├── README.md ├── output.xls └── douban.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # douban_top250 2 | analysis of douban top250 movies data 3 | -------------------------------------------------------------------------------- /output.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sorrowise/douban_top250/HEAD/output.xls -------------------------------------------------------------------------------- /douban.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "# Import the required modules for the following codes\n", 12 | "\n", 13 | "import numpy as np\n", 14 | "import matplotlib.pyplot as plt\n", 15 | "import warnings\n", 16 | "warnings.filterwarnings(\"ignore\")\n", 17 | "import seaborn as sns\n", 18 | "import pandas as pd\n", 19 | "sns.set(style=\"white\",color_codes=True)\n", 20 | "%matplotlib inline\n", 21 | "plt.rcParams['figure.figsize'] = (15,9.27)\n", 22 | "plt.rcParams['font.size'] = 10.0\n", 23 | "plt.rcParams['xtick.labelsize'] = 'large'\n", 24 | "plt.rcParams['ytick.labelsize'] = 'large'" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": {}, 30 | "source": [ 31 | "# 1.Data Exploration" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 3, 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "data": { 41 | "text/html": [ 42 | "
\n", 43 | "\n", 56 | "\n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyear
0弗兰克·德拉邦特肖申克的救赎19.68750721424196845.04.7960.4691994
1陈凯歌霸王别姬29.56291391712990926.04.7540.5151993
2吕克·贝松这个杀手不太冷39.48366191103929599.04.6970.5511994
3罗伯特·泽米吉斯阿甘正传49.47131801423351946.04.7000.5551994
4罗伯托·贝尼尼美丽人生59.54160641161969230.04.7330.5251997
\n", 140 | "
" 141 | ], 142 | "text/plain": [ 143 | " director movie_name rank score score_num time total_stars wa_star \\\n", 144 | "0 弗兰克·德拉邦特 肖申克的救赎 1 9.6 875072 142 4196845.0 4.796 \n", 145 | "1 陈凯歌 霸王别姬 2 9.5 629139 171 2990926.0 4.754 \n", 146 | "2 吕克·贝松 这个杀手不太冷 3 9.4 836619 110 3929599.0 4.697 \n", 147 | "3 罗伯特·泽米吉斯 阿甘正传 4 9.4 713180 142 3351946.0 4.700 \n", 148 | "4 罗伯托·贝尼尼 美丽人生 5 9.5 416064 116 1969230.0 4.733 \n", 149 | "\n", 150 | " wa_star_std year \n", 151 | "0 0.469 1994 \n", 152 | "1 0.515 1993 \n", 153 | "2 0.551 1994 \n", 154 | "3 0.555 1994 \n", 155 | "4 0.525 1997 " 156 | ] 157 | }, 158 | "execution_count": 3, 159 | "metadata": {}, 160 | "output_type": "execute_result" 161 | } 162 | ], 163 | "source": [ 164 | "# Let's see what information does the data contain?\n", 165 | "\n", 166 | "df = pd.read_excel('output.xls',encoding=\"UTF-8\")\n", 167 | "df.head()" 168 | ] 169 | }, 170 | { 171 | "cell_type": "markdown", 172 | "metadata": {}, 173 | "source": [ 174 | "## 1.1 Directors Analysis" 175 | ] 176 | }, 177 | { 178 | "cell_type": "markdown", 179 | "metadata": {}, 180 | "source": [ 181 | "### 1.1.1 number of movies the director shoot in the top250 list" 182 | ] 183 | }, 184 | { 185 | "cell_type": "code", 186 | "execution_count": 152, 187 | "metadata": {}, 188 | "outputs": [ 189 | { 190 | "data": { 191 | "text/html": [ 192 | "
\n", 193 | "\n", 206 | "\n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | "
countpert
克里斯托弗·诺兰70.028
宫崎骏70.028
史蒂文·斯皮尔伯格60.024
王家卫50.020
李安40.016
大卫·芬奇40.016
詹姆斯·卡梅隆30.012
昆汀·塔伦蒂诺30.012
彼得·杰克逊30.012
刘镇伟30.012
姜文30.012
彼特·道格特30.012
弗朗西斯·福特·科波拉30.012
吴宇森30.012
朱塞佩·托纳多雷30.012
理查德·林克莱特30.012
理查德·柯蒂斯30.012
安德鲁·尼科尔20.008
丹尼·博伊尔20.008
吕克·贝松20.008
\n", 317 | "
" 318 | ], 319 | "text/plain": [ 320 | " count pert\n", 321 | "克里斯托弗·诺兰 7 0.028\n", 322 | "宫崎骏 7 0.028\n", 323 | "史蒂文·斯皮尔伯格 6 0.024\n", 324 | "王家卫 5 0.020\n", 325 | "李安 4 0.016\n", 326 | "大卫·芬奇 4 0.016\n", 327 | "詹姆斯·卡梅隆 3 0.012\n", 328 | "昆汀·塔伦蒂诺 3 0.012\n", 329 | "彼得·杰克逊 3 0.012\n", 330 | "刘镇伟 3 0.012\n", 331 | "姜文 3 0.012\n", 332 | "彼特·道格特 3 0.012\n", 333 | "弗朗西斯·福特·科波拉 3 0.012\n", 334 | "吴宇森 3 0.012\n", 335 | "朱塞佩·托纳多雷 3 0.012\n", 336 | "理查德·林克莱特 3 0.012\n", 337 | "理查德·柯蒂斯 3 0.012\n", 338 | "安德鲁·尼科尔 2 0.008\n", 339 | "丹尼·博伊尔 2 0.008\n", 340 | "吕克·贝松 2 0.008" 341 | ] 342 | }, 343 | "execution_count": 152, 344 | "metadata": {}, 345 | "output_type": "execute_result" 346 | } 347 | ], 348 | "source": [ 349 | "directors = list(df['director'])\n", 350 | "dir_dict = {x:directors.count(x) for x in set(directors)}\n", 351 | "dir_df = pd.DataFrame.from_dict(dire,orient='index')\n", 352 | "dir_df.columns = ['count']\n", 353 | "dir_df.sort_values(['count'],axis=0,ascending=False,inplace=True)\n", 354 | "dir_df['pert'] = dir_df['count']/250\n", 355 | "dir_df[:20]" 356 | ] 357 | }, 358 | { 359 | "cell_type": "code", 360 | "execution_count": 148, 361 | "metadata": {}, 362 | "outputs": [ 363 | { 364 | "data": { 365 | "text/html": [ 366 | "
\n", 367 | "\n", 380 | "\n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
8克里斯托弗·诺兰盗梦空间99.27648811483539104.04.6270.601201011-2
28克里斯托弗·诺兰星际穿越299.14843911692211244.04.5650.6722014254
33克里斯托弗·诺兰蝙蝠侠:黑暗骑士349.03196001521441396.04.5100.6932008331
59克里斯托弗·诺兰致命魔术608.83382081301485409.04.3920.702200669-9
128克里斯托弗·诺兰记忆碎片1298.52701981131150503.04.2580.74920001254
158克里斯托弗·诺兰追随1598.97796070348715.04.4730.6691998184-25
173克里斯托弗·诺兰蝙蝠侠:黑暗骑士崛起1748.52821981651204703.04.2690.7582012180-6
\n", 506 | "
" 507 | ], 508 | "text/plain": [ 509 | " director movie_name rank score score_num time total_stars wa_star \\\n", 510 | "8 克里斯托弗·诺兰 盗梦空间 9 9.2 764881 148 3539104.0 4.627 \n", 511 | "28 克里斯托弗·诺兰 星际穿越 29 9.1 484391 169 2211244.0 4.565 \n", 512 | "33 克里斯托弗·诺兰 蝙蝠侠:黑暗骑士 34 9.0 319600 152 1441396.0 4.510 \n", 513 | "59 克里斯托弗·诺兰 致命魔术 60 8.8 338208 130 1485409.0 4.392 \n", 514 | "128 克里斯托弗·诺兰 记忆碎片 129 8.5 270198 113 1150503.0 4.258 \n", 515 | "158 克里斯托弗·诺兰 追随 159 8.9 77960 70 348715.0 4.473 \n", 516 | "173 克里斯托弗·诺兰 蝙蝠侠:黑暗骑士崛起 174 8.5 282198 165 1204703.0 4.269 \n", 517 | "\n", 518 | " wa_star_std year order diff \n", 519 | "8 0.601 2010 11 -2 \n", 520 | "28 0.672 2014 25 4 \n", 521 | "33 0.693 2008 33 1 \n", 522 | "59 0.702 2006 69 -9 \n", 523 | "128 0.749 2000 125 4 \n", 524 | "158 0.669 1998 184 -25 \n", 525 | "173 0.758 2012 180 -6 " 526 | ] 527 | }, 528 | "execution_count": 148, 529 | "metadata": {}, 530 | "output_type": "execute_result" 531 | } 532 | ], 533 | "source": [ 534 | "df[df.director=='克里斯托弗·诺兰']" 535 | ] 536 | }, 537 | { 538 | "cell_type": "code", 539 | "execution_count": 149, 540 | "metadata": {}, 541 | "outputs": [ 542 | { 543 | "data": { 544 | "text/html": [ 545 | "
\n", 546 | "\n", 559 | "\n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
5宫崎骏千与千寻69.26643871253064152.04.6120.600200160
15宫崎骏龙猫169.1419367861913990.04.5640.634198865-49
30宫崎骏天空之城319.03324841241498172.04.5060.6531986247
43宫崎骏哈尔的移动城堡448.93463231191533864.04.4290.6952004117-73
77宫崎骏幽灵公主788.82302411341010757.04.3900.69919975919
102宫崎骏风之谷1038.8171616117753051.04.3880.70419847726
187宫崎骏魔女宅急便1888.4184309103777783.04.2200.7081989242-54
\n", 685 | "
" 686 | ], 687 | "text/plain": [ 688 | " director movie_name rank score score_num time total_stars wa_star \\\n", 689 | "5 宫崎骏 千与千寻 6 9.2 664387 125 3064152.0 4.612 \n", 690 | "15 宫崎骏 龙猫 16 9.1 419367 86 1913990.0 4.564 \n", 691 | "30 宫崎骏 天空之城 31 9.0 332484 124 1498172.0 4.506 \n", 692 | "43 宫崎骏 哈尔的移动城堡 44 8.9 346323 119 1533864.0 4.429 \n", 693 | "77 宫崎骏 幽灵公主 78 8.8 230241 134 1010757.0 4.390 \n", 694 | "102 宫崎骏 风之谷 103 8.8 171616 117 753051.0 4.388 \n", 695 | "187 宫崎骏 魔女宅急便 188 8.4 184309 103 777783.0 4.220 \n", 696 | "\n", 697 | " wa_star_std year order diff \n", 698 | "5 0.600 2001 6 0 \n", 699 | "15 0.634 1988 65 -49 \n", 700 | "30 0.653 1986 24 7 \n", 701 | "43 0.695 2004 117 -73 \n", 702 | "77 0.699 1997 59 19 \n", 703 | "102 0.704 1984 77 26 \n", 704 | "187 0.708 1989 242 -54 " 705 | ] 706 | }, 707 | "execution_count": 149, 708 | "metadata": {}, 709 | "output_type": "execute_result" 710 | } 711 | ], 712 | "source": [ 713 | "df[df.director=='宫崎骏']" 714 | ] 715 | }, 716 | { 717 | "cell_type": "code", 718 | "execution_count": 156, 719 | "metadata": {}, 720 | "outputs": [ 721 | { 722 | "data": { 723 | "text/html": [ 724 | "
\n", 725 | "\n", 738 | "\n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
6史蒂文·斯皮尔伯格辛德勒的名单79.43836221951805325.04.7060.54719938-1
71史蒂文·斯皮尔伯格拯救大兵瑞恩728.82326841691029394.04.4240.6811998179-107
100史蒂文·斯皮尔伯格猫鼠游戏1018.7214691141934549.04.3530.6812002192-91
110史蒂文·斯皮尔伯格幸福终点站1118.6219675128947238.04.3120.70620046447
152史蒂文·斯皮尔伯格人工智能1538.6183252146783585.04.2760.7742001224-71
206史蒂文·斯皮尔伯格E.T.2078.5145344115616258.04.2400.7231982216-9
\n", 849 | "
" 850 | ], 851 | "text/plain": [ 852 | " director movie_name rank score score_num time total_stars wa_star \\\n", 853 | "6 史蒂文·斯皮尔伯格 辛德勒的名单 7 9.4 383622 195 1805325.0 4.706 \n", 854 | "71 史蒂文·斯皮尔伯格 拯救大兵瑞恩 72 8.8 232684 169 1029394.0 4.424 \n", 855 | "100 史蒂文·斯皮尔伯格 猫鼠游戏 101 8.7 214691 141 934549.0 4.353 \n", 856 | "110 史蒂文·斯皮尔伯格 幸福终点站 111 8.6 219675 128 947238.0 4.312 \n", 857 | "152 史蒂文·斯皮尔伯格 人工智能 153 8.6 183252 146 783585.0 4.276 \n", 858 | "206 史蒂文·斯皮尔伯格 E.T. 207 8.5 145344 115 616258.0 4.240 \n", 859 | "\n", 860 | " wa_star_std year order diff \n", 861 | "6 0.547 1993 8 -1 \n", 862 | "71 0.681 1998 179 -107 \n", 863 | "100 0.681 2002 192 -91 \n", 864 | "110 0.706 2004 64 47 \n", 865 | "152 0.774 2001 224 -71 \n", 866 | "206 0.723 1982 216 -9 " 867 | ] 868 | }, 869 | "execution_count": 156, 870 | "metadata": {}, 871 | "output_type": "execute_result" 872 | } 873 | ], 874 | "source": [ 875 | "df[df.director=='史蒂文·斯皮尔伯格']" 876 | ] 877 | }, 878 | { 879 | "cell_type": "code", 880 | "execution_count": 150, 881 | "metadata": {}, 882 | "outputs": [ 883 | { 884 | "data": { 885 | "text/html": [ 886 | "
\n", 887 | "\n", 900 | "\n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
76王家卫春光乍泄778.8240053961052872.04.3860.71419973740
83王家卫重庆森林848.63216981021389735.04.3200.73919943648
127王家卫东邪西毒1288.62416681001034339.04.2800.7901994243-115
154王家卫花样年华1558.523592098999593.04.2370.7312000210-55
183王家卫阿飞正传1848.517135094726695.04.2410.725199014737
\n", 996 | "
" 997 | ], 998 | "text/plain": [ 999 | " director movie_name rank score score_num time total_stars wa_star \\\n", 1000 | "76 王家卫 春光乍泄 77 8.8 240053 96 1052872.0 4.386 \n", 1001 | "83 王家卫 重庆森林 84 8.6 321698 102 1389735.0 4.320 \n", 1002 | "127 王家卫 东邪西毒 128 8.6 241668 100 1034339.0 4.280 \n", 1003 | "154 王家卫 花样年华 155 8.5 235920 98 999593.0 4.237 \n", 1004 | "183 王家卫 阿飞正传 184 8.5 171350 94 726695.0 4.241 \n", 1005 | "\n", 1006 | " wa_star_std year order diff \n", 1007 | "76 0.714 1997 37 40 \n", 1008 | "83 0.739 1994 36 48 \n", 1009 | "127 0.790 1994 243 -115 \n", 1010 | "154 0.731 2000 210 -55 \n", 1011 | "183 0.725 1990 147 37 " 1012 | ] 1013 | }, 1014 | "execution_count": 150, 1015 | "metadata": {}, 1016 | "output_type": "execute_result" 1017 | } 1018 | ], 1019 | "source": [ 1020 | "df[df.director=='王家卫']" 1021 | ] 1022 | }, 1023 | { 1024 | "cell_type": "code", 1025 | "execution_count": 157, 1026 | "metadata": {}, 1027 | "outputs": [ 1028 | { 1029 | "data": { 1030 | "text/html": [ 1031 | "
\n", 1032 | "\n", 1045 | "\n", 1046 | " \n", 1047 | " \n", 1048 | " \n", 1049 | " \n", 1050 | " \n", 1051 | " \n", 1052 | " \n", 1053 | " \n", 1054 | " \n", 1055 | " \n", 1056 | " \n", 1057 | " \n", 1058 | " \n", 1059 | " \n", 1060 | " \n", 1061 | " \n", 1062 | " \n", 1063 | " \n", 1064 | " \n", 1065 | " \n", 1066 | " \n", 1067 | " \n", 1068 | " \n", 1069 | " \n", 1070 | " \n", 1071 | " \n", 1072 | " \n", 1073 | " \n", 1074 | " \n", 1075 | " \n", 1076 | " \n", 1077 | " \n", 1078 | " \n", 1079 | " \n", 1080 | " \n", 1081 | " \n", 1082 | " \n", 1083 | " \n", 1084 | " \n", 1085 | " \n", 1086 | " \n", 1087 | " \n", 1088 | " \n", 1089 | " \n", 1090 | " \n", 1091 | " \n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | " \n", 1100 | " \n", 1101 | " \n", 1102 | " \n", 1103 | " \n", 1104 | " \n", 1105 | " \n", 1106 | " \n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
29李安少年派的奇幻漂流309.05789741272615225.04.5170.6662012723
55李安饮食男女569.0193303124873922.04.5210.632199495-39
96李安断背山978.63106681341335251.04.2980.7492005157-60
133李安喜宴1348.8133146108584910.04.3930.650199310628
\n", 1126 | "
" 1127 | ], 1128 | "text/plain": [ 1129 | " director movie_name rank score score_num time total_stars wa_star \\\n", 1130 | "29 李安 少年派的奇幻漂流 30 9.0 578974 127 2615225.0 4.517 \n", 1131 | "55 李安 饮食男女 56 9.0 193303 124 873922.0 4.521 \n", 1132 | "96 李安 断背山 97 8.6 310668 134 1335251.0 4.298 \n", 1133 | "133 李安 喜宴 134 8.8 133146 108 584910.0 4.393 \n", 1134 | "\n", 1135 | " wa_star_std year order diff \n", 1136 | "29 0.666 2012 7 23 \n", 1137 | "55 0.632 1994 95 -39 \n", 1138 | "96 0.749 2005 157 -60 \n", 1139 | "133 0.650 1993 106 28 " 1140 | ] 1141 | }, 1142 | "execution_count": 157, 1143 | "metadata": {}, 1144 | "output_type": "execute_result" 1145 | } 1146 | ], 1147 | "source": [ 1148 | "df[df.director=='李安']" 1149 | ] 1150 | }, 1151 | { 1152 | "cell_type": "markdown", 1153 | "metadata": {}, 1154 | "source": [ 1155 | "### 1.1.2 The highest average score director" 1156 | ] 1157 | }, 1158 | { 1159 | "cell_type": "code", 1160 | "execution_count": 169, 1161 | "metadata": {}, 1162 | "outputs": [ 1163 | { 1164 | "data": { 1165 | "text/html": [ 1166 | "
\n", 1167 | "\n", 1180 | "\n", 1181 | " \n", 1182 | " \n", 1183 | " \n", 1184 | " \n", 1185 | " \n", 1186 | " \n", 1187 | " \n", 1188 | " \n", 1189 | " \n", 1190 | " \n", 1191 | " \n", 1192 | " \n", 1193 | " \n", 1194 | " \n", 1195 | " \n", 1196 | " \n", 1197 | " \n", 1198 | " \n", 1199 | " \n", 1200 | " \n", 1201 | " \n", 1202 | " \n", 1203 | " \n", 1204 | " \n", 1205 | " \n", 1206 | " \n", 1207 | " \n", 1208 | " \n", 1209 | " \n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | "
av_score
比利·怀尔德9.60
陈凯歌9.50
罗伯托·贝尼尼9.50
西德尼·吕美特9.40
安德鲁·斯坦顿9.30
路易·西霍尤斯9.30
克里斯托夫·巴拉蒂9.20
拉斯·霍尔斯道姆9.20
马基德·马基迪9.20
小津安二郎9.20
拜伦·霍华德9.20
万籁鸣9.20
查理·卓别林9.20
黄东赫9.20
维克多·弗莱明9.20
弗兰克·德拉邦特9.15
弗洛里安·亨克尔·冯·多纳斯马尔克9.10
赛尔乔·莱翁内9.10
杨宇硕9.10
张艺谋9.10
\n", 1270 | "
" 1271 | ], 1272 | "text/plain": [ 1273 | " av_score\n", 1274 | "比利·怀尔德 9.60\n", 1275 | "陈凯歌 9.50\n", 1276 | "罗伯托·贝尼尼 9.50\n", 1277 | "西德尼·吕美特 9.40\n", 1278 | "安德鲁·斯坦顿 9.30\n", 1279 | "路易·西霍尤斯 9.30\n", 1280 | "克里斯托夫·巴拉蒂 9.20\n", 1281 | "拉斯·霍尔斯道姆 9.20\n", 1282 | "马基德·马基迪 9.20\n", 1283 | "小津安二郎 9.20\n", 1284 | "拜伦·霍华德 9.20\n", 1285 | "万籁鸣 9.20\n", 1286 | "查理·卓别林 9.20\n", 1287 | "黄东赫 9.20\n", 1288 | "维克多·弗莱明 9.20\n", 1289 | "弗兰克·德拉邦特 9.15\n", 1290 | "弗洛里安·亨克尔·冯·多纳斯马尔克 9.10\n", 1291 | "赛尔乔·莱翁内 9.10\n", 1292 | "杨宇硕 9.10\n", 1293 | "张艺谋 9.10" 1294 | ] 1295 | }, 1296 | "execution_count": 169, 1297 | "metadata": {}, 1298 | "output_type": "execute_result" 1299 | } 1300 | ], 1301 | "source": [ 1302 | "director_av_score = {x:df[df.director==x]['score'].mean() for x in set(directors)}\n", 1303 | "dire_score_df = pd.DataFrame.from_dict(director_av_score,orient='index')\n", 1304 | "dire_score_df.columns = ['av_score']\n", 1305 | "dire_score_df.sort_values(['av_score'],axis=0,ascending=False,inplace=True)\n", 1306 | "dire_score_df[:20]" 1307 | ] 1308 | }, 1309 | { 1310 | "cell_type": "markdown", 1311 | "metadata": {}, 1312 | "source": [ 1313 | "## 1.2 Year Distribution" 1314 | ] 1315 | }, 1316 | { 1317 | "cell_type": "code", 1318 | "execution_count": 228, 1319 | "metadata": {}, 1320 | "outputs": [ 1321 | { 1322 | "data": { 1323 | "text/html": [ 1324 | "
\n", 1325 | "\n", 1338 | "\n", 1339 | " \n", 1340 | " \n", 1341 | " \n", 1342 | " \n", 1343 | " \n", 1344 | " \n", 1345 | " \n", 1346 | " \n", 1347 | " \n", 1348 | " \n", 1349 | " \n", 1350 | " \n", 1351 | " \n", 1352 | " \n", 1353 | " \n", 1354 | " \n", 1355 | " \n", 1356 | " \n", 1357 | " \n", 1358 | " \n", 1359 | " \n", 1360 | " \n", 1361 | " \n", 1362 | " \n", 1363 | " \n", 1364 | " \n", 1365 | " \n", 1366 | " \n", 1367 | " \n", 1368 | " \n", 1369 | " \n", 1370 | " \n", 1371 | " \n", 1372 | " \n", 1373 | " \n", 1374 | " \n", 1375 | " \n", 1376 | " \n", 1377 | " \n", 1378 | " \n", 1379 | " \n", 1380 | " \n", 1381 | " \n", 1382 | " \n", 1383 | " \n", 1384 | " \n", 1385 | " \n", 1386 | " \n", 1387 | " \n", 1388 | " \n", 1389 | " \n", 1390 | " \n", 1391 | " \n", 1392 | " \n", 1393 | " \n", 1394 | " \n", 1395 | " \n", 1396 | " \n", 1397 | " \n", 1398 | " \n", 1399 | " \n", 1400 | " \n", 1401 | " \n", 1402 | " \n", 1403 | " \n", 1404 | " \n", 1405 | " \n", 1406 | " \n", 1407 | " \n", 1408 | " \n", 1409 | " \n", 1410 | " \n", 1411 | " \n", 1412 | " \n", 1413 | " \n", 1414 | " \n", 1415 | " \n", 1416 | " \n", 1417 | " \n", 1418 | " \n", 1419 | " \n", 1420 | " \n", 1421 | " \n", 1422 | " \n", 1423 | " \n", 1424 | " \n", 1425 | " \n", 1426 | " \n", 1427 | " \n", 1428 | " \n", 1429 | " \n", 1430 | " \n", 1431 | " \n", 1432 | " \n", 1433 | " \n", 1434 | " \n", 1435 | " \n", 1436 | " \n", 1437 | " \n", 1438 | " \n", 1439 | " \n", 1440 | " \n", 1441 | " \n", 1442 | " \n", 1443 | " \n", 1444 | " \n", 1445 | " \n", 1446 | " \n", 1447 | " \n", 1448 | "
year_countpert
2010130.052
1994120.048
2009120.048
2004120.048
2011110.044
2001110.044
2002100.040
2013100.040
199790.036
201490.036
200890.036
200690.036
199590.036
199980.032
200080.032
200380.032
200780.032
199370.028
199860.024
198850.020
\n", 1449 | "
" 1450 | ], 1451 | "text/plain": [ 1452 | " year_count pert\n", 1453 | "2010 13 0.052\n", 1454 | "1994 12 0.048\n", 1455 | "2009 12 0.048\n", 1456 | "2004 12 0.048\n", 1457 | "2011 11 0.044\n", 1458 | "2001 11 0.044\n", 1459 | "2002 10 0.040\n", 1460 | "2013 10 0.040\n", 1461 | "1997 9 0.036\n", 1462 | "2014 9 0.036\n", 1463 | "2008 9 0.036\n", 1464 | "2006 9 0.036\n", 1465 | "1995 9 0.036\n", 1466 | "1999 8 0.032\n", 1467 | "2000 8 0.032\n", 1468 | "2003 8 0.032\n", 1469 | "2007 8 0.032\n", 1470 | "1993 7 0.028\n", 1471 | "1998 6 0.024\n", 1472 | "1988 5 0.020" 1473 | ] 1474 | }, 1475 | "execution_count": 228, 1476 | "metadata": {}, 1477 | "output_type": "execute_result" 1478 | } 1479 | ], 1480 | "source": [ 1481 | "year = list(df['year'])\n", 1482 | "year_dict = {x:year.count(x) for x in set(year)}\n", 1483 | "year_df = pd.DataFrame.from_dict(year_dict,orient='index')\n", 1484 | "year_df.columns = ['year_count']\n", 1485 | "new_year_df = year_df.sort_values(['year_count'],axis=0,ascending=False,inplace=False)\n", 1486 | "new_year_df['pert'] = year_df['year_count']/250\n", 1487 | "new_year_df[:20]" 1488 | ] 1489 | }, 1490 | { 1491 | "cell_type": "code", 1492 | "execution_count": 146, 1493 | "metadata": {}, 1494 | "outputs": [ 1495 | { 1496 | "data": { 1497 | "text/html": [ 1498 | "
\n", 1499 | "\n", 1512 | "\n", 1513 | " \n", 1514 | " \n", 1515 | " \n", 1516 | " \n", 1517 | " \n", 1518 | " \n", 1519 | " \n", 1520 | " \n", 1521 | " \n", 1522 | " \n", 1523 | " \n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | " \n", 1532 | " \n", 1533 | " \n", 1534 | " \n", 1535 | " \n", 1536 | " \n", 1537 | " \n", 1538 | " \n", 1539 | " \n", 1540 | " \n", 1541 | " \n", 1542 | " \n", 1543 | " \n", 1544 | " \n", 1545 | " \n", 1546 | " \n", 1547 | " \n", 1548 | " \n", 1549 | " \n", 1550 | " \n", 1551 | " \n", 1552 | " \n", 1553 | " \n", 1554 | " \n", 1555 | " \n", 1556 | " \n", 1557 | " \n", 1558 | " \n", 1559 | " \n", 1560 | " \n", 1561 | " \n", 1562 | " \n", 1563 | " \n", 1564 | " \n", 1565 | " \n", 1566 | " \n", 1567 | " \n", 1568 | " \n", 1569 | " \n", 1570 | " \n", 1571 | " \n", 1572 | " \n", 1573 | " \n", 1574 | " \n", 1575 | " \n", 1576 | " \n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | " \n", 1581 | " \n", 1582 | " \n", 1583 | " \n", 1584 | " \n", 1585 | " \n", 1586 | " \n", 1587 | " \n", 1588 | " \n", 1589 | " \n", 1590 | " \n", 1591 | " \n", 1592 | " \n", 1593 | " \n", 1594 | " \n", 1595 | " \n", 1596 | " \n", 1597 | " \n", 1598 | " \n", 1599 | " \n", 1600 | " \n", 1601 | " \n", 1602 | " \n", 1603 | " \n", 1604 | " \n", 1605 | " \n", 1606 | " \n", 1607 | " \n", 1608 | " \n", 1609 | " \n", 1610 | " \n", 1611 | " \n", 1612 | " \n", 1613 | " \n", 1614 | " \n", 1615 | " \n", 1616 | " \n", 1617 | " \n", 1618 | " \n", 1619 | " \n", 1620 | " \n", 1621 | " \n", 1622 | " \n", 1623 | " \n", 1624 | " \n", 1625 | " \n", 1626 | " \n", 1627 | " \n", 1628 | " \n", 1629 | " \n", 1630 | " \n", 1631 | " \n", 1632 | " \n", 1633 | " \n", 1634 | " \n", 1635 | " \n", 1636 | " \n", 1637 | " \n", 1638 | " \n", 1639 | " \n", 1640 | " \n", 1641 | " \n", 1642 | " \n", 1643 | " \n", 1644 | " \n", 1645 | " \n", 1646 | " \n", 1647 | " \n", 1648 | " \n", 1649 | " \n", 1650 | " \n", 1651 | " \n", 1652 | " \n", 1653 | " \n", 1654 | " \n", 1655 | " \n", 1656 | " \n", 1657 | " \n", 1658 | " \n", 1659 | " \n", 1660 | " \n", 1661 | " \n", 1662 | " \n", 1663 | " \n", 1664 | " \n", 1665 | " \n", 1666 | " \n", 1667 | " \n", 1668 | " \n", 1669 | " \n", 1670 | " \n", 1671 | " \n", 1672 | " \n", 1673 | " \n", 1674 | " \n", 1675 | " \n", 1676 | " \n", 1677 | " \n", 1678 | " \n", 1679 | " \n", 1680 | " \n", 1681 | " \n", 1682 | " \n", 1683 | " \n", 1684 | " \n", 1685 | " \n", 1686 | " \n", 1687 | " \n", 1688 | " \n", 1689 | " \n", 1690 | " \n", 1691 | " \n", 1692 | " \n", 1693 | " \n", 1694 | " \n", 1695 | " \n", 1696 | " \n", 1697 | " \n", 1698 | " \n", 1699 | " \n", 1700 | " \n", 1701 | " \n", 1702 | " \n", 1703 | " \n", 1704 | " \n", 1705 | " \n", 1706 | " \n", 1707 | " \n", 1708 | " \n", 1709 | " \n", 1710 | " \n", 1711 | " \n", 1712 | " \n", 1713 | " \n", 1714 | " \n", 1715 | " \n", 1716 | " \n", 1717 | " \n", 1718 | " \n", 1719 | " \n", 1720 | " \n", 1721 | " \n", 1722 | " \n", 1723 | " \n", 1724 | " \n", 1725 | " \n", 1726 | " \n", 1727 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
8克里斯托弗·诺兰盗梦空间99.27648811483539104.04.6270.601201011-2
26罗伯·莱纳怦然心动278.9546851902435127.04.4530.685201057-30
78姜文让子弹飞798.76112131322648997.04.3340.76920104930
85马丁·斯科塞斯禁闭岛868.63502771381510744.04.3130.7042010108-22
91中岛哲也告白928.73337041061444270.04.3280.7762010129-37
