------------------- /scripts/test_cyclegan.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/horse2zebra/testA --name horse2zebra_pretrained --model cycle_gan --phase test --no_dropout 3 | -------------------------------------------------------------------------------- /scripts/test_pix2pix.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --netG unet_256 --direction BtoA --dataset_mode aligned --norm batch 3 | -------------------------------------------------------------------------------- /scripts/test_single.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/facades/testB/ --name facades_pix2pix --model test --netG unet_256 --direction BtoA --dataset_mode single --norm batch 3 | -------------------------------------------------------------------------------- /scripts/train_colorization.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python train.py --dataroot ./datasets/colorization --name color_pix2pix --model colorization 3 | -------------------------------------------------------------------------------- /scripts/train_cyclegan.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --pool_size 50 --no_dropout 3 | -------------------------------------------------------------------------------- /scripts/train_pix2pix.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --netG unet_256 --direction BtoA --lambda_L1 100 --dataset_mode aligned --norm batch --pool_size 0 3 | -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | """General-purpose test script for image-to-image translation. 2 | 3 | Once you have trained your model with train.py, you can use this script to test the model. 4 | It will load a saved model from --checkpoints_dir and save the results to --results_dir. 5 | 6 | It first creates model and dataset given the option. It will hard-code some parameters. 7 | It then runs inference for --num_test images and save results to an HTML file. 8 | 9 | Example (You need to train models first or download pre-trained models from our website): 10 | Test a CycleGAN model (both sides): 11 | python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan 12 | 13 | Test a CycleGAN model (one side only): 14 | python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout 15 | 16 | The option '--model test' is used for generating CycleGAN results only for one side. 17 | This option will automatically set '--dataset_mode single', which only loads the images from one set. 18 | On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, 19 | which is sometimes unnecessary. The results will be saved at ./results/. 20 | Use '--results_dir ' to specify the results directory. 21 | 22 | Test a pix2pix model: 23 | python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA 24 | 25 | See options/base_options.py and options/test_options.py for more test options. 26 | See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md 27 | See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md 28 | """ 29 | import os 30 | from options.test_options import TestOptions 31 | from data import create_dataset 32 | from models import create_model 33 | from util.visualizer import save_images 34 | from util import html 35 | 36 | 37 | if __name__ == '__main__': 38 | opt = TestOptions().parse() # get test options 39 | # hard-code some parameters for test 40 | opt.num_threads = 0 # test code only supports num_threads = 1 41 | opt.batch_size = 1 # test code only supports batch_size = 1 42 | opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. 43 | opt.no_flip = True # no flip; comment this line if results on flipped images are needed. 44 | opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. 45 | dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options 46 | model = create_model(opt) # create a model given opt.model and other options 47 | model.setup(opt) # regular setup: load and print networks; create schedulers 48 | # create a website 49 | web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s_%s' % (opt.phase, opt.epoch, os.path.basename(opt.dataroot))) # define the website directory 50 | webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) 51 | # test with eval mode. This only affects layers like batchnorm and dropout. 52 | # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. 53 | # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. 54 | if opt.eval: 55 | model.eval() 56 | for i, data in enumerate(dataset): 57 | if i >= opt.num_test: # only apply our model to opt.num_test images. 58 | break 59 | model.set_input(data) # unpack data from data loader 60 | model.test() # run inference 61 | visuals = model.get_current_visuals() # get image results 62 | img_path = model.get_image_paths() # get image paths 63 | if i % 5 == 0: # save images to an HTML file 64 | print('processing (%04d)-th image... %s' % (i, img_path)) 65 | save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) 66 | webpage.save() # save the HTML 67 | -------------------------------------------------------------------------------- /train.py: -------------------------------------------------------------------------------- 1 | """General-purpose training script for image-to-image translation. 