├── .gitignore
├── LICENSE
├── MAIN_StaticOptimization.m
├── README.md
├── TestData
├── EMG_allMuscles.sto
├── Geometry
│ ├── capitate_lvs.vtp
│ ├── capitate_rvs.vtp
│ ├── hamate_lvs.vtp
│ ├── hamate_rvs.vtp
│ ├── hat_jaw.vtp
│ ├── hat_ribs_scap.vtp
│ ├── hat_skull.vtp
│ ├── hat_spine.vtp
│ ├── humerus_lv.vtp
│ ├── humerus_rv.vtp
│ ├── index_distal_lvs.vtp
│ ├── index_distal_rvs.vtp
│ ├── index_medial_lvs.vtp
│ ├── index_medial_rvs.vtp
│ ├── index_proximal_lvs.vtp
│ ├── index_proximal_rvs.vtp
│ ├── l_bofoot.vtp
│ ├── l_femur.vtp
│ ├── l_fibula.vtp
│ ├── l_foot.vtp
│ ├── l_patella.vtp
│ ├── l_pelvis.vtp
│ ├── l_talus.vtp
│ ├── l_tibia.vtp
│ ├── l_tibia_SOMEINVERTEDFACES.vtp
│ ├── little_distal_lvs.vtp
│ ├── little_distal_rvs.vtp
│ ├── little_medial_lvs.vtp
│ ├── little_medial_rvs.vtp
│ ├── little_proximal_lvs.vtp
│ ├── little_proximal_rvs.vtp
│ ├── lunate_lvs.vtp
│ ├── lunate_rvs.vtp
│ ├── metacarpal1_lvs.vtp
│ ├── metacarpal1_rvs.vtp
│ ├── metacarpal2_lvs.vtp
│ ├── metacarpal2_rvs.vtp
│ ├── metacarpal3_lvs.vtp
│ ├── metacarpal3_rvs.vtp
│ ├── metacarpal4_lvs.vtp
│ ├── metacarpal4_rvs.vtp
│ ├── metacarpal5_lvs.vtp
│ ├── metacarpal5_rvs.vtp
│ ├── middle_distal_lvs.vtp
│ ├── middle_distal_rvs.vtp
│ ├── middle_medial_lvs.vtp
│ ├── middle_medial_rvs.vtp
│ ├── middle_proximal_lvs.vtp
│ ├── middle_proximal_rvs.vtp
│ ├── pisiform_lvs.vtp
│ ├── pisiform_rvs.vtp
│ ├── r_bofoot.vtp
│ ├── r_femur.vtp
│ ├── r_fibula.vtp
│ ├── r_foot.vtp
│ ├── r_patella.vtp
│ ├── r_pelvis.vtp
│ ├── r_talus.vtp
│ ├── r_tibia.vtp
│ ├── r_tibia_SOMEINVERTEDFACES.vtp
│ ├── radius_lv.vtp
│ ├── radius_rv.vtp
│ ├── ring_distal_lvs.vtp
│ ├── ring_distal_rvs.vtp
│ ├── ring_medial_lvs.vtp
│ ├── ring_medial_rvs.vtp
│ ├── ring_proximal_lvs.vtp
│ ├── ring_proximal_rvs.vtp
│ ├── sacrum.vtp
│ ├── scaphoid_lvs.vtp
│ ├── scaphoid_rvs.vtp
│ ├── thumb_distal_lvs.vtp
│ ├── thumb_distal_rvs.vtp
│ ├── thumb_proximal_lvs.vtp
│ ├── thumb_proximal_rvs.vtp
│ ├── trapezium_lvs.vtp
│ ├── trapezium_rvs.vtp
│ ├── trapezoid_lvs.vtp
│ ├── trapezoid_rvs.vtp
│ ├── triquetrum_lvs.vtp
│ ├── triquetrum_rvs.vtp
│ ├── ulna_lv.vtp
│ └── ulna_rv.vtp
├── Rajagopal_scaled_Sub1_gasAvoid.osim
├── activationExampleOutput.jpg
├── results_SO
│ ├── API_staticOpt_settings.m
│ ├── JrxnSetup.xml
│ ├── results_JointReaction_JointRxn_ReactionLoads.sto
│ ├── results_forces.sto
│ ├── results_states.sto
│ └── staticOptAPI_log.txt
├── results_id.sto
├── results_ik.sto
└── walking_baseline1_forces.mot
└── Utilities
├── CostFunction.m
├── DynamicsConstraint_accelerationMatching.m
├── DynamicsConstraint_momentMatching.m
├── StaticOptimizationAPIVectorized.asv
├── StaticOptimizationAPIVectorized.m
└── getMuscleParams.m
/.gitignore:
--------------------------------------------------------------------------------
1 | *.asv
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/MAIN_StaticOptimization.m:
--------------------------------------------------------------------------------
1 | % Custom static optimization code. Author: Scott Uhlrich, Stanford
2 | % University, 2020. Please cite:
3 | % Uhlrich, S.D., Jackson, R.W., Seth, A., Kolesar, J.A., Delp S.L.
4 | % Muscle coordination retraining inspired by musculoskeletal simulations
5 | % reduces knee contact force. Sci Rep 12, 9842 (2022).
6 | % https://doi.org/10.1038/s41598-022-13386-9
7 |
8 | function [] = MAIN_StaticOptimizationAPI()
9 | % This main loop allows you to run StaticOptimizationAPI.m
10 |
11 | clear all; close all; format compact; clc; fclose all;
12 |
13 | % % Path to the data and utility functions. No need to change this, unless
14 | % you rearrange the folder structure, differently from github.
15 | baseDir = [pwd '\TestData\'] ; % Base Directory to base results directory.
16 | addpath(genpath('Utilities'))
17 |
18 | % % % Fill Path names
19 | INPUTS.trialname = 'walking_baseline1' ;
20 | INPUTS.forceFilePath = [baseDir '\walking_baseline1_forces.mot'] ; % Full path of forces file
21 | INPUTS.ikFilePath = [baseDir '\results_ik.sto'] ; % Full path of IK file
22 | INPUTS.idFilePath = [baseDir '\results_id.sto'] ; % Full path of ID file
23 | INPUTS.emgFilePath = [baseDir '\EMG_allMuscles.sto'] ; % location of *.mot file with normalized EMG (if using EMG)
24 | INPUTS.outputFilePath = [baseDir '\results_SO\'] ; % full path for SO & JRA outputs
25 | INPUTS.modelDir = [baseDir] ; % full path to folder where model is
26 | INPUTS.modelName = 'Rajagopal_scaled_Sub1_gasAvoid.osim' ; % model file name
27 | geometryPath = [baseDir '\Geometry'] ; % full path to geometry folder for Model. If pointing to Geometry folder in OpenSim install, leave this field blank: []
28 |
29 | % % % Set time for simulation % % %
30 | INPUTS.startTime = 10.9 ;
31 | INPUTS.endTime = 11.7 ;
32 |
33 | INPUTS.leg = 'l' ; % If deleteContralateralMuscles flag is true, actuates this leg
34 | % with muscles and contralateral leg with coordinate actuators
35 | % only. If deleteContralateralMuscles flag is false,
36 | % this input doesn't matter.
37 |
38 | % Flags
39 |
40 | % % Load up the INPUTS structure for static optimization parameters that are constant across all
41 | % trials and subjects
42 | INPUTS.filtFreq = 6 ; % Lowpass filter frequency for IK coordinates. -1 if no filtering
43 |
44 | % Flags
45 | INPUTS.appendActuators = true ; % Append reserve actuators at all coordinates?
46 | INPUTS.appendForces = true ; % True if you want to append grfs?
47 | INPUTS.deleteContralateralMuscles = false ; % replace muscles on contralateral leg with powerful reserve actuators (makes SO faster)
48 | INPUTS.useEmgRatios = false ; % true if you want to track EMG ratios defined in INPUTS.emgRatioPairs
49 | INPUTS.useEqualMuscles = false ; % true if you want to constrain INPUTS.equalMuscles muscle pairs to be equivalent
50 | INPUTS.useEmgConstraints = false ; % true if you want to constrain muscle activations to follow EMG input INPUTS.emgConstrainedMuscles
51 | INPUTS.changePassiveForce = false ; % true if want to turn passive forces off
52 | INPUTS.ignoreTendonCompliance = false ; % true if making all tendons rigid
53 |
54 |
55 | % Degrees of Freedom to ignore (patellar coupler constraints, etc.) during moment matching constraint
56 | INPUTS.fixedDOFs = {'knee_angle_r_beta','knee_angle_l_beta'} ;
57 |
58 | % EMG file
59 | INPUTS.emgRatioPairs = {} ; % nPairs x 2 cell for muscle names whos ratios you want to constrain with EMG. Can leave off '_[leg]' if you want it to apply to both
60 | INPUTS.equalMuscles = {} ; % nPairs x 2 cell of muscles for whom you want equal activations
61 | INPUTS.emgConstrainedMuscles = {} ; % nMuscles x 1 cell of muscles for which you want activation to track EMG. Can leave off '_[leg]' if you want it to apply to both
62 |
63 | INPUTS.emgSumThreshold = 0 ; % If sum of emg pairs is less than this it won't show up in the constraint or cost (wherever you put it)
64 |
65 | % Weights for reserves, muscles. The weight is in
66 | % the cost function as sum(w*(whatever^2)), so the weight is not squared.
67 | INPUTS.reserveActuatorWeights = 1 ;
68 | INPUTS.muscleWeights = 1 ;
69 | INPUTS.ipsilateralActuatorStrength = 1 ;
70 | INPUTS.contralateralActuatorStrength = 100 ;
71 | INPUTS.weightsToOverride = {} ; % Overrides the general actuator weight for muscles or reserves.
72 | % Can be a partial name. Eg. 'hip_rotation' will change hip_rotation_r and hip_rotation_l
73 | % or 'gastroc' to override the weight for the right and left gastroc muscles
74 | INPUTS.overrideWeights = [] ; % A column vector the same size as weights
75 | INPUTS.prescribedActuationCoords = {} ; % A column cell with coordinates (exact name) that will be prescribed from ID moments eg. 'knee_adduction_r'
76 | % The muscles will not aim to balance the moment at this DOF,
77 | % but their contribution to the moment will be computed at the
78 | % end of the optimization step, and the remaining moment generated by
79 | % the reserve actuator
80 |
81 |
82 | % External Forces Definitions
83 | INPUTS.externalForceName = {'GRF_r','GRF_l'} ; % nForces x 1 cell
84 | INPUTS.applied_to_body = {'calcn_r','calcn_l'} ;
85 | INPUTS.force_expressed_in_body = {'ground','ground'} ;
86 | INPUTS.force_identifier = {'ground_force_v','1_ground_force_v'} ;
87 | INPUTS.point_expressed_in_body = {'ground','ground'} ;
88 | INPUTS.point_identifier = {'ground_force_p','1_ground_force_p'} ;
89 |
90 | % Joint Reaction Fields
91 | INPUTS.jRxn.inFrame = 'child' ;
92 | INPUTS.jRxn.onBody = 'child' ;
93 | INPUTS.jRxn.jointNames = ['all'] ;
94 |
95 | INPUTS.passiveForceStrains = [3 4] ; % Default = [0,.7] this is strain at zero force and strain at 1 norm force in Millard model
96 | % This only matters if ignorePassiveForces = true
97 |
98 | % % % % % END OF USER INPUTS % % % % %% % % % %% % % % %% % % % %% % % % %
99 |
100 |
101 | if ~isempty(INPUTS.overrideWeights)
102 | disp('YOU ARE OVERRIDING SOME ACTUATOR WEIGHTS');
103 | end
104 |
105 | if ~isempty(geometryPath)
106 | org.opensim.modeling.ModelVisualizer.addDirToGeometrySearchPaths(geometryPath)
107 | end
108 |
109 | % Run it!
110 | StaticOptimizationAPIVectorized(INPUTS) ; % Run StaticOptimizationAPI
111 |
112 | % Save this script in the folder to reference settings
113 | FileNameAndLocation=[mfilename('fullpath')];
114 | newbackup=[INPUTS.outputFilePath 'API_staticOpt_settings.m'];
115 | currentfile=strcat(FileNameAndLocation, '.m');
116 | copyfile(currentfile,newbackup);
117 |
118 | end % Main
119 |
120 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Static Optimization in Matlab
2 | This code solves the muscle redundancy problem using static optimization in Matlab. Cost and constraint functions can be defined in Matlab using the OpenSim API. For example, you can track muscle activations from electromyography. Details about the implementation can be found in Uhlrich et al., 2021.
3 |
4 | ## Publications
5 | Please cite this paper if you use this code in your work:
6 |
7 | Uhlrich SD, Jackson RW, Seth A, Kolesar JA, Delp SL, 2022. Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force. *Scientific Reports* __12__, 9842. https://doi.org/10.1038/s41598-022-13386-9.
8 |
9 | ## Running demo
10 | Install the latest version of OpenSim (this code has been tested with OpenSim 4.2 and Matlab R2020b), and follow the instructions to set up OpenSim scripting in Matlab.
11 |
12 | Running the demo requires MATLAB's Optimization Toolbox and the DPS System or Signal Processing Toolbox. Information about acquiring MATLAB toolboxes can be found on the [MathWorks website](https://www.mathworks.com/products/alphabetical.html).