107迪恩·德布洛斯驯龙高手1088.7276513981197024.04.3290.70520107236
116皮埃尔·科凡神偷奶爸1178.5362011951541080.04.2570.7182010132-15
117罗启锐岁月神偷1188.62995181171290323.04.3080.7392010181-63
120米林宏昌借东西的小人阿莉埃蒂1218.720971394909525.04.3370.70620109823
134达伦·阿伦诺夫斯基黑天鹅1358.54040171081715860.04.2470.7252010204-69
148李·昂克里奇玩具总动员31498.7186117103814075.04.3740.7182010188-39
217普特鹏·普罗萨卡·那·萨克那卡林初恋这件小事2188.34358951181798502.04.1260.816201018632
228汤姆·霍珀国王的演讲2298.33217731181334392.04.1470.712201017851
\n", 1728 | "
" 1729 | ], 1730 | "text/plain": [ 1731 | " director movie_name rank score score_num time total_stars \\\n", 1732 | "8 克里斯托弗·诺兰 盗梦空间 9 9.2 764881 148 3539104.0 \n", 1733 | "26 罗伯·莱纳 怦然心动 27 8.9 546851 90 2435127.0 \n", 1734 | "78 姜文 让子弹飞 79 8.7 611213 132 2648997.0 \n", 1735 | "85 马丁·斯科塞斯 禁闭岛 86 8.6 350277 138 1510744.0 \n", 1736 | "91 中岛哲也 告白 92 8.7 333704 106 1444270.0 \n", 1737 | "107 迪恩·德布洛斯 驯龙高手 108 8.7 276513 98 1197024.0 \n", 1738 | "116 皮埃尔·科凡 神偷奶爸 117 8.5 362011 95 1541080.0 \n", 1739 | "117 罗启锐 岁月神偷 118 8.6 299518 117 1290323.0 \n", 1740 | "120 米林宏昌 借东西的小人阿莉埃蒂 121 8.7 209713 94 909525.0 \n", 1741 | "134 达伦·阿伦诺夫斯基 黑天鹅 135 8.5 404017 108 1715860.0 \n", 1742 | "148 李·昂克里奇 玩具总动员3 149 8.7 186117 103 814075.0 \n", 1743 | "217 普特鹏·普罗萨卡·那·萨克那卡林 初恋这件小事 218 8.3 435895 118 1798502.0 \n", 1744 | "228 汤姆·霍珀 国王的演讲 229 8.3 321773 118 1334392.0 \n", 1745 | "\n", 1746 | " wa_star wa_star_std year order diff \n", 1747 | "8 4.627 0.601 2010 11 -2 \n", 1748 | "26 4.453 0.685 2010 57 -30 \n", 1749 | "78 4.334 0.769 2010 49 30 \n", 1750 | "85 4.313 0.704 2010 108 -22 \n", 1751 | "91 4.328 0.776 2010 129 -37 \n", 1752 | "107 4.329 0.705 2010 72 36 \n", 1753 | "116 4.257 0.718 2010 132 -15 \n", 1754 | "117 4.308 0.739 2010 181 -63 \n", 1755 | "120 4.337 0.706 2010 98 23 \n", 1756 | "134 4.247 0.725 2010 204 -69 \n", 1757 | "148 4.374 0.718 2010 188 -39 \n", 1758 | "217 4.126 0.816 2010 186 32 \n", 1759 | "228 4.147 0.712 2010 178 51 " 1760 | ] 1761 | }, 1762 | "execution_count": 146, 1763 | "metadata": {}, 1764 | "output_type": "execute_result" 1765 | } 1766 | ], 1767 | "source": [ 1768 | "df[df.year==2010]" 1769 | ] 1770 | }, 1771 | { 1772 | "cell_type": "code", 1773 | "execution_count": 147, 1774 | "metadata": {}, 1775 | "outputs": [ 1776 | { 1777 | "data": { 1778 | "text/html": [ 1779 | "
\n", 1780 | "\n", 1793 | "\n", 1794 | " \n", 1795 | " \n", 1796 | " \n", 1797 | " \n", 1798 | " \n", 1799 | " \n", 1800 | " \n", 1801 | " \n", 1802 | " \n", 1803 | " \n", 1804 | " \n", 1805 | " \n", 1806 | " \n", 1807 | " \n", 1808 | " \n", 1809 | " \n", 1810 | " \n", 1811 | " \n", 1812 | " \n", 1813 | " \n", 1814 | " \n", 1815 | " \n", 1816 | " \n", 1817 | " \n", 1818 | " \n", 1819 | " \n", 1820 | " \n", 1821 | " \n", 1822 | " \n", 1823 | " \n", 1824 | " \n", 1825 | " \n", 1826 | " \n", 1827 | " \n", 1828 | " \n", 1829 | " \n", 1830 | " \n", 1831 | " \n", 1832 | " \n", 1833 | " \n", 1834 | " \n", 1835 | " \n", 1836 | " \n", 1837 | " \n", 1838 | " \n", 1839 | " \n", 1840 | " \n", 1841 | " \n", 1842 | " \n", 1843 | " \n", 1844 | " \n", 1845 | " \n", 1846 | " \n", 1847 | " \n", 1848 | " \n", 1849 | " \n", 1850 | " \n", 1851 | " \n", 1852 | " \n", 1853 | " \n", 1854 | " \n", 1855 | " \n", 1856 | " \n", 1857 | " \n", 1858 | " \n", 1859 | " \n", 1860 | " \n", 1861 | " \n", 1862 | " \n", 1863 | " \n", 1864 | " \n", 1865 | " \n", 1866 | " \n", 1867 | " \n", 1868 | " \n", 1869 | " \n", 1870 | " \n", 1871 | " \n", 1872 | " \n", 1873 | " \n", 1874 | " \n", 1875 | " \n", 1876 | " \n", 1877 | " \n", 1878 | " \n", 1879 | " \n", 1880 | " \n", 1881 | " \n", 1882 | " \n", 1883 | " \n", 1884 | " \n", 1885 | " \n", 1886 | " \n", 1887 | " \n", 1888 | " \n", 1889 | " \n", 1890 | " \n", 1891 | " \n", 1892 | " \n", 1893 | " \n", 1894 | " \n", 1895 | " \n", 1896 | " \n", 1897 | " \n", 1898 | " \n", 1899 | " \n", 1900 | " \n", 1901 | " \n", 1902 | " \n", 1903 | " \n", 1904 | " \n", 1905 | " \n", 1906 | " \n", 1907 | " \n", 1908 | " \n", 1909 | " \n", 1910 | " \n", 1911 | " \n", 1912 | " \n", 1913 | " \n", 1914 | " \n", 1915 | " \n", 1916 | " \n", 1917 | " \n", 1918 | " \n", 1919 | " \n", 1920 | " \n", 1921 | " \n", 1922 | " \n", 1923 | " \n", 1924 | " \n", 1925 | " \n", 1926 | " \n", 1927 | " \n", 1928 | " \n", 1929 | " \n", 1930 | " \n", 1931 | " \n", 1932 | " \n", 1933 | " \n", 1934 | " \n", 1935 | " \n", 1936 | " \n", 1937 | " \n", 1938 | " \n", 1939 | " \n", 1940 | " \n", 1941 | " \n", 1942 | " \n", 1943 | " \n", 1944 | " \n", 1945 | " \n", 1946 | " \n", 1947 | " \n", 1948 | " \n", 1949 | " \n", 1950 | " \n", 1951 | " \n", 1952 | " \n", 1953 | " \n", 1954 | " \n", 1955 | " \n", 1956 | " \n", 1957 | " \n", 1958 | " \n", 1959 | " \n", 1960 | " \n", 1961 | " \n", 1962 | " \n", 1963 | " \n", 1964 | " \n", 1965 | " \n", 1966 | " \n", 1967 | " \n", 1968 | " \n", 1969 | " \n", 1970 | " \n", 1971 | " \n", 1972 | " \n", 1973 | " \n", 1974 | " \n", 1975 | " \n", 1976 | " \n", 1977 | " \n", 1978 | " \n", 1979 | " \n", 1980 | " \n", 1981 | " \n", 1982 | " \n", 1983 | " \n", 1984 | " \n", 1985 | " \n", 1986 | " \n", 1987 | " \n", 1988 | " \n", 1989 | " \n", 1990 | " \n", 1991 | " \n", 1992 | " \n", 1993 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
0弗兰克·德拉邦特肖申克的救赎19.68750721424196845.04.7960.469199410
2吕克·贝松这个杀手不太冷39.48366191103929599.04.6970.55119949-6
3罗伯特·泽米吉斯阿甘正传49.47131801423351946.04.7000.555199440
35张艺谋活着369.12658091321203317.04.5270.642199468-32
55李安饮食男女569.0193303124873922.04.5210.632199495-39
57罗杰·阿勒斯狮子王588.9278222891234749.04.4380.67819942038
65昆汀·塔伦蒂诺低俗小说668.73291021541438175.04.3700.739199494-28
80姜文阳光灿烂的日子818.72647971341155838.04.3650.69619947110
83王家卫重庆森林848.63216981021389735.04.3200.73919943648
121爱德华·兹威克燃情岁月1228.8145827133637993.04.3750.7421994215-93
127王家卫东邪西毒1288.62416681001034339.04.2800.7901994243-115
244尼尔·乔丹夜访吸血鬼2458.3189233123784370.04.1450.77819942441
\n", 1994 | "
" 1995 | ], 1996 | "text/plain": [ 1997 | " director movie_name rank score score_num time total_stars wa_star \\\n", 1998 | "0 弗兰克·德拉邦特 肖申克的救赎 1 9.6 875072 142 4196845.0 4.796 \n", 1999 | "2 吕克·贝松 这个杀手不太冷 3 9.4 836619 110 3929599.0 4.697 \n", 2000 | "3 罗伯特·泽米吉斯 阿甘正传 4 9.4 713180 142 3351946.0 4.700 \n", 2001 | "35 张艺谋 活着 36 9.1 265809 132 1203317.0 4.527 \n", 2002 | "55 李安 饮食男女 56 9.0 193303 124 873922.0 4.521 \n", 2003 | "57 罗杰·阿勒斯 狮子王 58 8.9 278222 89 1234749.0 4.438 \n", 2004 | "65 昆汀·塔伦蒂诺 低俗小说 66 8.7 329102 154 1438175.0 4.370 \n", 2005 | "80 姜文 阳光灿烂的日子 81 8.7 264797 134 1155838.0 4.365 \n", 2006 | "83 王家卫 重庆森林 84 8.6 321698 102 1389735.0 4.320 \n", 2007 | "121 爱德华·兹威克 燃情岁月 122 8.8 145827 133 637993.0 4.375 \n", 2008 | "127 王家卫 东邪西毒 128 8.6 241668 100 1034339.0 4.280 \n", 2009 | "244 尼尔·乔丹 夜访吸血鬼 245 8.3 189233 123 784370.0 4.145 \n", 2010 | "\n", 2011 | " wa_star_std year order diff \n", 2012 | "0 0.469 1994 1 0 \n", 2013 | "2 0.551 1994 9 -6 \n", 2014 | "3 0.555 1994 4 0 \n", 2015 | "35 0.642 1994 68 -32 \n", 2016 | "55 0.632 1994 95 -39 \n", 2017 | "57 0.678 1994 20 38 \n", 2018 | "65 0.739 1994 94 -28 \n", 2019 | "80 0.696 1994 71 10 \n", 2020 | "83 0.739 1994 36 48 \n", 2021 | "121 0.742 1994 215 -93 \n", 2022 | "127 0.790 1994 243 -115 \n", 2023 | "244 0.778 1994 244 1 " 2024 | ] 2025 | }, 2026 | "execution_count": 147, 2027 | "metadata": {}, 2028 | "output_type": "execute_result" 2029 | } 2030 | ], 2031 | "source": [ 2032 | "df[df.year==1994]" 2033 | ] 2034 | }, 2035 | { 2036 | "cell_type": "code", 2037 | "execution_count": 155, 2038 | "metadata": { 2039 | "scrolled": false 2040 | }, 2041 | "outputs": [ 2042 | { 2043 | "data": { 2044 | "text/html": [ 2045 | "
\n", 2046 | "\n", 2059 | "\n", 2060 | " \n", 2061 | " \n", 2062 | " \n", 2063 | " \n", 2064 | " \n", 2065 | " \n", 2066 | " \n", 2067 | " \n", 2068 | " \n", 2069 | " \n", 2070 | " \n", 2071 | " \n", 2072 | " \n", 2073 | " \n", 2074 | " \n", 2075 | " \n", 2076 | " \n", 2077 | " \n", 2078 | " \n", 2079 | " \n", 2080 | " \n", 2081 | " \n", 2082 | " \n", 2083 | " \n", 2084 | " \n", 2085 | " \n", 2086 | " \n", 2087 | " \n", 2088 | " \n", 2089 | " \n", 2090 | " \n", 2091 | " \n", 2092 | " \n", 2093 | " \n", 2094 | " \n", 2095 | " \n", 2096 | " \n", 2097 | " \n", 2098 | " \n", 2099 | " \n", 2100 | " \n", 2101 | " \n", 2102 | " \n", 2103 | " \n", 2104 | " \n", 2105 | " \n", 2106 | " \n", 2107 | " \n", 2108 | " \n", 2109 | " \n", 2110 | " \n", 2111 | " \n", 2112 | " \n", 2113 | " \n", 2114 | " \n", 2115 | " \n", 2116 | " \n", 2117 | " \n", 2118 | " \n", 2119 | " \n", 2120 | " \n", 2121 | " \n", 2122 | " \n", 2123 | " \n", 2124 | " \n", 2125 | " \n", 2126 | " \n", 2127 | " \n", 2128 | " \n", 2129 | " \n", 2130 | " \n", 2131 | " \n", 2132 | " \n", 2133 | " \n", 2134 | " \n", 2135 | " \n", 2136 | " \n", 2137 | " \n", 2138 | " \n", 2139 | " \n", 2140 | " \n", 2141 | " \n", 2142 | " \n", 2143 | " \n", 2144 | " \n", 2145 | " \n", 2146 | " \n", 2147 | " \n", 2148 | " \n", 2149 | " \n", 2150 | " \n", 2151 | " \n", 2152 | " \n", 2153 | " \n", 2154 | " \n", 2155 | " \n", 2156 | " \n", 2157 | " \n", 2158 | " \n", 2159 | " \n", 2160 | " \n", 2161 | " \n", 2162 | " \n", 2163 | " \n", 2164 | " \n", 2165 | " \n", 2166 | " \n", 2167 | " \n", 2168 | " \n", 2169 | " \n", 2170 | " \n", 2171 | " \n", 2172 | " \n", 2173 | " \n", 2174 | " \n", 2175 | " \n", 2176 | " \n", 2177 | " \n", 2178 | " \n", 2179 | " \n", 2180 | " \n", 2181 | " \n", 2182 | " \n", 2183 | " \n", 2184 | " \n", 2185 | " \n", 2186 | " \n", 2187 | " \n", 2188 | " \n", 2189 | " \n", 2190 | " \n", 2191 | " \n", 2192 | " \n", 2193 | " \n", 2194 | " \n", 2195 | " \n", 2196 | " \n", 2197 | " \n", 2198 | " \n", 2199 | " \n", 2200 | " \n", 2201 | " \n", 2202 | " \n", 2203 | " \n", 2204 | " \n", 2205 | " \n", 2206 | " \n", 2207 | " \n", 2208 | " \n", 2209 | " \n", 2210 | " \n", 2211 | " \n", 2212 | " \n", 2213 | " \n", 2214 | " \n", 2215 | " \n", 2216 | " \n", 2217 | " \n", 2218 | " \n", 2219 | " \n", 2220 | " \n", 2221 | " \n", 2222 | " \n", 2223 | " \n", 2224 | " \n", 2225 | " \n", 2226 | " \n", 2227 | " \n", 2228 | " \n", 2229 | " \n", 2230 | " \n", 2231 | " \n", 2232 | " \n", 2233 | " \n", 2234 | " \n", 2235 | " \n", 2236 | " \n", 2237 | " \n", 2238 | " \n", 2239 | " \n", 2240 | " \n", 2241 | " \n", 2242 | " \n", 2243 | " \n", 2244 | " \n", 2245 | " \n", 2246 | " \n", 2247 | " \n", 2248 | " \n", 2249 | " \n", 2250 | " \n", 2251 | " \n", 2252 | " \n", 2253 | " \n", 2254 | " \n", 2255 | " \n", 2256 | " \n", 2257 | " \n", 2258 | " \n", 2259 | "
directormovie_namerankscorescore_numtimetotal_starswa_starwa_star_stdyearorderdiff
11拉吉库马尔·希拉尼三傻大闹宝莱坞129.16754241713085336.04.5680.687200927-15
12拉斯·霍尔斯道姆忠犬八公的故事139.2456513932103611.04.6080.625200922-9
37彼特·道格特飞屋环游记388.9496926962208836.04.4450.6772009126-88
40路易·西霍尤斯海豚湾419.318126092839415.04.6310.6502009206-165
74亚当·艾略特玛丽和马克思758.9230061801023541.04.4490.70520094035
98詹姆斯·卡梅隆阿凡达998.65166581622221112.04.2990.7852009222-123
111雅克·贝汉海洋1129.097371104438656.04.5050.67120093973
178克里斯托弗·史密斯恐怖游轮1798.3303107991261228.04.1610.7862009211-32
182理查德·柯蒂斯海盗电台1838.6160607116692376.04.3110.7962009240-57
216昆汀·塔伦蒂诺无耻混蛋2178.4213168153896158.04.2040.759200982135
236洛朗·蒂拉尔巴黎淘气帮2378.610130792436835.04.3120.70720092361
241邓肯·琼斯月球2428.513587897576122.04.2400.7192009250-8
\n", 2260 | "
" 2261 | ], 2262 | "text/plain": [ 2263 | " director movie_name rank score score_num time total_stars wa_star \\\n", 2264 | "11 拉吉库马尔·希拉尼 三傻大闹宝莱坞 12 9.1 675424 171 3085336.0 4.568 \n", 2265 | "12 拉斯·霍尔斯道姆 忠犬八公的故事 13 9.2 456513 93 2103611.0 4.608 \n", 2266 | "37 彼特·道格特 飞屋环游记 38 8.9 496926 96 2208836.0 4.445 \n", 2267 | "40 路易·西霍尤斯 海豚湾 41 9.3 181260 92 839415.0 4.631 \n", 2268 | "74 亚当·艾略特 玛丽和马克思 75 8.9 230061 80 1023541.0 4.449 \n", 2269 | "98 詹姆斯·卡梅隆 阿凡达 99 8.6 516658 162 2221112.0 4.299 \n", 2270 | "111 雅克·贝汉 海洋 112 9.0 97371 104 438656.0 4.505 \n", 2271 | "178 克里斯托弗·史密斯 恐怖游轮 179 8.3 303107 99 1261228.0 4.161 \n", 2272 | "182 理查德·柯蒂斯 海盗电台 183 8.6 160607 116 692376.0 4.311 \n", 2273 | "216 昆汀·塔伦蒂诺 无耻混蛋 217 8.4 213168 153 896158.0 4.204 \n", 2274 | "236 洛朗·蒂拉尔 巴黎淘气帮 237 8.6 101307 92 436835.0 4.312 \n", 2275 | "241 邓肯·琼斯 月球 242 8.5 135878 97 576122.0 4.240 \n", 2276 | "\n", 2277 | " wa_star_std year order diff \n", 2278 | "11 0.687 2009 27 -15 \n", 2279 | "12 0.625 2009 22 -9 \n", 2280 | "37 0.677 2009 126 -88 \n", 2281 | "40 0.650 2009 206 -165 \n", 2282 | "74 0.705 2009 40 35 \n", 2283 | "98 0.785 2009 222 -123 \n", 2284 | "111 0.671 2009 39 73 \n", 2285 | "178 0.786 2009 211 -32 \n", 2286 | "182 0.796 2009 240 -57 \n", 2287 | "216 0.759 2009 82 135 \n", 2288 | "236 0.707 2009 236 1 \n", 2289 | "241 0.719 2009 250 -8 " 2290 | ] 2291 | }, 2292 | "execution_count": 155, 2293 | "metadata": {}, 2294 | "output_type": "execute_result" 2295 | } 2296 | ], 2297 | "source": [ 2298 | "df[df.year==2009]" 2299 | ] 2300 | }, 2301 | { 2302 | "cell_type": "code", 2303 | "execution_count": 231, 2304 | "metadata": {}, 2305 | "outputs": [ 2306 | { 2307 | "data": { 2308 | "text/plain": [ 2309 | "" 2310 | ] 2311 | }, 2312 | "execution_count": 231, 2313 | "metadata": {}, 2314 | "output_type": "execute_result" 2315 | }, 2316 | { 2317 | "data": { 2318 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAI8CAYAAACnJdm9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYdGV9P/43QuwRxBSMDTTmY4kRNWj82svXRviixKiJ\nxp8xlhgNKgQ10ahYYglIsMcYe9cQEUvUKNgblhDbHWPDhg0RFWzw/P64z8q67O5zdnfm2d3D63Vd\ne83MOWdmPjM7+zznPXfbbceOHQEAAGA6LrTZBQAAADBbgh4AAMDECHoAAAATI+gBAABMjKAHAAAw\nMYIeAADAxOyx2QUAsLyqumqS5ya5QZJzkzy5tfYPm1vVeFV18yQnJjm2tfaQTXj+30jyz0lumf7/\n3Utaaw/Y1XVc0FTVUUnu01rba4X9N0/y9+mf6x8neX+Sx7fWPrLMsddM8vgkN0zyq0k+keRprbXj\ndlLD/kk+kuSPW2uvH1n3RZM8sLV29Jjj16Kqbp3k4UkOSHKxJJ9P8pIkR7XWfr7k2L2TPC7JHyb5\njSSfSfLU1tqrd/IcO33NVXX3JA9O8rtJvp/kfUn+rrX2P+t/dcBWpUUPYOt6SXpIeVuSZyZ5z+aW\ns2ZfSnJkkv/YpOc/Nskd009+j93EOi4wququSR66yv67JXlHkhsneUOSVya5TpL3VtUdlxx77SQf\nTnK7JG9J8i9JLpfk36rqiFWeY58kr8vav8x+V3oAnamqukf63/D1kxyX5DnDrielv5bdFh17iSRv\nT/KAJB9M/7vfK8mrqupBqzzHTl9zVT0hycuGx3t2kpPS/z4+WFX7ru/VAVvZbhZMB9iaquonSb7V\nWrvCZteyHVVVS3KVJJdorf1ks+uZuqp6SJJ/TA8b31/aoldVeyb5cpKLJ7lZa+0Dw/a901v1fj3J\nVVtrpw/b35/k95PcsLX20WHbJZN8PMnlk1y+tfbdJc9x7fQwdeVh053W0KL3pSR7rdQSuR5VdbEk\nX02ye5LrtNa+OGz/lSTHJ7l9kj9aaKGsqr9L8sQkD2qtPWvY9qtJPpBkvyT7tda+teQ5dvqaq+r6\n6cHx3Ulu31o7e9h+5ySvTfLC1tq9Z/W6ga1Bix7A1nXhJN/d6VGs5CJJfijkzVdVXbmqTkpyTJL/\nTvKdFQ69fZI9k7xgIeQlyRDsHpdk7yT/3/CYl0pyiSRvXAh5w7E/THJCkoumtwQuruOp6S2Al03y\n3lm8thm4Rfrrev5CyEuS1trPkix0w779ouP/Ksk307tsLxz7g/Twd/Ekf7r4wdfwmh84XN5vIeQN\n/i3J89K7kgITY4wesMtV1YvST+j2Tj/ZuVN6d6JPJfmH1tq/LXPsdVprn1jyODuS/Fdrbf/h9r2S\nvDDJzdPH9Nw/yT5JPpvkEa21t1bVvZMckeRK6Sc3R7bWXrfkcS+V5O+S/HF6y8F30ruZPWbxt+mL\nart+khenf6P+sSQ3aq0t212iqi6S5PAk90hvbfph+gna41trJw/HPDbJY4a7XHt4nV9ure27wmPu\nm+SL6d3OPp3kUUmunn7C+PTW2tOq6kZJnpzkukm+NdT7hMXjg0bWdt0kH03yqtbanyxTy2fS3/N9\n0n8H5xujN3Qze3SS/5feivP1JK8Z6vnBouP2SPLIJH801POT9G6YT22tvWO592K4373SPwcLt3ck\nSWttt539zqrqgOE5b5IeNL6Q3t3t6MWBcQg2l09yq/RWrNsMu96efrL+syRPTXJI+peq701yaGvt\nS6vU/Wfp3XWf2Fp71JJ9F0//fZ7SWrvRsO3C6b+vPxtex5nD8/99a+0LS+7/a+ljxP4w/bOf9M/M\ny9Pfz58vee/ukuQ+SW42PO8tlj7mIjdN8n+SHJX+Gfxs+t/zUvsNlx9cZt8pw+WNkxzTWjszybVX\neL6rDZffXLL9iPQxZ/dNctfhsXZq0d/Pwu0dSV7cWrvXcPuy6X+PByb5zeF535T+b8c3dvLwX0z/\nt+Rdy+xb+Dxdcnieq6R3TX1da+2cJceeOFzeLMk/Ldo+9jXfPsl/Lx2LN/w7df+dvAZgm9KiB2ym\nt6efgLwm/YTzmkleW1W3WfVeO/dP6SfAb0zyqiTXSvKGqjo2ydPTT4xemH7i+eqq+kXLwNC97H3p\nJ8VfTB/b9YEk90vy4eGkb6kTkvxv+rfw71wl5F00yX+mfzt/TvpYnbcnuW2S91fVwcOhJ6WPbUv6\nSeWR+eWTu5X8UfqYp0+nT0JyySRHD6/7HemB9dnp//Y/Jud9yz+6ttbax9Inh/jDoVva4te3f/pJ\n+GtXakWrqiumh7W/TA+MxyRpSR6W5F3DGKUFz0jy2CSnp49Vek36BB5vHSb0WMkn0t+z76efTB+Z\n897PBef7nQ1jxN6fPibs7cO+c4b35O1DsFrsUumflSumt4p8Jsmdhzr/Mz38vDi9xeWgJK9bPB5r\nGcelh+vzBej0sVSXTA+CC13/3pL+RckP0t+f/0j/DHykqn534Y7DZ/pDSR6S/tk4Nskr0luBnpj+\nBcBSz0gP4U9P8pFVQl6Gx67W2hGttR+vctzCZ+Iiy+zbc7i80jL7UlW7V9VvV9XT0//NeGNr7b+X\nHHZga+3GrbXPrFLDcs7I+T8vrx+e9yrpXUXvnx5gnzFc3j/JR6vqyss94ILW2mdaa09qrb1/md13\nGi4/NVxeZbg8X+taa+209IlrfmfJrp2+5mFSol9P8qmqulpVHVdVZ1TV96vqtVW130r3BbY3LXrA\nZjonyTVbaz9Kkqp6R3rgu3f65AXrdeUk12qtnTo87jeS/G16sLlea+2/hu0fTvKiJHdLP5lL+onz\n76bPvvfshQesqv+XPqbm2PTWjsXe11r7oxF1HZH+jfuLktx3USvKddNbfF5UVVdqrZ2U5KSqekyS\n01prjx35uvfPovE5VfXmJG9Ncmh+eczPs9JD7J8Or2cttZ2Z3sL1xPQWjsWtoXcbLl++So3PSW+1\nOKi19qaFjVV16FDLY5I8bGhVvV+Sd7fWbr7ouOenB8UHpgfi8xlafj8xtE7ttcL790u/s+H5XpDk\nrPTWq48N2/cY3pO7p4f/xy96jF9P8u/pY6x2DMd+Pr1F+f1J/k9r7afD45w4bL9aeiBcru4fVdVx\nSe5ZVTdorX1o0e67J/lpeohMemi7ZXpr3MMXvY6nD8/9gvRWy6RP7HHl9N/r8xcde2SSz6V/Dv5m\nSTk/S3Lj1tpZy9W6pO6xwerk4fKQ9C8iFvt/w+WeWd5JOa+16n0577O2uI43j6xj6f3OSPLYFT4v\nz0tvxVv63j0g/UuTf0lv1V2Tqrp6+uyXP0n/MiBJLjNcnrHC3c7Mkvdn5Gv+reHyculfOvxv+ufj\naulfTNy0qq7fWvvy6BcAbAta9IDN9MyFkDdYOGnZd4OPe9xCyBu8b7j8z4WQN1g4kd43+cVJ/T2T\nfGpxyEuS1tobhsc5ZAgFi/1bxrlXepA4dHGXySFUPCu9u9shIx9rOV9aMgnDwuv+UX55zM+X0lsK\n911nbS9PsiO9q9hid0nylfQJH85naA29fZI3Lw55g2cO973XcPtCSXZLcoWhq+dCPSent3z8aTZm\n6e/s4CSXTu9m+rFFz/fz9Fkkz07yF8s8zrELLbjDsR8etj9jIeQNfumztoqFk/5fvL6q+vX0rqFv\nbK19b9j8F+mB4JGL7zy8P69JckD1pQmSHvb/ctFjLxz7lfSuqb+xTB1vGRPy1ug96SH9NlX17Kq6\nYlVdpqr+Oud1d12pxfOk9K6hH0hyoyTvHCZxmZuqukJ6mH7P4pCXJK2156S/lluudcbKqrp8+r91\nF0/yt8PvIUl+ZbhcaUzpT9LHJq7VQiv5TdO/mDigtXZYa+0O6V8C/UbG9RgAthktesBmWrp20/eH\ny+W6dq3F/y65vRAmv7hk+0I3s4Xnq/TucbsP4+SWumj67HnXynkharnHPZ9h5rwrp7ck/WCZQ96b\n3qqy0rikMX7pdQ8tREnylWXG/Pw4wziqtdbWWvtyVb03yYFVdcnW2g+r6gbpXWGfslLX1fTxgbsl\nucwK7+9P04Pd5VprX6uqV6e33JxaVe9L76r4xtbap1d/G0ZZ+jvbf7g8X0htrX27+gye+1fVnq21\n7y/avd7P2kpOTA+8d6mqw4bf213T/79+afKLmScryWlJHjX8jhdbCMb7p39p8fEkH6+qS1bVHyT5\n7fQugAckuWr6Z3qpnX6m12po9fyj9PFtDxh+kv6e3Su9O/Wy4bK19otlD4YJSI5Ib1194HLHz8iK\nn4nB+9Lfw2unLyWyU1X12+ndgvdN8tzW2jGLdi9MkrK0i/CCi+S8z9danDtcnpPkoUv+LXhWeuvw\ngVV18TmEe2ATCXrAZvqlb66HE8Fk5W/1x1rpZGhnsy8uTCBxtZw3GcpylrYknL3sUb9soRXw+yvs\n//pwefERj7WS9b7u9dT2svQJSw5KHxc4ptvmwvv7B8PPSvZO8rX01tWTk/x5erfHmyd5SlWdnN6V\n7hMrPcAIS39nY96D/dPfg8XHrPc9X9bwN/Cy9K7Gt0gf63eP9NlXF1q8F7rv7ZMRn9Nh/OU/pI8r\nW/gdfi09wHw7fazeUmM+02vWWvvK0B34wCTXSJ8Y6A3D810y559gZTmPSg94B2e+QW+mf7PDRD9v\nSu/y+9z0VszFFlprV+q+eqmMe3+WWqj/S21YumJBa+3cqjol/YueK6aPPwQmQtADtrqF1qFf6mo+\nzEI4az8cLl/aWrvnjB97oaXscivsv/RwuRnLKaynttemT9Rxl6p6VfoMpf+9zAQZiy28v49vrT16\nZ0W1PgX90ekTylwxyf9N7x56myRvrKr9hmNmYfF78JFl9u/K38+L04PeXarqc+kT0Dx7UVfQhffx\nPa21m454vKPTQ8Xr0ltwTmnnrVX3mSwf9OZm6OJ6/PCToY6bDVc/PdzeO72L5pdba6csuf9Ph3G3\nl59zqTP7m62q/5vebfISWWZW1cFCD4fzTY4ydHu+aPrERWv1hfTWvJVaChe6jGrNg4kxRg/Y6hZO\nbi+xZPtVlh44Ay29JeZ6y82OWFUPqapHVdVlzn/XnTxwn8Tki0l+ZxhztdTCCfunltk3V+upbRgr\n9ub08HXL9JPh1VrzkvOm0P/95XZW1ZFV9YiqunBV7VdV/1BVfzg836mttX9trd02yTuH55vlbIEL\nrYPnm55+GJO5f5L/XTLubi5aay19rN8fDj/J0G1z2P/9JKcmuebSmU+Heu9ZVY9dNHbsT9Nbzu7S\nWjtpUci7WIZZLncyG+hMVNXlquprVbXceLCF8Z9vHS6vnmFJk2UeZ8+ctzzKLC3tcrzwmbjRCsff\ndLjPql2Jh+6yr09v+XvICiEvw7jiU5PcuKqWnp/dfLj8QNZomAn15PRu0b+9pLY90ruefje9lReY\nEEEP2OoWuhItnPBmOAl65PKHr99wQvTq9C5lhy3eN0znf1T6jKDfO9+dx3lRkoslOWY4wVp47Osm\n+ev0yTVOWOdjb9SLsvbaXpYewI9OP+F9xWpP0PqC0e9OcvuquvPifdXXkHt0ktsNYersDLNcVl/f\nb+G4C6e3QP0kfYzarLw+vYvbXw2veeH59kifDfRiGZY22EVekv46j0gPmEvXnntRetfMJy8OBVV1\njfSJbQ5LX5Yi6eMDL5pFa9tV1e4573Ul57XqzE1r7WvpX9z8yeKJVKrq+ukzrJ6SPg4z6WvtnZrk\n4Kq68aJj90hvldwjfebIWfpZFr0PQ/A6McnvD7Ns/kJV3Sc9AJ7YWvvqSg84jKd8dXrIO6y1duxK\nxw5emt5S+aBFj/Gr6f/enZ1FgX+NnjdcPr360hwLDh+e7yXLjOMFtjldN4Gt7hXpky4cUX1Nqy+k\nd93bK/1EcNb+JsPiz9XXjvtQ+onQIekngvdurZ27yv1X89T0denunuT3quqd6VO33zF9XOJdh9a1\nzbCe2t6UHgCvneRdi2YPXM390mdffG1VvSXJJ9MnFvnD9GDyV0lfN2xo+TksySer6k3pk0rcLr21\n5/GzfK9aa2dW1b3TT8rfX1X/nj4e6pbpk++8J8lTZvV8I7wyydPSW66WG4f35PTf16FJblJ9Afe9\n0rvQXiLJ3Re9Py9L/1yfXFWvT/+//7bp7/u308eMXSbJzhb/noUHp3fZ/NiwlMRl0rvjnp3knotm\nMD2nqv4i/TP2jqp6Tfo6kP83fb3NN+W8pUFm5WtJrjqMkXxba+0l6eMa35Pk2VV1SHoYvdZQx9fT\nP8+ruV/62LfTk+y1wiREn22tvWq4/tT09+PYoTvr59PXRrxykr9urX17na/thenjae+YvvTIW9L/\nju6Q3mV06TqTwARo0QO2tNbaN9O7Lb0jfWr++6avQ3bjrL9lbbXn+3b6mKij07sHHpo+6cgJSf6g\n9TXu1vvYP05y6/SWqwunzzp4y+Gxb9haO36Vu8/VemprfVH01w43d9Ztc+E+Lcn10tcf+730E/9r\np7dUHLBkRs2HDXWcmT4r4/3Sx03da8wYv7VqrR2X/rl6e3qgXDiJPyLJrXZFt81FtZye/plPelBb\nuv/s9MlaHpPeWvdX6ROcvC99HcBXLjr8kcNx5w7H3Sl9lsjbpq+HmPQT/rkblim5XXpIuk/6Z+51\nSa6/ZOmTtNYWFp1/W3pIeUB6y/FhSQ5evAzIjDw8vXvyHyf5s6GGz6V3Nf6X9Jb+B6XPVPr0JNdp\nre2s++hCt+e9038Hy/38Yk3AIZzfJL218ibpk82ckeRPWmvPXO8LGwL0H+e8ngoPSu+O/Oz09R5X\nmnAG2MZ227FjpVmwAYDNMHTH/HL6TIk32ex6ANh+tOgBwNZzn/Quw/+y2YUAsD0ZowcAW8SwSPzv\npHdn/Wz6WD0AWDMtegCwdXwrfZKUD6ePQ5vVOoEAXMBs2zF6w3TbB6TPEmZKYAAA4IJm9/TleD4y\nTJL2C9u56+YB6VMeAwAAXJDdJMl7F2/YzkHvG0ny8pe/PPvss89m1wIAALBLnXbaabn73e+eLLMW\n6nYOeuckyT777JPLX/7ym10LAADAZjnfUDaTsQAAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABM\njKAHAAAwMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAx\ngh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPoAQAATMwem10AAACwtRx0+PGr\n7j/h6IN3USWslxY9AACAiRH0AAAAJkbQAwAAmBhBDwAAYGIEPQAAgIkR9AAAACZG0AMAAJgYQQ8A\nAGBiBD0AAICJEfQAAAAmRtADAACYGEEPAABgYgQ9AACAiRH0AAAAJkbQAwAAmBhBDwAAYGIEPQAA\ngIkR9AAAACZG0AMAAJgYQQ8AAGBiBD0AAICJEfQAAAAmRtADAACYGEEPAABgYgQ9AACAiRH0AAAA\nJkbQAwAAmBhBDwAAYGIEPQAAgIkR9AAAACZG0AMAAJgYQQ8AAGBiBD0AAICJ2WMznrSqdkvywiSf\nbK0dVVUXS/KsJAekh88PJXlga+3szagPAABgO9vlLXpVdfUk70hyl0WbH5keOq+d5PeSXCzJ3+7q\n2gAAAKZgM1r0Hpjemnfqom3vTvKl1tq5SVJVH09yzU2oDQAAYNvb5UGvtfagJKmqWy3a9raF61V1\npSQPSXK/XV0bALC8gw4/ftX9Jxx98C6qhAsSn7v1896xpSZjqarrJXlPkme21t642fUAAABsR5sy\nGctyqupuSZ6d5EGttVdsdj0AAADb1ZYIelV15yRPT3Kb1trJm10PAADAdrYlgl6SJyXZLcnzq2ph\n2/taaw/cvJIAAAC2p00Leq21ey26ftXNqgMAAGBqttRkLAAAAGycoAcAADAxgh4AAMDECHoAAAAT\nI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyM\noAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGC\nHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxOyx\n2QUAADA/Bx1+/Kr7Tzj64F1UCRckPnebT4seAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQI\negAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPo\nAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAH\nAAAwMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4A\nAMDE7LEZT1pVuyV5YZJPttaOqqrdkzwtyW2Hmo5qrT13M2oDAADY7nZ5i15VXT3JO5LcZdHm+ye5\napLfTXJAkodU1fV3dW0AAABTsBldNx+Y3pr3mkXb7pTkha21n7fWvpfkVUnusQm1AQAAbHu7vOtm\na+1BSVJVt1q0+QpJvrLo9leT/N6urAsAgPM76PDjV9x3wtEH78JKYJzVPrPJBedzu1UmY1mujnN2\neRUAAAATsFWC3qlJLrvo9uXSW/UAAABYo02ZdXMZxye5d1WdkOSSSe6W5C83tyQAAIDtaasEveck\nuUqS/0py4ST/3Fp71+aWBAAAsD1tWtBrrd1r0fWfJ3nIZtUCAAAwJVtljB4AAAAzIugBAABMjKAH\nAAAwMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMSMCnpVdbF5FwIAAMBsjG3R+2xVHTLX\nSgAAAJiJsUHvEkl+MM9CAAAAmI09Rh735CRPGbpw/k+Sby09oLV2+iwLAwAAYH3GBr2HJ9kryb+v\ncszuGy8HAACAjRob9P5mrlUAAAAwM6OCXmvtxfMuBAAAgNkY26KXqrpmkpsluUiS3YbNuyW5eJIb\nttbuMPvyAAAAWKtRQa+q7pfkOenBbkfOC3pJcm6St8++NAAAANZj7PIKhyV5Y5K9kxyd5PnpSy7c\nOcmPkrx8LtUBAACwZmOD3n5Jnt1aOyPJh5LctLV2dmvtuCSPT/KQeRUIAADA2owNemcl+flw/XNJ\nrjKsqZckH05y1VkXBgAAwPqMDXrvT3KfqrpQkpbkZ0luP+y7VpIfz6E2AAAA1mFs0DsyyUFJ3tJa\n+0mS5yV5SVWdlD5m7/XzKQ8AAIC1GhX0WmsfTnL1JMcMmw5L8tT0Lp1PiTF6AAAAW8bodfRaa19J\n8pXh+rlJHjevogAAAFi/tSyYvl+SRya5VZJ9ktwoyT2SfLq19vz5lAcAAMBajeq6WVX7J/l4khsn\nOSHJhYdduyX556r6s/mUBwAAwFqNnYzlmCQfSHKN9PF5uyVJa+2hSZ6b5PC5VAcAAMCajQ16N0jy\njGFs3o4l+14b6+gBAABsGWOD3pnp4/KWc8VhPwAAAFvA2KD32iRPqqpbZOi2mWRHVf1OksfEOnoA\nAABbxtig9/Akn0zyjiTfG7a9Ocmnk3x72A8AAMAWMGp5hdbaWUluVVW3TXLzJJdJ8v0k701ywjB2\nDwBgWQcdfvyq+084+uBJPz/b02Z+bnxmN89U3vtRQa+qHpjkFa21tyZ563xLAgAAYCPGdt18YpJv\nVNXrq+qQqrrwTu8BAADAphgb9H4zyZ+lL63wiiSnVdU/V9WN51YZAAAA6zJ2jN5P0mfefG1V7Z3k\nj5MckuTtVfWNJC9N8pLW2ufnVikAAACjjG3R+4XW2ulJ3pDkhCSfSLJvkr9O8j9VdXxVXW6mFQIA\nALAmo4NeVe1VVfetqncmOTXJY5N8PMkNW2t7J7lhkmsm+bd5FAoAAMA4Y2fdfEOS26Qvlv4fSe6a\nvqzCzxaOaa19uKpeluSh8ygUAACAcUYFvSS/leRh6UssfGeV405I8s4NVwUAAMC6jZ2M5fdHHvfR\njZUDAADARq15MhYAAAC2NkEPAABgYgQ9AACAiRH0AAAAJmbsrJupqr2SXKK19rWqukiSQ5NcMclx\nrbUT51UgAAAAazOqRa+qbpq+SPqhw6bnJXlSkgOTvL2q7jKf8gAAAFirsV03n5Dk/UmeVlWXTnK3\nJEe31q6c5Jgkfzen+gAAAFijsUHvekn+sbX2zSR3SO/y+fJh3xuT1BxqAwAAYB3GBr2zklxkuH5g\nkm+01k4Zbl8hyemzLgwAAID1GTsZy4lJHldV10py5yTPTJKqulOSJyZ523zKAwAAYK3Gtuj9dZIz\nkjw2yUlJHjds/6ckn0tyxKwLAwAAYH1GtegNY/Nuvcyu67bWvjvbkgAAANiIFYNeVV03yWdaa2cP\n11c67kpJ0lr72BzqAwAAYI1Wa9E7OckfJPnwcH3HCsftNuzbfbalAQAAsB6rBb1bJPn0ousAAABs\nAysGvdbau5a7DgAAwNY2dnmFVNWB6S17e+X8s3XuaK39xSwLAwAAYH1GBb2q+rskT0jyvSRfTXLu\nkkNWGr8HAADALja2Re+BSZ6X5IGttXPmWA8AAAAbNHbB9L2SvErIAwAA2PrGBr2TktxkjnUAAAAw\nI6stmH7IopvvTPKEqtonyQeSnLX0+NbacbMvDwAAgLVabYze65bZ9oDhZykLpgMAAGwRqwW9/XZZ\nFQAAAMzMagumf3nhelU9OsnzW2tfX3pcVV0pyeFJDt1IIVV1pyRHpi/d8L0k92mtfX4jjwkAAHBB\ntNoYvb2Hq7sleUyS91fVj5c59DZJ7psNBL2quliSlyW5dmvtf6vqoUmenuTA9T4mAADABdVqXTdf\nnh7iFrx1lWNX2zfG7umBcs/h9iWTLBcqAQAA2InVgt59ktw6PYC9IMkTkiztSnlOkjOSvGMjRbTW\nflhVf5neavjd9OB3o408JgDAVnDQ4cevuv+Eow+e6/0303aufRZWe/1Tf+1svtXG6H0tyYuTpKp2\nJHlja+1HHMZ3AAAgAElEQVS78yiiqq6V5NFJrtFa+3xVHZrk36pq/9bajnk8JwAAwFSt1qL3C621\nF8+5jtsmed+iyVeeleSYJJdJ8p05PzcAAMCkXGizCxh8LMnNquo3h9t3TPLF1pqQBwAAsEajWvTm\nrbX2zqr6xyQnVdVPk5yeRMdlAACAddgSQS9JWmvPSu+yCQAAwAZsla6bAAAAzMioFr2qulD6ouh3\nSHKJnD8g7mit3WrGtQEAALAOY7tuHp3kwUk+nuSrSc6dW0UAAABsyNigd48kR7bWjpxnMQAAAGzc\n2DF6F0ny7nkWAgAAwGyMDXpvSl/bDgAAgC1ubNfN/0hyTFVdOcmHkpy1ZP+O1toxM60MAACAdRkb\n9F44XB44/Cy1I4mgBwAAsAWMCnqtNevtAQAAbBMCHAAAwMSs2KJXVWcmuUVr7aNV9YP07pkraq1d\natbFAQAAsHardd08Osk3Fl1fNegBAACwNawY9BYvjt5ae+wuqQYAAIANM0YPAABgYgQ9AACAiRH0\nAAAAJkbQAwAAmJhRC6Yvp6oOSHLFJCe21k6fXUkAAABsxKgWvaq6YlW9r6oeM9w+IskHk7w2yeeq\n6jpzrBEAAIA1GNt186gkv5nknVV14SR/m+SEJPsm+VCSf5xLdQAAAKzZ2KB3qyRHtNbek+SWSfZM\ncmxr7dQk/5TkBnOqDwAAgDUaG/R+JcnCOLwDk/wwyXsW7fvpjOsCAABgncZOxvLxJPetqh8nuVuS\nN7fWfl5Vl0ny8CQnz6tAAAAA1mZs0HtYkjcl+dP0lr3HDds/PVzebsZ1AQAAsE6jum621j6U5MpJ\nbphk39baZ4Zd90xytdbax+dUHwAAAGs0eh291tqZVXVKkutX1WWTvLVvbt+bW3UAAACs2djJWFJV\nhyf5RpITk7w8yX5Jnl1V76mqPedUHwAAAGs0dsH0ByV5cvp6etdPstuw69gkleQJc6kOAACANRvb\noveQJEe21p6QPgNnkqS19tYkf5fkTnOoDQAAgHUYG/Qun+SDK+z7QpLLzKYcAAAANmps0PufJAet\nsO9WST43m3IAAADYqLGzbj4pycuraq8kb06yI8kBVXVIksOT/OWc6gMAZuCgw49fdf8JRx+8iyoB\nYFcYu47eK5P8eXrr3SvTJ2N5TpL7Jzm8tfaieRUIAADA2oxeXqG19uIkV0hy9SQ3TnKtJPu01p41\np9oAAABYhxW7blbV3knOaK2dO1xf8O3hJ0n2rKokSWvt9LlVCQAAwGirjdH7dpIbJvlwku+kj8tb\nze6zKgoAAID1Wy3o3TvJ54frf74LagEAAGAGVgx6w5i8Bae21k7cBfUAAACwQWOXV3hHVX09yauT\nvLK1dvIcawIAAGADxga9ayW5a5I7J3loVf1vklelh77PzKs4AAAA1m7sOnqfaq09urV2jST7J3lN\nkrsk+WRVfbyqjphnkQAAAIw3eh29Ba21U1prj0py2yTPTfK7SZ4868IAAABYn7FdN5MkVbVfkj8e\nfq6b5KtJjknyitmXBgAAwHqMCnpV9Yj08XnXSXJ6ktclOby19u451gYAAMA6jG3Re2SSNyR5TJK3\nttZ+Pr+SAAAA2IixQe83Wmtnz7USAAAAZmJU0GutnV1V10zy2CQ3S3KpJN9N8t4kT2ytnTK3CgEA\nAFiTUbNuVtX1knw4yQFJXpbehfM1SW6Q5IPDfgAAALaAsV03n5rkg0lu11r72cLGqnp4krck+Yf0\n5RYAAADYZGPX0fuDJE9bHPKSpLX20/TlFW4468IAAABYn7FB7/T0cXnLuVQSs3ACAABsEWOD3n8k\neUJV1eKNw+3HD/sBAADYAsaO0XtEkg8k+WRVfSrJN5P8ZpJrJjk1yd/MpzwAAADWalSLXmvtu0mu\nk+SwJP8z3K8Nt6/dWvv63CoEAABgTca26KW19qMkzxh+AAAA2KJGBb2qumiSB6evm7fXMofsaK3d\napaFAQAAsD5jW/T+JcmfJnlfku/OrxwAAAA2amzQOyjJQ1trT59nMQAAAGzc2OUVvp/kc/MsBAAA\ngNkYG/T+Icmjq+ry8ywGAACAjRvbdfP49KUUvlxV305y1pL9O1prV5lpZQAAAKzL2KD30iS/leTV\n6YulAwAAsEWNDXo3SvIXrbVXzrMYAAAANm7sGL2vJfnRPAsBAABgNsYGvccleWJV/X5V7TbPggAA\nANiYsV03D01ypSQfSrKjqpabjGXPjRRSVddK8owkeyY5J8n9W2sf3chjAgAAXBCNDXpvHH7moqou\nnuRt6eMA31xVByd5eZKrzes5AQAApmpU0GutHTnnOm6T5POttTcPt9+Q5Itzfk4AAIBJGtuiN2+/\nk+S0qvrXJNdOckaSh21uSQAAyUGHH7/q/hOOPngXVQIw3tjJWObtV5LcIcnzWmu/nz5W781VdZHN\nLQsAAGD72SpB7+tJPtta+1CStNaOT7J7kitvalUAAADb0IpBr6ruUlV776I63pJk36q63vDcN02y\nI8bpAQAArNlqLXr/mmHWy6r6QlVde15FtNZOS3LHJM+uqk8mOSbJIa21H8/rOQEAAKZqtclYzk7y\ngKq6bJJ9k9y2qq6y0sGtteM2Ukhr7d1JbrCRxwAAAGD1oPfUJE9Jcvf0bpRPXuXYHelj6gAAANhk\nK3bdbK0dleTSSfZLsluSQ4bry/2YNAUAAGCLWHUdvdbamUnOrKo/T/Ke1tp3d01ZAAAArNeoBdNb\nay+uqn2q6h+T3CzJpZJ8N8l7kxzbWvv6HGsEAABgDUato1dVv53k40nul+SrSU5M8q0kD0jyiWE/\nAAAAW8CoFr0kR6UHu1su7r5ZVb+W5G3pE7XcefblAQAAsFajWvSS3DLJkUvH6LXWvpPkicN+AAAA\ntoCxQe/sJOeusG9HxrcMAgAAMGdjg967kvx9VV168caq2jvJo4b9AAAAbAFjW+KOSPKRJF+qqhOT\nfDPJbya5RZKfpS+qDgAAwBYwqkWvtfblJNdJ8vwkv5U+Ju+yw+39W2ufmVuFAAAArMnosXWtta8l\nOXyOtQAAADADY8foAQAAsE0IegAAABMj6AEAAEzMqKBXVVeadyEAAADMxtgWvZOryhIKAAAA28DY\noPfzJGfMsxAAAABmY+zyCo9JcmxVXSXJ/yT51tIDWmsfm2VhAAAArM/YoPfc4fKfhssdi/btNtze\nfVZFAQAAsH5jg94t5loFAAAAMzMq6LXW3rVwvar2SPJrSb7TWvv5vAoDAABgfUavo1dVf1BV/5nk\nh0m+muT3quplVfWEuVUHAADAmo1dR++WSRZa9R6ZPi4vST6Z5BFVddgcagMAAGAdxrboPSXJq1tr\nt05ybIag11p7cpInJrnffMoDAABgrcYGvd9N8rLh+o4l+05McqWZVQQAAMCGjA1630pyjRX2XT3L\nrKsHAADA5hi7vMKLkzy+qr6f5C3Dtt2r6tZJHpvkBXOoDQAAgHUYG/SOTHKFJP+a87pufiB9rN5x\nSR49+9IAAABYj7Hr6J2T5M+r6ilJbpbkMkm+n+S9rbX/mmN9AAAArNHYFr0kSWvts1V1VpI9k3y7\ntXbafMoCAABgvUYHvar6qyQPT3L5Rds+l+RRrbXXzaE2APglBx1+/Kr7Tzj64F1Uyfps9/o3k/cO\nLlhW+5v39z7O2AXTH5zkmenj8u6Z5PZJ7pWkJXl1Vd11XgUCAACwNmNb9B6c5KjW2sOWbH9pVT0z\nyeOSvHqmlQEAALAuY9fR2yfJ21fYd1z6jJwAAABsAWOD3luT3H2FfbdP8q7ZlAMAAMBGrdh1s6oO\nW3Tzs0kOr6orJfn3JN9Mcukkt0ty6ySPnGeRAAAAjLfaGL2jltl2s+FnqaclOXYmFQEAALAhKwa9\n1trYbp0AAABsIcIcAADAxIxaXqGqrpK+jt4Nkuy53DGttd1nWBcAAADrNHYdvRcmuUZ62Pvu/MoB\nAABgo8YGvesl+ZPW2hvmWQwAAAAbN3aMXkvyq/MsBAAAgNkY26J3aJJ/raok+WiSs5Ye0Fo7dYZ1\nAQAAsE5jg16SXDLJS5bZvluSHUlMxgIAALAFjA16z0lyRpIjk3xzfuUAAACwUWOD3lWS3LG19rZ5\nFgMAAMDGjZ2M5ZQkV5hnIQAAAMzG2Ba9RyR5aVVdOslHkvxg6QGttY/NsjAAAADWZ2zQe+dw+dT0\niVcWMxkLAADAFjI26N0y5w94AAAAbEGjgl5r7aQ51wEAAMCMjAp6VfWCnR3TWrv3xssBAABgo8Z2\n3bzOMtsumWS/JKcnOWlWBQEAALAxY7tuLhf0UlWXS3JCkrfPsigAAADWb+w6estqrX0tyZFJ/nY2\n5QAAALBRGwp6g92T7DODxwEAAGAGxk7Gcsgymy+U5LeS/E2SD8yyKAAAANZv7GQsr1tl34eSPGAG\ntQAAADADY4Pefsts25HkzNbaGTOsBwAAgA0aO+vml+ddCAAAALMxdozehZLcN8kdklwi55/EZUdr\n7VYzrg0AAIB1GNt18+gkD07y8SRfTXLu3CoCAABgQ8YGvXskObK1duQ8i0mSqrpjkpe01i417+cC\nAACYorHr6F0kybvnWUiSVNVVkxyV2azvBwAAcIE0NlC9Kckd51lIVV08ycuSHDbP5wEAAJi6sV03\n/yPJMVV15fR1885asn9Ha+2YDdbyz8PPKRt8HAAAgAu0sUHvhcPlgcPPUjuSrDvoVdVfJfl5a+0F\nVbXveh8HAObpoMOPX3X/CUcfvIsqAcbwN8tm2Cqfu7Hr6M17zNy9kly8qj6R5MJJLjZcv0Nr7etz\nfm4AAIBJGduiN1ettesvXB9a9D7ZWtt/8yoCAADYvsxuCQAAMDFbokVvsdbal5JccrPrAAAA2K60\n6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPoAQAATIyg\nBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIe\nAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoA\nAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAE7PHZhcAwAXLQYcfv+r+E44+eBdVAgDTpUUPAABg\nYgQ9AACAiRH0AAAAJkbQAwAAmBhBDwAAYGIEPQAAgIkR9AAAACZG0AMAAJgYQQ8AAGBiBD0AAICJ\nEfQAAAAmRtADAACYGEEPAABgYgQ9AACAiRH0AAAAJkbQAwAAmBhBDwAAYGIEPQAAgIkR9AAAACZG\n0AMAAJgYQQ8AAGBiBD0AAICJEfQAAAAmRtADAACYGEEPAABgYgQ9AACAiRH0AAAAJkbQAwAAmBhB\nDwAAYGIEPQAAgIkR9AAAACZG0AMAAJiYPTa7gAVVdY8kRyTZkeSsJIe21k7e3KoAAAC2ny3RoldV\nleQfk9yutbZ/kickOW5zqwIAANietkTQS/KTJPdprX1juH1ykn2q6sKbWBMAAMC2tCW6brbWvpTk\nS0lSVbsleVqSN7TWfrqJZbGLHHT48avuP+Hogyf9/JvpgvzaL8g2+nvfzp+b7Vx7sv3rB2DnZvVv\n/ZYIeguq6hJJXpTkCklut7nVAAAAbE9bpetmquqKSd6f5Jwkt2itnbHJJQEAAGxLW6JFr6r2TvKu\nJC9qrR252fUAAABsZ1si6CV5QJIrJrlTVd1p0fZbtda+u0k1AQAAbEtbIui11p6Y5ImbXQcAAMAU\nbJkxegAAAMyGoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPoAQAA\nTIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAw\nMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDE\nCHoAAAATI+gBAABMjKAHAAAwMYIeAADAxOyx2QXMykGHH7/q/hOOPtj9t+Bzz8JmPv9mv3db+b3f\n6q99K99/q//eAYCtT4seAADAxAh6AAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyM\noAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6AAAAEyPoAQAATIygBwAAMDGC\nHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDECHoAAAATI+gBAABMjKAHAAAwMYIeAADAxAh6\nAAAAEyPoAQAATIygBwAAMDGCHgAAwMQIegAAABMj6AEAAEyMoAcAADAxgh4AAMDE7LHZBSyoqgOT\nPCnJRZKckuQvWmtnbm5VAAAA28+WaNGrql9P8sIkf9RaqyRfSPLkza0KAABge9oqLXq3SfKR1trn\nhtvPSfJfVfXA1tqOFe6ze5KcdtppSZKfnXX6qk/w1a9+ddX9F+T7b+faN/v+27n2ed9/O9e+2fff\nzrXP+/7bufbNvv92rn2z77+da5/3/bdz7Zt9/+1c+2bffzvXPuv7L2ShDNlosd127FgpR+06VfWI\nJPu21v5yuL1Hkp8l2XOl7ptVdeMk79l1VQIAAGxJN2mtvXfxhq3SordSF9JzVrnPR5LcJMk3dnIc\nAADAFO2e5LLp2eiXbJWgd2qSGyy6fbkk32ut/WilO7TWfpLkvSvtBwAAuAD4/P/f3plHTVaUZ/zH\nwLDIjCxGo4PKcvA+KjjshEVyGAQiRDaBUcMiRgIMkERDgkhYorigssgmUZTRAJqgyAAqMhyUZVgP\nDOAgnBdBZFNRQTYPCA6TP+o209PfN9+93XV7qqv7fc7p8/V3u3/3fbr6reqqe+vWHW/jQCzGAswF\ntpL0tvL/w4DLEvpxuVwul8vlcrlcrmw1ENfoAUjalXB7hRUJo9IDzWziKxFdLpfL5XK5XC6XyzVG\nAzPQc7lcLpfL5XK5XC5XMxqUqZsul8vlcrlcLpfL5WpIPtBzuVwul8vlcrlcriGTD/RcLpfL5XK5\nXC6Xa8jkAz2Xy+VyuVwul8vlGjL5QM/lcrlcLpfLNdSStIKk5SL3sVJTflyjodR556tuLkWSVipv\nyu5yZSFJKwALzaznSj2qed9E2Y2yRjVvXL3L26t6krQ88HHgAGAtYCHwGDAH+IKZvdTn+OsBs4G3\nAhcD/2lmfylfu9nMtq7gVwb+FXgSuBS4BNgE+Anw0V5uoyVpvpltWuN9p5rZUZLWAM4H/p5Qft8D\njjSzZyr4dYFzgI8BLwPfB6YDPwf2NTOr4J8GZprZ3Bofazx+TeBTwIvA54BvAdsDtwAHmdmvJ2BX\nBD4L7AO8EXgJeAC4CDi9qt553o3ZX62cK9+bNO86tUI3bx5WLa1QJdWtzEkrVAMVouf4g1YZy312\nUyFjG+JkjeHSGhNJUY1J3bxvwH9U7oyzv+iGuIuyy7rOj7O/bsoutr1M1vkp+Z6/O+/8jNnfsqxz\n2eZdZHtxJrAG8C+EXIOQe4cAXwMOqvD9/oleN7PvT/Q68N/A/wK3AycD35X0/tLzyhUswLnAqsAb\nCLk3B/hw+TgL2K/C/wKgs3zWl/Sz0v/0CfAZ5d9TgUcJZT8J+HfgPGBmhffZhDryMKEMzge+Aexd\n8n9bwT8PnCnpSuAEM3uu4v2d+kYZezXgZuBy4J8JeXQusMcE7GnAbwn17EDgvvLxSeCvgGMrYo9s\n3kXmHKTPuyU0NAO9yKSKLdSkFYr4ChETP+cfAYhviHsuuwYawqSNScqGfAAa4mzrfANll3PnB+K+\nO+/8LKmcOj+5drp3NDN1bHtQ0g3AvTV8HwZsC9wKdE4fW0QYME+k15vZuQCSdgHmAl8ifG91tIWZ\nbSjptcDDZnZ8uf3Tku6qwX8dOLqM9+vyM5xHKPu62gzYuG1AfYyk+2pwq5vZWQCS1m49By6QdHQN\n/neEvD+V8J2dDXzTzB6p6XtdM9tL0iTgcTNrxTxV0gEV7DatgzCSPgnMM7NtJe0LLKD6N2qU866J\nnIN0ebeEhmagR1xSxRZq6goVWyFi4uf+IxDbEMeUXWxD2FKqxiRlQ566Ic65zseWXc6dH4j77rzz\nk2/nJ9dO90JJa45ztvV1wF9q+N6NMDD9kpldWeP9nZosaVUz+5OZvVR6vk3SPYwd+I+n5SQtb2bP\nSjqutVHSKsDkKtjMzpB0O3A2cJSZ/UTS82Z2XY3YUyS9EXgIeD0hB5C0ek3vL0jayMzuBkzSemb2\nS0lrU6/sKc9UHyxpA8IBovmSngJ+ZWY7V+CTS6+rAWtIep2ZPSlpVaoP7EyRNLU8oLEmMKXttTqf\nfWTzLjLnYADyrl3DtBjLboARkmpGx2OHCvYFSRuVz01hegxdFOoUSVPL5z1XqHG2161Qk8uKTzl1\naF9gb0kHLYP4sbFfrYxATz8ChCPBRwPLm9m1wPNmdl3dSmlmz5jZwYROwFqEhvh+SXWm+MSUXUzO\nwtjGBOi+MSmf95L3sf57zp0GvvfYssu2zjdQdrF5E1vnWp2ft1B2fsr4dTo/EPfdxX5vyepMqZ7b\n2wGocznnXUzOnQLcJeksSUeXj9MJBwtOqTJt4RrGw4H9q967FM0GbpW0Xbm/3xPOXp4CdB70GE+X\nAjeWeXcOgKSNgRsJ048rZWY3Au8FjpV0fNX727QAuAPYgXDWFUm7AXcSDlJU6RPANZL+B3gGmKcw\n1fgWwjTeKr16MMfMfm5mhxLOpu9LmAFQpTOBXwB3AScBcyWdCPyUcFZ7Il0MXCfpBOAq4NuS3krI\nm0tqxB7pvIvIOUifd0toaM7omdmfJR1OOLrY7dGDVqH+iMWFehPhyOusGnyrQs0BdmdxhWpdA1Gl\nVoW6jDClBeBN5b4+XYNvVYhZZnaDmf1e0h6E6y5W6TH+NEKnpCp+bOxWZdy2ozLOposfAUnvBS6S\ntG0dpk1LNMTAoZJmAe8C3laD77nsypw9AjiS7nMWFjcmUwmNyd5lY3Jm+ahSVN5H1jmIzJ3I7z22\n7PpR5+vWOUhbdrHtZWyda3V+VmBx5+dywrS4qs4PxH13UW116jrD0tvb86nZ+UlY53LOu55zzszO\nl3Rbya1LOED/CLCnmS2o4Rszu4XQSexaZnaqwtneJ9u2/UzSVoRBfxV/nKQ7zGxh2+ZXgNPM7MIu\nfDwhaWfg88Bf12T2BpC0DmGABfBHYJaZ/bgGf31ZP/YGCuAHhLPZJ5VnW6o0Ji/M7BXg7vJRFf+r\nkq4iHFh5sC0PzjWz2RXscZIeBDYFvmxmFypcH3uMmV1dI/b5km4lDK5GMu/acu5kauZcyTWRdxsR\npoX3kndLyFfdLCXpzSyuzJMJhXpp3UKV9BFChbq1rUJtXqdClfyGhAr8FhZXqMvrVihJ7wF+W/6A\ntbatDxxtZofU4DcgVOiu4zcQey8zu7Tt/+nA9G5+BEpuEuFHYH8zW6sm8wkz+0I3ccbZR+d39zBw\nRd3vLlatxsTMbpP0bmBKncakZNdicWPSdd7HKjZ3yvdPIjTE+5vZtC7jr0PvZZd1nS/f3yq7/erW\nmZLrub1sqM6tw+LOz86EAfL8qs5PG9/zdxf7vcWq/N5/Y2b3tm1bpu1tW1t7wDKuc4OUdzsR8qBW\n3jXQXmwMvJlyAaBu822U+Zy9x/KxsV35a2gHeuUP37sIjeqEq7A1yTbBl/t4n5n9oBe2W17lPOjy\n+TRgZ8KqYD+2ilXYxmF3IqyIVskOA9/G/dHMXpC0KbAFcLuZ3VGTfcrMXpS0CbBlXbZBvuW9K17S\nnmY2p06cpvmUsZvgy31MgnCEtxxw/w1wp5k91G9+HHYrQoe177Fz5yVNBrYmnMl7CXigy45XtnzO\n3lPzvbKSRDjr9xrg8XJza8XXfaoGuW38qiy5gFC3fOr4XfMD8NkLwnW3KT97T95dw6OhGehJ2gK4\nAPgD8EXgm4RT4wI+ZBNcQxDDNsSPtzz1RcA/AMuZ2fw+8/PNbFOFudCXEuYwTyIMWGaa2fVdsDcR\npshUsn3ia3tvKP7+wBmEjuJmwOnAPMIP+qfM7Ov9YAeEf4WQZ7PM7PmJ3ts0nzJ2B39Y60BBl/zO\nhOlcLxCmnX2NcI+ctwOHmNkV/eJTxs6dL89+XQw8C7yTMGVyfULHfU8z+1VF7HZ+A+CaBvk9zOzh\nfsVv2Hts2Q1a2XdTdl15l3QL8F+dZz0l/R1hKteWFb5Hls/ZeyzfQOzLJ3rdzHYfVj5n7+NpmBZj\nOQM4itCY/h/wHjObQThDc3If2Sb4q4FrCTdTvKR8rEc4EvS9ZcC39BlCZ2EPM9sN2AX4cpfs7j2w\nTfK9eI+Jfyxh2tMDhBzYzsxmApsT7rfVL3YQ+HuAJ4AFkj5U4/1N8iljt/P39Mh/nnAPrg8QruPY\nrWwz3g2c2Gc+Zezc+dMJ7cSWhAU9HjKzdxLukVZncYV2fvuG+ToX+cfEb9J7bNkNWtl3U3bdep/a\n2VkHMLOrqHdd5ijzOXuP5WNjzyEsJvJDFvcr2x/DzOfsfawWLVo0FI+iKO4q/y5XFMVjHa/N7xfb\nEL9uURTziqL4aNu2O7v47LH8/PLv7eO8tqBf7DDx5fN5Ha/d0y92kPiiKLYriuKWoih+URTF8UVR\nbFMUxbR+8iljN8Tf2fb80Y7X7u4nnzJ27nyrrV/Kvuq0F9nyOXtPzUey1xdF8YFxts8siuKnNXyP\nLJ+z99SfvXzvuUVRHF/nvcPG5+y98zE0q24CL0uabmFVnlenMkramuqll2PYaN7MHlK4wP4chYvT\nZ1FvuelGeGBtSccAT0na3cwuL/3vBVTdVDaGHQb+XkmfI6y4d6XCKprfItyA+Jd9ZAeBB8DMbgC2\nkrQNYfn1cwjTkqZOCDbAp4wdyT+vsCT+GsDKknYxsysVVhT7c43QMXzK2LnzCyVtb2bXStoReBpA\n0msYF/gAAAUiSURBVGaEa3urlDOfs/fUfAz7j4RVTr9KWHwGwnV+DwAfrOF7lPmcvcfysbEhzPqZ\nWfO9w8bn7H0JDdM1ejOA7wBrWbmcqqQ9CctG71F2yBpnm+A79nUwcCjhtPvb63IxvKT3AduUjz+Y\n2T4KN3U9AtjdJrjGL4YdEn4NwuBoR+A3hGWIFwHzgb3M7LF+sAPC32lmm0z0nn7xKWM3xL8D+Aph\n+vyRhCnfqxBujLuXVV/X2zOfMnbufNnWX0LoqE8hrFT8J+BHhOux6/xWZMnn7D01Hxu73Mc02lZ6\nNbPHKxDnByB2aj42tit/Dc1AD0DSZDN7ue3/qcArVmOxhBi2Cb5jX5sAB5pZneukGufLfawGPGfh\nni/LjM2VLwdN61Mu+W0VF/Y3xabkJb3DzO7rJlZTfMrYTfDj7G8lYEPCSnzPLEs+ZewceUmvJdx3\n7X4zq3PWf2j4nL2n5iPZzQk3nn51mXzCbSXmOT+4sVPzfYo9p+7Ji5z5nL13atgGersS7gn26vLF\nwEVVZ2Vi2T7y37b6y+T3g8+57LLgc/Y+Ab9M8nZA68wyqXOx/IDmTRZ8zt5j+Zy9p+Z7ZSUdCnyM\nsHBQ+xL7HwTOM7PTnR+82Kn5nL2n5nP2Pp6GZqAn6UjCSok/JNxQdS5hGto/ASeY2Xf6wY46n7P3\n1HzO3kv+CGDXFHzK2A3xnncZ8jl798+eZ9lJuh/Y0sye7ti+OuFevarwPbJ8zt5j+Zy9p+Zz9j6e\nhun2CgcR7kfzFcL89x3M7IuEJbOP7SM76nzO3lPzOXsH+EhCPmXsJviDEvIpY+fO5+w9ls/Ze2o+\nhl0IjDel+DlqLiIzwnzO3mP5nL2n5nP2PkbDtOrmFFt8jdyLwDQAM3tCqhz8xrCjzufsPTWfs/fU\nfM7eU/M5e0/N5+w9ls/Ze2o+hp0LXCFpNvBoue1NhFUVr67he5T5nL3H8jl7T83n7H2Mhmmgd5ek\n84ALgAOAm8vTnCcR5sL3ix11Pmfvqfmcvafmc/aems/Ze2o+Z++xfM7eU/Mx7McJK2kfTujsLQ88\nAlxGWDG2SqPM5+w9ls/Ze2o+Z+9jNExTN2cBKxLuY7Uc8B+Ee1k9S2hY+8WOOp+z99R8zt5T8zl7\nT83n7D01n7P3WD5n76n5GHZj4BjCNM97gC3MbCczOxu4qobvUeZz9h7L5+w9NZ+z9zEamsVYXC6X\ny+VyuYZJkuYBnwVuB04D1gNmmNlLqnE/z1Hmc/bun93Lrle+U0MzdVPSv030upmd1g921Pmcvafm\nc/aems/Ze2o+Z++p+Zy9x/I5e0/NR8Z+jZldWT4/QNJ3gdnAfhPt0/nksVPzOXtPzefsfYyGZqAH\nTCfco+ZiwtSIdlWdtoxhR53P2XtqPmfvqfmcvafmc/aems/Zeyyfs/fUfAw7SdIbzOx35f8fBm6S\ndHwNdtT5nL3H8jl7T83n7H2sFi1aNDSPoiiuKYpiv2XNjjqfs/fUfM7eU/M5e0/N5+w9NZ+zd//s\n+ZVdURT7F0XxeFEUu7Rte2tRFA8VRfGy84MZOzWfs/fUfM7ex3sM02IsAEcAWyVgR53P2XtqPmfv\nqfmcvafmc/aems/Zeyyfs/fUfE+smV0IzADubdv2CLApcKLzgxk7NZ+z99R8zt7Hky/G4nK5XC6X\ny+VyuVxDpmE7o+dyuVwul8vlcrlcIy8f6LlcLpfL5XK5XC7XkMkHei6Xy+VyuVwul8s1ZPKBnsvl\ncrlcLpfL5XINmf4fi/E6UXjhz0AAAAAASUVORK5CYII=\n", 2319 | "text/plain": [ 2320 | "" 2321 | ] 2322 | }, 2323 | "metadata": {}, 2324 | "output_type": "display_data" 2325 | } 2326 | ], 2327 | "source": [ 2328 | "year_df.plot(kind='bar',legend=False)\n", 2329 | "plt.ylabel('number of movies in this year',size=16)\n", 2330 | "plt.title('numer of movies from year 1931 to 2016',size=20)" 2331 | ] 2332 | }, 2333 | { 2334 | "cell_type": "code", 2335 | "execution_count": 226, 2336 | "metadata": {}, 2337 | "outputs": [ 2338 | { 2339 | "data": { 2340 | "text/plain": [ 2341 | "" 2342 | ] 2343 | }, 2344 | "execution_count": 226, 2345 | "metadata": {}, 2346 | "output_type": "execute_result" 2347 | }, 2348 | { 2349 | "data": { 2350 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAI8CAYAAABYqz4aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu8pWP9//HXGIeEGoe+KKeiPvITGkJCDpVKch5EvqUS\nYQiRchYph9CUyKlyzKGGUM4jh0IKhc+XcmgcE1EIzezfH9e9sqy193bvPXvttWfP6/l4eMxe932t\ntT7r3nst93td131dY3p6epAkSZIkqdls3S5AkiRJkjTyGBYlSZIkSW0Mi5IkSZKkNoZFSZIkSVIb\nw6IkSZIkqY1hUZIkSZLUZvZuFyBp5hIRBwMH1Wz+UGYuFRGfAU4HvpyZx3WqNo1eEfEgMC4zx3W5\nlAGJiHcCPwBWA6YDR2bmEd2tqr6IWAe4Fjg+M/focjkaIk2f45tm5s+7XI6kEcywKGmgrutl22eA\nJYHjgX80bf9HL22lWcmPgdWBnwH3Ar/ubjkD9iBwCPCbLtchSeoCw6KkAcnM62gJjFXvw5LAcZn5\n4LAXJY1c44GpmblZtwsZjOr9fHCXy5AkdYnXLEqS1DlzAn/vdhGSJA2GPYuShtNsEbEn8EVgKeAR\n4DTKdVz/aW4YEesB+wGrUj6r7gSOycwL6jxRRCwJfBX4CPA24D9AAj/MzB9UbTYDLqyef7+W+88F\nPAE8mpnLVdvGVLXvCLwb+DdlWOFBmfn7pvt+hnKN5gTg88AHq8daNzP/EhHLA/sC6wALV49zF3Bs\nZl7YUsfCwKHAJ4D5gd9V9z0UWCYzl2pqW6u+fo7ZdZTfy5rAt4ENgLmB24ADq17l5rYfBObPzH80\nbV8KeACYnJmbVNsOplwf9S7gC8B2wDjg98DuwO3A3sDOwP8AfwL2aX6+psdfnjLc+f3Ac8DPq9qe\nbGn3JuBrwJbAYsBTwMXVsXiyqd0ZwP9S/s5+BLyjqucDmdnTx3GaC9ireh1LA/8CbgAOy8zbWl4z\nwIoR0UN1DW8fj9k4bgcAdwP7U36HTwAnZOaxEfEB4EhKb+WTVb3faH7v1KxtPOXv6NzM3KaXWu4B\nFqn+ez+9XLMYEYsABwKfBN4CPAr8tKrnn729xpbnWIXSYzkeWAB4GLgIOCIzn2tpuzGwB/Beyvv4\nD8ChmXl9S7utgInASkAP5TPjhMw8t6nNUpTjfBjlb/BzwIvAzpl5/kDeQxHxEcp78T3AfMD9wNmU\nz6mXaxyD2sdwgJ8Zb6zabgUsQfkbugw4ODP/1lLGGyLiMODTlN/3A9UxO/F1aj8V2AH4cGZe1bJv\nbWAK5Xf59U691sG8dyUNnD2LkobTvpTrn24ATgTmoJy0fbu5UUR8HrgKWAE4DziJEiLOj4ivvd6T\nVCeEt1FOJG4GvkM5EX03cGJE7Fo1vZRyXeWWvTzMx4A3A2c2bftRVfeclElLzgfWBm6qwm2r71JO\njE4Abq2C4qrALZTw9yvgmOrfVYELIuITTa9jQcqx2hH4IzCJEt6uqV5Lq4HW15t5KSfHK1aP93Pg\nA8CvIuL/1XyMvvyUcgJ7LuXYrwH8EjiVEhYvp/y+3wv8IiLe2nL/uYHrKb+XSZRrAL8I3FCFQwAi\n4s3AjZS/twco4fJmynG8JSIW7aW2Sygn+z8AruknKL6B8rd5ODCNcryvpATrm6pgA2Wo9iHVz09U\nP9eZ3Glz4BxKYDyJ8vs4JiKOB66mhN7vU/7/fRCwy0Bry8zbgXuAT0TE3C2vbyVgWeD8zHypj2Ow\nBHArsBMldH6H8kXMPsCUiJinvxcYEe+q6lyDctyPAx6n/L5+1tJ2P8rf4HLABZS/nfHA1RHx4aZ2\nR1f73kEJbOcAbwfOiYhv9VLGjpQvc06kXI/ZuCaz1nsoItaqal+W8jf7XUqQPaK6f78GcgwH+Jnx\nRsrf/oGUL1N+QAnNXwKuiYj5Wko5vqrhMuAUSjj7fkRMfJ2X8OPq30/1sm+75jadeq1Nar13JQ2O\nPYuShtMbgVUyMwEi4tuU/8l/NiL2zszpEbEYrwaBtTLz71Xbr1NOMA+LiIsz84/9PM9XgYVo+dY7\nIiYBv6Wc4EzKzJci4nzgCxGxSqPnpbI1pXfi7Oq+W1K+fT8b+N9Gb05EfJMSTH8cEe9o6VF4BVgz\nM19o2nYoJSSvnJn3NNU2gXLS+SngF9Xmg4FlgK9k5tFVu9koJ8ITgIea7j+Y+nrTCKhbZuYr1WP8\nkRJAPl0d28EaB6zY6ImMiLOBbYDNgHdn5qPV9oeq174xrz3xnpNyYjghM6c3vb6vUoLG16t2RwDL\nA7tk5vcbd46ITwKTKSfIE1pquzEzN6/xGr5C6Xk9A/hC03EeTzluZ0TEko1reyPiIODxzDy4xmND\n6RX77wyVEXEZ5WR5IrBrZn6v2v49ShD+VPV6BlLbc5QvQQ4HNqSEsIatq3/P6qfGEym99Rtl5qWN\njVXAOJ4SYvfp5/47UgL/epl5bdP9fwFsGBH/LzP/VIXKQymfBetm5uNVu+MovYvHACtUwW0vSk/1\nBo3es4h4C+WLlX0i4tKWnsj/AVbKzDubnn8g76HdKX+Pa2bmA1W7OShB538j4sutPaQzcAwH8pnx\nVcrf0HHAno3gVIXuIyg9+8c21fES8L7MfKJqdyol0H2O8iVXX66nTH60WUTs3PhiISLmBLagfDmW\nHX6tDXXfu5IGwZ5FScPpp00nEFTh4HeUEDF/tXk7YC7K0MK/N7V9kXJSMRulx7A/ZwI7tA6Pysxb\nKEPO/qelLZQeL+C/385/AripacKez1X/7tE87K86UWycDP23p6NyeUtQhPKt+rbNJ0KV66p//6eq\nYSywLeWE7DtNzzedEgqmtdx/MPX15ZhGUKxcVv27VM379+WM5iGrlB4QgHMaQbHy2z6er4cSnKc3\nbTuY0oOyLUBEzA5sD/ypOSgCZObF1XNu1twTWbmQej4DvABMbDnOtwPfo/wtz8hkNg+2LGXQOEbP\nU3pOGs/3IKXHcqlB1nYW5XhuxWtNAP5KCQNtql7ZjwGXNZ/4VyZV9/1M3y8PePXc430t2z8DvCUz\n/1Td3pLypfZhjaBYvZ77KeHw9CqgNZ5v7+ZhltXPjS83dmh5rvubg2JlIO+hxmtYtandK5Rjs2B/\nQXEQx7DWZ0ZlG8r7Yb+WHrbvUkZw/InX+mEjKFav4feUywPe0Vf9Vbse4CeU0P/xpl0bUj7LfwId\nf60Ndd+7kgbBnkVJw+m+XrY1AuG81c8rV7fXr65daTZv9e9K/T1JZt5AGZq4QNV2GSAoSxi8ARjb\n1PzXlB66CRGxT3UStBEwD68dgroy5dqZXSKi9SmXbaqr+YTogV5q+xX89xqeFSnXlS1L6RGiqbZl\nKCdd12TmtJbHeDgi/gqMmcH6+vJ/Lbefrf6dq8Z9+3N/y+3nq39bj9O/+3i+Rxu9OA1V7/AdwFrV\n8NPFKH8nY6NcN9iq8ft/D68Gsd5qaFMN4XsHpSejt+vybqAMp13x9R6rH685Rpn5fPX7/Gvr3wHl\nOI0bTG2Z+VBE3EDpyZs3M/8VEatRhm5+q5+hfOMpf3cL9nF8XwYWj4i3ZeYjfTzGjyjXp34rInaj\nDD++HLgiM59vatc4jje3PkBmntT4uRo6O716jb297ubHaujt9z2Q99APgU2Ac6tr/hqv4ZoavfcD\nOoZ1PzOqL7mWAa7PzH83P2Bm/ovS+96qr8/kxV7nNUAZZnoApbevMXx4W8pw3MZ1oh15rS1e970r\nafAMi5KG07/72dcIPo1F13fqp+0C/T1JRMxP+Yb6U5QhTT2UHrprePXkBSjfkFfDIfejhMmbKUPx\nXqFcr9QwjvKZeRB9a63rxV5qW4IyvOuTVR3TKeHsBsq1eo3aFqr+fbz1MSqPUno6ZqS+vrReq9YI\nDmNaGw7Q831s7/XauF480cf2Rjial1f/fpZlBn9XvWj0Rj7bx/5G7+gbazxWXwZ7jAZT25nAWpQv\nR86h3hDUxvFdvfqvLwtQeqjaZOYdEbE6ZQKiDSlDI78APF9dm7l/FVYbow36G84J5bX/u7eQlpnP\nRsQLtP9Oevt9134PZeblEbEupZf/Q5RhwhOBpyPi4Mz8bj+PMaBjOIDPjLrHq1l/n8n9ysz7I+Jm\nyhcO81F6Wz8B/LKph7dTr7VZnfeupEEyLEoaaf5V/bt0Zv5lkI9xJmVo1A8ow6HuavS2RMS2fbTf\nj9K7+CfKsKlfNg+Drer6Z2YuMciaGrOVXkqZrOMIysQdf8rMF6PMevr5puaNE77W4ZL0sX2G6xug\nRoBsvZxhRoLS6xnXx/a3Uup5hldD9k8yc/shfv5GKH1bH/sbJ+vdWCpjMLWdTzkxnxAR51KGfd6V\nmXf18zyN9+dhmXngYIvNzDuArapr3NagvOc+SwmQUynDPhvPNV9L3VQT87xUDUn+J/DGiBjXMsy5\nMenP3K3378OA3kOZOYVXJ2hZixKU/hc4ISLuz8zL+3keqHEMB/iZ0Xy8enuseVp6bofCjygz5m5E\nOaeci1cnv2muaahfq6Rh4jWLkkaaxnVEq7TuiIh3RsTREbFRX3eOiHGUoHhbZu6cmTc1BcWlKMMQ\nX/PtdGbeTZkcY6Pqv7lo7125E1isGh7V+pwbRsQ3IuL1hh+uQJl45aLM3D8zb6uuxYRXZzdt1HYv\npZdp1ZbHaLzG1nFyQ1HfQDR6cVpnvlx6CJ+j1ZIR8Zprlqqhxu8C7q2uD01KL9zK1cknLe33iIj9\no8w0OyDVdWgPAO+qJk9ptXb1b+t1YR03mNoy8xnK9agfBtajBM3+ehWhn/cnQEQcEhFfrUJgryJi\n+4j4bkSMycyXM/O6zNyXMhMslOAFZbkE6OU9QAm5L0TE2ymT3cCrQxWbrUl5T9X5ndR+D0XE7tXw\nUzLz+cz8ZWbuSpl1tPk19PU8UO8Y1v7MyMxnKdcArtR6/KvbT0TEFf0egYE7j/J+24gSlp+lTELV\n0JHXKmn4GBYljTRnUiZvObz5pK2auOS7lIkt+jvRf5kydGn+5hOmqidiUnVzjj6ed2nKsLJ/Utbk\na3YG5URlUsvjLkrpwdyPV3t3+tIY8tVb4DmqubZqsoyzyu7YqantbJSJKlpfw1DUNxD3Vv82T9v/\nBsrx65SxlCUBGs83BvgmpTfzNIDqWq3zKL0TezbfOSLWAY6mTHbyzCBrOIPSU/Wd6m+y8djjgd0o\nS7Fc0vtdO+4MBl7bmZTAfwxNs//2pbpm9HrgYxGxRfO+iPg05ffz0de5bm91YFfal6xZqvq3Mcvv\n2ZT38tebw31ELE2ZiOcvVT1nVLu+2RyUq58b76uf9Pe6KmdQ/z20QVVX69DK1tfQZoDHsPZnRuVM\nyqQzrb14u1N+z1cxhKqe3EuAj1LWtD2/+XrJDr9WScPAYaiSRpTMvC8i9qGcvP4pIiZTTuw/Rvl2\n+Re8duKZ1vu/EBEXUaZvv6X6Jn1eyjffi1SPNS4iZmuZVfMcSghbEfhR0zfaDWdQrqPZHLgrIn5F\n+QydQAmvX60xbPY+ytT6a0fErykTrCxEmSjjDZSZLJuD8P6Uk7ATo6yRdzelh+jdlOt0mic8GYr6\nBuI0yhp/x1cnzE9Rlrp4lr6vu5tRTwLbR1nv8TZKr9HqlEmKjm9qtzdlaOPR1XH7LWXCjs0o16Lu\n0PK7H4hvU4LCtpRlG66hrE23CSVobNXfTJgdNpjaGmuNrghMycy/1nieHSnH/PyIuJyyBmhQvjh4\nmld71/qrcwJwdpQlEe6jhKzNKdfofhcgM++tJkU5FLgjIi6pXsfWlPfLZ6p210fEsZQvB+6s2lHV\nsyhlwp5eZ3dtcQb130MHAesC10ZZfucRyhcUG1HWsOzzM6pS9xgO9DPjCMp1oF+PiA9S/vaXrbbd\nQr21PgfqR5TPW+g9lHfqtUoaBvYsShpxMvNYysnNHygnbl+knOTvBWzRPK19Hz5HOSkaR+lR+Shl\nUeg1KCc2c1NO9Jqf8zHKBDjQy1C8asKNLSjf0L9AuX5mK0qA2zQze1v4u/UxplMC1RmUWScnUsLf\n5ZSZGK+gDCNcumr/N+ADVT3vo5xUPQ+sQ+nheKHpsWe4voGorjn7OCW0TaAseXIVsD5lNsROeIwy\nZHIuyu91ceBblJ6J/y71UR231ShfOLyNcpwbi6ivnmUNxEGpek0+ROkRmZMyq+d61WO/PzMnD/ax\nZ9RgasuyPl5jIqfXG4LauE9S/l5/SBk6uDslbP6Esmbf3a9z/wcpf9fnUoYn7kl5H/wEWC2bllHJ\nzMMof8d/pSyJsh0lUHwwy1I4jXZ7VfsepITlCZSJUTbPzFprgw7kPZSZt1Y1X0E5xntWx+J4yvqw\n/X5hUvcYDuIz41+Uv/WjKF+Q7E6Z1GsS8JEaM7UOxi8pn0cPUULhsLxWScNjTE9PX7NjS5K6qTop\nmlqd0Ddvn4tycnZVZn681ztL0jCIiKAMS/9GZh7Q7XokDS17FiVp5JoMPF5NaNNsd8q1O9cOf0mS\nVFTXDR9Aubb0tC6XI6kDunLNYvXhcjrwx8w8OiLGAsdSrrWYHTg6M3/Qy/36bBcR76R8UC1Imap5\n+8y8t/UxJGkmciJl+Nhd1bWbz1OGlH2IMstgf2u5SVJHVKMbfke5lnBp4LRqMhtJo8yw9yxGxLuB\nqynXEzR8EXgnZcrk9wF7RERvU2X31+4s4MTMXI5y4fmFvU2bLkkzi8z8HuWazfsp105NBJagzAD6\ngeZZByVpuFRD41+mTCB0HmW0g6RRqBs9i7tQehUfbtq2KXByNWnFM1EWB25cxM7rtYuIRyizfZ0L\nkJmXR8SJwHuB23srovpW7H2UCROm9dZGkkaA2ymLlbdaKCIW6mW7JA2HzZp+9vNImnmNpXzxc2vr\nHAnQhbBYLVpLRKzftHlxykxnDVMpM2a16qvd4sCjLVOhT6XMBNZrWKQExbZZuyRJkiRpFrMWcEPr\nxpGyzmJvw2F76+3rq11fw2n76zF8DOCss85ikUUW6aeZJEmSJI0+jz/+ONtuuy1U2ajVSAmLD1O6\nPxveRukZrNvuYWCRiBhTrZPU32M0TANYZJFFWGyxxQZbtyRJkiTN7HrtZBspS2dMBnaIiNmrKeK3\nBn5et11mTgX+TJkAgojYgDKN813DUr0kSZIkjTIjpWfxRMrUy3cAcwInZeYUgIg4FCAzD+yvHSU4\n/jAi9gf+DWzZcg2jJEmSJKmmMT09Pa/fahSKiKWAB66++mqHoUqSJEma5UydOpX1118f4O2Z+WDr\n/pEyDFWSJEmSNIIYFiVJkiRJbQyLkiRJkqQ2hkVJkiRJUhvDoiRJkiSpjWFRkiRJktTGsChJkiRJ\namNYlCRJkiS1MSxKkiRJktoYFiVJkiRJbQyLkiRJkqQ2hkVJkiRJUhvDoiRJkiSpjWFRkiRJktTG\nsChJkiRJamNYlCRJkiS1MSxKkiRJktoYFiVJkiRJbQyLkiRJkqQ2hkVJkiRJUhvDoiRJkiSpjWFR\nkiRJktTGsChJkiRJamNYlCRJkiS1MSxKkiRJktoYFiVJkiRJbQyLkiRJkqQ2hkVJkiRJUhvDoiRJ\nkiSpjWFRkiRJktTGsChJkiRJamNYlCRJkiS1MSxKkiRJktoYFiVJkiRJbQyLkiRJkqQ2hkVJkiRJ\nUhvDoiRJkiSpjWFRkiRJktTGsChJkiRJamNYlCRJkiS1MSxKkiRJktoYFiVJkiRJbQyLkiRJkqQ2\nhkVJkiRJUhvDoiRJkiSpjWFRkiRJktTGsChJkiRJamNYlCRJkiS1MSxKkiRJktoYFiVJkiRJbQyL\nkiRJkqQ2hkVJkiRJUhvDoiRJkiSpjWFRkiRJktRm9m4X0BARuwG7Ai8C9wC7ZObTTfu3B/Zsusub\ngcWAxTLziYj4G/BI0/6jMvOszlcuSZIkSaPPiAiLEbEusC+wemZOjYhPAycDWzTaZOaPgR9X7ecA\nrgeOrIJiAM9k5krDX70kSZIkjT4jIiwCKwNXZebU6vZFwCkRMWdmvtxL+32BJzPzpOr2GsC0iLgW\nWBC4ADg8M6d1unBJkiRJGo1GyjWLtwDrRcSS1e3PAnNSgt9rRMRCwF7AHk2bZweuBD4KrA1sAOzW\nyYIlSZIkaTQbET2LmXl9RBwC/CwipgOnAU8DvfUq7ghMzswHmu7/w6b9L0XEscBE4LgOli1JkiRJ\no9aI6FmMiPmAKZk5PjNXAS6sdj3dS/OtgNNb7v/piFihadMY4JWOFCtJkiRJs4ARERaBtwLXRcSb\nqtsHAOdkZk9zo4iYH1gGuKnl/ssDh0bE2IiYmzKr6nkdrlmSJEmSRq0RERYzM4Ejgd9GRAJzA1+J\niFUi4g9NTZcBHsvM1l7DQyi9kHcBd1LC5Cmdr1ySJEmSRqcRcc0iQGZOAia1bL4NWKmpza2UwNh6\n3xeAHTpaoCRJkiTNQkZEz6IkSZIkaWQxLEqSJEmS2hgWJUmSJEltDIuSJEmSpDaGRUmSJElSG8Oi\nJEmSJKmNYVGSJEmS1MawKEmSJElqY1iUJEmSJLUxLEqSJEmS2hgWJUmSJEltDIuSJEmSpDaGRUmS\nJElSG8OiJEmSJKmNYVGSJEmS1MawKEmSJElqY1iUJEmSJLUxLEqSJEmS2hgWJUmSJEltDIuSJEmS\npDaGRUmSJElSG8OiJEmSJKmNYVGSJEmS1MawKEmSJElqY1iUJEmSJLUxLEqSJEmS2hgWJUmSJElt\nDIuSJEmSpDaGRUmSJElSG8OiJEmSJKmNYVGSJEmS1MawKEmSJElqY1iUJEmSJLUxLEqSJEmS2hgW\nJUmSJEltDIuSJEmSpDaGRUmSJElSG8OiJEmSJKmNYVGSJEmS1MawKEmSJElqY1iUJEmSJLUxLEqS\nJEmS2hgWJUmSJEltDIuSJEmSpDaGRUmSJElSG8OiJEmSJKmNYVGSJEmS1MawKEmSJElqY1iUJEmS\nJLUxLEqSJEmS2hgWJUmSJEltDIuSJEmSpDaGRUmSJElSG8OiJEmSJKnN7N0uoCEidgN2BV4E7gF2\nycynW9ocA2wJNLZnZm4VEWOBY4ENKK/p6Mz8wbAVL0mSJEmjzIgIixGxLrAvsHpmTo2ITwMnA1u0\nNF0D2Dozb2rZ/kXgncDywHzAzRFxe2be0uHSJUmSJGlUGinDUFcGrsrMqdXti4CNImLORoOImAt4\nL7B3RNwRERdGxBLV7k2B0zPzP5n5DHAusN0w1i9JkiRJo0qtnsWIOB74cWb+rkN13AJMjIglM/Mh\n4LPAnMCCwGNVm7cC1wD7Af8H7A1MjojxwOLAX5sebyqwQodqlV5jo70m97v/kmM2HqZKJEmSpKFT\nt2fxC8D8nSoiM68HDgF+FhG3AdMp1yW+3NTmgcz8eBY9wNHA0sBS9P46pnWqXkmSJEka7eqGxeuB\nj3eqiIiYD5iSmeMzcxXgwmrX001tVqiuZWw2BngFeBhYtGn72yi9i5IkSZKkQag7wc1DwC4RsT1w\nP/Bky/6ezJyRsXZvBa6OiOUy8zngAOCcqgexYTpwQkTckJkPADsDd1YT4kwGdoiIS4B5ga2BnWag\nHkmSJEmapdXtWXwXcBNwF2Vpi/la/nvTjBSRmQkcCfw2IhKYG/hKRKwSEX+o2vwR2A24JCLuoUxq\ns031ECcCfwbuAG4FTs3MKTNSkyRJkiTNymr1LGbmup0uJDMnAZNaNt8GrNTU5kzgzF7u+x9gj44W\nKEmSJEmzkAGtsxgRbwTmolwrSPXvG4H3Z+ZPh7g2SZIkSVKX1F06Y3ngdGB8P80Mi5IkSZI0StTt\nWTyWMtvoXsBGlCUtLgY+BmwIrN+R6iRJkiRJXVF3gpvVga9l5nHAOcB8mXliZn4SOA+Y2KkCJUmS\nJEnDr25YnAN4oPr5XmDFpn0/AlYbyqIkSZIkSd1VNyzex6sB8V5gnoh4d3V7dmZw6QxJkiRJ0shS\nNyyeChwVEV/NzKeAG4FTI+IzwOGU9Q0lSZIkSaNErbCYmccDBwCLVJu+ALwFOA0YB+zWkeokSZIk\nSV1Re53FzDy66ed7I+JdwFsy88mOVCZJkiRJ6praYREgItakLJOxKHAEsHxE/D4zH+tEcZIkSZKk\n7qgVFiNibsoSGZ8AngPmA04GvgysEBHrZOY9HatSkiRJkjSs6k5w8y3K8hhrAQsBY6rt2wGPAN8c\n+tIkSZIkSd1SNyxuDeybmTcCPY2NmfkEcBiwZgdqkyRJkiR1Sd2wOA/Q10Q2LwJvGJpyJEmSJEkj\nQd2w+Btg94gY27St0cO4A3DLkFYlSZIkSeqqurOh7gNMAe4FrqQExS9FxLLAKsB6nSlPkiRJktQN\ntXoWM/N3wKrAbcCmwDRgE+Ap4AOZeXPHKpQkSZIkDbu6S2fMn5l3A9t0uB5JkiRJ0ghQdxjqYxHx\nC+AnwGWZ+UoHa5IkSZIkdVndCW52oMx4ej4lOH4/IlbvXFmSJEmSpG6q1bOYmWcDZ0fEQpQ1Fz8F\n7BQRf6b0Np6VmX/uXJmSJEmSpOFUt2cRgMx8KjMnZeYawHuAR4GDgf+LiOsjYtMO1ChJkiRJGmZ1\nr1kEICLmBTajTHSzHvA8cBJwOfBR4LyIOCEz9x7qQiVJkiRJw6fubKiNgPhxYA7gl8C2wMWZ+XLV\n7OKImAbsCBgWJUmSJGkmVrdn8QLgD8DXgLMz8299tLudAQ5tlSRJkiSNPHXD4gqZ+cfXa5SZpwOn\nz1hJkiRJkqRuq9ULWCcoSpIkSZJGD4eMSpIkSZLaGBYlSZIkSW0Mi5IkSZKkNgNaZxEgIpYEFgXu\nAsZk5r+GvCpJkiRJUlfVDosRsTlwJLA0MB1YFTgoIv4JfDYzX+lMiZIkSZKk4VZrGGpETAB+CkwB\nJjTd72fApsCBHalOkiRJktQVda9ZPBA4PjM/TwmIAGTmGcD+wLZDX5okSZIkqVvqhsVlgMv62Pd7\nyjWMkiRJkqRRom5YfBhYs499qwJ/HZpyJEmSJEkjQd0JbiYBR0fEGEoPYw/wtogYD3wdOKxD9UmS\nJEmSuqBWWMzMEyJifmBfyjWKY4DJwCvACZl5dOdKlCRJkiQNt9pLZ2TmIRFxHPB+YAHgWeC3mflU\np4qTJEnSDtegAAAgAElEQVSSJHVH7bAIkJnPAr/sUC2SJEmSpBGiVliMiHmAg4F1gXG0T4zTk5lL\nD21pkiRJkqRuqduz+D3KWoqXATcC0ztWkSRJkiSp6+qGxU2AvTPz+E4WI0mSJEkaGequszgNuKuT\nhUiSJEmSRo66YfFc4POdLESSJEmSNHL0OQw1Ik5oujknsGVErAD8BnihpXlPZu7egfokSZIkSV3Q\n3zWLG7XcngrMA6zfS9sewLAoSZIkSaNEn2ExM98+nIVIkiRJkkaOWtcsRsQ1EbFsH/tWiIg/DG1Z\nkiRJkqRu6u+axU827V8H+GRELNdL0w8BSw99aZIkSZKkbunvmsX1gInVzz3Akf207W+fJEmSJGkm\n019Y3Af4DjAG+AuwGfD7ljbTgGcz85+dKU+SJEmS1A39TXDzMvAQQES8HXg0M18ZrsIkSZIkSd3T\nX8/if2XmQ50uRJIkSZI0ctQKi8MhInYDdgVeBO4BdsnMp1vabAd8hXIN5QvAxMy8rdr3N+CRpuZH\nZeZZw1G7JEmSJI02IyIsRsS6wL7A6pk5NSI+DZwMbNHUJoCjgPGZ+VhEfBy4CFii2vdMZq7UhfIl\nSZIkadQZEWERWBm4KjOnVrcvAk6JiDmraycBXgI+n5mPVbdvAxaJiDmBNYBpEXEtsCBwAXB4Zk4b\nvpcgSZIkSaPHbN0uoHILsF5ELFnd/iwwJyX4AZCZD2bmpQARMQY4Fri4CpOzA1cCHwXWBjYAdhu+\n8iVJkiRpdKnVsxgRi1CW0fg4MA9lOY3XyMyxgy0iM6+PiEOAn0XEdOA04Gng5da2ETEPcAawOCUc\nkpk/bGryUkQcS1kj8rjB1iRJkiRJs7K6w1BPBNYFTgGmAtOHsoiImA+YkpmnVrcXBg6jBMbmdksA\nl1AmwFk3M1+stn8auCMz76yajgFc5kOSJEmSBqluWPwIsFNm/qRDdbwVuDoilsvM54ADgHMys6fR\nICIWAKYAZ2TmIS33Xx7YPCI2pwxf3RVwJlRJkiRJGqS6YfE54G+dKiIzMyKOBH4bEbMBNwC7RsQq\nwCnVLKc7A0sAm0bEpk13Xx84BJgE3AXMAZxP6QWVJEmSJA1C3bB4KrBnRFydmR0Z3pmZkyiBr9lt\nwErV/sOBw/t5iB06UZckSZIkzYrqhsW5gfcBj0bEHcALLft7MnPjIa1MkiRJktQ1dcPieOAP1c9j\ngfk6U44kSZIkaSSoFRYzc91OFyJJkiRJGjn6DIsRMR64JzNfrH7uV2bePqSVSZIkSZK6pr+exduA\n1YFbqp97+mg3pto3dmhLkyRJkiR1S39hcV3g7qafJUmSJEmziD7DYmZO6e1nSZIkSdLoV3c21FnC\nRntN7nf/Jcf0vzpIt++vwZnZj/vMXv+MmJVfuyRJUqfN1u0CJEmSJEkjj2FRkiRJktTGsChJkiRJ\nalP7msWIGAfMk5mPRMRcwERgCeCizLy2UwVKkiRJkoZfrZ7FiFgbeJgSEAFOBr4JbAhcGRETOlOe\nJEmSJKkb6g5D/QZwE3BsRMwPbA0ck5nvAL4DfK1D9UmSJEmSuqBuWFwZOCoznwA+Thm+ela17xdA\ndKA2SZIkSVKX1A2LLwBzVT9vCDyWmXdWtxcHnh7qwiRJkiRJ3VN3gptrgUMj4j3AFsAkgIjYFDgc\nuKIz5UmSJEmSuqFuz+JuwD+Ag4HrgEOr7ccB9wFfGerCJEmSJEndU6tnsbpW8UO97BqfmX8f2pIk\nSZIkSd1We51FgIhYE1gfWBQ4Alg+In6fmY91ojhJkiRJUnfUCosRMTdwHvAJ4DlgPspai18GVoiI\ndTLzno5VKUmSJEkaVnWvWfwWsBqwFrAQMKbavh3wCPDNoS9NkiRJktQtdcPi1sC+mXkj0NPYWF3L\neBiwZgdqkyRJkiR1Sd2wOA/wZB/7XgTeMDTlSJIkSZJGgrph8TfA7hExtmlbo4dxB+CWIa1KkiRJ\nktRVdWdD3QeYAtwLXEkJil+KiGWBVYD1OlOeJEmSJKkbavUsZubvgFWB24BNgWnAJsBTwAcy8+aO\nVShJkiRJGna111nMzLuBbTpYiyRJkiRphOgzLEbEZsA1mfmP6ud+ZeZFQ1qZJEmSJKlr+utZvABY\nnTJ5zQWv8zg9wNjXaSNJkiRJmkn0FxbfDjzW9LMkSZIkaRbRZ1jMzIeabu4AnJWZ/9f5kiRJkiRJ\n3VZ3gpsvAvtHxB3A2cC5mTm1c2VJUudttNfkfvdfcszGw1SJJEnSyFNr6QzgrcCHKdcvfgV4MCKu\nj4idI2LBjlUnSZIkSeqKuussTs/MazJzJ2BR4KPA3cBBwKMRcWkHa5QkSZIkDbO6PYv/lZnTgduA\nm4Abqsd43xDXJUmSJEnqorrXLBIR8wObAFsC6wMvAZOBjYErOlKdJEmSJKkraoXFiPgVsE5185fA\n9sDFmflih+qSJEmSJHVR3Z7FOYBdgQsy85kO1iNJkiRJGgFqhcXMXA8gIsZExHLAm4C/Z+Z9nSxO\nkiRJktQdtSe4iYgdgMeAu4AbgXsj4rGI+GKnipMkSZIkdUetsBgR2wCnANcAmwJrAJsB1wHfj4it\nO1WgJEmSJGn41b1mcT/gB5n5pZbtkyPiaWAf4NwhrUySJEmS1DV1h6G+E7ioj30/B5YdmnIkSZIk\nSSNB3bD4EPCePvatAPx9aMqRJEmSJI0EdYehngEcGhH/pCyf8Y+IGAdsCRwMTOpMeVI9G+01ud/9\nlxyz8TBVIkmSJI0OdcPi0cCKwMnASRHxn+q+Y4ALgQM7U54kSZIkqRvqrrP4H2CbiDgCWBsYBzwN\n3JCZd3WwPkmSJElSF9TtWQSgCoaGQ0mSJEka5WqFxYh4B/A9YDXgzb21ycyxQ1iXJEmSJKmLBjLB\nzXKUiWyc+VSSJEmSRrm6YXFlYJvMvLiTxUiSJEmSRoa66ywmMF8nC5EkSZIkjRx1exYnAqdGBMDv\ngBdaG2Tmw0NYlyRJkiSpiwYyG+q8wI972T4G6AFmaIKbiNgN2BV4EbgH2CUzn25psyHwTWAu4E7g\nc5n5XESMBY4FNqC8pqMz8wczUo8kSZIkzcrqDkM9EfgHsDOwWct/m1b/DlpErAvsC6yfmSsBlwEn\nt7R5C3A6sHlmBvAX4Mhq9xeBdwLLA+8D9oiIVWekJkmSJEmaldXtWVwa2CQzr+hQHSsDV2Xm1Or2\nRcApETFnZr5cbfsIcGtm3lfdPhG4IyJ2oQTWkzPzP8AzEXEusB1wS4fqlSRJkqRRrW5YvBNYvIN1\n3AJMjIglM/Mh4LPAnMCCwGNVm8WBvzbdZyrwJsrEO73tW6GD9UoCNtprcr/7Lzlm42GqpDv6e/2j\n/bVLkqTRr25Y/Crwk4iYH7gV+Gdrg8y8fbBFZOb1EXEI8LOImA6cBjwNvNzUrK8hs9P62DdtsPVI\nkiRJ0qyubli8pvr325TJbJrN8AQ3ETEfMCUzT61uLwwcRgmMDQ8DqzXdfhvwTGY+HxEPA4u27JuK\nJEmSJGlQ6obFdTtaBbwVuDoilsvM54ADgHMyszmYXgEcExHvrK5b3AlojAGbDOwQEZdQZm3dutov\nSZIkSRqEWmExM6d0sojMzIg4EvhtRMwG3ADsGhGrAKdk5kqZ+WREfBa4ICLmBP4MbF89xImUSXju\noFzreFKna5YkSZKk0Wwg6yx2VGZOAia1bL4NWKmpzWWUZTVa7/sfYI+OFihJkiRJs5C66yxKkiRJ\nkmYhhkVJkiRJUps+w2JEHB8R76h+XiIi5hi+siRJkiRJ3dRfz+KOwGLVzw/QdO2gJEmSJGl062+C\nm0eA70bE9ZS1FPeOiCf6aNuTmbsPeXWSJEmSpK7oLyzuDHwT2BDoAdYCXuqjbQ9gWJQkSZKkUaLP\nsJiZVwJXAkTEdGCTzLxluAqTJEmSJHVP3XUW3w48ChAR8wDzAU9n5sudKkySNHJttNfkfvdfcszG\nw1SJNHPwPSNpZlRr6YzMfAhYJyJuBZ6lXM/4YkTcEhEf62SBkiRJkqThVyssRsSHgcuAV4A9gU8B\newHTgEuq/ZIkSZKkUaLuMNRvAD/LzAkt24+LiPOAg6iub5QkSZIkzfxq9SwC7wFO7WPfabgGoyRJ\nkiSNKnXD4uPA4n3sWwJ4fmjKkSRJkiSNBHWHoV4IHBERD2bmVY2N1bWK3wAu6kRxkiRp9HBGUEma\nudQNiwcD7weuiIjngCeAhSlLaNwC7NuR6iRJkiRJXVErLGbm8xGxFvAJYC1gfuBp4Abg0syc3rkS\nJUmSJEnDrW7PIpnZA1xS/SdJkiRJGsXqTnAjSZIkSZqFGBYlSZIkSW0Mi5IkSZKkNrWvWZQ6yenU\nu8djL0mvz89KSTOLofy8qh0WI2J2YGtgfWARYCKwJvC7zLyz9jNKkiRJkka8WsNQI2JB4DfA6cB4\n4COUNRY3A26KiNU6VqEkSZIkadjV7Vn8DvBmYBngEeDlavsWwGXAEZQeR0mSNEo5FFOSZi11J7jZ\nCPh6Zj4E9DQ2ZuZLwDHAyh2oTZIkSZLUJXXD4ljg333smx0YMzTlSJIkSZJGgrph8RrgoIiYv2lb\nT0TMAewOTBnyyiRJkiRJXVP3msW9gRuAPwM3U4aiHgYsC4yjzIoqSZIkSRolavUsZub9wArAScAC\nlNC4MHAJ8N7MvLdjFUqSJEmShl2tnsWI2Au4ODP363A9kiRJkqQRoO41i4cB7+xkIZIkSZKkkaNu\nWLwDWL6ThUiSJEmSRo66E9xcBxwWEdsACTzZsr8nM3cfysIkSaNXf4u7u7C7JEkjQ92wuDXwKGXm\n09V62d9DWUJDkiRJkjQK1AqLmfn2ThciSZIkSRo56vYsAhARywNrA28CngJuzMx7OlGYJEmd0N8Q\nWHAYrCRJDXWXzhgLnA5sC4wBXgLmAnoi4qfAdpk5rWNVSpJUMexJkjQ86s6GehCwBbAzMC4z5wbm\nB74EbATs35nyJEmSJEndUHcY6meAAzPz5MaGzHwWOCki5qOExkOGvjxJkiRJUjfU7VlcAPhDH/vu\nABYdmnIkSZIkSSNB3bB4N/DJPvZtDPx5aMqRJEmSJI0EdYehfhO4MCIWAC4AngAWBrakrMH4uc6U\nJ0mSJEnqhrrrLP4sInYCDgM+BfRQZkV9CpiYmWd0rEJJkiRJsxRnvh4Z6g5DpZrcZlGgsdbi8sDC\nmfm9DtUmSZIkSeqS2mExIvYBLsrMuzPzRuAtwMMR8aWOVSdJkiRJ6opaw1AjYj/gYOCYps33A2cD\nR0dET2aeOPTlqS676mde/u5mTf7eJUlSX/o7TxjOc4S6E9x8AdgnM49vbMjMR4B9I+IJYA/AsChJ\nkiRJo0TdYagLU5bP6M2dwBJDU44kSZIkaSSo27N4N7AVcGUv+7YEcsgqkiRJ6oXDtyVpeA1kncUL\nImIJ4BfAk5QJbj4BfAiY0JnyJEmSJHWDX9Co7jqLF0XElsDXgeOadt0FTMjMCztRnCRJkqTBMexp\nRtXtWaQKhBdGxBuABYDnMvNfHatMkiRJktQ1A1lncVxEvC0z/w38Hdg5Ir4bEet2rjxJkiRJUjfU\nCosRsTbwMDCx2nQycCSwIXBlRHjNoiRJkiSNInWHoX4DuAk4NiLmB7YGjs7MfSPiKOBrwE9npJCI\n2BQ4BJgOPAN8PjP/3LR/e2DPpru8GVgMWCwzn4iIvwGPNO0/KjPPmpGaJEmSJGlWVTcsrgx8sgpl\n21b3awSxXwC7zkgRETE3cCawYmbeHxFfBk6g9FwCkJk/Bn5ctZ8DuB44sqopgGcyc6UZqUOSJEmS\nVNQNiy8Ac1U/bwg8lpl3VrcXB56ewTrGAmMovYUA8wL/7qf9vsCTmXlSdXsNYFpEXAssCFwAHJ6Z\n02awLkmSpFmaM2pKs666YfFa4NCIeA+wBTAJ/jt09HDgihkpIjP/FRE7ATdFxN8p4fEDvbWNiIWA\nvYDxTZtnB64EvgLMDVwKPMdrl/mQJEmSJNVUdzbU3YB/AAcD1wGHVtuPA+6jhLRBq0LogcBymflW\nSgC9MCLG9NJ8R2ByZj7Q2JCZP8zMiZn5Umb+AzgW2HRGapIkSZKkWVmtnsXMfAL4UC+7xmfm34eg\njg2AG5smtPke8B3KkNKnWtpuxauzsgIQEZ8G7mgaGjsGeGUI6pIkSZKkWVLtdRZ7M0RBEeB24IMR\nsXB1exPggcx8TVCsZmJdhjIza7PlKcNkx1aT5ewKnDdEtUmSJEnSLGeGwuJQycxrgKOA6yLiDkrY\n2zgiVomIPzQ1XYYyuU5rr+EhlEl27gLupITJUzpfuSRJkiSNTnUnuOm4zPweZfhpq5Wa2txKCYyt\n930B2KFz1UmSJGkwnE1VmnmNiJ5FSZIkSdLIMuCexYiYHVgIeCoz/zP0JUmSJEmSuq12WIyI1YFv\nAGtW91s1IvYEHszM/TtUnyRJkiQNyIwOf3b4dFFrGGpErAdMqW5+nbI0BcAfga9WoVGSJEmSNErU\n7Vn8FnBeZm5fDUM9CiAzj6yWqtgROLZDNUqSJEnSTGO09EzWneBmeeDM6ueeln3XAksOWUWSJEmS\npK6rGxafBJbrY9+7q/2SJEmSpFGi7jDUHwGHRcSzwOXVtrER8SHgYOC0DtSmmcho6WqXpE7z81KS\nNLOoGxYPARYHTuXVYag3Uya6uQg4cOhLkyRJkiR1S62wmJnTgM9GxLeAdYAFgGeBGzLzjs6VJ0mS\nJEnqhtrrLAJk5r3AvR2qRZIkSb1w+PLMyd+bZna1wmJEXEv7LKgN04F/AfcDP8zMHKLaJEmSpBli\nYJMGr+5sqA8A76/+6wEeB6YBqwIfBOYHJgC/j4j3daBOSZIkSdIwqjsM9UngPmCDzHyssTEi3gJc\nClwPrAv8FDgC+PAQ1ylJkqRBsndN0mDU7Vn8HHBAc1AEyMy/AYcDO2XmdOAUwJ5FSZIkSZrJ1Q2L\nY4F5+9g3LzBn9fNLM1yRJEmSJKnr6g5DvRT4dkQ8nJm/bmyMiDWBI4HLImI2YBvgrqEvU5IkSbMi\nh9BK3VM3LE4EfgFMiYhngKeAtwBvBm6o9m8ObA98sgN1SpI0y/OkWZI0nGqFxcx8BvhARHwYWAdY\nEHgE+HVmXgcQEbcC787MBzpTqiRJkiRpuNTtWQQgM68ErmzdHhFzZOaDQ1WUJEmSJKm7aoXFiJgD\n2JGypuJcwJhq1xjgjcB7gQU6UaAkSSPJzDwUdGauXdLMp7/PHD9vZg51exa/DewO3AksDLwI/A14\nD2Um1EM7Up0kSZIkqSvqLp0xAfhWZq4EnAD8PjNXA5YB7gfm+P/t3XmUJGWZ7/Fv0yAygCiMGyiC\nF/NRBGwQXECugoojioAI4mUZRrkCgl4dlEFEBB3UGTZFGUREZkZwQZFNhwGvIgqIiOzoeRREEQWU\nRRFls+n5442isyu6q6Iqqyoyqr6fc/J0ZWb8Mp7MjIjOJyPyjWmqT5IkSZLUgqbN4pOBC6q/rwVe\nDJCZvwU+SmkmJUmSJEmzRNNm8ffAE6q/fwY8PSLWqK7/CnjGVBcmSZIkSWpP02bxAuDwiHg+cDPw\nO2D/iJgP7AzcOU31SZIkSZJa0LRZPASYD3wqMxcBhwIfAh4E9gM+OT3lSZIkSZLa0KhZzMw7gAXA\nntX1U4CtgQ8Ar8pMm0VJkiRJmkWanmfxx8ChmXn+yG2ZeTFw8XQVJkmSJElqT9PDUNejHHIqSZIk\nSZoDmjaLpwAfiIiNImKl6SxIkiRJktS+RoehAlsCLwCuBoiIP4+6f1FmrjaVhUmSJEmS2tO0WfxG\nddEstd2B54x5/3nHbD9DlUhqwnVWkiRNt0bNYmYeMd2FSJIkSZKGR9M9i0TEasA7gVcCTwPeBLwe\nuCYzL5ie8iRJkiRJbWg0wE1ErANcD/wjcB/QA1YENgK+ERGvna4CJUmSJEkzr+loqJ8EbgfWBnYC\n5gFk5m7AWcBh01KdJEmSJKkVTZvFrYGPZub9wKJR950EbDClVUmSJEmSWtX0N4sPA8s6v+LqwENT\nU44kSZI0PMYafdqRpzXbNd2z+E3gnyPiOX23LYqI1YH3Aw5wI0mSJEmzSNNm8UDK3sMbgeuq204B\nbgZWA9439aVJkiRJktrSqFnMzN8DL6ScOuM64P9TGsXDgQWZ+dvpKlCSJEmSNPMa/WYxIrbKzIso\ng9mcNL0lSZIkSZLa1nSAm29HxG+BrwBfyswrp7EmSZIkSVLLmjaLGwJvBt4EvCcibgK+TGkcfzpd\nxUmSJEmS2tH0N4s3ZuZhmbk+sAA4A9gFuCEiro4IB7iRJEmSpFmk6Wioj8nM6zLzUOA1wGeADYCP\nT3VhkiRJkqT2ND0MFYCIWBfYubpsAtwGHAd8cepLkyRJmhpjnVgdPLm6JC1N09FQD6b8XnFj4B7g\na8CBmfm9aaxNkiRJktSSpnsWPwCcC3wIuCAz/zpyR0Q8E3hbZh4+9eVJkiRJktrQtFl8SmY+MHIl\nIpYHdgD2Bl5J+e3j4VNenSRJkiSpFY2axZFGMSKeS2kQ9wD+FrgT+DRw+nQVKEmSJEmaeeM2ixGx\nEuUci3sDLwUeAFYCDgBOysxHp7VCSZIkSdKMW2azGBGbUhrEtwArA98G9gQuooyCeqONoiRJkiTN\nTmPtWbwCuBE4DDgjM28HiIjVpqOQiNgROAJ4FLgX2Dszbx41zTGU03bcU92UmfnmiJgPHEs59+Py\nwNGZ+ZnpqFOSJEmS5oLlxrjvWmB9yt7E/SPiedNVRHWo62nAGzNzAWXk1eOXMunmwK6ZuaC6vLm6\nfR/gOcAGwGbAuyPiRdNVryRJkiTNdstsFjNzY2AjyuGnewE3RMSVwP7AouoyVeYD84CRvZarAA/2\nTxARK1LO8/jeiLg2Is6MiLWru3cETs3Mv2bmvcCXgd2nsD5JkiRJmlPGHOAmM28EDoqIg4FXU/Yy\nHkJp7I6KiP8EzszMOwcpIjPvj4h9gcsi4m5K87jFqMnWBL4DvB/4GfBe4JyI2AR4JvDrvmlvozS6\nkqSl2O7Ac8a8/7xjtp+hSiRJy+K2Wm0b6zDUx2Tmo5l5QWbuBjwNeBvwF+BTwG0RcdEgRUTEhpTf\nRq6fmWsCRwJnRsS8vhpuycxts1gEHA38L2CdZTyPhYPUJEmSJElzWaNmsV9m3p+Zp2bm1pRG7XBK\nAzmI1wCX9g1ocwLl94drjEwQERtFxB6jcvOAR4Bbgaf33b4WZe+iJEmSJGkSJtws9svMX2fmkZk5\n6OA3VwEvj4inVtd3AG7JzLv6pnkUOD4i1q2u7wdcl5m3AecAb42I5SPiicCuwNkD1iRJkiRJc9ZA\nzeJUyczvAEcB342Ia4EDgO0jYtOIuKaa5gbgncB5EfFTyqA2b6ke4kTgZsoIrj8CTsnMi2f4aUiS\nJEnSrDHmADczKTNPoBx+OtqCvmlOo5xiY3T2r8C7p686SZIkSZpbhmLPoiRJkiRpuNgsSpIkSZJq\nbBYlSZIkSTU2i5IkSZKkGptFSZIkSVKNzaIkSZIkqcZmUZIkSZJUY7MoSZIkSaqxWZQkSZIk1dgs\nSpIkSZJqbBYlSZIkSTU2i5IkSZKkGptFSZIkSVKNzaIkSZIkqcZmUZIkSZJUY7MoSZIkSaqxWZQk\nSZIk1dgsSpIkSZJqbBYlSZIkSTU2i5IkSZKkmuXbLkDS3LXdgeeMef95x2w/Q5VIkiRpNPcsSpIk\nSZJqbBYlSZIkSTU2i5IkSZKkGptFSZIkSVKNzaIkSZIkqcZmUZIkSZJUY7MoSZIkSaqxWZQkSZIk\n1dgsSpIkSZJqbBYlSZIkSTU2i5IkSZKkGptFSZIkSVKNzaIkSZIkqcZmUZIkSZJUY7MoSZIkSaqx\nWZQkSZIk1dgsSpIkSZJqbBYlSZIkSTU2i5IkSZKkGptFSZIkSVKNzaIkSZIkqcZmUZIkSZJUY7Mo\nSZIkSaqxWZQkSZIk1dgsSpIkSZJqbBYlSZIkSTU2i5IkSZKkGptFSZIkSVKNzaIkSZIkqcZmUZIk\nSZJUY7MoSZIkSaqxWZQkSZIk1dgsSpIkSZJqlm+7gBERsSNwBPAocC+wd2bePGqa3YH3AYuAvwDv\nyswrq/t+D/ymb/KjMvP0mahdkiRJkmaboWgWI2Il4DTgBZl5U0S8BzgeeF3fNAEcBWySmbdHxLbA\n14G1q/vuzcwFLZQvSZIkSbPOUDSLwHxgHrBadX0V4MFR0zxE2dt4e3X9SuBpEfE4YHNgYURcBKwB\nfA04MjMXTnvlkiRJkjQLDUWzmJn3R8S+wGURcTeledxi1DS/BH4JEBHzgGOBczPz4YhYHvgW5RDV\nlYBvAvcBn5ip5yBJkiRJs8lQDHATERsChwHrZ+aawJHAmVVTOHralYEzgPWAvQEy8+TMfFdmPpSZ\nf6A0kjvO2BOQJEmSpFlmKJpF4DXApX0D2pwAbEA5pPQxEbE2cBmwENiqagyJiD0iYqO+SecBj0x7\n1ZIkSZI0Sw1Ls3gV8PKIeGp1fQfglsy8a2SCiFgduBj4embumpkP9OU3AD4cEfOrwXIOAL4yQ7VL\nkiRJ0qwzLL9Z/E5EHAV8NyIeBu4Bto+ITYHPVaOc7gesDexYnWZjxCspp9z4NHA9sALwVeBzM/kc\nJEmSJGk2GYpmESAzT6Acfjragur+Iym/ZVyWt05HXZIkSZI0Fw3LYaiSJEmSpCFisyhJkiRJqrFZ\nlCRJkiTV2CxKkiRJkmpsFiVJkiRJNTaLkiRJkqQam0VJkiRJUo3NoiRJkiSpxmZRkiRJklRjsyhJ\nkiRJqrFZlCRJkiTV2CxKkiRJkmpsFiVJkiRJNTaLkiRJkqQam0VJkiRJUo3NoiRJkiSpxmZRkiRJ\nklRjsyhJkiRJqrFZlCRJkiTV2CxKkiRJkmpsFiVJkiRJNTaLkiRJkqQam0VJkiRJUo3NoiRJkiSp\nxmZRkiRJklRjsyhJkiRJqrFZlCRJkiTV2CxKkiRJkmpsFiVJkiRJNTaLkiRJkqQam0VJkiRJUo3N\nokIuHIIAABQFSURBVCRJkiSpxmZRkiRJklRjsyhJkiRJqrFZlCRJkiTV2CxKkiRJkmpsFiVJkiRJ\nNTaLkiRJkqQam0VJkiRJUo3NoiRJkiSpxmZRkiRJklRjsyhJkiRJqrFZlCRJkiTV2CxKkiRJkmps\nFiVJkiRJNTaLkiRJkqQam0VJkiRJUo3NoiRJkiSpxmZRkiRJklRjsyhJkiRJqrFZlCRJkiTV2CxK\nkiRJkmpsFiVJkiRJNTaLkiRJkqSa5dsuYERE7AgcATwK3AvsnZk3j5rmdcDHgBWB64C3ZeZ9ETEf\nOBZ4DeU5HZ2Zn5nJ+iVJkiRpNhmKPYsRsRJwGvDGzFwAnAscP2qaJwOnAjtlZgC/AD5e3b0P8Bxg\nA2Az4N0R8aIZKl+SJEmSZp1h2bM4H5gHrFZdXwV4cNQ02wA/ysyfV9dPBK6NiP2BHYHPZuZfgXsj\n4svA7sAV48yTO+6447EbHvnLPWMWedttt415f5v5Ltfedr7Ltbed73Lt053vcu1t57tc+3Tnu1x7\n2/ku1952vsu1T3e+y7W3ne9y7W3np3Lefb3Q/KVNO2/RokVjPthMiYg9gZOBuynFbpGZN/XdfzCw\nTmbuW11fHniE0mBeAeyVmZdX9+0NbJuZbxxjfi8Dvj9NT0eSJEmSumLLzLxk9I1DsWcxIjYEDgPW\nz8ybI+JdwJkRsSAzR7rZZR0yu3AZ9y0cZ7Y/ArYEbm8wrSRJkiTNNvOBp1N6o5qhaBYpA9Nc2jeg\nzQnAccAawF3VbbcCL+7LrAXcm5l/johbKU+y/74x989m5kNArXuWJEmSpDnk5mXdMRQD3ABXAS+P\niKdW13cAbsnMu/qmuRB4SUQ8p7q+L3BO9fc5wFsjYvmIeCKwK3D2DNQtSZIkSbPSMP1mcX/gAOBh\n4J7q75WAz1UjpBIR21JOnfE4Sge8Z2beU/1+8Wjg1dV9J2Xm0TP/LCRJkiRpdhiaZlGSJEmSNDyG\n5TBUSZIkSdIQsVmUJEmSJNXYLEqSJEmSamwWJUmSJEk1NouSJEnSOKpTtM0b8DFWnKp6NDe0vdw5\nGuo0iogVM/OhtuuQmqpOQ7MwMye9YZiry/1UvHZz2VxdbjR5bq+aiYj5wHuAPYC1gIXAbZTzUf9L\nZj48zfN/NnAqsDZwBvCBzPxrdd8PMvOlY2QfD/w/4G7gLOBMYGPgO8DbMvOeSdRzVWZu0nDaYzLz\nwIh4EvB54HWU1+9rwAGZ+cdx8usCJwDvBh4Bvg5sBNwI7JyZOU7+D8AumXlhk3pHZVcHjgAeBD4K\n/AfwCuByYK/M/O04+ccBRwJvAp5GObXdTcDpwHHjrXdtLneDLHPVNHN6uRtt+YlMrGVb1hsTEU03\nCK2tlFOwUg20QejySj3IhrzKt/2f+FI3SBEx0Aap6XI/YO0DLTfLeMyBN+YTeO0mvc63vc4t4zEn\n8toNur30A9QkzcYP7jOxvZqCbX2by93xwJOAd1GWNSjL3tuBzwJ7jTPvN451f2Z+faz7gc8AXwau\nBD4OfDUi3ljV/PhxsicCKwNPoSx7ZwN/X10+Bew2Tu3XA6Nfm/Ui4rqq9o3Gmf9W1b/HAL+mvPbL\nAe8FTgZ2GSd/KmU9+RXlNfg8cAqwU5X/3+Pk7weOj4jzgcMy80/jTN/vlGq+qwE/AM4F3klZhk4E\nth8nfyxwB2U92xP4aXV5P/C3wCHj5Ntc7gZZ5sDlbgk2i5Up2BgO+sa0uVIOulINtEGYgvm3uVIP\nsiGH9v8Tb22D1PIHkGHYmA+yzre6zk3Ba+cHKD+4j+jKB6hBt/VtLnevyswYddvNEfF94CcNat8X\n2AL4ITD6ULhFlKZ7LE/OzBMBIuK1wIXAUZT3bTybZeYGEfEE4FeZ+cHq9g9HxDUN8p8DDqrm9duq\n/pMpr/1EvBBY0NeUHxwRP22Qe2JmfgogIp418jfwhYg4qEH+d5Tl/hjKe/Zp4N8z89YG2XUzc8eI\nWA74TWaOzO+YiNijQX7zkS9yIuL9wCWZuUVE7Axcz/jbujaXu0GWOXC5W4LN4mKDbgwHfWPaXCkH\nXakG3SB0eaUeZEMO7f8nPqKNDVKbH0Cg/Y35IOt82+vcoK+dH6CW5Af3iWljezXotr7N5W5hRKy+\nlD2/awB/bTDv7SgN7lGZeX6D6UdbISJWzsw/Z+bDVc1XRMQN1L88GG1eRMzPzPsi4tCRGyNiJWCF\n8WacmZ+MiCuBTwMHZuZ3IuL+zLy4Ye2rRMTTgFuAJ1OWAyLiiQ1qB3ggIl6QmdcCGRHPzsxfRMSz\naPbaU+0x3zsink/5kumqiLgH+GVmbjNGdIWqztWAJ0XEGpl5d0SsTLMv4leJiFWrL0ZWB1bpu6/J\nc29zuRtkmQOXuyU4wM1i2wFJWSi3GnXZukH+gYh4QfV3RjnUhwm8MatExKrV35NeKZdye5OVcoVq\n40F1CNTOwE4RsdcMzHsq5v/YSg1MaqWmfCN9EDA/M78L3J+ZFzdZsTPzj5m5N+WDxFqUDfnPIqLJ\n4UqDvnaDLrejN0jAxDdI1d8TXe4HrX2g5WbQ953BX7tB1vlW17kpeO0G3V4Ost6NfIB6JtUHqGre\nE/oAVf0909tqaHe9aXVbS7vbq0G39W0ud0cD10TEpyLioOpyHOULh6PHm3GW33S+A9i9QZ1Lcyrw\nw4jYsnq831P2pB4NjP7iZLSzgEur5e4EgIhYAFxKOYx6XJl5KfB3wCER8cHxph/leuDHwNaUPcBE\nxHbA1ZQvOsbzT8C3I+I/gT8Cl0Q5bPpyymHJ43nsC6HMvDEz96Hs2d+ZciTCWI4Hfg5cA3wEuDAi\nPgRcRNmzPp4zgIsj4jDgAuCLEbE2Zbk5s0G+zeVukGUOXO6W4J7FSmY+FBHvoHzDOZlvzkbemP9i\n8RtzGeUb4P0a5EdWyrOBN7B4pRz5Xch4RlbKcyiH5wA8vXqsD4+THVmp9svM72fm7yNie8rvUFaa\n5LzXpHyoGW/eUzH/kZV6i1Er9alMYKWOiL8DTo+ILZpkKktsyIF9ImI/YEPgOQ3yA7121XK7P3AA\nk1tuRzZIq1I2SDtVG6Tjq8t4Jr3cT8E6N+hyM8j7DoO/doOs822vc4O+doNuLwdZ70Y+QC3P4g9Q\n51IO75vIB6g2ttVtrzfL2tZ+nunf1kKL2ysG39a3ttxl5ucj4ooqty5lR8GtwA6ZeX2DeZOZl1M+\naE5YZh4TZc/z3X23XRcRL6F8cTBW9tCI+HFmLuy7+VHg2Mw8bQI13BkR2wAfA546gdxOABGxDqVJ\nA7gX2C8z/7tB/nvVOrIT0AO+Qdmr/pFqr894astGZj4KXFtdxpr3SRFxAeWLmZv7loETM/PUBrUf\nGhE3A5sAn8jM06L8XvjgzPxWg/znI+KHlCZtRpe7QZa5atqpXu4+zswvdy+gHOY+meVuCY6GOoUi\n4hks3iCsQHljzmr6xkTEP1BWyh/2rZSbNlkpq/wGlA3BM1m8Up7bZKWMiFcCd1T/CY7cth5wUGa+\nvUH++ZQNwoTnPUXz3zEzz+q7vhGw0URW6iq3HOU/k90zc60G0/9TZv7LROaxlMcY/b79Cjiv6Ws3\nFUY2SJl5RUS8DFilyQapyq7F4g3ShJf7QQy63PRllqNszHfPzDUnWMM6TP61m/Q6P8j6XuWn+rXb\nrck605eb9PZy0PWues9GPkBtQ2myr2ryAarKt7atngrVe397Zv6k77ZG7/00bGv3mOF1blLL3RRt\n69dh8XL3asoyMJPL3QLgGVSDKk10eWsz3+Xa2863Xbu6z2ZxGar/ODekbJTHHKVsGPPVY7w+M78x\n3dmojguv/l4T2IYyUtt/Z4PR8ZaSfzVlpLqhzw86777cvZn5QERsAmwGXJmZP55A/p7MfDAiNgZe\n1EJ+pP7G+YjYITPPbjIP80vNLwflW+aqYX8xcHVm3tJS/iWUD75tzb9xfgheuxWAl1L2KD4M3DTB\nD3+t5btc+6D5rtYeEUHZ+/g3wG+qm0dG4n1Tg0Z5JL8ySw7KNNH8hOc/hfNuOz/Z175H+R3yhOff\ndu2aPWwWKxGxGfAF4C7gX4F/p+ziD+AtOc7vKYYgv7Shx08H/g8wLzOvmo5slb8qMzeJcmz4WZRj\nupejND27ZOb3Jpi/jHLIT1v5xvVPwbx3Bz5J+bD5QuA44BLKB4IjMvNzszUfEY9SlrP9MvP+seYz\ny/P7jnzhMIHsNpTD0h6gHD73Wcr5k54LvD0zzzM/fPOu8htV+fuA9SmHf65H+fC/Q2b+cgL55wPf\nnsL89pn5q5bmPdH8oK/dhPJdfu4RcTlw+Oi9rxHxGsphaS8aZ96t5btce9v5Iaj93LHuz8w3TFe+\nzXnPhvxoDnCz2CeBAykb468Ar8zMrSh7ij7egfy3gO9STth5ZnV5NuUbqa9NY7bfP1M+bGyfmdsB\nrwU+MYn8G1rOT6b+yc77EMohXDdR3v8tM3MXYFPKudhmc/4G4E7g+oh4S4N5zdb8DZPIf4xyjrY3\nU37Tsl21vXgZ8CHzQztvKF+obF990NoKuCUz16ecQ2+8AStG518xxfnxBk6YznlPND/oazfRfJef\n+6qjP/ADZOYFNPuNcpv5Ltfedr7t2s+mDNDyTRZ/tuy/TGe+zXnPhvySFi1a5GXRInq93jXVv/N6\nvd5to+67qgP5dXu93iW9Xu9tfbdd3fC5TzrbX1+v17tyKfddP5vzUzXv6u9LRt13w2zO9712W/Z6\nvct7vd7Pe73eB3u93ua9Xm/NCbxvcy7fv372er1fj7rv2gbznrP5Iaj9mjEer8k2o7V8l2ufy8+9\n1+t9r9frvXkpt+/S6/UuajDv1vJdrr3tfNu1V9Oe2Ov1Pthk2qnOtznv2ZDvvzga6mKPRMRGWUZL\neuywzIh4Kc2GM281n5m3RBm04IQoP/jfj2ZDiQ+UrTwrIg4G7omIN2TmuVXtOwJNTlzc5fyg8/5J\nRHyUMgri+VFGNv0PykmufzEH8mTm94GXRMTmlGH1T6AcXrXqmMG5nb8/yqkOngQ8PiJem5nnRxnp\n7aEGs53L+bZrXxgRr8jM70bEq4A/AETECym/dx7mfJdrHzTf5drfShl99iTKgD5Qfvd4E7Brg3m3\nme9y7W3n264dytFHuzScdqrzbc57NuQf428WKxGxFfAlYK2shsqNiB0oQ4JvX32gG9r8qMfaG9iH\ncgjBc5vmJpuNiNcDm1eXuzLzTVFOGrw/8IYc/zePnc1PwbyfRGmuXgXcThleehFwFbBjZt42RrzT\n+Yi4OjM3Huvxx5n3nM1HxPOAf6P8lOAAyqHrK1FOvrxjjv8b5zmbH4Lat6IcBvQHyrnytgf+DPwX\n5ffpTf6vaCXf5drn+nOvHmNN+kbgzczfjBMZmnyXa28733bt6j6bxT4RsUJmPtJ3fVXg0Ww4+ETb\n+VGPtTGwZ2Y2+d3ZlGX7HmM14E9Zzgc0p/KTyVZN13pUQ7nnOIMdzIZ8RDwvM386kfmYX+ZjrQhs\nQBkd8Y/mh3veEfEEyrn5fpaZTY5AGJp8l2sfNN/x2jelnNz8sVMgUE4Zcsmw57tce9v5Ia397KY7\nQAbJtznv2ZDvZ7PYJyK2pZwv7rFhqYHTx9s7NOT5L2aDUyAMkp3G2juR73LtbeenabmbE/kuv+9t\n57tce9v5Ltc+aL6rtUfEPsC7KQMy9Z9CYVfg5Mw8bljzXa697XyXax803+XahyE/ms1iJSIOoIxg\n+U3KCXsvpBxO93+BwzLzS7M13+Xa2853ufa281F+37jtAPOes/kuv+9t57tce9v5Ltc+l597RPwM\neFFm/mHU7U+knMs5xpl3a/ku1952vsu1D5rvcu3DkB/NU2csthflXEX/RvktwNaZ+a+U4dAPmeX5\nLtfedr7Ltbed/4cB5z2X83sNOO+5nO9y7W3nu1z7oPku174QWNoh0n+i4eA6Lea7XHvb+S7XPmi+\ny7UPQ34Jjoa62Cq5+PeCDwJrAmTmnRGNGvAu57tce9v5Ltfedr7Ltbed73Ltbee7XHvb+S7XPmi+\ny7VfCJwXEacCv65uezpltMtvNZh3m/ku1952vsu1D5rvcu3DkF+CzeJi10TEycAXgD2AH1S7az9C\n+V3AbM53ufa2812uve18l2tvO9/l2tvOd7n2tvNdrn3QfJdrfw9llPN3UD4wzgduBc6hjOY7njbz\nXa697XyXax803+XahyG/BA9DXWw/4HGUc5zNA95HOc/ZfZQN82zOd7n2tvNdrr3tfJdrbzvf5drb\nzne59rbzXa590HyXa18AHEw5ZPUGYLPMfHVmfhq4oMG828x3ufa2812ufdB8l2sfhvwSHOBGkiRp\nloqIS4AjgSuBY4FnA1tl5sPR4Hyvbea7XHvb+S7X7nNvNz+ah6FWIuIfx7o/M4+drfku1952vsu1\nt53vcu1t57tce9v5Ltfedr7LtQ+a73LtwN9k5vnV33tExFeBU4HdxnrMIcl3ufa2812ufdB8l2sf\nhvwSbBYX24hy/qIzKId49Guy+7XL+S7X3na+y7W3ne9y7W3nu1x72/ku1952vsu1D5rvcu3LRcRT\nMvN31fW/By6LiA82nHeb+S7X3na+y7UPmu9y7cOQX9KiRYu8VJder/ftXq+321zMd7n2tvNdrr3t\nfJdrbzvf5drbzne59rbzXa59rj73Xq+3e6/X+02v13tt321r93q9W3q93iPDnO9y7W3nu1y7z73d\n/OiLA9wsaX/gJXM03+Xa2853ufa2812uve18l2tvO9/l2tvOd7n2QfOdrD0zTwO2An7Sd9utwCbA\nh4Y53+Xa2853ufZB812ufRjyoznAjSRJkiSpxj2LkiRJkqQam0VJkiRJUo3NoiRJkiSpxmZRkiRJ\nklTzPzQBQX0oG9+bAAAAAElFTkSuQmCC\n", 