2 | 3 | This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and 4 | different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). 5 | You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). 6 | 7 | It first creates model, dataset, and visualizer given the option. 8 | It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. 9 | The script supports continue/resume training. Use '--continue_train' to resume your previous training. 10 | 11 | Example: 12 | Train a CycleGAN model: 13 | python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan 14 | Train a pix2pix model: 15 | python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA 16 | 17 | See options/base_options.py and options/train_options.py for more training options. 18 | See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md 19 | See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md 20 | """ 21 | import time 22 | from options.train_options import TrainOptions 23 | from data import create_dataset 24 | from models import create_model 25 | from util.visualizer import Visualizer 26 | 27 | if __name__ == '__main__': 28 | opt = TrainOptions().parse() # get training options 29 | dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options 30 | dataset_size = len(dataset) # get the number of images in the dataset. 31 | print('The number of training images = %d' % dataset_size) 32 | 33 | model = create_model(opt) # create a model given opt.model and other options 34 | model.setup(opt) # regular setup: load and print networks; create schedulers 35 | visualizer = Visualizer(opt) # create a visualizer that display/save images and plots 36 | total_iters = 0 # the total number of training iterations 37 | 38 | for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by , + 39 | epoch_start_time = time.time() # timer for entire epoch 40 | iter_data_time = time.time() # timer for data loading per iteration 41 | epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch 42 | 43 | for i, data in enumerate(dataset): # inner loop within one epoch 44 | iter_start_time = time.time() # timer for computation per iteration 45 | if total_iters % opt.print_freq == 0: 46 | t_data = iter_start_time - iter_data_time 47 | visualizer.reset() 48 | total_iters += opt.batch_size 49 | epoch_iter += opt.batch_size 50 | model.set_input(data) # unpack data from dataset and apply preprocessing 51 | model.optimize_parameters() # calculate loss functions, get gradients, update network weights 52 | 53 | if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file 54 | save_result = total_iters % opt.update_html_freq == 0 55 | model.compute_visuals() 56 | visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) 57 | 58 | if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk 59 | losses = model.get_current_losses() 60 | t_comp = (time.time() - iter_start_time) / opt.batch_size 61 | visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) 62 | if opt.display_id > 0: 63 | visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) 64 | 65 | if total_iters % opt.save_latest_freq == 0: # cache our latest model every iterations 66 | print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) 67 | save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' 68 | model.save_networks(save_suffix) 69 | 70 | iter_data_time = time.time() 71 | if epoch % opt.save_epoch_freq == 0: # cache our model every epochs 72 | print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) 73 | model.save_networks('latest') 74 | model.save_networks(epoch) 75 | 76 | print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) 77 | model.update_learning_rate() # update learning rates at the end of every epoch. 78 | -------------------------------------------------------------------------------- /util/__init__.py: -------------------------------------------------------------------------------- 1 | """This package includes a miscellaneous collection of useful helper functions.""" 2 | -------------------------------------------------------------------------------- /util/get_data.py: -------------------------------------------------------------------------------- 1 | from __future__ import print_function 2 | import os 3 | import tarfile 4 | import requests 5 | from warnings import warn 6 | from zipfile import ZipFile 7 | from bs4 import BeautifulSoup 8 | from os.path import abspath, isdir, join, basename 9 | 10 | 11 | class GetData(object): 12 | """A Python script for downloading CycleGAN or pix2pix datasets. 13 | 14 | Parameters: 15 | technique (str) -- One of: 'cyclegan' or 'pix2pix'. 