13 |
14 | Clone the repository and use the MAIN_StaticOptimization.m script to run the code to solve for muscle activations for the provided example stance phase of walking. This should take around 50s on a normal desktop computer and produce an interactive plot of muscle activations and reserve actuator controls, shown in Figure 1.
15 |
16 | 
17 | Figure 1: Example interactive Matlab figure showing the resulting muscle activations and actuator controls from a stance phase of walking.
18 |
19 | ## Example data
20 | Data for a 26-year-old healthy male walking on a treadmill are included in the TestData folder. Inverse Kinematics and Inverse Dynamics have already been run. For more data and examples, view the Coordination Retraining Project on SimTK.
21 |
22 | ## Running static optimization with your own data
23 | To run this code using your own data, you must scale a model and run Inverse Kinematics and Inverse Dynamics. Then change the paths in MAIN_StaticOptimization.m and settings to match your data and desired simulation settings.
24 |
25 | ## Functionality
26 | Like the OpenSim static optimization algorithm, this approach solves for muscle activations at each timestep, however there are several differences.
27 | 1. This code has the option to estimate muscle lengths with a compliant tendon (see Uhlrich et al. 2020 for details). When tendon compliance is used, the force-velocity multiplier is set to 1.
28 | 2. This code has the option to include passive muscle forces.
29 | 3. This code allows for the cost and constraint functions to be defined in Matlab. Without changing settings, it minimizes the sum of squared muscle activations, but adding EMG or EMG ratio tracking to the cost or constraint function is also implemented. Changing the weight on individual actuators (muscles or coordinate actuators) is also implemented. Adding quantities that can be computed with a model and state using the OpenSim API (e.g. joint reaction forces) could also be easily added to the cost or constraint functions. For quantities that require changing the state of the model in the cost/constraint function, the 'DynamicsConstraint_momentMatching.m' constraint function must be replaced by the 'DynamicsConstraint_accelerationMatching.m' function in the 'StaticOptimizationAPI_Vectorized.m' function. The "momentMatching" implementation pre-computes all model parameters before the optimization, so does not need to call the OpenSim API when evaluating the cost or constraint functions, increasing computational efficiency. If the model state must be updated to compute the cost or constraint, then the "acceleration matching" technique must be used where the model's joint accelerations are constrained to match the accelerations computed by differentiating the inverse kinematics results.
30 |
--------------------------------------------------------------------------------
/TestData/Geometry/capitate_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.850679 -0.525458 -0.015466
8 | -0.795084 0.254980 0.550296
9 | -0.925442 0.270628 0.265173
10 | -0.957385 -0.195340 -0.212735
11 | -0.786748 -0.539937 0.299158
12 | -0.103721 -0.993953 0.036035
13 | -0.204106 -0.927770 -0.312385
14 | -0.374321 -0.766884 -0.521319
15 | -0.821271 0.539541 0.185499
16 | -0.254865 -0.469416 0.845395
17 | -0.615790 0.441827 0.652374
18 | 0.135474 0.086726 0.986978
19 | -0.939578 0.334432 -0.073133
20 | -0.872961 -0.112735 -0.474583
21 | 0.367093 -0.573977 0.731979
22 | -0.019325 -0.955343 -0.294867
23 | 0.308760 -0.893900 0.324976
24 | -0.495147 -0.758038 -0.424509
25 | -0.676226 -0.286344 -0.678768
26 | -0.364806 -0.517208 -0.774217
27 | -0.708473 0.685778 -0.166655
28 | -0.658253 0.483144 0.577300
29 | -0.951291 0.262146 -0.162253
30 | -0.755394 0.650652 0.077664
31 | -0.131130 0.272086 0.953296
32 | 0.488331 -0.306142 0.817196
33 | 0.247957 -0.193108 0.949329
34 | -0.774129 0.401012 -0.489810
35 | -0.039770 -0.921917 0.385339
36 | -0.222336 -0.734528 -0.641120
37 | -0.339310 -0.920901 -0.191862
38 | -0.626070 0.215179 -0.749489
39 | -0.310900 -0.254044 -0.915862
40 | -0.420070 -0.086330 -0.903376
41 | -0.017282 -0.190023 -0.981628
42 | -0.843011 0.483333 -0.236055
43 | -0.730245 0.426863 -0.533413
44 | -0.789158 0.482735 -0.379731
45 | -0.976620 0.172534 0.128238
46 | -0.440370 0.552290 0.707849
47 | -0.932443 -0.246849 -0.263848
48 | -0.385800 0.502020 0.774037
49 | 0.025627 -0.069445 0.997256
50 | 0.491809 -0.395722 0.775583
51 | 0.397779 -0.406705 0.822413
52 | 0.620143 -0.368548 0.692527
53 | 0.650682 -0.559415 0.513485
54 | 0.143615 -0.952240 0.269468
55 | 0.628274 -0.776538 -0.047544
56 | 0.650046 -0.371545 -0.662868
57 | -0.098080 -0.250140 -0.963229
58 | -0.048434 -0.095860 -0.994216
59 | -0.687957 0.261092 -0.677160
60 | 0.770810 0.004089 -0.637052
61 | 0.444365 -0.154277 -0.882462
62 | -0.905221 -0.116897 -0.408546
63 | -0.866787 -0.130919 -0.481187
64 | -0.987206 0.077368 -0.139421
65 | -0.840747 0.485030 0.240604
66 | -0.931736 0.178444 -0.316268
67 | -0.048727 0.692554 0.719719
68 | -0.285891 0.898515 0.333071
69 | -0.112598 0.179653 0.977265
70 | 0.402918 0.296681 0.865816
71 | 0.638689 -0.275261 0.718546
72 | 0.817194 -0.254137 0.517310
73 | 0.763002 -0.474080 0.439404
74 | 0.964964 -0.247507 0.087090
75 | 0.988855 -0.109437 0.100941
76 | 0.946904 -0.311703 -0.078833
77 | 0.178592 -0.025083 -0.983603
78 | 0.532393 -0.218947 -0.817692
79 | -0.361718 0.303742 -0.881420
80 | -0.549232 0.341252 -0.762818
81 | -0.822303 0.218524 -0.525419
82 | -0.839916 -0.035947 -0.541524
83 | -0.755592 0.055711 -0.652670
84 | -0.374929 0.922588 -0.090881
85 | -0.368155 0.613703 -0.698448
86 | 0.430273 0.813913 0.390398
87 | 0.146747 0.984281 0.098271
88 | 0.918267 0.271851 0.287894
89 | 0.928388 -0.290593 0.231628
90 | 0.969575 0.003742 -0.244765
91 | 0.816323 -0.208968 -0.538469
92 | 0.127301 0.392256 -0.911005
93 | 0.576341 0.248793 -0.778417
94 | -0.494310 0.288851 -0.819892
95 | 0.092853 0.844924 -0.526765
96 | 0.667814 0.656730 -0.350328
97 |
98 |
99 |
100 |
101 | -0.013803 -0.026908 0.003993
102 | -0.011822 -0.023896 0.008425
103 | -0.013661 -0.025863 0.004057
104 | -0.013905 -0.026050 0.002741
105 | -0.012682 -0.027714 0.006819
106 | -0.010398 -0.028567 0.006015
107 | -0.011745 -0.027669 0.002485
108 | -0.011697 -0.026265 -0.000328
109 | -0.012024 -0.022477 0.003478
110 | -0.011910 -0.027010 0.009027
111 | -0.010435 -0.020082 0.007488
112 | -0.009268 -0.022702 0.008323
113 | -0.013424 -0.022140 0.000880
114 | -0.012616 -0.024168 -0.000911
115 | -0.009081 -0.027998 0.007584
116 | -0.005247 -0.027214 0.002928
117 | -0.004244 -0.027459 0.004371
118 | -0.003405 -0.024908 -0.003243
119 | -0.011494 -0.024014 -0.003175
120 | -0.003557 -0.022498 -0.005508
121 | -0.011637 -0.019667 -0.000295
122 | -0.007323 -0.014970 0.006505
123 | -0.006878 -0.014404 0.004275
124 | -0.008640 -0.017907 0.001675
125 | -0.004688 -0.014503 0.006745
126 | -0.001620 -0.024554 0.003862
127 | -0.002948 -0.016417 0.006924
128 | -0.011125 -0.021380 -0.002219
129 | -0.002214 -0.027800 0.002398
130 | 0.000716 -0.029113 -0.006303
131 | 0.000702 -0.029953 -0.004556
132 | -0.010003 -0.021571 -0.004733
133 | -0.002754 -0.020649 -0.006465
134 | -0.005615 -0.019156 -0.006846
135 | 0.000138 -0.027014 -0.007157
136 | -0.006393 -0.015370 -0.000483
137 | -0.006390 -0.015810 -0.001282
138 | -0.003838 -0.016383 -0.004267
139 | -0.007103 -0.013523 0.004834
140 | -0.004837 -0.012741 0.005838
141 | -0.006147 -0.012992 -0.000610
142 | -0.002895 -0.009789 0.005437
143 | 0.000477 -0.013368 0.006868
144 | 0.001478 -0.025646 0.001873
145 | 0.003186 -0.014688 0.005971
146 | 0.003067 -0.016721 0.004963
147 | 0.001377 -0.028923 -0.000399
148 | 0.000486 -0.029865 -0.001249
149 | 0.002655 -0.029199 -0.003518
150 | 0.002639 -0.028099 -0.005935
151 | -0.001701 -0.018797 -0.007322
152 | -0.000225 -0.021341 -0.007428
153 | -0.004373 -0.017152 -0.007763
154 | 0.002701 -0.020423 -0.006324
155 | 0.001681 -0.021416 -0.006890
156 | -0.004951 -0.014096 -0.002447
157 | -0.003800 -0.015528 -0.004281
158 | -0.003356 -0.014774 -0.005632
159 | -0.007375 -0.012289 0.003101
160 | -0.006894 -0.011255 -0.001543
161 | 0.002452 -0.008688 0.006459
162 | -0.000168 -0.007025 0.002638
163 | 0.002393 -0.010394 0.007203
164 | 0.004049 -0.009966 0.007045
165 | 0.005027 -0.012240 0.006566
166 | 0.004406 -0.019733 0.002237
167 | 0.004847 -0.014447 0.004353
168 | 0.005129 -0.016008 0.001241
169 | 0.005578 -0.019518 -0.000184
170 | 0.004435 -0.026331 -0.003310
171 | 0.001265 -0.015036 -0.008488
172 | 0.002095 -0.019074 -0.007308
173 | -0.001663 -0.013427 -0.007558
174 | -0.002683 -0.014074 -0.007181
175 | -0.003250 -0.013934 -0.006653
176 | -0.005424 -0.012075 -0.004458
177 | -0.003336 -0.013121 -0.006533
178 | 0.000162 -0.006194 -0.000696
179 | -0.001251 -0.009225 -0.005493
180 | 0.004049 -0.007243 0.003664
181 | 0.003330 -0.005896 0.000086
182 | 0.006673 -0.010579 0.003715
183 | 0.006642 -0.011715 0.003326
184 | 0.006810 -0.011927 -0.003525
185 | 0.005528 -0.014984 -0.005418
186 | 0.000932 -0.013540 -0.008327
187 | 0.004651 -0.011557 -0.005686
188 | -0.002479 -0.013306 -0.007087
189 | 0.004036 -0.006438 -0.002998
190 | 0.005030 -0.006711 -0.002757
191 |
192 |
193 |
194 |
195 | 0 1 2
196 | 0 2 3
197 | 4 1 0
198 | 5 0 6
