├── a.txt
├── cheatsheet.jpg
├── Autoencoder
├── result.png
└── Autoencoder.ipynb
├── python basics
├── NUMPY
│ ├── 1.py
│ ├── 2.py
│ ├── 3.py
│ ├── 4.py
│ ├── version.py
│ ├── result1.py
│ ├── tofindindexof100thelement.py
│ ├── 5.py
│ ├── 6.py
│ └── NUMPY.ipynb
└── .ipynb_checkpoints
│ └── NUMPY-checkpoint.ipynb
├── Py and R cheatsheet.jpg
├── Performance Metrics
├── img
│ └── auc.png
├── roc_and_auc.md
└── metrics in classification.md
├── tensorflow basics
├── autoencoder.png
├── basics1.py
├── basics2.py
├── basics3.py
└── autoencoder.py
├── Python for Data Science - cheatsheet.pdf
├── README.md
├── Position_Salaries.csv
├── Cheatsheet by Stanford.md
├── Ensenmble-learning
├── XGBoost.py
└── XGBoost_gridSearch.py
├── KNN-ALGORITHM
└── KNN.py
├── perceptron
├── perceptron.py
├── perceptronalgo.py
└── data.csv
├── prediction.pynb
├── LSTM
├── iris-data.csv
└── Untitled1.ipynb
├── LICENSE
└── K-means-cluster
└── K-MEANS.ipynb
/a.txt:
--------------------------------------------------------------------------------
1 | sdasd
--------------------------------------------------------------------------------
/cheatsheet.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/somiljain7/AI/HEAD/cheatsheet.jpg
--------------------------------------------------------------------------------
/Autoencoder/result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/somiljain7/AI/HEAD/Autoencoder/result.png
--------------------------------------------------------------------------------
/python basics/NUMPY/1.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | z=np.zeros(10)
3 | z[4] = 1
4 | print(z)
5 |
--------------------------------------------------------------------------------
/Py and R cheatsheet.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/somiljain7/AI/HEAD/Py and R cheatsheet.jpg
--------------------------------------------------------------------------------
/Performance Metrics/img/auc.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/somiljain7/AI/HEAD/Performance Metrics/img/auc.png
--------------------------------------------------------------------------------
/python basics/NUMPY/2.py:
--------------------------------------------------------------------------------
1 | #/*randomize in range 10,50 */
2 | import numpy as np
3 | z=np.arange(10,50)
4 | print(z)
5 |
--------------------------------------------------------------------------------
/tensorflow basics/autoencoder.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/somiljain7/AI/HEAD/tensorflow basics/autoencoder.png
--------------------------------------------------------------------------------
/python basics/NUMPY/3.py:
--------------------------------------------------------------------------------
1 | #/*REVERSING AN VECTOR*/
2 | import numpy as np
3 | z=np.arange(50)
4 | z=z[::-1]
5 | print(z)
6 |
--------------------------------------------------------------------------------
/python basics/NUMPY/4.py:
--------------------------------------------------------------------------------
1 | #/* CREATING AN 3x3 MATRIX*/
2 | import numpy as np
3 | z=np.arange(9).reshape(3,3)
4 | print(z)
5 |
--------------------------------------------------------------------------------
/python basics/NUMPY/version.py:
--------------------------------------------------------------------------------
1 | import numpy as n
2 | print(n.__version__)
3 |
4 | #to know the version of numpy installed
5 |
--------------------------------------------------------------------------------
/Python for Data Science - cheatsheet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/somiljain7/AI/HEAD/Python for Data Science - cheatsheet.pdf
--------------------------------------------------------------------------------
/python basics/NUMPY/result1.py:
--------------------------------------------------------------------------------
1 | import numpy as n
2 |
3 | 0 * n.nan
4 | n.nan == n.nan
5 | n.inf >n.nan
6 | n.nan - n.nan
7 | 0.3 == 3*0.1
8 |
--------------------------------------------------------------------------------
/python basics/NUMPY/tofindindexof100thelement.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | print(np.unravel_index(100,(6,7,8)))
3 |
4 | print(np.unravel_index(
5 |
--------------------------------------------------------------------------------
/python basics/.ipynb_checkpoints/NUMPY-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 2
6 | }
7 |
--------------------------------------------------------------------------------
/python basics/NUMPY/5.py:
--------------------------------------------------------------------------------
1 | #/* CREATING A CHECKBOARD 8x8 MATRIX*/
2 | import numpy as np
3 | z=np.tile(np.array([[0,1],[1,0]]),(4,4))
4 | print(z)
5 |
6 |
--------------------------------------------------------------------------------
/python basics/NUMPY/6.py:
--------------------------------------------------------------------------------
1 |
2 | #/* NORMALIZING 5x5 MATRIX*/
3 | import numpy as np
4 | Z=np.random.random((5,5))
5 | Zmax,Zmin = Z.max(),Z.min()
6 | Z = (Z - Zmin)/(Zmax - Zmin)
7 | print(Z)
8 |
9 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ` AI ALGORITHMS `
2 | **This repository contains my algorithm implemetantion +EDA + data visualization**
3 |
4 | # `Setup: `
5 | ```
6 | $ git clone https://github.com/somiljain7/AI.git
7 |
8 | ```
9 | # `feel free to contribute :)`
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/tensorflow basics/basics1.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | from tensorflow.keras import Sequential
3 | from tensorflow.keras.layers import Dense
4 |
5 | model = Sequential()
6 | model.add(Dense(3, input_dim=2 ,activation='relu'))
7 | model.add(Dense(1, activation='softmax'))
8 |
9 |
--------------------------------------------------------------------------------
/Position_Salaries.csv:
--------------------------------------------------------------------------------
1 | Position,Level,Salary
2 | Business Analyst,1,45000
3 | Junior Consultant,2,50000
4 | Senior Consultant,3,60000
5 | Manager,4,80000
6 | Country Manager,5,110000
7 | Region Manager,6,150000
8 | Partner,7,200000
9 | Senior Partner,8,300000
10 | C-level,9,500000
11 | CEO,10,1000000
--------------------------------------------------------------------------------
/Cheatsheet by Stanford.md:
--------------------------------------------------------------------------------
1 | ### Machine Learning Cheatsheet by Stanford University
2 |
3 | ### For Classification and Regression Metrics
4 | https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
5 |
6 | ### For Supervised Learning
7 | https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning
8 |
9 | ### For Unsupervised Learning
10 | https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervised-learning
11 |
--------------------------------------------------------------------------------
/Ensenmble-learning/XGBoost.py:
--------------------------------------------------------------------------------
1 | import xgboost as xgb
2 |
3 | #Using the XGBoost Classifier. I have used just a few combinations here and there without GridSearch or RandomSearch because the dataset was pretty small
4 | xg_cl = xgb.XGBClassifier(objective='binary:logistic', n_estimators=500,seed=42,learning_rate=0.01,max_depth=5,colsample_bytree=0.75,subsample=0.7,
5 | tree_method='exact', min_child_weight=4,reg_alpha=0.005)
6 |
7 | #fitting the model
8 | xg_cl.fit(X_train,y_train)
9 |
--------------------------------------------------------------------------------
/tensorflow basics/basics2.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | from tensorflow.keras import Model
3 | from tensorflow.keras.layers import Dense
4 |
5 | class SimpleNeuralNetwork(Model):
6 | def __init__(self):
7 | super(SimpleNeuralNetwork , self).__init__()
8 | self.layer1 = Dense(2,activation='relu')
9 | self.layer2 = Dense(3,activation='relu')
10 | self.outputLayer = Dense(1,activation='softmax')
11 | def call(self, x):
12 | x = self.layer1(x)
13 | x = self.layer2(x)
14 | return self.outputLayer(x)
15 |
16 | Model = SimpleNeuralNetwork()
17 |
18 |
19 |
--------------------------------------------------------------------------------
/KNN-ALGORITHM/KNN.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 | from scipy import stats
4 | from tensorflow.examples.tutorials.mnist import input_data
5 |
6 | mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
7 | X_train,y_train = mnist.train.next_batch(5000)
8 | X_test, y_test = mnist.test.next_batch(100)
9 | k=3
10 | target_x= tf.placeholder("float",[1784])
11 | X = tf.placeholder("float",[None, 784])
12 | y = tf.placeholder("float",[None, 10])
13 | l1_dist = tf.reduce_sum(tf.abs(tf.sub(x, target_x)), 1)
14 | l2_dist = tf.reduce_sum(tf.square(tf.sub(x, target_x)), 1)
15 | nn = tf.nn.top_k(-l1_dist, k)
16 | init = tf.initialize_all_variables()
17 | accuracy_history = []
18 | with tf.Session() as sess:
19 | sess.run(init)
20 |
--------------------------------------------------------------------------------
/Performance Metrics/roc_and_auc.md:
--------------------------------------------------------------------------------
1 | ## ROC and AUC
2 |
3 | refer:
4 | - https://www.youtube.com/watch?v=A_ZKMsZ3f3o
5 | - https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
6 |
7 | **Receiver operating characteristic curve (ROC)**
8 | Receiver operating characteristic curve, performance of classification model at all threshold
9 | - T+ve and F+ve
10 |
11 |
12 |
13 | **Area under the curve (AUC)**
14 | 1. condiser some threshold value
15 | 2. Find output y^ for all threshold values
16 | 3. calculate True+ve and False+ve
17 | 4. Plot a graph F+ve vs T+ve
18 |
19 | - AUC dir proportional to area
20 | - Model should be always greater than linear line in graph
21 | - Focus on True Positive values
22 | - Select the best threshold value
23 |
24 | 
25 |
--------------------------------------------------------------------------------
/Ensenmble-learning/XGBoost_gridSearch.py:
--------------------------------------------------------------------------------
1 | from xgboost.sklearn import XGBRegressor
2 | import datetime
3 | from sklearn.model_selection import GridSearchCV
4 |
5 | # Various hyper-parameters to tune
6 | xgb1 = XGBRegressor()
7 | parameters = {'nthread':[4], #when use hyperthread, xgboost may become slower
8 | 'objective':['reg:linear'],
9 | 'learning_rate': [.03, 0.05, .07, .01, 0.1], #so called `eta` value
10 | 'max_depth': [5, 6, 7],
11 | 'min_child_weight': [4, 3, 2],
12 | 'silent': [1],
13 | 'subsample': [0.7, 0.75, 0.8],
14 | 'colsample_bytree': [0.7, 0.75, 0.8],
15 | 'n_estimators': [500, 600, 700, 800, 900, 1000]}
16 |
17 | xgb_grid = GridSearchCV(xgb1, parameters, cv = 2, n_jobs = 5, verbose=True)
18 |
19 | xgb_grid.fit(X_train, y_train)
20 |
21 | print(xgb_grid.best_score_)
22 | print(xgb_grid.best_params_)
23 |
24 | preds = xg_cl.predict(X_test)
25 |
--------------------------------------------------------------------------------
/perceptron/perceptron.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 |
3 | # TODO: Set weight1, weight2, and bias
4 | weight1 = 1.5
5 | weight2 = 1.5
6 | bias = -2.0
7 |
8 |
9 | # DON'T CHANGE ANYTHING BELOW
10 | # Inputs and outputs
11 | test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
12 | correct_outputs = [False, False, False, True]
13 | outputs = []
14 |
15 | # Generate and check output
16 | for test_input, correct_output in zip(test_inputs, correct_outputs):
17 | linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias
18 | output = int(linear_combination >= 0)
19 | is_correct_string = 'Yes' if output == correct_output else 'No'
20 | outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string])
21 |
22 | # Print output
23 | num_wrong = len([output[4] for output in outputs if output[4] == 'No'])
24 | output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct'])
25 | if not num_wrong:
26 | print('Nice! You got it all correct.\n')
27 | else:
28 | print('You got {} wrong. Keep trying!\n'.format(num_wrong))
29 | print(output_frame.to_string(index=False))
--------------------------------------------------------------------------------
/prediction.pynb:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import seaborn as sns
3 | import matplotlib.pyplot as plt
4 | from sklearn.ensemble import RandomForestClassifier
5 | from sklearn.svm import SVC
6 | from sklearn.linear_model import SGDClassifier
7 | from sklearn.metrics import confusion_matrix, classification_report
8 | from sklearn.preprocessing import StandardScaler, LabelEncoder
9 | from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
10 | %matplotlib inline
11 |
12 | #Loading dataset
13 | wine = pd.read_csv('../input/winequality-red.csv')
14 | wine.head()
15 |
16 |
17 |
18 | #Now seperate the dataset as response variable and feature variabes
19 | X = wine.drop('quality', axis = 1)
20 | y = wine['quality']
21 |
22 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
23 |
24 |
25 |
26 |
27 | #Applying Standard scaling to get optimized result
28 | sc = StandardScaler()
29 |
30 |
31 |
32 | X_train = sc.fit_transform(X_train)
33 | X_test = sc.fit_transform(X_test)
34 |
35 | svc2 = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf')
36 | svc2.fit(X_train, y_train)
37 | pred_svc2 = svc2.predict(X_test)
38 | print(classification_report(y_test, pred_svc2))
39 |
40 |
41 |
--------------------------------------------------------------------------------
/tensorflow basics/basics3.py:
--------------------------------------------------------------------------------
1 | import quandl
2 | import numpy as np
3 | from sklearn.linear_model import LinearRegression
4 | from sklearn.svm import SVR
5 | from sklearn.model_selection import train_test_split
6 | # Get the stock data
7 | df = quandl.get("WIKI/AMZN")
8 | # Take a look at the data
9 | # Get the Adjusted Close Price
10 | df = df[['Adj. Close']]
11 | # A variable for predicting 'n' days out into the future
12 | forecast_out = 30 #'n=30' days
13 | #Create another column (the target ) shifted 'n' units up
14 | df['Prediction'] = df[['Adj. Close']].shift(-forecast_out)
15 | #print the new data set
16 | print(df.tail())
17 | X = np.array(df.drop(['Prediction'],1))
18 |
19 | #Remove the last '30' rows
20 | X = X[:-forecast_out]
21 | print(X)
22 | ### Create the dependent data set (y) #####
23 | # Convert the dataframe to a numpy array
24 | y = np.array(df['Prediction'])
25 | # Get all of the y values except the last '30' rows
26 | y = y[:-forecast_out]
27 | print(y)
28 | # Split the data into 80% training and 20% testing
29 | x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
30 | # Create and train the Support Vector Machine (Regressor)
31 | svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
32 | svr_rbf.fit(x_train, y_train)
33 |
34 |
--------------------------------------------------------------------------------
/Performance Metrics/metrics in classification.md:
--------------------------------------------------------------------------------
1 | ## All Metrics in Classification
2 |
3 | **Classification Problem**
4 | Default threshold in `0.5`
5 | - Class Labels
6 | - Probabilities (AUC, ROC, PR Curve)
7 |
8 | **Dataset (based on labels)**
9 | - Nearly equal number of records for both labels => `Accuracy`
10 | - Unequal records for labels => Recall, Precision, Fß (F1 Score) and `not Accuracy`
11 |
12 | 1. Confusion Matrix
13 | 2x2 matrix
14 | - top (Actual Values)
15 | - left Predicted Values
16 |
17 | 
18 |
19 | - False +ve => Type 1 Error
20 | - False -ve => Type 2 Error
21 |
22 | Aim -
23 | - Reducing Type1 and Type2 Error
24 | - Accurate values T+ve and T-ve
25 |
26 | **Parameters**
27 | - Balanced Dataset
28 |
29 | Accuracy = (TP + TN) / (TP + FP + FN + TN)
30 |
31 | - Imbalanced Dataset
32 |
33 | Recall(True +ve Rate or Sensitivity) = Out of all +ve values , how many +ve correctly predicted
34 |
35 | Precision(+ve Pred value) = Out of all actual predicted result, how many actual +ve
36 |
37 | 
38 |
39 |
40 | 2. Fß Score - To reduce type 1 and type 2 errors
41 |
42 | 
43 |
44 | when ß = 1 => Harmonic mean
45 | - When F+ve and F-ve is important then ß = 1
46 | - Type 1 error ß > 1
47 | - Type 2 error ß = 0.5 to 1 mostly 0.5
48 |
--------------------------------------------------------------------------------
/perceptron/perceptronalgo.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | # Setting the random seed, feel free to change it and see different solutions.
3 | np.random.seed(42)
4 |
5 | def stepFunction(t):
6 | if t >= 0:
7 | return 1
8 | return 0
9 |
10 | def prediction(X, W, b):
11 | return stepFunction((np.matmul(X,W)+b)[0])
12 |
13 | # TODO: Fill in the code below to implement the perceptron trick.
14 | # The function should receive as inputs the data X, the labels y,
15 | # the weights W (as an array), and the bias b,
16 | # update the weights and bias W, b, according to the perceptron algorithm,
17 | # and return W and b.
18 | def perceptronStep(X, y, W, b, learn_rate = 0.01):
19 | for i in range(len(X)):
20 | y_hat = prediction(X[i],W,b)
21 | if y[i]-y_hat == 1:
22 | W[0] += X[i][0]*learn_rate
23 | W[1] += X[i][1]*learn_rate
24 | b += learn_rate
25 | elif y[i]-y_hat == -1:
26 | W[0] -= X[i][0]*learn_rate
27 | W[1] -= X[i][1]*learn_rate
28 | b -= learn_rate
29 | return W, b
30 |
31 |
32 | # This function runs the perceptron algorithm repeatedly on the dataset,
33 | # and returns a few of the boundary lines obtained in the iterations,
34 | # for plotting purposes.
35 | # Feel free to play with the learning rate and the num_epochs,
36 | # and see your results plotted below.
37 | def trainPerceptronAlgorithm(X, y, learn_rate = 0.01, num_epochs = 25):
38 | x_min, x_max = min(X.T[0]), max(X.T[0])
39 | y_min, y_max = min(X.T[1]), max(X.T[1])
40 | W = np.array(np.random.rand(2,1))
41 | b = np.random.rand(1)[0] + x_max
42 | # These are the solution lines that get plotted below.
43 | boundary_lines = []
44 | for i in range(num_epochs):
45 | # In each epoch, we apply the perceptron step.
46 | W, b = perceptronStep(X, y, W, b, learn_rate)
47 | boundary_lines.append((-W[0]/W[1], -b/W[1]))
48 | return boundary_lines
49 |
--------------------------------------------------------------------------------
/perceptron/data.csv:
--------------------------------------------------------------------------------
1 | 0.78051,-0.063669,1
2 | 0.28774,0.29139,1
3 | 0.40714,0.17878,1
4 | 0.2923,0.4217,1
5 | 0.50922,0.35256,1
6 | 0.27785,0.10802,1
7 | 0.27527,0.33223,1
8 | 0.43999,0.31245,1
9 | 0.33557,0.42984,1
10 | 0.23448,0.24986,1
11 | 0.0084492,0.13658,1
12 | 0.12419,0.33595,1
13 | 0.25644,0.42624,1
14 | 0.4591,0.40426,1
15 | 0.44547,0.45117,1
16 | 0.42218,0.20118,1
17 | 0.49563,0.21445,1
18 | 0.30848,0.24306,1
19 | 0.39707,0.44438,1
20 | 0.32945,0.39217,1
21 | 0.40739,0.40271,1
22 | 0.3106,0.50702,1
23 | 0.49638,0.45384,1
24 | 0.10073,0.32053,1
25 | 0.69907,0.37307,1
26 | 0.29767,0.69648,1
27 | 0.15099,0.57341,1
28 | 0.16427,0.27759,1
29 | 0.33259,0.055964,1
30 | 0.53741,0.28637,1
31 | 0.19503,0.36879,1
32 | 0.40278,0.035148,1
33 | 0.21296,0.55169,1
34 | 0.48447,0.56991,1
35 | 0.25476,0.34596,1
36 | 0.21726,0.28641,1
37 | 0.67078,0.46538,1
38 | 0.3815,0.4622,1
39 | 0.53838,0.32774,1
40 | 0.4849,0.26071,1
41 | 0.37095,0.38809,1
42 | 0.54527,0.63911,1
43 | 0.32149,0.12007,1
44 | 0.42216,0.61666,1
45 | 0.10194,0.060408,1
46 | 0.15254,0.2168,1
47 | 0.45558,0.43769,1
48 | 0.28488,0.52142,1
49 | 0.27633,0.21264,1
50 | 0.39748,0.31902,1
51 | 0.5533,1,0
52 | 0.44274,0.59205,0
53 | 0.85176,0.6612,0
54 | 0.60436,0.86605,0
55 | 0.68243,0.48301,0
56 | 1,0.76815,0
57 | 0.72989,0.8107,0
58 | 0.67377,0.77975,0
59 | 0.78761,0.58177,0
60 | 0.71442,0.7668,0
61 | 0.49379,0.54226,0
62 | 0.78974,0.74233,0
63 | 0.67905,0.60921,0
64 | 0.6642,0.72519,0
65 | 0.79396,0.56789,0
66 | 0.70758,0.76022,0
67 | 0.59421,0.61857,0
68 | 0.49364,0.56224,0
69 | 0.77707,0.35025,0
70 | 0.79785,0.76921,0
71 | 0.70876,0.96764,0
72 | 0.69176,0.60865,0
73 | 0.66408,0.92075,0
74 | 0.65973,0.66666,0
75 | 0.64574,0.56845,0
76 | 0.89639,0.7085,0
77 | 0.85476,0.63167,0
78 | 0.62091,0.80424,0
79 | 0.79057,0.56108,0
80 | 0.58935,0.71582,0
81 | 0.56846,0.7406,0
82 | 0.65912,0.71548,0
83 | 0.70938,0.74041,0
84 | 0.59154,0.62927,0
85 | 0.45829,0.4641,0
86 | 0.79982,0.74847,0
87 | 0.60974,0.54757,0
88 | 0.68127,0.86985,0
89 | 0.76694,0.64736,0
90 | 0.69048,0.83058,0
91 | 0.68122,0.96541,0
92 | 0.73229,0.64245,0
93 | 0.76145,0.60138,0
94 | 0.58985,0.86955,0
95 | 0.73145,0.74516,0
96 | 0.77029,0.7014,0
97 | 0.73156,0.71782,0
98 | 0.44556,0.57991,0
99 | 0.85275,0.85987,0
100 | 0.51912,0.62359,0
101 |
--------------------------------------------------------------------------------
/tensorflow basics/autoencoder.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import keras
3 | from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
4 | from keras.models import Model
5 | from sklearn.model_selection import train_test_split
6 | import matplotlib.pyplot as plt
7 | (X_train, _), (X_test, _) = keras.datasets.mnist.load_data()
8 | X_train[0].shape
9 | plt.figure(figsize=(10,5))
10 | for i in range(10):
11 | plt.subplot(1, 10, i+1)
12 | plt.imshow(X_train[i], cmap='gray')
13 | plt.xticks([])
14 | plt.yticks([])
15 | plt.show()
16 | inputs =Input(shape=(784,))
17 | enc = Dense(32,activation='relu') #compressing using 32 neurons
18 | encoded = enc(inputs)
19 | dec = Dense(784,activation='sigmoid')# decompress to 784 pixel
20 | decoded = dec(encoded)
21 | autoencoder = Model(inputs, decoded)
22 | autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
23 | def preprocess(x):
24 | x = x.astype('float32') / 255.