2351 | "text/plain": [ 2352 | "" 2353 | ] 2354 | }, 2355 | "metadata": {}, 2356 | "output_type": "display_data" 2357 | } 2358 | ], 2359 | "source": [ 2360 | "year_av_score = {x:df[df.year==x]['score'].mean() for x in set(year)}\n", 2361 | "year_score_df = pd.DataFrame.from_dict(year_av_score,orient='index')\n", 2362 | "year_score_df.columns = ['av_score']\n", 2363 | "year_score_df.plot(kind='bar',legend=False)\n", 2364 | "plt.ylim(8,10)\n", 2365 | "plt.ylabel('Average score of movies in the year',size=16)\n", 2366 | "plt.title('The average number of movie scores each year',size=20)" 2367 | ] 2368 | }, 2369 | { 2370 | "cell_type": "markdown", 2371 | "metadata": {}, 2372 | "source": [ 2373 | "# 2.Regression Analysis" 2374 | ] 2375 | }, 2376 | { 2377 | "cell_type": "code", 2378 | "execution_count": 9, 2379 | "metadata": {}, 2380 | "outputs": [ 2381 | { 2382 | "data": { 2383 | "text/plain": [ 2384 | "" 2385 | ] 2386 | }, 2387 | "execution_count": 9, 2388 | "metadata": {}, 2389 | "output_type": "execute_result" 2390 | }, 2391 | { 2392 | "data": { 2393 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAI/CAYAAAAoWgtpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcW1X9//FXJrN0ls5MO12mLbRAqQepLK1QhK+AUBTB\nDRTwp3wBBRcQARcQQRZxA1HEsslmBat+FRQQsVSlUHYpUKHQliPQlrZ0nek6+5L8/jj3ZjKZZCaZ\nyTbp+/mwZnJyk5zc3IT7yeeczwmEw2FERERERESkcBXlugMiIiIiIiKSWQr8RERERERECpwCPxER\nERERkQKnwE9ERERERKTAKfATEREREREpcAr8RERERERECpwCPxHJGmPM940xYWPMSUN4jI8YYw6N\nuv4h7zF/mZ5eDl0qrzMT/c/0PjHGfM4Ys08mHlvSwxhTY4z5eq77kUnGmFeMMQW/JtVw+7wZY95j\njDk1yW1/6X1XfSjD3RIRFPiJyDBijDkP+AcwKap5NXANsCAXfUqD1Qyj/htjfgr8AajOdV+kX/8F\nvpTrTsjQDLfPmzHmIOA14H9y3RcR6as41x0QEUnB+NgGa+1q4PtZ70maDMP+93kPJC+NAzbkuhMy\nZMPt8zYKKM11J0QkPmX8RERERERECpwyfiIyIG/+xRPA14CjgJOA7cAp1tpnjTGlwLeBM4B9gJ3A\nv4ArrbUrk3j8jwPnA4cAtd5jPwt831r7irfNIuBo7y4PGmOw1gai+jbHWvuNqMd8D3AV8GHcr9Br\ngb8AP7bW7oja7h7gLGA08BPgZK8Py4CfWGv/EtPXC7ztDRAGXgVustbeH+eljTDG/NDbL/XAKm/b\nX0U9Xp/+e691X9xwqVuADwEtwD+B71lr1/S/R3v191zce7MnbvjfrdbaO+JsNxO3v44EKgAL3A7c\nYa0Ne9usBqZ4d/mPMeYd4H7gYuBYa+0TUY93A/At4EfW2iuj2k8CHgTOsdbO9dr2xWU9P4zb9yuB\n3wI/t9Z2xvSz3uvnJ4GxwHrgPu95dkVtdw8pvK8xzzEdeB34rbX2rKj2A4ClwFpr7eSo9iJgC7DM\nWnuU1zYF+C7wEdzQ5C5vn95lrb090XMPxBjzEeBS4ABgJPAWbijgDdbajqjjCeAgbw7cNdba73v3\n/x/c8XA4UAc0Ay95+yT6/VsE7IX7zN+GyyA+Yq09rZ++JfWajTFfAH4DHAfMAL4KTAbWAXOB66y1\n3VHblwNXAp/HZcBeBb6T5P560dtXtdbatqj2l4GZwHHW2oVR7b8ELgKmWmtXGmNKvH3wOeC9QDku\nk/oo7vttSzL9iNOv8bjj8mhgD2ArsBD3Xr3lbbOamM+btXYv77YxuOPg41HbrAJ+D1xvre3ytvsC\nbl+fhhv6ezSwCTgmme/mmD73+91njPk+cLW3+UXGmIu851nk3X42bt9OA94Ffp7K84vI0CnjJyKp\nuBo4FLgZWAIs8U6MHsWdxOzCBSoLgM8ALxpj3tffA3oFKP6GOxn4P+CXwHLgU8BTxpgJ3qb3AE96\nf/8JNy8u0WMe5vXvc8DzXp82A5cA/zbGjI5zt38BJ+CCiN8D04H7vRNt/3EvBW4CAsAdXp/2Be4z\nxpwR5zHnAOcC84G7cSettxljLkzU9ygVuBN4gwvAXgL+F3jOGDOpvztG+SzuvXoBuAsX+NxujLku\neiNjzAnAc8CxuPfiZtx/H37lvU7fL3Ene3jtv8S993j3jeZfPyqm/aO4k8b53nPP9F7bqcDjwI24\nk+CfAA8bY4JR/ZwMvIjbpy9721pcEPCkMaYyzj4Y8H2NZa1dBqzp5zXtaYzZO6p9Fi7AfMTr517e\nazoLd/zdCDyACxx+NdiiK8aYI3Hvz364z8DNuODqJ7j3CnrmjII7wb8GWOTd/1O4z9AHcMH3jbj3\nfTbwT2PMwTFPWec9zzO4Y/3pfvq2F6m/5p/iAv6ngVtxx/yPgB9EPW4R7hi7zHs9vwI6cT+CTGZg\njwJlRM05M8aMAvzXGu/4XBEVFPnfSZ3Anbjjvg0XrM5P4vn7MMaM8Pp1Jj3H8TO476vnor6f4n3e\nMMbU4D7T38B9V87BBf8TgB8DvT7fnptxP5TcBLw4iKAvme++RcC93t8v4I691d79fwj8GqjxLl/B\nveefTaUfIjI0yviJSCpGAgdbazf6DcaYS3AnxNdbay+Nar8Jd1I5F3di3Icxpgx3ovJfYKa1tjnq\nttuA84BPAHdaa+/xTi6PBv5orX0owWMGgXm4k72PWWsXRN12He5X8p8B58TctRuY7vfBGLMQFyic\njTvJBBc4vg0cFvWL+vW4rMuF3vNGawcOtdZu8rb9Ne5E7xzcSVR/RnmPe7S1ttW7/7dxv5L/GPjC\nAPcHl2X8lLX2Ye/+38ed+F9ijPmNtdYaYypwJ2s7vNe12tv2u7iT/i8bYx6y1s631v7SCw4OAm63\n1r7iBf67cMHDld59R3vbNAGzjDFl1tp2r0/HAy9bazcaYwLec5cBR1hrX/Y7boz5BfBN3An2bV7z\nr3CZpE9Ya/8ete2FuJPfq+mbCUrmfY3nUeCrxpj3WGv/67Ud672mKlzAsMpr/6h36ffpu8AY4MPW\n2sei+nkL7oT487gfI1J1EW7+1Aettau8xywBFgNnGWO+6c8ZNcZcDWz0M32en+Le5xn+Mek9xne8\n207DnZD7qoBfWGu/nUTfBvOa98V9n/gZrptw3wXnAN/ztjkL95mfC3zZWhvytr0e93kcyHzccTkb\nl1EDl0Evwr2XkcDP+34xeJkoY8wHcD9g/d5a+79R2xXjflg6JOb4SJaf6fyBtdbPkGGMuRj33fQ5\nXGa+z+fN2/Q83MiKL1tr7466/zXAm7h9fXHMc3bijpuWFPvqG/C7z1q7yBgD7j37d1SWeRru+HgF\nlwHc7rV/HHh4kP0RkUFQxk9EUvFsdNDnOQc3NPN70Y3W2pdwWZZDvaFz8QSBLwNfig76PIu8y3Ep\n9vEIvOxhdNDnuRo3xOh0L+iMdktMH/xf8/eKaivC/WoeKa1urV2Hy8AcGacvd0WfYFtr/+M9f7Kl\n2S/3gz7PL3G/oH8mTv/jWeQHfd7zN+IyKkW4k0voGTL5Mz/o87YN4bIsAF9M9ATeUMzHcO/zSK/5\nGFxm4C5gBF7gb9xZ4V70BEiHAe8Dfh0d9HmuBDr85/YyvycA86ODPs8tuKG8X4jTxWTe13j87WZ7\nzx/EBQn3ev2KzhQdD6z2MoUAvwPOjg6AAKy1i4FWUj+mff5/syM/pHj7/wSgzlq7M9EdvczZZcAZ\n0cekZ5F3Ga9fCYfExhjMa/6LH/R5267GZbDGe1kxcMdpGLjMD/o8V+KC2IEsBhrw3kfPsUAjLut5\nmHFD1cG9j9BzfK7DHVNXxbymLlyGjgSvayD++3hg1OsE9wPHZHp+6EjkH7is973Rjdbatbhh0vH6\n9OgQgj5I/bsv2qm4RMOP/aDPu/8juNciIlmijJ+IpGJV9BVjTBXuF/KNwBXer73R6r3Lg3Fzq3rx\nTkTu8x7rPcD+wFRcMOCfqAVj7zcAfwjXU3Ger92b83MS7oTl1aibY3+1908qowOsO3C/XK/wHudR\n4O9ekBvPm3HaGnFzegYSJuY1WGu7jTFLgE/j9tPyAR7j2Thti73Lg7zL9/uXXkYwVjc9+zSR+bg5\ndEfjhjv6J9Z347J2R+GG8/mZsUdinntqgufehZunFsDNxwoAdQm27cANwZxkrX03qj2Z9zWehbiM\n7WxcpnEmbqjsP3HDnf25fKO965E5bNbaZ4BnvNsOxmW2DG6I5QhSP6Z9d+GO3T96Q+ce9f49bq3t\n6O+OXtD0oNfnKbjP2FTcZ+4Yb7N4/VoVpy3e4w/mNcfLlEW/P22443SNtXZzzPO1e/P0YofjxvYr\nZIz5B/D/jDE13vzeY3Gfredx828PxX1WPuo9/zPefdcB9xpjir0hyQa3z2bgsnYkeF0DeQwXoJ0E\nbDLGPIZ7Hx/xgrd+eT8g/ccYU+VlJfcF3uO9jmkJ+pTU+9iPVL/7ovnfNfG2fY6e7wURyTAFfiKS\nitaY6zXeZT09k/rjiTenDgBjzFG4OS4zvaY2XED2Mq4gSSDFPvrrXSXKBqz3Liti2tujr1hrw14g\nG/38l+OCuXNxWZfDcMPqLPA1a+3jMY/ZxuA1JDiZ9zOuNXFuixWb2QEXTIEbxgcumAH4f/08TsL3\nz+PP85tNT+D3lLV2uTFmMy5I+jHuBG8T7r2Nfu6P0v/JX1XUth/w/vXX1+jAL5n3tQ9rbbMx5ing\nGC9bdiwQwgUMH8QNl53gvbYgPVkifw7ZjbghdyW4IH41bg6jH8CmzFr7qDHmGNywu+NwQ+wuBLYa\nY75vrb25v/sbV5zmJtxQR3DD/5bjTsjfk6BfsZ/5RI89mNfcHqfNX5Dd334Ubn5uPFuT6Rvuh4nT\ngQ8ZY/6NC3bvoGfO8FHGmMW493iBP5QRwBjzVVzGb6LXtB34N7AC9/lP+b201rZ4Adv3cMNrP+39\nCxljHgC+aq1N+Nq8LOFPcMOg/e+xd3HH5hbcXL9YSb2P/Uj1uy/aKO9yV5zbkn0PRSQNFPiJyFA0\neZdP+9UMU+FlHhbgTkq+gvul/b9eZuuzuF/EU+WfXCQqgOKfhDSm+sDWVbecC8w1xozDnXyfjJsH\n9DdjzBRrbUOqj5vAiATtfgCUzPPUxmnzT2D9Ey7/PZw9wMlbQtbad40xS4HZxlUr3I+eYiNPAid4\n2WF/fqZ/cu8/d6TCZyLGGH/bH1prr+pv2zR6FFdp9GBcsPSqtXa7cRUvL8EFfcfjKq4+EXW/3wEn\n4rKA84DXrFdx1Bhz+lA6ZK19kp5CNkfiqjqeBdxkjHnLWvtovPt5w3D/hfvB4GLv7zesqwR6GC5g\nG4pMveZtJP6RoypBe6x/4IL22fR8rhbF/DDxLO5Ho+gA/lTc61mKq+y5xM/IGWN+hQt+BsW6aqDf\nMMZ8EzgQdxydCZzi9bW/oic3eP35M65AylI/UDTGrCB+4DckQ/zu2+Zd1tD3ezfZ91BE0kCBn4gM\nmrV2hzFmDTDdGFMeMx8NY8yZuDkh90TPH4tyEq48+iXW2rtibnuvdxn9i3qYgfkFED6IVwUvqj9F\nXnsT8E4SjxV93zrgAmCVtfZeb+jZH4A/eEVbzsZlNvorGJKKkcaY/ay1b8S0fwAX9CVTle/QOG2H\ne5d+1m2pd3kILjsT4Q3buwp4yVr7O6850XswH1c452Tvup9NeQI3x+cbuPc6en5e9HP3Cvy8oiXX\n4ebO3RyzbR9eYYtWXDGSfoc9pmA+8AvcSe7huLL44IatduEC2eNxQy3bvH7U4gKgl6y158X0cS9c\n4DGojJ9x5fHHWGuv9OYtLgAWGGNewC1/cSQ92ddYx+Kqyv7cWntDzG3xPmup9Ctjrxl3nJ5gjJls\no5Yx8eZczkjmAay1jVEZvQDuR4/XvJsX4eZIfgwXcEXvPz8Y/nzU/E3foPeZN8rhM7ilEN7GjXB4\n1SuEs4nec+bifd4+j8uCnhb1I4q/7MUU7+9A9G1DkeJ3X7znfBmX2fwf+n5vxf08i0hmqLiLiAzV\nPbjhddd5gRUAxpj9cUU3vkXi4Tz+UMjx0Y3GmANxFQzBDRvz+Wu6lZLYM7hKc582xpwYc9s1uOGj\n99meKpPJ2uX16cem73IQ/jpaKQWTSfhpVOEJv6rnPsC9Nmqds36cYIzxAz2/QMp3cUPs/uA1P4hb\nd/FSb55ltOtxr3nfqLZE78F83Enwd3Hvtx+oLfIuL6anDL/vKdzco3Oi++n5Lu7YeT+AdVUsn/Je\n0ynRGxpXTv4q4KNpDPqw1lpcJcOv4bIVi7z2Xbiqjp/HZVAfibpbBy6AGBXz3pXTU9Uy+phOxfHA\n97xhgtH28i6jj79Oer9HiT5rk+kZpj3YfmXyNd/jXf7C+zHAdwkxr2UA83FLeXwCNwzZD1AW4aoV\nfxVYbHuvy5don51Jz5qig3ld9bghurHVUsfjfhyJfR+h73s5gqiMvhcIz/HuP9h+JZLKd1+8/v7J\n6/OVxq3D6ff5SNyyPSKSJcr4ichQXYc7Ib0QONIbBleLy/JUAqf3U23wEdycmcuNMfvhTrKn4Yav\n+XP06qK29+duXWGMmUGctfy8Yg5n4YZ3/c0Y8zfvcY/AZctWkFwZ+NjH7TDGXIWbI/W6MeZB3BC/\no3GZtXleoJBORwMvGbcEwf64hbGXEbXO2QBWAwuNMX/AnZx/GndyeZ5XuAJv6OKXcIHgf7zXtd57\n7lm4dfOiF1r234MbjDGPWWv99+A53Hs5BXjIP7G21q4wxmzynnehjVpk3RvSeyYuc/WUMeavuPfq\nEFx2ZhU9lUXBDQd+GrcO36O4RdYN7njZigvQ0u1R4Ov0zO/zLaKnumZkPTdv/tYDuCF7i40x/8QN\nZ/sE7oR/G1BrjCmKqVKZjKtxhVieMMbcj3sv9vceewVuuKXvXWA/b0jifFw2dzVwhnGLf7+K+xHk\nU7iT8jC9P2tJy+Rrttbe5wX6pwIve5+F6bjj4x16Ao+BzMd9bqbg5iL6FnmXNfTORoPbn/8PeNAY\n83+4H0hm4T4bm3HVMwezzx7CFZY5z5t3+TxumKn/g0b0UOZ4n7ff4X5IeckY8xDuXO543GdhC676\nZh1uofkhS/G7z+/vad7w7HuttcuMW6riFnq+Y6px7+kaXMEcEckCZfxEZEi84Z3H4E5KR+BOvj+G\nmzNzjLX2//q577u4YXSP4+bffA1XZOIm3DyxRuCjxlV1BPfL8X24E4WvkeCkz1r7HO6E5E+4gO98\nXFbyR8Cs/gonDPBab8adCK7CzcH5Oq764Ldww53S7aO4k7ev4k525+DW4kpYtj/Gbbj35SNe/9YC\nJ1lrb4/eyFp7P26e00LcsLcLcCdmPwSOs9Y2RW1+K25+2CHAhd7cPbwMpJ/NWxTTD/967Im1Xw1y\nFnA/bojbRbj39SbgcGvthqhtLS4DeBduXtRFuIqB83DrJQ5U5XQw/KBuqbV2W1T7E1HtsZUYz8EN\nM67F7cuP4gLoI3Al+MvpqaSZNGvti7j36Z+4wOdbuP0wBzjS9l624uu44/Rs3FqOzbj5ig/g9uEF\nuOF5v/Me41XcDzeDnXOVkdfs+RxuGPEI3Bp29bghxa/0d6cYS+gpjLTIb7TWrohq73V8WrdsyP/D\n/Rjxv7ilHUbgvk/8YkSxowoG5GWlP4ZbO3Es7r06Dbfe4dHW2n9FbR7v8/Y93Oc6hPsePBkX1B+P\nK6I0qH4N0Oekvvuste8AV+B+SPg63o8j1tpbvX6uwe3Ho3AB7q3p7KeI9C8QDqdlCLiIiKSJlzU9\nGhhlo9a9EhERERksZfxEREREREQKnOb4iYiI5ICJvxB9Iq9Yax/KVF9k8IwxJ+GW/EiKtfb7mevN\nwLxKq19I4S4PWWtTGVYrInlKgZ+IiEhuXD3wJhH34oqCSP45CbeWYrK+n6F+JGsvUjv2VpPafEoR\nyVOa4yciIiIiIlLgCiLjZ4wpw1Xw2wAks7aViIiIiIhIIQkCE4AX461XXBCBHy7oezrXnRARERER\nEcmxI4FnYhsLJfDbAPD73/+e+vr6XPdFREREREQkqzZu3Mjpp58OXmwUq1ACv26A+vp69thjj1z3\nRUREREREJFfiTn3TOn4iIiIiIiIFToGfiIiIiIhIgVPgJyIiIiIiUuAU+ImIiIiIiBQ4BX4iIiIi\nIiIFToGfiIiIiIhIgcv6cg7GmI8B1wJlwFLgHGvtzphtLgC+DrQCK4DzrbVbs91XERERERGRQpDV\njJ8xZizwG+Az1loDrASui9nmGOBSYLa19mBgPnBnNvspIiIiIiJSSLI91PMjwIvW2je9678CTjfG\nBKK2eT/wmLV2nXf9AeATxpjSLPZTRERERESkYGQ78NsTWBt1fR1QDYyMalsMHGuMmeJd/yJQCtRl\npYciIiIiIiIFJtuBX6Ln6/b/sNY+BVwDPGiMeQkIAVuBjsx3T0REREREpPBkO/BbA0yIuj4J2Gat\nbfYbjDEjgSettTOttYcAf/FuUnEXERERERGRQch24PdP4APGmGne9XOBv8ZsMxFYZIyp9q5fCfyf\ntTacpT6KiIiIiIgUlKwGftbazbg5e382xqwADgC+bYw5xBjzireNxVX6fMEYY4Fy4JJs9lNERERE\nRKSQZH0dP2vtfNwSDdG2AgdHbXMLcEs2+yUiIiIiIlKosj3UU0RERERERLJMgZ+IiIiIiEiBy/pQ\nTyl8S+xmHlu8ho2NzdTXVXLcrMnMNONy3S0RERERkd2WAj9JqyV2M/PmL49c39DQFLmu4E9ERERE\nJDc01FPS6rHFa+K2L0zQLiIiIiIimafAT9JqY2Nz/Pat8dtFRERERCTzFPhJWtXXVcZvHx2/XURE\nREREMk+Bn6TVcbMmx22fnaBdREREREQyT8VdJK38Ai4LF69h49Zm6kdXMltVPUVEREREckqBn6Td\nTDNOgZ6IiIiISB7RUE8REREREZECp8BPRERERESkwCnwExERERERKXAK/ERERERERAqcAj8RERER\nEZECp8BPRERERESkwCnwExERERERKXAK/ERERERERAqcAj8REREREZECp8BPRERERESkwCnwExER\nERERKXAK/ERERERERAqcAj8REREREZECp8BPRERERESkwCnwExERERERKXAK/ERERERERAqcAj8R\nEREREZECp8BPRERERESkwCnwExERERERKXAK/ERERERERAqcAj8REREREZECp8BPRERERESkwBXn\nugOye1hiN/PY4jVsbGymvq6S42ZNZqYZl+tuiYjIbmLHjh185zvfYfXq1ZSVlTFmzBiuvvpqpkyZ\nkuuuicSlY1bSTRk/ybgldjPz5i9nQ0MT4XCYDQ1NzJu/nCV2c667JiIiu4lAIMBZZ53FP/7xDx5+\n+GE+9KEPccUVV+S6WyIJ6ZiVdFPGTzLuscVr4rYvXLxGWT8RkTyzYcMGrr32Wp599lnC4TBHHHEE\nl19+ORMnTkzpcc455xyeeeYZzj33XL75zW/2uu3f//43c+bMYdmyZYwYMYKjjz6aSy+9lDFjxkS2\n2bhxI3fddRevv/46b7zxBm1tbSxcuJA99thjUK+rurqaI444InJ9xowZ3HPPPYN6rGQ8/fTT3HXX\nXbz99tvs2LGD0aNHM2PGDC644AL23XffAe+fzD4644wzWLx4cdz7f/CDH+TXv/515PoLL7zAmWee\n2We7kSNH8tJLLw3iFaZPKq8j1oIFC3j44YdZtmwZ27ZtY8KECXzkIx/hq1/9KlVVVUN+jv6O48G6\n//77ewVwI0aMYMqUKXzlK1/h4x//eKQ928csDO3zn+59nO7vAFHgJ1mwsbE5fvvW+O0iIpIbra2t\nnHXWWZSWlvLTn/4UgDlz5nDmmWfy8MMPU1FRkdTjPPLII1hr49720ksvcc4553DkkUdy8803s23b\nNubMmcMXvvAFHnjgAUpLSwF45513ePTRR5k+fTqHHHIIzzzzTHpepOfee+/l2GOPTetjRtuxYwfT\np0/n85//PKNHj2b9+vXcddddnHbaafztb39j0qRJCe+b7D66+uqraWpq6nXfV155hWuvvTbha7vi\niis44IADIteDwWAaXu3QDOZ1+ObOncv48eP51re+RX19PStWrOCWW27hhRde4I9//CNFRUWDfo7+\njuOhWL58OaWlpcybNw+ArVu3ctNNN3HxxRczfvx4Dj300Lj3y/QxO9TPf7r3caa/A3ZHCvwk4+rr\nKtnQ0NS3fXRlDnojIiKJ3Hfffaxdu5YFCxZE5hEZYzj++OP505/+xBe/+MUBH2PHjh1ce+21XHbZ\nZXz729/uc/stt9zCxIkTueWWWygudqchU6dO5ZRTTuH+++/n9NNPB+DQQw/lueeeA1yGJJ0nfbfc\ncgvr1q3jhz/8YdL3OfbYYzn55JO54IILktr+4x//eK/sDcCBBx7ICSecwD/+8Q/OPvvsfvuXzD6K\nlzm87777KCkp4WMf+1jcx546dSoHH3xwUq8hWwbzOny33347o0ePjlw/7LDDqK2t5dJLL+WFF17g\n8MMPH9RzDHQcD8WKFSvYZ599er0PY8eO5ZRTTuHJJ5+MG/gN5phN1VA//+nex5n8DthdaY6fZNxx\nsybHbZ+doF1EZDg6++yzOe200/q0W2uZPn06Dz/8cA56lZrHH3+cgw46qFfxiD333JOZM2eycOHC\npB7j5z//OdOmTesT9PheffVVjjjiiEhAA3DAAQdQW1vLY489FmnzMzUDeeedd5g+fTpz5szp1X71\n1VczY8YMXnvttV7tt912G08++SR33XUX5eXlST1HutTW1gIDZ9mS3UexWltbWbBgAccee2zkuVKV\n6v7MhFReR3TQ5/Mzmps2bRr0cwx0HA9WOBzGWtsnSPKH8MY7NrJ1zKbj8x9tqPs42e8ASZ72qGTc\nTDOOM07cn4ljqigqCjBxTBVnnLi/5veJSEGZOXMmy5cvp6OjI9IWDoe55pprmDFjBp/85Cd7bR8O\nh+nq6hrwX3d3d9Zew1tvvcV73vOePu377rsvb7311oD3f+mll3jooYe46qqrEm5TVFRESUlJn/bS\n0lLefPPN1DoMTJkyhVNOOYV7772Xbdu2AS478pe//IVbb72117DGW265hSeeeIK5c+cycuTIlJ9r\nMLq7u+no6GD16tVcffXVjB07dsBgYrD76F//+hfNzc2cdNJJCbe5+OKLee9738thhx3Gt7/9bdav\nX9/r9lT2Z6Yk8zr6488zmzp16qCeI5njeLBWr15NS0tLn8DvhRdeIBAIcNxxx/VqT+WYHep3ylA/\n/7FytY8lMQ31lKyYacYp0BORgjZz5kw6OztZvnx5ZAjXQw89xKuvvsqDDz7YZ/vFixfHLbYRa9as\nWZG5QJm2Y8cOqqur+7TX1NSwc+fOfu/b0dHB1Vdfzdlnn80+++yTcLu9996bV199tVfbu+++y5Yt\nW3pluFJx/vnn89e//pU777yTffbZh1tvvZUbbrihV2GMN998k5tvvpnJkyfzv//7v4DLrjzwwAN9\nHi8cDsfM017RAAAgAElEQVQ9OQ6FQnR1dUWuBwKBAbN3p556KsuWLQNcUHXvvfdSV1fX730Gu4/+\n+te/UldXx1FHHdXntpEjR3L22Wdz6KGHUlVVxfLly7njjjtYvHgxDz30UK8+JbM/M6m/1zGQTZs2\ncdNNN3HEEUf0G6Qmeo5kj+PBWrFiBQD77LMPXV1dtLa28uyzz3LjjTdy5ZVX9upzKscsDP07ZSif\n/3hytY8lMQV+IiIiaXDQQQcRDAZ55ZVXOPjgg9m5cyc/+9nPOP300+P+ij59+nT+/Oc/D/i4lZXJ\nzYd+7rnnkpqDl6lA8u6776atrY3zzjuv3+3OPPNMLrnkEm688UbOPPNMtm/fzlVXXUVRUdGgh3aN\nGzeOs846i7lz59Ld3c0VV1zBiSee2GubadOmJV2oI9EJ9G233cZtt90WuZ7MvvzZz35GU1MTa9eu\nZe7cuXzxi1/kD3/4Q7+VCQezjzZt2sRzzz3HmWeeGTc43H///dl///179f3QQw/l1FNPZd68eXzj\nG9+I3JbM/vSl+7gb6HX0p7m5mfPOO49gMMi11147qOdI9jgerDfeeAOACy+8sFf7d77zncjcTV8q\nxyyk/ztlKHK5jyUxBX4iIiJpUFlZyX777RfJ1Nx4440UFRX1OcGL3v69733vgI8bCASSev4ZM2Yw\nf/78Abfrb45QdXV13F/2E2UCfOvXr+f222/nRz/6ER0dHb2Gu3Z0dLBz504qKysJBoN88pOfZOXK\nlcydO5fbb7+dQCDAiSeeyFFHHTWooZ6+KVOm0NHRwfvf//4+J9CpincCfd5553HMMcf0mseZzAm0\nP9zwoIMO4qijjuLYY4/lzjvv5Ac/+EHC+wxmHz388MOEQiFOPvnkZF4i4F7nXnvtFXfeXrL7Mx3H\nXbTBvA6AtrY2zj33XNatW8e8efOor69P+TlSOY4Ha/ny5dTW1nL33XcTDod59913uf7667nxxhv5\n+Mc/zvjx4wf92EP9Thns5z+eXO5jSUyBn4iISJrMnDmTxx9/nGXLlvHHP/6R6667rtdaYtHSPdSz\nvLy83zlNydh3333jBhZvv/12v2vPrV27lvb2di655JI+t82dO5e5c+fy0EMPRU5Kv/GNb/CVr3yF\ntWvXUldXx5gxYzjhhBN4//vfP6h+P//881x11VXMmDGDJUuW8MYbb7DffvsN6rEAqqqq+gwTLC0t\nZdy4cUOa41ZdXc3kyZNZsyb++rbRUt1HDz30EPvtt9+QXrcvlf2ZjuMu2mBeR2dnJxdeeCGvv/46\nv/nNbzDGDOo5Uj2OB+ONN97gfe97X+Q4OvDAAykvL+erX/0qf//73/ut9jqQoX6nDPbzH08u97Ek\npsBPREQkTWbOnMm8efO49NJLmTlzJp/61KcSbptPw7J8xx57LNdffz1r165lzz33BGDdunUsWbKk\n35L2733ve/ntb3/bp/3MM8/kk5/8JKeccgqTJ/eu5FxRURE5QX/qqadYuXIlP/7xj1Pu87Jlyzj/\n/PM59dRTueyyy/joRz/KL37xC+68886UHyvTGhoaWLVqFZ/4xCeS2j7ZffTaa6/x1ltvcdlll6XU\nn9dee41Vq1Zx/PHHR9pyuT8H8zpCoRAXX3wx//73v7njjjsGXKqiv+cYzHGcioaGBrZs2cJnPvOZ\nXu1HHXUUdXV1/Otf/xpS4DfU75TBfv5j5XIfS/8U+ImIiKSJn41ZuXJlwgIMvnhZpVw77bTT+P3v\nf8/XvvY1LrroIgKBAHPmzKG+vp7Pfvazke0WL17MF77wBX7yk59w0kknUV1dzWGHHRb3MSdOnNjr\ntuXLl/PUU09F5pu9/PLL/PrXv+ZLX/oSM2fO7HXfBQsWAPD6668DLvgZPXo0o0ePZtasWbzzzjt8\n+ctf5oMf/CBXXnklRUVFnH/++Vx++eW8+OKLCRfCzobzzz+f/fffH2MMVVVVrF69mnvuuYdgMNhr\nTlzsvoTU9hG4IhrFxcX9BpQXX3wxkydPZv/996eyspIVK1Zwxx13MH78eM444wyAnO/PgV5HvH11\nzTXXsGDBAs4991zKy8t55ZVXItvX19f3GfLZ33OkchyDC4pmz57N17/+9aTWd1y+fDkA73vf+3q1\nFxUVccwxx/DAAw+wdevWuEtUJGOo3ynJfv4h/nvhS+c+Hug7QFKjwE9ERCRNKioqKCkp4XOf+1xa\nhtxlW0VFBffeey/XXnst3/nOdwiHwxx++OFcfvnlvbIEftXLUCiU8nOUlJTw5JNPcvfdd9PR0cHU\nqVO55ppr+mRBAC666KJe16+55hrADVX7xS9+wdlnn83UqVP5+c9/Hil6ctJJJ3H33Xdzww038Mc/\n/jHl/qXLQQcdxIIFC/jNb35DZ2cn9fX1HHbYYXzlK1/pVdgl3r5MZR91dnbyyCOPcOSRR/ZbLXTa\ntGk88sgj3HvvvbS1tTFmzBg+8pGPcMEFFzB69Gi2bNmS0/2ZzOuIt6+efvppwC3kfvvtt/faPjYg\nS3ZfJau1tRXoWYNvIH5hl9jAD+C4447jz3/+M4sWLeLTn/70kPs2GMl+/iHxd0C693F/3wHZqnZc\nSALhcDjXfRgyY8xewKqFCxf2WyVLREQkk6677joeeeQRHn300aytEyciufGnP/2JG2+8kSeeeCKj\nC6uLJMvPQgN7W2tXx96ujJ9Ili2xm3ls8Ro2NjZTX1fJcbMma41DkWGstbWVN954g5deeonf/va3\nzJkzR0GfyG7AH+6ooE+GCwV+Ilm0xG5m3vzlkesbGpoi1xX8iQxPzz33HF/72tcYP3483/ve9/jw\nhz+c6y6JSBbccMMNue6CSEoU+Ilk0WOL45fwXrh4jQI/kWFq9uzZKS2yLCIikgtFue6AyO5kY2Nz\n/Pat8dtFRERERNJBgZ9IFtXXxV87p3509tbpEhEREZHdjwI/kSw6blb8RUlnJ2gXEREREUkHzfET\nySJ/Ht/CxWvYuLWZ+tGVzFZVTxERERHJMAV+Ilk204xToCciIiIiWaWhniIiIiIiIgVOgZ+IiIiI\niEiBU+AnIiIiIiJS4BT4iYiIiIiIFDgFfiIiIiIiIgVOgZ+IiIiIiEiBU+AnIiIiIiJS4BT4iYiI\niIiIFDgFfiIiIiIiIgVOgZ+IiIiIiEiBU+AnIiIiIiJS4BT4iYiIiIiIFDgFfiIiIiIiIgVOgZ+I\niIiIiEiBU+AnIiIiIiJS4BT4iYiIiIiIFLjiXHdARGR3sMRu5rHFa9jY2Ex9XSXHzZrMTDMu190S\nERGR3YQCPxGRDFtiNzNv/vLI9Q0NTZHrCv5EREQkGzTUU0Qkwx5bvCZu+8IE7SIiIiLppsBPRCTD\nNjY2x2/fGr9dREREJN0U+ImIZFh9XWX89tHx20VERETSTYGfiEiGHTdrctz22QnaRURERNJNxV1E\nRDLML+CycPEaNm5tpn50JbNV1VNERESySIGfiEgWzDTjFOiJiIhIzijwG2a0FpiIiIiIiKRKgd8w\norXARPrSjyEiIiIiA1PgN4z0txaYf6Krk2DZnejHEBEREZHkqKrnMDLQWmD+SfCGhibC4XDkJHiJ\n3ZzNbopkjRZGFxEREUmOAr9hZKC1wHQSLLsbLYwuIiIikhwFfsPIQGuB6SRYdjdaGF1EREQkOZrj\nN4wMtBZYfV0lGxqa+txPJ8Gp0TzJ4eO4WZN7zfHzaWF0ERERkd4U+A0z/a0FppPgoVOxkOFFC6OL\niIiIJEeBXwHRSfDQJVM5VfJLvi+MrgyyiIiI5AMFfgUm30+C853mSUo6KYMsIiIi+ULFXUSiqFiI\npJMq7YqIiEi+UOAnEmWgyqkiqVAGWURERPKFhnqKRNE8SUknVdoVERGRfKHATySG5klKuqjSroiI\niOQLBX4iIhmiDLKIiIjkCwV+IiIZpAyyiIiI5IOsB37GmI8B1wJlwFLgHGvtzphtTgauAULANuBL\n1tq3s91XERERERGRQpDVqp7GmLHAb4DPWGsNsBK4LmabcuB3wKettQcDDwM3ZbOfIiIiIiIihSTb\nyzl8BHjRWvumd/1XwOnGmEDUNkEgANR416uAtux1UUREREREpLBke6jnnsDaqOvrgGpgJLATwFrb\nZIw5F3jOGNOICwT/J8v9FBERERERKRjZDvwSZRi7/T+MMQcAVwH7W2vfNsZcCPzFGHOwtTacjU6K\nyPC3xG7mscVr2NjYTH1dJcepmqaIiIjsxrI91HMNMCHq+iRgm7W2OarteODZqGIutwLvA+oGevBd\nLR20tHXS2dVNOKwYUWR3tcRuZt785WxoaCIcDrOhoYl585ezxG7OdddEREREciLbgd8/gQ8YY6Z5\n188F/hqzzRLgaGPMeO/6ScAqa23DQA/e0tbFtl3tbN7WyvqGZjZtbaFxRys7mtoVEIrsRh5bvCZu\n+8IE7SIiIiKFLqtDPa21m40xXwT+bIwpBd4GzjTGHALcba092Fr7uDHmZ8AiY0wHsBX41GCer6s7\nRFc3RI0kJQAEg0WUFLt/xcGeSxEpDBsbm+O3b43fLiIiIlLosr6On7V2PjA/pnkrcHDUNrfihnim\nXRg/IAzR2t7THgCKi4so8QPB4iJKioMEiwKJHkpE8lR9XSUbGpr6to+uzEFvRERERHIv64FfvgoD\nnV0hOrtCEBUQFgUCkexgdIYwEFBAGI8Kakg+OG7WZObNX96nffasyTnojYiIiEjuKfAbQCgcpr2z\nm/bO7l7txVHDRf0sYXA3Hy7qF9Tw+QU1AAV/klX+8bZw8Ro2bm2mfnQls/UjhIiIiOzGFPgNUrzh\norHZQT9DuLtkB/srqKET7t1HvmR9Z5pxOu5EREREPAr80ihedjBA7+xgIc8dVEENUdZXREREJD8p\n8MuwMNDZHaKzu/fcwWBRgNKSYFR2cPgHgyqoIcr6ioiIiOSn3XtSWg51h8K0tnexs7mDxh1tbGxs\nZmNjM407WtnV0kFbexfdoeG15uBxCQpnqKDG7kNZXxEREZH8lFTGzxgzt5+bQ0AT8Cbwp2QWWpf4\nukNhuju6aevoGSoaLHLzBktLgq6ITEl+Zgb9eV0t7V10doYoLQkydVKNCmrsZpT1FREREclPyQ71\n3BP4H2AEsArYBIwF9sEFfuuAeuAqY8yR1tr/ZqCvu6VEwWD0MNHS4iBFOQwGo+d1VZQVQ5lrV9C3\n+8nUMgr5UjBGREREZLhKNvBbABjgJGvtEr/RGPM+4AHgJuBe4GHgOuDTae6nRPGHiUZXFC0OFlFa\n7DKCpcXZXWtQ87oyazgFPZlYRkEFY0RERESGLtnA75vAJdFBH4C19nVjzBXAL6y1txhjbgR+k+5O\nysD85SVo7wJcNdHSkqD3L7NZQc3rypzhGPSkexkF/bAgIiIiMnTJBn4jgdYEt3UBtd7fO4DSoXZK\nhi4MvZaWCADFxUWU+cFgGhec17yuzBlM0DOcMoTJ0A8L0p9CO95FREQyJdnAbxHwE2PMq9baVX6j\nMWYK8APgKa/pw4Dm9+WhMNDZFaKzKwStnUD6FpzP1LyufJDrk8pUg57hmCEciH5YkEQK8XgXERHJ\nlGQDvwuBxwFrjHkd2IIr7vI+4B3gfGPMJ4DLgdMz0dHhatnKRp5bup6G7a2MqS3niAMnMn2fulx3\nCxhgwXlveGhJEvMFMzGvKx/kw0llqkFPIQ6LLOQfFmRoCvF4FxERyZSkAj9r7TvGmOnAGcDRwBjg\nP7iiLr+z1nYZYyqBo6y1z2Sst8PMspWN/PXJtyLXt2xriVzPl+AvVvSC8y30zBcs9qqHlpb0LDgf\nLd3zuvJBqieVmcgOphr0FOKwyEz/sJDrrK4MXiEe7yIiIpmSbMYPa20bcJf3L97tr6erU4XiuaXr\n47Y/v3R9XgV+A2Ulo4eJNre5tkAASoI9gWBpSZDiNM0ZzBepnFRmKjuYatBTqMMiM/XDQj5kdWXw\nCvV4FxERyYSkAz9