199 | 0 5 4
200 | 0 7 6
201 | 0 3 7
202 | 1 8 2
203 | 1 4 9
204 | 8 1 10
205 | 11 1 9
206 | 10 1 11
207 | 12 2 8
208 | 2 12 3
209 | 3 12 13
210 | 13 7 3
211 | 5 9 4
212 | 9 5 14
213 | 15 5 6
214 | 5 15 16
215 | 16 14 5
216 | 7 15 6
217 | 17 15 7
218 | 13 18 7
219 | 18 19 7
220 | 7 19 17
221 | 12 8 20
222 | 21 8 10
223 | 22 8 21
224 | 8 22 23
225 | 20 8 23
226 | 11 9 14
227 | 21 10 11
228 | 24 21 11
229 | 11 14 25
230 | 26 24 11
231 | 25 26 11
232 | 12 20 27
233 | 13 12 27
234 | 18 13 27
235 | 16 25 14
236 | 28 16 15
237 | 15 17 28
238 | 16 28 25
239 | 17 19 29
240 | 17 29 30
241 | 17 30 28
242 | 18 27 31
243 | 18 31 19
244 | 32 19 33
245 | 31 33 19
246 | 34 19 32
247 | 19 34 29
248 | 20 23 35
249 | 20 35 36
250 | 37 27 20
251 | 37 20 36
252 | 21 38 22
253 | 39 38 21
254 | 24 39 21
255 | 22 35 23
256 | 35 22 40
257 | 40 22 38
258 | 39 24 41
259 | 42 41 24
260 | 24 26 42
261 | 25 43 26
262 | 25 28 43
263 | 42 26 44
264 | 26 45 44
265 | 43 45 26
266 | 31 27 37
267 | 46 43 28
268 | 47 46 28
269 | 28 30 47
270 | 29 48 30
271 | 29 49 48
272 | 49 29 34
273 | 30 48 47
274 | 37 33 31
275 | 33 50 32
276 | 51 32 50
277 | 32 51 34
278 | 33 37 52
279 | 52 50 33
280 | 49 34 53
281 | 34 54 53
282 | 34 51 54
283 | 55 35 40
284 | 36 35 55
285 | 37 36 56
286 | 56 36 55
287 | 52 37 57
288 | 56 57 37
289 | 58 40 38
290 | 38 39 58
291 | 39 41 58
292 | 58 59 40
293 | 59 55 40
294 | 60 61 41
295 | 41 61 58
296 | 41 62 60
297 | 62 41 42
298 | 42 63 62
299 | 42 64 63
300 | 44 64 42
301 | 43 46 65
302 | 43 65 45
303 | 45 66 44
304 | 64 44 66
305 | 45 65 67
306 | 66 45 67
307 | 65 46 68
308 | 68 46 69
309 | 46 48 69
310 | 47 48 46
311 | 49 69 48
312 | 53 69 49
313 | 70 50 52
314 | 71 50 70
315 | 51 50 71
316 | 51 71 54
317 | 72 52 73
318 | 74 52 57
319 | 74 73 52
320 | 72 70 52
321 | 53 67 68
322 | 67 53 71
323 | 53 68 69
324 | 54 71 53
325 | 55 59 75
326 | 55 75 56
327 | 56 76 57
328 | 56 75 76
329 | 76 74 57
330 | 58 61 77
331 | 58 77 59
332 | 59 77 78
333 | 75 59 78
334 | 60 79 61
335 | 79 60 63
336 | 63 60 62
337 | 80 77 61
338 | 79 80 61
339 | 81 63 64
340 | 63 81 79
341 | 82 64 66
342 | 81 64 82
343 | 68 67 65
344 | 66 67 82
345 | 67 83 82
346 | 84 67 71
347 | 67 84 83
348 | 70 72 85
349 | 85 86 70
350 | 86 84 70
351 | 70 84 71
352 | 87 72 73
353 | 78 85 72
354 | 78 72 87
355 | 74 87 73
356 | 76 87 74
357 | 75 78 76
358 | 76 78 87
359 | 88 77 80
360 | 88 78 77
361 | 85 78 88
362 | 89 80 79
363 | 79 81 89
364 | 80 89 88
365 | 81 83 89
366 | 83 81 82
367 | 89 83 86
368 | 86 83 84
369 | 89 86 85
370 | 85 88 89
371 |
372 |
373 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486 489 492 495 498 501 504 507 510 513 516 519 522 525 528
374 |
375 |
376 |
377 |
378 |
379 |
--------------------------------------------------------------------------------
/TestData/Geometry/capitate_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.925442 0.270628 -0.265173
8 | -0.795084 0.254980 -0.550296
9 | -0.850679 -0.525458 0.015466
10 | -0.957385 -0.195340 0.212735
11 | -0.821271 0.539541 -0.185499
12 | -0.939578 0.334432 0.073133
13 | -0.254865 -0.469416 -0.845395
14 | -0.786748 -0.539937 -0.299158
15 | -0.615790 0.441827 -0.652374
16 | 0.135474 0.086726 -0.986978
17 | -0.204106 -0.927770 0.312385
18 | -0.103721 -0.993953 -0.036035
19 | -0.374321 -0.766884 0.521319
20 | -0.872961 -0.112735 0.474583
21 | -0.708473 0.685778 0.166655
22 | -0.658253 0.483144 -0.577300
23 | -0.951291 0.262146 0.162253
24 | -0.755394 0.650652 -0.077664
25 | -0.774129 0.401012 0.489810
26 | 0.367093 -0.573977 -0.731979
27 | -0.131130 0.272086 -0.953296
28 | 0.488331 -0.306142 -0.817196
29 | 0.247957 -0.193108 -0.949329
30 | -0.019325 -0.955343 0.294867
31 | 0.308760 -0.893900 -0.324976
32 | -0.495147 -0.758038 0.424509
33 | -0.676226 -0.286344 0.678768
34 | -0.364806 -0.517208 0.774217
35 | -0.843011 0.483333 0.236055
36 | -0.730245 0.426863 0.533413
37 | -0.789158 0.482735 0.379731
38 | -0.976620 0.172534 -0.128238
39 | -0.440370 0.552290 -0.707849
40 | -0.932443 -0.246849 0.263848
41 | -0.626070 0.215179 0.749489
42 | -0.385800 0.502020 -0.774037
43 | 0.025627 -0.069445 -0.997256
44 | -0.039770 -0.921917 -0.385339
45 | 0.491809 -0.395722 -0.775583
46 | 0.397779 -0.406705 -0.822413
47 | 0.620143 -0.368548 -0.692527
48 | -0.222336 -0.734528 0.641120
49 | -0.339310 -0.920901 0.191862
50 | -0.420070 -0.086330 0.903376
51 | -0.310900 -0.254044 0.915862
52 | -0.017282 -0.190023 0.981628
53 | -0.905221 -0.116897 0.408546
54 | -0.866787 -0.130919 0.481187
55 | -0.687957 0.261092 0.677160
56 | -0.987206 0.077368 0.139421
57 | -0.840747 0.485030 -0.240604
58 | -0.931736 0.178444 0.316268
59 | -0.285891 0.898515 -0.333071
60 | -0.048727 0.692554 -0.719719
61 | -0.112598 0.179653 -0.977265
62 | 0.402918 0.296681 -0.865816
63 | 0.638689 -0.275261 -0.718546
64 | 0.650682 -0.559415 -0.513485
65 | 0.143615 -0.952240 -0.269468
66 | 0.817194 -0.254137 -0.517310
67 | 0.763002 -0.474080 -0.439404
68 | 0.964964 -0.247507 -0.087090
69 | 0.628274 -0.776538 0.047544
70 | 0.650046 -0.371545 0.662868
71 | -0.098080 -0.250140 0.963229
72 | -0.048434 -0.095860 0.994216
73 | 0.770810 0.004089 0.637052
74 | 0.444365 -0.154277 0.882462
75 | -0.839916 -0.035947 0.541524
76 | -0.755592 0.055711 0.652670
77 | -0.549232 0.341252 0.762818
78 | -0.361718 0.303742 0.881420
79 | -0.822303 0.218524 0.525419
80 | 0.178592 -0.025083 0.983603
81 | -0.374929 0.922588 0.090881
82 | -0.368155 0.613703 0.698448
83 | 0.430273 0.813913 -0.390398
84 | 0.146747 0.984281 -0.098271
85 | 0.918267 0.271851 -0.287894
86 | 0.928388 -0.290593 -0.231628
87 | 0.988855 -0.109437 -0.100941
88 | 0.946904 -0.311703 0.078833
89 | 0.969575 0.003742 0.244765
90 | 0.532393 -0.218947 0.817692
91 | 0.816323 -0.208968 0.538469
92 | -0.494310 0.288851 0.819892
93 | 0.127301 0.392256 0.911005
94 | 0.576341 0.248793 0.778417
95 | 0.092853 0.844924 0.526765
96 | 0.667814 0.656730 0.350328
97 |
98 |
99 |
100 |
101 | -0.013661 -0.025863 -0.004057
102 | -0.011822 -0.023896 -0.008425
103 | -0.013803 -0.026908 -0.003993
104 | -0.013905 -0.026050 -0.002741
105 | -0.012024 -0.022477 -0.003478
106 | -0.013424 -0.022140 -0.000880
107 | -0.011910 -0.027010 -0.009027
108 | -0.012682 -0.027714 -0.006819
109 | -0.010435 -0.020082 -0.007488
110 | -0.009268 -0.022702 -0.008323
111 | -0.011745 -0.027669 -0.002485
112 | -0.010398 -0.028567 -0.006015
113 | -0.011697 -0.026265 0.000328
114 | -0.012616 -0.024168 0.000911
115 | -0.011637 -0.019667 0.000295
116 | -0.007323 -0.014970 -0.006505
117 | -0.006878 -0.014404 -0.004275
118 | -0.008640 -0.017907 -0.001675
119 | -0.011125 -0.021380 0.002219
120 | -0.009081 -0.027998 -0.007584
121 | -0.004688 -0.014503 -0.006745
122 | -0.001620 -0.024554 -0.003862
123 | -0.002948 -0.016417 -0.006924
124 | -0.005247 -0.027214 -0.002928
125 | -0.004244 -0.027459 -0.004371
126 | -0.003405 -0.024908 0.003243
127 | -0.011494 -0.024014 0.003175
128 | -0.003557 -0.022498 0.005508
129 | -0.006393 -0.015370 0.000483
130 | -0.006390 -0.015810 0.001282
131 | -0.003838 -0.016383 0.004267
132 | -0.007103 -0.013523 -0.004834
133 | -0.004837 -0.012741 -0.005838
134 | -0.006147 -0.012992 0.000610
135 | -0.010003 -0.021571 0.004733
136 | -0.002895 -0.009789 -0.005437
137 | 0.000477 -0.013368 -0.006868
138 | -0.002214 -0.027800 -0.002398
139 | 0.001478 -0.025646 -0.001873
140 | 0.003186 -0.014688 -0.005971
141 | 0.003067 -0.016721 -0.004963
142 | 0.000716 -0.029113 0.006303
143 | 0.000702 -0.029953 0.004556
144 | -0.005615 -0.019156 0.006846
145 | -0.002754 -0.020649 0.006465
146 | 0.000138 -0.027014 0.007157
147 | -0.004951 -0.014096 0.002447
148 | -0.003800 -0.015528 0.004281
149 | -0.004373 -0.017152 0.007763
150 | -0.003356 -0.014774 0.005632
151 | -0.007375 -0.012289 -0.003101
152 | -0.006894 -0.011255 0.001543
153 | -0.000168 -0.007025 -0.002638
154 | 0.002452 -0.008688 -0.006459
155 | 0.002393 -0.010394 -0.007203
156 | 0.004049 -0.009966 -0.007045
157 | 0.005027 -0.012240 -0.006566
158 | 0.001377 -0.028923 0.000399
159 | 0.000486 -0.029865 0.001249
160 | 0.004406 -0.019733 -0.002237
161 | 0.004847 -0.014447 -0.004353
162 | 0.005129 -0.016008 -0.001241
163 | 0.002655 -0.029199 0.003518
164 | 0.002639 -0.028099 0.005935
165 | -0.001701 -0.018797 0.007322
166 | -0.000225 -0.021341 0.007428
167 | 0.002701 -0.020423 0.006324
168 | 0.001681 -0.021416 0.006890
169 | -0.005424 -0.012075 0.004458
170 | -0.003336 -0.013121 0.006533
171 | -0.002683 -0.014074 0.007181
172 | -0.001663 -0.013427 0.007558
173 | -0.003250 -0.013934 0.006653
174 | 0.001265 -0.015036 0.008488
175 | 0.000162 -0.006194 0.000696
176 | -0.001251 -0.009225 0.005493
177 | 0.004049 -0.007243 -0.003664
178 | 0.003330 -0.005896 -0.000086
179 | 0.006673 -0.010579 -0.003715
180 | 0.006642 -0.011715 -0.003326
181 | 0.005578 -0.019518 0.000184
182 | 0.004435 -0.026331 0.003310
183 | 0.006810 -0.011927 0.003525
184 | 0.002095 -0.019074 0.007308
185 | 0.005528 -0.014984 0.005418
186 | -0.002479 -0.013306 0.007087
187 | 0.000932 -0.013540 0.008327
188 | 0.004651 -0.011557 0.005686
189 | 0.004036 -0.006438 0.002998
190 | 0.005030 -0.006711 0.002757
191 |
192 |
193 |
194 |
195 | 0 1 2
196 | 3 0 2
197 | 0 4 1
198 | 4 0 5
199 | 3 5 0
200 | 6 7 1
201 | 2 1 7
202 | 8 1 4
203 | 6 1 9
204 | 9 1 8
205 | 10 2 11
206 | 7 11 2
207 | 10 12 2
208 | 12 3 2