25 | return x.reshape(-1, np.prod(x.shape[1:])) # flatten
26 |
27 | X_train = preprocess(X_train)
28 | X_test = preprocess(X_test)
29 |
30 | # a validation set for training
31 | X_train, X_valid = train_test_split(X_train, test_size=500)
32 | autoencoder.fit(X_train, X_train, epochs=50, batch_size=128, validation_data=(X_valid, X_valid))
33 | encoder = Model(inputs, encoded)
34 | X_test_encoded = encoder.predict(X_test)
35 | X_test_encoded[0].shape
36 | decoder_inputs = Input(shape=(32,))
37 | decoder = Model(decoder_inputs, dec(decoder_inputs))
38 | X_test_decoded = decoder.predict(X_test_encoded)
39 | def show_images(before_images, after_images):
40 | plt.figure(figsize=(10, 2))
41 | for i in range(10):
42 | # before
43 | plt.subplot(2, 10, i+1)
44 | plt.imshow(before_images[i].reshape(28, 28), cmap='gray')
45 | plt.xticks([])
46 | plt.yticks([])
47 | # after
48 | plt.subplot(2, 10, 10+i+1)
49 | plt.imshow(after_images[i].reshape(28, 28), cmap='gray')
50 | plt.xticks([])
51 | plt.yticks([])
52 | plt.show()
53 |
54 | show_images(X_test, X_test_decoded)
55 | #Convolutional Autoencoder ka function
56 | def convauto():# encoding
57 | inputs = Input(shape=(28, 28, 1))
58 | x = Conv2D(16, 3, activation='relu', padding='same')(inputs)
59 | x = MaxPooling2D(padding='same')(x)
60 | x = Conv2D( 8, 3, activation='relu', padding='same')(x)
61 | x = MaxPooling2D(padding='same')(x)
62 | x = Conv2D( 8, 3, activation='relu', padding='same')(x)
63 | encoded = MaxPooling2D(padding='same')(x)
64 |
65 | # decoding
66 | x = Conv2D( 8, 3, activation='relu', padding='same')(encoded)
67 | x = UpSampling2D()(x)
68 | x = Conv2D( 8, 3, activation='relu', padding='same')(x)
69 | x = UpSampling2D()(x)
70 | x = Conv2D(16, 3, activation='relu')(x)
71 | x = UpSampling2D()(x)
72 | decoded = Conv2D(1, 3, activation='sigmoid', padding='same')(x)
73 |
74 | # autoencoder
75 | autoencoder = Model(inputs, decoded)
76 | autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
77 | return autoencoder
78 |
79 | autoencoder = convauto()
80 | autoencoder.summary()
81 |
82 | X_train = X_train.reshape(-1, 28, 28, 1)
83 | X_valid = X_valid.reshape(-1, 28, 28, 1)
84 | X_test = X_test.reshape(-1, 28, 28, 1)
85 |
86 | autoencoder.fit(X_train, X_train, epochs=50, batch_size=128, validation_data=(X_valid, X_valid))
87 | X_test_dec = autoencoder.predict(X_test)
88 |
89 | show_images(X_test, X_test_dec)
90 |
91 |
92 | def add_noise(x, noise_factor=0.2):
93 | x = x + np.random.randn(*x.shape) * noise_factor
94 | x = x.clip(0., 1.)
95 | return x
96 |
97 | X_train_noisy = add_noise(X_train)
98 | X_valid_noisy = add_noise(X_valid)
99 | X_test_noisy = add_noise(X_test)
100 |
101 | autoencoder = convauto()
102 | autoencoder.fit(X_train_noisy, X_train, epochs=50, batch_size=128, validation_data=(X_valid_noisy, X_valid))
103 | X_test_dec = autoencoder.predict(X_test_noisy)
104 |
105 | show_images(X_test_noisy, X_test_dec)
--------------------------------------------------------------------------------
/LSTM/iris-data.csv:
--------------------------------------------------------------------------------
1 | sepal_length_cm,sepal_width_cm,petal_length_cm,petal_width_cm,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5,3.4,1.5,NA,Iris-setosa
4.4,2.9,1.4,NA,Iris-setosa
4.9,3.1,1.5,NA,Iris-setosa
5.4,3.7,1.5,NA,Iris-setosa
4.8,3.4,1.6,NA,Iris-setosa
4.8,3,1.4,0.1,Iris-setosa
5.7,3,1.1,0.1,Iris-setosa
5.8,4,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setossa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5,3,1.6,0.2,Iris-setosa
5,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5,3.3,1.4,0.2,Iris-setosa
7,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5,2,3.5,1,Iris-versicolor
5.9,3,4.2,1.5,Iris-versicolor
6,2.2,4,1,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
0.067,3,5,1.7,Iris-versicolor
0.06,2.9,4.5,1.5,Iris-versicolor
0.057,2.6,3.5,1,Iris-versicolor
0.055,2.4,3.8,1.1,Iris-versicolor
0.055,2.4,3.7,1,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6,2.8,5.1,1.6,Iris-versicolor
5.4,3,4.5,1.5,Iris-versicolor
6,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3,4.1,1.3,Iris-versicolor
5.5,2.5,4,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3,4.6,1.4,Iris-versicolor
5.8,2.6,4,1.2,Iris-versicolor
5,2.3,3.3,1,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3,4.2,1.2,versicolor
5.7,2.9,4.2,1.3,versicolor
6.2,2.9,4.3,1.3,versicolor
5.1,2.5,3,1.1,versicolor
5.7,2.8,4.1,1.3,versicolor
6.3,3.3,6,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3,5.8,2.2,Iris-virginica
7.6,3,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3,5.5,2.1,Iris-virginica
5.7,2.5,5,2,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6,2.2,5,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2,Iris-virginica
5.6,2.8,6.7,2,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6,3,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3,5.2,2.3,Iris-virginica
6.3,2.5,5,2.3,Iris-virginica
6.5,3,5.2,2,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3,5.1,1.8,Iris-virginica
--------------------------------------------------------------------------------
/python basics/NUMPY/NUMPY.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import numpy as np\n"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 2,
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "np1 = np.array([1,2,3,4,5])"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 3,
24 | "metadata": {},
25 | "outputs": [
26 | {
27 | "data": {
28 | "text/plain": [
29 | "array([1, 2, 3, 4, 5])"
30 | ]
31 | },
32 | "execution_count": 3,
33 | "metadata": {},
34 | "output_type": "execute_result"
35 | }
36 | ],
37 | "source": [
38 | "np1"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 4,
44 | "metadata": {},
45 | "outputs": [
46 | {
47 | "data": {
48 | "text/plain": [
49 | "numpy.ndarray"
50 | ]
51 | },
52 | "execution_count": 4,
53 | "metadata": {},
54 | "output_type": "execute_result"
55 | }
56 | ],
57 | "source": [
58 | "type(np1)"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": 6,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": [
67 | "Mat1 = np.array([[1,2],[3,4]])"
68 | ]
69 | },
70 | {
71 | "cell_type": "code",
72 | "execution_count": 7,
73 | "metadata": {},
74 | "outputs": [
75 | {
76 | "data": {
77 | "text/plain": [
78 | "array([[1, 2],\n",
79 | " [3, 4]])"
80 | ]
81 | },
82 | "execution_count": 7,
83 | "metadata": {},
84 | "output_type": "execute_result"
85 | }
86 | ],
87 | "source": [
88 | "Mat1"
89 | ]
90 | },
91 | {
92 | "cell_type": "code",
93 | "execution_count": 9,
94 | "metadata": {},
95 | "outputs": [
96 | {
97 | "data": {
98 | "text/plain": [
99 | "(5,)"
100 | ]
101 | },
102 | "execution_count": 9,
103 | "metadata": {},
104 | "output_type": "execute_result"
105 | }
106 | ],
107 | "source": [
108 | "np1.shape\n"
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "execution_count": 10,
114 | "metadata": {},
115 | "outputs": [
116 | {
117 | "data": {
118 | "text/plain": [
119 | "(2, 2)"
120 | ]
121 | },
122 | "execution_count": 10,
123 | "metadata": {},
124 | "output_type": "execute_result"
125 | }
126 | ],
127 | "source": [
128 | "Mat1.shape"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": 11,
134 | "metadata": {},
135 | "outputs": [
136 | {
137 | "data": {
138 | "text/plain": [
139 | "dtype('int32')"
140 | ]
141 | },
142 | "execution_count": 11,
143 | "metadata": {},
144 | "output_type": "execute_result"
145 | }
146 | ],
147 | "source": [
148 | "Mat1.dtype"
149 | ]
150 | },
151 | {
152 | "cell_type": "code",
153 | "execution_count": 13,
154 | "metadata": {},
155 | "outputs": [],
156 | "source": [
157 | "mat2 = np.arange(0,4,1)"
158 | ]
159 | },
160 | {
161 | "cell_type": "code",
162 | "execution_count": 14,
163 | "metadata": {},
164 | "outputs": [
165 | {
166 | "data": {
167 | "text/plain": [
168 | "array([0, 1, 2, 3])"
169 | ]
170 | },
171 | "execution_count": 14,
172 | "metadata": {},
173 | "output_type": "execute_result"
174 | }
175 | ],
176 | "source": [
177 | "mat2"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 15,
183 | "metadata": {},
184 | "outputs": [],
185 | "source": [
186 | "mat3 = np.linspace(0,10,20)"
187 | ]
188 | },
189 | {
190 | "cell_type": "code",
191 | "execution_count": 16,
192 | "metadata": {},
193 | "outputs": [
194 | {
195 | "data": {
196 | "text/plain": [
197 | "array([ 0. , 0.52631579, 1.05263158, 1.57894737, 2.10526316,\n",
198 | " 2.63157895, 3.15789474, 3.68421053, 4.21052632, 4.73684211,\n",
199 | " 5.26315789, 5.78947368, 6.31578947, 6.84210526, 7.36842105,\n",
200 | " 7.89473684, 8.42105263, 8.94736842, 9.47368421, 10. ])"
201 | ]
202 | },
203 | "execution_count": 16,
204 | "metadata": {},
205 | "output_type": "execute_result"
206 | }
207 | ],
208 | "source": [
209 | "mat3"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": null,
215 | "metadata": {},
216 | "outputs": [],
217 | "source": []
218 | },
219 | {
220 | "cell_type": "code",
221 | "execution_count": null,
222 | "metadata": {},
223 | "outputs": [],
224 | "source": []
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": null,
229 | "metadata": {},
230 | "outputs": [],
231 | "source": []
232 | }
233 | ],
234 | "metadata": {
235 | "kernelspec": {
236 | "display_name": "Python 3",
237 | "language": "python",
238 | "name": "python3"
239 | },
240 | "language_info": {
241 | "codemirror_mode": {
242 | "name": "ipython",
243 | "version": 3
244 | },
245 | "file_extension": ".py",
246 | "mimetype": "text/x-python",
247 | "name": "python",
248 | "nbconvert_exporter": "python",
249 | "pygments_lexer": "ipython3",
250 | "version": "3.7.4"
251 | }
252 | },
253 | "nbformat": 4,
254 | "nbformat_minor": 2
255 | }
256 |
--------------------------------------------------------------------------------
/LSTM/Untitled1.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import numpy as np\n",
10 | "import matplotlib.pyplot as plt \n",
11 | "import pandas as pd\n"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 10,
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "\n",
21 | "dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv')\n",
22 | "training_set=dataset_train.iloc[:,1:2].values"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 11,
28 | "metadata": {},
29 | "outputs": [
30 | {
31 | "data": {
32 | "text/html": [
33 | "
\n",
34 | "\n",
47 | "
\n",
48 | " \n",
49 | " \n",
50 | " | \n",
51 | " Date | \n",
52 | " Open | \n",
53 | " High | \n",
54 | " Low | \n",
55 | " Last | \n",
56 | " Close | \n",
57 | " Total Trade Quantity | \n",
58 | " Turnover (Lacs) | \n",
59 | "
\n",
60 | " \n",
61 | " \n",
62 | " \n",
63 | " | 0 | \n",
64 | " 2018-09-28 | \n",
65 | " 234.05 | \n",
66 | " 235.95 | \n",
67 | " 230.20 | \n",
68 | " 233.50 | \n",
69 | " 233.75 | \n",
70 | " 3069914 | \n",
71 | " 7162.35 | \n",
72 | "
\n",
73 | " \n",
74 | " | 1 | \n",
75 | " 2018-09-27 | \n",
76 | " 234.55 | \n",
77 | " 236.80 | \n",
78 | " 231.10 | \n",
79 | " 233.80 | \n",
80 | " 233.25 | \n",
81 | " 5082859 | \n",
82 | " 11859.95 | \n",
83 | "
\n",
84 | " \n",
85 | " | 2 | \n",
86 | " 2018-09-26 | \n",
87 | " 240.00 | \n",
88 | " 240.00 | \n",
89 | " 232.50 | \n",
90 | " 235.00 | \n",
91 | " 234.25 | \n",
92 | " 2240909 | \n",
93 | " 5248.60 | \n",
94 | "
\n",
95 | " \n",
96 | " | 3 | \n",
97 | " 2018-09-25 | \n",
98 | " 233.30 | \n",
99 | " 236.75 | \n",
100 | " 232.00 | \n",
101 | " 236.25 | \n",
102 | " 236.10 | \n",
103 | " 2349368 | \n",
104 | " 5503.90 | \n",
105 | "
\n",
106 | " \n",
107 | " | 4 | \n",
108 | " 2018-09-24 | \n",
109 | " 233.55 | \n",
110 | " 239.20 | \n",
111 | " 230.75 | \n",
112 | " 234.00 | \n",
113 | " 233.30 | \n",
114 | " 3423509 | \n",
115 | " 7999.55 | \n",
116 | "
\n",
117 | " \n",
118 | "
\n",
119 | "
"
120 | ],
121 | "text/plain": [
122 | " Date Open High Low Last Close Total Trade Quantity \\\n",
123 | "0 2018-09-28 234.05 235.95 230.20 233.50 233.75 3069914 \n",
124 | "1 2018-09-27 234.55 236.80 231.10 233.80 233.25 5082859 \n",
125 | "2 2018-09-26 240.00 240.00 232.50 235.00 234.25 2240909 \n",
126 | "3 2018-09-25 233.30 236.75 232.00 236.25 236.10 2349368 \n",
127 | "4 2018-09-24 233.55 239.20 230.75 234.00 233.30 3423509 \n",
128 | "\n",
129 | " Turnover (Lacs) \n",
130 | "0 7162.35 \n",
131 | "1 11859.95 \n",
132 | "2 5248.60 \n",
133 | "3 5503.90 \n",
134 | "4 7999.55 "
135 | ]
136 | },
137 | "execution_count": 11,
138 | "metadata": {},
139 | "output_type": "execute_result"
140 | }
141 | ],
142 | "source": [
143 | "dataset_train.head()"
144 | ]
145 | },
146 | {
147 | "cell_type": "code",
148 | "execution_count": 12,
149 | "metadata": {},
150 | "outputs": [],
151 | "source": [
152 | "from sklearn.preprocessing import MinMaxScaler\n",
153 | "sc = MinMaxScaler(feature_range=(0,1))\n",
154 | "training_set_scaled = sc.fit_transform(training_set)"
155 | ]
156 | },
157 | {
158 | "cell_type": "code",
159 | "execution_count": 14,
160 | "metadata": {},
161 | "outputs": [
162 | {
163 | "ename": "AttributeError",
164 | "evalue": "'numpy.ndarray' object has no attribute 'append'",
165 | "output_type": "error",
166 | "traceback": [
167 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
168 | "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