16 | verbose (bool) -- If True, print additional information. 17 | 18 | Examples: 19 | >>> from util.get_data import GetData 20 | >>> gd = GetData(technique='cyclegan') 21 | >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed. 22 | 23 | Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh' 24 | and 'scripts/download_cyclegan_model.sh'. 25 | """ 26 | 27 | def __init__(self, technique='cyclegan', verbose=True): 28 | url_dict = { 29 | 'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/', 30 | 'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets' 31 | } 32 | self.url = url_dict.get(technique.lower()) 33 | self._verbose = verbose 34 | 35 | def _print(self, text): 36 | if self._verbose: 37 | print(text) 38 | 39 | @staticmethod 40 | def _get_options(r): 41 | soup = BeautifulSoup(r.text, 'lxml') 42 | options = [h.text for h in soup.find_all('a', href=True) 43 | if h.text.endswith(('.zip', 'tar.gz'))] 44 | return options 45 | 46 | def _present_options(self): 47 | r = requests.get(self.url) 48 | options = self._get_options(r) 49 | print('Options:\n') 50 | for i, o in enumerate(options): 51 | print("{0}: {1}".format(i, o)) 52 | choice = input("\nPlease enter the number of the " 53 | "dataset above you wish to download:") 54 | return options[int(choice)] 55 | 56 | def _download_data(self, dataset_url, save_path): 57 | if not isdir(save_path): 58 | os.makedirs(save_path) 59 | 60 | base = basename(dataset_url) 61 | temp_save_path = join(save_path, base) 62 | 63 | with open(temp_save_path, "wb") as f: 64 | r = requests.get(dataset_url) 65 | f.write(r.content) 66 | 67 | if base.endswith('.tar.gz'): 68 | obj = tarfile.open(temp_save_path) 69 | elif base.endswith('.zip'): 70 | obj = ZipFile(temp_save_path, 'r') 71 | else: 72 | raise ValueError("Unknown File Type: {0}.".format(base)) 73 | 74 | self._print("Unpacking Data...") 75 | obj.extractall(save_path) 76 | obj.close() 77 | os.remove(temp_save_path) 78 | 79 | def get(self, save_path, dataset=None): 80 | """ 81 | 82 | Download a dataset. 83 | 84 | Parameters: 85 | save_path (str) -- A directory to save the data to. 86 | dataset (str) -- (optional). A specific dataset to download. 87 | Note: this must include the file extension. 88 | If None, options will be presented for you 89 | to choose from. 90 | 91 | Returns: 92 | save_path_full (str) -- the absolute path to the downloaded data. 93 | 94 | """ 95 | if dataset is None: 96 | selected_dataset = self._present_options() 97 | else: 98 | selected_dataset = dataset 99 | 100 | save_path_full = join(save_path, selected_dataset.split('.')[0]) 101 | 102 | if isdir(save_path_full): 103 | warn("\n'{0}' already exists. Voiding Download.".format( 104 | save_path_full)) 105 | else: 106 | self._print('Downloading Data...') 107 | url = "{0}/{1}".format(self.url, selected_dataset) 108 | self._download_data(url, save_path=save_path) 109 | 110 | return abspath(save_path_full) 111 | -------------------------------------------------------------------------------- /util/html.py: -------------------------------------------------------------------------------- 1 | import dominate 2 | from dominate.tags import meta, h3, table, tr, td, p, a, img, br 3 | import os 4 | 5 | 6 | class HTML: 7 | """This HTML class allows us to save images and write texts into a single HTML file. 8 | 9 | It consists of functions such as (add a text header to the HTML file), 10 | (add a row of images to the HTML file), and (save the HTML to the disk). 11 | It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API. 12 | """ 13 | 14 | def __init__(self, web_dir, title, refresh=0): 15 | """Initialize the HTML classes 16 | 17 | Parameters: 18 | web_dir (str) -- a directory that stores the webpage. HTML file will be created at /index.html; images will be saved at 0: 32 | with self.doc.head: 33 | meta(http_equiv="refresh", content=str(refresh)) 34 | 35 | def get_image_dir(self): 36 | """Return the directory that stores images""" 37 | return self.img_dir 38 | 39 | def add_header(self, text): 40 | """Insert a header to the HTML file 41 | 42 | Parameters: 43 | text (str) -- the header text 44 | """ 45 | with self.doc: 46 | h3(text) 47 | 48 | def add_images(self, ims, txts, links, width=400): 49 | """add images to the HTML file 50 | 51 | Parameters: 52 | ims (str list) -- a list of image paths 53 | txts (str list) -- a list of image names shown on the website 54 | links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page 55 | """ 56 | self.t = table(border=1, style="table-layout: fixed;") # Insert a table 57 | self.doc.add(self.t) 58 | with self.t: 59 | with tr(): 60 | for im, txt, link in zip(ims, txts, links): 61 | with td(style="word-wrap: break-word;", halign="center", valign="top"): 62 | with p(): 63 | with a(href=os.path.join('images', link)): 64 | img(style="width:%dpx" % width, src=os.path.join('images', im)) 65 | br() 66 | p(txt) 67 | 68 | def save(self): 69 | """save the current content to the HMTL file""" 70 | html_file = '%s/index.html' % self.web_dir 71 | f = open(html_file, 'wt') 72 | f.write(self.doc.render()) 73 | f.close() 74 | 75 | 76 | if __name__ == '__main__': # we show an example usage here. 77 | html = HTML('web/', 'test_html') 78 | html.add_header('hello world') 79 | 80 | ims, txts, links = [], [], [] 81 | for n in range(4): 82 | ims.append('image_%d.png' % n) 83 | txts.append('text_%d' % n) 84 | links.append('image_%d.png' % n) 85 | html.add_images(ims, txts, links) 86 | html.save() 87 | -------------------------------------------------------------------------------- /util/image_pool.py: -------------------------------------------------------------------------------- 1 | import random 2 | import torch 3 | 4 | 5 | class ImagePool(): 6 | """This class implements an image buffer that stores previously generated images. 7 | 8 | This buffer enables us to update discriminators using a history of generated images 9 | rather than the ones produced by the latest generators. 10 | """ 11 | 12 | def __init__(self, pool_size): 13 | """Initialize the ImagePool class 14 | 15 | Parameters: 16 | pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created 17 | """ 18 | self.pool_size = pool_size 19 | if self.pool_size > 0: # create an empty pool 20 | self.num_imgs = 0 21 | self.images = [] 22 | 23 | def query(self, images): 24 | """Return an image from the pool. 25 | 26 | Parameters: 27 | images: the latest generated images from the generator 28 | 29 | Returns images from the buffer. 30 | 31 | By 50/100, the buffer will return input images. 32 | By 50/100, the buffer will return images previously stored in the buffer, 33 | and insert the current images to the buffer. 34 | """ 35 | if self.pool_size == 0: # if the buffer size is 0, do nothing 36 | return images 37 | return_images = [] 38 | for image in images: 39 | image = torch.unsqueeze(image.data, 0) 40 | if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer 41 | self.num_imgs = self.num_imgs + 1 42 | self.images.append(image) 43 | return_images.append(image) 44 | else: 45 | p = random.uniform(0, 1) 46 | if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer 47 | random_id = random.randint(0, self.pool_size - 1) # randint is inclusive 48 | tmp = self.images[random_id].clone() 49 | self.images[random_id] = image 50 | return_images.append(tmp) 51 | else: # by another 50% chance, the buffer will return the current image 52 | return_images.append(image) 53 | return_images = torch.cat(return_images, 0) # collect all the images and return 54 | return return_images 55 | -------------------------------------------------------------------------------- /util/util.py: -------------------------------------------------------------------------------- 1 | """This module contains simple helper functions """ 2 | from __future__ import print_function 3 | import torch 4 | import numpy as np 5 | from PIL import Image 6 | import os 7 | 8 | 9 | def tensor2im(input_image, imtype=np.uint8): 10 | """"Converts a Tensor array into a numpy image array. 11 | 12 | Parameters: 13 | input_image (tensor) -- the input image tensor array 14 | imtype (type) -- the desired type of the converted numpy array 15 | """ 16 | if not isinstance(input_image, np.ndarray): 17 | if isinstance(input_image, torch.Tensor): # get the data from a variable 18 | image_tensor = input_image.data 19 | else: 20 | return input_image 21 | image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array 22 | if image_numpy.shape[0] == 1: # grayscale to RGB 23 | image_numpy = np.tile(image_numpy, (3, 1, 1)) 24 | image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling 25 | else: # if it is a numpy array, do nothing 26 | image_numpy = input_image 27 | return image_numpy.astype(imtype) 28 | 29 | 30 | def diagnose_network(net, name='network'): 31 | """Calculate and print the mean of average absolute(gradients) 32 | 33 | Parameters: 34 | net (torch network) -- Torch network 35 | name (str) -- the name of the network 36 | """ 37 | mean = 0.0 38 | count = 0 39 | for param in net.parameters(): 40 | if param.grad is not None: 41 | mean += torch.mean(torch.abs(param.grad.data)) 42 | count += 1 43 | if count > 0: 44 | mean = mean / count 45 | print(name) 46 | print(mean) 47 | 48 | 49 | def save_image(image_numpy, image_path): 50 | """Save a numpy image to the disk 51 | 52 | Parameters: 53 | image_numpy (numpy array) -- input numpy array 54 | image_path (str) -- the path of the image 55 | """ 56 | image_pil = Image.fromarray(image_numpy) 57 | image_pil.save(image_path) 58 | 59 | 60 | def print_numpy(x, val=True, shp=False): 61 | """Print the mean, min, max, median, std, and size of a numpy array 62 | 63 | Parameters: 64 | val (bool) -- if