209 | 13 5 3
210 | 3 12 13
211 | 14 4 5
212 | 8 4 15
213 | 15 4 16
214 | 17 16 4
215 | 17 4 14
216 | 18 14 5
217 | 18 5 13
218 | 7 6 11
219 | 19 11 6
220 | 19 6 9
221 | 9 8 15
222 | 9 15 20
223 | 21 19 9
224 | 9 20 22
225 | 9 22 21
226 | 10 11 23
227 | 10 23 12
228 | 24 23 11
229 | 11 19 24
230 | 12 23 25
231 | 12 26 13
232 | 12 27 26
233 | 25 27 12
234 | 18 13 26
235 | 28 17 14
236 | 29 28 14
237 | 14 18 30
238 | 29 14 30
239 | 16 31 15
240 | 15 31 32
241 | 15 32 20
242 | 17 28 16
243 | 33 16 28
244 | 31 16 33
245 | 34 18 26
246 | 30 18 34
247 | 19 21 24
248 | 35 20 32
249 | 20 35 36
250 | 36 22 20
251 | 21 37 24
252 | 22 38 21
253 | 38 37 21
254 | 39 22 36
255 | 39 40 22
256 | 22 40 38
257 | 23 24 37
258 | 37 25 23
259 | 41 27 25
260 | 42 41 25
261 | 37 42 25
262 | 27 34 26
263 | 43 27 44
264 | 27 43 34
265 | 44 27 45
266 | 41 45 27
267 | 33 28 46
268 | 46 28 29
269 | 47 29 30
270 | 46 29 47
271 | 34 43 30
272 | 48 30 43
273 | 49 30 48
274 | 30 49 47
275 | 31 33 50
276 | 50 32 31
277 | 50 35 32
278 | 33 51 50
279 | 33 46 51
280 | 35 52 53
281 | 50 52 35
282 | 53 54 35
283 | 36 35 54
284 | 54 55 36
285 | 55 56 36
286 | 36 56 39
287 | 37 38 57
288 | 37 57 58
289 | 58 42 37
290 | 59 57 38
291 | 40 59 38
292 | 39 60 40
293 | 60 39 56
294 | 61 59 40
295 | 61 40 60
296 | 42 62 41
297 | 62 63 41
298 | 45 41 63
299 | 58 62 42
300 | 43 64 48
301 | 44 64 43
302 | 64 44 65
303 | 45 65 44
304 | 66 45 63
305 | 66 67 45
306 | 67 65 45
307 | 68 51 46
308 | 47 68 46
309 | 49 69 47
310 | 69 68 47
311 | 70 48 71
312 | 49 48 72
313 | 48 70 72
314 | 48 73 71
315 | 48 64 73
316 | 49 72 69
317 | 74 52 50
318 | 51 74 50
319 | 75 74 51
320 | 75 51 68
321 | 52 76 53
322 | 52 74 77
323 | 52 77 76
324 | 55 53 76
325 | 54 53 55
326 | 56 55 78
327 | 76 78 55
328 | 60 56 79
329 | 79 56 78
330 | 80 57 59
331 | 81 57 80
332 | 81 62 57
333 | 57 62 58
334 | 59 61 80
335 | 79 61 60
336 | 79 82 61
337 | 80 61 66
338 | 83 66 61
339 | 83 61 84
340 | 82 84 61
341 | 62 81 63
342 | 63 81 66
343 | 73 64 83
344 | 83 64 65
345 | 67 83 65
346 | 81 80 66
347 | 66 83 67
348 | 69 75 68
349 | 72 85 69
350 | 85 75 69
351 | 70 71 85
352 | 70 85 72
353 | 86 71 73
354 | 71 86 75
355 | 85 71 75
356 | 73 87 86
357 | 73 84 87
358 | 83 84 73
359 | 77 74 88
360 | 74 75 88
361 | 88 75 86
362 | 76 77 89
363 | 89 78 76
364 | 88 89 77
365 | 89 82 78
366 | 79 78 82
367 | 87 82 89
368 | 84 82 87
369 | 86 87 89
370 | 89 88 86
371 |
372 |
373 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486 489 492 495 498 501 504 507 510 513 516 519 522 525 528
374 |
375 |
376 |
377 |
378 |
379 |
--------------------------------------------------------------------------------
/TestData/Geometry/hamate_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.993452 -0.076257 0.085079
8 | 0.773586 0.621459 0.123912
9 | 0.782337 -0.130674 0.608993
10 | 0.665987 -0.293810 0.685665
11 | 0.433803 0.489824 -0.756232
12 | 0.831468 -0.538250 -0.137649
13 | 0.323808 -0.065828 -0.943830
14 | 0.441926 -0.290312 0.848776
15 | 0.638121 0.190355 0.746034
16 | 0.467242 0.800123 0.376149
17 | -0.153155 0.455794 -0.876810
18 | 0.121669 0.800685 -0.586601
19 | 0.555348 -0.642069 0.528523
20 | 0.176828 -0.697916 0.694007
21 | 0.015399 -0.428370 -0.903472
22 | 0.177830 -0.902657 -0.391901
23 | -0.190351 -0.049779 -0.980453
24 | 0.325339 0.173217 0.929597
25 | 0.187992 -0.624477 0.758081
26 | -0.299437 -0.693563 0.655216
27 | -0.022898 -0.526725 0.849727
28 | 0.305052 0.910520 0.279099
29 | 0.135623 0.347888 -0.927674
30 | 0.351321 0.732382 -0.583259
31 | -0.304734 -0.827668 -0.471278
32 | -0.283426 -0.323856 -0.902655
33 | 0.209265 -0.010519 -0.977802
34 | -0.495592 -0.709420 -0.501110
35 | 0.412334 0.327313 0.850204
36 | -0.459049 -0.728409 0.508621
37 | 0.612378 0.020082 0.790310
38 | -0.237697 -0.920064 0.311421
39 | 0.150099 -0.958008 0.244316
40 | 0.488868 0.872351 0.003277
41 | 0.370283 0.744858 0.555047
42 | 0.536876 0.323756 -0.779068
43 | 0.523046 0.069661 -0.849453
44 | 0.897919 0.361842 -0.250624
45 | 0.107221 -0.611315 -0.784090
46 | -0.397149 -0.915501 0.064276
47 | 0.511842 0.601171 0.613686
48 | 0.412602 -0.257355 0.873801
49 | 0.392641 0.386388 0.834588
50 | 0.436758 0.553986 0.708761
51 | 0.201557 -0.344317 0.916963
52 | -0.308564 -0.509812 0.803044
53 | -0.459606 -0.812394 -0.358856
54 | -0.101038 -0.614653 -0.782300
55 | -0.665276 -0.719491 0.199350
56 | -0.405449 -0.764146 0.501690
57 | 0.767336 0.543033 0.341044
58 | 0.865029 0.067824 -0.497116
59 | 0.704508 -0.497771 -0.505858
60 | 0.961190 0.074264 -0.265706
61 | 0.933410 -0.034612 -0.357138
62 | 0.982889 0.170942 0.068614
63 | 0.194533 -0.827412 -0.526827
64 | -0.268003 0.219505 0.938079
65 | -0.627347 0.376955 0.681426
66 | -0.107150 0.703522 0.702550
67 | 0.345948 0.622742 0.701792
68 | -0.849420 -0.028422 0.526952
69 | -0.944277 0.026845 -0.328054
70 | -0.922367 -0.376566 0.086237
71 | 0.473080 0.030941 -0.880476
72 | 0.687910 -0.120742 -0.715682
73 | 0.464980 0.118514 -0.877353
74 | 0.374317 0.925175 -0.062757
75 | -0.863298 0.036336 0.503385
76 | -0.532921 0.718577 0.446813
77 | -0.961399 0.139141 0.237384
78 | -0.364241 0.801340 0.474534
79 | -0.935555 0.334013 -0.114768
80 | -0.426305 0.412116 -0.805248
81 | -0.312469 0.929033 -0.198145
82 | -0.696461 0.695607 0.176274
83 |
84 |
85 |
86 |
87 | 0.013153 -0.027423 0.011730
88 | 0.011978 -0.024048 0.013129
89 | 0.011837 -0.027606 0.013920
90 | 0.011282 -0.030205 0.013014
91 | 0.012284 -0.025571 0.010450
92 | 0.011997 -0.031455 0.011629
93 | 0.011636 -0.028957 0.009720
94 | 0.009949 -0.027268 0.015843
95 | 0.010017 -0.024562 0.016094
96 | 0.009850 -0.023029 0.015227
97 | 0.009619 -0.026446 0.010750
98 | 0.007890 -0.023343 0.012944
99 | 0.010573 -0.032806 0.012931
100 | 0.008639 -0.032783 0.013619
101 | 0.010124 -0.031797 0.010261
102 | 0.009014 -0.033568 0.011510
103 | 0.006671 -0.029148 0.010929
104 | 0.007088 -0.024189 0.017411
105 | 0.003617 -0.027265 0.017143
106 | 0.006625 -0.032062 0.014172
107 | 0.006034 -0.029231 0.015393
108 | 0.008497 -0.022631 0.015673
109 | 0.005891 -0.025423 0.011701
110 | 0.006540 -0.022767 0.013387
111 | 0.008067 -0.033575 0.011532
112 | 0.009042 -0.031902 0.010798
113 | 0.004888 -0.028300 0.010896
114 | 0.005318 -0.031501 0.011535
115 | 0.003943 -0.024186 0.018107
116 | 0.004384 -0.029845 0.014579
117 | 0.000902 -0.025326 0.021120
118 | 0.002511 -0.027977 0.015623
119 | -0.001078 -0.027651 0.019175
120 | 0.004162 -0.021312 0.014654
121 | 0.004303 -0.021891 0.016289
122 | 0.003312 -0.023886 0.011316
123 | 0.002650 -0.026596 0.010144
124 | 0.002453 -0.020300 0.012426
125 | 0.002104 -0.028192 0.010042
126 | 0.001015 -0.027758 0.012976
127 | 0.003000 -0.021806 0.016911
128 | -0.001518 -0.025396 0.022817
129 | -0.001988 -0.023670 0.022217
130 | -0.000881 -0.017294 0.016903
131 | -0.004078 -0.026030 0.023303
132 | -0.006514 -0.026669 0.022935
133 | -0.011247 -0.027510 0.010638
134 | -0.000896 -0.027339 0.007023
135 | -0.009484 -0.028543 0.018376
136 | -0.008255 -0.028631 0.020303
137 | 0.001827 -0.019356 0.014453
138 | 0.001863 -0.022641 0.010025
139 | 0.000861 -0.027948 0.008652
140 | 0.001604 -0.017382 0.008758
141 | 0.001858 -0.020304 0.008115
142 | 0.001713 -0.012777 0.010930
143 | 0.000206 -0.027817 0.007411
144 | -0.005547 -0.023301 0.023691
145 | -0.008251 -0.018952 0.020510
146 | -0.002283 -0.014538 0.015063
147 | 0.000289 -0.011602 0.013463
148 | -0.009138 -0.026921 0.019862
149 | -0.011885 -0.023717 0.011429
150 | -0.011575 -0.027396 0.012939
151 | 0.000807 -0.019774 0.006673
152 | 0.000644 -0.025300 0.007462
153 | 0.001312 -0.015350 0.007531
154 | 0.000832 -0.009279 0.009405
155 | -0.007795 -0.022396 0.020671
156 | -0.010289 -0.015154 0.014141
157 | -0.010650 -0.016771 0.012496
158 | -0.002126 -0.012808 0.013180
159 | -0.011228 -0.015132 0.009572
160 | -0.009903 -0.013983 0.009047
161 | -0.001704 -0.010813 0.008542
162 | -0.010059 -0.014240 0.012035
163 |
164 |
165 |
166 |
167 | 0 1 2
168 | 0 2 3
169 | 0 4 1
170 | 0 3 5
171 | 4 0 6
172 | 5 6 0
173 | 1 7 2
174 | 1 8 7
175 | 9 8 1
176 | 4 10 1
177 | 10 11 1
178 | 1 11 9
179 | 2 7 3
180 | 3 12 5
181 | 13 3 7
182 | 3 13 12
183 | 6 10 4
184 | 6 5 14
185 | 15 5 12
186 | 5 15 14
187 | 10 6 16
188 | 16 6 14
189 | 7 8 17
190 | 18 7 17
191 | 19 13 7
192 | 19 7 20
193 | 20 7 18
194 | 9 17 8
195 | 17 9 21
196 | 11 21 9
197 | 22 10 16
198 | 10 22 11
199 | 23 21 11
200 | 11 22 23
201 | 12 13 15
202 | 15 13 24
203 | 19 24 13
204 | 25 16 14
205 | 15 25 14
206 | 24 25 15
207 | 22 16 26
208 | 24 16 25
209 | 16 27 26
210 | 16 24 27
211 | 28 18 17
212 | 28 17 21
213 | 18 29 20
214 | 18 28 30
215 | 31 29 18
216 | 18 30 32
217 | 31 18 32
218 | 24 19 27
219 | 27 19 29
220 | 20 29 19
221 | 21 23 33
222 | 21 33 34
223 | 28 21 34
224 | 23 22 35
225 | 36 35 22
226 | 36 22 26
227 | 23 35 37
228 | 37 33 23
229 | 38 26 27
230 | 26 38 36
231 | 39 27 29
232 | 27 39 38
233 | 40 28 34
234 | 40 30 28
235 | 39 29 31
236 | 41 30 42
237 | 41 32 30
238 | 42 30 43
239 | 40 43 30
240 | 39 31 32
241 | 32 44 45
242 | 46 47 32
243 | 48 32 49
244 | 45 49 32
245 | 32 48 46
246 | 32 41 44
247 | 39 32 47
248 | 34 33 50
249 | 33 37 50
250 | 40 34 50
251 | 51 35 36
252 | 37 35 51
253 | 36 52 51
254 | 52 36 38
255 | 53 37 54
256 | 54 37 51
257 | 37 55 50
258 | 55 37 53
259 | 52 38 39
260 | 56 52 39
261 | 47 56 39