169 | "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0my_train\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m60\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2035\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mX_train\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtraining_set_scaled\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m60\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtraining_set_scaled\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mX_train\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0my_train\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
170 | "\u001b[1;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'append'"
171 | ]
172 | }
173 | ],
174 | "source": [
175 | "X_train = []\n",
176 | "y_train = []\n",
177 | "for i in range(60, 2035):\n",
178 | " X_train.append(training_set_scaled[i-60:i,0])\n",
179 | " y_train.append(training_set_scaled[i,0])\n",
180 | " X_train,y_train = np.array(X_train),np.array(y_train) \n",
181 | " X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1],1))"
182 | ]
183 | },
184 | {
185 | "cell_type": "code",
186 | "execution_count": null,
187 | "metadata": {},
188 | "outputs": [],
189 | "source": []
190 | }
191 | ],
192 | "metadata": {
193 | "kernelspec": {
194 | "display_name": "Python 3",
195 | "language": "python",
196 | "name": "python3"
197 | },
198 | "language_info": {
199 | "codemirror_mode": {
200 | "name": "ipython",
201 | "version": 3
202 | },
203 | "file_extension": ".py",
204 | "mimetype": "text/x-python",
205 | "name": "python",
206 | "nbconvert_exporter": "python",
207 | "pygments_lexer": "ipython3",
208 | "version": "3.7.4"
209 | }
210 | },
211 | "nbformat": 4,
212 | "nbformat_minor": 2
213 | }
214 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/K-means-cluster/K-MEANS.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "import numpy as np\n",
11 | "import matplotlib.pyplot as plt\n",
12 | "%matplotlib inline"
13 | ]
14 | },
15 | {
16 | "cell_type": "code",
17 | "execution_count": 3,
18 | "metadata": {},
19 | "outputs": [],
20 | "source": [
21 | "df = pd.DataFrame({\n",
22 | " 'x': [12,20,28,18,29,33,24,45,45,52,51,52,55,53,55,61,64,69,72],\n",
23 | " 'y':[39,36,30,52,54,46,55,59,63,70,66,63,58,23,14,8,19,7,24]\n",
24 | " })\n"
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": 4,
30 | "metadata": {},
31 | "outputs": [
32 | {
33 | "data": {
34 | "text/plain": [
35 | ""
36 | ]
37 | },
38 | "metadata": {},
39 | "output_type": "display_data"
40 | }
41 | ],
42 | "source": [
43 | "np.random.seed(200)\n",
44 | "k=3\n",
45 | "centroids = {\n",
46 | " i+1:[np.random.randint(0,80),np.random.randint(0,9)]\n",
47 | " for i in range(k)\n",
48 | " \n",
49 | "}\n",
50 | "fig = plt.figure(figsize=(5,5))\n"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": 6,
56 | "metadata": {},
57 | "outputs": [
58 | {
59 | "data": {
60 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAU70lEQVR4nO3df4xl5X3f8feHX7GXJAbsBW1Zs4NVZGylAdsjikMbpWAS7LqGSraEta1WCtL84ybYiRRjjVTLlbbCVRTjP6pKo4Czqqb4B4FC+cMx2mD1h9S1ZzE24DVdjHfWGzbsOAHTdisM4ds/7pn17DJ47p25d+65Z94vaXTueebcvV/NvfPZM885z/OkqpAkdctZ4y5AkjR8hrskdZDhLkkdZLhLUgcZ7pLUQYa7JHVQX+Ge5FNJnkryZJJ7k7wpyeVJDiQ5nOQrSc4bdbGSpP6sGe5JLgV+H5iuql8DzgZuBT4PfKGqrgBeAG4bZaGSpP712y1zDvDmJOcA24DjwPXAfc339wG3DL88SdJ6nLPWAVX1V0n+GDgK/D/gG8BB4MWqerU57Bhw6WrPTzIDzACcf/7577vyyiuHUbckbRkHDx78SVVtH+Q5a4Z7kguBm4HLgReBrwEfXOXQVecxqKo5YA5genq6FhYWBqlPkra8JIuDPqefbpkPAD+qqqWqegW4H/gN4IKmmwZgJ/DcoC8uSRqNfsL9KHBtkm1JAtwAfB94FPhoc8we4MHRlChJGtSa4V5VB+hdOH0MeKJ5zhzwaeAPkjwDvBW4e4R1SpIGsGafO0BVfRb47BnNzwLXDL0iSdKGOUJVkjrIcJekDjLcJamDDHdJ6iDDXZI6yHCXpA4y3CWpgwx3Seogw12SOshwl6QOMtwlqYMMd0nqIMNdkjrIcJekDjLcJamDDHdJ6iDDXZI6yHCXpA5aM9yTvDPJ4yu+XkryySQXJXkkyeFme+FmFCxJWls/C2Q/XVVXV9XVwPuAk8ADwB3A/qq6Atjf7Esag/n5eaampjjrrLOYmppifn5+3CVpzAbtlrkB+GFVLQI3A/ua9n3ALcMsTFJ/5ufnmZmZYXFxkapicXGRmZkZA36LGzTcbwXubR5fUlXHAZrtxcMsTFJ/ZmdnOXny5GltJ0+eZHZ2dkwVqQ36Dvck5wEfAb42yAskmUmykGRhaWlp0PokreHo0aMDtWtrGOTM/YPAY1X1fLP/fJIdAM32xGpPqqq5qpququnt27dvrFpJr3PZZZcN1K6tYZBw/zg/75IBeAjY0zzeAzw4rKIk9W/v3r1s27bttLZt27axd+/eMVWkNugr3JNsA24E7l/RfCdwY5LDzffuHH55ktaye/du5ubm2LVrF0nYtWsXc3Nz7N69e9ylaYxSVZv2YtPT07WwsLBprydJXZDkYFVND/IcR6hKUgcZ7pLUQYa7NIEckaq1nDPuAiQNZnlE6vLApeURqYAXUXWKZ+7ShHFEqvphuEsTxhGp6ofhLk0YR6SqH4a7NGEckap+GO7ShHFEqvrhCFVJajlHqEqSAMNdGrpxDDByUJPO5CAmaYjGMcDIQU1ajX3u0hBNTU2xuLj4uvZdu3Zx5MiRzrymNpd97tKYjWOAkYOatBrDXRqicQwwclCTVmO4S0M0jgFGDmrSagx3aYjGMcDIQU1ajRdUJanlRnZBNckFSe5L8oMkh5K8P8lFSR5JcrjZXri+siVJw9Zvt8wXga9X1ZXAVcAh4A5gf1VdAexv9iVJLbBmuCf5VeA3gbsBqupnVfUicDOwrzlsH3DLqIqUJomjRdUG/YxQfQewBHwpyVXAQeB24JKqOg5QVceTXLzak5PMADPgrVnqPkeLqi3WvKCaZBr4n8B1VXUgyReBl4Dfq6oLVhz3QlX9wn53L6iq6xwtqlEY1QXVY8CxqjrQ7N8HvBd4PsmO5oV3ACcGeWGpiyZptKjdR922ZrhX1V8DP07yzqbpBuD7wEPAnqZtD/DgSCqUJsikjBZd7j5aXFykqk51Hxnw3dHv3TK/B8wn+R5wNfBvgTuBG5McBm5s9qUtbVJGi87Ozp66LrDs5MmTzM7OjqkiDVtfU/5W1ePAav09Nwy3HGmyLV80nZ2d5ejRo1x22WXs3bu3dRdTJ6n7SOvjCFVpC/LC72Rxyl9JfZmU7iOtn+EubUFONtZ9dstIUsvZLaO+eH+z1H0ukL3FODxe2ho8c99ivL9Z2hoM9y1mVPc329UjtYvhvsWMYni8Q9ml9jHct5hR3N9sV4/UPob7FjOK+5sdyi61j/e5a8Mcyi6Nlve5d8AkXph0KLvUPoZ7i0zqhUmHskvtY7dMi9i9IWk1dstMOC9MShoWw71FJmWJNkntZ7i3iBcmJQ1LX+Ge5EiSJ5I8nmShabsoySNJDjfbC0dbavd5YVLSsPR1QTXJEWC6qn6you3fAX9bVXcmuQO4sKo+/Yv+HS+oStLgNvuC6s3AvubxPuCWDfxbkqQh6jfcC/hGkoNJZpq2S6rqOECzvXi1JyaZSbKQZGFpaWnjFUuS1tTvYh3XVdVzSS4GHknyg35foKrmgDnodcuso0ZJ0oD6OnOvquea7QngAeAa4PkkOwCa7YlRFSlJGsya4Z7k/CS/svwY+G3gSeAhYE9z2B7gwVEVKUkaTD/dMpcADyRZPv4/VdXXk3wb+GqS24CjwMdGV6YkaRBrhntVPQtctUr73wA3jKIoSdLGOEJVkjrIcJekDjLc1RqTuFCJ1Fb93ucujdTyQiXLC20vL1QCOLeOtA6euasVZmdnTwX7spMnTzI7OzumiqTJZrirFVyoRBouw12t4EIl0nAZ7moFFyqRhstwVyu4UIk0XH0t1jEsLtYhSYPb7MU6JEktZbhLUgcZ7pLUQYa7JHWQ4S5JHWS4S1IHGe6S1EGGuyR1UN/hnuTsJN9J8nCzf3mSA0kOJ/lKkvNGV6YkaRCDnLnfDhxasf954AtVdQXwAnDbMAuTJK1fX+GeZCfwT4E/bfYDXA/c1xyyD7hlFAVKkgbX75n7XcAfAa81+28FXqyqV5v9Y8Clqz0xyUyShSQLS0tLGyp23FwGTtKkWDPck3wYOFFVB1c2r3LoqjOQVdVcVU1X1fT27dvXWeb4LS8Dt7i4SFWdWgbOgJfURv2cuV8HfCTJEeDL9Lpj7gIuSLK8ButO4LmRVNgSLgMnaZKsGe5V9Zmq2llVU8CtwF9W1W7gUeCjzWF7gAdHVmULuAycpEmykfvcPw38QZJn6PXB3z2cktrJZeAkTZKBwr2qvllVH24eP1tV11TV36+qj1XVy6MpsR1cBk7SJHGEap9cBk7SJHGZPUlqOZfZ2yK8317SWs5Z+xC1yfL99su3ZS7fbw/YRSTpFM/cJ4z320vqh+E+YbzfXlI/DPcJ4/32kvphuE8Y77eX1A/DfcJ4v72kfnifuyS1nPe5S5IAw12SOslwl6QOMtwlqYMMd0nqIMNdkjrIcJekDjLcJamD1gz3JG9K8q0k303yVJLPNe2XJzmQ5HCSryQ5b/Tlqi2cU15qt37O3F8Grq+qq4CrgZuSXAt8HvhCVV0BvADcNroy1SbLc8ovLi5SVafmlDfgpfZYM9yr5/80u+c2XwVcD9zXtO8DbhlJhWod55SX2q+vPvckZyd5HDgBPAL8EHixql5tDjkGXPoGz51JspBkYWlpaRg1a8ycU15qv77Cvar+rqquBnYC1wDvWu2wN3juXFVNV9X09u3b11+pWsM55aX2G+humap6EfgmcC1wQZLlNVh3As8NtzS1lXPKS+3Xz90y25Nc0Dx+M/AB4BDwKPDR5rA9wIOjKlLt4pzyUvutOZ97kl+nd8H0bHr/GXy1qv5NkncAXwYuAr4D/IuqevkX/VvO5y5Jg1vPfO7nrHVAVX0PeM8q7c/S63+XJLWMI1QlqYMMd0nqIMNdkjrIcJekDjLcJamDDHdJ6iDDXZI6yHCXpA4y3CXpDF1YjGbNEaqStJUsL0azvGbB8mI0wETNn+SZu9RRXTj7HIeuLEbjmbvUQV05+xyHrixG45m71EFdOfsch64sRmO4Sx3UlbPPcejKYjSGu9RBXTn7HIeuLEZjuEsd1JWzz3HZvXs3R44c4bXXXuPIkSMTF+xguEud1JWzT63fmsvsDZPL7EnS4NazzF4/C2S/PcmjSQ4leSrJ7U37RUkeSXK42V643sIlScPVT7fMq8AfVtW7gGuBTyR5N3AHsL+qrgD2N/uSpBZYM9yr6nhVPdY8/t/AIeBS4GZgX3PYPuCWURUpSRrMQBdUk0wB7wEOAJdU1XHo/QcAXPwGz5lJspBkYWlpaWPVSuo8p00Yjr7DPckvA38OfLKqXur3eVU1V1XTVTW9ffv29dQoaYtYnjZhcXGRqjo1bYIBP7i+wj3JufSCfb6q7m+an0+yo/n+DuDEaEqUtFU4bcLw9HO3TIC7gUNV9ScrvvUQsKd5vAd4cPjlSdpKnDZhePo5c78O+JfA9Ukeb74+BNwJ3JjkMHBjsy9J6+a0CcOz5pS/VfXfgbzBt28YbjmStrK9e/eeNlUxOG3Cejn9gKTWcNqE4XH6AUlquZFMPyBJmjyGuyR1kOEuSR1kuEtSBxnuktRBhrskdZDhLm1Rzr7YbWuOUJXUPcuzLy6PBF2efRFwwFBHeOYubUHOvth9hru0BTn7YvcZ7tIW5OyL3We4S1vQ3r172bZt22ltzr7YLYa7tAU5+2L3OSukJLWcs0JKkgDDXZI6qZ8Fsu9JciLJkyvaLkrySJLDzfbC0ZYpSRpEP2fufwbcdEbbHcD+qroC2N/sS5JaYs1wr6r/CvztGc03A/uax/uAW4ZclyRpA9bb535JVR0HaLYXD68kSdJGjfyCapKZJAtJFpaWlkb9cpIk1h/uzyfZAdBsT7zRgVU1V1XTVTW9ffv2db6cJGkQ6w33h4A9zeM9wIPDKUdSlzhn/PisOZ97knuB3wLeluQY8FngTuCrSW4DjgIfG2WRkiaPc8aPl9MPSBqJqakpFhcXX9e+a9cujhw5svkFTTCnH5DUGuOaM37+iXmm7prirM+dxdRdU8w/Mb8lu4dcZk/SSFx22WWrnrmPcs74+SfmmfkvM5x8pekK+ukiv/vA71IPFa8svtJr2yLdQ565SxqJccwZP7t/9lSwL/tZ/YxX/vErp7VtxpKC8/MwNQVnndXbbvYfC4a7pJEYx5zxR3/6Bl0+b1nl2BF2D83Pw8wMLC5CVW87M7O5Ae8FVUmdMXXXFIs/fX1XEC8Cd53eNMoLu1NTvUA/065dsJ6X9IKqpC1t7w172Xbu6V1B5+U8zv1v557WNuruoTf6o2Az1x833CV1xu5/sJu5fzbHrrfsIoRdb9nFPf/8Hr70qS9tavfQG10z3sz1x+2WkaQhW+5zP7ni2u62bTA3B+v5P8VuGUlqgd27e0G+axckve16g329vM9dkkZg9+7NDfMzeeYuSR1kuEtSBxnuktRBhrskdZDhLkkdZLhLUgcZ7pLUQYa7JHWQ4S5JHbShcE9yU5KnkzyT5I5hFaUWGPdKA5I2ZN3TDyQ5G/j3wI3AMeDbSR6qqu8PqziNyZmzHi2vNADjHU8tqW8bOXO/Bnimqp6tqp8BXwZuHk5ZGqvZ2dOns4Pe/oiXJZM0PBuZOOxS4Mcr9o8B//DMg5LMAM1pHy8neXIDr7lZ3gb8ZNxF9GEkdb4P3rfqNxYXOZgcHPCf29I/yxGwzuGalDrfOegTNhLuWaXtdZPDV9UcMAeQZGHQOYnHwTqHZxJqBOscNuscriQDL4SxkW6ZY8DbV+zvBJ7bwL8nSRqSjYT7t4Erklye5DzgVuCh4ZQlSdqIdXfLVNWrSf4V8BfA2cA9VfXUGk+bW+/rbTLrHJ5JqBGsc9isc7gGrnNT11CVJG0OR6hKUgcZ7pLUQZsS7m2dpiDJPUlOrLz3PslFSR5JcrjZXjjOGpua3p7k0SSHkjyV5PY21prkTUm+leS7TZ2fa9ovT3KgqfMrzQX4sUpydpLvJHm4rTUCJDmS5Ikkjy/fDtfC9/2CJPcl+UHzGX1/C2t8Z/MzXP56Kckn21ZnU+unmt+fJ5Pc2/xeDfz5HHm4r5im4IPAu4GPJ3n3qF+3T38G3HRG2x3A/qq6Atjf7I/bq8AfVtW7gGuBTzQ/w7bV+jJwfVVdBVwN3JTkWuDzwBeaOl8AbhtjjctuBw6t2G9jjcv+SVVdveJ+7La9718Evl5VVwJX0fu5tqrGqnq6+RleTW+Q3kngAVpWZ5JLgd8Hpqvq1+jdrHIr6/l8VtVIv4D3A3+xYv8zwGdG/boD1DcFPLli/2lgR/N4B/D0uGtcpeYH6c3p09pagW3AY/RGLf8EOGe1z8OYattJ7xf5euBhegPyWlXjilqPAG87o6017zvwq8CPaG7OaGONq9T828D/aGOd/Hzk/0X07mZ8GPid9Xw+N6NbZrVpCi7dhNddr0uq6jhAs714zPWcJskU8B7gAC2stenueBw4ATwC/BB4sapebQ5pw/t/F/BHwGvN/ltpX43LCvhGkoPNVB7Qrvf9HcAS8KWmm+tPk5zfshrPdCtwb/O4VXVW1V8BfwwcBY4DPwUOso7P52aEe1/TFGhtSX4Z+HPgk1X10rjrWU1V/V31/vTdSW9yuXetdtjmVvVzST4MnKiqlXPktPkzel1VvZdet+YnkvzmuAs6wznAe4H/UFXvAf4v4+8mekNNX/VHgK+Nu5bVNH3+NwOXA38POJ/ee3+mNT+fmxHukzZNwfNJdgA02xNjrgeAJOfSC/b5qrq/aW5lrQBV9SLwTXrXCC5Isjxgbtzv/3XAR5IcoTeT6fX0zuTbVOMpVfVcsz1Br4/4Gtr1vh8DjlXVgWb/Pnph36YaV/og8FhVPd/st63ODwA/qqqlqnoFuB/4Ddbx+dyMcJ+0aQoeAvY0j/fQ698eqyQB7gYOVdWfrPhWq2pNsj3JBc3jN9P7oB4CHgU+2hw21jqr6jNVtbOqpuh9Fv+yqnbTohqXJTk/ya8sP6bXV/wkLXrfq+qvgR8nWZ618Abg+7SoxjN8nJ93yUD76jwKXJtkW/N7v/zzHPzzuUkXCT4E/C96/a+z47xgcUZd99Lr13qF3hnIbfT6X/cDh5vtRS2o8x/R+zPse8DjzdeH2lYr8OvAd5o6nwT+ddP+DuBbwDP0/hz+pXH/TJu6fgt4uK01NjV9t/l6avl3p4Xv+9XAQvO+/2fgwrbV2NS5Dfgb4C0r2tpY5+eAHzS/Q/8R+KX1fD6dfkCSOsgRqpLUQYa7JHWQ4S5JHWS4S1IHGe6S1EGGuyR1kOEuSR30/wG/2+wqPiNSmgAAAABJRU5ErkJggg==\n",
61 | "text/plain": [
62 | ""
63 | ]
64 | },
65 | "metadata": {
66 | "needs_background": "light"
67 | },
68 | "output_type": "display_data"
69 | }
70 | ],
71 | "source": [
72 | "plt.scatter(df['x'],df['y'],color='k')\n",
73 | "colmap = {1: 'r',2:'g',3: 'b'}\n",
74 | "for i in centroids.keys():\n",
75 | " plt.scatter(*centroids[i], color=colmap[i])\n",
76 | "plt.xlim(0,80)\n",
77 | "plt.ylim(0,80)\n",
78 | "plt.show()\n"
79 | ]
80 | },
81 | {
82 | "cell_type": "code",
83 | "execution_count": 12,
84 | "metadata": {},
85 | "outputs": [
86 | {
87 | "name": "stdout",
88 | "output_type": "stream",
89 | "text": [
90 | " x y distance_from_1 distance_from_2 distance_from_3 closest color\n",
91 | "0 12 39 41.436699 64.498062 72.006944 1 r\n",
92 | "1 20 36 36.496575 56.080300 63.529521 1 r\n",
93 | "2 28 30 30.066593 46.141088 53.665631 1 r\n",
94 | "3 18 52 52.611786 67.268120 74.027022 1 r\n",
95 | "4 29 54 54.083269 61.073726 67.178866 1 r\n"
96 | ]
97 | },
98 | {
99 | "data": {
100 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAEzCAYAAABHZATQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3SV9Z3v8fc3N5IAIYRLCLkQECgoCkoQFC+IaGWqYq22WqfSHs/QOh2r066OOq5p11kd1+nFTqen0zWWqW1pB63WakVPvWBEPSiigDggEfFCQiCQcEkghFz39/yxN5ZgnNz23k/C83mtlbX388ve+/ms7M2H57Kf5zF3R0QkbFKCDiAiEgSVn4iEkspPREJJ5ScioaTyE5FQUvmJSCj1qPzM7O/N7G0z22pmD5lZpplNNLP1ZrbDzB42s4xEhxURiZduy8/MCoFvAGXuPgNIBW4AfgD8xN2nAIeAWxIZVEQknnq62psGZJlZGpAN1AALgUdjv18BXBP/eCIiidFt+bn7buA+oIpo6TUAG4F6d2+PPawaKExUSBGReEvr7gFmNhJYAkwE6oE/AIu7eGiXx8mZ2TJgGcDQoUNnT5s2rc9hRUS6snHjxv3uPqY3z+m2/IBFwIfuXgdgZo8B5wO5ZpYWW/orAvZ09WR3Xw4sBygrK/MNGzb0Jp+ISLfMrLK3z+nJNr8qYJ6ZZZuZAZcC24A1wHWxxywFnujtzEVEgtKTbX7rie7Y2ARsiT1nOXAn8E0zew8YBTyQwJwiInHVk9Ve3P27wHdPGv4AODfuiUREkkBHeIhIKKn8RCSUVH4iEkoqPxEJJZWfiISSyk9EQknlJyKhpPITkVBS+YlIKKn8RCSUVH4iEkoqPxEJJZWfiISSyk9EQknlJyKhpPITkVBS+YlIKKn8RCSUVH4iEkoqPxEJJZWfiISSyk9EQknlJyKhpPITkVBS+YlIKKV19wAz+xTw8AlDk4DvAL+NjZcCO4HPu/uh+EcUGXiOHDnC1q1baW5uZvLkyRQVFWFmQceSXui2/Nx9OzALwMxSgd3A48BdQLm7f9/M7opN35nArCIDwvbt2/nJr39C88hmSAd/1llctpgvfO4LKsBBpNvyO8mlwPvuXmlmS4AFsfEVwIuo/OQU19bWxs9/93OyZ2czbsw4ADraO3h6zdPMmjGLadOmBZxQeqq32/xuAB6K3c939xqA2O3YeAYTGYgqKytpTG8kZ0zOR2OpaakMKRnChrc2BJhMeqvH5WdmGcDVwB96MwMzW2ZmG8xsQ11dXW/ziQwoZgaRj497xElJ0f7DwaQ379ZiYJO774tN7zOzAoDYbW1XT3L35e5e5u5lY8aM6V9akYBNmDCBET6C+r31H421t7bTuquVObPmBJhMeqs35Xcjf1nlBVgFLI3dXwo8Ea9QIgNVWloat335Ntq3tFP5SiU739jJ7vLdXHv+tUyePDnoeNIL5u7dP8gsG9gFTHL3htjYKOARoASoAq5394P/3euUlZX5hg3aLiKD37Fjx9i2bRstLS2cdtpp5OfnBx0p1Mxso7uX9eY5Pdrb6+5NwKiTxg4Q3fsrEjpZWVnMnj076BjSD9pCKyKhpPITkVBS+YlIKKn8RCSUVH4iEkq9PbZXJJRqamp48tkn2bJjC6NzR7N4wWLmlM3RiQwGMS35iXSjrq6Of/7ZP/NG8xsMv2A4h4oP8bM//YzyNeVBR5N+UPmJdKP8pXJaCloonFZIRlYGueNyKTyvkMdWP0Zra2vQ8aSPVH4i3Xi38l1yxuV0GssclklLaguHDun8vYOVyk+kG8Xjimk80NhprK25jdS2VHJycj7hWTLQqfxEunHZxZcR2RnhQPUB3J3mxmaqXqviivlXkJWVFXQ86SOVn0g3ioqKuPOWOxm9dzSVT1XS+GojN553I0s+syToaNIPPTqrS7zorC4ymLk7bW1tpKWl6cSlA0zCzuoiItGzOGdkZAQdQ+JE/32JSChpyU9OOc3Nzax/fT2b39nMyOEjuXDehUycODGu89ixYwdrX1/LkaYjzD5jNnPK5mipcJBR+ckppbm5mfv+7T52tOwgpySHloYWXrj/Bb527deYN3deXOax5sU1/OaZ35A5KZP0zHQ2PL+BVze+yh1fu4P09PS4zEMST+Unp5T1r69nR8sOJs7/y5LesfHH+O2ffss5Z5/T76Wzo0eP8uCfH2T8gvEMyR4CwKjiUWx5eQubN29mzhxdxGiw0DY/OaW8tf