jzPHAiUAlEHuGH7bWnpPOjhWChu3x6+E07EhUJyf7BpuVDIeho6ubjq6eYaJF\ngYAXCAYjS0vk42LzyUrlpDKTQ85SCXo0LDI1Gio4vOl4FxERSV5SgZ8x5nLgR0AjsB63aHu0cJr7\nVRDG1JazZVtL3/aa8hz0Jr50ZiVD4TBtcRab9zOCJcHhFQymclLZX3Ywm0MJB8oQalhjb8lmdbXf\n8lOhzi8WERHJhGQzfl8DbgfOt9YqyEvSEQdO7JVN8x1+4MQc9Ca+TGclu0NhuvsLBoszu8bgUKRy\nUpkoO1haEsz6UMJEGUINa+wrmayu9lt+K8T5xSIiIpmQbOA3CrhPQV9q/IzZ80vX07CjlTE15Rw+\nxKqe6a4SmousZLxgsDhYRKkXDJaWDG5ZiUxI9qQyUXYwUS48F0MJMzWscThnw5LJ6mo4qIiIiBSC\nZAO/p3DVPBdlriuFafo+dWkr5JKJKqH5kpXs6g7R1R2ipb2nkmiJV0W01Ft0Pp+HiCbKDv7u0RVx\nt89F1cFMVEAc7tmwZLK6+VA5cjgH1yIiIpIfkg38bgXmGmPGAC8AfVJE1toH0tkx6SsTVUIzkZVM\nhzBRxWO8BeeDRQHKSoKUlAQpK+m7pESuxcsOPrZ4Td5UHcxEBcRCyIYNlNXNdeXI4R5ci4iISH5I\nNvB72Ls83/sXKwzk11l4AcrUfLx0ZiUzqTsUdhlBPysYwFtb0MsM5uFcwXyqOpiJvuRDNizTcv0e\nFkJwLSIiIrmXbOC3d0Z7IUkZDlVC0yWZuYzhMLR3dtPe2TNXsCTYM0+wrCRIMMdrC+ZT1cFM9CXX\n2bBsyPV7GBtct7R1sbO5g7Wbm7h+3ksa9ikiIiJJSSrws9a+k+mOyMDyZT5epg1lLmNnd4jO7p6F\n5oNFgcgcwVwND82nqoPp7kuus2HZ0t9+y/T8u+jguqWti8Yd7uAuKS7SsE8RERFJWsLAzxizFPi8\ntfZ1Y8xrDLBWn7X2wHR3LlWPPreK0WNbKQ4WURwMeJdFkeslxW75gN7/etpKvWIiuc4SJZKv8/HS\nLZ1zGbtDYVrbu2iNGh5a5gWCJcUuK5gP1UNTkU+FPnKdDcu1bMy/iw6udzZ3RNqrK0sif2vYp4iI\niAykv4zfy0Bz1N95v5TDM6+up6SibciPU1QUiAwV7DWHrCRIWUmQstIgI0qDlJUUU1bqrve0FzOi\nNEh5WTEjytzfI0qLKS1Jz/IEw2U+3lBkcm3BcJhei8wHgGIvABwO1UPzsdBHPmU0sy0b8++ig+u1\nm5soKS6iurKEihE9gV8hzakUERGRzEgY+Flrvxj19xf6exBjTEGNNQyFwrS1d9PW3j3wxkkKBKC8\n1AWD5WXFVIxwl33/LqFihGurHOFO7irKi4dlZmqwsjmXMQx0doXo7ApFqof2midYWpxXgaAKfeSX\nbBW38YPr6+e91GdOZUtbF51dIb71yydzngEWERGR/JXUHD9jTDfwAWvti3FuOwqYD1SluW8p++5Z\ns6gbO55ub55Xd3c4sj5cZ1eIri7X7p/ou3/dkb87Orvp6Ay5ZQS8v9s7u+ns7KajK0Rbh2tv7+gm\nFE4tARoOQ0t7V2SdulQVFQWoHOECw8ryEqrKe1/6f1eVl1BZUUJVeSlV5SV5V+UyGbmey9h7nmC7\nW1zemx9Y6g0LzlUQvjtU0RxOsl3cJnZOpT/nr66mjHA4nBcZYBEREclP/c3x+yFQ410NABcbYzbF\n2fT99AwJzamRFSWMrh6R8ecJh11A2e4NGWz3gsG2jq5IW1t7F60dXS5z2NEVaWtp64rMOYueezaQ\nUCjMrpZOdrV0Jt3PAFBRXsJILxAcWVFCVYW7HFlRysjKUqq9fyMrS6koK86LrGK+zWX0fzyAnsXl\ni2PmhRYHsxMM7g5VNIeTbBe3iZ1T2dkVoq6mrNewT/92BX4iIiISrb+M3zvA97y/w8CRQHvMNt3A\nduC89HctfwUCfqGYIFUVQ3usUChMW4cXBLZ10ewFhs2tnbS0ddLc1kVLWyct3mVzq2trbu0cMGgM\ng9u+tRPoO3QyVnEwEAkIaypLqa4so6aqlOqqMmoqS6mpKqO6spSaqtKMV8fM57mM0cNDW6KCwdKS\nzK8puLtU0cyFwRTNyUVxm+g5ld/65ZOE44w+UAZYREREYvU3x+9u4G4AY8wq4GRr7SvZ6tjuoqgo\n4M3rK+nJryapuztEc1snTa2dNLe4yyYv0Gtq6WRXSwe7Wjrc363usrMrlPDxurrDbNvVzrZdsfF9\nXxVlxdSMLKOmqozaqjJqR5Z6lyOoqSqldqQLEoNF+VkhNd3C9F5TMFNFY3b3KpqZ0l/RHKDfgDCX\nxW2UARYREZFkJbuOX78LuBtjSqy1yY9BlLQIBouoriyjurIsqe3D4TDtnd2RoHBns/u3y7vc2RL1\nd3NHvxlFf77ihobEmYVAAGqqyhg1soxRI0dQO7KM0dW9L2uqCjM4jFc0xp8r6AeDxYNcNmR3rqKZ\nKYmK5ty/8L+0RX0OYufQ5XppDWWARUREJFnJFncpAb4CHA2U4RIaeJcVwAxgdCY6KOkTCAS85SaK\nGVM7cIXMjs7uSBC4o6nd/WvuYGdTBzua29mxq53tTe0J5x2Gw7B9Vzvbd7Wzip1xtykKBLxAsIxR\n1SMYHf2vxl2WlyV1mObUspWNPLd0PQ3bWxlTW84RceYk+nMFW9pcIBFZXL64KJIVHK7SGQDlIphK\nVDTnnQ07GT+673juhV6gmOulNZQBFhERkWQle0Z9PXARsBQYD7QCW4ADgFLgBxnpneRUaUmQMbXl\nAwaJXd0hLzDsYNuuNnY0dbiAr6mdbTvb2Larne272ujq7jsXKRQOs3VnG1t3tgE74j5+xYhi6mrK\nqasZ4f3r/XeuA8NlKxt7VSHdsq0lcr2/eYo9i8u76/7i8v6akJmeR5ku6VxbMFfrFMYbMukXYlq7\nyV87r5SKEe5Y27i1OW+W1lAGWERERJKR7BnzacBPrbWXGWMuAw6x1n7GW7/vcaCk/7tLISsOFnnB\nWDmJJiqGw2GaWjsjgaB/uXVnG9t2trF1p8sMxlsmwxW22cXaTbviPnbliOJIgOr/G+tdjqouS2oo\naTIZu0SeW7o+bvvzS9enVKCm1+LyzS4b6q8lWFYSpKQ4P4fEpjMAylUwlWiZhOJgEeGwG7bbuKMN\nGEHFiGLqR1eyQUtriIiIyDCSbOA3FviH9/erwPkA1tr1xpif4Kp/Xpn+7kmhCAS8iqEVpUyuj79N\ndyjEjl0dkQzg1p1tNO7wL1tp3NEWtzhNc1sXzRt38c7GvoFhUSDA6JoRjK0tZ+yocsaNqmBMbTnj\nRrnAsLQkOOiMna9he2v89h3x25MVCod7AkHc0FA/G1hWEiQ4yDmCqRpo6GU61xbM1TqFiZZJAGjc\n0VPsaGdzBxUjipk9azKPLV6Ts8Iq6RoOm+s5iiIiIpI9yQZ+W4Bq7+//AhOMMXXW2kbcsg97ZKJz\nsnsJFhW5eX018ddiDIfD7GrpoGF7TyDYuKOVhu1tNHjXQ6HeGcNQOEzD9lYatreyYnXfx6wdWUZX\nV4gwYUqCbj2+4uIAJcGipDN2Y2rL2bKt73IZY2oGnkeZiu5QOFJUB6AkWOSCQC8QzMQ6gskMvUxn\nZclcVqnsb5mEnc2uIm4gAGecuH9ku1wUVknXcNhcDasVERGR3Eg28PsH8H1jzNvAcmAzcL4x5sfA\nqUC8hd1F0ioQCESqmO4zqe+Q0u5QiO272r1Ar40tXsC3ZXsrDdtaaG7rW6V0ez9LV6xvbGHOH//D\nuNEuU1hfV8n40RWMrhlBUSAQGR66dtMumlo6qapwhXN8hx84MT0vPIHO7hCdrSGaWjsj6wiOKE3v\n/MBkhl6ms7JkvlSpjA5AI8utABPHVEVed64Kq6RrOGy+zFEUERGR7Eg28LscF/zdbK091hhzBXAn\nbnhnEfCtDPVPJGnBop65hmZK39ub2zpp2NbK5m0tbNnmAsIt21pYvWEXXd19h5B2d4dZsXprn0yh\nX+ijta0rkh0sKw2yq7kTCDB5/EgOT2GOYDr0WkfQmx/oZwLLSge/dEQyQy/TGQDlS5XKZAPQTBdW\niTcUM13DYXM1rFZERERyI9l1/DYaYw4GJnnXf22MeQs4DHjRWvtEBvsokhaVI0pY3bqTV/67JVLE\n5YQj3BKVDz7xJl3dITq7Q3R1hensDjGyopRdLR2R5Rd8PYU+gJiEYVeonTG15Sxb2UjjjlYm1FVS\nP6aSkRWl2XiJEaGwXzG0Z+mInkCwOOnF5JMdepnOACgfqlTmQwCaaCjmiNJi2jr6Zq9THQ6rxd9F\nRER2L8mu4/cycIW19lG/zVr7JPBkpjomkm6Jirh86uh9OfmYaTy/dD0NO1oZU1PeK2PX1NLBpq0t\nkX8bG5tZtnJr3CxhZ1eI5au2snzV1l7tleUlTKirZOLYSibUVTJhjPt7ZEVpRubmxeoOhb3qqF1A\nO8VBfyH5on4DwXwZepkLuQ5AEw3FJMHhkup7ks/vrYrOiIiIpF+yQz33Bdoy2RGRTOtv2YUvnXRA\nwqGZVRWlVFWUMnWP2kjbXQ+9xuatzXR1h70sYShScTQUJpJp8zW3dvLWuu28tW57r/bK8hImjvEC\nwTGVTBxbxaSxVVSWZ3aFFH8x+eY26C8QzIfM1+4q0VDMjs5uzjhx/yG/J/n63qrojIiISGYkG/j9\nGvieMaYReNNaO7Q69SI5kM5lF444cCJ/ffItSooDbn09V/mfTx29L/vvPZqdzR1saGhmY2MzGxpb\n2NjQzIbGZnY2d/R6nObWTt5cu5031/YOCGuqypg0tpJJY6u8YLCS+rpKSksys6h7bCAYqRhaEuTg\naWML/oQ7HzNM/Q3FTFc2MtdZzXhUdEZERCQzkg38jgQOAv4DYIyJ/Sk6bK2Nv3K3SJ5I57ILfnYw\n0fDQmqoyaqrK2G+v0b3u19TayYYtTaxvaGZ9QzMbGprY0NDMrpbOXtvtaGpnR1N7ryGjgQCMG1XB\nHiQAWE8AACAASURBVOOqmDSuij3GjWSPcVWMGlmW9uGisRVDi4uLeq0hmI3hqdmSrxmmoQzFzMdA\nNlkqOiMiIpIZyQZ+j3j/RIYtP0sXa7DLLkzfpy7lyp1V5SVMmzyKaZNH9Wrf1dLB+i1NrN/SzLtb\nmnjXCw7bvcXbAcJhIvMMX35jc6S9YkQxk8ZWsYcfDI6vYuKYKpeJjMNfhsIvcHPEABVIw7i5i51d\nvZeO8IPAkuKijAaCmQ5i8jXDNNihmPkayCZrOBWdGc4BtoiI7H6Srep5TaY7IpJpA2XpcmlkRSlm\nymjMlJ4MYTgcpnFHmwsIG5pZt7mJ9Vua2NjYQihqcfGWtq4+w0WLigJMqKtkj3FV7Dl+JHuOr2KP\n8SNZvX5n3AI3QNL7odfSEbhMZFlJz9IRqawhONCJczaCmHzKMMXbH5eccUhKj5GvgWyy8rnoTLTh\nHmCLiMjuJ9mMn0hBGEyWLlcCgQBjassZU1vOgdPGRto7u7rZ0NDCus27WLfZZQfXbW6iubVnuGgo\nFI5kDl9YtjHSXlpcRDAYoLTYFXJx14t4fun6Qe+XcBjaOrpp6+hZQ9AvEuNnBONJ5sQ5G0FMvmSY\n0hVI5FMgOxj5WnQm1nAPsEVEZPejwG83EvD+r8gblhcIBHq1+aP1Iu0DCOOyUuBO/sNhCBPG+1/k\ntl73CUffv2fbWKkOR9ydlBQHmVw/ksn1IyNt4XCYHU0drN28i3Wbmli7eRdrN+1iy7behWs6ukLQ\nBa3tPUNIg0UBtmxv5W9Pr2TP8e5xhzJvMBQO9wSC3uOXlvRdTD6ZE+dsBDH5kmFKVyCRL4HsUORj\n0ZlYwz3AFhGR3Y8CvzwTiA3MAhDAuwz0tPnbFBUFCAQCFMXcFtk2+nHyuCBHOBz2AkdYYjcx/9mV\nAASDAbbtauPvz66kuqqUg/d1ma9w1P3cpfcY0X97gWj09VC457r/dyEIBALUjiyjdmQZB0wdE2lv\na+9i3ZYm1m5yAeF/7GZaYpaa6A6FaW3v5u/Proq0jawoYcqEaqbUVzOlfiRTJlRTU1U2qL65x++7\nmPy7W5oIEO5zXEafOGcjiBlqhild87zSFUjkSyBb6AohwBYRkd1Lsgu4l2sJh+T4gVdRUSDOZU+g\n1hOg9QRtRQkW0d4d+PsE4ImX1kWCgeg98vSSd/nA9Alpf+5QKOwFgl5AGArHBIg927z61hae+s+7\nbNnWwpjaCo44cAL7752/mcgRZcXsu0ct+3prEM7cbxwPLXqTzq4QHV0hOjpDdHR10x0K093dEwXv\naunk9bcbef3txkhbTVVZJAjca0I1UyZUUzWI9Qb9xeRHjSxjy7aWPj9Y1I+uimzrBzEtbZ3sbO6k\nsytESXHRoAvyJDLYDFM653mlK5AYLkMlhzsF2CIiMtwkm/F7wxjzTWvtAxntTZ4J4AK1YJGbFxUJ\n4PwgzrseiArs8jmrNlxkewiVC7gDDFSSZIndzF+ffBuA4mAR23e1Mf/ZVYyqHsGMaWMJhcN0h7zM\nohc89roM4W0TSjrTmO4hr4kK3Oy31yg2NrawduMu3tm4k3c2uqGi/qL04JaYWPpWO0vfaoi0ja0t\nZ6+JLhDca0I1e44fmfRag36V1Ug21svjznzvOLbvaqesNMhB08by1oETefCJt+jsdkFfdWUpzy9d\nz7571OY8mEnnPK90BhLDYajkcKcAW0REhptkA79KYFcmO5JtRYEAQS+Ii1wGiwh614Pedcm+fB1C\nlegk/4kX13LIfuMJAsnmv/zMYnco6jIcpqs75K53u+ziUCtwxpOowM2ksVVMGlvFBw5wWdXuUIiN\nDS1eILiTdzbsYt3mXXRFZQa3bG9ly/ZWXly+CXCfq0ljK9lrYjV7T6xhr4nV1NdVRoYmx/YD4gSh\nU0bT3NZJc5srVvPG6q2MrR3RZ8hyPhTRSOePFNkMJLQMQXoowBYRkeEk2cDvOuCnxphy4L/A5tgN\nrLVb+9wrBwIBXIYuQUDnB3rKzOWvfB1Clc6T/EAgQDAYINhPcuw/dkukIqY//5FwmMXLNnLwe8ay\n9K0Gnnnl3YwVwAkWFTHJWyz+CG9oZVd3iPVbmli9YWfk34aG5kgGMxQOs3ZzE2s3N/H0K+sBKC8r\nZq8J1eztBYN7T6ymqqIUSK7K6uatLd5cTvck/vDo9Q1NhMN95whmU7p/pMhGIKFlCERERHZPyQZ+\nlwK1wIP9bJP84l0ZMm5UORPHVA28oeS1fB1Cle1M5MbG5p65jpHYxhW7Wbe5ib8/s5JwOExxMMC2\nnW088sxKykcU87696+jqdkNKQ6Fw3Kqpg1UcLGJyfTWT66s5aoZra+voYu3GXazyg8H1O9m6sy1y\nn9b2Llas3sqK1T2/DY2tLWefSTWRfxPHVhIsip9hH1NbzpZtLZHr4XCY7jDU1ZSxobHZqxba/9IR\nmZKvP1L0R8sQiIiI7J6SDfwuzmgv0kRZvMKRj0Oosn2S31+g6Z+8xwaG/166gSMPmtRr++7uEF2h\nMN3dIbpDYbq6QnR2h+jqTn6uYX9GlBYzbfIopk0eFWnb0dTOqvU7Wb1hB6vedQGhv+A79AwR9dcY\nLCsNsteEaqZOqmHvSTXsM7GGSq9wjD8XMNbhB07svYYgsGL1Vv792ga2bG9l4phKPnzYFGaacSyx\nm7n/sf+yeuNOCMNeE6o59bj3RG4b7LDHfP2RwhfvtcXLXLe0dfGf/27mW798UkM/RUREClQg3lpr\nw40xZi9g1cKFC9ljjz1y3R0pYEvs5qyd5McOyfOdceL+/O7RFXHXSSwqCnDDRUcn/Rxd3SG6ulwQ\n2JnmgDBaKBRmQ0MzK9fvYNX6Haxa74aI9qe+roKpe9QydVIN4TAsX9lA4862yFzA2CGiy1Y29gkQ\nA4EAs6bX8/Qr77J1R1uvH4fqasqYPWsKzy91Q1KjK4dO27M2EhgOV4mOnxGlxbR19Czp0fL/2bvz\n8Lju67D733tnxWBfSIAgCS4ieSlSpCiJokQtlmUyXpQ4qZNIadqqadI+Seo2Teu+Tts0zZukSdO6\nUZo3b9pEefM6buw4jpxYseLIi0hrpySKIsWdF9xAAARA7Bhg1nvn3v5xZwazARwAM4MBeD7Po0cE\nZjDzmztD8J57zu+cqMnYVBSPW6WjNZD+/rNP7VqRr1/2LwohhLhT9ff3c+jQIYAtuq735N5e9Bw/\nTdN2A08APma77CtAADio6/pTS16tEFWukpnI+bJJR473lqTs1O1S0wPVM6WyhKZpcVIf5rWT/QyP\nh2hrCnBwz7oF7yVUVSW9X/DxfU5GMhQ16BkIcu3mFFdvTtEzMJXO3AEMjYUZGgvz9mknMKsPeLhr\nQxOb1jUQ8LsxE1bW2o8lA7hMtm1z5HgvsXgivUcyZWomzneO9dBY5yUcNRibiqVv6xkMrvh9b3OV\ndOYKhuIANNRmtyZaiaWfsn9RCCGEmFuxc/x+FvhDnEDPJnu8mgW8UvqlCSHmCjTLXXbqcqm4XE4W\n7RuvXgYyR1hco6HWy+6trU6W0LRIJKwF7yWs9XuymrtYls3A6IwTCPZPce3mFCOTs+NDp8MGH3aP\n8GH3CAAet8rmdQ1s39jEto1NDI+HKVTtPRM1Un1hstZomBZToRh1AQ9TM/GsnzESzhiLlRj8pMzV\njChuJnj2qV3pCwooTvYz4M8O/Mo1PqWcZP+iEEIIMbdiM36fA74F/BTwyziNXn4R+BTwp8Cfl2V1\nQoiCKrW3rNCJtKIovHnqJg/fsy79PTs5iiIVCKb+sxZQM6qqChvW1jM1E0e/MUHA72bvtlbWr60n\nbiS42j9F761pLMt5TMO0uNw3yeW+yfRjeN0qPq8r2fDFhUtVqPN7iMUT6WAuxe1y7ptIOMPsM2NG\nTzKTuBKDn5T59ohmXlD4wpdPVOX4lMWo9AxQIYQQYiUpNvDbAvyiruuTmqa9B/yWrusR4Buapm0F\n/jXwlXItUgiRrxJlp8WeSCuKgsftwuPObu6byNg7mAoGzZwALFPuPr3J6RiT0zF+5IltPH1oB3Ej\nwfWBIFdvTnK1f4qr/ZNZ5aFx0wnipnFmALpdChvW1jEejBI3s0c/1AXcHNzTySl9GI9LzQoMa2s8\nGKbFurZaojETn9e14ppHFZsVXomdSedSrTNAhRBCiGpQbOAXBlLdAC4Dd2maVpMM/o4D/6kcixNC\nLK+lnkg7JaMq/ozv2badlxk0Eglsu/A+PXCGvO/e2orX40Lb1Iy2yekgalk2/cMzXOmf5HLfBJd6\nJojEZhuXmAmbnsHp9NeKYuNSFVobavjUI5t5eM86ujoa+M6xHnpuBfGoKnUBD36vC9u2eXBXB2PB\nKBeuj/Hu2SFGJ8Osa6vj4w9vqvrSwWKzwtXemXQhVlMQK4QQQpRasYHfMeCfaZr2KqADBk6Z5zeA\nPUB0np8VQqxQ5TiRVhQFr8eF15OdHTQTFpPTMVyqgk1yaH2yVHR0KlLgkZzy0K6Oero66vnY/o3Y\nts3wRIQryRLQK30TjE7N/nqybScYvDUR5kt/d4FvvXWNHV3NPHpvJ48qnZy7MsroVCSrc2huFrLv\nVpAvvnSW6cMaD97djs/jwlWgQU4xyt2BstiscDWOT1mM1RTECiGEEKVWbOD368D3gW/ruv4JTdP+\nGPgzTdP+FfAw8L/LtUAhxPJZzIn0YoMZt0ulc01dVobRtm1sG9pbaqnxuYkbCRLW3PsGFUWhvSVA\ne0uAR+/tBGB8Ksrlvgm6+ya53DvB8MRsEDk6FWX07CDHzg4CzmD5HZua0bqaWb+mDpirWyi8dqKP\nbRua0mtP7Sv0eVyo6u3LQqUDZXmsliBWCCGEKLWiAj9d149rmnY3sDv5rc8B4zhB338Dfrs8yxPi\nzlRNs8gWciK91GAmN8OoKAqKAp98ZDMtDU7BqGXZxM0EpmkRMxJOV9F5gsGWRj8PNa7joWQzmsnp\nGJf7JrjcN0l37wRDY+H0fVOD5VMjJNpbAoQiBn7vbLOYlMwspJmcfxiKOnsLPe7sQLDQ/kDpQCmE\nEEKISip2nMNHgJO6rn8HQNd1C/iN5G1NwKeBr5drkULcSVZyJmipwUwxGUZVVfB73eCFuuT3EonZ\nIDBmOEHhXKFgU72PB3d18OCuDgCmZmJ0907Q3TuBfiM7I3hr3AkKZyKzAZ3f68LvdbFhTV3+gyel\n9i7ORAwUwOd14fe68Xtny0JXQgfKaroAIYQQQoilKbbU81Wc7N77BW7bD/wZEvgJURLVkAla7Al/\nKYKZxZTquVwqgYx9dqkGMnEjQcxIEDfmHi3RWJcdCE5MR+nunaT7xgR67wSjGbMEUwHddNhgdCrK\nF758gp2bmtm5uYUtnY143Pl7/WwgGk+ku496kmMk1jQHGC5wXIptnFPuoGwlX4AQQgghRL45Az9N\n0/4K2JH8UgG+qmlaoQ4LG4Ce0i9NiDvTcmeClnLCXy3t9DMbyKTycmYiOxCca6xEc72fh3Z3UFfj\nIRo38bmdUQ+RmEk4aqbLSm0brt10Bs2/fKwHr0dl+8Zm7t7cws7Nzh7BQiWeRsLCiFg8sHMtL71x\nBUVRUJMlrYqiFNU4pxJBWTVcgBBCCCFE6cyX8fsfwD9L/vkenG6eIzn3SQDfA54v/dKEuDPkZm58\nHhfRuJl3v8zgqZzZnqWc8FdzO323S8XtUgn4PQAkLBsjGQjmlodmdvJ0uRRcLqe886d+cBetjTVc\nujGOfmOC7hsThJPjI+KGxflrY5y/NgZAQ60XbZMTCN69uYXmBn/WenZvbQWcURWjUxHaGmp4/L4N\n3LW+0Qk459gbCHO/R18/2l2yz8VyX4AQQgghRGnNGfjpuv428DaApmkA/1nX9WsVWpcQd4RCmZtw\n1ATsdICSkgqeyp3tWcoJ/0K7gC7nHjKXquDyufH7nF+DqaYxccPivXODBX/m3bOD/LO/t4d1bbU8\n+cBGLMum99Y0l3rGudgzztX+ScyEEz4GQ3Hev3CL9y/cAmBdWy13b25h15YWtm9sxud1sXtrazoA\nTJmJGM7eQAW6eyc4dnqQkeT8wNTxKfQehaMmfbdm2Nju5DhTn4sr/ZP0DAQXfIxLkb2VPYJCCCFE\n9Si2q+dPa5qmaJpWr+v6NICmaU8DXcC3dF3Xy7lIIVarQpmbgN8JRlrq/engaVNnA0eO9/KVb19k\nYjqG162kA8Nw1CAYMvidr5xg3461Sz65XuoJf7F79F442s2Lr17BMC08bpVQJJ5+3uUIDj68PJIO\nUgZHQ9QH3NT4Pc5ICQss286bJ6iqCpvXNbB5XQOfPLiZuJHgSv8kF6+Pc6lnnL7h2eM4OOo87vdP\n9OF2KWzb0MTdW1rZtaWF9WvrUHOye+euZs8P7B0K8qd/e46YcTftLYG84C8YiuftMQxHDV589Qod\nrYHkGoq/SLDU7G3++2ss6/srhBBC3OmK7eq5B/gW8GXgVzRNew74N4AJ/KamaT+o6/r3y7dMIVan\nubJrcSPB55/dD+Rn+KZD8az7jk3FnD8opcn+VaJc86Q+nA4KwGmaknody7GHLPcYA4wH47QqyQBb\ndRrGdLTW0VDrJRZPEDcSeZ1DvR4Xu7a0smuLk8WbDsedbOD1cc5fH2dqxnmNZsLm0o0JLt2Y4MXX\noD7gYdcWJ/u3a0sLdQFv3vzA1EzD773TwyP3dvLS61dRVAU1uTfQMC1aG31ZPxMMGRgF9jIWc4yX\nMgy98PsbBfyyR1AIIYRYJsV29fwCMIzT4KUW+Hngi8DPAn8K/BZwsCwrFGIVKya79vUj3QyNhdOZ\nE0VxGosEQ0bWz3gyulou5eR6vhP+UpXuHTnemw4KMgVDxrLsIcvNvDbUehmbihIMGenMqqIofPzh\nTdQHvNQHnEAsnuwcGo0lMMz8QLA+4E13DLVtm8HREBeuO2Wh3b0T6WMwHTZ47/wQ750fQgG61jUw\nGYzi97rwetSsvX6jUxF2bWnFtmf3B65pqsGtqsTNBLZtp++f+szkKvYYL3YY+tzvb1z2CAohhBDL\npNjA7xHgJ3Rdv6Bp2o8CfuBPdF23NE37Ek42UAixQLfLrp3Uh7ncN5n+vmEmxxLY5J1YN9R6039e\n6sl1oRP+Uu4tHBoL4XGrea/BMK2KdwBNrSdTwO8G/EyH46iqUjDbpSiKM6Td46I+kNwjaDhjG2JG\nIq9rqKIodK6po3ONs1fPMBNc7Z/i/PUxLlwb5+aIcwHABm4MBgGYCoGq4MwA9Lmo8bpY2+zs4cvd\nH5jZkEZRFGJxEzORwLJthsbCNNR6k6+r/F1W53x/E8vz/gohhBCi+MDPwinrBHgKGNd1/d3k1y1A\nfspCCHFbtyunO3K8N+8EWlUUVBXqAl6icRPbJuukHspzYl/K9v4drbWEIkay/G+Wx60uSwfQQpnX\ngN/Ntg1N6ZLb21FVBX9Gs5hEwkoHgbF4Im+OoMftYufmFnZubuHHnoTJ6RgXrjtdQS/2jCeb/IBl\nQzhmznYPTdi89MZV7rmrjc3rGlBVJ7uX2SW099Y0M2GDuhoPkZhTljo6GaG10U9tjafsx9h5f+Oz\nZcip1+xanvdXCCGEEMUHfu8An9c0rRX4CeBrAJqm7QP+b+Ct8ixPiNVvvnK6obFQuuwwk2XDv3xm\nH0DFxieUsr3/4QNdyUDLTzAUx0hYeFwqn3ly27Ls/yrHvkaXS6W2RqW2xikVNUwnAEyNj8idJ99U\n7+ORvZ08sreThGVxY3CaVz/o48K1MULR2fEeIxMRXj7Ww8vHeqj1u9m1tZV7trayK5kB3L21lf/v\nb84yMhEGwOc1mQmbGMlA9B98cidaVzOJhIXLlV8GWgqz729yn6FpoSrQ2ujnK9++yJHjvdLhUwgh\nhKiwYgO/f41TzvkXQDfwa8nvvwxMAf9XyVcmhKCjtZar/RMoijMnDgW8bpVtG5uyTppTGUOv2wWw\npJPrufbxlXI4+1Iah5RDqdYz3x5Ij9uFx+0MlE/tD4zFnWAwd3+gS1XZur6RresbAZgJxzl/fZxz\nV0e5cH2cUMTZ3xmKmumREQqwZX0j99zVysDIDG6XgqIoTpmo1/lVr6oK2zc2M5lsMuNxq9T4nNsL\n7QVcrNzj6XW7GA9G8bjV5F7H0g+cF0IIIcT8FDv3svMcNE1TgLXAsK7rdvJ7e4ALuq4nyrfEota2\nGbh+9OhRNmzYsJxLERV0J8wIe+FoNy+80p33/Wd+YAfPHNqR9b1CnSkBnn1qV/q43O6YzfcYUDi7\nmPn4d7Jijv9cLMsmGjeJxZ09grllobn37RkMcu7qKOeujdE7NF3wfi5Vocbnosbnxud1oSoKa5sD\nHNzbybEzA4xORmhrquGRvZ3s3tqK26Xi97rw+9z4PK6Fvfjb+MKXTxS8aNDZVld0Ka0QQggh5tff\n38+hQ4cAtui63pN7e7EZP5LB3q2c751d6gKFWIxyDzGvFj0DQVobs8shG2q93BgI5t33dnvwijlm\n8z1G6gS91Fm61RLAL2UPpKo6YyNSHURjRoJozCQaz28So6pKOhv4wx+5i6mZGOevjXHu6hgXro8R\njTvX4RKWzUzEZCZiogA+r4umej9//f1u3MkSz5GJcLohzO6trcxELGYiBqqi4Pe68Hld+L3u9D7C\nxSplmbAQQgghFqfowE+IalLKRiPVbGgsRMDvzmrcAoVPmG93cl3MMbvdYyy2vf9cVlMAX8rgJtUt\ntBGn02ks7gSBmbMDz18by8rcPXpvJz/zw7u50jfJ2aujfHBxOF3SaQPReIIzV0aBVImni4DPKfF8\n58xAVodQy7bTDWUUYng9Tiawxuta1L7AhZYJl/JiwGq5sCCEEEIslQR+YkW6UzIIuSfM4ahJMBQH\nxSmfyzyJvd3JdTHHrNBjhKMmhmnxud97veQnzqspgC/lHshMHreKx+2lLjBbEvr+xVu89MaVdIOY\nVObuR57Yxu6trezc3MLTh3ZwazzM2SujnL06yuW+SSzL+QHDtDBMi2DIwKUqTM7EOXt1lJ2bmvG4\ns8s8bUg3pJlicfsCF9I8p5QXA1bThQUhhBBiqeYM/DRNc+u6bs51uxDLeSW9XCfZ1SbzhDkcNdPd\nPVsbfXknsbc7uS7mmOU+Ruo5Wxt9ZWnKUWwAv1yftYU871I6gxb7PKmS0PfODeFxu7BsG9uysWyn\nYUxu5q69JUD7gS4OH+giEjX5/RdOcWs8TDRmkowBSVg202GD//n10/g8LnZtaeHe7Wu4Z1sbdcmO\npLnZxdx9gQG/Oy9gzH1dqQYzcTMxb5lwKS8GrKYLC0IIIcRSzZfx69M07TO6rr+radqv4gxsH6jU\nwkR1W+4r6eVov1+NMrsjnuoexuNWaaid3QuWui2zBHOuPXjFHLPcxzBMi9ZGX9bzZT7nYmQGAxPT\nMbxuNa+UNTMYXa7P2kKfd7GdQVPPk8rm9g5Nc0of5jNPbstr4JOSCphVRQGXggsn8JuYieH3ugqO\ni6jxu/mhx7byzdevYNs2McMiEjOJxEzMhHPnmJHgVPcIp7pHUBWFbRsbaW8JcLV/8rb7Ap1mMu50\nc5jc4xeNO9cRb9fsppTZ/DulMkAIIYQoxnyBXyNwF/Auzqy+bwMS+K1iC8luLPeV9GobB1BOqaDu\nc7/3OoW68GaexM63B6/YY5b5GMU850LkBgNet5LMYvqzgr/MYHS5PmuLed7F7IE8crw3K5sLTinm\ni69eYduGpoKPVyh7qygKnW11tDbWJAO7RLpLaKpBTOaQ99GpCF3t9Rzc20lro58zV0Y5c3mEq/1T\n2Dj7/Lp7J+nunQRuvy/QaSZjpIPAl9++jmXZKIqztmKO31yvDWYvBizk99SdUhkghBBCFGO+wO81\n4M80TfsjQAFe1TTNmuO+tq7rjaVenKichWY3quFKeqkbjZRCOUsSS3ESu9BjVuoT59xgKpVJNEwL\nVVUKBqOl+Kwt5n2p1Gd8aCzk7NvMYZjWnEHS4QNdPP+N0+nh6KlMcCpgzpzf1wgkksPbo3GTe5JD\n3nN1tNby8Yc2EQzFOXtllNOXR7jYM45hWun1ZO4LnArFudw7wV0bmvK6fiYsm6GxELY9G/ipioKi\n3P74zZeZXujvqUpVBqy0BjIrbb1CCCFKY77A7yeBZ4FWnIzfXwD9lViUqLyFZjfkSnq+cpckLkd5\na6mfs1AwFfB7UFWF537xiYI/s9TP2mLfl0p9xjtaawvO4vO41dsESUrW/zL+kMflUqmtUamt8TjZ\nwHiCSHJuYMLKzug21Hp59N5OHr23k1g8we//5SmGxkJEcvYFBkMGz331JPUBD3u3rWGftoadm1rS\nDV/ammoYmQhjJ/cfWtigQFtTgHDUmHNMxHyZ6S98+UTB1zfX76lKVAYsd9n7Qq209QohhCidOQM/\nXdengD8A0DTto8Bzuq5fqtC6RIUtNLtxp+yxW4hylyQuR3lrqZ9zMcHUUj9ri31fKvUZP3ygi1P6\ncDqzltJQ65nzuBw53ltwzEcxnzVFUfAn9+IBGKZTDhqJmXlr8HldPPXolrx9geGomQ4Yp8MGb58Z\n4O0zA/i9Lu65q5X7tLXsv7udbx+7nv3kNhzY3cHEdGzeMRFzZaYXk4UtR2VAMftUq7WBzHKX6Qsh\nhFg+RY1z0HX9SQBN0+4BPgI0AGPA27qu558ZiRVnoSfkd9Ieu2JduznJ1Ew8o/TOS8DvLmlp4HKU\nt5byORcTTC31s7bYks1Kfcbv19bymSe38eKrV7LKNgN+z5zHpZRlqB63C4/bxeW+SV557wYDoyHa\nGmt4eE8Hu7a0FtwX+PCedTTUejnVPcKH3SMMjjrPG40nOHFxmBMXnUZEG9vrsS0L07Jpbw5wMNkN\nFAqMiXCpThDocxXsEArVUWmQmzGbTpfpZu9TrdYGMtVQpi+EEGJ5FBX4aZqmAl8C/iFOPVEM8AG2\npmkvAP9I1/VEuRYpym+xJ+R3cqCX6aQ+nA76wNkPlWpasm1D0/IuroosNphaymdtKcFCpT7j8N0L\n7AAAIABJREFUzxzawbYNTUUfl1IHQJnBjKrAeDDC3711jdoaD1pX85z7Ars6GviRj9zFrfEwH3YP\nc0ofoWcwCDh/B67dnALApSo01PqYmI4yHY5TH/DmPZaRsDDCcabDpDuE5o6JqIZKg9yMmcetJvc+\nxrMCv2ote6+G4FkIIcTyKHaA+68BPw78c+Bruq4HNU1rBP4+8BzwK8Cvl2WFoiIkg7c0R4730lDr\nYWwqlvX9YChe0pPS1dCUYb5gqtSv76Q+zEQwSt+tmbxRGNVWlpx5XFLH4SvfvljwOJQ6ACpU/qco\nCm9/OMAjezrTg+NTDWJyG722twT4xMOb+cTDmxkPRvmwe4RT+jBX+iaxcfYEnr82xvlrY/z5dy6x\no6uZB3auZd+OtTTU5geBmR1C3S5nYHyNz33b31OV+PuRmzFL/b03EtllstX2+UqphuBZCCHE8ig2\n8PsnwK/quv7HqW8k9wA+r2laPfBZJPBb8SSDt3hDY6F0QJHZabGxzluyY7ramzKU+vWd1Id5/htn\nCIbiWLYTuMSMBFpXDU8f3lHyBh9Hjvdy7eYkMcPC61G5a33TogKPYo5DqS/U3K78LzU4PuB3msNE\n4wmiMScQtHKiwJYGPx/bv5GP7d9IMBRLBoEj6L0TWJaNbYN+YwL9xgR/8T2d7RubuH9nO/ftWENj\nnS9vDWbCYjocZzocx+NS2b6xib3b2tJzBRdy3EohN2M225nWnrMzbTWRi3xCCHHnKjbwawE+nOO2\n08C60ixHiJUpdTKYOjlO6WyrK1kWopJNGZYjs1jq1/f1I93p2XiqM1PAuUFZfCBZ6JhkDmDPnMWH\nPZEOEBbyfMUeh9SFmszs4JHjvYt6rxZS/qcoSjoDl5oXGI05mcD8DqE+PnLfBj5y3wZCEYMzV0Y5\neWmYiz1jmAknCEzNCvzL7+ls29jEAzvXcp+2tmAQaCQsjFCcYCiOx60SSK7D5VIr9vcjlTELR42s\nizyfeXIbzxzaUbLnKSe5yCeEEHemYgO/C8APA0cK3PYjwNWSrUiIFWiu8qlNnQ0ly0JUqilDuTIn\ntwsmS/36eoaC6T9btk0iYWNjc6lnnJP68IJey3zHJBVw5M7iC4YMAn7PggOPhRyHUr1XxZb/ndSH\n+fqRbmcfnwKbOxoysqc+4obTHTQSyw8Ca2s8HNyzjoN71hGJmpy+MsLJS8NcuJ4MAoHLfZNc7pvk\nL1/pZtvGJvbf3c59WuFyUMO0mDLjTIXi+Dwubo7MoGBnDYuH0v/9uF9by5X+SacZT2K2kdM7ZwbY\ntqFJAiohhBBVq9jA77eBv9Y0rQX4K+AW0A48jbPP75+WZ3lCVJ/5Apjc8qlSZiEq1ZShHJmTYgKU\nkr++ZNxh2TZmxv4ry2LBwdF8xyQVqOWOQkh9vdDAYyHHoVTvVTHlf07p7OmsfayX+yZ5/htn+Lkf\n3cv92lq8Hhdej4vGuvmDwBq/m4fvWcfD96wjEjPTmcDz18YwE1ZWEPi1V3S0rmYeuNspB60r0Bgm\nZiRorvcxMhFGVWeHxSuKUpamJT0DQTpaA3nfl5EIQgghqlmx4xxe1DTt54H/DPwDnFMqBRgF/pWu\n618q2wqFqCK3C2ByT/q+8u2LBR9nMVmISjVlKEdmsZgApdSvb/O6Bi73TZJIZAcdXo+a99y3M98x\nSQVqqe6OKalB5pmBRzEltAs5DqV8r25X/nfkeC/BkJH1Pcu2GZ4I89+/coL7dqzNej1FB4E+Nw/t\n7uCh3R1Ek0HgB5duJYNApxz00o0JLt2Y4C++q7NzczMP7Gxnn7aG2oyy6kf2dvLN169gWbPD4lVF\n4fH71mPb+ZnApVjMcV8NjZmEEEKsbMVm/NB1/Y81TfsTYCfQDIw739at+X8ym6ZpP4iTQfQBZ4B/\nqut6MOP2fwx8LuNHGoENwAZd128t5LmEKLWFZlhKmcWqVFOGcmQWizlRnu/1Leak+enDO3j+G6cZ\nGosAoKDgUhVaGnx5z3078x2TQ8lAraHWm7XHr6E2u3tosWWZC3mfK9maf2gslBXYZmZSDcOat8y0\n2CDQ73NzYHcHB3Z3pMtBP7jolIMmLBvLtrlwfZwL18f56ncvsXtrKw/uamfPtra8eYNtjTUc3NvJ\nxvZ6hsbC+H0uAn4PPk/hGYELsdDjXg2NmSTwFEIIUXTgB5AM8hY9sF3TtDXAnwKP6rp+WdO0/wb8\nV5yuoKnn+DPgz5L39wBvAP9Vgj5RDRZ6pb/UWaxKNGUoR2ax2BPlQq9vsSfN92tr+bkfvZc/eOHD\ndDOQzHEOCwmO5jsmmYGaokwRNxLprp6Zty/kokGx73MlW/M77+Fs8JfKpCoo6ewm3D6Tuphy0FDU\n4HT3CB9cGuZizziWZZOwbM5cGeXMlVE8bpW929p4cFcHP/VDu/IGwFu2TThqEo6ac84IXIiFHvdK\nNmYqpBoCTyGEEMtvQYFfCXwceF/X9cvJr/8QOK1p2r/Qdd0ucP9/Bwzruv58xVYoxDwWeqV/JbZO\nL8ealxKgLOWk+X5tLf/ymX1LDo5ud0yKCdQWetGgmAxNJT9fhw90cbV/grGpGJZtz45xUOx0+ex8\nr6eQzCDQMBOEo86ICDNnJl6t38Mjezt5ZG8nMxGDU/owJy7eovvGBDbOfsoPLg3zwaVh/D4X9+1Y\ny/6729m5uRmXmj32odCMwIDfnTceYj4LPe6Vasw0l+UOPIUQQlSHSgd+G4G+jK/7gQagHghm3lHT\ntDbg3wL3V2x1QtzGYgKYldg6vdRrXkqAstST5lIFR0s9Jre7aJAZ6Pk8LsaDUQJ+51f0fBmaSn2+\nUhnUL/7tOfqGnNehKOBWVUIRE7/X6WK62DJTj9tFY52LRkgHgYUygXU1Hh7ft57H961naibGB5eG\nef/CENcHnH9CorEE75wd5J2zg9QHPOy/u50Hd3WwpbMhb59f1ozAnPEQxRyPYo97JUtyC1nuwFMI\nIUR1qHTgN9e/pokC3/tZ4Ju6rl8v43qEWJCVmMGrFosNUEpx0lwNwfd8Fw1yS/F6BoPJkkp/OviD\n5c/Q3K+t5cjxBjwuNW9uYWp8RSnKTNNB4G3KQRvrfOlh8aOTEU5cvMWJi7foH3Y+L9Nhg1c/6OfV\nD/ppa6rhwC4nCFzXlv/ZyR0PkZpVqKpLbwpTyZLcQpY78BRCCFEdKh349QIPZXy9HpjQdb3QZcef\nAP5VRVYlxAJUQxBxJ1nuk+ZSme+iwRe+fCLrvoZppTtmulQ1PSuuGrpGprJHTkDqJxiKYyQsFAWe\nfWpXyZ8zsxw0GncCwGgsMVtqmtTWVMMnD27mkwc3MzA6w4kLtzh+4Rajk05zn9HJCC8f6+HlYz1s\nXFvHg7s7eHBXO831/rznjBkJYkaCqZkY/mQA6Pe6Ft0ZNHVMvn6kmxvJ+ZKbOhrmvH+p38vV8ndI\nCCHE0hQd+Gma9gngKaCW/Mydret6MbP8vgc8p2na9uQ+v58HvlnguZqBbcCxYtcnhFidVlOWda6L\nBrmleIoCpmmBDQnLCUJmIgYBv7vg8PlKNu/IzB4F/O50RrKzra7s74nf68bvdWPX2cTiyUxg3CQn\nBqSzrY4f/kgdn358K98/0cfrJ/sZnYpiJTOGfcMz9A1f4cVXr6BtaubA7g7u09ZS48v+J9GGdLZR\nVWabwngX2Rk0Gjdpbwmk/1zoPSrHe7ma/g4JIYRYvKICP03Tfhn4TWAMGAByRzgUasySR9f1YU3T\nfhr4K03TvMBV4B9rmrYf+BNd1/cl77oNGNR13ZjrsYQQK9tCshqrPctasBTPTv5izfjtGomaPP+N\n0/zcj96bdTwq2byjGrJHiqLg97nx+9w02XY6OIvFE1n/GF24Ps575wbxe12sbwsQjTt7B+OmhWE6\ng+LTMwK/p3Pv9jYO7F7H7i0tefv8LNsmFDUIRQ0u3Rjn3bODjE5GWNdWV1RGrtj3qFzv5Wr/OySE\nEOL2is34fRb4I2Cu7ptF03X9ZeDlnG+PA/sy7vM+TvAnhFiFpL18ttxgKjeDlaY4e+lyg4DbNe8o\nZelgtWWPFEUh4HfGdFhWRhBoJDh2ZiDrfql9e22NNTywq533zg1x7toYlmVjmBYnLg5z4uIwdTUe\nHri7nYfv6WDzuuymMOevjfHN16+kv+4dCvKlb53Hsm3272yfc53FNlhZiY1YFvv5ktmCQghRWcUG\nfs3AC0sN+oQQC7caT46kvXy23GCqodbL5HQM08ourlBQMEwrLwiYr3lHuUoHq/F9UlWF2hoPtTUe\nEgmLiekoiqJg50TS49NRHtjZzgM725kJxzlxaZjj54e4dnMKgJmIwesn+3n9ZD/tLQEeSg6Vb2uq\nyQomAWzbJpGwefmt62ztbCSQzETmKrbBykprxLLYz5dc/BFCiMordnDRG8AT5VyIECJf6uRocHQG\n27bTJ0cn9eHlXtqSrMSsRrndr63l88/u57lffIJ/+cw+fF4XCtnNRFwuZ1h6bhBweI4yy0MHuuYN\nslczl0tl/Zp6PG6nOY5LVdKZu7bGmvT96gJePnr/Bn7p2f385587yKcf28La5tnbb42HeenNa/zK\nHx3juT//gJ6BYHqvYKaRyTCRmMlYMMrQWIipmRiGOduwer73KFOx96sWi/183amfSyGEWE7FZvz+\nJ/DF5Gy994Bw7h10Xf9GKRcmhFi9mbGVltWotPu1tXzmyW18/Wg3sXgCBQWXS0FVFBpq80cmFCq/\n3NTZwJHjvRy/MITH5XQFzRwNcScE2akSWkVxjp8LJ0P3sQe7cKlK3niINc0BfvCxrTz16BZ6BoO8\ne26IExeGCEVNAC73TQKgADU+N7U1s90+M4PJzCHxHrdKwO/h3u1r4Kldty2RrbZS2ttZ7EUcufgj\nhBCVV2zg91Ly//8i+V8uG1hcmzMhxJxW68lRNTQIqXbPHNrBtg1NfP1oNzcGZ0cAPH14R8EgILP8\nMrOMzuNSMUwrOXNvdi7gnRBkzzVGobbGQ0drrTMeIjkoPjMEVBSFLZ2NbOls5OlD2zl3dYx3zw1y\n9sooCcvGBsIxk3DMdMpL/W4e27e+4BoM02JqJkZwJsbmdQ38wjP7CpaC5q67WgO9XIu9iCMXf4QQ\novKKDfy2lHUVQoiCVuvJ0UrLaiyXxQYAmZnihloPY1MxAIKheDrwu5OC7PnGKPi9bhotm2jcJBQx\niWeUZwK4XSr7dqxh3441zEQMTly8xWsf9DE05hS+WJbNdNjgq9/Vefv0AAf3rGP/rg7qajxZj5M5\nGsKlpkZDePC4i91xUZ0WexFHLv4IIUTlFRX46bp+A0DTNAW4G2gAxpKz+IQQZbKaT45WUlZjJTmp\nD3NKH8YwreTgdw+tjT6CIQMzYdHZVndHBdnFlEur6mxnUDNhEY6ahKNGXiloXY2Hj96/gY/ev4Fb\n42HePTfIu2cHmZh2AusbQ9PcGJrm60cvs3d7Gwf3dBYcDZFZCup1uwj4nW6jqrq4AfHlUGxTqcVe\nxFlNF39WYwMuIcTqpOR2O5uLpmk/A/wXYE3Gt4eBX9N1/fkyrK1omqZtBq4fPXqUDRs2LOdShCi5\nk/rwqjg5EuWXKvEcGgtjmLMdQVsbfQT8Hjrb6vj8s/vL9tzVePL7ud97Pa+rJzjB3nO/OH/PspiR\nIBw1iMYSWHP8W2lZNnrvBO+eHeRkMuDO1FDr5aHdHRzcu47Otro5n0tRoMbrJlDjwbfIAfGlkttx\nM+XZp3ZVxXtaTeRYCSGqSX9/P4cOHQLYout6T+7txQ5w/0ngT4CvJf+7BXQAfx/4X5qmTem6/rVS\nLVoIMUsyY4tXrcFIuaSyWw213uSePkcwZBDw5zeFKZVStOYv13u1lHJpn8eFz+PCrrOTw9+NvCHx\nqqpw9+YW7t7cwr4da/jOOz0MjYWJGU7JaDAU55XjvbxyvJctnQ08sreT/TvbqfFn//Nr27P7Bl3J\nDGSt352XLayE1dpUqhzkWAkhVpJi9/j9B+CPdF3/bM73v6lp2jjwSzgBoRBCVIU7cU5YqhmQs4/P\nTzAUx0hYKEp+BmKpgVbmz09Mx/C6nWAlU7Env+V8rxZTLj3XsanxuUkkh8SHo0ZWdu/8tTG+few6\nAO0tNU5Tl1CMuGFhJpxQ8fpAkOsDQV440s392loe2buO7V3NqEp2iWfCspkOx5kOx/F5ZktBFaUy\npaCrtalUOcixEkKsJMUGftuBz81x298AP12a5QghRGnciVfiM7NbAb873cils60uL+hbSqCV+/PT\noXj6z5nBX7Env+V8rxa6l+x2x8alKtTVeKir8WCYFuGoQSRm5g12T1gWhmnjcak013sIRZxsHjid\nPt87P8R754doa/RzcG8nj+xZR3ODP289MSNBzEgQDMWTIyQ8uMucBVytTaXKQY6VEGIlKTbwuwHs\nAY4UuG0vMFayFQkhRAnciVfii81uLTXQyv15j9sZGZEqKU0p9uS33O/VQsqlF3JsPG6VxjofjXU+\nJqdjqKqSHu4+E3aCPNO2qfE5GTvLslGTg+RvDE0DMDoV5W/fvMa33rrGri2tPLq3k73b2/KCu8yG\nMH6vi4DfQ81txkIs1mpuKlVqcqyEECtJsf9qfAn4DU3TpoG/0nV9UtO0JuBp4NeAPyjP8oQQYnEq\ndSW+HHvTFvuYxWa3lhpo5f58ak9hbmOTYk9+S/VeleK9WOyx6VxTx+DoDLZqY9lgJpxj4VFnAzhV\nVVBVhX//Uwe4OTzDsbMDvHduiJmIgW075aLnr41RH/Dw0D3reHRvJ+va8o9BNJ4gGk+UbS/gauq4\nWW5yrIQQK0mxgd/vAPcCfww8r2mamfxZBfhr4FfLszwhhFicSlyJL8fetKU+ZjHZraUGWrk/n9pT\naJgWqqos+OS3FO/VC0e7efHVK+kxFqFIPL3GhbwXiz02qdegKAouBbweF3EjQX2tF0VxmrcAtDXW\nALB+bR1PH9rBZz66jdOXR3j79AAXr49jA9NhgyPHezlyvJet6xt57N5OHtjZjs+b3e0zcy9gqbOA\n0lSqeHKshBArRbFz/EzgJzVN+y/AR4AmYBx4S9f1s2VcnxBCLEolrsSXY29aJfYmLjXQKvTzAb97\n0S3sl/pendSH00EfOHvoUkPrF3rcFntscl/D5nUNjAejBPxubNvGtsGybR65tzPr59wulQd2tvPA\nznbGp6K8c3aAt88MMh50urJeuznFtZtTvHC0mwO7Onjs3k66Ohrynr/cWUAhhBAr34IuDSaDPAn0\nhBArQrmvxJdjb1ol9iYuNdAqR1C9lPfqyPHevDJTcMZYFHvcMstE/V43KBA3EvO+theOdvPtYz1M\nh+PUB7x86pHNWXMSC83gvHdbmzO2IWqmy0FTWhr9/OBjW/nUo1u41DPOsTMDfNg9gpmwicYSvHHq\nJm+cuklXez2P7evkwV0deRm+cmYBhRBCrGxz/mugaVoQeFLX9Q+Se/vmnfSu63r+JUghhFjFyrGP\nsFJ7E5caFFdTedvQWCjdYCaTYVpFHbfc8tpo3GnMMl8G84Wj3bzwSnf66+lQPP31M4d2AHMfo/qA\nl/qANz0gPhIzyZwPryoKu7a0smtLKzPhOO+eG+Kt0zcZGgsD0Htrmq9+V+evvn+Z/TvbeWzferZ0\nNuSNe8jMAtbWeAj4PbjUyoyEEEIIUX3muwz4HDCY8ed5Az8hhFipFtsUpBz7CKVL4MJ1tNYSihhZ\nQ+vB6bpZzHErprw29zNy5vJIwZ956Y2r9AwEuXZzkphh4fWo3LW+qeBnKjUgvrHWJho3CUVM4mYi\n6z51AS+HD3Rx6MGNXO2f4q3TN/ng0jCGaRE3LI6dHeTY2UHWr6nj8X2dPLR7Xd5w+IRlEwzFmc4Y\nCeH1ZO8XXM3K0YBJCCFWojkDP13Xfz3jyy8CQ7qux3Pvp2maH9hXhrUJIUTZLaWZSrlKHkv9mKvd\n4QNdySzp7NB6j0vlM09uK+q43a68ttBnJBiO43apWcPXLdsJsK72T2YHofbEvI1m1OS+vIA/ezZg\nwpq93qooCts2NrFtYxPPHN7B8fNDvHV6gP5h53FvjszwtVe6+cZrV9h/dzuP71vP5nXZWUAbnDLT\nmInHrVJX46noYPjlUI4GTEIIsVIVW/h/HXgYeL/AbQ8B3wYCpVqUEEJUylKbqZSj5LGayihXgqUG\ny7crry30GXGpComEjeqeDZoSCRuXqhAMZV8jTc03LOYzlZoN2FDrJRp3SkGj8ewsYMDv4aMPbOSJ\n+zfQMxjkrQ8HeP/iEHEjmQU8M8ixM4NsXFvH4/etL7gX0DAtJqZjTM3ECfjd1NV4VmUzmEo0SxJC\niJVivj1+fwSk2o8pwHOapk0WuOvdwGgZ1iaEEGV3Jw56X42WEizfrry20GekodbLxHQs63s2Ng21\nPkIRM+v7qb2HC/lMKYqSHvyeSFiEYyahiJGXBdzS2ciWzkZ+/GPbee/CEG+eusnNESeI7Rue4avf\n1fnr71/hwO52PnLfBja212c9j2VnD4a/3D/JGydvLqgssppLKeXvtxBCzJov4/cy8G8yvq4FEjn3\nSQCngd8t8bqEEKIiKtVMRVSv22UMC31GWhr81Ae8hKNmuqtnwO/G41aJG+GsRjMet5NJW+xnyuVS\n0w1hojGTUNQgFk9kbbyv8bv56P0beOK+9VwfCPLmhzc5cfEWhmkRMxK8+eEAb344wJbOBj5y3wYe\n2Lk2b5/fB5eG+ebrV1AUZ9D8wMj0bcsiq72UUv5+CyHErPn2+L0EvASgadqrwGd1Xb9YqYUJIUQl\nSDMVAfNnDOf6jPzMD9+T9TOpIKih1pu1x6+h1gMU/5maL4Pm97nx3yYLuHV9I1vXN/L0oe28d26I\nNz68yeCok+G6PhDk+sAF/upoNwf3dPL4fetpb3F2ahw7MwCAbdskEjYJnP2Hr7x7Y85jU+2llOX6\n+13NWU4hhJhLsQPcn5zvdk3TOnRdHyrNkoQQonKkmYq4nWI/I5n3U5Qp4kYi3dWz2M9UsRm0rCxg\n3AkAC+0FfHL/Rj76wAau9E3y+qmbnNKHSVg2oajJkfd7OfJ+Lzs3t/DEfesZmQjnrceybPpHphmZ\niFBb4+ZizzhH3+9LBzxXb04SKDAnsFpKKcvx97vas5xCCDGXogI/TdMagP8EPAH4cPb8kfx/AOgC\nPOVYoBBClJs0UxG3U+xnZKmfpcVk0PxeN36vkwUMRU3C0fws4PauZrZ3NRMMxTl2ZoA3P7yZzkpe\n6hnnUs84HrdKwOemrsad1eilrbGGuJng1OlhXnrjCmqyFHRwdIbgTBxsm4A/+xSgmkopS/33u9qz\nnEIIMZdiu3r+PvAPcPb97QLCgA48BrQDny3L6oQQQog7SG4zknDUIBgy6Bue4QtfPjFvSaHLpdJQ\n66U+4CEaTxCKGMSM7CxgQ62XTx7czMcf2sT562O8cfIm566OYuM0oZky40yF4k4AGPDg86gc3Ov0\neTt2ZgDbhoRtk7BsVFWhLuBJdy3NtJpLpaVhjBBipSo28HsK+I+6rv93TdP+DXBY1/Wf0DStFvg+\nsKdsKxRCCCHuEJnNSMJRg7Epp3Oox60WXVKY2RE0NRcwHDWx7NksoKoq7LmrjT13tTE2FeHND2/y\n9ukBpsOG89zJeX+tjX7GpiJEYyajk5H0z0fjCWbCBkbCQlUVPG4VM2GxrrVu1ZdKS8MYIcRKVezQ\nnkbgveSfzwH7AXRdDwHPAT9Y+qUJIYQQd5bDGZmyYMhI/7mh1pv+89E5Sg0LSc0F7GgN0Fzvw+t2\n5d2ntbGGv/fENv7LZx/jpz+9m63rG9O3jU1F+ep3df79/3yLcMzEMC2i8QQT0zGMhNO51KUohCIG\nTz26lZ/9zB7u3dZ223Wd1If5wpdP8Lnfe50vfPkEJ/Xhol/Tcjs8RzZzNWc5hRCrQ7EZv0GgI/nn\nbqBN07R1uq4PAiMZtwkhhBBikTKbkdwYmsa2bRRldih8wO9eVEmhoigE/B4Cfs+cWUCPW+Wh3R08\ntLuD3qFpXj/Vz/HzQ+lgLxp3Mn6qoqAoJP9TqAs4pxJvf3iTuze3EIoY+H1uams8+DyuvA6Ymzsb\neCfZQRRWXnMUaQglhFipig38vgn8V03TJnRdf0XTtOvAr2qa9t+Afw7cKNsKhRBCiDtIKoA4qQ+n\n5wEappVsxuJn24amJT1+KgvYUOslEjMJRUziZvZewK6Oep791N382JPbeOfsIK+d7Gdkwgn8LNsG\n2+nuVlvjwpPMIo5OObfbQCRmEomZ6L0TfPO1K+kgcXB0hlP6MA21ztzDTKVqjlKJUQvSEEoIsRIV\nG/j9CnAX8G+BV4DPAS8APwtYwLNlWZ0QQgiRoVLz05Z7TtuR47001HrSe/xSgqF4yUoKc7OAoYhB\nOGaQkQQk4Pdw6MEunty/kYvXx3ntgz7OXh0DnABvJuIEjoEaN5va6/Oe442T/ZgJKzkU3kZVFAzT\nIhiK5wV+pWiOIqMWhBBibkXt8dN1fVrX9R8CfiT59Us4DV1+Etil6/rXyrdEIYQQYvakfnB0Btu2\n0yf1pd4fVqnnmc/QWIiA30Nrow+P2/mn2snUecsSwHjcKk31Pta11tJcP/ucKaqisHtrK//i6X08\n+6m7qQ94UJKDnWwgFDG50DPBc3/+QXJWoJOpTDWESQ2FN0wLl0vJyzBCaZqjzDdqQQgh7nTFZvwA\n0HU9lvHny8Dlkq9ICCFERSx3VmuhFjI/bSmvrRrmtKU6R6YycimdbXVlfd7sLGCCUMTMywI+em8n\nTfU+3vrwJr23goSjJpGYE8hd7pvkct8kLQ1+nrh/A031PiaC0aznqKtxMxM2MU2nI6iqOhFkKTKZ\nMmpBCCHmNmfgp2laEHhS1/UPNE2bxrmoNydd1xtKvTghhBDlsRJL4oo9qV/qa6uG4OHwga6s15BS\nyc6RHreLpnpXei/gTMTATHby3L21ld1bWwEnm9fdO8lrH/Tx4eURbBvGg1FefO0KbpeC6vzDAAAg\nAElEQVSC3+uiLuBJdxT1e90c3NPJzeEZRqcitNXX8LEDXezbvmbJa5ZRC0IIMbf5Mn7P4XTzTP15\n3sBPCCHEylENWa2FKvakfqmvrRqCh2rqHKmqCrU1HmprPETjJqGIQTQ+W6qpKArapma0Tc2MTkZ4\n/VQ/b384QDhmYiZsZiImMxETv9fFhjV1fOLgZvYUGPlwazxMwO+mrsaDy1XstKlscwXMmzob+MKX\nT6yY7LYQQpTDnIGfruu/nvHl/9Z1/XoF1iOEEKICqiGrtVDFZsGW+tqqIdsG1dk50u914/e6MRNO\nM5hQNLsMtK2phh97cjs/9OhWjl8Y4tUTfQyMOsc9Gk9w5eYUU0e6GZ2McHDPOvy+2dMQy7aZiRjp\ncRB1NR68nvy5g/MpFDBvWuHjI4QQolSK3eN3VdO094CvAi/oun6rjGsSQghRZtWQ1VqoYrNgS31t\n1ZRtq1ZulzMSoj7gJRxzsoCpMlAAn9fF4/vW89i9neg3Jvj+iT7OXhnFBkYmI/zlkW6++eZVHtu7\nno8+sIG2ppr0z2aOg/C6nTLRGl/xLQlyA+YvfPlEwftVc3ZbCCHKodjfpJ8GngF+A/hdTdNewwkC\nv6Hr+lSZ1iaEEKJMqiWrtVDFZMFK8dqqMdtWjVRVoa7GQ12Nh2jMJBTNLwPdubmFnZtbGJkI8+oH\n/bx9ZoBYPEE0luDI+70cPdHLvu1r+NiDG9m2oQkl1S4UiJsJxoMJXKpCXcBLwOdON4Mp1krMbgsh\nRDkUFfjpuv53wN9pmuYFPokTBP4P4H9pmvYd4Ku6rn+9fMsUQghRSqs5q7WaX1s18/vc+H1zl4Gu\naQ7wzOEdfPqxrRw7O8CrJ/oYnYpi23Cqe4RT3SN0tddz6EAX+3euzdrnl7BspmZiTCfn/y1kH+BK\nzG4LIUQ5KLa9uJ4tmqY1Ab+FM8Rd1XV9YYX4JaRp2mbg+tGjR9mwYcNyLUMIIYQQSZZl53UDzb39\nzJVRjr7fy+W+yazbmup9PPnABh7bt57ajHEWKQpQ43dTV+PNmzmYK7fLa8qzT+2qiosBK22sihCi\nevX393Po0CGALbqu9+TevqA5fpqmBYAfAp4GPoUzAP5FnLJPIYQQQgjg9t1AVVVh34417Nuxht6h\naY6+38uJi7dIWDaT0zFefO0qf/f2dR7Z08nHHtzI2uZA+mdtIBw1CUfN5LgIL745GsFUcwZ4JY5V\nEUKsXEUFfpqm/X3gx3GCPQ9wFPgszh6//PoJIYQQQqxKi8lQ5XYDDUdNrIyKo66Oen7607v5zEe3\n8drJft481U8oahI3LF472c/rJ/vZu30Nhx/cyLaN2fsAo/EE0XgEj1ulPuAt2AimWvdsrsSxKkKI\nlavYjN9XgXeAX8Lp6jlSviUJIYQQohotNUOV6gaaHgofNjAyykCb6n38vSfu4lMHN/PuuUG+f6KP\nW+NhbOD05RFOXx5h07oGfuBAF/dpa3Cps2WehmkxHozidqnUBzwECpSIVhtpPCOEqKRiA78tuq7f\nKOtKhBBCCFFVcrN7E8FowfstNEOlKAoBvxOcxY0EMxGDaMwklQP0eV08cf8GHr9vPeeujnH0eC96\n7wQANwaD/Mk3z9HS4OfQgxt5dG9n1jxAM2ExMR0jGIpTH/AS8LuzMoTVZK7GM16PSwbOCyFKrtiu\nnjc0TWsEfgE4BHTglH7+EHBa1/XvlG+JQgghqpk0p1idCmX3+m7N0NroJ+DPPn1YSobK63HR4nGR\nSFjM5JSBqorC3m1t7N3Wlt4H+P7FW1iWzXgwytePXuZbb13n8X3reXL/Bprr/enHTVg2kzMxpsNx\n6gJeaqswADx8oIvnv3GaYMjAMC08bhWvR8XvdRGNmcDK3PcnvxOEqE5F9UJOds08C3wOCAI7AB+w\nF/hbTdM+Va4FCiGEqF6p4GBwdAbbttMnqSf14eVemliiQvvPPG6VYCie9/1SjEZwJctAO1oDNNX5\ncOeMa0jtA/zNn3+EHzjQhd/nNHOJxEy+994N/uMfHuNP//Y8/cPTWT+XGgVxazzMTDiOZS2um3n5\nKFn/C0fNgvc6Osd+wGojvxOEqF7FDcGB/wcYBLqAHyP560nX9X+I09XzV8uyOiGEEFVtvuYUYmUr\ntP+sodaTtScv5dCBrpI9r6I43UDbWwK0NvjzunW2NPj5sY9t57c/+xg//rHtNDf4AGc8xHvnh/jN\nLx7n9//yFJd6xskcWZWwbKZCcYbGQ0zNxEhUQQB45HgvAb+bjtYAG9fW0dEawLYhGDLy7rtS9v3J\n7wQhqlexe/w+BvwjXddnNE3L7Zf8PPA3pV2WEEKIlUCaU6xehfafBfweWhpqaGnwV2Q0QmoovGEm\nmAkbRDL2Adb43Bw+0MWTD2zgg0tOaWHvLSfbd+H6OBeuj9PVXs/HH96U1QjGtmEmYhCKGEXPAiyl\nzDLIwbEQDcl9iCket4ph5gfXpciqVqIEU34nCFG9ig384kDNHLe1ALHSLEcIIcRKMldzilKcpIrl\ndfhAV8HB508f3lHx/Voet4vmBhcNBfYBulwqB3Z38OCudvQbE7xyvJfz18YA6L01zZ988xytjX4O\nP9jFI3s78Xmd69e5swDrA168c8wCLJW8YfI2jE1Fgdl9kw213oLltEvNqlZqZqD8ThCiehV7ievv\ngN/UNG17xvdsTdNagP8AfLfkKxNCCFH1Ds9xMlrK0j+xPO7X1vLsU7vobKtDVRU62+p49qldy9qk\nY759gIqisHNzC7/wzD5+5WcO8NDuDlTV2Tg3NhXlL49088v/6y1eeuMq0+HswCoaTzAyGWFkIpJu\nqlIOuWWQDbXOyInMQC/gd/OZJ7eV/LhXqgRTficIUb2Kzfj9W+A14DxwOfm9/x/YAowDny/5yoQQ\nQlS91Mno0eO9FSn9E5VVrYPPU/sAa2s8RGMmMxGDmJFI375hrdMI5keeuIvvv9/Hm6dvEosnCEVN\nXj7WwyvHe3l0byeHD3TR1jRb0BQ3E4wFE7hdKnU1npKPgsgtg0zNGpwOG6iqUta/P5UqwZTfCUJU\nr2LHOYxomvYA8FPAR4GbwBTwv4Ev6ro+Pc+PCyGEWMWqNTgQd4b59gG2NPj58UPbeerRzbz54U2O\nvt9HMBTHMC1eO9nPG6dusn9XOx9/qIsNa+sBOH9tjGNnBhidjLCmOcChBzdycE8nLnXpAeBc+ya3\nbWjm88/uX/LjL/S5oTwlmPI7QYjqVGzGD13XoziNXJ4v33KEEEIIIRYudx9gKGqQauoZ8Hv4xMOb\n+dj+Ll587QpvnxkgFk9g2TbHzw9x/PwQu7e2om1q5v3zg+ks3/B4iL/47iUiMZP9O9upC3jwuBe/\nD3CufZOlLoMs1MSlUs8thKhecwZ+mqZ9biEPpOv67y59OUIIIYSoJpUcxl2K50rtA6wPeAlHDWYi\nRnp0Q3fvBFf6Jljb5CcSSxAMxYknO2ievzbG+WtjeD0qDQEvNT5XOgA8dnqAXVtaCcdMfB4XdQEP\nfm/R187TKlEGOVcTl2ef2sWzT+2SEkwh7mDz/db6nZyvbZz5fQlgBGjGGeIex9nnJ4GfEEIIsYpU\nqhNkOZ5LVRXqAl5qazxEYiYzYYNjZwYAZ49gwO+mxuciZiSIxq10g5W4YTE6FcXjUmmodfb5jU5F\n0o8bMxLEphJ43Cr1AS81voUFgOUug5yvicvnn90vgZ4Qd7A5u3rquq6m/gM+CQzjDG/36breqet6\nDfBx4BbwSxVZrRBCCCEqppLDuMv1XE6Q52FtS4DJ6RhqRrMWRVHwe920NPj45X9ygOZ6X/o2I2Ex\nFowxMBrGsmziGc1jAAzTYjwY5dZ4mHA0f+D6cpE5ekKIuRQ7zuEPgF/Wdf1FXdfTU0V1XT8C/Efg\nt8qxOCGEEEIsn0oGEZV4rs41dbjdKh63mh71ANDWWENXRz3/6FN3s641QF3NbBYvYdn03prh3/3B\nW3znnR4i0exxD2bCYmI6xtBYiFDEwE5tLFwmHa2Fm7XIHD0hRLGB3zqc8s5CwkBTaZYjhBBCiGpR\nySCiEs+VmjGnKApulxMAulSFR+7tBGD31lZ+/NAO1rXV4XYpuF0KqfAwEjP5m9ev8h/+8C3+5vUr\nebMAE5bN5EyMW+NhZsJxLGt5AkCZoyeEmEuxhelvA7+uadoHuq4Ppr6padpdwG8CR8qxOCGEEEIs\nn0p2giz2uZbSACa/uUodhw50sW/7GkJRg1DEYPfWVo6dGaCzzQk4E5bN5HSMUDLTF40l+M47Nzj6\nfh+P71vPDxzoornBn36OhGUzFYoTDMep9Xuoq/HgchV7nX3pZI6eEGIuxQZ+vwC8DvRomnYWGAXW\nAvcA15O3CyGEEGIVqWQQUcxzlaIBzFzNVeoDXuqSjWDGMpq5GKZF3LRwuxQsO9nlzrIxTIvvn+jj\n9ZP9HNyzjk88vIk1zYH0z9k2zliJiEGN301djRePuzIBoMzRE0IUUuwA98uapmnATwOP4HT0vAT8\nIfBnuq7HyrdEIYQQQiyXSgQRuVm8f/jJuws+53wNYEqxxlQjmI3tDdwcnsaybGbCRvo2v1ultdFH\nKGISiprEjAQJy+at0wO8fWaAB3d18MmHN9G5pi79mDYQjpqEoyZ+r4v6gBevJ38WYCXHZggh7kwL\nGeA+Dfx+8j8hhBBCiCVbSBavUs1mUmWnqqpgJiwUnACuLuAmZlhE4wkStsWWdQ1MheKMB6PYNulh\n8Pt2rOFTj2xmU0dD1uNG4wmi8Qhet4v6gAd/chREJcdmCCHuXJUrOhdCCCGEyLGQMQ6VajZzv7aW\nZ5/aRWdbHT6vC6/HRVujD0VRmZyOYSQsvC4XCcui1u/iqUc3s6mjPv3zH3aP8Ntfep//94UPuXZz\nKu/x42aCsWCU4eQoiEqOzRBC3LkWNnVUCCGEEGIJcksar96cJFBgCHqhLF4lm82kSlwzs3FDY2HA\n2edXF3DWrCgKw2Nh/v1PPcjFnnG+fayHy32TAJy/Nsb5a2Nom5p56pEt7OhqQsmYI2gkR0H03Qqi\nKAqqQtbtMntPCFFKEvgJIYQQoiIKlTQGZ+Jg2wT8nqz7FsriLUfHyszn7Buewetx0VDrocbnxrLB\nsmxGpyIoisKuLa3s2tLK5b4JXn67h4s94wDoNybQb0ywbUMjn3pkC7u2tGQFeK2NNYxMhLEUBVUl\nHQDK7D3xf9i78/i66jr/469z9y370jRd6H5oCwVKaUvL3srSiiyKgtgRUH7qb3ScGUedEXVUXNAZ\nxhn9Kc4IiDKig8CwyCK0bEp3Svf20H1P0uzL3e89vz9ukqZt0t40N2mavp+PRx/knnPuOd/Q9PG4\n73y/389HJJcU/ERERGRAdLekMT/oobktflzw62kW73RUrOx45o8eX82h2tbO404jE9KGFQdxOR0k\nU2kAJo4q4ou3F7HrYBMvvbObDTtqAdi+v4mfPrmWMcPzWTBnDOdPKMUwDOZMq+S5t7Zj2zaplE3a\nAIdhcPWMUQP6fYrI0NZj8DNNs7g3N7Isq77vwxEREZGhqrviLAGfC8MwqCwNDfq+c90tNTUMg+su\nHcOw4gCRWJKWcJxEMhMAx1YW8Ne3XcDeqhZeXrqL994/DMDuQ838/On1jBqWx8K5Y7lgYikwgWXr\nD1LbFKG0wM+l0yqpLA3S0BIlL+DBNYC9AEVkaDrRjF8tmSJW2Tq+NrGIiIhIu4qS4FEzZh3Gjyjg\ny4tmnIYR9c7Jlpr6vS78XhfReJLWcIJYIgXA6Io8PnPrNA4ebuXlZbtZvaUa24Z91S384pn1jCwP\nsWDOWO656TwcXZaAZtsKQkQkGycKfvdwJPiVAD8AXgGeBqrajy0Ebgb+oR/HKCIiIkPAQBZn6S/Z\nLDX1eVz4PC5iiRSt4TjReCYAVpaF+NSHzmPh3LG8vHQ3KzdXYduwv6aV/3p2A5VlQRbMGcv0c8uP\nCoDQcysIEZFsGbZ98kk90zT/COyyLOsL3Zz7ITDbsqwr+2F8WTFNcwywa8mSJYwcOfJ0DUNERERO\nYo1VM6DFWQaDeCJFS5cA2KGmIczLS3ezYmMV6S6fx4aXBlkwZwwXnzsMh8M49nYAuJwO8gKZIjOG\ncfw1aggvcvbZv38/8+bNAxhrWdbuY89n++uia4Cbeji3BDguEIqIiIgc63QUZzndPG4nJQV+EskU\nLeEEkVgSgPKiAJ9cOIUFc8fyytLdLNt4iHTa5lBtG488v4kX39nFwrljuw2AyfZWEM1tcUIBD0Hf\nkQB4oobwgAKhyFkq2+C3l8yyzte6OXc7sC1nIxIREREZgtwuJ8X5ThLJNC3heGcALCv0s2jBZG6Y\nM4Y/Ld/N0vWHSKVtqurCPPL8Jl5aupuFc7tfAppK2zS1xmhpixMKuAn63D02hP/D4veJxpOdr7sG\nQoU/kaEv2+D3feAx0zQnkNnnVwuUA7cAlwG39s/wRERERE6vXC+bdLscFOf7SCTTtLYHQBsoLfRz\n5/WTueHSsbyyfDfvrDtIqn0G8OHnNjL8nWCPATBt2zS3xWkJx9lf03JcM3iAPVXNDCsOHDeeJSv3\nKviJnAWyCn6WZf3GNM0I8I/AfwAGmcIvy4EbLMta3H9DFBERETk9TrRssq9hye1yUJTvIy/VPgMY\nzQTA4gIfH7/uXK6bfQ6vLNvD0vVHB8DKd4Is6CEA2jYU5/s43BDG4TBwOoxu9wB2VVV/fJsNERl6\nsmoKY5rmbcCblmVdDISAEUDQsqy5Cn0iIiIyVPW0bHJJD8dPhcvpoCjPx7DiAEGfm46YVlLg587r\nz+U7n7mUyy+s7Nznd7A9AH730RWs2VpzVGEYgDnTKgFIp20SyTTJVBrbtjmnIr/b51cUB3P2vYjI\n4JXtUs9HgU8Cz1iWFQEi/TckERERkcGhu6bz0D+zZE6ng8I8L3kBN62RBG2RBDYdAXAy180ewyvL\ndrN0Q6YIzMHDbfzXsxsYVR7ig5ePY9qEUgzDYOq4EoDjGsJ73E7+981tx80SnkntNETk1GUb/PYA\nxf05EBEREZHBpqem8/05S+Z0OigIeQn53TR3WQJaWujnEzdM5vpLx/Dy0t0s23CItG2zr6aVh55e\nz+iKPG68fBznjSthavufYy2cO46VG6uoa45QWRo6K9ppiEhGtsHvt8C/m6a5AHgfqDnmvG1Z1o9z\nOjIRERGR0+xkTef7s1+es30JaF4gTUtbnHB7FdDS9iqg1196Di++s5sVmw5h27C3qoWf/WEdYyvz\nufHycUweU3zc/r6ugdDtcpAX8ORkrCIy+GUb/L7X/t+bezhvAwp+IiIiMqR0hLjums73Z+GXrlzO\nTBGY0LFtIIoC3PXBKdwwZwwvvrOLVZuqsIFdB5v5yf+sZfzIAj50+XjMc4q6vW8imaa+OYrb6SAU\ncBPwuXM2ZhEZfLKt6plVERgRERGRoaanpvMnKvzS2+CXzczhkTYQKZrb4kTjKQCGFQe458apmRnA\nv+zi3a2ZhVk79jfx49+t4dxzivjQFeMZN6Kg22cn2pvBt4QT5CkAigxZOQl0pmlW5OI+IiIiImeK\nXBV+6Zg5PFTbim3bnTOHa6xjd9ZkuF1OSgr8lBX68bqdnccrS0Pce/P5fOOeWVw4qazz+NY9Dfzo\n8dX87A9r2VvV0uM4ku0BsKquLVNY5phqoSJyZstqxs80zXzgG8CVgBc6Kw0bQAAYDejXQyIiInLW\nyFXhl1OdOfS4nZQW+onGk7S0JYgnMzOAI8pDfPbWaeypauaFP+9k4446ADbsqGPDjjoCXhdjKvOZ\nd8nobgvApNI2ja0xWsJxQgEPQZ/rpL0ARWTwy3bG7yfAF4GDgB9IA1vIVPo8B/jrfhmdiIiIyCA1\nv4c2CL1tj9DXmUOfx0VZkZ+SfB9u15GPdudU5PP52y7ky5+4mJHloc7j4ViSzbvqeeT5jbyz7mCP\n902lbZpaY1TXh2kNx0mnNQMocibLNvgtAO6zLOtm4CHggGVZHwMmAe8C5/fT+EREREQGpelmOYsW\nTKGyNITDYVBZGmLRgim93t9XUXL0DGE4mqSqLszB2jZ+9PjqHpd8HsvndVFeFKA434fbeeQj3viR\nhQwrDlBe5MPjPnI8HE3y+Mtb+O0rW2hojvZ431TapqktTnV9mBYFQJEzVrZVPQuAFe1fbwT+EcCy\nrDbTNB8EHgC+kPvhiYiIiAxePRV+6Y35M0fzn8+sp7ktTiyRIpWycToNygp9p1Qp1O914fe6CEcT\nNLfFSaVtahsj+DwuhhU5icZTNLXGiSfTAPx57UGWbajiyukjuP7SMT22eEjbNs1tcVrCcYI+N6GA\nB6dDS0BFzhTZzvgdAjoKuLwPlJqmObz99eEu50RERESk1zKzaKmU3fVlpyU97AM8kYDPzbDiAAVB\nD2VFAQAMw8DvdTGs2E9pgQ+fJ1McJplKs2TVPr7+i6U8//YOItFkzyO1oTWSoLq+jabWGKlUutdj\nE5GBl23wew54wDTND1iWtQfYBXzTNM0xwOeAPf00PhEREZEhbfHKvQR8bipKArhdDtwuBw6HQXNb\novOa3lYK7WAYBqGAh4WXjc3MzhlHjgd8Lj71ofO464NTKC3wARCLp3hp6W7u+8U7/Gn5buKJVI/3\nPhIAwzS0REkqAIoMatku9fw6MB74EvAa8PfAk8D/IVPoZVG/jE5ERERkiOta3MXtcpBoX4LZ8V/o\nfaXQY804dxgOw2Dxij0cqG2lJN/P7POHd1b1nDF5GO+sO8hLS3fR1BonHE3yv2/uYMmqfSyYO5bL\nLqjE5ex+vsAms18wHE3i97rIC7hxu5zdXisip0+2DdxbgA+apultf/28aZrnAxcB71mWta0fxygi\nIiIyZHVtC5Ef9FDXlCm00rVCZ28rhXan637ERDJNSzhOJJZZ0ulyOrhy+kguPX84b67Zz5+W7aYt\nmqS5Lc7vX7VYvHIvN14+jkumZAJkTyKxJJFYEp/HSV7Ag8etACgyWBhDoTln+5LTXUuWLGHkyJGn\nezgiIiIiWeto4N4h3B64CkIexo8oZN7M0X0uINOTRDJFc1ucaPzoJZ2RaJLFq/ayeNVeYl3OjSgL\ncfOV4zlvfElWvf28biehgBufJ9tFZiJyqvbv38+8efMAxlqWtfvY8z3+KzRNcwPHbS3umWVZ005l\ngCIiIiJns45Qt2TlXqrq25gwsn/DXldul5OSAj+xRIrm1nhnE3i/z8WNl4/jqotH8vLS3bz93n6S\nKZsDh1v52VPrGD+ygFuunMCEUYUnvH8skSLWlMLjcpIXcOPzKgCKnC4n+tf3LkeCnxP4GNAAvARU\nASXAB8hU9PzPfhyjiIiIyJDWU1uINVYNi1fupaqujYqSIPP7KRB63U7KivxEY0maw/HO/YV5AQ8f\nnT+JeZeM4o9/2cXyjYewbdixv4l//e27nD++hJuuHM/I8rwT3j+eTFHXnMLtcpAX8OBXABQZcD3+\nq7Ms666Or9t79f0ZWGhZVqzLcSfwNFDUj2MUEREROescuwT0VHr69ZbP68LndRGJZZabdlTqLCnw\n88mFU/jArNE8//ZO1r5/GIANO+rYuKOOmVMruPHycZQW+k94/0QyTX1zFLfTQSjgJuBz98v3ISLH\ny7adw6eAB7uGPgDLslLAQ8CHcz0wERERkbPZ4h56951KT7/eyvT6C1CU5z2qSXtlaYjP3jqNr/7V\nDMzRmd/728CKTVV865fLeHLx+7SE4ye9fyKVpqElRnV9mHA0cdLrRaTvsp1njwATejh3EZkloCIi\nIiKSI13bPBx1vL5twJaABnxu/F4XbdEkreE4qXRmF9DYygL+9o6L2LK7nv99cwf7qltIpmxeX72P\npesP8oFZ5zDvklEnLeqSbA+ALeEEeZoBFOlX2Qa/XwM/aG/n8ApQC5QDtwL/CHyrX0YnIiIicpbq\n2uahK4/bOaBLQA3DIOR3E/S5aI0kaA0nSNs2hmEwZWwJ6bTNi+/s6gx/0XiKF/68k7fW7GfB3LFc\nfkElzh56AHboCIDNbXHyg5k9gNlUDRWR7GUb/O4DQsAPgB92OR4HfmRZ1gPZPtA0zYXt9/EC64FP\nWZbVfMw15wM/BQqAFPAZy7LezfYZIiIiIme6+TNHHxXwOvVQc33Jyr29Dn69mTk0DIO8gIegz01L\nOE5bNMHGHXU8//YOAIaXBGiNJGhqS5BO2509AJes3MtNV47n4nPLTxrmUmm7MwDmBTwEfAqAIrmS\nbQP3FPB50zS/AcwGCoE6YFl7c/esmKZZBvwKmGtZ1jbTNH8IPAD83y7XBIBXyQTCl0zTvAn4LXBu\nts8REREROdMd2+ahojjIvJmj+e+Xt3R7fVV990tDe3KqxWMcDoOCkJdQwMOjz2/qPN41GKZtqGuO\nEounONwY4eHnNrJ4ZT63Xj2BSaOL2LSzjqXrD1LbGKG00M+caZVMHVfSea9U2qaxNUZLWAFQJFd6\nVUvXsqwG4OU+PO9aYJVlWdvaXz8ErDNN868ty7K7XLPDsqyX2l8/D+zqwzNFREREzkjdtXlYvHJv\nt0tAK4qDvbr34pV7CUcTNLclSCTTuF0O8oPurGcOnQ4jU6HT5SCVtkm37/9zOAxcDoP7PzOHl5fu\n4u33DpBK2+w+1My/PbGGMcPzicYTeFxOAA43hHnure0AR4U/ODoA5gc92gMo0gdZBT/TNCuAHwML\ngCBw3K9cLMtyZnGrUcC+Lq/3A/lAHtCx3HMSUGWa5iPABUAj8JVsxikiIiIy1PW0BHTezNG9us+O\nA43UNR0p2J5IpqlrimEYjVnfo2MfostpkHbYpFI2tm1TWuAnP+jhYx8wuWbGKJ57ewert9QAsPtQ\n5iNf0OeiIOTB1b7/b9n6g8cFvw4dS0BVBEbk1GU74/cQcDXwMJmwlj7F5/W0szfV5Ws3mYB5tWVZ\nK9qXer5kmuY5x7aTEBERETnb9LQEtLf7++KJ7j/O9XS8O11DqMMwcLgM0mmby13DH4IAACAASURB\nVC4a0XlNWVGAT990PvNnNvPMG9t4f28mWLZFk4SjSfICbvKDHmqbIid9XkcRmNZwgvygB58awYtk\nLdt/LdcCn7Us6/E+Pm8vMKvL6xFAg2VZXRelHwS2Wpa1AsCyrOdM03wYGAd0v6hdRERE5CzS3RLQ\n3vK6HXRXqMHjzmYR15FxwPEh9KJJZbRFk7S0xUnbmSWgY4bn83d3TOfB377LnqoWEsk0NtAcTtAa\nSTCiLEQyle6cATyRRCpNXfsy0/yg56RtI0Qk++DXDBzOwfNeBR40TXNi+z6/zwLPHXPNy+3XXGxZ\n1rumaV5Bpn6V9vmJiIiI5Mi4EYXYdiPNbXESqTRuZyZEjR9R0Kv79BRCQ343Aa8rUwE0ksAmUwDm\nhjljefbNbbRFkzS1ZnoDpm3YV9PKtx9ezi1XTuAisyyrYi6Z5alRPC4neUG3AqDICZz8VyoZjwB/\nb5pmnxZUW5ZVA9wNPGWa5hbgfOBLpmnOME1zbfs1VcDNwM9N09xIZm/hrZZlRfvybBERERE5Yv7M\n0QR8LipKAowqD1FREiDgc/V6r+CJdFQAHVYcINC+LHPquBJuvmoi4yoLGFEeZERZEI8785H0cEOE\n/3p2A//y3++y80BT1s+JJ1PUNUWpaQgTjSVzNn6RocSw7R6awXRhmuaDwD1AElgHhI+5xLYs66bc\nDy87pmmOAXYtWbKEkSNHnq5hiIiIiJxR1lg1fd4r2BvxRIqm1jjxZOqo4y3hOC/+ZRdvrz3QWR0U\nMrOJN181nvKiQK+e43Y5yAtkGsGLnC3279/PvHnzAMZalrX72PPZ/muYDqxt/9pJpgqniIiIiJzB\ncrFXsDc8bidlRX4isSTNbXGSqUwhmbyAh9uvNbl6xiiefXM7772f2WG0xqph3bbDXHHRCBZeNo6Q\nP7vFZ4lkOtNqwukgpCqgIkD2Ddyv7u+BiIiIiMjZwe914fM4jysAM6w4wGduncb2/Y08/fo2dh1s\nJpW2eePd/azYWMUNc8Zw1cWjcLuy262UaK8CqjYQIr1s4G6aZgDwcqSPnwEEgEsty3oyx2MTERER\nkSHKMIxuC8AATBhZyFcWzWCNVcOzb+7gcGOEcCzJ029s5601+7n5qglcfG55VgVg4EgbCAVAOZtl\n28D9POBXZJZ89kTBT0RERER6paMATMDnpqk1RiyR2f9nGAYXnzuMCyaW8ea7+3lp6S7C0SS1TVEe\nfm4jr68u4CPXTGRcL6qQKgDK2Szbqp7/BgwHvgS8SaYtw+eBF9vPz8v5yERERETkrOF2OSgt9FOc\n78PpODKT53I6mD9zNPd/Zg7XzBjVeW7ngSZ+9PhqfvnsBmobT978vauOAFhdHyYcTeT0+xAZrLIN\nfrOBr1mW9e/A74A8y7IesizrQ8D/AH/TXwMUERERkbOH3+tiWHGA/KCHris5g343H50/iX++dzYX\nTSrrPP7u1hq+9ctlPP3GNiLR3rVy6AiANfVhImoDIUNctsHPzZEG6luBC7qc+zUwK5eDEhEREZGz\nl2EY5AU8DCs60v+vQ3lRpgDMl+6czjnD8wFIpmxeW7GXb/znUt5as59UOt2r5yVSmSqgNfXqAyhD\nV7bBbxtHwt5WIGia5uT21y4gP9cDExEREZGzm9PpoCjfR2mhH7fz6I+tE0cV8dW/msE9N06lKN8L\nQGskwe9etfjeoyvZtLOu189LpNLUNbc3go8rAMrQkm3wewT4F9M0/9GyrFrgHeAR0zTvAr5Hpqm7\niIiIiEjOed1OyosDFIa8OLqs/3QYBjOnVvDtey/lpivG4/U4AThY28ZPn1zLT59cy8Ha1l4/L5FM\nU9cUpbYx0llsRuRMl20fv/8wTdMNjGw/dC/wAvAosBe4p3+GJyIiIiKSEfS78XldNLfFCHfZz+dx\nO7lhzhjmTBvO82/vZOn6g9jApp11bNlVz+UXVXLjZeMIBTy9el4skSLWGMHncZIX8OBxO3P8HYkM\nHMO27ZNf1Q3TNA2gzLKsGtM0HZZl9W4xdQ6ZpjkG2LVkyRJGjhx5sstFRERE5AyXSKZobIkTTx4/\nI7evuoWnlmzD2tvQeczvdbFw7liuungkLme2i96OpgAog9n+/fuZN28ewFjLsnYfez6rn3rTNHea\npjmt6zHLsuz20DcTqMnFYEVEREREsuF2OSkr8lOU5z2q/QPAqGF5/O0dF/G5D0+jvMgPQCSW5KnX\nt3H/IytYv72WU5n8iMZTHG6MaAmonJF6XOppmubnAH/7yzHAPaZp7u3m0ssA/dpDRERERAZcwOfG\n53HREo7TFknQEecMw+CCiWVMHVfCW2v28+JfdhGOJamuD/Pzp9YxeUwxt82bSGVZqNfP7FgC6nE5\nyQtmni8y2J3op7QU+Hb71zbd9+pLA43A13M8LhERERGRrDgcBgUhLwGf67jlny6ng3mXjGbW1Ape\n+MtO3n7vALYNW3bX891HV57y/j+AeDJFXVMKt8tBfsCDz6sAKINXVnv8TNNMA5dalrWi/4fUe9rj\nJyIiIiIdwtEEzW1xUunjP+ceONzKH5ZsY+vu+s5jAa+LhZeN5arpI3Ge4v4/QAFQTquT7fHLtqrn\ncf8C2qt85luW1fsmKSIiIiIi/aSn5Z8AI8pCfPFjF7Jhey1Pvb6NmoYI4ViSPyzZxp/XHuC2eZOY\nOq7klJ6bSGb6ACoAymCUbXEXj2ma3zNN8xPtr68FqoEa0zTfNE2ztD8HKSIiIiLSGx3LP8uKAniP\nqcJpGAbTJpbxzU/P5iPXTMTfHtCq6sL89Mm1/OwP66iuD5/yszsCYE1DmGhMjeBlcMj21xAPAJ8F\n/rr99UPAfuBvga8B/wrclevBiYiIiIj0hdvloLTQ3+3yT5fTwfyZo5l1XgXPv72Tv6w9gA1s2FHL\n5l11XHPJKMZVFrB6SzW1jRFKC/3MmVaZ9YxgRwBUERgZDLL96bsN+DvLsn5lmuYlwFjgdsuynjRN\nM0wmCIqIiIiIDEodyz+b2+K0RRNHncsLeLjz+nO54qIRPLn4fbbtaySVtnltxV4cDoPCkIegz8Xh\nhjDPvbUdoFfLQTuKwHhcTvJDnuNmIEUGQra7V0uBze1ffxBIAC+3v64HfDkel4iIiIhITjkcBoV5\nXsqL/Lhdx38MHjUsj7//+HTuvfk8ivMzH2/TaZv65hjV9RFi8Uy10GXrD57S8+PJFLXtfQDj6gMo\nAyzb4LcDmNte0OWjwF8sy2ppP3c78H5/DE5EREREJNfcLiflRQEKQ16Mo3u/YxgGF587jG/dO5uC\nkIeO0/FkmuqGCLVNUarq2/r0/Fgi0wi+rilCIpnu071EspVt8PsX4LvAYWAS8G8ApmkuA+4hswdQ\nREREROSMEfS7GVYcJNBN9U2P28mEkYUMLw0cdT4cTXLwcJg/Ld/d59AWjaeoaQjT0BwlmVIAlP6V\nVfCzLOvXwDXAD4ArLMt6sf3UK8A1lmX9oZ/GJyIiIiLSb5wOg6J8H6WFflzH9PCbM60Sl9NBaaHv\nqOWhadvmf9/cwf2PLGfDjto+jyEcS1JTH6ahJUpKAVD6SdalhSzLeht4+5hj3875iEREREREBpjX\n7aS8yE9rJEFLOI5tHyngsmz9QWqbIowqD5EX9LJqcxVt0SQ1DRF+9od1nD++hI/Mm8Sw4sApP98m\nM5sYiSYJ+t2EAh6cDuOk7xPJlmrKioiIiIiQ2d+XF/AQ8LpobI0RjaeYOq7kuAqeH7x8HC/8eQdv\nv3cA24YNO+rYvGs582eO5oY5Y/rUtsEGWiMJ2qIJQn4PIb8bhwKg5EC2e/xERERERM4KTqeDkgI/\nJfm+bmfdQn43d1x7Ll+7ayYTRhYCkErb/Gn5Hr71y+Ws2lyFbdvHva83bBtawnGq68O0huN9vp+I\ngp+IiIiISDd8XhfDigOE/G66m3MbNSyPL905nU99aCqFeV4AGltiPPL8Jv7tiTUcqGnt8xjStk1T\nWyYAtkUSJ3+DSA8U/EREREREemAYBgUhL2VFATyu4xuvG4bBJVMq+Na9s7n+0nM6Zwi37Wvke79a\nyZOL3ycc7XtgS6VtGltjVNeHc3I/Ofv0agGyaZqXAfOA4cD3gfOA9yzLOtQPYxMRERERGRTcLgdl\nRX7aIgma2mIcu/LS53Fx85UTuPT8Sp5c/D6bdtaRtm1eX72PVZuruOWqCcw+fziOYxsH9lIylaah\nJUZrJEF+0NOn/YRydslqxs80Tb9pms+Tqer5d8C9QGn712tN05zcf0MUERERERkcgn43w4oC+DzH\nz/4BDCsO8PnbLuBzH55GaYEPgJZwgt+8tIV/eXw1e6qaczKORDJNXVOU2sYI8UQqJ/eUoS3bpZ4/\nBGYBl5MJfB2/qvgEcIBMfz8RERERkSGvo/hLUZ632xk8wzC4YGIZ3/z0bG68bGxn/79dB5t54LFV\nPPGnrTnbrxdLpDjcGKGuKdLnhvIytGUb/G4HvmpZ1jtkqswCYFlWNXA/cFk/jE1EREREZNAK+NyU\nFwcIeLtfbulxO1l42Tj++dOzuXBSGZD5IP32ewf45/9axjvrDpLOUbXOaDxFTUOYhmY1gZfuZRv8\ngkBND+cigC83wxEREREROXM4HQZF+b4eWz8AlBb6+eyt0/jCRy+kvMgPZHr1Pf5yZvnn3hwt/wQI\nx5JU14dpao2RSqsFhByRbfBbDnzRNM2ui5k7fpLuAVbmdFQiIiIiImcQn9dFeVGAgK/nYitTx5Xw\njU/N5qYrxh+1/PMHj63id69upS1H1To7msBX17fRoh6A0i7bMkBfAd4CtgKvkfl5+r+maZ4LzACu\n6Z/hiYiIiIicGRwOg6I8H35vksaW7mfc3C4HN8wZw8ypw/jDkm2sff8wNvDWmgOs2VqTs+qfkGkC\n39wWpy2SIC/gIeBzYeTgvnJmymrGz7Ksd4GZwGrgFiAF3AzUAnMty1rWbyMUERERETmD+DyZ2b+g\nz93jNSUFmeWfn7/tAsral392VP/81/9+l/3VLTkbT0cPwJqGiHoAnsWybvxhWdZm4I5+HIuIiIiI\nyJDgcBgU5nnx+1yZgis97Lc7b3wp5jlFvLZyLy8v3U0imWbngSa+/9gqrrp4JDdePg5/D8Vjeuuo\nHoABD74c3VfODFn/bZum6QCmAIV0M1NoWdbbORyXiIiIiMgZz+t2Mqw4QHNbnNYeWji4XU4WzBnL\nzCkVPLn4fdZvr+1s/v7u1mo+cs1EZkwelrNlmolkmrrmKB6Xk/yQB6+7+56EMrRkFfxM07wUeBoY\nxpEefl3ZgH5iRERERESOYRgGBSEvPq+LxpYYyS7tFjbtrGPp+oPUNkYoLfRz5fSRzL2gkv957X3q\nm6M0tcZ55PlNvLPuILdfa1JREszZuOLJFLWNEXweJ/lBD26XPs4PZdlW9fwJ0Ah8BLgYuOiYP9P7\nZXQiIiIiIkOE1+2kvMhPyJ/Z+7dpZx3PvbWdww1hbNvmcEOY597ajsvp4Fv3zuaGOWM6W0Rs3dPA\n/Y+s4Nm3dhBPpHI6rkwPQDWBH+qyXep5HvARy7Je7M/BiIiIiIgMZV1n/5ZvONTtNcvWH2TquBJu\numI8s6ZW8PtXLbbuaSCVtnll2W5Wba7i9g+YnD+hNKdji8ZTRONhAl4XeUEPLme2c0RyJsj2b3MP\nEOjPgYiIiIiInC28bicNLdFum77XNkU6v64oCfLF2y/i0zedR0HIA0BdU5SfPbWOXzyznvrmaM7H\nFo4lqakP09ASJZXSDOBQke2M3zeB75mmuduyrFX9OSARERERkaFsjVXD4pV7qaoLA5AXcONxOzsb\nrZcW+I+63jAMZkwextRxJbzw55288e4+bBvWvn+YLbvq+eBlY7lmxiicOZyhs4FwNEkkmiTodxMK\neLoNqXLm6DH4mabZQubvvEMQWG6aZgo47lcLlmXl5354IiIiIiJDxxqrhsdf2gxAftBNXVOM+uYY\nxflefB4nqbTNpdMqu32v3+vio/MnMfu84Tzxp63sPtRMLJHi6Te2s3xjFR+/zmT8yMKcjtcGWiMJ\n2qIJQn4PIb8bhwLgGelEM34PcnTwExERERGRPli8cm/n14H2Bu/NbQlaIwkmjiriiukjGDO84KjK\nn8caXZHHVxbN4C/rDvDsmzsIx5IcONzKv/z3u8y9oJJbrprQWUAmV2wbWsJx2iIJQgE3Ib87Z+0l\nZGD0GPwsy/pWx9emaY4GqizLih97nWmaPuDCfhmdiIiIiMgQUlXXdtTrgM9NwJeZRfvyohkA2LZ9\nwr5/kGkQf8VFI7lwUhlPv76dFZuqAHhn3UHWvX+Yj1wzkVnnVeQ8nKXbx9YWSZAX8BDwuRQAzxDZ\n7vHbBcwGutvfNwt4GRV/ERERERE5oYqSIIdqW48/XnykP19H5c+te+r507I91DSEKS30M2daJVPH\nlRz1vvygl7tvnMql5w/nd69aVNeHaY0keOzFzSzbcIg7rstt778OqbRNY2uM1kiC/KAHvzfbWCGn\ny4n2+P0C6FhgbAAPmqbZ2M2lk4HafhibiIiIiMiQMn/m6M49fl3Nmzn6qNdrrBp+/6qFbds4DDp7\n/AHHhT+Ac8cU8/V7ZvHaij28tHQ3yVQaa28D3310BdfNHsP1l57TLw3ak6k09c1RPC4n+SEPXrea\nwA9WJyr98xKQ1/4HMsVd8o75EwDWAbf34xhFRERERIaE6WY5ixZMobI0hMNhUFkaYtGCKUw3y4+6\nrmMvoGEYOJ0OXC4HhmGwbP3BHu/tdjlYMHcs3/z0LCaPKQYgmbJ58Z1dfPfRlWzdXd9v31c8maK2\nUU3gB7MT7fF7HngewDTNN4DPWZa1daAGJiIiIiIyFE03y48Lesc6di+gwzAwnFDfcvK+feVFAf7m\nYxeyeks1Ty5+n5Zwgur6MP/++/eYNbWCj8ybSF7A06fvoSedTeB9LvKDXrWAGESyWoxrWdbV/T0Q\nERERERHJ6G4voGEYjCgNUVLgo7ElRirdcwF+wzC4ZEoFU8aV8OybO/jz2gMArNhUxYYdtXz46onM\nmTa83wqzhKNJIrEkeQGPKoAOErnr8igiIiIiIjkx/5g9fx3mzRyNz+OivChAIIuCKkGfmzuvP5ev\nLJrBiLIQkAllj7+8hX97Ys1xM4u5ZNvQ3Banuj5MONpzhVIZGAp+IiIiIiKDzMn2AjocBkX5Pory\nvDiymE0bN6KAr911CbdePQG3KxMBtu1r5LuPruCPf9nZr/vyUmmbhpYYNQ1hYolUvz1HTkx1V0VE\nREREBqFs9gIGfG68bieNrTGi8ROHKqfTwbWzzmG6Wc7vXrXYtLOOZMrmj3/Zxeot1dx53blMHF2U\ny2/hKIlkmtrGCD6Pk4KQF5dTc1ADSf+3RURERETOYE6ng5ICP4UhL9lspSst9PP52y7gUx+aSl7A\nDUBVXZgHn1jD4y9toe0EjeNzIRpPUVMfpqk1RvoE+xQltzTjJyIiIiIyBAT9brweJ/XN0ZMu3ews\n/jK2hGfe3M476zJtIt5Zf5D12w9z27xJXDJlWL8VZbGB1kiCcDRJXtBD0OdSAZh+phk/EREREZEh\nwuV0UF4UID/oIZsYFfS7WXTDZL5053QqSgIAtIQTPPrCJv7fH9ZR2xjp1/GmbZum1hg1DRGisWS/\nPutsp+AnIiIiIjLE5AU8lBX5s95HN3FUEffdPYsbLxuLy5mJjJt21vGdR5azeOVeUun+bcqeTKWp\na46qAXw/UvATERERERmC3C4n5UV+Qn53ltc7WHjZOL5+zywmjCwEIJ5I89Tr2/jhb1azr7qlP4cL\ntO//awiftE+h9J6Cn4iIiIjIEGUYBgUhLyUFPpyO7PbQVZQE+fs7p3Pn9efib+8VuLeqhR88topn\n3thOfABaMrRFE1TXt9EajmPbCoC5oOAnIiIiIjLE9abpO4DDMLj8whF8697ZnS0l0rbNqyv28J1H\nVrBld31/DhfINIBvaotr/1+OKPiJiIiIiJwFetv0HaAg5OX/3HI+n/vwNArzvADUNkb4j9+/x2N/\n3NzvrR/gyP6/2kbt/+sLBT8RERERkbNIwOemvMiPz+PM+j0XTCzjnz89myunj+ysFrp84yG+9ctl\nrN5SPSDLMWMJ7f/rCwU/EREREZGzTEfT94KQN6u2DwB+r4s7rjX58qIZDC8NApnWDw8/t5GHnl5P\nQ3O0/wbchfb/nRoFPxERERGRs1TI76asKIDblX0sGDeigK/dNZOFc8d2FoxZv72Wbz+8nLff2096\nAMKY9v/1noKfiIiIiMhZzO1yUFaYfduHjvfcePk47rt7JmMr84FMK4Yn/mTx4yfWUFXX1l/DPYr6\n/2VPwU9ERERE5CzX0fahtNCfddsHgMqyEF/+xAw+On8SXndmz+C2fY1899GVvLx0N6nUwISxaDzF\nYe3/OyEFPxERERERAcDrdmbaPviya/sAmWqh18wYxTc/PYspY4uBzEzcc2/v4IFfr2JvVf83fgew\nyez/q6kP0xpJaP/fMRT8RERERESkk8NhUJTnozjfl3XbB4CSAj9f+OiF3P3BKQTbl43uq2nlgV+v\n4tm3tpNI9n/jd8j0G2xqjWn/3zGyj/IiIiIiIjKkrbFqWLxyL1V1bVSUBLl6xijGVeYTjWcX2gzD\nYNZ5w5k8toQnF1us3lJD2rZ5Zdke3rMOs2jBZCaMLOzn7yKjY/+f1+0kP+jB486+fcVQpBk/ERER\nERFhjVXD4y9t5lBtK7Ztc6i2lSde2cKeqpZetX0AyA96+PRN5/PZW6dREPIAUF0f5sH/fpffv2oR\njQ/cTFwskeJwY6S9AMzAzDoORgp+IiIiIiLC4pV7uz2+ZOXeU2r7AHDhpEzj97nTKoHMPrw31+zn\nOw+vYPOuur4OuVei8RQ1DRHqm6NnZQVQBT8REREREemxBUNVfeb4qbR9AAj43CxaMJkv3n4RJQU+\nAOqbo/zkf9by6xc30xZN9G3gvRSJJalpCNPQHCU5QFVHBwMFPxERERERoaIk2P3x4iPHT7XtA8Dk\nMcV841OzuGbGqM5lo8s2HOI7Dy9n/bbDpzrsUxaOJampP3taQCj4iYiIiIgI82eO7vb4vG6Od7R9\n8Ht7VyvS53Hx0fmT+IdPXExFSQCAptY4P396PY88v5HWyMDO/nW0gKiub6MlHB/SLSAU/ERERERE\nhOlmOYsWTKGyNITDYVBZGmLRgilMN8u7vd7hMCjO91GU56UXXR8AGD+ykPvunsl1s8/pbBmxanM1\n3/7lMt7dWt3Xb6XXbBua2+JU14dpG+DwOVDUzkFERERERIBM+Osp6PUk4HPjcTt7XTTF7XJyy1UT\nmG6W85uXtnDgcCst4QS/fHYj75o13H7tJPKD3t5+C32SSts0tsZoiyTID3rw9XJGczDTjJ+IiIiI\niPSJy3lqhV8Azhmezz/ddQkL547F0b5vcI1Vw7cfXsHKTVWnZfllor0HYG3j0GkBoeAnIiIiIiJ9\n1lH4paTA1+vCLy6ngxsvH8fXPnkJo4flAdAWSfDoC5v4xTPraWqN9ceQTyqWyLSAaGiOkjrDK4AO\nnblLERERERE57XweF2VFThpbokTjR2bLNu2sY+n6g9Q2Rigt9DNnWiVTx5Uc9d6Rw/L46idn8NqK\nvfzxLztJpmzWbatl277lfGz+JGZOrcDo7YbCHAjHkkRiSUIBDyG/u3Nm8kyiGT8REREREckpp8Og\npMBPYciLQSb0PffWdg43hLFtm8MNYZ57azubdh7fxN3pcHD9pWP42t0zGTM8H4BwNMmv/riZh54+\nfbN/NtASjlPTECY8wL0Hc0HBT0RERERE+kXQ76asKMDyjYe6Pb9s/cEe31tZGuLLiy7mlqsm4HJm\nYsv67bV8+5fLWb7x0GlrvZBK2zS0xKipDxONJ0/LGE6Fgp+IiIiIiPQbt8tBQ3O02+WRtU2RE77X\n6XBw3exzuO/umYytbJ/9iyV57I+b+flT62lsOT2zf9BeAKYpSl1TpFfVTE8XBT8REREREelXw0tD\nuJwOXE7HUT3/Sgv8Wb4/yJc/MYNbrz4y+7dhRy3feXg5yzecvtk/gGg8xeGGME2tMdLpwdsAXsFP\nRERERET61fyZo4FM03eX09HZtP3SaZVZ38PhMLh21jl8/Z5jZv9ePL17/yCz/681kqC6fvDu/1Pw\nExERERGRfjXdLGfRgilUloZwOh2MrsjnjuvO5bxjqnpmo6Lk+Nm/9dtr+fbDy09b378Oabt9/19D\nmHhicPX/UzsHERERERHpd9PNcqab5UcdiydS1DdHSfVyiWTH7N+0CaU89sfN7D7UTDia5NEXNrHG\nquHj15nkB725HH6vJJJpDjdGCHhd5Ac9OJ2nf77t9I9ARERERETOSh63k/KiAD6P85TeX1ESbK/8\nOR6XM7N8dO37h/n2wytYvaU6l0M9JeFYkuqGMC3h+GmdiQQFPxEREREROY0c7T3/Ctp7/vVWpvLn\nGL5210xGV+QB0BZJ8PBzG/mvZzfQEo7ndsC9ZNvQ3Banuj5MJHb62j8o+ImIiIiIyGkX8rspK/J3\n7tvrrcqyEF9dNIMPXT4OZ3vriDVba/jOw8tZ+/7hXA71lKTSNvXNUWobIySSA7//T8FPREREREQG\nBbfLSVmhn4D31EqROJ0OFswdyz998hJGlYcAaAkn+MUz6/nVC5sGRcXNWCJFTUOEhpbe723sCwU/\nEREREREZNBwOg6J8H0V53qN6/vXGyGF5fPWTl7Bw7tjO1hErNlXxnUdWsGlnXQ5He+rC0STV9W20\nDtD+PwU/EREREREZdAI+N2WFAdynuPTT5XRw4+Xj+OpfzaCiJABAY0uMnz65lt++spXoadxv18G2\noaktTk1DpN/Ho+AnIiIiIiKDktvloKzIT8B36l3ozhmez313z+QDM0d3Fo/589oDfPfRFby/tyE3\nA+2jZCpNXXOUuqYIqVS6X54x4H38TNNcCPwA8ALrgU9ZltV8zDUPArcBZYLJGQAAHfpJREFU9e2H\nLMuyPjagAxURERERkdPOMAyK8nx43QkaW2OcyqpIt8vJh6+ZyAUTy/j1i5s53BihtinKj59Yw9Uz\nRnHzlePxuE+tpUQuReMpquvD5AU9hPxujFNd69qNAZ3xM02zDPgV8GHLskxgJ/BAN5fOAW63LOvC\n9j8KfSIiIiIiZ7GOpZ+nWvUTYMKoQr5+zyyunD4SABt4ffU+vv/YSnYfaj7xmweITab9Q01DhGg8\nd8s/B3qp57XAKsuytrW/fgi40zTNzihrmqYXuAj4B9M015mm+bRpmqMHeJwiIiIiIjLIuF0OyotO\nveongNfj5I5rTb54+0UU5XsBqKoL86PfrOaFP+/st6WWvZVMpalrilLfHM3JmAY6+I0C9nV5vR/I\nB/K6HKsEXgf+CbgQWA481zUcioiIiIjI2ckwulT97MN9Jo8p5pv3zGb2ecMBSNs2L76zix8+vpqD\nta25GWwORGJJqhvCfa7+OdDBr6fndXYwtCxrl2VZC6wMG/hXYDwwZgDGJyIiIiIiZ4CAr28N3wH8\nPhd3fXAKn711GnkBNwB7q1r4/q9WsXjlXtID0GYhGx3VP6vrw0ROsfrnQAe/vcDwLq9HAA2WZbV1\nHDBNc5ppmouOeZ8BnP5uiyIiIiIiMmh0NHz3efpWmOXCSWV841OzuWBiGZBZZvnU69v48RNrqG2M\n5GKoOZFK29Q3R6ltjJBIpk7+hi4GOvi9Csw2TXNi++vPAs8dc00a+IlpmmPbX38OWG9Z1v4BGqOI\niIiIiJwhHA6DkgI/+UFPn+6TH/Tw2VvP566FU/B5M0Fy275GvvvoCt5Zd3BAmqxnK5ZIUdMQobEl\nRiqd3bgGNPhZllUD3A08ZZrmFuB84Eumac4wTXNt+zUbgS8AL7Rfcwtwx0COU0REREREzix5AQ8l\nBT4cfWiBYBgGs88fzjfvmc255xQBmRYLj7+8hYeeXk9zWzxXw82JtmiC6vq2rPb/GYMpuZ4q0zTH\nALuWLFnCyJEjT/dwRERERETkNEm1N0NPJPtWCTNt27z17n6eeXN7573yAm7uvH4yF04qy8VQc6q2\npoqP3roQYKxlWbuPPT/QSz1FRERERET6jdPpoKzQT9Dn7tN9HIbB1TNGcd/dMxldkWlC0BJO8Itn\n1vOblzYTPcUiK/3lZIVoFPxERERERGRIMQyDwjxvn1s+AFSUBPnqohksnDu2cxnp0vWH+O6jK9i+\nr7Hvgx0gCn4iIiIiIjIk5aLlA2RmEW+8fBxfXnQx5UV+AGqbojz423d55o3tfV5WOhAU/ERERERE\nZMjqaPng97r6fK+xlQXcd/csrpw+AgAbeHXFHh749SoO1Ayepu/dUfATEREREZEhzeEwKM73URDq\n+9JPr8fJHdeeyxc+eiEFoUwLiQOHW/nBrwdX0/djKfiJiIiIiMhZIeR3U1rox+noa/yDqeNK+Man\nZjP93HLgSNP3n/z+PRqao32+f64p+ImIiIiIyFnD43ZSVhTA53H2+V4hv5t7bzqPuz54pOn71j0N\n3P/IClZvqe7z/XNJwU9ERERERM4qTodBSYGf/KCnz/cyDIPZ5w3nG/fMYuKoQgDCsSQPP7eRR1/Y\nRDia6PMzckHBT0REREREzkp5AQ8lBb7ONg19UVLg5+/umM4tV43vXEq6clMV9z+6AmtPQ5/v31cK\nfiIiIiIictbyeVyUF/nxuPq+9NPhMLhu9hi++leXMLw0CEBDc4x//90ann5jG8nU6Wv7oOAnIiIi\nIiJnNafTQWmhj5DfnZP7ja7I458+eQlXXzwSyLR9eG3FXn74m9Ucqm3LyTN6S8FPRERERETOeoZh\nUBDyUpTnJQcrP/G4nXzsAyZ/87EjbR/2Vbfw/cdW8uaa/dgD3PZBwU9ERERERKRdwOemrDCAy5mb\nqDRlbAnfuGcWF04qAyCRTPP7Vy1+/tQ6mttiOXlGNhT8REREREREunC7HJQV+gl4XTm5Xyjg4TO3\nnM+iGybjcWci2IYdddz/yAo2bK/NyTNOJjffiYiIiIiIyCC2xqph8cq9VNW1UVESZP7M0Uw3y3u8\n3uEwKMr34Y4kaG6N0deFmYZhMPeCSiaMKuTRFzax51AzLeEEP3tqHVdOH8GHr56Ix933AjM90Yyf\niIiIiIgMaWusGh5/aTOHaluxbZtDta08/tJm1lg1J31vyO+mtNDf2aKhr4YVB/jKJy5mwZwxnXsJ\n31pzgO8/tpK9VS05eUZ3FPxERERERGRIW7xyb7fHl/Rw/Fget5OyogDeHM3IOZ0OPnTFeL708Ysp\nKfABUFUX5oe/WcVrK/aQ7ofCLwp+IiIiIiIypFXVdd9Coao++9YKTodBaaE/Zy0fACaMKuTrd89i\n1tQKAFJpm6ff2M5P/2ctjS25Lfyi4CciIiIiIkNaRUmw++PF3R8/kVy2fADw+1zcfeNU7rlxKj5v\nZkZxy+567n90Beu2Hc7NQ1DwExERERGRIW7+zNHdHp/Xw/GTyXXLB4CZUyv4+t2zGD+yAIC2SIKH\nnl7PE3/aSjyR6vP9FfxERERERGRIm26Ws2jBFCpLQzgcBpWlIRYtmHLCqp4n09HywefJXSXO0kI/\nf//x6dx42Vgc7VOKb7+XKfyyr7pvhV/UzkFERERERIa86WZ5n4JedxwOg5ICPy3hOM1t8Zzc0+lw\nsPCycUweW8Kjz2+ktilKVV2YB369iluumsA1l4zqDIW9GmtORiciIiIiInKWygt4KMn35WzfH8C4\nEQXcd8/RhV+een0b/+/JtTS39b7wi4KfiIiIiIhIH/m8rpzv+/N7jy/8snlXPfc/soJNO+t6dS8t\n9RQRERERETmBNVYNi1fupaqujYqSIPNnju522WjHvr+GlijReN8LsnSYObWCcSMKeOT5jew62ExL\nOMFPn1zLNTNGcctVE3C7Th42NeMnIiIiIiLSgzVWDY+/tJlDta3Yts2h2lYef2kza6yabq/v2PeX\ny35/kCn88g93XswNc8bQsaL09dX7+OFvVnGo9uT9CBX8REREREREerB45d5ujy/p4XiHzn5/ORyL\n0+ngpivG83cfn05RnheA/TWtfP+xlazcVHXC9yr4iYiIiIiI9KCqrvvZtKr6k8+yBXxuSgv9OB25\njH8waXQRX79nFhdOKgMgkUzzv29uP+F7FPxERERERER6UFES7P54cffHj+VxOykr9Ge1D683gn43\nn7nlfD5+nak9fiIiIiIiIn0xf+bobo/P6+F4d5zOTNGXgDe3tTUNw+CKi0byT3ddwnnjS054rYKf\niIiIiIhID6ab5SxaMIXK0hAOh0FlaYhFC6b0uhm8YRgU5fsoCHpyPsbK0hB3Xj/5hNeonYOIiIiI\niMgJTDfLex30ehIKeHC5HDQ0x0jbdk7umQ3N+ImIiIiIiAwgn8dFWZE/p83eT0bBT0REREREZIC5\n2vf9+TzOAXmegp+IiIiIiMhp0NHsPS+Q+31/xz2r358gIiIiIiIiPcoPejLN3nPb7u8oCn4iIiIi\nIiKnWcDnpqwfmr13UPATEREREREZBNwuJ2VFATyu3O/7U/ATEREREREZJJwOg9JCHwFfbjvvKfiJ\niIiIiIgMIoZhUJTnozDkJVcLPxX8REREREREBqGg301JoR9HDqq+KPiJiIiIiIgMUl63k7IiP+4+\nNntX8BMRERERERnEXE4HpX1s9q7gJyIiIiIiMsh1NHsP+d2n9v4cj0dERERERET6SUHIm2n23sv3\nKfiJiIiIiIicQQI+N6W9bPau4CciIiIiInKG8bidlBX6cbuyi3QKfiIiIiIiImcgp9NBWaEfv/fk\nzd4V/ERERERERM5QhmFQnO8j5Dtx0RcFPxERERERkTOc33fiWT8FPxERERERkSFOwU9ERERERGSI\nU/ATEREREREZ4hT8REREREREhjgFPxERERERkSFOwU9ERERERGSIU/ATEREREREZ4hT8RERERERE\nhjgFPxERERERkSFOwU9ERERERGSIU/ATEREREREZ4hT8REREREREhjgFPxERERERkSFOwU9ERERE\nRGSIU/ATEREREREZ4hT8REREREREhjgFPxERERERkSFOwU9ERERERGSIU/ATEREREREZ4hT8RERE\nREREhjgFPxERERERkSHOdboHkCNOgKqqqtM9DhERERERkQHXJQs5uzs/VILfcIA777zzdI9DRETk\n/7d35/F2jfcexz+RqilKJOYKGvzwCjFWorhJiSHaRqjS28GhhtYQQ4xXRUwtjaHiDtVLpG4QQpAg\nhltNE0KI1pDih1y5qkKKJqQaQ6R//J4VKztrD+c42Xs7vu/X67xOztprPeu3n2etlfXbz7OeLSIi\n0kjrA7NKF3aUxO9xYHdgDrCowbGIiIiIiIjUW2ci6Xu86MVOixcvrm84IiIiIiIiUlea3EVERERE\nRKSDU+InIiIiIiLSwSnxExERERER6eCU+ImIiIiIiHRwHWVWz7oxswOA6939S2Ve7wRcB8x090vr\nGpyUVandzOz7wGnAYuA9YIi7z6hziFKgSrsdD/yEaLdZwFHuPrfOIUqBatfJWteR+qpyvl0GHAy8\nnRa5ux9Sz/ikWJV22wa4CliDmPX8GHd/os4hSoFy7WZmPwROyS1aA/gy8GV3f6OOIUqBKufbYOA8\n4GPgb8CR7r7MVyo0knr8WsHMNgcupUy9mdlWwG+B79QzLqmsUruZmQEjgH3dfTvgQmB8fSOUIlXa\nbUfgVGBXd+8FvAhcUN8IpUi162St60h91dAmuwKHuvt26UdJXxOocp1cFbgf+IW7b09cI2+ob4RS\npFK7ufv12XkG7Ay8DhyvpK/xqpxvqwBjgANT200ARtY3wur0n26N0gV0DEt/ClPqOKK375a6BCVV\n1dBu7xOfyMxJf88A1jOzL9YjPilWrd3SJ9abu/t8M1sZ2BB4q44hSoFarpM1Xkuljqq1iZmtBGwP\nnGpmT5nZbWbWo54xyrJqOJf2Bma5+z3p7wnog+mGa+U18AxgrrtfvXyjkmpqaLfOQCeihxagC7Cw\nDqG1ioZ61u7q9PN0uRXc/XgAM9uzXkFJVRXbzd1nA7NhyTDdy4EJ7v5BneKTYrWcbx+mIRfXEAn8\nsDrFJuVVbbca15H6qtYmGwAPAmcBLxC97Xea2Q7uri8Dbpxq7bYF8LqZXQv0BuYBp9cpNimvpmug\nmXUHhgI71CMoqara/eQCM/sxMM3M3iISwa/VMb6aqMevBmZ2LPCRu49qdCxSu9a0m5mtRvTUbgYc\nubxjk/Ja027ufoe7dweGA/eZma5pDVJLu+la2nxqaRN3f9ndB3pYTAx16glsUqcwpUSN59KKwEDg\n1+6+E/Gs3z2pB1caoJXXwKOBO9395eUcllRR4/9v2xAfQG/t7hsAFwG3pU6FpqGbpNq0ADub2ZPA\nPcAqZvakmW3Q2LCkihZqaLc0ZGka8eB7f3efV/dIJa+FKu1mZpuZ2W65bUYBGwNd6xqp5LVQ/Xyr\nZR2prxaqn2/bmtkPSrbrBHxYvzClRAvVz6XXgOfdfTqAu99J9EJ8pd7ByhIt1H4NPIR4fEgar4Xq\n7bYP8HBuMpf/AHoB3eoaaRWdFi/WKI3WMLNNiBk7u1RYZzSa1bOplGs3M1sLeAIY7e7nNSI2Ka9C\nu+0O3ARs5+5vplnQhrp77waEKSVqvE5WXUfqq8L51guYCuzg7i+nT7+/5+5NN4zp86hCu60HPAsM\ncPcnzGwP4Fagh7s33bNHnzeVroFm1hV4FVjT3fUBSxOpcL59nfgQehd3f8PMDgIucffNGhBmWerx\n+xTMbKeU/ctnSEm7/QToAQxOn95kP031CY0s3W7uPpUYRjE5LTsUOKCR8UkxXSc/m0rOt5nACcBE\nM3sOGAx8t5HxSbGSdnuduC7+p5nNBK4gZhxU0tdkCq6TmwFzlPQ1t5Lz7UFilvjJZvYUcDwwqJHx\nFVGPn4iIiIiISAenHj8REREREZEOTomfiIiIiIhIB6fET0REREREpINT4iciIiIiItLBKfETEVkO\nmu1LW5uB6qTjaNa2bNa4RESagRI/EZF2ZmaDgF/l/h5uZgsaGFLNzGy2mf17K9ZvMbPFZta9wjpr\nmtkNwA71jk+WZmYDzOwlM1toZle1sYxhwLHtHNqnUnSMpePy1AaGJSLSVJT4iYi0v5OBDRsdRBsN\nBi5t5zK3A/4VUG9M410M/APYD7iyjWWcB6zSbhG1j6JjrC9wQ2PCERFpPl9odAAiItI83P2PjY5B\nlqu1gHvc/XeNDmR5c/dHGx2DiEgz0Re4i4i0IzObDPxLbtGmQAtwKvAj4HxgY2AmMMTdp+W23RH4\nBdFT8XdgLHCGu79XsJ+1gL8CP3L30WnZAcDtadmotOygVE53d59vZgOAC4FtgbeAUcB57r4orT8b\nuMvdj09/9wauAHYB3gCGAcOBMe4+3MxagOuAQ4B/A7YEZgFnufsEM+sH5JOM37h7Syp7CHAC0AN4\nCTjf3W/Ovcf1gKuAvYEFwFmp/pbEV1AvnYAhwJHA5sCHwKPAKe7+jJkdluLdyN3/kttuBPAdYBN3\nX1xjPY0F+gG9gWHuPsLM9kn1sAOwIvB8el/jc/vqD1wCbAP8H3AKcDdwZK4tNyN6XvcEFgETgZPd\n/c2i95226QKcC3wbWA94Bvipu99vZpsAL5dssqm7zy4o5zDgdKAn8CYwjmjPhWaWv2n4f3ffpFqd\npzInAy8Qx/4ewDXufkLBvmfTynotd4ylWE9z90vNbDjwDeAyoseyR6qfE0vOwYNTHfZMr18E3AH0\nd/fJZrYa0VO6P7Am8BxwYb59RUSalYZ6ioi0r2OBPwIPEwncnLR8VeIm8lzgYGA1YLyZfQHAzLYG\npgCLiQTkDCKZuqVoJ+7+NvA48PXc4n7p9265ZfsA01LStycwiUgABgMjgKHAyKJ9mNm6xA31KsCh\nRLIyEtioYPWR6WcQMA+42czWAf4AHJfWORy4IJV9LnETPhb4JvAAcFO68cbMOgP3ATsBR6c4z6P6\nENqhKc5r0ns/AdgaGJ1evx14HzioZLuDgbEp6au1noYCd6ZtJ5jZV4F7iKR+ENF+7wE3mtna6X1t\nk8p+AzgwxXUL0DkrNNX7Q0SS9EPgx8SxdL+ZfbHoTZvZCsC9RB1fnMp+BbgnJU1zUhmvA7ey9LGZ\nL2cPIsm9MdXfRWn/56ZV+qbfV6W6yeqhUp1nDicStkHA9UXvI1dea+q18BgrsAXxwcFwov1XAcbl\nzsF9gZuJ8+oA4H+Bm0rKuJI454YAA4FnUxlbVXg/IiJNQUM9RUTakbs/a2bvAAuyoWZmBvHs0fdz\ny1YEbiNukJ8GziFuyge6+wdpnReBKWa2h7tPKdjdJKKXJdOPSDp3zy0bwCcTzVwIPOruh6a/7zWz\nt4HRZjaioPdnCPEB4X7uPi/F9CaROJQ6yd3HpnX+CjwB9Em9fs+mdWa6+ywzWxM4E7jE3c9Jr91v\nZqsTScs4okdlW6Bvrs5eSOVWshFwgbtnz6/93sy6ApebWRd3f8fM7iaSipGp3D5EkpXd5NdaT8+6\n+8+zHZvZ4cB4dz8ut+wVIjHZBbgrve9XgcHu/hEwycw+ZunnKk8CVgYGZD18ZjYdeJFIwIuSpv2B\nrwH7uvt9adkkM3sE+Jm77wg8ambvA29UGAa5K9HbfKm7v5/q7wOiFw93fzQdz6/khgVXq/NsYqN3\niV7Lj8vsO9OqenX3u0qPsTLlrg7s5e6PpTI6Ewlmb+K4OgeY4u6Hp/XvS8dkvnd5N+ABdx+XyniY\nSOJ1PyUiTU8XKhGR+lgEPJb7e3b6vWb63Z8YUvZx1gMBPAK8Qwz3K0r87gWGm9nmxHDEbYHvET0h\n6wJrAJsQvT6rAl8Fzs6Vn5WxQtr/dSXl9wMmZ0lfcgfwUUEs03L/Ln1vpfoQic3dJbFMAo4ws02J\nJOZv+QTF3f+QhgKW5e4nAqSeoC3TzzfTyysRQ0ZvBG41sw3c/TWih/V5d3+ylfXkJfu+DrguDQfc\niuhhynpkV0q/+wHjUtKXGcfSiV9/ou3n5WL4M9G7tCfFid8ewLu5pC8zFrjCzFZ393cLtiv1ENAF\neMrMbiGS1VHuXva5kBrrHOClGpI+aFu91uIjYEbu71fT79XMbGXiuBxass04lk78pgJHmdn6RN3c\n5e6l24iINCUN9RQRqY+FJTe92b+z63A34BiiZyX/8yVg/TJlPk4kfP2JG/85xI3q34lev72BV9Nz\nVl3Tvn5eUv7cVFbRProTzxEukZ5xK3rOLP8cYul7K9Ut/Z5WEsu4XCxdy+zn9TJlAmBmW5rZVOJ9\nZUMfP0gvZzM+3k0k1Ael59O+TSSD0Lp6mpv7N2a2mpmNIYa6PkI8k7Zyyb6XqVOixyivG7Avyx4L\n21D+WOhaUE5Wdieit6sqd3+IGE45h3imcjowKw0XLVRjnUNJfVXQlnqtxfsVzsGs3au1zRBiKGkv\n4Grgz2Y20Sp8nYmISLNQ4ici0hzmE89W7Vzw87OiDdJN7P18kvhNTT1J04jEbwDRiwaR6EAMYyza\nx+iCXfwFWDu/ID1L1q1g3daYn34PLhPLM0RCu07BtmX3nWKbSEz+sQ2wurvvCkzIr5eGMN5OPOfV\nhxiqmA3zbEs9ZbKJaAYCXdy9F8u23TJ1WvD3fKLdiva/zIQoydvAugXL18u9XhN3n+ju/Ykk9btE\nUn+zmS3Tu1ZrnX9KtdTrpzWXSK4rto27/8Pdz3X3rxA9m8OI86zcc4UiIk1DiZ+ISPtb1IZtHiJu\nJJ9w9xnuPoMY3ncx0btQziRi+ODufDIcdAoxJLAfMSkGaZjfU0DPrPy0jw+I3q2iCVumAv3M7Eu5\nZfsRN/mtUVof04mb7HVKYulF3Eh3IiaVWcPMlkxeY/FwWc8K+1kb2Az4tbvPzPXu7Jt+53uHbiSG\nkx4BzHD3l6DN9ZTpC9zr7g+k5LJo31OB/VPClBlUUk52LDyT2/9MYlKS3Sj2ELB6Qc/cIcQxtbBC\n3EuY2XAzexTA3een5zZHEMOGs+Mg32vWmjpvq1rqtS3n3BKpJ/sR4FslLy1pGzPrbGYzzeyktI27\n+0Vpux6fZv8iIvWgZ/xERNrfPGC7NM389Bq3uYDoqbvFzEYRQ9nOIRKNSt+tdx/wG6JnJ5uUYkoq\n7wNiZsLMMOAOM5tP9Hh1J3q2PiZ62UqNJHqY7jazS4ib/KynpZZntTLZM4L7m9kCd3/ezEYCl6VJ\nQB4jvoD7IuDONAHLA+l93GBmpxPDVy/kkyGEReYSM1meZGZziWe6DiOm8YeYWTXzIDGU9HDgtJJy\nWltPmceBb6WvQ3iFeA4tKzvb98XAk8BtZnY18bxa1luU1enlxGyek8zsSiJJHkokQD8ts++7iWNt\njJmdnfZ/ODGpTGkyU8nvgGFm9t/E84FdiaGVD7l7NgxyHrBbGt75GLXXeVvVUq/LHGNt2M/5wAPp\nvY8jeoOzHtaP3X1RmmTnXDNbSMxQ2of40OWYNuxPRKSu1OMnItL+LicmnbgX2L6WDdz9CeKGdm1i\nts9riWGB/Tz3fXMF280lZjd8G/hTWjwdWEgM/VyQW3cC0YOxEzEU75dEb0V/L/iuQHd/ixjGtgIx\nk+c5wMnp5QWl61fwJ+B/iGfGRqRlpxMJz1FEPZ2Y4mlJ+15MJCz3Egnor4hhlk+V20na5sAU283E\nJCyrAnulVfrm1l1EfI1Cp7RuvpxW1VPOUOJrKX4JjCd6XQ8kvr+ubyr7OWLik02JGSWPpqRO3f0V\nomfvPWAMkYCtQMxI+WSZ976I6AUbTyTQ44kPDQa6+10VYi4t5/fE8M7svV9NJHf5r78YTgwvnkR8\nDUVNdf4pVK1Xio+xVnH33wI/IIZNTySGlp6ZXs6O9yFpP2cTH7ocAQx192vbsk8RkXrSF7iLiEgh\nM+sLrJpuiLNlWxCzLg5KCZK0gpntRcy+OT23bG8iiejt7k83LLjPOTM7gJh5dGZu2dHAfwHdSma3\nFRH5zNFQTxERKacnMMrMziKG261L9HS8QEwqI63XBzjNzE4lEuiNiSGGU5T0Ndw3gH3M7Ezi+dqt\niKHNY5T0iUhHoMRPREQKufuYNE39McQzbu8SCd/ptU4WIsu4mBgGfCawITFE93ZiiKI01klE+1xM\nzCj7GtHbd34jgxIRaS8a6ikiIiIiItLBaXIXERERERGRDk6Jn4iIiIiISAenxE9ERERERKSDU+In\nIiIiIiLSwSnxExERERER6eCU+ImIiIiIiHRw/wTAolno+Z8eugAAAABJRU5ErkJggg==\n", 2394 | "text/plain": [ 2395 | "" 2396 | ] 2397 | }, 2398 | "metadata": {}, 2399 | "output_type": "display_data" 2400 | } 2401 | ], 2402 | "source": [ 2403 | "# First, let's take a look at the relationship between the average star rating of the movie and the standard deviation of the star rating\n", 2404 | "\n", 2405 | "was = np.array(df['wa_star'])\n", 2406 | "wa_std = np.array(df['wa_star_std'])\n", 2407 | "\n", 2408 | "sns.regplot(was,wa_std,order=2)\n", 2409 | "plt.xlabel('the weighted average of star ratings',size=16)\n", 2410 | "plt.ylabel('the standard deviation of star rating',size=16)\n", 2411 | "plt.title(' relationship between wa_star and wa_star_std',size=20)\n", 2412 | "plt.text(4.45,0.85,r'$y=-0.491x^2+3.975x-7.274,\\ R^2=0.741$',size=16)" 2413 | ] 2414 | }, 2415 | { 2416 | "cell_type": "code", 2417 | "execution_count": 170, 2418 | "metadata": {}, 2419 | "outputs": [ 2420 | { 2421 | "name": "stdout", 2422 | "output_type": "stream", 2423 | "text": [ 2424 | " OLS Regression Results \n", 2425 | "==============================================================================\n", 2426 | "Dep. Variable: wa_star_std R-squared: 0.741\n", 2427 | "Model: OLS Adj. R-squared: 0.739\n", 2428 | "Method: Least Squares F-statistic: 353.4\n", 2429 | "Date: Tue, 19 Sep 2017 Prob (F-statistic): 3.42e-73\n", 2430 | "Time: 17:01:24 Log-Likelihood: 520.03\n", 2431 | "No. Observations: 250 AIC: -1034.\n", 2432 | "Df Residuals: 247 BIC: -1023.\n", 2433 | "Df Model: 2 \n", 2434 | "Covariance Type: nonrobust \n", 2435 | "==============================================================================\n", 2436 | " coef std err t P>|t| [0.025 0.975]\n", 2437 | "------------------------------------------------------------------------------\n", 2438 | "cosnt -7.2736 1.575 -4.617 0.000 -10.376 -4.171\n", 2439 | "was 3.9747 0.713 5.574 0.000 2.570 5.379\n", 2440 | "was_sq -0.4910 0.081 -6.088 0.000 -0.650 -0.332\n", 2441 | "==============================================================================\n", 2442 | "Omnibus: 32.946 Durbin-Watson: 1.948\n", 2443 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.397\n", 2444 | "Skew: 0.817 Prob(JB): 5.10e-11\n", 2445 | "Kurtosis: 4.371 Cond. No. 1.78e+04\n", 2446 | "==============================================================================\n", 2447 | "\n", 2448 | "Warnings:\n", 2449 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", 2450 | "[2] The condition number is large, 1.78e+04. This might indicate that there are\n", 2451 | "strong multicollinearity or other numerical problems.\n" 2452 | ] 2453 | } 2454 | ], 2455 | "source": [ 2456 | "def reg(y,yname,xname,*args):\n", 2457 | " import statsmodels.api as sm\n", 2458 | " x = np.vstack((args)).T\n", 2459 | " mat_x = sm.add_constant(x)\n", 2460 | " res = sm.OLS(y,mat_x).fit()\n", 2461 | " print(res.summary(yname=yname,xname=['cosnt']+xname))\n", 2462 | "\n", 2463 | "# was_sq is the squre of the weighted average star rating\n", 2464 | "\n", 2465 | "was_sq = was**2\n", 2466 | "reg(wa_std,'wa_star_std',['was','was_sq'],was,was_sq)" 2467 | ] 2468 | }, 2469 | { 2470 | "cell_type": "code", 2471 | "execution_count": null, 2472 | "metadata": { 2473 | "collapsed": true 2474 | }, 2475 | "outputs": [], 2476 | "source": [] 2477 | } 2478 | ], 2479 | "metadata": { 2480 | "anaconda-cloud": {}, 2481 | "kernelspec": { 2482 | "display_name": "Python 3", 2483 | "language": "python", 2484 | "name": "python3" 2485 | }, 2486 | "language_info": { 2487 | "codemirror_mode": { 2488 | "name": "ipython", 2489 | "version": 3 2490 | }, 2491 | "file_extension": ".py", 2492 | "mimetype": "text/x-python", 2493 | "name": "python", 2494 | "nbconvert_exporter": "python", 2495 | "pygments_lexer": "ipython3", 2496 | "version": "3.6.1" 2497 | } 2498 | }, 2499 | "nbformat": 4, 2500 | "nbformat_minor": 1 2501 | } 2502 | --------------------------------------------------------------------------------