262 | 43 40 50
263 | 42 44 41
264 | 44 42 57
265 | 43 57 42
266 | 58 43 59
267 | 58 57 43
268 | 60 59 43
269 | 60 43 50
270 | 44 57 45
271 | 45 61 49
272 | 45 57 61
273 | 46 62 47
274 | 46 63 62
275 | 63 46 48
276 | 47 62 64
277 | 47 65 56
278 | 64 65 47
279 | 61 48 49
280 | 62 63 48
281 | 61 62 48
282 | 50 55 60
283 | 51 52 54
284 | 65 52 56
285 | 52 65 54
286 | 54 64 53
287 | 53 64 66
288 | 53 66 55
289 | 65 64 54
290 | 55 66 67
291 | 55 67 60
292 | 61 57 68
293 | 58 68 57
294 | 59 69 58
295 | 62 68 58
296 | 69 70 58
297 | 58 70 62
298 | 71 59 60
299 | 71 69 59
300 | 67 71 60
301 | 62 61 68
302 | 64 62 66
303 | 62 70 72
304 | 66 62 73
305 | 72 73 62
306 | 74 66 73
307 | 74 67 66
308 | 74 71 67
309 | 71 74 69
310 | 69 74 75
311 | 75 70 69
312 | 70 75 72
313 | 72 75 73
314 | 73 75 74
315 |
316 |
317 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444
318 |
319 |
320 |
321 |
322 |
323 |
--------------------------------------------------------------------------------
/TestData/Geometry/hamate_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.782337 -0.130674 -0.608993
8 | 0.773586 0.621459 -0.123912
9 | 0.993452 -0.076257 -0.085079
10 | 0.665987 -0.293810 -0.685665
11 | 0.441926 -0.290312 -0.848776
12 | 0.638121 0.190355 -0.746034
13 | 0.467242 0.800123 -0.376149
14 | 0.433803 0.489824 0.756232
15 | -0.153155 0.455794 0.876810
16 | 0.121669 0.800685 0.586601
17 | 0.831468 -0.538250 0.137649
18 | 0.323808 -0.065828 0.943830
19 | 0.555348 -0.642069 -0.528523
20 | 0.176828 -0.697916 -0.694007
21 | 0.325339 0.173217 -0.929597
22 | 0.187992 -0.624477 -0.758081
23 | -0.299437 -0.693563 -0.655216
24 | -0.022898 -0.526725 -0.849727
25 | 0.305052 0.910520 -0.279099
26 | -0.190351 -0.049779 0.980453
27 | 0.135623 0.347888 0.927674
28 | 0.351321 0.732382 0.583259
29 | 0.015399 -0.428370 0.903472
30 | 0.177830 -0.902657 0.391901
31 | -0.304734 -0.827668 0.471278
32 | 0.412334 0.327313 -0.850204
33 | -0.459049 -0.728409 -0.508621
34 | 0.612378 0.020082 -0.790310
35 | -0.237697 -0.920064 -0.311421
36 | 0.150099 -0.958008 -0.244316
37 | -0.495592 -0.709420 0.501110
38 | 0.488868 0.872351 -0.003277
39 | 0.370283 0.744858 -0.555047
40 | 0.209265 -0.010519 0.977802
41 | -0.283426 -0.323856 0.902655
42 | 0.536876 0.323756 0.779068
43 | 0.523046 0.069661 0.849453
44 | 0.897919 0.361842 0.250624
45 | 0.511842 0.601171 -0.613686
46 | -0.397149 -0.915501 -0.064276
47 | 0.392641 0.386388 -0.834588
48 | 0.412602 -0.257355 -0.873801
49 | 0.436758 0.553986 -0.708761
50 | -0.308564 -0.509812 -0.803044
51 | 0.201557 -0.344317 -0.916963
52 | -0.101038 -0.614653 0.782300
53 | -0.459606 -0.812394 0.358856
54 | -0.405449 -0.764146 -0.501690
55 | -0.665276 -0.719491 -0.199350
56 | 0.107221 -0.611315 0.784090
57 | 0.767336 0.543033 -0.341044
58 | 0.865029 0.067824 0.497116
59 | 0.704508 -0.497771 0.505858
60 | 0.933410 -0.034612 0.357138
61 | 0.961190 0.074264 0.265706
62 | 0.982889 0.170942 -0.068614
63 | 0.194533 -0.827412 0.526827
64 | -0.268003 0.219505 -0.938079
65 | -0.107150 0.703522 -0.702550
66 | -0.627347 0.376955 -0.681426
67 | 0.345948 0.622742 -0.701792
68 | -0.849420 -0.028422 -0.526952
69 | 0.473080 0.030941 0.880476
70 | -0.944277 0.026845 0.328054
71 | 0.687910 -0.120742 0.715682
72 | -0.922367 -0.376566 -0.086237
73 | 0.464980 0.118514 0.877353
74 | 0.374317 0.925175 0.062757
75 | -0.863298 0.036336 -0.503385
76 | -0.364241 0.801340 -0.474534
77 | -0.532921 0.718577 -0.446813
78 | -0.961399 0.139141 -0.237384
79 | -0.935555 0.334013 0.114768
80 | -0.426305 0.412116 0.805248
81 | -0.312469 0.929033 0.198145
82 | -0.696461 0.695607 -0.176274
83 |
84 |
85 |
86 |
87 | 0.011837 -0.027606 -0.013920
88 | 0.011978 -0.024048 -0.013129
89 | 0.013153 -0.027423 -0.011730
90 | 0.011282 -0.030205 -0.013014
91 | 0.009949 -0.027268 -0.015843
92 | 0.010017 -0.024562 -0.016094
93 | 0.009850 -0.023029 -0.015227
94 | 0.012284 -0.025571 -0.010450
95 | 0.009619 -0.026446 -0.010750
96 | 0.007890 -0.023343 -0.012944
97 | 0.011997 -0.031455 -0.011629
98 | 0.011636 -0.028957 -0.009720
99 | 0.010573 -0.032806 -0.012931
100 | 0.008639 -0.032783 -0.013619
101 | 0.007088 -0.024189 -0.017411
102 | 0.003617 -0.027265 -0.017143
103 | 0.006625 -0.032062 -0.014172
104 | 0.006034 -0.029231 -0.015393
105 | 0.008497 -0.022631 -0.015673
106 | 0.006671 -0.029148 -0.010929
107 | 0.005891 -0.025423 -0.011701
108 | 0.006540 -0.022767 -0.013387
109 | 0.010124 -0.031797 -0.010261
110 | 0.009014 -0.033568 -0.011510
111 | 0.008067 -0.033575 -0.011532
112 | 0.003943 -0.024186 -0.018107
113 | 0.004384 -0.029845 -0.014579
114 | 0.000902 -0.025326 -0.021120
115 | 0.002511 -0.027977 -0.015623
116 | -0.001078 -0.027651 -0.019175
117 | 0.005318 -0.031501 -0.011535
118 | 0.004162 -0.021312 -0.014654
119 | 0.004303 -0.021891 -0.016289
120 | 0.004888 -0.028300 -0.010896
121 | 0.009042 -0.031902 -0.010798
122 | 0.003312 -0.023886 -0.011316
123 | 0.002650 -0.026596 -0.010144
124 | 0.002453 -0.020300 -0.012426
125 | 0.003000 -0.021806 -0.016911
126 | 0.001015 -0.027758 -0.012976
127 | -0.001988 -0.023670 -0.022217
128 | -0.001518 -0.025396 -0.022817
129 | -0.000881 -0.017294 -0.016903
130 | -0.006514 -0.026669 -0.022935
131 | -0.004078 -0.026030 -0.023303
132 | -0.000896 -0.027339 -0.007023
133 | -0.011247 -0.027510 -0.010638
134 | -0.008255 -0.028631 -0.020303
135 | -0.009484 -0.028543 -0.018376
136 | 0.002104 -0.028192 -0.010042
137 | 0.001827 -0.019356 -0.014453
138 | 0.001863 -0.022641 -0.010025
139 | 0.000861 -0.027948 -0.008652
140 | 0.001858 -0.020304 -0.008115
141 | 0.001604 -0.017382 -0.008758
142 | 0.001713 -0.012777 -0.010930
143 | 0.000206 -0.027817 -0.007411
144 | -0.005547 -0.023301 -0.023691
145 | -0.002283 -0.014538 -0.015063
146 | -0.008251 -0.018952 -0.020510
147 | 0.000289 -0.011602 -0.013463
148 | -0.009138 -0.026921 -0.019862
149 | 0.000807 -0.019774 -0.006673
150 | -0.011885 -0.023717 -0.011429
151 | 0.000644 -0.025300 -0.007462
152 | -0.011575 -0.027396 -0.012939
153 | 0.001312 -0.015350 -0.007531
154 | 0.000832 -0.009279 -0.009405
155 | -0.007795 -0.022396 -0.020671
156 | -0.002126 -0.012808 -0.013180
157 | -0.010289 -0.015154 -0.014141
158 | -0.010650 -0.016771 -0.012496
159 | -0.011228 -0.015132 -0.009572
160 | -0.009903 -0.013983 -0.009047
161 | -0.001704 -0.010813 -0.008542
162 | -0.010059 -0.014240 -0.012035
163 |
164 |
165 |
166 |
167 | 0 1 2
168 | 3 0 2
169 | 0 4 1
170 | 3 4 0
171 | 4 5 1
172 | 1 5 6
173 | 1 7 2
174 | 1 8 7
175 | 1 9 8
176 | 6 9 1
177 | 10 3 2
178 | 11 2 7
179 | 2 11 10
180 | 10 12 3
181 | 4 3 13
182 | 12 13 3
183 | 14 5 4
184 | 14 4 15
185 | 4 13 16
186 | 17 4 16
187 | 15 4 17
188 | 5 14 6
189 | 18 6 14
190 | 6 18 9
191 | 7 8 11
192 | 19 8 20
193 | 19 11 8
194 | 9 20 8
195 | 9 18 21
196 | 21 20 9
197 | 22 10 11
198 | 12 10 23
199 | 22 23 10
200 | 22 11 19
201 | 23 13 12
202 | 24 13 23
203 | 13 24 16
204 | 14 15 25
205 | 18 14 25
206 | 17 26 15
207 | 27 25 15
208 | 15 26 28
209 | 29 27 15
210 | 29 15 28
211 | 30 16 24
212 | 26 16 30
213 | 16 26 17
214 | 31 21 18
215 | 32 31 18
216 | 32 18 25
217 | 33 19 20
218 | 22 19 34
219 | 34 19 24
220 | 33 30 19
221 | 30 24 19
222 | 35 20 21
223 | 20 35 36
224 | 33 20 36
225 | 37 35 21
226 | 21 31 37
227 | 22 34 23
228 | 23 34 24
229 | 32 25 38
230 | 25 27 38
231 | 28 26 39
232 | 26 30 39
233 | 40 27 41
234 | 27 29 41
235 | 42 27 40
236 | 27 42 38
237 | 29 28 39
238 | 43 44 29
239 | 29 45 46
240 | 47 29 48
241 | 29 47 43
242 | 46 48 29
243 | 44 41 29
244 | 45 29 39
245 | 30 33 49
246 | 49 39 30
247 | 50 31 32
248 | 50 37 31
249 | 50 32 38
250 | 36 49 33
251 | 36 35 51
252 | 51 35 37
253 | 51 52 36
254 | 49 36 52
255 | 53 37 54
256 | 51 37 53
257 | 50 55 37
258 | 54 37 55
259 | 50 38 42
260 | 39 52 56
261 | 39 56 45
262 | 39 49 52
263 | 41 44 40
264 | 57 40 44
265 | 40 57 42
266 | 58 42 59
267 | 42 57 59
268 | 42 58 60
269 | 50 42 60
270 | 47 61 43
271 | 61 57 43
272 | 43 57 44
273 | 62 63 45
274 | 56 64 45
275 | 45 64 62
276 | 45 63 46
277 | 63 65 46
278 | 48 46 65
279 | 47 48 61
280 | 48 65 63
281 | 48 63 61
282 | 60 55 50
283 | 53 52 51
284 | 56 52 64
285 | 53 64 52
286 | 53 62 64
287 | 54 62 53
288 | 66 62 54
289 | 55 66 54
290 | 67 66 55
291 | 60 67 55
292 | 68 57 61
293 | 57 68 59
294 | 60 58 69
295 | 58 70 69
296 | 59 70 58
297 | 59 68 63
298 | 59 71 70
299 | 63 71 59
300 | 60 69 67
301 | 68 61 63
302 | 66 63 62
303 | 72 71 63
304 | 73 63 66
305 | 63 73 72
306 | 73 66 74
307 | 66 67 74
308 | 67 69 74
309 | 70 74 69
310 | 75 74 70
311 | 70 71 75
312 | 72 75 71
313 | 73 75 72
314 | 74 75 73
315 |
316 |
317 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444
318 |
319 |
320 |
321 |
322 |
323 |
--------------------------------------------------------------------------------
/TestData/Geometry/l_fibula.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.166318 -0.601212 0.781589
8 | -0.473609 -0.793608 0.381944
9 | -0.400277 -0.538044 0.741813
10 | -0.182120 -0.559911 0.808289
11 | -0.292909 -0.939867 0.175652
12 | -0.060744 -0.610291 0.789845
13 | 0.245577 -0.649295 0.719797
14 | 0.617230 -0.695661 0.367537
15 | 0.767526 -0.637560 0.066491
16 | 0.507696 -0.858980 0.066316
17 | -0.152029 -0.985442 0.076099
18 | -0.953461 -0.293063 -0.070888
19 | -0.888227 -0.188301 0.419042
20 | -0.742654 -0.494906 -0.451146
21 | -0.481195 -0.132699 0.866512