0thhcP7zSWlZNFy5AWampq+v361dXVRHIiHxUfRHeEZBdms/Xdrf1+fUkelZ+cUkYOH0nL0ZZOYx5xIs0RsrOz+/362dnZRI5FOPkrYm1NbeQOz+3360vyqPzklHLhvAtp29lGU0MTEC2+6i3VzCieQTyuG11UVMSkkZPYU7HnowJsPNgIu2HenPhsU5TkUPnJKaW0tJRbP3crR9cfpWpNFVXPVnFG+hn8zZf+Ji6vb2Z8/X98ndPaTqPq2Sqqyqto3dTKN774DQoKCuIyD0kOHeEhp6TW1lZqamrIzs6OyxLfydyd2tpaWlpaKCgo0F7egOkID5GYjIwMJkyYkLDXNzNdqHyQ02qviIRSj8rPzHLN7FEze8fMKszsPDPLM7PVZrYjdjsy0WFFROKlp0t+PwWecfdpwEygArgLKHf3KUB5bFpEZFDotvzMLAe4CHgAwN1b3b0eWAKsiD1sBXBNokKKiMRbT5b8JgF1wK/N7E0z+6WZDQXy3b0GIHY7NoE5RXolEolw6NAhmpqago4iA1RP9vamAecAt7n7ejP7Kb1YxTWzZcAygJKSkj6FFOmNiooKVjy6gtqjtaREUrhg5gV84dov6JTz0klPlvyqgWp3Xx+bfpRoGe4zswKA2G1tV0929+XuXubuZYn4vpXIifbs2cOPV/yY5inNlFxRQsFlBaypXsOKh1Z0/2QJlW7Lz933ArvM7FOxoUuBbcAqYGlsbCnwREISivTCy6++DMWQOy56nG1qeioTyibw+juvc/DgwYDTyUDS0y853wasNLMM4APgK0SL8xEzuwWoAq5PTESRntt3cB9ZIzqv3qakpmDZxuHDh8nLy0tqniNHjrD21bVUfFDBuNHjuPj8iyksLExqBulaj8rP3TcDXR06cml844j0z+mTTufNjW8yqmjUR2MtTS2kHktN+hEZ9fX13Pt/7qUuq46c8TlU1FXwws9e4Js3f5PTTz89qVnk43SEh5xSzpt3HuNax7Fz406OHDjC/qr97F67m+svvz7pOzxWv7CaAzkHKJ1TSl5hHoWnFzJs1jD+8/H//NgpsST5VH5yShk2bBj/ePs/cs3Uaxj63lAmNU7i2zd+m0ULFyU9y+btmxk1YVSnsRH5I9h7eC+HDx9Oeh7pTCc2kFNOTk4O11x1DddcFez37nOH51LVWMXQkUM/Guto6yA1ksqQIUP+m2dKMmjJTyRBPn3Rp2moaKClKXpm6UhHhF2bdnFx2cVkZmYGnE605CeSIGeeeSY377+ZPzz7B9oz24k0RbjorIu4/hp9MWIgUPmJJIiZsWjhIi44/wLq6uoYPnw4ubm6zsdAofITSbDMzEyKi4uDjiEn0TY/EQklLfkNMm1tbWzdupXa3bsZXVDAmWee2e8LcYuEkcpvEDly5Ai//tGPGF1VxYSUFN6LRPh/48ez9NvfZuRInUhbpDe02juIPP/kk5yxaxdfLC1lfkkJXygtZfa+fTz32GNBRxMZdFR+g8j2V15h7knXhj23oIB3163r9eFS7k59fT0NDQ3xjCgyaGi1dxBJSU2lPRLpNNbhTkpqaq9eZ8+ePaz69a9pfO893IyR06dzzVe+wujRo+MZV2RA05LfIDLjkkt4ac+ej5by3J2Xdu/mjAULMLMevcaxY8d48Ec/Yn51Nd8qKeFbxcXM3LGD3913H+3t7YmMLzKgqPwGkYWLF3Pg7LP598pK/m9lJcurqtg1fTqXL1nS49fYsmULEw8d4sz8fMyMFDPmjB/P6H37eOeddxKYXmRg0WrvIJKZmclX7riDnTt3Ultby7TRo5k0aVKPl/oAjtTX09XK7Wh3jhw5Er+wIgOcym+QMTMmTpzIxIkT+/T8ogkTeNmdi9w/Ks2OSIQdwGeLiuKYVGRg02pvyEyZMoW0c87hkQ8+oLK+ng8PHeLBDz9k7AUXUKTykxDRkl+C1dXVUVNTQ25uLsXFxb1aRU2ElJQU/vpv/5bXXnmFZ9euJSU1lTM+/3nOnTcv8GwiyaTyS5COjg7+tHIlO9esYYIZeyMRMmfM4MZbb2Xo0KHdv0ACpaenc+GCBVy4YEGgOUSCpNXeBFm3di1Nq1dze3Ex15WU8PUJEyh5+23+/MgjQUcTEVR+CfNWeTmXjBlDWkr0T2xmXFxYyI5XXqG1tTXgdCKi8kuQtuZmMtM6b1VIT03FOjro6OgIKJWIHKfyS5Ap8+axsba209jW2lrGTJ+e9EsoisjHaYdHglx8+eX8avNmGnbu5LSMDPa2tbFt2DC+eNNNQUcTEXpYfma2EzgCdADt7l5mZnnAw0ApsBP4vLsfSkzMwWfYsGF89Z57eGvzZqo/+IDc/Hy+WlZGTk5O0NFEhN4t+V3i7vtPmL4LKHf375vZXbHpO+OabpAbMmQI586dC3PnBh1FRE7Sn21+S4AVsfsrgGCvEC0i0gs9LT8HnjOzjWa2LDaW7+41ALHbsYkIKCKSCD1d7Z3v7nvMbCyw2sx6fO6jWFkuAygpKelDRBGR+OvRkp+774nd1gKPA+cC+8ysACB2W/sJz13u7mXuXjZmzJj4pBYR6aduy8/MhprZ8OP3gcuBrcAqYGnsYUuBJxIVUkQk3nqy2psPPB4740ca8KC7P2NmbwCPmNktQBVwfeJiiojEV7fl5+4fADO7GD8AXJqIUCIiiabD20QklFR+IhJKKj8RCSWVn4iEkspPREJJp7SSHquvr6d81Sq2v/oqaRkZnLlwIQsXL2bIkCFBRxPpNS35SY+0tLTwmx/+kFEvvsgdo0axLDublscf56H778fdg44n0msqP+mR/3rrLQp272ZBSQnZ6enkZmaypLSUxjffZNeuXUHHE+k1lZ/0SN3u3UxIT+80ZmaUpKRQV1cXUCqRvlP5SY+MHj+eXe3tncbcnV2RCKNHjw4olUjfqfykR86aOZPqceNYu2sXLe3tNLa28tTOnWTNnKlTlcmgpL290iOZmZl8+c47ee6xx1izbh2p6emceeWVfPGqq4id9EJkULFk7qkrKyvzDRs2JG1+khjHPzMqPRkozGyju5f15jla8pNeU+nJqUDb/EQklFR+IhJKKj8RCSWVn4iEkspPREJJ5ScioaTyE5FQUvmJSCip/EQklFR+IhJKKj8RCaUel5+ZpZrZm2b2VGx6opmtN7MdZvawmWUkLqaISHz1ZsnvdqDihOkfAD9x9ynAIeCWeAYTEUmkHpWfmRUBnwF+GZs2YCHwaOwhK4BrEhFQRCQRerrk96/APwCR2PQooN7dj5/XvBoojHO2pGtra2Pv3r00NjYGHUVEEqzb8/mZ2ZVArbtvNLMFx4e7eGiXZ0U1s2XAMmBAn+789XXrePHBBxl29ChHzJh04YVcfeONuiatyCmqJycznQ9cbWZ/BWQCOUSXBHPNLC229FcE7Onqye6+HFgO0TM5xyV1nG3fvp3XfvELbhk7llGjRtHa0cHTa9bwVEoKn7v55qDjiUgCdLva6+53u3uRu5cCNwAvuPtNwBrgutjDlgJPJCxlgr2xejWXZGUxKjsbgIzUVK4oLmbHSy/R1NQUcDoRSYT+fM/vTuCbZvYe0W2AD8QnUvI1HjhAXlZWp7EhaWlku3P06NGAUolIIvWq/Nz9RXe/Mnb/A3c/190nu/v17t6SmIiJV3LWWVQcOtRpbG9jI60jRpCXlxdQKhFJJF3ACJi/cCG/fOUVIpWVTMvNZX9TEy+1trLotttITU0NOp6IJIDKDxgxYgT/85/+iXUvvcRzW7cyfOxYlixcyKRJk4KOJiIJouv2isig15fr9urEBiISSiq/gCVzyVtE/kLb/ALyTkUFLz76KPs++IDcceOY/9nPMnvOHKKHTYtIomnJLwA7duzgzz/8IYvq6vinkhKua2nhjX/7N15fty7oaCKhofILwNpVq7giO5vJeXmkmFGYk8O1Y8ey9o9/1GqwSJKo/AKwv7KSkhEjOo3lDxtG68GDtLQM2u+KiwwqKr8AjJk4kcr6+k5jexsbGTJqlM4iI5IkKr8AXHj11Txz7Bjb9++nPRKhqqGBP+7bxwWf+5x2eIgkicovAKeddhpX3X03LxcW8r/37GHVsGGcd/vtzJk3L+hoIqGhr7oEZOrUqUy9++6gY4iElpb8RCSUVH4iEkoqPxEJJZWfiISSyk9EQknlJyKhpPITkVBS+YlIKKn8RCSUVH4iEkoqPxEJJZWfiIRStyc2MLNM4GVgSOzxj7r7d81sIvB7IA/YBHzJ3VsTGVb6rqmpiTc3bmR/dTVjS0qYdc45ZGVlBR1LJDA9OatLC7DQ3RvNLB1Ya2ZPA98EfuLuvzez+4FbgH9PYFbpo7q6On77/e8z+cABijIyqGxt5bVx4/jynXcycuTIoOOJBKLb1V6PaoxNpsd+HFgIPBobXwFck5CE0m/PPfoo8xsaWFJayuzx47m2tJTZdXWUr1oVdDSRwPRom5+ZpZrZZqAWWA28D9S7e3vsIdVAYWIiSn+4O++/8QazCwo6jc/Oz2fHa68FlEokeD0qP3fvcPdZQBFwLjC9q4d19VwzW2ZmG8xsQ11dXd+TSp+lZWTQ0tHRaay5vZ30zMyAEokEr1d7e929HngRmAfkmtnxbYZFwJ5PeM5ydy9z97IxY8b0J6v0gZlx1qJFlFdXf3RZzIg7L9TUcNallwacTiQ4PdnbOwZoc/d6M8sCFgE/ANYA1xHd47sUeCKRQaXvLrvqKn5fU8PPNm2i0IyqSISx8+dzyac/HXQ0kcD0ZG9vAbDCzFKJLik+4u5Pmdk24Pdm9s/Am8ADCcwp/TBkyBBu/ru/Y8+ePezfv5/zx46l4KRtgCJh0235uft/AWd3Mf4B0e1/MgiYGYWFhRQWar+UCOgIDxEJKZWfiISSyk9EQknlJyKhpPITkVBS+YlIKKn8RCSUVH4iEkoqPxEJJZWfiISSyk9EQknlJyJxE4lE2L17N/v27fvoFGoDVU/O6iIi0q3333+f+1fez4GWA3iHM3H0RL76pa+Sn58fdLQuaclPRPrt8OHD3PfAfbROaaXkshJKPl1CTW4NP/7Fj2lvb+/+BQKg8hORfntz85s05zYzsiB6NUAzI39yPnVex44dOwJO1zWt9or004EDB3j+xefZ+t5W8kflc/lFlzN16tSgYyXV4SOHsSz72LhlGkePHg0gUfe05CfSDwcOHOB7P/0ez1Y/y7Epx9iWuo17f3Uvr7/xetDRkmrKaVPoqO3AI3/ZydHR1oEfcCZMmBBgsk+mJT+Rfnj+xec5POowJTNLABiWN4yjuUd58MkHmX3ObFJTUwNOmBxTp05l7oS5rHt5HSMmjSDSEaHx/UaWnL+EgXrhMpWfSD9se38beZPzOo0NHTmUqvYq6uvrGTVqVEDJkislJYVlX17G7I2zee2t18hIy+CCL1zAjBkzgo72iVR+Iv0wNm8sW+u3Mixv2Edj7a3tpLanMnTo0ACTJV9aWhpz585l7ty5QUfpEW3zE+mHyy++nKZ3m2g82AhAW0sbVa9XsWjuIjJ1UfgBTeUn0g9Tpkzhtutvo2NzB1XPVlFbXstnpn+Ga6++Nuho0g2t9or0U9nsMs6edTYNDQ1kZ2driW+QUPmJxEFqaip5eXndP1AGDK32ikgodVt+ZlZsZmvMrMLM3jaz22PjeWa22sx2xG5HJj6uiEh89GTJrx34lrtPB+YBXzez04G7gHJ3nwKUx6ZFRAaFbsvP3WvcfVPs/hGgAigElgArYg9bAVyTqJAiIvHWqx0eZlYKnA2sB/LdvQaiBWlmY+OeTkT6xd2pqanB3SkoKCAlRZv5j+tx+ZnZMOCPwB3uftjs42dw+ITnLQOWAZSUlPQlo4j0QXV1Nff/7n72NO4BYEzmGG790q2UlpYGG2yA6NF/A2aWTrT4Vrr7Y7HhfWZWEPt9AVDb1XPdfbm7l7l72UA9wFnkVNPS0sJ9v7iP+sJ6ihcVU3JZCccmHeO+/7hvwJ5iKtl6srfXgAeACnf/lxN+tQpYGru/FHgi/vFEpC+2bdtGw5AGRpeM5vhaWl5hHo3DGtm6dWvA6QaGnqz2zge+BGwxs82xsX8Evg88Yma3AFXA9YmJKCK91dTUhGd+/AJCPsS15BfTbfm5+1rgkzbwXRrfOCISD6WlpfAkdLR3kJoWPadgpCMCdTBx4sRgww0QOrxN5BRUWFjI5edczjMvPsOw06Kn22r8sJEFpy/QDo8YlZ/IKeqG627gjE+dwasbXyXiEc7/7PnMnDmTnn5T41Sn8hM5RaWkpDBz5kxmzpwZdJQBSd94FJFQUvmJSCip/EQklFR+IhJKKj8RCSWVn4iEkspPREJJ5ScioaTyE0mwpqYmdu7cycGDB4OOIifQER4iCeLuPPv8szz2/GN0ZHcQORph3vR5LL1xqa7tOwCo/EQSZPPmzaxcs5LiBcVkZGUQ6Yjw6oZXyXo8i5tvvDnoeKGn1V6RBFm9djW5p+eSkZUBQEpqCsVnF/Pyppdpbm4OOJ2o/EQSpKGxgSHZQzqNpaan0mEdtLS0BJRKjlP5iSTIOdPP4cDOA53G6vfWMz53PDk5OQGlkuNUfiIJsuiSRYxpHEPl65UcqD7Ari27aHqriZs/d7POqTcAaIeHSIKMGDGC73zzO6x7bR0VH1aQPz6fi667iIKCgqCjCSo/kYQaNmwYly26jMu4LOgochKt9opIKKn8RCSUVH4iEkoqPxEJJZWfiIRSt+VnZr8ys1oz23rCWJ6ZrTazHbHbkYmNKSISXz1Z8vsNcMVJY3cB5e4+BSiPTYuIDBrdlp+7vwycfCKyJcCK2P0VwDVxziUiklB93eaX7+41ALHbsfGLJCKSeAnf4WFmy8xsg5ltqKurS/TsRER6pK/lt8/MCgBit7Wf9EB3X+7uZe5eNmbMmD7OTkQkvvpafquApbH7S4En4hNHRCQ5uj2xgZk9BCwARptZNfBd4PvAI2Z2C1AFXJ/IkCLyF9XV1Txd/jTv7XqPorFFLF64mMmTJwcda9Dptvzc/cZP+NWlcc4iIt3YtWsX3/v592AijDxrJNv2b2PTf2ziW1/6FjNmzAg63qCiIzxEBpEnnnmClMkpjP/UeLJyssiflM+Is0fw8FMP4+5BxxtUVH4ig8g7H75DXmFep7ER+SPYVbeL1tbWhMyzo6ODiooK1q5dy7vvvkskEknIfJJNJzMVGUTGjR5H3aG6j64IB3Ds8DFGZI8gPT09bvNZuWUl95TfQ1VDFTmWw1kdZzEpZxLUw/TR0/nGsm+QlZUVt/kFQUt+IoPIlQuv5OCWgxytPwpAc2MzNRtqWLJwCSkp8fnnvHLLSpY9uYzKhkocp8EbeC3tNY4UHWHCwglsa97G0889HZd5BUnlJzKIzJo1i1uX3Erbpjaq/lzFkVeP8NcX/zULLl4Qt3ncU34PTW1NncbaIm2Uf1iOmTHu9HG8tOGluM0vKFrtFRlkzp93PnPnzOXo0aNkZ2eTlhbff8ZVDVVdjje0NABgZnHfubJyJdxzD1RVQUkJ3Hsv3HRTXGfxMVryExmEUlNTycnJiXvxAZSMKOlyfMSQEbg7NRU1XFx2cdzmt3IlLFsGlZXgHr1dtiw6nkgqPxHp5N5L7yU7PbvTWCqpnGVnUfliJVNTp7L48sVxm98990BT57Vsmpqi44mk1V4R6eSmM6Prm8f39hbnFPO1qV9jXvY8xo4dy7Rp00hNTY3b/Kq6Xsv+xPF4UfmJyMfcdOZNH5VgopWURFd1uxpPJK32ikig7r0XsjuvZZOdHR1PJJWfiATqpptg+XKYMAHMorfLlyd+b69We0UkcDfdlPiyO5mW/EQklFR+IhJKKj8RCSWVn4iEkspPREJJ5ScioaTyE5FQUvmJSCip/EQklFR+IhJKKj8RCSWVn4iEUr/Kz8yuMLPtZvaemd0Vr1AiIonW5/Izs1Tg58Bi4HTgRjM7PV7BpI9WroTSUkhJid4m+kIIIoNUf05pdS7wnrt/AGBmvweWANviEUz64PiVYI5fEOH4lWAg+ecLEhng+rPaWwjsOmG6OjYmQQnqSjAig1B/lvysi7GPXczTzJYBscUPWsxsaz/mGU+jgf1Bh4iJS5bZMLvLX1RWstFsY7JyxImydE1Zuvap3j6hP+VXDRSfMF0E7Dn5Qe6+HFgOYGYb3L2sH/OMG2UZuDlAWT6JsnTNzDb09jn9We19A5hiZhPNLAO4AVjVj9cTEUmaPi/5uXu7mf0d8CyQCvzK3d+OWzIRkQTq1wWM3P3PwJ978ZTl/ZlfnCnLxw2UHKAsn0RZutbrLOb+sX0UIiKnPB3eJiKhlJTyC/owODP7lZnVnvg1GzPLM7PVZrYjdjsyCTmKzWyNmVWY2dtmdnuAWTLN7HUzeyuW5X/Fxiea2fpYlodjO7OSwsxSzexNM3sqyCxmttPMtpjZ5uN7EYN4j2LzzTWzR83sndjn5rxkZzGzT8X+Fsd/DpvZHQH+Tf4+9pndamYPxT7Lvf6sJLz8BshhcL8Brjhp7C6g3N2nAOWx6URrB77l7tOBecDXY3+LILK0AAvdfSYwC7jCzOYBPwB+EstyCLglCVmOux2oOGE6yCyXuPusE77KEcR7BPBT4Bl3nwbMJPr3SWoWd98e+1vMIvpd0ibg8WTnADCzQuAbQJm7zyC6s/UG+vJZcfeE/gDnAc+eMH03cHei59tFjlJg6wnT24GC2P0CYHsAmZ4ALgs6C5ANbALmEv3SalpX712CMxQR/Qe0EHiK6Jfog8qyExh90ljS3yMgB/iQ2Lb5ILOcMO/LgVcC/JscP7Isj+gO26eAT/fls5KM1d6BehhcvrvXAMRuxyZz5mZWCpwNrA8qS2w1czNQC3mbqTgAAAJTSURBVKwG3gfq3b099pBkvlf/CvwDEIlNjwowiwPPmdnG2BFKEMx7NAmoA34d2xzwSzMbGlCW424AHordT3oOd98N3AdUATVAA7CRPnxWklF+PToMLkzMbBjwR+AOdz8cVA537/DoqkwR0RNVTO/qYYnOYWZXArXufuIheEF+bua7+zlEN9V83cwuStJ8T5YGnAP8u7ufDRwleavbHxPbjnY18IcAM4wkegKVicB4YCjR9+lk3X5WklF+PToMLgD7zKwAIHZbm4yZmlk60eJb6e6PBZnlOHevB14kuh0y18yOf/8zWe/VfOBqM9sJ/J7oqu+/BpQFd98Tu60lum3rXIJ5j6qBandfH5t+lGgZBvV5WQxscvd9sekgciwCPnT3OndvAx4DzqcPn5VklN9APQxuFbA0dn8p0e1vCWVmBjwAVLj7vwScZYyZ5cbuZxH9UFUAa4DrkpnF3e929yJ3LyX6+XjB3W8KIouZDTWz4cfvE93GtZUA3iN33wvsMrPjB+1fSvSUcUnPEnMjf1nlJaAcVcA8M8uO/Xs6/jfp/WclSRtJ/wp4l+g2pXuStXH2hPk/RHT7QBvR/01vIbpNqRzYEbvNS0KOC4gujv8XsDn281cBZTkLeDOWZSvwndj4JOB14D2iqzdDkvxeLQCeCipLbJ5vxX7ePv55DeI9is13FrAh9j79CRgZ0OclGzgAjDhhLKi/yf8C3ol9bn8HDOnLZ0VHeIhIKOkIDxEJJZWfiISSyk9EQknlJyKhpPITkVBS+YlIKKn8RCSUVH4iEkr/H0cSh4uKqa1yAAAAAElFTkSuQmCC\n",
101 | "text/plain": [
102 | ""
103 | ]
104 | },
105 | "metadata": {
106 | "needs_background": "light"
107 | },
108 | "output_type": "display_data"
109 | }
110 | ],
111 | "source": [
112 | "def assignment(df, centroids):\n",
113 | " for i in centroids.keys():\n",
114 | " # sqrt((x1 - x2)^2 - (y1 - y2)^2)\n",
115 | " df['distance_from_{}'.format(i)] = (\n",
116 | " np.sqrt(\n",
117 | " (df['x'] - centroids[i][0]) ** 2\n",
118 | " + (df['y'] - centroids[i][1]) ** 2\n",
119 | " )\n",
120 | " )\n",
121 | " centroid_distance_cols = ['distance_from_{}'.format(i) for i in centroids.keys()]\n",
122 | " df['closest'] = df.loc[:, centroid_distance_cols].idxmin(axis=1)\n",
123 | " df['closest'] = df['closest'].map(lambda x: int(x.lstrip('distance_from_')))\n",
124 | " df['color'] = df['closest'].map(lambda x: colmap[x])\n",
125 | " return df\n",
126 | "\n",
127 | "df = assignment(df, centroids)\n",
128 | "print(df.head())\n",
129 | "\n",
130 | "fig = plt.figure(figsize=(5, 5))\n",
131 | "plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')\n",
132 | "for i in centroids.keys():\n",
133 | " plt.scatter(*centroids[i], color=colmap[i])\n",
134 | "plt.xlim(0, 80)\n",
135 | "plt.ylim(0, 80)\n",
136 | "plt.show()"
137 | ]
138 | },
139 | {
140 | "cell_type": "code",
141 | "execution_count": null,
142 | "metadata": {},
143 | "outputs": [],
144 | "source": []
145 | }
146 | ],
147 | "metadata": {
148 | "kernelspec": {
149 | "display_name": "Python 3",
150 | "language": "python",
151 | "name": "python3"
152 | },
153 | "language_info": {
154 | "codemirror_mode": {
155 | "name": "ipython",
156 | "version": 3
157 | },
158 | "file_extension": ".py",
159 | "mimetype": "text/x-python",
160 | "name": "python",
161 | "nbconvert_exporter": "python",
162 | "pygments_lexer": "ipython3",
163 | "version": "3.7.4"
164 | }
165 | },
166 | "nbformat": 4,
167 | "nbformat_minor": 2
168 | }
169 |
--------------------------------------------------------------------------------
/Autoencoder/Autoencoder.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## AUTOENCODERS\n",
8 | "In this notebook you will find an explanation of what is an autoencoder, how it works, and see an implementation of an autoencoder in TensorFlow. By the end of this notebook, you should be able to create simple autoencoders and how to apply them to problems that involves unsupervised learning."
9 | ]
10 | },
11 | {
12 | "cell_type": "markdown",
13 | "metadata": {
14 | "colab_type": "text",
15 | "id": "view-in-github"
16 | },
17 | "source": [
18 | "
"
19 | ]
20 | },
21 | {
22 | "cell_type": "markdown",
23 | "metadata": {},
24 | "source": [
25 | "\n",
26 | "## Introduction\n",
27 | "An autoencoder, also known as autoassociator or Diabolo networks, is an artificial neural network employed to recreate the given input. It takes a set of unlabeled inputs, encodes them and then tries to extract the most valuable information from them. They are used for feature extraction, learning generative models of data, dimensionality reduction and can be used for compression.\n",
28 | "\n",
29 | "A 2006 paper named Reducing the Dimensionality of Data with Neural Networks, done by G. E. Hinton and R. R. Salakhutdinov, showed better results than years of refining other types of network, and was a breakthrough in the field of Neural Networks, a field that was \"stagnant\" for 10 years.\n",
30 | "\n",
31 | "Now, autoencoders, based on Restricted Boltzmann Machines, are employed in some of the largest deep learning applications. They are the building blocks of Deep Belief Networks (DBN)."
