└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # LLM_Unlearning_Papers 2 | 3 | 4 | ## Category 5 | ### Parameter optimization 6 | 1. **KGA: A General Machine Unlearning Framework Based on Knowledge Gap Alignment.** (ACL 2023)
7 | Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng, Kam-Fai Wong, and Hongzhi Yin. 8 | [[paper](https://arxiv.org/abs/2305.06535)] [[code](https://github.com/Lingzhi-WANG/KGAUnlearn)] 9 | 10 | 2. **Knowledge unlearning for mitigating privacy risks in language models.** (ACL 2023)
11 | Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo. 12 | [[paper](https://arxiv.org/abs/2210.01504)] [[code](https://github.com/joeljang/knowledge-unlearning)] 13 | 14 | 3. **Unlearn What You Want to Forget: Efficient Unlearning for LLMs.**
15 | Jiaao Chen, Diyi Yang. 16 | [[paper](https://arxiv.org/abs/2310.20150)] [[code](https://github.com/SALT-NLP/Efficient_Unlearning)] 17 | 18 | 4. **Large Language Model Unlearning.**
19 | Yuanshun Yao, Xiaojun Xu, and Yang Liu. 20 | [[paper](https://arxiv.org/abs/2310.10683)] [[code](https://github.com/kevinyaobytedance/llm_unlearn)] 21 | 22 | 5. **DEPN: Detecting and Editing Privacy Neurons in Pretrained Language Models.**
23 | Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong. 24 | [[paper](https://arxiv.org/abs/2310.20138)] [[code](https://github.com/flamewei123/DEPN)] 25 | 26 | 6. **Who's Harry Potter? Approximate Unlearning in LLMs.**
27 | Ronen Eldan, Mark Russinovich. 28 | [[paper](https://arxiv.org/abs/2310.02238)] 29 | 30 | 7. **Unlearning Bias in Language Models by Partitioning Gradients.** (ACL 2023)
31 | Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, Heng Ji. 32 | [[paper](https://aclanthology.org/2023.findings-acl.375/)] [[code](https://github.com/CharlesYu2000/PCGU-UnlearningBias)] 33 | 34 | 9. **Make Text Unlearnable: Exploiting Effective Patterns to Protect Personal Data.**
35 | Xinzhe Li, Ming Liu, Shang Gao. 36 | [[paper](https://arxiv.org/abs/2307.00456)] 37 | 38 | 10. **Separate the Wheat from the Chaff: Model Deficiency Unlearning via Parameter-Efficient Module Operation.**
39 | Xinshuo Hu, Dongfang Li, Zihao Zheng, Zhenyu Liu, Baotian Hu, Min Zhang. 40 | [[paper](https://arxiv.org/abs/2308.08090)] 41 | 42 | 11. **Making Harmful Behaviors Unlearnable for Large Language Models.**
43 | Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Qi Zhang, Xuanjing Huang. 44 | [[paper](https://arxiv.org/abs/2311.02105)] 45 | 46 | ### Parameter merging 47 | 1. **Editing Models with Task Arithmetic.**
48 | Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. 49 | [[paper](https://arxiv.org/abs/2212.04089)] [[code](https://github.com/mlfoundations/task_vectors)] 50 | 51 | 2. **Composing Parameter-Efficient Modules with Arithmetic Operations.**
52 | Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. 53 | [[paper](https://arxiv.org/abs/2306.14870)] [[code](https://github.com/SJTU-LIT/PEM_composition)] 54 | 55 | 3. **Fuse to Forget: Bias Reduction and Selective Memorization through Model Fusion.**
56 | Kerem Zaman, Leshem Choshen, Shashank Srivastava. 57 | [[paper](https://arxiv.org/abs/2311.07682)] [[code](https://github.com/KeremZaman/FuseToForget)] 58 | 59 | ### In-context learning 60 | 1. **in-context unlearning: language models as few shot unlearners.**
61 | Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. 62 | [[paper](https://arxiv.org/abs/2310.07579)] 63 | --------------------------------------------------------------------------------