22 | 0.111412 -0.087560 0.989909
23 | -0.180936 -0.611002 -0.770674
24 | 0.671714 -0.020963 0.740514
25 | 0.987740 0.101594 0.118528
26 | 0.898231 0.024682 -0.438830
27 | 0.509413 -0.387236 -0.768471
28 | -0.976455 -0.147510 0.157408
29 | -0.826851 -0.000387 0.562420
30 | -0.891066 -0.300197 -0.340415
31 | -0.445459 0.181483 0.876715
32 | -0.305076 -0.426695 -0.851387
33 | 0.082843 0.287740 0.954119
34 | 0.653535 0.286702 0.700496
35 | 0.693671 -0.192316 -0.694143
36 | 0.906892 0.248015 0.340640
37 | 0.987140 0.159773 -0.005191
38 | -0.879202 0.205903 -0.429660
39 | -0.977298 0.114659 0.178161
40 | -0.485920 0.354205 -0.799013
41 | -0.532311 0.077891 0.842958
42 | 0.079680 0.418592 -0.904672
43 | -0.053893 0.071955 0.995951
44 | 0.541133 0.252511 -0.802130
45 | 0.528977 0.064649 0.846170
46 | 0.872093 0.028983 0.488482
47 | 0.999134 0.025796 -0.032646
48 | -0.778464 0.151817 -0.609053
49 | -0.939305 0.027067 0.342015
50 | 0.254740 0.338574 -0.905801
51 | -0.464431 0.006875 0.885583
52 | 0.500032 0.476269 -0.723281
53 | 0.136412 0.018523 0.990479
54 | 0.208270 0.308237 -0.928231
55 | 0.827395 0.034503 0.560560
56 | 0.747254 0.042216 -0.663196
57 | 0.998212 0.032842 0.049932
58 | -0.956126 -0.038908 -0.290359
59 | -0.773820 -0.042168 0.632000
60 | 0.017041 0.039534 -0.999073
61 | -0.363225 -0.026537 0.931324
62 | 0.398582 0.093840 -0.912319
63 | 0.400228 -0.006962 0.916389
64 | 0.270982 0.059130 -0.960766
65 | 0.978656 0.010130 0.205255
66 | 0.817178 0.013505 -0.576227
67 | 0.998183 0.010108 0.059396
68 | -0.937431 -0.029113 -0.346953
69 | -0.816865 -0.019848 0.576487
70 | -0.104440 -0.004998 -0.994519
71 | -0.398683 -0.002056 0.917086
72 | 0.257741 0.008252 -0.966179
73 | 0.126015 0.014749 0.991919
74 | 0.385066 -0.004836 -0.922876
75 | 0.781583 0.004428 0.623785
76 | 0.987730 -0.078624 0.134937
77 | 0.736602 -0.040504 0.675113
78 | -0.934957 -0.013206 -0.354514
79 | -0.861131 0.000794 0.508382
80 | -0.225792 -0.012060 -0.974101
81 | -0.433544 0.016813 0.900976
82 | 0.172439 -0.006526 -0.984999
83 | -0.147312 0.025276 0.988767
84 | 0.209896 -0.024642 -0.977413
85 | 0.343614 -0.018245 0.938934
86 | 0.928577 -0.368210 -0.046537
87 | 0.562217 -0.132299 0.816339
88 | -0.907972 0.008541 -0.418944
89 | -0.978248 0.021051 0.206366
90 | -0.522749 -0.030981 -0.851924
91 | -0.537835 -0.015089 0.842915
92 | -0.000069 -0.040774 -0.999168
93 | -0.189255 -0.037873 0.981197
94 | 0.096931 -0.036762 -0.994612
95 | 0.209769 -0.050746 0.976433
96 | 0.511827 -0.162309 -0.843617
97 | 0.759973 -0.127613 0.637304
98 | -0.945172 0.002451 -0.326563
99 | -0.983598 -0.007741 -0.180211
100 | -0.913102 -0.094935 -0.396524
101 | -0.670998 -0.320810 0.668463
102 | -0.270909 -0.156100 -0.949864
103 | 0.135612 -0.484243 0.864360
104 | 0.360697 -0.095611 -0.927770
105 | 0.657074 -0.131323 0.742299
106 | 0.708999 0.228694 -0.667098
107 | 0.932441 0.334131 0.137513
108 | -0.992953 0.020827 -0.116668
109 | -0.983419 0.011490 -0.180985
110 | -0.998478 0.050988 -0.021026
111 | -0.748534 -0.105519 0.654646
112 | -0.496671 0.140080 -0.856560
113 | 0.357503 -0.182834 0.915840
114 | 0.632100 0.299113 -0.714829
115 | 0.810669 0.202591 0.549338
116 | 0.806210 0.591494 -0.012632
117 | 0.719663 0.606946 0.337198
118 | -0.948984 0.314871 0.016900
119 | -0.869975 0.436917 -0.228577
120 | -0.842229 0.332941 0.424029
121 | -0.533174 0.760335 0.370968
122 | -0.630557 0.742426 0.226277
123 | -0.080652 0.797441 0.597983
124 | 0.157841 0.936567 0.312936
125 | -0.002772 0.807043 0.590486
126 | 0.092294 0.811775 0.576631
127 | -0.026497 0.802237 0.596417
128 | -0.530579 0.730222 0.430420
129 |
130 |
131 |
132 |
133 | -0.016014 -0.400747 -0.020869
134 | -0.021024 -0.407066 -0.021717
135 | -0.021445 -0.399877 -0.018225
136 | -0.019393 -0.392631 -0.014918
137 | -0.018448 -0.405716 -0.023461
138 | -0.015249 -0.392526 -0.014196
139 | -0.009856 -0.395169 -0.014426
140 | -0.004985 -0.397859 -0.018958
141 | -0.010007 -0.401116 -0.023805
142 | -0.014948 -0.404321 -0.022692
143 | -0.016224 -0.404354 -0.022915
144 | -0.021767 -0.397634 -0.021885
145 | -0.024712 -0.391143 -0.016799
146 | -0.021048 -0.396184 -0.025984
147 | -0.022529 -0.384512 -0.009429
148 | -0.014559 -0.384309 -0.008040
149 | -0.017344 -0.394655 -0.029216
150 | -0.007083 -0.385299 -0.011405
151 | -0.002937 -0.386399 -0.018647
152 | -0.006381 -0.390453 -0.025794
153 | -0.012243 -0.394525 -0.028327
154 | -0.025901 -0.386656 -0.022650
155 | -0.024268 -0.380218 -0.017235
156 | -0.024630 -0.387497 -0.029535
157 | -0.020215 -0.373741 -0.014378
158 | -0.018312 -0.388206 -0.034973
159 | -0.015591 -0.373623 -0.013572
160 | -0.012445 -0.370804 -0.016695
161 | -0.009705 -0.387987 -0.033474
162 | -0.012152 -0.368056 -0.020328
163 | -0.008093 -0.377941 -0.025205
164 | -0.024001 -0.369007 -0.022390
165 | -0.023001 -0.364387 -0.018172
166 | -0.024380 -0.375103 -0.029073
167 | -0.019938 -0.359729 -0.015651
168 | -0.018595 -0.381049 -0.035811
169 | -0.016112 -0.359632 -0.014985
170 | -0.009508 -0.380818 -0.034228
171 | -0.013294 -0.346871 -0.017175
172 | -0.012448 -0.334167 -0.020516
173 | -0.007996 -0.357408 -0.025663
174 | -0.022430 -0.359191 -0.022156
175 | -0.022110 -0.342698 -0.019041
176 | -0.021893 -0.368502 -0.026399
177 | -0.020130 -0.326175 -0.017084
178 | -0.017861 -0.377726 -0.030133
179 | -0.017099 -0.326098 -0.016556
180 | -0.012281 -0.377584 -0.029161
181 | -0.015421 -0.280931 -0.018281
182 | -0.011918 -0.306649 -0.024754
183 | -0.015063 -0.235804 -0.021370
184 | -0.026907 -0.301616 -0.023169
185 | -0.026074 -0.280371 -0.018344
186 | -0.022541 -0.330059 -0.026434
187 | -0.022839 -0.259085 -0.015552
188 | -0.017768 -0.358463 -0.026402
189 | -0.018376 -0.258971 -0.014774
190 | -0.014579 -0.358382 -0.025846
191 | -0.017273 -0.199821 -0.018853
192 | -0.015992 -0.249537 -0.023898
193 | -0.019406 -0.140746 -0.022511
194 | -0.029507 -0.236171 -0.023887
195 | -0.028865 -0.208081 -0.018419
196 | -0.023829 -0.264904 -0.026687
197 | -0.025349 -0.179939 -0.015045
198 | -0.019062 -0.293623 -0.025120
199 | -0.020089 -0.179805 -0.014129
200 | -0.016991 -0.293570 -0.024759
201 | -0.017154 -0.143912 -0.017809
202 | -0.016689 -0.200832 -0.024529
203 | -0.017350 -0.108102 -0.022285
204 | -0.030671 -0.187638 -0.024286
205 | -0.029561 -0.159376 -0.019050
206 | -0.025748 -0.192436 -0.027471
207 | -0.026030 -0.131076 -0.016373
208 | -0.021447 -0.197214 -0.026432
209 | -0.021406 -0.130959 -0.015567
210 | -0.019055 -0.197153 -0.026015
211 | -0.016689 -0.106247 -0.016707
212 | -0.015692 -0.139383 -0.026244
213 | -0.013081 -0.081593 -0.021648
214 | -0.030310 -0.138090 -0.024423
215 | -0.029556 -0.110493 -0.020028
216 | -0.026575 -0.135090 -0.027378
217 | -0.026695 -0.082864 -0.017695
218 | -0.023009 -0.132069 -0.026967
219 | -0.022710 -0.082763 -0.017000
220 | -0.020616 -0.132008 -0.026550
221 | -0.015113 -0.076857 -0.014599
222 | -0.013188 -0.101532 -0.028227
223 | -0.005851 -0.070981 -0.020430
224 | -0.028519 -0.105125 -0.024244
225 | -0.029656 -0.086707 -0.020454
226 | -0.027165 -0.102838 -0.027455
227 | -0.027782 -0.068213 -0.016427
228 | -0.024061 -0.100497 -0.029301
229 | -0.022839 -0.068088 -0.015566
230 | -0.020394 -0.100404 -0.028662
231 | -0.015073 -0.063328 -0.014333
232 | -0.013009 -0.079532 -0.028754
233 | -0.006664 -0.058616 -0.020622
234 | -0.027306 -0.069569 -0.024176
235 | -0.031653 -0.067194 -0.019865
236 | -0.030927 -0.063842 -0.030691
237 | -0.030440 -0.064653 -0.011596
238 | -0.026523 -0.057945 -0.039763
239 | -0.022150 -0.064442 -0.010151
240 | -0.016640 -0.057694 -0.038041
241 | -0.016014 -0.058306 -0.015222
242 | -0.012541 -0.054917 -0.029474
243 | -0.014558 -0.052297 -0.022023
244 | -0.028134 -0.056553 -0.024373
245 | -0.029595 -0.054932 -0.021118
246 | -0.027706 -0.049884 -0.027138
247 | -0.028018 -0.053229 -0.016781
248 | -0.025361 -0.043164 -0.029254
249 | -0.023236 -0.053107 -0.015947
250 | -0.022013 -0.043079 -0.028671
251 | -0.020033 -0.050450 -0.019235
252 | -0.019942 -0.045453 -0.026037
253 | -0.019826 -0.047868 -0.022960
254 | -0.024375 -0.051895 -0.023737
255 |
256 |
257 |
258 |
259 | 2 1 0
260 | 3 2 0
261 | 1 4 0
262 | 5 3 0
263 | 6 5 0
264 | 7 6 0
265 | 8 7 0
266 | 9 8 0
267 | 10 9 0
268 | 4 10 0
269 | 2 12 11 1
270 | 1 11 13 4
271 | 3 14 12 2
272 | 5 15 14 3
273 | 4 13 16 10
274 | 6 17 15 5
275 | 7 18 17 6
276 | 8 19 18 7
277 | 9 20 19 8
278 | 10 16 20 9
279 | 12 22 21 11
280 | 11 21 23 13
281 | 14 24 22 12
282 | 13 23 25 16
283 | 15 26 24 14
284 | 17 27 26 15
285 | 16 25 28 20
286 | 18 29 27 17
287 | 19 30 29 18
288 | 20 28 30 19
289 | 22 32 31 21
290 | 21 31 33 23
291 | 24 34 32 22
292 | 23 33 35 25
293 | 26 36 34 24
294 | 25 35 37 28
295 | 27 38 36 26
296 | 29 39 38 27
297 | 28 37 40 30
298 | 30 40 39 29
299 | 32 42 41 31
300 | 31 41 43 33
301 | 34 44 42 32
302 | 33 43 45 35
303 | 36 46 44 34
304 | 35 45 47 37
305 | 38 48 46 36
306 | 37 47 49 40
307 | 39 50 48 38
308 | 40 49 50 39
309 | 42 52 51 41
310 | 41 51 53 43
311 | 44 54 52 42
312 | 43 53 55 45
313 | 46 56 54 44
314 | 45 55 57 47
315 | 48 58 56 46
316 | 47 57 59 49
317 | 50 60 58 48
318 | 49 59 60 50
319 | 52 62 61 51
320 | 51 61 63 53
321 | 54 64 62 52
322 | 53 63 65 55
323 | 56 66 64 54
324 | 55 65 67 57
325 | 58 68 66 56
326 | 57 67 69 59
327 | 60 70 68 58
328 | 59 69 70 60
329 | 62 72 71 61
330 | 61 71 73 63