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "\n",
39 | "## Autoencoder Structure\n",
40 | "\n",
41 | "\n",
42 | "An autoencoder can be divided in two parts, the encoder and the decoder.\n",
43 | "\n",
44 | "The encoder needs to compress the representation of an input. In this case we are going to reduce the dimension the face of our actor, from 2000 dimensions to only 30 dimensions, by running the data through layers of our encoder.\n",
45 | "\n",
46 | "The decoder works like encoder network in reverse. It works to recreate the input, as closely as possible. This plays an important role during training, because it forces the autoencoder to select the most important features in the compressed representation"
47 | ]
48 | },
49 | {
50 | "cell_type": "code",
51 | "execution_count": 0,
52 | "metadata": {
53 | "colab": {},
54 | "colab_type": "code",
55 | "id": "RsuGfD8--DUG"
56 | },
57 | "outputs": [],
58 | "source": [
59 | "import numpy as np\n",
60 | "import tensorflow as tf\n",
61 | "from tensorflow import keras\n",
62 | "from matplotlib import pyplot as plt"
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 0,
68 | "metadata": {
69 | "colab": {
70 | "base_uri": "https://localhost:8080/",
71 | "height": 35
72 | },
73 | "colab_type": "code",
74 | "id": "Lrt5tiRJ-DSt",
75 | "outputId": "d7a7039b-a8c6-492c-cad2-bdf0a73494de"
76 | },
77 | "outputs": [
78 | {
79 | "name": "stderr",
80 | "output_type": "stream",
81 | "text": [
82 | "Using TensorFlow backend.\n"
83 | ]
84 | }
85 | ],
86 | "source": [
87 | "from keras.datasets import mnist\n",
88 | "from keras.layers import Input, Dense\n",
89 | "from keras.models import Model"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "execution_count": 0,
95 | "metadata": {
96 | "colab": {
97 | "base_uri": "https://localhost:8080/",
98 | "height": 54
99 | },
100 | "colab_type": "code",
101 | "id": "a5I-BA7K-DON",
102 | "outputId": "ddd43dc1-bac7-47e7-e7a6-cf95085ecece"
103 | },
104 | "outputs": [
105 | {
106 | "name": "stdout",
107 | "output_type": "stream",
108 | "text": [
109 | "Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz\n",
110 | "11493376/11490434 [==============================] - 2s 0us/step\n"
111 | ]
112 | }
113 | ],
114 | "source": [
115 | "(x_train, y_train), (x_test, y_test) = mnist.load_data()"
116 | ]
117 | },
118 | {
119 | "cell_type": "code",
120 | "execution_count": 0,
121 | "metadata": {
122 | "colab": {
123 | "base_uri": "https://localhost:8080/",
124 | "height": 35
125 | },
126 | "colab_type": "code",
127 | "id": "jFiRn0ef_hHJ",
128 | "outputId": "cf3ad53b-98c9-4b7f-95ef-bd098775a2c6"
129 | },
130 | "outputs": [
131 | {
132 | "data": {
133 | "text/plain": [
134 | "(60000, 28, 28)"
135 | ]
136 | },
137 | "execution_count": 5,
138 | "metadata": {
139 | "tags": []
140 | },
141 | "output_type": "execute_result"
142 | }
143 | ],
144 | "source": [
145 | "x_train.shape"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": 0,
151 | "metadata": {
152 | "colab": {},
153 | "colab_type": "code",
154 | "id": "zvjFj5PL_rVH"
155 | },
156 | "outputs": [],
157 | "source": [
158 | "x_train = x_train.astype('float32')/255.0\n",
159 | "x_test = x_test.astype('float32')/255.0"
160 | ]
161 | },
162 | {
163 | "cell_type": "markdown",
164 | "metadata": {
165 | "colab_type": "text",
166 | "id": "1KS4RuDZ6Kuz"
167 | },
168 | "source": [
169 | "Reshaping images, Flattening them to feed to a Dense network\n",
170 | "\n",
171 | "we won't do this in ConvNets"
172 | ]
173 | },
174 | {
175 | "cell_type": "code",
176 | "execution_count": 0,
177 | "metadata": {
178 | "colab": {},
179 | "colab_type": "code",
180 | "id": "lv-AALS9AA7r"
181 | },
182 | "outputs": [],
183 | "source": [
184 | "x_train = x_train.reshape(len(x_train), (x_train.shape[1]*x_train.shape[2]))\n",
185 | "x_test = x_test.reshape(len(x_test), (x_test.shape[1]*x_test.shape[2]))"
186 | ]
187 | },
188 | {
189 | "cell_type": "code",
190 | "execution_count": 0,
191 | "metadata": {
192 | "colab": {},
193 | "colab_type": "code",
194 | "id": "Z09aungJAG6E"
195 | },
196 | "outputs": [],
197 | "source": [
198 | "encoding_dim = 32\n",
199 | "\n",
200 | "input_img = Input(shape = (784, ))\n",
201 | "encoded = Dense(128, activation='relu')(input_img)\n",
202 | "encoded = Dense(encoding_dim, activation='relu')(encoded)\n",
203 | "\n",
204 | "\n",
205 | "decoded = Dense(128, activation='relu')(encoded)\n",
206 | "decoded = Dense(784, activation='sigmoid')(decoded)\n",
207 | "\n",
208 | "autoencoder = Model(input_img, decoded)"
209 | ]
210 | },
211 | {
212 | "cell_type": "code",
213 | "execution_count": 0,
214 | "metadata": {
215 | "colab": {},
216 | "colab_type": "code",
217 | "id": "HN8ANrYPEvfl"
218 | },
219 | "outputs": [],
220 | "source": [
221 | "encoder = Model(input_img, encoded)\n",
222 | "encoded_input = Input(shape=(encoding_dim, ))\n",
223 | "decode_layer1 = autoencoder.layers[-2]\n",
224 | "decode_layer2 = autoencoder.layers[-1]\n",
225 | "decoder = Model(encoded_input, decode_layer2(decode_layer1(encoded_input)))"
226 | ]
227 | },
228 | {
229 | "cell_type": "code",
230 | "execution_count": 0,
231 | "metadata": {
232 | "colab": {
233 | "base_uri": "https://localhost:8080/",
234 | "height": 35
235 | },
236 | "colab_type": "code",
237 | "id": "skKxFoz_4rCS",
238 | "outputId": "24f6e177-3127-4169-fd00-df67d3ebe3ef"
239 | },
240 | "outputs": [
241 | {
242 | "data": {
243 | "text/plain": [
244 | ""
245 | ]
246 | },
247 | "execution_count": 35,
248 | "metadata": {
249 | "tags": []
250 | },
251 | "output_type": "execute_result"
252 | }
253 | ],
254 | "source": [
255 | "autoencoder.get_layer('dense_5')"
256 | ]
257 | },
258 | {
259 | "cell_type": "code",
260 | "execution_count": 0,
261 | "metadata": {
262 | "colab": {},
263 | "colab_type": "code",
264 | "id": "6tVqkhvHAIPz"
265 | },
266 | "outputs": [],
267 | "source": [
268 | "autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy', metrics=['accuracy'])"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": 0,
274 | "metadata": {
275 | "colab": {
276 | "base_uri": "https://localhost:8080/",
277 | "height": 348
278 | },
279 | "colab_type": "code",
280 | "id": "PUBcoIWKzdVL",
281 | "outputId": "4a1f574e-0b02-49db-c228-c4269ee9017e"
282 | },
283 | "outputs": [
284 | {
285 | "name": "stdout",
286 | "output_type": "stream",
287 | "text": [
288 | "Model: \"model_6\"\n",
289 | "_________________________________________________________________\n",
290 | "Layer (type) Output Shape Param # \n",
291 | "=================================================================\n",
292 | "input_6 (InputLayer) (None, 784) 0 \n",
293 | "_________________________________________________________________\n",
294 | "dense_3 (Dense) (None, 128) 100480 \n",
295 | "_________________________________________________________________\n",
296 | "dense_4 (Dense) (None, 32) 4128 \n",
297 | "_________________________________________________________________\n",
298 | "dense_5 (Dense) (None, 128) 4224 \n",
299 | "_________________________________________________________________\n",
300 | "dense_6 (Dense) (None, 784) 101136 \n",
301 | "=================================================================\n",
302 | "Total params: 209,968\n",
303 | "Trainable params: 209,968\n",
304 | "Non-trainable params: 0\n",
305 | "_________________________________________________________________\n"
306 | ]
307 | }
308 | ],
309 | "source": [
310 | "autoencoder.summary()"
311 | ]
312 | },
313 | {
314 | "cell_type": "code",
315 | "execution_count": 0,
316 | "metadata": {
317 | "colab": {
318 | "base_uri": "https://localhost:8080/",
319 | "height": 403
320 | },
321 | "colab_type": "code",
322 | "id": "HLMkoI-JCgPX",
323 | "outputId": "e2053547-3301-4923-81b2-bfe051688c25"
324 | },
325 | "outputs": [
326 | {
327 | "name": "stdout",
328 | "output_type": "stream",
329 | "text": [
330 | "Train on 60000 samples, validate on 10000 samples\n",
331 | "Epoch 1/10\n",
332 | "60000/60000 [==============================] - 12s 202us/step - loss: 0.2129 - acc: 0.7929 - val_loss: 0.1578 - val_acc: 0.8043\n",
333 | "Epoch 2/10\n",
334 | "60000/60000 [==============================] - 12s 196us/step - loss: 0.1422 - acc: 0.8077 - val_loss: 0.1278 - val_acc: 0.8080\n",
335 | "Epoch 3/10\n",
336 | "60000/60000 [==============================] - 12s 195us/step - loss: 0.1226 - acc: 0.8108 - val_loss: 0.1157 - val_acc: 0.8114\n",
337 | "Epoch 4/10\n",
338 | "60000/60000 [==============================] - 12s 195us/step - loss: 0.1142 - acc: 0.8118 - val_loss: 0.1086 - val_acc: 0.8115\n",
339 | "Epoch 5/10\n",
340 | "60000/60000 [==============================] - 12s 198us/step - loss: 0.1088 - acc: 0.8125 - val_loss: 0.1063 - val_acc: 0.8110\n",
341 | "Epoch 6/10\n",
342 | "60000/60000 [==============================] - 12s 196us/step - loss: 0.1050 - acc: 0.8129 - val_loss: 0.1020 - val_acc: 0.8117\n",
343 | "Epoch 7/10\n",
344 | "60000/60000 [==============================] - 12s 195us/step - loss: 0.1019 - acc: 0.8132 - val_loss: 0.0985 - val_acc: 0.8126\n",
345 | "Epoch 8/10\n",
346 | "60000/60000 [==============================] - 12s 196us/step - loss: 0.0994 - acc: 0.8135 - val_loss: 0.0968 - val_acc: 0.8127\n",
347 | "Epoch 9/10\n",
348 | "60000/60000 [==============================] - 12s 196us/step - loss: 0.0975 - acc: 0.8137 - val_loss: 0.0952 - val_acc: 0.8130\n",
349 | "Epoch 10/10\n",
350 | "60000/60000 [==============================] - 12s 192us/step - loss: 0.0961 - acc: 0.8138 - val_loss: 0.0936 - val_acc: 0.8131\n"
351 | ]
352 | }
353 | ],
354 | "source": [
355 | "hist = autoencoder.fit(x_train, x_train, epochs=10, validation_data=(x_test, x_test))"
356 | ]
357 | },
358 | {
359 | "cell_type": "code",
360 | "execution_count": 0,
361 | "metadata": {
362 | "colab": {
363 | "base_uri": "https://localhost:8080/",
364 | "height": 287
365 | },
366 | "colab_type": "code",
367 | "id": "n4xxDcKfEV8_",
368 | "outputId": "77bcd685-2bd1-4eb2-9eee-e7e2c08cf303"
369 | },
370 | "outputs": [
371 | {
372 | "data": {
373 | "text/plain": [
374 | ""
375 | ]
376 | },
377 | "execution_count": 38,
378 | "metadata": {
379 | "tags": []
380 | },
381 | "output_type": "execute_result"
382 | },
383 | {
384 | "data": {
385 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAD2ZJREFUeJzt3W2MHfV1x/HfsXdtsDEY42Ac82CC\nDNRAYpqtaRXaUBESQEQmUktjVZGjohgp0EKTVkFupfKiVWmahPKiieoEC1OlBJqAcCurgThpaVSK\nWIiLDSbFQabY+GGJDbYxu96H0xc7RBvYObPsfZi7e74fabV359y5c3y9v517739m/ubuApDPjLob\nAFAPwg8kRfiBpAg/kBThB5Ii/EBShB9IivADSRF+IKmudm5sls32EzS3nZsEUunXmzruAzaR+zYU\nfjO7WtLdkmZK+pa73xnd/wTN1WV2ZSObBBB40rdM+L6TftlvZjMl/b2kayQtl7TazJZP9vEAtFcj\n7/lXStrp7i+5+3FJ35G0qjltAWi1RsK/RNIrY37eXSz7JWa21sx6zax3UAMNbA5AM7X80353X+/u\nPe7e063Zrd4cgAlqJPx7JJ015uczi2UApoBGwv+UpGVmdq6ZzZL0aUmbmtMWgFab9FCfuw+Z2S2S\nvq/Rob4N7v5c0zoD0FINjfO7+2ZJm5vUC4A24vBeICnCDyRF+IGkCD+QFOEHkiL8QFKEH0iK8ANJ\nEX4gKcIPJEX4gaQIP5AU4QeSIvxAUoQfSIrwA0kRfiApwg8kRfiBpAg/kBThB5Ii/EBShB9IivAD\nSRF+ICnCDyRF+IGkCD+QFOEHkmpoll4z2yXpiKRhSUPu3tOMpgC0XkPhL/y2u7/WhMcB0Ea87AeS\najT8LulRM3vazNY2oyEA7dHoy/7L3X2PmZ0u6TEze8HdHx97h+KPwlpJOkFzGtwcgGZpaM/v7nuK\n7wckPSxp5Tj3We/uPe7e063ZjWwOQBNNOvxmNtfM5r19W9LHJW1vVmMAWquRl/2LJD1sZm8/zj+5\n+781pSsALTfp8Lv7S5I+1MRe6jX6Ryyol79Isu74abSKx3b3eNsVfHCovDgy3NBjY/piqA9IivAD\nSRF+ICnCDyRF+IGkCD+QVDPO6psSbHZ8dOGMeSeFdV9yemlt/2/MD9d9/aKRsK6ReCjwhL74b/Ss\nw+W1E/vibc/fEawsacahI2FdA8fjend3acnfeitc1briX0+v2raX/9tH3uqveOyB+LGnAfb8QFKE\nH0iK8ANJEX4gKcIPJEX4gaQIP5DUtBnnrxzHP/nksD7wwbPD+qHzZ5XWZn2yL1z375ZtDus/HVgc\n1nceKz/GQJKOj5T/N/b1x8cvvDVUPg4vSTed/XhYP7/7QFg/ZcZgaW3/8Inhuv986NfC+uGheP0n\n9iwtrc377rxw3fkPbQ3rI/3xcQJTAXt+ICnCDyRF+IGkCD+QFOEHkiL8QFKEH0hq+ozzzyofh5dU\neQnrWfvfDOunHS8/N/zV+fE4/B8f/L2w3tUd9zY8HP+NHn4zGKvvis/nv+QDe8L60u54AuZoHF+S\n+r289xkW9/b5hfExBgtnzgzr+88of/yrD/9RuO6C/1wY1kd2x8+bGrwcezuw5weSIvxAUoQfSIrw\nA0kRfiApwg8kRfiBpCrH+c1sg6TrJB1w94uLZQskPSBpqaRdkm5w90Ota7Oa91dcZ30wHo/Wy/G4\n7azX5pTWlr4SX0tAMyr+xo7E493++hvx+t3lxzjYzHjbx898X1i/+ZJ4PHzeK/G182f3HSut/fzS\neL6D3/2TR8P62vnbw/qwl8+H0LUvPi7Ej8bHfUyFcfwqE9nz3yvp6ncsu13SFndfJmlL8TOAKaQy\n/O7+uKSD71i8StLG4vZGSdc3uS8ALTbZ9/yL3H1vcXufpEVN6gdAmzT8gZ+7u6TSN0BmttbMes2s\nd1DTf/4zYKqYbPj3m9liSSq+l17F0d3Xu3uPu/d0q+KDMQBtM9nwb5K0pri9RtIjzWkHQLtUht/M\n7pf0hKQLzGy3md0o6U5JV5nZi5I+VvwMYAqpHOd399UlpSub3EtDfCgex/eKc+JtOB5rH66YSz7e\ndny+fq1jxgfi8/UXPB0/L1W9j1j5WPvC3aeG6z74Ox8O69ddvC2s//DYBaW19//HULjuSNU4/zTA\nEX5AUoQfSIrwA0kRfiApwg8kRfiBpKbNpbsrh8s8Hm7zikt7KxiymtKnd1b9uxsVPDd2Sjxt+hXv\nfzGsD1bsu+7aWj4afcG2V8N1h6qGZ6cB9vxAUoQfSIrwA0kRfiApwg8kRfiBpAg/kNT0Gedvtak8\nll8j6yr/FdvxhfjSj19ecH9Y/+tXrwnr5369vDbcF5/K3PLjHzoAe34gKcIPJEX4gaQIP5AU4QeS\nIvxAUoQfSIpx/ukgutZAlVYfv7DiwtLSvdf+Q7hq3/DcsL7z6+WPLUkLtu8orQ0fj6cWz4A9P5AU\n4QeSIvxAUoQfSIrwA0kRfiApwg8kVTnOb2YbJF0n6YC7X1wsu0PS5yT1FXdb5+6bW9UkKtR4rYEZ\n8+aF9V1fKj8GYVnX0XDdq3pvCuvnbNkV1ofeOFxe5PoME9rz3yvp6nGW3+XuK4ovgg9MMZXhd/fH\nJR1sQy8A2qiR9/y3mNmzZrbBzE5tWkcA2mKy4f+GpPMkrZC0V9JXy+5oZmvNrNfMegc1MMnNAWi2\nSYXf3fe7+7C7j0j6pqSVwX3Xu3uPu/d0a/Zk+wTQZJMKv5ktHvPjpyRtb047ANplIkN990u6QtJC\nM9st6S8kXWFmKyS5pF2S4jEZAB2nMvzuvnqcxfe0oBd0ooprBRxadVFY/9aHyy+e/8O3zgnXPfOv\nwrKG9u2P78BYfogj/ICkCD