└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # LLM_Unlearning_Papers
2 |
3 |
4 | ## Category
5 | ### Parameter optimization
6 | 1. **KGA: A General Machine Unlearning Framework Based on Knowledge Gap Alignment.** (ACL 2023)
7 | Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng, Kam-Fai Wong, and Hongzhi Yin.
8 | [[paper](https://arxiv.org/abs/2305.06535)] [[code](https://github.com/Lingzhi-WANG/KGAUnlearn)]
9 |
10 | 2. **Knowledge unlearning for mitigating privacy risks in language models.** (ACL 2023)
11 | Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo.
12 | [[paper](https://arxiv.org/abs/2210.01504)] [[code](https://github.com/joeljang/knowledge-unlearning)]
13 |
14 | 3. **Unlearn What You Want to Forget: Efficient Unlearning for LLMs.**
15 | Jiaao Chen, Diyi Yang.
16 | [[paper](https://arxiv.org/abs/2310.20150)] [[code](https://github.com/SALT-NLP/Efficient_Unlearning)]
17 |
18 | 4. **Large Language Model Unlearning.**
19 | Yuanshun Yao, Xiaojun Xu, and Yang Liu.
20 | [[paper](https://arxiv.org/abs/2310.10683)] [[code](https://github.com/kevinyaobytedance/llm_unlearn)]
21 |
22 | 5. **DEPN: Detecting and Editing Privacy Neurons in Pretrained Language Models.**
23 | Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
24 | [[paper](https://arxiv.org/abs/2310.20138)] [[code](https://github.com/flamewei123/DEPN)]
25 |
26 | 6. **Who's Harry Potter? Approximate Unlearning in LLMs.**
27 | Ronen Eldan, Mark Russinovich.
28 | [[paper](https://arxiv.org/abs/2310.02238)]
29 |
30 | 7. **Unlearning Bias in Language Models by Partitioning Gradients.** (ACL 2023)
31 | Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, Heng Ji.
32 | [[paper](https://aclanthology.org/2023.findings-acl.375/)] [[code](https://github.com/CharlesYu2000/PCGU-UnlearningBias)]
33 |
34 | 9. **Make Text Unlearnable: Exploiting Effective Patterns to Protect Personal Data.**
35 | Xinzhe Li, Ming Liu, Shang Gao.
36 | [[paper](https://arxiv.org/abs/2307.00456)]
37 |
38 | 10. **Separate the Wheat from the Chaff: Model Deficiency Unlearning via Parameter-Efficient Module Operation.**
39 | Xinshuo Hu, Dongfang Li, Zihao Zheng, Zhenyu Liu, Baotian Hu, Min Zhang.
40 | [[paper](https://arxiv.org/abs/2308.08090)]
41 |
42 | 11. **Making Harmful Behaviors Unlearnable for Large Language Models.**
43 | Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Qi Zhang, Xuanjing Huang.
44 | [[paper](https://arxiv.org/abs/2311.02105)]
45 |
46 | ### Parameter merging
47 | 1. **Editing Models with Task Arithmetic.**
48 | Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi.
49 | [[paper](https://arxiv.org/abs/2212.04089)] [[code](https://github.com/mlfoundations/task_vectors)]
50 |
51 | 2. **Composing Parameter-Efficient Modules with Arithmetic Operations.**
52 | Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He.
53 | [[paper](https://arxiv.org/abs/2306.14870)] [[code](https://github.com/SJTU-LIT/PEM_composition)]
54 |
55 | 3. **Fuse to Forget: Bias Reduction and Selective Memorization through Model Fusion.**
56 | Kerem Zaman, Leshem Choshen, Shashank Srivastava.
57 | [[paper](https://arxiv.org/abs/2311.07682)] [[code](https://github.com/KeremZaman/FuseToForget)]
58 |
59 | ### In-context learning
60 | 1. **in-context unlearning: language models as few shot unlearners.**
61 | Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju.
62 | [[paper](https://arxiv.org/abs/2310.07579)]
63 |
--------------------------------------------------------------------------------