331 | 64 74 72 62
332 | 63 73 75 65
333 | 66 76 74 64
334 | 65 75 77 67
335 | 68 78 76 66
336 | 67 77 79 69
337 | 70 80 78 68
338 | 69 79 80 70
339 | 72 82 81 71
340 | 71 81 83 73
341 | 74 84 82 72
342 | 73 83 85 75
343 | 76 86 84 74
344 | 75 85 87 77
345 | 78 88 86 76
346 | 77 87 89 79
347 | 80 90 88 78
348 | 79 89 90 80
349 | 82 92 91 81
350 | 81 91 93 83
351 | 84 94 92 82
352 | 83 93 95 85
353 | 86 96 94 84
354 | 85 95 97 87
355 | 88 98 96 86
356 | 87 97 99 89
357 | 90 100 98 88
358 | 89 99 100 90
359 | 92 102 101 91
360 | 91 101 103 93
361 | 94 104 102 92
362 | 93 103 105 95
363 | 96 106 104 94
364 | 95 105 107 97
365 | 98 108 106 96
366 | 97 107 109 99
367 | 100 110 108 98
368 | 99 109 110 100
369 | 102 112 111 101
370 | 101 111 113 103
371 | 104 114 112 102
372 | 103 113 115 105
373 | 106 116 114 104
374 | 105 115 117 107
375 | 108 118 116 106
376 | 107 117 119 109
377 | 110 120 118 108
378 | 109 119 120 110
379 | 112 121 111
380 | 111 121 113
381 | 114 121 112
382 | 113 121 115
383 | 116 121 114
384 | 115 121 117
385 | 118 121 116
386 | 117 121 119
387 | 120 121 118
388 | 119 121 120
389 |
390 |
391 | 3 6 9 12 15 18 21 24 27 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 274 278 282 286 290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390 394 398 402 406 410 414 418 422 426 430 434 438 442 446 450 454 458 462 466 470 473 476 479 482 485 488 491 494 497 500
392 |
393 |
394 |
395 |
396 |
397 |
--------------------------------------------------------------------------------
/TestData/Geometry/l_patella.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.493988 0.859371 0.132127
8 | -0.010377 0.946435 0.322728
9 | 0.195918 0.980604 -0.005724
10 | 0.605698 0.795549 -0.015230
11 | 0.658798 0.634931 0.403543
12 | -0.203832 0.677010 0.707184
13 | 0.795269 0.601184 0.078257
14 | -0.570435 0.815365 0.098917
15 | -0.956218 0.290866 0.032305
16 | 0.611537 0.790927 0.021379
17 | 0.532244 0.843953 -0.066787
18 | 0.007726 0.971134 -0.238408
19 | -0.612060 0.785956 -0.087498
20 | -0.767334 0.638774 0.056272
21 | -0.746393 0.661341 -0.074329
22 | 0.798241 0.601859 -0.024030
23 | 0.784488 0.109290 0.610437
24 | -0.232363 0.048436 0.971422
25 | 0.977407 0.138796 0.159411
26 | -0.998714 -0.004973 0.050462
27 | 0.984971 0.126795 -0.117281
28 | -0.979380 0.003616 -0.201996
29 | -0.973229 -0.061005 -0.221594
30 | 0.674742 0.693024 -0.253852
31 | -0.200570 0.806443 -0.556257
32 | -0.972404 0.232664 -0.017260
33 | -0.980285 -0.079971 0.180682
34 | 0.829350 0.143958 -0.539865
35 | 0.670676 -0.251401 0.697847
36 | -0.065546 -0.466146 0.882276
37 | 0.960925 -0.146581 0.234811
38 | -0.895821 -0.264233 0.357331
39 | 0.955089 -0.226060 -0.191580
40 | -0.989326 0.144539 -0.018502
41 | 0.679878 -0.412745 -0.606142
42 | -0.971011 -0.097056 0.218443
43 | -0.961576 0.262501 0.080400
44 | -0.218650 0.183401 -0.958413
45 | -0.999090 0.006526 -0.042141
46 | -0.220210 -0.311871 -0.924253
47 | 0.622110 -0.414081 0.664467
48 | 0.037547 -0.475147 0.879105
49 | 0.895912 -0.385014 0.221600
50 | -0.698052 -0.295002 0.652455
51 | 0.910107 -0.374978 -0.176341
52 | -0.980294 0.033798 0.194629
53 | 0.679560 -0.441512 -0.585888
54 | -0.986320 0.128822 -0.102844
55 | -0.103206 -0.308856 -0.945493
56 | -0.944783 0.138370 -0.297051
57 | -0.826212 0.035253 -0.562256
58 | 0.611688 -0.586582 0.530809
59 | 0.044928 -0.563107 0.825162
60 | 0.796049 -0.586348 0.150005
61 | -0.590317 -0.495926 0.636854
62 | 0.867625 -0.490376 -0.082210
63 | -0.870128 -0.441364 0.219261
64 | 0.777279 -0.422496 -0.466192
65 | -0.898008 -0.418193 -0.136734
66 | 0.047198 -0.501684 -0.863763
67 | -0.711445 -0.459911 -0.531346
68 | 0.465990 -0.795060 0.388243
69 | 0.079727 -0.831177 0.550263
70 | 0.645786 -0.754308 0.118236
71 | -0.307997 -0.828035 0.468503
72 | 0.699280 -0.714552 -0.020601
73 | -0.558223 -0.807355 0.191221
74 | 0.599004 -0.759902 -0.252474
75 | -0.610441 -0.786029 -0.097577
76 | 0.070406 -0.866958 -0.493383
77 | -0.449506 -0.826595 -0.338652
78 | 0.096243 -0.992191 0.079331
79 |
80 |
81 |
82 |
83 | 0.005482 0.049127 0.007546
84 | 0.000000 0.050274 0.012600
85 | 0.000000 0.052920 0.000000
86 | 0.005758 0.047980 0.001871
87 | 0.010147 0.044365 0.013966
88 | 0.000000 0.044982 0.021764
89 | 0.012139 0.043747 0.003944
90 | -0.004954 0.050979 0.006818
91 | -0.007935 0.043395 0.010922
92 | 0.005758 0.047980 -0.001871
93 | 0.003895 0.049744 -0.005362
94 | 0.000000 0.051509 -0.007200
95 | -0.003367 0.051596 -0.004633
96 | -0.004046 0.051685 -0.001315
97 | -0.004046 0.051685 0.001315
98 | 0.012139 0.043747 -0.003944
99 | 0.012023 0.033957 0.016548
100 | 0.000000 0.035280 0.024709
101 | 0.015407 0.032634 0.005006
102 | -0.008176 0.035015 0.011253
103 | 0.015407 0.032634 -0.005006
104 | -0.004981 0.041807 0.001618
105 | -0.002957 0.034751 0.000961
106 | 0.008993 0.046569 -0.012378
107 | 0.000000 0.049392 -0.017836
108 | -0.006781 0.045599 -0.009333
109 | -0.004981 0.041807 -0.001618
110 | 0.012600 0.034927 -0.017343
111 | 0.011013 0.023814 0.015158
112 | 0.000000 0.023814 0.021436
113 | 0.015251 0.023814 0.004955
114 | -0.007358 0.025577 0.010128
115 | 0.015251 0.023814 -0.004955
116 | -0.003424 0.027342 0.001112
117 | 0.011590 0.023460 -0.015953
118 | -0.002957 0.034751 -0.000961
119 | -0.003424 0.027342 -0.001112
120 | 0.000000 0.037220 -0.026673
121 | -0.008752 0.035986 -0.012047
122 | 0.000000 0.023109 -0.023400
123 | 0.008512 0.016493 0.011716
124 | 0.000000 0.018345 0.015546
125 | 0.012761 0.014641 0.004146
126 | -0.007887 0.015435 0.010856
127 | 0.012761 0.014641 -0.004146
128 | -0.010738 0.012524 0.003489
129 | 0.009089 0.016229 -0.012511
130 | -0.010738 0.012524 -0.003489
131 | 0.000000 0.017816 -0.017509
132 | -0.007935 0.025225 -0.010922
133 | -0.008464 0.015171 -0.011650
134 | 0.006925 0.008732 0.009531
135 | 0.000000 0.008643 0.013418
136 | 0.009649 0.008820 0.003135
137 | -0.006925 0.007937 0.009531
138 | 0.009649 0.008820 -0.003135
139 | -0.009649 0.007232 0.003135
140 | 0.007551 0.008556 -0.010392
141 | -0.009649 0.007232 -0.003135
142 | 0.000000 0.008291 -0.015546
143 | -0.007551 0.007761 -0.010392
144 | 0.003991 0.003969 0.005495
145 | 0.000000 0.004233 0.008182
146 | 0.005135 0.003705 0.001669
147 | -0.004424 0.003616 0.006089
148 | 0.005135 0.003705 -0.001669
149 | -0.006536 0.002999 0.002124
150 | 0.004617 0.003440 -0.006355
151 | -0.006536 0.002999 -0.002124
152 | 0.000000 0.003174 -0.010309
153 | -0.005049 0.003087 -0.006950
154 | 0.000000 0.000000 0.000000
155 |
156 |
157 |
158 |
159 | 2 1 0
160 | 2 0 3
161 | 1 5 4 0
162 | 0 4 6 3
163 | 2 7 1
164 | 7 8 5 1
165 | 2 3 9
166 | 2 9 10
167 | 2 10 11
168 | 2 11 12
169 | 2 12 13
170 | 2 13 14
171 | 2 14 7
172 | 3 6 15 9
173 | 5 17 16 4
174 | 4 16 18 6
175 | 8 19 17 5
176 | 6 18 20 15
177 | 14 21 8 7
178 | 21 22 19 8
179 | 9 15 23 10
180 | 10 23 24 11
181 | 11 24 25 12
182 | 12 25 26 13
183 | 13 26 21 14
184 | 15 20 27 23
185 | 17 29 28 16
186 | 16 28 30 18
187 | 19 31 29 17
188 | 18 30 32 20
189 | 22 33 31 19
190 | 20 32 34 27
191 | 26 35 22 21
192 | 35 36 33 22
193 | 23 27 37 24
194 | 24 37 38 25
195 | 25 38 35 26
196 | 27 34 39 37
197 | 29 41 40 28
198 | 28 40 42 30
199 | 31 43 41 29
200 | 30 42 44 32
201 | 33 45 43 31
202 | 32 44 46 34
203 | 36 47 45 33
204 | 34 46 48 39
205 | 38 49 36 35
206 | 49 50 47 36
207 | 37 39 49 38
208 | 39 48 50 49
209 | 41 52 51 40
210 | 40 51 53 42
211 | 43 54 52 41
212 | 42 53 55 44
213 | 45 56 54 43
214 | 44 55 57 46
215 | 47 58 56 45
216 | 46 57 59 48
217 | 50 60 58 47
218 | 48 59 60 50
219 | 52 62 61 51
220 | 51 61 63 53
221 | 54 64 62 52
222 | 53 63 65 55
223 | 56 66 64 54
224 | 55 65 67 57
225 | 58 68 66 56
226 | 57 67 69 59
227 | 60 70 68 58
228 | 59 69 70 60
229 | 62 71 61
230 | 61 71 63
231 | 64 71 62
232 | 63 71 65
233 | 66 71 64
234 | 65 71 67
235 | 68 71 66
236 | 67 71 69
237 | 70 71 68
238 | 69 71 70
239 |
240 |
241 | 3 6 10 14 17 21 24 27 30 33 36 39 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 273 276 279 282 285 288 291 294 297 300
242 |
243 |
244 |
245 |
246 |
247 |
--------------------------------------------------------------------------------
/TestData/Geometry/l_talus.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.889975 0.310137 0.334306
8 | -0.886128 0.142050 0.441134
9 | -0.984280 0.011050 0.176269
10 | -0.913291 0.403889 0.052658
11 | -0.665611 0.370935 0.647587
12 | -0.645537 0.705260 0.293071
13 | -0.875364 -0.262436 0.406035
14 | -0.643716 0.214909 0.734468
15 | -0.699910 -0.714103 -0.013489
16 | -0.631485 -0.579492 -0.515186
17 | -0.898519 0.055506 -0.435410
18 | -0.568393 0.792868 -0.219750
19 | -0.307473 0.393522 0.866372
20 | -0.067519 0.210519 0.975255
21 | -0.262769 0.935520 0.236124
22 | -0.127716 0.988731 -0.078105
23 | -0.449121 -0.310887 0.837639
24 | 0.013125 -0.993433 0.113663
25 | 0.172633 -0.856752 -0.485978
26 | -0.243129 -0.602713 -0.760016
27 | -0.613210 0.302424 -0.729735
28 | -0.517300 0.825819 -0.224553
29 | -0.321777 0.776454 0.541829
30 | -0.068233 0.116729 0.990817
31 | 0.203740 -0.594941 0.777518
32 | 0.300439 -0.229351 0.925816
33 | 0.572692 0.053986 0.817991
34 | -0.256521 0.965738 -0.039325
35 | -0.290660 0.942357 0.165769
36 | 0.398168 -0.917308 -0.002903
37 | 0.457610 -0.847788 -0.268047
38 | 0.241111 -0.938348 -0.247725
39 | -0.293712 -0.770467 -0.565786