+QFOEHkiL8QFKEH0iK8ANJceluhGaecnJY77n1J2F9eXd/ae3G3mvD\ndc/d8bOw7gzlNYQ9P5AU4QeSIvxAUoQfSIrwA0kRfiApwg8kxTh/dhWn7P78k8vD+n1nfCWs9wdj\n8QsfnBOuO3LsWFhHY9jzA0kRfiApwg8kRfiBpAg/kBThB5Ii/EBSjPMn13X2mWH9xnWPhPU51h3W\nL+v9bGltyb9sDdflbP3WYs8PJEX4gaQIP5AU4QeSIvxAUoQfSIrwA0lVjvOb2VmS7pO0SKNDr+vd\n/W4zWyDpAUlLJe2SdIO7H2pdq5gMmz07rD//52eE9U0n7w7re4aPh/XFf1t+HIAPDITrorUmsucf\nkvRFd18u6dcl3WxmyyXdLmmLuy+TtKX4GcAUURl+d9/r7s8Ut49I2iFpiaRVkjYWd9so6fpWNQmg\n+d7Te34zWyrpUklPSlrk7nuL0j6Nvi0AMEVMOPxmdpKk70m6zd0Pj6356KRp4x6KbWZrzazXzHoH\nxXs8oFNMKPxm1q3R4H/b3R8qFu83s8VFfbGkA+Ot6+7r3b3H3Xu6FX/4BKB9KsNvZibpHkk73P1r\nY0qbJK0pbq+RFJ/+BaCjTOSU3o9I+oykbWb29jmY6yTdKelBM7tR0suSbmhNi6hi3bNKa8c/ekm4\n7n994q6wPtNOCusf3fyFsH7+E0+FddSnMvzu/mNJZRd3v7K57QBoF47wA5Ii/EBShB9IivADSRF+\nICnCDyTFpbungopptPWh80tLv3/3v4arLu6Kx/H/u384rF/4pzvC+kgwRTfqxZ4fSIrwA0kRfiAp\nwg8kRfiBpAg/kBThB5JinH8KmHHiiWH9hT+YU1pbPe//wnWPjcTb/sO/vDWsLzjyRPwA6Fjs+YGk\nCD+QFOEHkiL8QFKEH0iK8ANJEX4gKcb5O4B1xf8N/b+5PKz/zcceKK3NrLgWwHePxlN0n/6jV8P6\nUFhFJ2PPDyRF+IGkCD+QFOEHkiL8QFKEH0iK8ANJVY7zm9lZku6TtEiSS1rv7neb2R2SPiepr7jr\nOnff3KpGO1rFWLp1dYf1kZ5fCev9tx0K65+Ys6+09sZIfML+v79+YVj3bg4Fma4m8j87JOmL7v6M\nmc2T9LSZPVbU7nL3r7SuPQCtUhl+d98raW9x+4iZ7ZC0pNWNAWit9/Se38yWSrpU0pPFolvM7Fkz\n22Bmp5ass9bMes2sd1ADDTULoHkmHH4zO0nS9yTd5u6HJX1D0nmSVmj0lcFXx1vP3de7e4+793Rr\ndhNaBtAMEwq/mXVrNPjfdveHJMnd97v7sLuPSPqmpJWtaxNAs1WG38xM0j2Sdrj718YsXzzmbp+S\ntL357QFolYl82v8RSZ+RtM3MthbL1klabWYrNDr8t0vSTS3pcCqw+G/ojJPmhvW+D5ZfeluSPr/0\n+2F90MuH854aOC1c9wc/uSisLz/8cljH1DWRT/t/LGm8geycY/rANMERfkBShB9IivADSRF+ICnC\nDyRF+IGkzN3btrGTbYFfZle2bXttM2NmXB8ZDstVl+622RWHRZ93VmlpeG68btcL8RTeI0eOhHUf\njv9tauPvF6QnfYsO+8H4HPMCe34gKcIPJEX4gaQIP5AU4QeSIvxAUoQfSKqt4/xm1idp7AniCyW9\n1rYG3ptO7a1T+5LobbKa2ds57v6+idyxreF/18bNet29p7YGAp3aW6f2JdHbZNXVGy/7gaQIP5BU\n3eFfX/P2I53aW6f2JdHbZNXSW63v+QHUp+49P4Ca1BJ+M7vazH5qZjvN7PY6eihjZrvMbJuZbTWz\n3pp72WBmB8xs+5hlC8zsMTN7sfg+7jRpNfV2h5ntKZ67rWZ2bU29nWVmPzKz583sOTO7tVhe63MX\n9FXL89b2l/1mNlPS/0q6StJuSU9JWu3uz7e1kRJmtktSj7vXPiZsZr8l6aik+9z94mLZlyUddPc7\niz+cp7r7lzqktzskHa175uZiQpnFY2eWlnS9pM+qxucu6OsG1fC81bHnXylpp7u/5O7HJX1H0qoa\n+uh47v64pIPvWLxK0sbi9kaN/vK0XUlvHcHd97r7M8XtI5Lenlm61ucu6KsWdYR/iaRXxvy8W501\n5bdLetTMnjaztXU3M45FxbTpkrRP0qI6mxlH5czN7fSOmaU75rmbzIzXzcYHfu92ubv/qqRrJN1c\nvLztSD76nq2ThmsmNHNzu4wzs/Qv1PncTXbG62arI/x7JI296NyZxbKO4O57iu8HJD2szpt9eP/b\nk6QW3w/U3M8vdNLMzePNLK0OeO46acbrOsL/lKRlZnaumc2S9GlJm2ro413MbG7xQYzMbK6kj6vz\nZh/eJGlNcXuNpEdq7OWXdMrMzWUzS6vm567jZrx297Z/SbpWo5/4/0zSn9XRQ0lfH5D0P8XXc3X3\nJul+jb4MHNToZyM3SjpN0hZJL0r6gaQFHdTbP0raJulZjQZtcU29Xa7Rl/TPStpafF1b93MX9FXL\n88YRfkBSfOAHJEX4gaQIP5AU4QeSIvxAUoQfSIrwA0kRfiCp/weDXbvwl0u/MwAAAABJRU5ErkJg\ngg==\n",
386 | "text/plain": [
387 | ""
388 | ]
389 | },
390 | "metadata": {
391 | "tags": []
392 | },
393 | "output_type": "display_data"
394 | }
395 | ],
396 | "source": [
397 | "encoded_images = encoder.predict(x_test)\n",
398 | "encoded_images.shape\n",
399 | "predicted = decoder.predict(encoded_images)\n",
400 | "plt.imshow(predicted[0].reshape(28, 28))"
401 | ]
402 | },
403 | {
404 | "cell_type": "code",
405 | "execution_count": 0,
406 | "metadata": {
407 | "colab": {
408 | "base_uri": "https://localhost:8080/",
409 | "height": 269
410 | },
411 | "colab_type": "code",
412 | "id": "3H3Ekx1SHp5y",
413 | "outputId": "e2c12384-3645-45fa-a46e-6aecdb259a2d"
414 | },
415 | "outputs": [
416 | {
417 | "data": {
418 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFVBJREFUeJzt3X+QnVV9x/HPJ5tslgRICAkhJJEg\nRDQSCWX5NdiK/LDRsQZnLAN1NLbUYCsdndEZUpkpVFuHdqyMLdbOIikRBcQAJmNRCCmIVkQSjAhB\nTOSHJITEkIT8gPzY7Ld/7JO7+yz37m6y9z5377nv18zOnvOc5977Tbjny8l5zvMcR4QAAI1vRL0D\nAABUBwkdABJBQgeARJDQASARJHQASAQJHQASQUIHgESQ0AEgESR0AEjEyHoHAFSL7bmSviapRdI3\nI+KG/s5vHTU22trGl23buevlLRExqfpRArVDQkcSbLdI+rqkSyStl/S47WURsabSa9raxuus9k+X\nbfvfh699sSaBAjXElAtScbakdRHxXETsk3SnpHl1jgkoFAkdqZgq6aVe9fXZMaBpMOWCpmJ7gaQF\nkjR69Lg6RwNUFyN0pGKDpOm96tOyYzkR0RER7RHR3jpqbGHBAUUgoSMVj0uaafsk262SLpe0rM4x\nAYViygVJiIhO21dLul/dyxYXRcTT/b5o1xsa8eNfFhEeUAgSOpIREfdJuq/ecQD1wpQLACSChA4A\niSChA0AiSOgAkAgSOgAkglUuaFoTT9urK+99vmzbgzMLDgaoAkboAJAIEjoAJIKEDgCJIKEDQCJI\n6ACQCFa5oGm9vHWCrrv9oxVaVxUaC1ANjNABIBEkdABIBAkdABJBQgeARJDQASARJHQASATLFtG0\nfEBqfa3eUQDVwwgdABJBQgeARJDQASARJHQASAQJHQASQUIHgESwbBHJsP2CpJ2SDkjqjIj2/s6P\nFmnv+CIiA4pBQkdq3hsRW+odBFAPTLkAQCJI6EhJSHrA9irbC+odDFA0plyQkndHxAbbx0labvs3\nEfFI7xOyRL9AkkaOO6YeMQI1wwgdyYiIDdnvzZLulXR2mXM6IqI9Itpbxo4tOkSgpkjoSILtsbaP\nOliW9D5JT9U3KqBYTLkgFZMl3Wtb6v5e3x4RP+rvBW89dpO+/fEby7ad+Q9Vjw+oORI6khARz0k6\nvd5xAPXElAsAJIKEDgCJIKEDQCJI6ACQCBI6ACSCVS5oWr/bNUkf+dmnKrReW2gsQDUwQgeARJDQ\nASARJHQASAQJHQASQUIHgESwygVNa+SOETrmwbaybc8XHAtQDYzQASARJHQASAQJHQASMaSEbnuu\n7Wdtr7O9sFpBAagN+mzaDjuh226R9HVJ75c0S9IVtmdVKzAA1UWfTd9QVrmcLWldtlOMbN8paZ6k\nNZVe0OrR0SY25q23PdqtfbHX9Y4DhTukPkt/HT52atuWiJg00HlDSehTJb3Uq75e0jn9vaBNY3WO\nLxrCR6IaHosV9Q5hWOgcG9pyzoHyjYuKjaUgh9Rn6a/Dx4Ox5MXBnFfzdei2F0haIEltGlPrjwMw\nBPTXxjaUi6IbJE3vVZ+WHcuJiI6IaI+I9lEaPYSPAzBEA/ZZ+mtjG0pCf1zSTNsn2W6VdLmkZdUJ\nC0AN0GcTd9hTLhHRaftqSfdLapG0KCKerlpkAKqKPpu+Ic2hR8R9ku6rUiwAaow+mzbuFAWARPC0\nRTQU24skfVDS5og4LTs2QdJ3Jc2Q9IKkyyJi20DvNXv8Fv3iQx1l21quqlLAQIEYoaPR3Cppbp9j\nCyWtiIiZklZkdaDpkNDRUCLiEUlb+xyeJ2lxVl4s6dJCg0Ia7Mo/DYKEjhRMjoiNWfkVSZPrGQxQ\nLyR0JCUiQlJUare9wPZK2yv/8GqF2/6BBsVF0Srzme8slf9n2W25ttn/dXWpPP1LPysspiawyfaU\niNhoe4qkzZVOjIgOSR2S1H56W8XEj0SMaMlVR04/IVffdt7UUnnXCfnx7Qk/2dlTWf1sri3276tS\ngNXFCB0pWCZpflaeL2lpHWMB6oYROhqK7TskXSBpou31kq6TdIOku2xfKelFSZcN5r2eWT9J533+\nUxVaP1+FaIFikdDRUCLiigpNPOcVTY+EXmWbzzq6VO5U/qLbmJeZsgUKFV39Nm97W8+s857p+3Nt\ne9e0lcqjRzTG0kXm0AEgESR0AEgEUy5Vtu1dPdMs6zv35tqOveXRosMB0Fufuz73nrKnp2n7qFzb\nEc9tKZUP7M335eGKEToAJIIROpqWQ2rZy4VqpIMROgAkghH6EMX5c3L1n3zwq6Xyex75u1zbKfpl\nITEByDg/Zt1xxpRcfe47flUqr3jgjFxbbKz4BIlhixE6ACSChA4AiWDKZYi2zjoiV5/SMqZUnrpk\nVN/TARRoxNgxufqGC/LLFs9t6VmO2Lot39a1a1ftAqsRRugAkAhG6GhaRxz/ut55zZNl2x5dUnAw\nQBUwQgeARDBCH6KL/jZ/O//3d48vlY98OL/LCRueAcUaMX5crv622S/l6rsPjC6Vj//56/kXR+Pd\ndMYIHQASMWBCt73I9mbbT/U6NsH2cttrs9/H1DZMAINFn21eg5lyuVXSTZK+1evYQkkrIuIG2wuz\n+jXVD2/4aXnnqbn6l4+7I1e/Zce0UvnA9tcKiQno41bRZyVJO9qn5uqfPOHuXP2eTWeWyq0vbsm1\nddYurJoZMKFHxCO2Z/Q5PE/d+zpK0mJJD6sJvhxIy+4tY/SLxWdUaL2t0FiqiT7bvA53Dn1yRGzM\nyq9ImlyleADUBn22CQz5omhEhKSKl4NtL7C90vbK/WqMh8QDKeuvz9JfG9vhLlvcZHtKRGy0PUVS\nxceSRUSHpA5JOtoTGm8dUB8bLjm23/ZVO0/sVXujtsEAgzeoPptCf/XonqWI6/80/0eYd2R+2eJD\n299RKr/yh/wm0Y3ocEfoyyTNz8rzJS2tTjgAaoQ+2wQGs2zxDkmPSjrV9nrbV0q6QdIlttdKujir\nAxgG6LPNazCrXK6o0HRRlWNpCDtm9f/PstU39Wx4MV5sCo3iNXuf7X136DcuXpxrG+PWXP3R+2eX\nyifue6y2gRWAW//RUGwvkvRBSZsj4rTs2PWSPinpD9lpX4iI+wZ8s3EHpPdtLd92UxWCBQrGrf9o\nNLdKmlvm+I0RMSf7GTiZAwkioaOhRMQjkioMq4HmxpTLIOx9/1ml8tL3/Ueu7YtbzszVJ9zd83zt\nrtqGhbyrbX9c0kpJn4uIbfUOCAVxfqeh19t7lg6f3vpqrm3d/vwY9qR7t5fKXV2N/zxURuhIwTck\nnSxpjqSNkv6t0om9b5zpfG13UfEBhSCho+FFxKaIOBARXZJulnR2P+d2RER7RLSPHDe2uCCBAjDl\nMgjrL+z5a3pXa1uubf4Ls3P143b/ppCY0OPgHZBZ9cOSnurvfKTFLS25+st/3NNfJ7bkN3G/+PGP\n5+pv+e3ztQusDkjoaCjZTTMXSJpoe72k6yRdYHuOup9P8oKkqwbzXiPX7dFx8/gfMNJBQkdDqXDT\nzC2FBwIMQ8yhA0AiGKEPwqTTeh5MdyDyixFHLmUnL6Ceej9dUZJmnfdcqbyrq88jgFflN43u2pPW\nI4IZoQNAIkjoAJAIEjoAJII59DJGnnRirv6VU79XKt/82vRc24RFPCK3Ue2dMUZr//HM8o3zlxQb\nDA7biAn561iXH/9/pfKa/fn7RqY/sCNXjwRu9++NEToAJIKEDgCJYMqljLVXnZCrn9trVdQnn3hv\nrm06d5kDhfPIntT18ry35Nrec8SdpfJ/b+8zpfbrtTWNq94YoQNAIkjoAJAIEjoAJII59DK6pu+p\n2PbG9raKbWgsbb/fo1M/Xf5piy8WHAsOTe859NkfzV/HmtDSc9HrtiUX5dresi/tZcaM0AEgESR0\nAEgEUy5l/Oc5367YNvWHLRXbABRjxPiepyZeM+X7fVp70tqUn+/LN0XUMKr6Y4QOAIkYMKHbnm77\nIdtrbD9t+zPZ8Qm2l9tem/3mweBAndFfm9tgplw6JX0uIp6wfZSkVbaXS/qEpBURcYPthZIWSrqm\ndqEC1XXEqV067fbXy7Y9cEbBwVQP/bWJDZjQs93UN2blnbafkTRV0jx1b9YrSYslPawG/oLs+bOz\nS+V3t/2iTyuXGtAYmqW/rr/i5FL57aPyOxbtip5diNqe35prS+vZim92SHPotmdIOkPSY5ImZ18e\nSXpF0uSqRgZgSOivzWfQCd32kZLulvTZiMg9VDgiQlLZy8e2F9heaXvlfqW1fx8wXNFfm9Og5hJs\nj1L3l+M7EXFPdniT7SkRsdH2FEmby702IjokdUjS0Z4wbNcM/f5DPaGNdv6v5YtbZpfKRy5dlWsb\ntn8gNK0U+2vfjaBn//maUrnF+XHpY28c3VPZur2mcQ03g1nlYkm3SHomIr7aq2mZpPlZeb6kpdUP\nD8ChoL82t8GM0M+X9DFJv7a9Ojv2BUk3SLrL9pXqfvTFZbUJEcAhoL82scGscvmpJFdovqjCcaAm\nbE+X9C11X9QLSR0R8TXbEyR9V9IMSS9IuiwitvX3Xp0xQtv3j6ltwAWjvza3pl2P13L00bn6Neff\nV/Hc23/4J6XyWzvTflpbA2CddRMacXJ+4/Zzxj1WKu/qyj8d9VM/uqpUftuu1Wom3PqPhhIRGyPi\niay8U1LvddaLs9MWS7q0PhEC9UNCR8NinTWQ17RTLl1782ts17zeszH0xRvac20zv/x0qZz6nWaN\nou866+7FHd0iImxXXGctaYEkjT1+bBGh4nD1+m/qPfmnJv77r3o2a7//hFm5thN/0FUqx97mWkvP\nCB0Np7911ll7v+usI6I9ItrbxrP7FNJCQkdDYZ01UFnTTrmgYVVtnfXu/a16dMOMWsUJFK5pE3rf\nubVne02bt/bZIph58+GDddZNpNfuQp0vvJRrOuWqV0vlrpb8REPrjidqG9cwxpQLACSChA4AiWja\nKRcADaQrP/HZtXNnnQIZ3hihA0AiSOgAkAimXNC04o0WHXhyXL3DAKqGEToAJIKEDgCJIKEDQCJI\n6ACQCBI6ACSChA4AiWDZIppW68u79Zbrf1a27bcFxwJUQ6EJfae2bXkwlrwoaaKkLUV+dj+aMZYT\nBz4FzY7+OqAiYxlUny00oUfEJEmyvTIi2gc6vwjEApRHf+3fcIrlIObQASARJHQASES9EnpHnT63\nHGIB+jecvpfE0g9Hr22egGYybuSkOG/ch8u23b/15lXDbX4UGAhTLgCQCBI6ACSi0IRue67tZ22v\ns72wyM/OPn+R7c22n+p1bILt5bbXZr+PKSCO6bYfsr3G9tO2P1OvWIBK6K+5WBqizxaW0G23SPq6\npPdLmiXpCtuzivr8zK2S5vY5tlDSioiYKWlFVq+1Tkmfi4hZks6V9Ons76IesQBvQn99k4bos0WO\n0M+WtC4inouIfZLulDSvwM9XRDwiaWufw/MkLc7KiyVdWkAcGyPiiay8U9IzkqbWIxagAvprPpaG\n6LNFJvSpkl7qVV+fHau3yRGxMSu/ImlykR9ue4akMyQ9Vu9YgF7orxUM5z7LRdFeonsNZ2HrOG0f\nKeluSZ+NiB31jKVR9DOXeb3tDbZXZz8fGPDNRlhuG132B8NfPfrIcO+zRT7LZYOk6b3q07Jj9bbJ\n9pSI2Gh7iqTNRXyo7VHq/mJ8JyLuqWcsDebgXOYTto+StMr28qztxoj4Sh1jSwn9tY9G6LNFjtAf\nlzTT9km2WyVdLmlZgZ9fyTJJ87PyfElLa/2Bti3pFknPRMRX6xlLo+lnLhPVRX/tpVH6bGEJPSI6\nJV0t6X51d8K7IuLpoj5fkmzfIelRSafaXm/7Skk3SLrE9lpJF2f1Wjtf0sckXdhniqAesTSsPnOZ\nknS17Sez5W4s+RwC+uubNESf5dZ/NKRsLvPHkv45Iu6xPVndz6YOSV+SNCUi/qrM6xZIWiBJbS1H\nnnnB5E+Uff8fvXwTt/6j4XBRFA2n3FxmRGyKiAMR0SXpZnUvu3uTiOiIiPaIaG8dcURxQQMFIKGj\noVSay8wuSB30YUlP9X0tkDr2FEWjOTiX+Wvbq7NjX1D3nYxz1D3l8oKkqwZ6o9ZTDmjat14r33hW\nNUIFikVCR0OJiJ9Kcpmm+4qOBRhumHIBgESQ0AEgESR0AEgECR0AEkFCB4BEsMoFTWvnjjF66ME5\nFVpvKzQWoBoYoQNAIkjoAJAIEjoAJIKEDgCJIKEDQCJI6ACQCJYtomnFyND+iZ31DgOoGkboAJAI\nEjoAJIKEDgCJIKEDQCJI6ACQCBI6ACSCZYtoWiN3WpN/3FK27fcFxwJUAyN0AEgECR0AEkFCB4BE\nkNABIBEkdABIBKtc0FBst0l6RNJodX9/l0TEdbZPknSnpGMlrZL0sYjY1997tewPHbmh31OAhsII\nHY1mr6QLI+J0SXMkzbV9rqR/kXRjRJwiaZukK+sYI1AXJHQ0lOi2K6uOyn5C0oWSlmTHF0u6tA7h\nAXVFQkfDsd1ie7WkzZKWS/qdpO0RcfDh5uslTa1XfEC9kNDRcCLiQETMkTRN0tmS3j7Y19peYHul\n7ZX79u2uWYxAPZDQ0bAiYrukhySdJ2m87YMX+adJ2lDhNR0R0R4R7a2tYwuKFCgGCR0NxfYk2+Oz\n8hGSLpH0jLoT+0ey0+ZLWlqfCIH6YdkiGs0USYttt6h7QHJXRPzA9hpJd9r+J0m/lHTLQG+07yjr\npYtGl298qHoBA0UhoaOhRMSTks4oc/w5dc+nA02LKRcASAQJHQASQUIHgESQ0AEgESR0AEiEI6Le\nMQB1YXunpGez6kRJW3o1nxoRRxUfFXD4WLaIZvZsRLRLku2VB8sH6/ULCzg8TLkAQCJI6ACQCBI6\nmllHhXK5OjDscVEUABLBCB0AEkFCR9OwPcH2E7b32X7d9rdtP2t7ne2F2TmjbXfZ3pv97LO9Ovv5\n63r/GYD+sGwRzeTvJZ2o7h2O/kLS9ZI+IOlhSY/bXibpAkkHImK07W9IujjbHQkY9hiho5lcJunJ\n7FG7qyV1STozIvZJulPSvOxnf3b+45Km2XY9ggUOFQkdzWSiujeUlqQ2SVbPZtIHN5aeKqk1u7Ho\nWkmtkp6yvcT29ILjBQ4JUy5Iiu0HJR1fpunaQ3ibcyNipe0/kvSYure0O1PSYkkXDj1KoDZI6EhK\nRFxcqc32FkknZ9U9kkI9m0kf3Fh6g6RR2bEnJR2QNEPSNyX9a/UjBqqHKRc0k+9Jepftk9S9jV2L\npFW2WyVdLmmZpOWS/jI7/7Pqnk9fI+lD6t6MGhi2uLEITcP2sZJWSJolqVPSUnVPpRwvaVNEzLS9\nWNJH1P2v1xGSXpW0SdJWSX8TEb+pR+zAYJDQASARTLkAQCJI6ACQCBI6ACSChA4AiSChA0AiSOgA\nkAgSOgAkgoQOAIn4f39N1HbojQUaAAAAAElFTkSuQmCC\n",
419 | "text/plain": [
420 | ""
421 | ]
422 | },
423 | "metadata": {
424 | "tags": []
425 | },
426 | "output_type": "display_data"
427 | }
428 | ],
429 | "source": [
430 | "def plot_imgs(index=0):\n",
431 | " f = plt.figure()\n",
432 | " f.add_subplot(1,3, 1)\n",
433 | " plt.imshow(x_test[index].reshape(28, 28))\n",
434 | " f.add_subplot(1,3, 2)\n",
435 | " plt.imshow(encoded_images[index].reshape(-1, 1))\n",
436 | " f.add_subplot(1,3, 3)\n",
437 | " plt.imshow(predicted[index].reshape(28, 28))\n",
438 | " plt.show(block=True)\n",
439 | " \n",
440 | "plot_imgs(2)"
441 | ]
442 | },
443 | {
444 | "cell_type": "markdown",
445 | "metadata": {
446 | "colab_type": "text",
447 | "id": "8lkIoRva6ewM"
448 | },
449 | "source": [
450 | "# Let's use Convolutional Neural Nets to get better results"
451 | ]
452 | },
453 | {
454 | "cell_type": "code",
455 | "execution_count": 0,
456 | "metadata": {
457 | "colab": {},
458 | "colab_type": "code",
459 | "id": "4UorTYac692G"
460 | },
461 | "outputs": [],
462 | "source": [
463 | "from keras.layers import Dense, Input, UpSampling2D, Conv2D"
464 | ]
465 | },
466 | {
467 | "cell_type": "markdown",
468 | "metadata": {
469 | "colab_type": "text",
470 | "id": "u8p2wwLa6qbB"
471 | },
472 | "source": [
473 | "Getting data"
474 | ]
475 | },
476 | {
477 | "cell_type": "code",
478 | "execution_count": 0,
479 | "metadata": {
480 | "colab": {},
481 | "colab_type": "code",
482 | "id": "07Ixl4YT6eQZ"
483 | },
484 | "outputs": [],
485 | "source": [
486 | "(x_train, y_train), (x_test, y_test) = mnist.load_data()"
487 | ]
488 | },
489 | {
490 | "cell_type": "code",
491 | "execution_count": 0,
492 | "metadata": {
493 | "colab": {},
494 | "colab_type": "code",
495 | "id": "-tmJMUnx6eVQ"
496 | },
497 | "outputs": [],
498 | "source": [
499 | "x_train = x_train.astype('float32')/255.0\n",
500 | "x_test = x_test.astype('float32')/255.0"
501 | ]
502 | },
503 | {
504 | "cell_type": "code",
505 | "execution_count": 0,
506 | "metadata": {
507 | "colab": {},
508 | "colab_type": "code",
509 | "id": "ZLPajgLH8ai4"
510 | },
511 | "outputs": [],
512 | "source": [
513 | "x_train = x_train.reshape((60000, 28, 28, 1))\n",