print the values of the numpy array 65 | shp (bool) -- if print the shape of the numpy array 66 | """ 67 | x = x.astype(np.float64) 68 | if shp: 69 | print('shape,', x.shape) 70 | if val: 71 | x = x.flatten() 72 | print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( 73 | np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) 74 | 75 | 76 | def mkdirs(paths): 77 | """create empty directories if they don't exist 78 | 79 | Parameters: 80 | paths (str list) -- a list of directory paths 81 | """ 82 | if isinstance(paths, list) and not isinstance(paths, str): 83 | for path in paths: 84 | mkdir(path) 85 | else: 86 | mkdir(paths) 87 | 88 | 89 | def mkdir(path): 90 | """create a single empty directory if it didn't exist 91 | 92 | Parameters: 93 | path (str) -- a single directory path 94 | """ 95 | if not os.path.exists(path): 96 | os.makedirs(path) 97 | -------------------------------------------------------------------------------- /util/visualizer.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import os 3 | import sys 4 | import ntpath 5 | import time 6 | from . import util, html 7 | from subprocess import Popen, PIPE 8 | from scipy.misc import imresize 9 | 10 | if sys.version_info[0] == 2: 11 | VisdomExceptionBase = Exception 12 | else: 13 | VisdomExceptionBase = ConnectionError 14 | 15 | 16 | def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): 17 | """Save images to the disk. 18 | 19 | Parameters: 20 | webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) 21 | visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs 22 | image_path (str) -- the string is used to create image paths 23 | aspect_ratio (float) -- the aspect ratio of saved images 24 | width (int) -- the images will be resized to width x width 25 | 26 | This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. 27 | """ 28 | image_dir = webpage.get_image_dir() 29 | short_path = ntpath.basename(image_path[0]) 30 | name = os.path.splitext(short_path)[0] 31 | 32 | webpage.add_header(name) 33 | ims, txts, links = [], [], [] 34 | 35 | for label, im_data in visuals.items(): 36 | im = util.tensor2im(im_data) 37 | image_name = '%s_%s.png' % (name, label) 38 | save_path = os.path.join(image_dir, image_name) 39 | h, w, _ = im.shape 40 | if aspect_ratio > 1.0: 41 | im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic') 42 | if aspect_ratio < 1.0: 43 | im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic') 44 | util.save_image(im, save_path) 45 | 46 | ims.append(image_name) 47 | txts.append(label) 48 | links.append(image_name) 49 | webpage.add_images(ims, txts, links, width=width) 50 | 51 | 52 | class Visualizer(): 53 | """This class includes several functions that can display/save images and print/save logging information. 54 | 55 | It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. 56 | """ 57 | 58 | def __init__(self, opt): 59 | """Initialize the Visualizer class 60 | 61 | Parameters: 62 | opt -- stores all the experiment flags; needs to be a subclass of BaseOptions 63 | Step 1: Cache the training/test options 64 | Step 2: connect to a visdom server 65 | Step 3: create an HTML object for saveing HTML filters 66 | Step 4: create a logging file to store training losses 67 | """ 68 | self.opt = opt # cache the option 69 | self.display_id = opt.display_id 70 | self.use_html = opt.isTrain and not opt.no_html 71 | self.win_size = opt.display_winsize 72 | self.name = opt.name 73 | self.port = opt.display_port 74 | self.saved = False 75 | if self.display_id > 0: # connect to a visdom server given and 76 | import visdom 77 | self.ncols = opt.display_ncols 78 | self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) 79 | if not self.vis.check_connection(): 80 | self.create_visdom_connections() 81 | 82 | if self.use_html: # create an HTML object at /web/; images will be saved under /web/images/ 83 | self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') 84 | self.img_dir = os.path.join(self.web_dir, 'images') 85 | print('create web directory %s...' % self.web_dir) 86 | util.mkdirs([self.web_dir, self.img_dir]) 87 | # create a logging file to store training losses 88 | self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') 89 | with open(self.log_name, "a") as log_file: 90 | now = time.strftime("%c") 91 | log_file.write('================ Training Loss (%s) ================\n' % now) 92 | 93 | def reset(self): 94 | """Reset the self.saved status""" 95 | self.saved = False 96 | 97 | def create_visdom_connections(self): 98 | """If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ 99 | cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port 100 | print('\n\nCould not connect to Visdom server. \n Trying to start a server....') 