514 | "x_test = x_test.reshape((10000, 28, 28, 1))"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 0,
520 | "metadata": {
521 | "colab": {},
522 | "colab_type": "code",
523 | "id": "d2PouxDW7eB0"
524 | },
525 | "outputs": [],
526 | "source": [
527 | "img_height, img_width, _ = x_train[1].shape"
528 | ]
529 | },
530 | {
531 | "cell_type": "code",
532 | "execution_count": 0,
533 | "metadata": {
534 | "colab": {},
535 | "colab_type": "code",
536 | "id": "CHctX-5G6wTb"
537 | },
538 | "outputs": [],
539 | "source": [
540 | "def CNN_AE():\n",
541 | " input_img = Input(shape=(img_width, img_height, 1))\n",
542 | " \n",
543 | " # Encoding network\n",
544 | " x = Conv2D(16, (3, 3), activation='relu', padding='same', strides=2)(input_img)\n",
545 | " x = Conv2D(32, (3, 3), activation='relu', padding='same', strides=2)(x)\n",
546 | " encoded = Conv2D(32, (2, 2), activation='relu', padding=\"same\", strides=2)(x)\n",
547 | "\n",
548 | " # Decoding network\n",
549 | " x = Conv2D(32, (2, 2), activation='relu', padding=\"same\")(encoded)\n",
550 | " x = UpSampling2D((2, 2))(x)\n",
551 | " x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)\n",
552 | " x = UpSampling2D((2, 2))(x)\n",
553 | " x = Conv2D(16, (3, 3), activation='relu')(x)\n",
554 | " x = UpSampling2D((2, 2))(x)\n",
555 | " decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)\n",
556 | " \n",
557 | " encoder = Model(input_img, encoded)\n",
558 | " \n",
559 | " return Model(input_img, decoded), encoder"
560 | ]
561 | },
562 | {
563 | "cell_type": "code",
564 | "execution_count": 0,
565 | "metadata": {
566 | "colab": {},
567 | "colab_type": "code",
568 | "id": "euWIUw7i9W39"
569 | },
570 | "outputs": [],
571 | "source": []
572 | },
573 | {
574 | "cell_type": "code",
575 | "execution_count": 0,
576 | "metadata": {
577 | "colab": {},
578 | "colab_type": "code",
579 | "id": "a-0v2iI16wVm"
580 | },
581 | "outputs": [],
582 | "source": [
583 | "model_cnn, encoder = CNN_AE()\n",
584 | "model_cnn.compile(optimizer='adadelta', loss='binary_crossentropy')"
585 | ]
586 | },
587 | {
588 | "cell_type": "code",
589 | "execution_count": 0,
590 | "metadata": {
591 | "colab": {
592 | "base_uri": "https://localhost:8080/",
593 | "height": 72
594 | },
595 | "colab_type": "code",
596 | "id": "9RikWIEy6wa4",
597 | "outputId": "ee777875-aea8-4e50-a9fe-7b1b436008f8"
598 | },
599 | "outputs": [
600 | {
601 | "name": "stdout",
602 | "output_type": "stream",
603 | "text": [
604 | "Train on 60000 samples, validate on 10000 samples\n",
605 | "Epoch 1/1\n",
606 | "60000/60000 [==============================] - 20s 339us/step - loss: 0.0899 - val_loss: 0.0844\n"
607 | ]
608 | }
609 | ],
610 | "source": [
611 | "cnn_hist = model_cnn.fit(x_train, x_train, validation_data=(x_test, x_test))"
612 | ]
613 | },
614 | {
615 | "cell_type": "code",
616 | "execution_count": 0,
617 | "metadata": {
618 | "colab": {},
619 | "colab_type": "code",
620 | "id": "uOJoBgDd6weQ"
621 | },
622 | "outputs": [],
623 | "source": [
624 | "reconstruct = model_cnn.predict(x_test)"
625 | ]
626 | },
627 | {
628 | "cell_type": "code",
629 | "execution_count": 0,
630 | "metadata": {
631 | "colab": {
632 | "base_uri": "https://localhost:8080/",
633 | "height": 131
634 | },
635 | "colab_type": "code",
636 | "id": "G15_xNl8_Wyz",
637 | "outputId": "136c1df9-e1bf-442f-f020-5393579af9b0"
638 | },
639 | "outputs": [
640 | {
641 | "data": {
642 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAByCAYAAAB3LlRSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFRlJREFUeJzt3Xt0VNW9B/DvbyaTTCAJgYIQQgQi\noCLFCghKbav1hVgVtVDx2kVbFd+1Pqr4qJRee7XaerXXxzVeUa/XKlrtBV1UqiBVrxUEVBAQiMqz\nPERQApG8Zt8/ZrL3yWMykzl75pzJfD9rsfLLmTP77PObMXt79tn7iFIKRERERJSagNcVICIiIspm\n7EwRERERucDOFBEREZEL7EwRERERucDOFBEREZEL7EwRERERucDOFBEREZELrjpTIjJBRNaJSLWI\nzLBVKSIiImqL7a4/SaqLdopIEMB6AKcC2ArgPQBTlVJr7FWPiIiIALa7fpbn4r1jAVQrpT4FABF5\nDsA5AOJ+qPlSoMLo7uKQua0Ge3crpfqk8t78UHcVLii1Vpf8ijprZQFAQ7VYLQ+BoNXi9tXvTDn3\nAJAfCKvCYLG1+tQPDFkrCwBCnxy0Wh66F1otrubAP93l3/LfnmEja62VBQAbPiqyWp6KRKyW5+Zv\nT7B7dxUq7WWtLr1Ka6yVBQD98+x+91d91dtqefWbtjlzz3Y3w5L97rvpTJUD2OL4fSuAcR29IYzu\nGCcnuzhkbntd/XlTqu8NF5Ri3MjLrdXl0Ac+sVYWAGw7M2y1PCm22zi9+ukfUs49ABQGi3F86Xm2\nqoOt9/W1VhYAlE1aa7U8jPim1eJeXzLTVf5t/+1ZsOADa2UBwBlDxlstL1Jrt7Pn5m9PqLQXKq66\nzlpdLjzr79bKAoCZfexe1Bn88qVWy9s8/WZn7tnuZliy3303namkiMh0ANMBIIxu6T4cERFRTmO7\nm3lubkDfBqDC8fuA2LYWlFJVSqkxSqkxIRS4OBwREVFOY7vrU246U+8BGCoig0UkH8AFAObZqRYR\nERG1wnbXp1Ie5lNKNYrI1QAWAAgCmK2UWm2tZkRERKSx3fUvV/dMKaXmA5hvqS5ERETUAba7/sQV\n0LMYF2/zFvPvHebeW8w/UUvsTGWp2OJtDwE4A8BwAFNFZLi3tcodzL93mHtvMf9EbaV9aQRKm04v\n3kZWMf/eYe69xfyTK4Fis4Bx3fGH67jgH+t0HKmxuzhruvHKVPZqb/G2cucOIjJdRJaJyLKGhgMZ\nrVwO6FT+6yOWVxjPbQlzD7T6/sPuiv05rlPf/aYD/NtDXV9OXpkKlvbQ8boHK3X88Un/pePbd43W\n8ap/GabjpjXr01w7e5RSVQCqAKCkqDy1hzBSypz57xHqw/xnWIvvv/Ri/jPImftweQVzTwiEzVMu\n1NwSHd9f+aCOn95zvI5XHW/Wx1J1/v+fIV6Zyl5JLd5GacP8e4e59xbzT9QKO1PZi4u3eYv59w5z\n7y3mn6iVnBzmiwweoONVJz6q4wbHxeg7D1mu46PPNQ8hrfDJMB8Xb/MW8+8d5t5bzD+lYsu1o3S8\naOi9Ou4RyNfxNb3f0vHUs2/QcdELS9JcO/dysjPVVXDxNm8x/95h7r3F/BO1xGE+IiIiIhdy5spU\nXoUZ2htcVe1hTYiIiLqwQBAAIKPNWq6/u3S2jp1De3kI6rgsWKjj8GXbdRxcEJ3917Rvn/26WsIr\nU0REREQusDNFRERE5EKXH+bbfEd0Jt7oCeZJB/eUvRVv93YVjf9cx1t+FS2v98pGva1w7lI3VcyI\n8srd+NdnH7dW3tW//rm1sgAg72S76/r1XLo98U4ZNHR4DeYvWGStvNP7f8taWblACsMIDDnCWnnH\n3Dk+8U6dMPndhVbL+/vIwsQ7ZYgqiKCp8mtr5b1zdH7inTrhdFj+b+nRxLt0RRIyn8v+s48BAEyc\nuVhvG1+wR8cNylzHaYL52x9BRMc3D/qrji+79ycAgCP/aIb5WiygrbxfF5ZXpoiIiIhcYGeKiIiI\nyIUuP8y38rL/AAA0qKaUy1h89DPml6OjP/5yoExvml0zScd5i8xin0RERF2WiIm/dbgOT70jeivN\nRaWmPewWMM/aa3IMy9WqBh03OLYfFtqr47mnR9vx179tZgc+vPK7Oh56iRnyi9TWdu4cLOGVKSIi\nIiIX2JkiIiIicqFLDvOFFpshuJAEO9gzvvfrzayCjQ19dHxu9+iMhClFu/S2KU9X6fgH5aNTOh4R\nEVE2CRSaWaPV15m2tqpndIZ7sSS+XlPrGNo7EDH754tpg3sForPnp5Ss1NumnGDi7zxwnY6HXbbC\nFB5J/faezkp4piIyW0R2ichHjm29ROQ1EdkQ+9kzvdUkIiLKHV88+QK23vAbADiqeRvbXv9KZpjv\nSQATWm2bAWChUmoogIWx34mIiMiC7uNH45CfX9x6M9ten0o4zKeUelNEBrXafA6AE2PxUwAWA7jZ\nYr067etJY3X807IXdNw8iy+Z2XwjFl6u4z4LzcyDgq/Me285Mdr/XDX5j+2WsfUWs5jfgLveSXhM\nIiKi1sLDKtG4e0/rzb5qe788Z6SO542/T8flwW5t9o04FufcGTGLuD6x17Tdf9tuFtYN55mFsSf0\nWw0A+GZ4q942yrEI6L+f+KyOH6s4SceNm7YkcRZ2pHrPVF+lVPMS0zsA9I23o4hMBzAdAMJom2Ai\nIiJKSlJtL9vdzHN9A7pSSolI3LXclVJVAKoAoER6WV3zPXiUWdfizvvMTeBj8uude7V5n3ONqNvf\nOF/HR970sY7jPZ368A3DAABLzw7rbWMLDur4r1fco+PTwjfpeNC/mfU2VF1du2UTERElo6O2N53t\nruSZbsMJv1yi48pQqM2+jTCjOlsbTbt37WeTdbzriUE6Lq02V6wiIXMX0v/2OQUA8Nj55vVXjn9E\nx2MKduj4+l/21/HhN31hykvz+lOpLo2wU0TKACD2c1eC/YmIiMgdtr0+lWpnah6AabF4GoC5dqpD\nREREcbDt9amEw3wi8iyiN7z1FpGtAGYCuBvA8yJyMYBNAKaks5LxRPJN9VsO7bX1s01mQmLNj8za\nGMO2LtVxMitSND+p+sonzc3qyy67X8dlQVP2iovN9vNfmqZj9eHaJI5ERES5avdjf8LBdZ8CQIGf\n2t5gP3Ob1jW95+g4z3FvVvPN5h/VmxHGH710o46HVe3W8Tc2va9j1WTWlgooE5cURCeE1ZWaG95r\nxplhxYH55rE2f5r4sI6vf/sqHRfPMUOSUFZHPgEkN5tvapyXTrZcFyIiIgLQ+9ILAQCbp9+8Qik1\nxvES214f4uNkiIiIiFzoko+Tcbp1Z7RDv++Sb+htTVs3uC530IvmMuWvJh2n47v7vee6bCIiIj86\nMNLMlnM+LsY5c29dQzS+5PfX623DntYPUUHT/gOmwCQe+aIi0WG54s0NetvH9WZW/uGhbToekGdm\nDW4/2ZRd8pd8U14aZtTzyhQRERGRC+xMEREREbnQZYb5QtJ2cU4AWDmq+a5990N7LYiZPZAXMLMO\n4tXjn7NM3G+S3aok40CkAO99XWmtvKV3PZJ4p044c+yZVstDyF9f7VV7+6DyhcsT75ikoXjXWlm5\nQAUFjaXhxDsmadltD1orCwDOPPvHVssDVlsuL3WBgEJBQUPiHcm/HO3dpvPMTLiigHnsWq0yM+rP\nfetKAMCwJz7Q25osLJrZ2M20r0E4Zv45rguFHXXt1sscUxzb7c/l45UpIiIiIlfYmSIiIiJywV9j\nIZ207gqzSFiDSmbJTXs2nmdmB/65j1n4s0EFHbGpU/+Z5r3m4iQREZHPOWbtnTay/SHk6gbT9g18\nKrp/5KCLWXOOYblAODqc+FWlOUZpsP1hwwbngpzLeugwkuZn4vLKFBEREZEL7EwRERERuZDVw3y3\nf+fljBwnr2KAjmtGRxcs+8+fPhxvd21pnZk9JPWN9itGRESUZhI0w2tn9Fyl44jjppV3vz5Mx4Ub\ndgEAGlUnb2oJmOM0D+0BACoPBQAcO3ml3jQi/wvHG82CnOsaSnQ8cK5ZXLspDc/jc+KVqSwlIhUi\n8oaIrBGR1SJyrdd1yiXMv3eYe28x/0RtZfWVqRzXCOAGpdQKESkGsFxEXlNKrfG6YjmC+fcOc+8t\n5p+oFXamkrBmVj8drz6t48X6XtzfW8eP3DhZx+G1S9vbPWVKqe0AtsfiGhFZC6AcAP+gZQDz7x3m\n3lvMf+4RxyLIg/LM8FqTMjPu6iIhHUdKi6LB5iQKdwztBXuYIbrIEHN7zfpromU/2v9Vva1vsNAc\nW5lFYX/9ydk6Dm/YmEQF7OAwXxcgIoMAHANgSavt00VkmYgs27+3vr23kgXJ5L/Fgz3Jmni5j72m\n81/fwPynQzLf/cZ97le+JvI7XpmKI7TYPJH6rrIXk37fk9vG6zj8st2rUe0RkSIALwL4hVJqn/M1\npVQVgCoAOHRESXrvvstRyea/4NAK5t+yjnIPtMx/SXE5829Zst/9wiH9mfssJ/nmqlNAzMdZ51hL\ncXu9WdPpwKBiAED3deYm8ki9uXoULOqu45pTjtTxFxea/+k5b4h5FM1DPf8BAChzXI1y3vy+rM6s\nORm+xZStGjJ3EYFXprKYiIQQ/WP2jFLqJa/rk2uYf+8w995i/olaYmcqS0n0qY2PA1irlLrP6/rk\nGubfO8y9t5h/orayepgvKOYyX0iC7e6z78Lj2myb9ZvHdXxS4cF23+csr+Wjato/TjP1/W0dvm7R\ntwH8GMAqEWm+HnqrUmp+piqQ45h/7zD33mL+c03IrONU67jRvFvItMFnlb6v41cuGgEAUIGj9bbG\nsLlZ/dgbluv4xkP+oOMegfbb124SHd5z3mj+zsFiHc+65Wc6LlqR/ttr2pOwMyUiFQD+G0BfAApA\nlVLqARHpBWAOgEEANgKYopTam76qkpNS6m0AknBHSgvm3zvMvbeY//Rr3PMlvpg9B001+wHgKBG5\nlu2uvyUzzNe8pshwAMcBuEpEhgOYAWChUmoogIWx34mIiMgFCQTQc/IP0H/WDQCwFmx3fS/hlakO\n1hQ5B8CJsd2eArAYwM1pqWUcd8/5oY6nXHx/u/u8ee9DAFoP1RkNScwziffeZiMWXq7joViRuEAi\nIqI4gqUlCJbqNZciiHaoPGt3I/vMZM0X9h6r42P6mRUxRuWbW2YWjHsEAPDlsaaLUSzmkWoD8sys\nvJAUJTx+8/DegtpD9LaHrp6i46LXHEN7aX5sTDydumeq1ZoifWMdLQDYgegwYHvvmQ5gOgCE0a29\nXYiIiKh9+WC763tJz+ZLsKaIQvR+qjaUUlVKqTFKqTEhFLS3CxEREbUSOVgHAIeB7a7vJXVlKs6a\nIjtFpEwptV1EygDsSlcl46mcY54IvfSisI7HFrQ/Qy9VS+tM2VU7vgcA2HulecTMEZ9V67jjAUHv\nfLk6D/NGHJJ4xyTNg72yonbYLS7ir08ivKsBRzxo8T+RoZX2ykqDiN+Wadz/NQJvf5B4vyRNLB9l\nrayo1ZbL8w9VG4Ra0SPxjknactv4xDt5qGxRJPFOSYhEmrD+zf8BgD1et7uqrk7Hy+8ww3zVD/2f\njoc4HjlTFgzFfpoyAjAzAoOS+DpObcQsuPlKbR8AwKNXmFt7QovMjECvhvacEp5RB2uKzAMwLRZP\nAzDXfvWIiIhyi1IKny19HoUlfQFgp+Mltrs+lcwwX/OaIt8XkQ9i/yYCuBvAqSKyAcApsd+JiIjI\nhf27N2L3xuX4amc1AAxnu+t/yczm62hNkZPtVqdzmtas1/Ed11+i4y1nmcus68941PVxrpxtZutV\n/PadWMSlPYiIyL7iPoMx7oLfAwCWPHfjGqXUGMfLnra7BfOX6fji267T8QW3vqrjHxZ/BADo63iW\nXjJDe7ubzLP5pq6/QMehK6JDhHnrl7d5j1/wcTJERERELrAzRURERORCVj+bz6lwrlm0a5jjlrzv\nTr0KABD6ibmH79Wj5uj4tI/MpcTIk2aGmnIMbA764HMd+2uOGBERUQY5Zs71eOZdHf9t/mAdPzdx\nAgCg1yWb9bY7Br6s40X7h+v4jc+H6bjpLtMG5y/+0GxvNAt++hWvTBERERG5wM4UERERkQtdZpgv\nnpJnY5chnzXbzsVYHXfHp469nbHBoT0iIqL4mvaaGe7Nw39Nz5jXZ2J0u+8LYEu7sffLcHYOr0wR\nERERucDOFBEREZEL7EwRERERucDOFBEREZEL7EwRERERucDOFBEREZEL7EwRERERucDOFBEREZEL\n7EwRERERucDOFBEREZELolTmFm0Xkc8BHACwO2MH9UZvpOccByql+qTyxljuNyWxa7rqbotX9Us5\n9wDzbwHzH5V1+WfuXbP13fd7ft3ytN3NaGcKAERkmVJqTEYPmmHZfI5+r7vf6+eW38/P7/Vzy+/n\n5/f6ueH3c/N7/RLJ9von4vX5cZiPiIiIyAV2poiIiIhc8KIzVeXBMTMtm8/R73X3e/3c8vv5+b1+\nbvn9/PxePzf8fm5+r18i2V7/RDw9v4zfM0VERETUlXCYj4iIiMiFjHamRGSCiKwTkWoRmZHJY6eL\niFSIyBsiskZEVovItbHtvUTkNRHZEPvZ0+u6JuLnzydenrsS5t87zL23mP/08XNuU+XLdlcplZF/\nAIIAPgFQCSAfwIcAhmfq+Gk8rzIAo2JxMYD1AIYDuAfAjNj2GQB+53Vds/nziZdnr+vF/HtfN+Y+\nu/8x/7mbW9ufiZftbiavTI0FUK2U+lQpVQ/gOQDnZPD4aaGU2q6UWhGLawCsBVCO6Lk9FdvtKQCT\nvKlh0nz9+XSQ566C+fcOc+8t5j99fJ3bVPmx3c1kZ6ocwBbH71uRPV/IpIjIIADHAFgCoK9Sanvs\npR0A+npUrWRlzefTKs9dBfPvHebeW8x/+mRNblPll3aXN6BbIiJFAF4E8Aul1D7nayp6zZHTJi3o\nKM+Ufsy/d5h7bzH//uOndjeTnaltACocvw+Ibct6IhJC9AN9Rin1UmzzThEpi71eBmCXV/VLku8/\nnzh57iqYf+8w995i/tPH97lNld/a3Ux2pt4DMFREBotIPoALAMzL4PHTQkQEwOMA1iql7nO8NA/A\ntFg8DcDcTNetk3z9+XSQ566C+fcOc+8t5j99fJ3bVPmx3c3oop0iMhHA/YjOMJitlPptxg6eJiJy\nAoC3AKwCEIltvhXR8dvnARyK6BO7pyil9nhSyST5+fOJl2el1HzvamUX8+8d5t5bzH/6+Dm3qfJj\nu8sV0ImIiIhc4A3oRERERC6wM0VERETkAjtTRERERC6wM0VERETkAjtTRERERC6wM0VERETkAjtT\nRERERC6wM0VERETkwv8DEqNmGw3hwBEAAAAASUVORK5CYII=\n",
643 | "text/plain": [
644 | ""
645 | ]
646 | },
647 | "metadata": {
648 | "tags": []
649 | },
650 | "output_type": "display_data"
651 | }
652 | ],
653 | "source": [
654 | "def plot_imgs_for_cnn(index=0):\n",
655 | " f = plt.figure(figsize=(10, 10))\n",
656 | " f.add_subplot(1,6, 1)\n",
657 | " plt.imshow(x_test[index].reshape(28, 28))\n",
658 | " \n",
659 | " \n",
660 | " f.add_subplot(1,6, 2)\n",
661 | " plt.imshow(encoded_images[index][:, :, 0])\n",
662 | " f.add_subplot(1,6, 3)\n",
663 | " plt.imshow(encoded_images[index][:, :, 1])\n",
664 | " f.add_subplot(1,6, 4)\n",
665 | " plt.imshow(encoded_images[index][:, :, 2])\n",
666 | " f.add_subplot(1,6, 5)\n",
667 | " plt.imshow(encoded_images[index][:, :, 3])\n",
668 | " \n",
669 | " \n",
670 | " f.add_subplot(1,6, 6)\n",
671 | " plt.imshow(reconstruct[index].reshape(28,28))\n",
672 | " \n",
673 | " plt.show(block=True)\n",
674 | " \n",
675 | "plot_imgs_for_cnn(3)"
676 | ]
677 | },
678 | {
679 | "cell_type": "code",
680 | "execution_count": 0,
681 | "metadata": {
682 | "colab": {},
683 | "colab_type": "code",
684 | "id": "_p4rclEL_0A5"
685 | },
686 | "outputs": [],
687 | "source": []
688 | },
689 | {
690 | "cell_type": "code",
691 | "execution_count": 0,
692 | "metadata": {
693 | "colab": {},
694 | "colab_type": "code",
695 | "id": "g1alULdqIIyb"
696 | },
697 | "outputs": [],
698 | "source": []
699 | },
700 | {
701 | "cell_type": "markdown",
702 | "metadata": {
703 | "colab_type": "text",
704 | "id": "RCivQ5wdOBBr"
705 | },
706 | "source": [
707 | "# **Denoising example**"
708 | ]
709 | },
710 | {
711 | "cell_type": "code",
712 | "execution_count": 0,
713 | "metadata": {
714 | "colab": {},
715 | "colab_type": "code",
716 | "id": "xR4oH_QXII0v"
717 | },
718 | "outputs": [],
719 | "source": [
720 | "noise_factor = 0.5\n",
721 | "x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) \n",
722 | "x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) \n",
723 | "\n",
724 | "x_train_noisy = np.clip(x_train_noisy, 0., 1.)\n",
725 | "x_test_noisy = np.clip(x_test_noisy, 0., 1.)"
726 | ]
727 | },
728 | {
729 | "cell_type": "code",
730 | "execution_count": 155,
731 | "metadata": {
732 | "colab": {
733 | "base_uri": "https://localhost:8080/",
734 | "height": 72
735 | },
736 | "colab_type": "code",
737 | "id": "TvS9CX6III3b",
738 | "outputId": "8f54b173-159d-4c77-edac-15de211e6731"
739 | },
740 | "outputs": [
741 | {
742 | "name": "stdout",
743 | "output_type": "stream",
744 | "text": [
745 | "Train on 60000 samples, validate on 10000 samples\n",
746 | "Epoch 1/1\n",
747 | "60000/60000 [==============================] - 20s 333us/step - loss: 0.1180 - val_loss: 0.1100\n"
748 | ]
749 | }
750 | ],
751 | "source": [
752 | "cnn_hist = model_cnn.fit(x_train_noisy, x_train, validation_data=(x_test_noisy, x_test))"
753 | ]
754 | },
755 | {
756 | "cell_type": "code",
757 | "execution_count": 0,
758 | "metadata": {
759 | "colab": {},
760 | "colab_type": "code",
761 | "id": "HCRmI7oUI4jd"
762 | },
763 | "outputs": [],
764 | "source": [
765 | "reconstruct = model_cnn.predict(x_test_noisy)\n",
766 | "encoded_images= encoder.predict(x_test_noisy)"
767 | ]
768 | },
769 | {
770 | "cell_type": "code",
771 | "execution_count": 163,
772 | "metadata": {
773 | "colab": {
774 | "base_uri": "https://localhost:8080/",
775 | "height": 131
776 | },
777 | "colab_type": "code",
778 | "id": "gyehz6t-II5d",
779 | "outputId": "4de1e821-dc81-40b2-e614-9ada9ffacec7"
780 | },
781 | "outputs": [
782 | {
783 | "data": {
784 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAByCAYAAAB3LlRSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAH0ZJREFUeJzt3Xl8lNW5B/DfyWRPSCCEbISdRARl\ncWNRsQoYRb14laJYlfbaYqvWBbXQ1mqvelvFlurttQXu1VasdQNcqlQErFpXQMuOLLJIIOx7ErLM\nnPvHOznPCzNhJnnfzDshv+/n44cn77xz5uQkcg7nec85SmsNIiIiImqeBK8rQERERNSacTBFRERE\n5AAHU0REREQOcDBFRERE5AAHU0REREQOcDBFRERE5AAHU0REREQOOBpMKaUuU0qtU0ptVEpNcatS\nREREFIr9bnxSzd20UynlA7AewCgA5QCWABivtV7jXvWIiIgIYL8bzxIdvPc8ABu11psAQCn1EoAx\nABr9oSYlZ+jUtA4AAHW4ylwv7S/x+hXpIe+rLcwwcXJFZcSKqZRkEx/LS7Led1gGjeqQfF6gg5Sd\ncCBy2WE/L1k+r66rkvL2SfNqn9x/etEeE1frAACgfF2O3FtbKzenp5rwSFXFXq11p+bUMdmXptMS\ns5rz1rBqip386oRK2RFwtTy4vLH/4ZqdzW57AEjMStdJee1dq09B6mHXygKAfauTI9/koSM44Kj9\nkxNSdVpCpmv10b18kW9qArVVRb6pCXRNbeSbmsBJ+yelZOiUjJzIN0apT5c9kW9qgg1r2rlanq73\nu1reCW3f5H43WaXoVGQ09jJFEO3vvpMesTOAbbavywEMPtkbUtM6YNAFdwIAUv6+xFyfP3+Zics6\nD7IC24zZtu8PM3GXRz+JWDFf1x4mXnd7PgCgeJF01qlvLTbxkbIhJm738mcRyw4nsbibiXc+mSKf\n87z8BVKbKX9ZLn70jyZeXVsNAPjJxdeba/Wbt5pY9TvDxAuW/FJeaKK0xCwMK7ihuW8PsWlqB9fK\nAoAeD9W4Wh5c/gtt/rrHm932AJCU1x7dn5joVnUwud9818oCgBf6FLtantsW6tmO2j8tIRNDM8e4\nVR3UTc92rSwASLrV3X+c+DdudrU8J+2fkpGD/iPvcq0uH/33DNfKAoDR/Ue4Wp5/7z5Xyzuh7Zve\n7yIDg5W732NbEu3vvrv/B4ehlJoIYCIApKS69y9zIiIiCmXvd1MRmu0h9zkZTG0H0MX2dXHw2nG0\n1jMBzASALJWj7TNSDcqKBtrfAQA4Ok5mjJKamH1TNXUm7n1P6GzT5l8NNfEr45808eSXTzrABwDs\nu8V6b8dnPjXXAtkyhZp7lcy2Vv27lHekmzzrf/z3axm5apWJ379KZqPql64KuZeIiNqkZvW7sala\n2+ZkNd8SACVKqR5KqWQA1wN4051qERER0QnY78apZs9Maa3rlVJ3AJgPwAfgWa31atdqRkRERAb7\n3fjl6JkprfU8APNcqgsAYP4O62H0AVPlofOC38lD5zWXn2vicClDAKjfVh5y7eg7PU38QPdXTTy5\nh6Ti9k6U9N+xMlktVXyt/K7a03sNEvbJvfY1aRXny0Pnve6T7yGxuLPUtdyaoV14hqwoOXxDodw7\nsEAKnDs75LOJiKjtaIl+l5zjDuitGDdv8xbb3ztse2+x/YmOx8FUKxXcvO1pAJcD6AtgvFKqr7e1\najvY/t5h23uL7U8UqsW3RohG7QLZp+nSawcAAAo+lbTY7tsk5Zf3h/D7TO35oaToMnfKHkOBRCvV\nln3vQXPthdXh99TJnSkpvA39hoS9J5xwaUUA6HVf+H2rvnosz8S9b7TSfLt+LN/j0a6y+OLRf3vZ\nxJ/MPa6YJm/eRq5i+3uHbe8ttj/RCTgz1XqF27yts/0GpdREpdRSpdTSWn91TCvXBjSp/ettO/6T\nYxHbHjjh9z9wLGaVawOa9LtfV3M0ppUj8kJMZ6ZqeqRh4yPWDue9b/qXuZ48SjYY3fYL6//JRS9/\nZK7dcvlpJrbva336F1L92p/J3lKVdx4ycYcrNgAA1v1OZpp63yNlFH8mR0xsm9TLxCVnyGxT9XzZ\nUT2tzNpZ2JfbUeoUxY63F62wDWb6y/fe8MD9D7bJXlXbhteb+E/3y6ydtSo2eva9RrJT8rnXSIzZ\n2z+tdxHbP8aO+/1PzGX7x5C97TNzurDtCVC2o9Yypd9VibZj16qlnwwca13/AOLMVOsV1eZt1GLY\n/t5h23uL7U90Ag6mWi9u3uYttr932PbeYvsTnSCmab7ijIN4bPAcAMBM9Ax7T5dHrAfMv/vIBeba\njvskpVZk257sjSVnmbh0vhxenGw7A/bK1QcAAG/1sz0MPqS/CZ/pOsvEgwbJdf88Sbt1WiaH8CZ2\ntxKN9Vu+Mdd8p/U2cSArzcRHHpFzcD7ov8nEKinZxHK0TNPOzOHmbd5i+3uHbe8ttj9Fy57C8xXk\nm3hXWVcT7x8u/Wv7DtIPprzYwcQd3lkHAPAfkj0dEXD3MHun4mI1HzUPN2/zFtvfO2x7b7H9iY7H\nNB8RERGRAzGdmdqzKgUzS0PTe9VXn2fizLX7AQBfP5xurnW/LvzeUnmf+MJe3/ikrNyb9qm1Mq4U\nS821DeOl7CvXXy6fvUOmDf/59IywZUtazma6LHvfVynj070VMk1Zartd19WGLZuIiKjVsK3QU4lJ\nJvbl5gAAqgbIOoWtN0j/es/ZMql5ScZXJu6WKOVtkqduMGbUHQCA0pnSd6ov5H3x0KdyZoqIiIjI\nAQ6miIiIiByIaZpPZ6fj2HArpZe2SzbnSntdVuI1TAT2ekDSgfOCG1sCwOuVstnXz1f0M3HOHFl9\nl1IsO+5272ilDVEi5d16ySITT+64QSr4dPh691z4HybetONZAMDgyT8y1zpO3CX12LBeYlsZm6bK\ncTfF78mmnMnvhG7EeeC7cu+xjjLtid/MDl/BKLQvqcKYOV82+/0nmjNhhGtlAUBdTnrkm5og4aNl\nkW+KoX4Z+7F46AuulRc23UyNS/BBZbVzrbjDz4U/kqq5Dv5X01bzRtL9OleLcySzsBLn//xz18pz\n/3c/8qbLZJMgj9ckpKWaWHUuMPE3V1sr9wb9+ypzbUbR302c75N5nFQlw5BESNmnJUla8PELXgUA\nTK6RX+y+23JNXL+jQuqnvdkjljNTRERERA5wMEVERETkQEzTfOpQFVLfslJ6kSbi/Btkk8vGpnWL\nIfvE1Y4428Rdxn5h4m/mWqnAVR9IisWetps80pbms3m7SqYvN4181sTr66zp+M8f/6O5dtYjtpRf\nUbaJEz6wnT94QNJ19tTexuCZgb3vkU1FO/z5UxPPt6U4fb8JW1UiIqKYUAm2M/ZsqfP9Z3cy8Yjr\nrH7+phxZiV/ks6UHbfM4fltazg95BCaAgImHpVqnFY08S/r81RecaeLst+Q83kCV7VD5GKb8ODNF\nRERE5AAHU0REREQOxMVxMonFnU1cX968w8fnPvc/Js5OkPPxBiw+PeTekpttq9p2SDhq/PdMvODF\nP5n4/p2DTPxEgaTuGhTM3mhi/549Jran6MqulinJzS/JbmRfD58OABg989tSxlpJPQ544jbbJ00K\n+WwiIqKYsaXr6nrIeXuHxx4x8V257wMA2tlSgnVa4kot6bw1tbK59X6/rNYvSjpg4k4JVupuRPs1\n5lrKfVLGJzlyTm/Bq7Ki3r//oNS7hc/yizgzpZR6Vim1Wym1ynYtRym1QCm1Ifhnh5OVQURERNFb\nrZfiA/03ADB7ALHvjV/RpPn+DOCyE65NAbBIa10CYFHwayIiInJBEbphEC448TL73jgVMc2ntf5Q\nKdX9hMtjAHwrGD8H4H0Ak5vywRkfypP/2/+vq4mV3zrLpypfxnmF02RFgC+3o4n9e2WztfEDrjDx\nV9OkuptGWSvx7CsC7ek3u71nSHpw9AhJu724YJaJy4qsDTV3vNbXXFu5/K9hyzt+FeJKEyUny2aj\nl46dAABQa5eHLSN1nzcbkBERkXc6qE6o1iGbuTrue5tF2VfwZZl447XSZz47aLqJixJTAAB1WlJr\n+wOSlnt6nwwSX5svm1Sn75DPqZWF8eg90lrdPyZP+u4p+bL59tJJssrvP303m7jwVXkEJ7Bvv4m1\nP0zKz+HKv+Y+M5WvtW7YcnQngPzGblRKTQQwEQBS4e4u10RERG1IVH0v+93Yc/wAutZaK6UaHdJp\nrWcCmAkAWSrH3Fc5XB7Ubg+Jv37CGqVmbwhfZMW400zcboxsIf/hma+Z+LbtQ0Le19hs1LhNcixK\n3tMyA2Yft47vW2b76jAA4O4+74Utz27aFtkv6v6BkintfM3qkHvXTz/PxKU/lON12s/6NOReIiJq\n207W9zbW77oiR6aMRl8kezoOSK623WQNLfb4ZTbqid0jTfzF72VRV8mHtkVnNbUS2x50r51nZaR+\ndffl5tolw39v4mGpcqRbvxvkIfU9i7uYOOHQYRPrgG4I4Jbmbo2wSylVCADBP3e7ViMiIiIKh31v\nnGruYOpNABOC8QQAb7hTHSIiImoE+944FTHNp5R6EdYDb7lKqXIADwF4DMArSqlbAGwFMC6aDyvp\nX4l571h7PF3RTdJaul6mAnvdb6W1NsySfSOO9JAH1LrNk6nEBQ9Iau/C22818f1TnzfxD7adDwA4\nPUNSgn9YfpF83ndC940K0VnS0psesB4ef/YhmTm95cnpIW8BgPlH5UHzff8mD6x3XLLXxA17StlT\ne75/FMnrF9s2wiIiojZhpf4cB6xHYFKc9r1uqsuTI2RGZssjK6lKhhMND57/z97h5tqaX8peix0/\nllSc/6g8ZG/Sb9YXEu/YCQA47bHe5tIbZ51h4glZUt7wDrLP1Fy/7GEZqK0LLdvF42aiWc03vpGX\nRjRynYiIiBw4Uw0GACzUs7/UWp9je4l9bxzicTJEREREDsT0OJmtte0wcZs17afrj5rr5T8bZuKG\nfZVKbg6/is3XXlYS2PdxqvmujAuP6SQTf/L6AADAlpE55po9tXfoRln5d6i3lNF+sKwOyLpcjnfx\np1rlZK+UPSsa28NqTLsVcn2W7M0RblP7c5fJ1SUDmdojIqI4oaRvPNI1xcR5PjlCxr6n1PyqPADA\nmlv6mGupq6Tf9dv3eYom1RYsW3+91Vx66jNZHTjk4q9N/PpO6Y99uw+ZuN6eNnQxvdeAM1NERERE\nDnAwRURERORATNN8tV8FUD7ESu9VTJLUXn26TLmlbgjdROut7bIx2MV33mbihHp5X0aFPKk/LlOm\n9p75dXAjzl9LefWXnG3i7L98ZuLPbCm644+CEYmVwfHnXjmNuubyc0086FfyfWV/LXU6cLekHgue\nlM1BG4xvL6v5lmBoyOtO1Wkftte6dybm/Nefj3xTE4wa911Xy7Ong11xIPItJ7N6Vyf0/+1tkW+M\n0htbp7pWFgD8sFvIGWCnFoXjjsRw6vPH/uhaWQBwxdCrXC2vPvItMVO1Blg2KPJ9p4pddw6LfFNT\nPDXb3fKawZeVaeI9l9WYuFuirK7fZcvc/eahGwAAWcs/l4tupNZsG3n6UuUDd/tlheGGijwTl1Rv\nc/6ZUeLMFBEREZEDHEwRERERORDTNJ9d4bTQVBcAVLx+OgDg2M2l5tqVsu8W9v9cpvnW3P4HE886\nnGvi8++SDTwzYZtmDDqWm2R7XYy+eKztq40Ip9s7xwAA228sMdeytsh048v3P2Hi0qQME9vThpXX\nDjZxxhyrft/75SRzrQN4Hh8REXnInhYvko2rz+8tK+eqbJm7qbtGmTjnH5sBAPXRpPYaS7/b39tw\nT0k3c+nWAR+auHvSftut9o0/G4lbAGemiIiIiBzgYIqIiIjIAc/SfEiQdB0CkiYrvHptyK3f+arc\nxC/0kfTguRU/MvGSR2V1zc1PzTBx2atWes1X0tNcy3xFVvDZ+ddJam/vrbKiLv9DOUsPH1gbj9Vd\nKCs20l+TVGLp0+FTe1hUbMKMEaGpx/Rdsv4msVjymm8vftvEvsKw1SYiInKXbaPOQ/1kJfi4Du+b\n+JiWfnztgQITZ9YFV9TbU3j2NJut/1dJMgxRieGHJAn5nQAAFQ/LWOG6rOUm9tuKrjsom4rqyqqw\n5bUEzky1UkqpLkqpfyil1iilViul7vK6Tm0J2987bHtvsf2JQnk3M0VO1QO4V2v9pVKqHYAvlFIL\ntNZrIr2RXMH29w7b3ltsf6ITeDaYOjpPnsqvelOmB+/48VwAwJNfXWKuPfyWnJ9XeI3M59lTe5de\nO8HE7855zsSJPazPqd+wyVxLyJBUXKCyMmz9cmfIirqsj+Vcv9EdrZTjzVmykhC2vRirArVhy8OI\n8vDXg9I+lL+HtG3ac8BU+0aPsuJPa10BoCIYH1FKrQXQGQD/QosBtr932PbeYvu3PQm2XWBTlWxG\n7Yek8Uqy95h4W5/eAADfF5Jm037ZkFsly4p61Vn6/+oekk48UmxbdX9dBQDg7T7PmGu5vjQTb64/\nZuKCDyXhFqiVurY0pvlOAUqp7gAGAcfvA6GUmqiUWqqUWlp5oJFBHjkWTfv7q8IP2smZxto++Jpp\n/1p/9Ykvkwui+d2vQ024txKdUmI6MxVon47qb50HAMi8TI5P2T1V9rB45XRrlFpk+0fOxmkyM7X7\nLBn/jR45zsQ7rpLZpgtWXCMfGpy8Sn94gLn00ivTTVxuG3Hf+MS9Jv7+7X8z8cwZ8rD5S5PfAwD0\n+73MGK3+scxSnTP9bhOn3C5l5z0dfl+tBp0WygN5H30hJ22X3CHvWxXmfUqpTABzANyttT5sf01r\nPRPATAAo6te+ZTfZaKOibf+0gi5sf5edrO2B49s/OyWf7e+yaH/3s1QO27410jKTlHxYOsrDgbRw\nd2NgOzm65b2b+gIAeqb0M9eSjsg/6A+WSH+982J5qHzQaVtMPL7TahOPzlgPAMjzpZtrNVrq9GC5\nHMfUYaHsg+W3LW5raZyZasWUUkmw/jJ7QWs91+v6tDVsf++w7b3F9ic6HgdTrZRSSgF4BsBarfU0\nr+vT1rD9vcO29xbbnyhUTNN8GYVVOPfBpQCAlXtlD6aif558Ki5npTzklvMneTB83o5lJh66/FoT\nf9Rf/qE08NdWOq5inExZbq6TMeTAFNmT4l8/tz1UbnP75NDricfC3Aigy6MnT+eFCO7D8c2jp5lL\n7Up8jd1tdz6AmwCsVEo1NMTPtNbzmlYBaia2v3fY9t5i+7cFtn2hfFWSUjvklzRfkU/67rHtJC03\nrGwDAOAPA2UhWU1AhhuT8j42cZ/kAyZOb+RomXYJVj99VMvzd7/fP0jqdLs8xB7YG7pXZSxEHEwp\npboAmAUgH4AGMFNr/ZRSKgfAywC6A9gCYJzW+kBj5ZC7tNYfAWjkUCNqaWx/77DtvcX2b3m1Rw6g\n/N2/or7qKAD0U0rdxX43vkWT5mvYU6QvgCEAbldK9QUwBcAirXUJgEXBr4mIiMgBleBD4YVjUHrT\nZABYC/a7cS/izNRJ9hQZA+BbwdueA/A+gMknK6t6LbDqbCvdpiApukN3ymq51IZr35EVfPbUnl3/\n38qKuhX3hk/RLfupdb1klhw9Y0/tNebdKtnj4tebR5t4+75sAMD6+8N/nt36/z3XxKU/WBL+puBU\nasrb8npB+DuJiKgNSMrIQlJGVsOXAVgDqmb1u67Up3yfieduk0d0vpe9wsTZCcm22PrzqeKF5lqC\nbe4mRcnQw6cyw36m37aasFpbKwGfOSirAxf95EITJ6/4Ut6ovVk82qRnpk7YUyQ/ONACgJ2w0oDh\n3jMRwEQASEV6uFuIiIgovGSw3417Ua/mi7CniIb1PFUIrfVMrfU5WutzkhB5RoiIiIgAf20NAPQC\n+924F9XMVCN7iuxSShVqrSuUUoUAdkcsJzkJiQXFAID6bXK8im/UXhPPn2Kl/8qKwpeRMLCvif22\n35FSWxpv/c1yzEyPt39gvT7Fliq8OXzZK2pliV5J0lETH62RD3ptyIxg/YaGLUMPlc1BG0vt+Up6\nmthvO+amJVVuTsfiCQMi3xil0XVnuFYWACRX7ne1PKSF31iu2Rw+4pm8vxZdXt7qTl0A3DH3O66V\nBQC+jkdcLc+/z+Wfp0O6rh7+nRH/iopaWdHAyDc1QULqnsg3tVIqJRm+bj0j3xilWP2d2Vz5/93E\nFd2NCOgAluFjANjvpN91pS57pI9OmtHfxLMePdPEZZmymq+Tz0rRZSp5XCbdlgZszNGA9MGrauW9\nv9j8bSv4Za65lrJYUow6hptzNibizNRJ9hR5E0DDgXgTALzhfvWIiIjaFq011mApMtAOAHbZXmK/\nG6eiSfM17ClyiVJqWfC/0QAeAzBKKbUBwMjg10REROTAIezDTnyDA9gDAH3Z78a/aFbznWxPkRFN\n+TBdW3dceq9Bt2zJoYzuMzwYhRy1BQBQNXIKdPFCSU0k7pC0Qp9aSflt/r6V8lv0tWyE+cBumZp8\nNG+lia9+6y4TP3Hpiyaue1emFiddGT69Z+r36fKTvg4ASJJmH7d2p1WPT64010pvWRq5DCIiOiW1\nV7kYibEAgIV69hqt9Tm2l5vU77ohcEzSb+lvycq5BRvPM/H/XnOZic++zDpb96dFfzfXeidJ321X\npyVF9151jonvf2mCiXu9ZPXvgfWSStR1ctZfPOBxMkREREQOcDBFRERE5EBMz+azqx4j04MYvtiE\nvtNLrOCwpPkSe3Y38b6zOpq47npJ7eVetd3EhZ/IUsCyB0NX3cy3neln9+DI10w8s1RWn9Q8FPZ2\nMURWN+CzFWFv8XXqZGL/mvUmnvMt672l3WpC3gMAiQW2bUQqwt5CREQUE7pezunTq9eZuPtGWfV+\n4C/W1tPXX3uvuTbs2/8y8fpDeSY+WCUrrzP/nG3ingtXmdhfWWUFcbBqrzGcmSIiIiJygIMpIiIi\nIgc8S/PVZMvqupQLB8kL/7SmAivulfP6Cn8rm6Blb9oi975gK2+0nIOXusi2mVfwzy0vSyrOviHo\njp/I5xRNDb/ZWs/nd5j47WCK8NKxstLg3dnP2cqWtKI9nXjFWWXyma/JxqNdvm+t5sNiWVVoTxvW\nN5I2JCIi8pTtHDz7ir9AsJ8u+u02c23rk9LnJ/tlVb8k/HBcGi+A1oUzU0REREQOxHRmSrdLR/3g\nswEA7WfJ8S6VYwebOCvfGqfaZ6NqrpBZp+0XSZVLfrXGxInVMqJViXJPQq9uAIDu160I+3rGDhn/\nbnxeZsh63yQPy5WPsT3QHpx52nerHB45+sxLTLzlkdPk+sW9TezfudHE+KSXCdf/1DoZ/Ddj/mKu\nTfr4bBOXfAYiIqLWxzbTFA9HvrQkzkwREREROcDBFBEREZEDMU3zJdQHkLyrEsDxD5dlzP7cxOEm\nAmvbyYNrnT+QPS5eWTXfxJkJqSYefdE1Jj5WbKXRkiQjeNw+Ge1Xy5E0uy6U1J1dwe9CH0zPnSFp\nSnud193yRxOX/UIeRv/mQXnQPemo3N/rPiuP9/iXN5prJX+V3F7aB7Z9poaDiIiI4gxnpoiIiIgc\n4GCKiIiIyIHYruarPobAqq+iunf9dDlu5vQpa03sP3jIxMOmTTJx6n7Z76KTX85dSXp3aUjZWx8e\nauKcNfK+0lvDL52bt11OyR741B0AgOp8SVR2eVfShpeOHWBiheUm7vpw+D2sdt5jpf/CpRIBoPqi\nXWGvExERUXzgzBQRERGRAxxMERERETmgtG07+Bb/MKX2AKgEsDdmH+qNXLTM99hNa92pOW8Mtv3W\nKG5tqbq7xav6NbvtAba/C9j+llbX/mx7x9z63Y/39nXK0343poMpAFBKLdVanxPTD42x1vw9xnvd\n471+TsX79xfv9XMq3r+/eK+fE/H+vcV7/SJp7fWPxOvvj2k+IiIiIgc4mCIiIiJywIvB1EwPPjPW\nWvP3GO91j/f6ORXv31+818+peP/+4r1+TsT79xbv9Yuktdc/Ek+/v5g/M0VERER0KmGaj4iIiMiB\nmA6mlFKXKaXWKaU2KqWmxPKzW4pSqotS6h9KqTVKqdVKqbuC13OUUguUUhuCf3bwuq6RxPPPp7F2\nPpWw/b3DtvcW27/lxHPbNldc9rta65j8B8AH4GsAPQEkA1gOoG+sPr8Fv69CAGcF43YA1gPoC2Aq\ngCnB61MAPO51XVvzz6exdva6Xmx/7+vGtm/d/7H9227buv0z8bLfjeXM1HkANmqtN2mtawG8BGBM\nDD+/RWitK7TWXwbjIwDWAugM63t7LnjbcwCu9qaGUYvrn89J2vlUwfb3DtveW2z/lhPXbdtc8djv\nxnIw1RnANtvX5Wg9v5BRUUp1BzAIwOcA8rXWDScu7wSQ71G1otVqfj4ntPOpgu3vHba9t9j+LafV\ntG1zxUu/ywfQXaKUygQwB8DdWuvD9te0NefIZZMuOFk7U8tj+3uHbe8ttn/8iad+N5aDqe0Auti+\nLg5ea/WUUkmwfqAvaK3nBi/vUkoVBl8vBLDbq/pFKe5/Po2086mC7e8dtr232P4tJ+7btrnird+N\n5WBqCYASpVQPpVQygOsBvBnDz28RSikF4BkAa7XW02wvvQlgQjCeAOCNWNetieL653OSdj5VsP29\nw7b3Ftu/5cR12zZXPPa7Md20Uyk1GsCTsFYYPKu1/q+YfXgLUUpdAOCfAFYCCAQv/wxW/vYVAF1h\nndg9Tmu935NKRimefz6NtbPWep53tXIX2987bHtvsf1bTjy3bXPFY7/LHdCJiIiIHOAD6EREREQO\ncDBFRERE5AAHU0REREQOcDBFRERE5AAHU0REREQOcDBFRERE5AAHU0REREQOcDBFRERE5MD/AyJ+\nixES7WdaAAAAAElFTkSuQmCC\n",
785 | "text/plain": [
786 | ""
787 | ]
788 | },
789 | "metadata": {
790 | "tags": []
791 | },
792 | "output_type": "display_data"
793 | }
794 | ],
795 | "source": [
796 | "def plot_imgs_for_cnn_noisy(index=0):\n",
797 | " f = plt.figure(figsize=(10, 10))\n",
798 | " f.add_subplot(1,6, 1)\n",
799 | " plt.imshow(x_test_noisy[index].reshape(28, 28))\n",
800 | " \n",
801 | " \n",
802 | " f.add_subplot(1,6, 2)\n",
803 | " plt.imshow(encoded_images[index][:, :, 0])\n",
804 | " f.add_subplot(1,6, 3)\n",
805 | " plt.imshow(encoded_images[index][:, :, 1])\n",
806 | " f.add_subplot(1,6, 4)\n",
807 | " plt.imshow(encoded_images[index][:, :, 2])\n",
808 | " f.add_subplot(1,6, 5)\n",
809 | " plt.imshow(encoded_images[index][:, :, 3])\n",
810 | " \n",
811 | " \n",
812 | " f.add_subplot(1,6, 6)\n",
813 | " plt.imshow(reconstruct[index].reshape(28,28))\n",
814 | " \n",
815 | " plt.show(block=True)\n",
816 | " \n",
817 | "plot_imgs_for_cnn_noisy(3)"
818 | ]
819 | },
820 | {
821 | "cell_type": "code",
822 | "execution_count": 0,
823 | "metadata": {
824 | "colab": {},
825 | "colab_type": "code",
826 | "id": "X5KNaod4JLaX"
827 | },
828 | "outputs": [],
829 | "source": []
830 | }
831 | ],
832 | "metadata": {
833 | "accelerator": "GPU",
834 | "colab": {
835 | "collapsed_sections": [],
836 | "include_colab_link": true,
837 | "name": "DeepAutoencoder.ipynb",
838 | "provenance": []
839 | },
840 | "kernelspec": {
841 | "display_name": "Python 3",
842 | "language": "python",
843 | "name": "python3"
844 | },
845 | "language_info": {
846 | "codemirror_mode": {
847 | "name": "ipython",
848 | "version": 3
849 | },
850 | "file_extension": ".py",
851 | "mimetype": "text/x-python",
852 | "name": "python",
853 | "nbconvert_exporter": "python",
854 | "pygments_lexer": "ipython3",
855 | "version": "3.7.4"
856 | }
857 | },
858 | "nbformat": 4,
859 | "nbformat_minor": 1
860 | }
861 |
--------------------------------------------------------------------------------