101 | print('Command: %s' % cmd) 102 | Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) 103 | 104 | def display_current_results(self, visuals, epoch, save_result): 105 | """Display current results on visdom; save current results to an HTML file. 106 | 107 | Parameters: 108 | visuals (OrderedDict) - - dictionary of images to display or save 109 | epoch (int) - - the current epoch 110 | save_result (bool) - - if save the current results to an HTML file 111 | """ 112 | if self.display_id > 0: # show images in the browser using visdom 113 | ncols = self.ncols 114 | if ncols > 0: # show all the images in one visdom panel 115 | ncols = min(ncols, len(visuals)) 116 | h, w = next(iter(visuals.values())).shape[:2] 117 | table_css = """""" % (w, h) # create a table css 121 | # create a table of images. 122 | title = self.name 123 | label_html = '' 124 | label_html_row = '' 125 | images = [] 126 | idx = 0 127 | for label, image in visuals.items(): 128 | image_numpy = util.tensor2im(image) 129 | label_html_row += '%s' % label 130 | images.append(image_numpy.transpose([2, 0, 1])) 131 | idx += 1 132 | if idx % ncols == 0: 133 | label_html += '%s' % label_html_row 134 | label_html_row = '' 135 | white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 136 | while idx % ncols != 0: 137 | images.append(white_image) 138 | label_html_row += '' 139 | idx += 1 140 | if label_html_row != '': 141 | label_html += '%s' % label_html_row 142 | try: 143 | self.vis.images(images, nrow=ncols, win=self.display_id + 1, 144 | padding=2, opts=dict(title=title + ' images')) 145 | label_html = '%s
' % label_html 146 | self.vis.text(table_css + label_html, win=self.display_id + 2, 147 | opts=dict(title=title + ' labels')) 148 | except VisdomExceptionBase: 149 | self.create_visdom_connections() 150 | 151 | else: # show each image in a separate visdom panel; 152 | idx = 1 153 | try: 154 | for label, image in visuals.items(): 155 | image_numpy = util.tensor2im(image) 156 | self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), 157 | win=self.display_id + idx) 158 | idx += 1 159 | except VisdomExceptionBase: 160 | self.create_visdom_connections() 161 | 162 | if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. 163 | self.saved = True 164 | # save images to the disk 165 | for label, image in visuals.items(): 166 | image_numpy = util.tensor2im(image) 167 | img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) 168 | util.save_image(image_numpy, img_path) 169 | 170 | # update website 171 | webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1) 172 | for n in range(epoch, 0, -1): 173 | webpage.add_header('epoch [%d]' % n) 174 | ims, txts, links = [], [], [] 175 | 176 | for label, image_numpy in visuals.items(): 177 | image_numpy = util.tensor2im(image) 178 | img_path = 'epoch%.3d_%s.png' % (n, label) 179 | ims.append(img_path) 180 | txts.append(label) 181 | links.append(img_path) 182 | webpage.add_images(ims, txts, links, width=self.win_size) 183 | webpage.save() 184 | 185 | def plot_current_losses(self, epoch, counter_ratio, losses): 186 | """display the current losses on visdom display: dictionary of error labels and values 187 | 188 | Parameters: 189 | epoch (int) -- current epoch 190 | counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 191 | losses (OrderedDict) -- training losses stored in the format of (name, float) pairs 192 | """ 193 | if not hasattr(self, 'plot_data'): 194 | self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} 195 | self.plot_data['X'].append(epoch + counter_ratio) 196 | self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) 197 | try: 198 | self.vis.line( 199 | X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), 200 | Y=np.array(self.plot_data['Y']), 201 | opts={ 202 | 'title': self.name + ' loss over time', 203 | 'legend': self.plot_data['legend'], 204 | 'xlabel': 'epoch', 205 | 'ylabel': 'loss'}, 206 | win=self.display_id) 207 | except VisdomExceptionBase: 208 | self.create_visdom_connections() 209 | 210 | # losses: same format as |losses| of plot_current_losses 211 | def print_current_losses(self, epoch, iters, losses, t_comp, t_data): 212 | """print current losses on console; also save the losses to the disk 213 | 214 | Parameters: 215 | epoch (int) -- current epoch 216 | iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) 217 | losses (OrderedDict) -- training losses stored in the format of (name, float) pairs 218 | t_comp (float) -- computational time per data point (normalized by batch_size) 219 | t_data (float) -- data loading time per data point (normalized by batch_size) 220 | """ 221 | message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) 222 | for k, v in losses.items(): 223 | message += '%s: %.3f ' % (k, v) 224 | 225 | print(message) # print the message 226 | with open(self.log_name, "a") as log_file: 227 | log_file.write('%s\n' % message) # save the message 228 | --------------------------------------------------------------------------------