40 | -0.209268 -0.387412 -0.897841
41 | -0.457859 0.547910 -0.700115
42 | -0.561752 0.108288 -0.820188
43 | -0.756988 0.447975 -0.475697
44 | -0.407856 0.896787 0.171541
45 | 0.069622 0.827712 0.556818
46 | -0.025508 0.247147 0.968642
47 | -0.066973 0.990301 -0.121732
48 | -0.197544 -0.397323 0.896165
49 | 0.439573 -0.857279 0.268046
50 | -0.185747 -0.819476 0.542178
51 | 0.141806 -0.810050 0.568955
52 | -0.041575 0.998387 0.038650
53 | -0.012394 0.982001 0.188468
54 | 0.159001 -0.982720 -0.094760
55 | -0.051729 -0.998325 0.025898
56 | -0.411722 -0.858876 0.304659
57 | -0.794617 -0.590510 -0.141003
58 | -0.735698 -0.040305 -0.676109
59 | -0.429338 -0.017921 -0.902966
60 | -0.188285 -0.003522 -0.982108
61 | -0.236394 -0.058785 -0.969877
62 | -0.082075 0.844337 -0.529490
63 | 0.464029 0.851134 0.245453
64 | 0.291783 0.323515 0.900111
65 | -0.257490 -0.418525 0.870940
66 | -0.269020 -0.944656 0.187758
67 | -0.361093 -0.759438 0.541170
68 | 0.321411 0.945649 0.049435
69 | 0.429044 0.902539 -0.036664
70 | 0.045154 -0.948716 0.312889
71 | 0.100469 -0.987746 0.119430
72 | -0.217686 -0.379032 -0.899415
73 | -0.157880 0.295538 -0.942195
74 | 0.350768 0.184651 -0.918077
75 | 0.371815 -0.216600 -0.902684
76 | 0.412499 -0.018783 -0.910764
77 | 0.530909 0.610500 -0.587729
78 | 0.585629 0.615431 0.527526
79 | 0.367945 0.929052 -0.038450
80 | 0.456838 0.880593 0.125915
81 | 0.553267 0.184933 0.812217
82 | 0.495341 -0.544382 0.676968
83 | -0.187001 -0.958509 0.215154
84 | 0.019261 -0.991653 -0.127493
85 | 0.289972 -0.930030 0.225745
86 | 0.292929 -0.879480 0.375111
87 | 0.561350 0.802336 -0.202837
88 | 0.716904 0.418282 -0.557754
89 | 0.244811 -0.966690 0.074687
90 | 0.637039 -0.494853 -0.591018
91 | 0.412423 0.141494 -0.899937
92 | 0.303022 0.164693 -0.938645
93 | 0.305328 0.298617 -0.904214
94 | 0.584993 -0.035514 -0.810260
95 | 0.921099 0.263114 0.286963
96 | 0.630212 0.736191 -0.246690
97 | 0.785741 -0.618547 0.003236
98 | 0.406275 -0.908648 0.096435
99 | 0.187531 -0.951854 -0.242502
100 | 0.640610 0.465076 -0.611001
101 | 0.360333 -0.932306 -0.031072
102 | 0.457080 -0.756931 -0.467047
103 | 0.711039 -0.375816 -0.594295
104 | 0.867628 -0.488842 -0.090859
105 | 0.934469 0.100719 -0.341500
106 |
107 |
108 |
109 |
110 | -0.015336 -0.001709 0.005020
111 | -0.014889 -0.004263 0.007677
112 | -0.017534 -0.005773 0.001672
113 | -0.016408 -0.000916 -0.001140
114 | -0.008588 0.000363 0.016332
115 | -0.009812 0.008402 0.009034
116 | -0.015134 -0.009392 0.006469
117 | -0.008109 -0.002378 0.019176
118 | -0.016145 -0.011160 0.000750
119 | -0.016894 -0.008737 -0.003632
120 | -0.017213 -0.004306 -0.005621
121 | -0.011834 0.006489 -0.002472
122 | -0.001819 0.005958 0.018558
123 | -0.001849 0.000709 0.018580
124 | -0.002403 0.009072 0.015098
125 | -0.004040 0.008542 0.005741
126 | -0.008156 -0.010315 0.019210
127 | -0.009509 -0.013840 0.011591
128 | -0.011753 -0.011069 -0.001350
129 | -0.012790 -0.004464 -0.007535
130 | -0.013200 0.000903 -0.010083
131 | -0.006053 0.006568 -0.005703
132 | 0.004224 0.010541 0.016663
133 | 0.004404 0.008107 0.017781
134 | -0.001458 -0.007908 0.021141
135 | 0.004365 0.001357 0.017810
136 | 0.004701 -0.003949 0.019925
137 | 0.002786 0.009264 0.008480
138 | 0.001097 0.009358 -0.001186
139 | -0.002952 -0.009810 0.012653
140 | -0.003984 -0.009892 0.006743
141 | -0.005343 -0.006355 -0.001153
142 | -0.006902 -0.002759 -0.010219
143 | -0.007451 -0.000894 -0.013429
144 | -0.007312 0.002795 -0.012766
145 | -0.001113 0.006381 -0.013734
146 | -0.000964 0.011758 -0.013080
147 | -0.000284 0.012208 -0.009203
148 | 0.010816 0.013197 0.017977
149 | 0.011067 0.008327 0.019597
150 | 0.009372 0.012608 0.009729
151 | 0.010820 0.001011 0.018459
152 | 0.004377 -0.007954 0.018219
153 | 0.009790 -0.000758 0.012617
154 | 0.008875 -0.006587 0.007593
155 | 0.007844 0.010954 0.001054
156 | 0.006297 0.013113 -0.007881
157 | 0.002490 -0.006676 0.007377
158 | 0.001319 -0.004636 0.000596
159 | 0.000020 -0.008159 -0.006716
160 | -0.001083 -0.009117 -0.012991
161 | -0.001320 -0.007122 -0.014416
162 | -0.000879 -0.001614 -0.012100
163 | 0.004587 -0.002166 -0.017112
164 | 0.004393 0.005266 -0.018499
165 | 0.004559 0.013894 -0.017860
166 | 0.016815 0.009905 0.016115
167 | 0.017353 0.006290 0.019331
168 | 0.017451 -0.000895 0.020162
169 | 0.008122 -0.008226 0.003352
170 | 0.016136 -0.007106 0.012861
171 | 0.013560 0.010656 -0.002543
172 | 0.011494 0.012555 -0.014434
173 | 0.006425 -0.009819 -0.006307
174 | 0.004808 -0.016224 -0.015331
175 | 0.004027 -0.013425 -0.019898
176 | 0.003969 -0.008552 -0.020410
177 | 0.011431 -0.002194 -0.014249
178 | 0.011223 0.000865 -0.015554
179 | 0.010979 0.007109 -0.017182
180 | 0.011171 0.012550 -0.016281
181 | 0.022744 0.006111 0.013885
182 | 0.020859 0.007388 0.003044
183 | 0.022406 0.007167 0.011911
184 | 0.023483 -0.002124 0.018414
185 | 0.023415 -0.006313 0.018186
186 | 0.015590 -0.010241 0.009858
187 | 0.014124 -0.007268 0.001350
188 | 0.022780 -0.008386 0.014624
189 | 0.022242 -0.008646 0.011547
190 | 0.018882 0.007665 -0.008285
191 | 0.018275 0.006965 -0.011730
192 | 0.012082 -0.006681 -0.010352
193 | 0.011014 -0.007763 -0.016441
194 | 0.011147 -0.005011 -0.015775
195 | 0.017952 -0.004539 -0.013159
196 | 0.018189 -0.002472 -0.011876
197 | 0.018252 0.003153 -0.011715
198 | 0.028566 0.003878 0.010972
199 | 0.026307 0.005710 -0.002026
200 | 0.027208 -0.004271 0.003496
201 | 0.021713 -0.010781 0.008600
202 | 0.020847 -0.009610 0.003608
203 | 0.025728 0.002451 -0.005214
204 | 0.018541 -0.006527 -0.009704
205 | 0.018140 -0.007222 -0.011979
206 | 0.024665 -0.001069 -0.011172
207 | 0.028607 -0.002347 0.002356
208 | 0.027173 -0.000936 -0.005899
209 |
210 |
211 |
212 |
213 | 2 1 0
214 | 2 0 3
215 | 0 1 4
216 | 0 4 5
217 | 3 0 5
218 | 2 6 1
219 | 1 7 4
220 | 1 6 7
221 | 2 8 6
222 | 2 9 8
223 | 2 10 9
224 | 2 3 10
225 | 10 3 11
226 | 3 5 11
227 | 5 4 12
228 | 4 13 12
229 | 4 7 13
230 | 5 12 14
231 | 11 5 15
232 | 5 14 15
233 | 6 16 7
234 | 6 17 16
235 | 6 8 17
236 | 7 16 13
237 | 8 18 17
238 | 8 9 18
239 | 9 19 18
240 | 9 10 19
241 | 10 20 19
242 | 10 11 20
243 | 20 11 21
244 | 11 15 21
245 | 14 12 22
246 | 12 23 22
247 | 12 13 23
248 | 16 24 13
249 | 13 25 23
250 | 13 26 25
251 | 13 24 26
252 | 15 14 27
253 | 14 22 27
254 | 21 15 28
255 | 15 27 28
256 | 16 17 24
257 | 17 29 24
258 | 17 30 29
259 | 17 18 30
260 | 18 31 30
261 | 18 32 31
262 | 18 19 32
263 | 19 33 32
264 | 19 20 33
265 | 20 34 33
266 | 20 21 34
267 | 34 21 35
268 | 21 36 35
269 | 21 37 36
270 | 21 28 37
271 | 22 39 38
272 | 22 23 39
273 | 27 22 40
274 | 22 38 40
275 | 23 41 39
276 | 23 25 41
277 | 24 42 26
278 | 24 29 42
279 | 25 43 41
280 | 25 44 43
281 | 25 26 44
282 | 26 42 44
283 | 28 27 45
284 | 27 40 45
285 | 37 28 46
286 | 28 45 46
287 | 29 47 42
288 | 29 30 47
289 | 30 48 47
290 | 30 31 48
291 | 31 49 48
292 | 31 32 49
293 | 32 50 49
294 | 32 51 50
295 | 32 52 51
296 | 32 33 52
297 | 33 35 52
298 | 33 34 35
299 | 52 35 53
300 | 35 54 53
301 | 35 36 54
302 | 36 55 54
303 | 36 37 55
304 | 37 46 55
305 | 38 39 56
306 | 40 38 56
307 | 39 57 56
308 | 39 41 57
309 | 45 40 56
310 | 41 58 57
311 | 41 43 58
312 | 42 47 44
313 | 43 44 58
314 | 47 59 44
315 | 44 60 58
316 | 44 59 60
317 | 46 45 61
318 | 45 56 61
319 | 55 46 62
320 | 46 61 62
321 | 47 48 59
322 | 48 63 59
323 | 48 49 63
324 | 49 64 63
325 | 49 50 64
326 | 50 65 64
327 | 50 51 65
328 | 51 66 65
329 | 51 52 66
330 | 52 53 66
331 | 66 53 67
332 | 53 68 67
333 | 53 54 68
334 | 54 69 68
335 | 54 55 69
336 | 55 70 69
337 | 55 62 70
338 | 56 57 71
339 | 61 56 72
340 | 56 73 72
341 | 56 71 73
342 | 57 74 71
343 | 57 58 74
344 | 58 75 74
345 | 58 60 75
346 | 59 76 60
347 | 59 77 76
348 | 59 63 77
349 | 60 78 75
350 | 60 79 78
351 | 60 76 79
352 | 62 61 80
353 | 61 72 80
354 | 70 62 81
355 | 62 80 81
356 | 63 82 77
357 | 63 64 82
358 | 64 83 82
359 | 64 65 83
360 | 65 84 83
361 | 65 66 84
362 | 66 67 84
363 | 84 67 85
364 | 67 86 85
365 | 67 68 86
366 | 68 87 86
367 | 68 69 87
368 | 69 81 87
369 | 69 70 81
370 | 71 74 88
371 | 73 71 88
372 | 80 72 89
373 | 72 73 89
374 | 73 88 89
375 | 74 75 88
376 | 75 90 88
377 | 75 78 90
378 | 76 91 79
379 | 76 92 91
380 | 76 77 92
381 | 77 82 92
382 | 78 79 90
383 | 79 91 90
384 | 81 80 93
385 | 80 89 93
386 | 87 81 93
387 | 82 94 92
388 | 82 95 94
389 | 82 83 95
390 | 83 84 95
391 | 84 85 95
392 | 95 85 96
393 | 85 86 96
394 | 86 93 96
395 | 86 87 93
396 | 88 90 97
397 | 89 88 98
398 | 88 97 98
399 | 93 89 98
400 | 91 92 90
401 | 92 96 90
402 | 90 96 97
403 | 92 94 96
404 | 96 93 98
405 | 94 95 96
406 | 96 98 97
407 |
408 |
409 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486 489 492 495 498 501 504 507 510 513 516 519 522 525 528 531 534 537 540 543 546 549 552 555 558 561 564 567 570 573 576 579 582
410 |
411 |
412 |
413 |
414 |
415 |
--------------------------------------------------------------------------------
/TestData/Geometry/lunate_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.804633 -0.521195 -0.284466
8 | 0.403923 -0.893366 -0.196835
9 | -0.172355 -0.847062 -0.502772
10 | 0.306786 -0.686031 -0.659730
11 | 0.864738 -0.482801 0.138319
12 | 0.998461 -0.054414 0.010742
13 | 0.663740 -0.517544 -0.539998
14 | 0.812068 -0.255927 -0.524450
15 | 0.100083 -0.992928 -0.063849
16 | -0.322836 -0.719299 -0.615130
17 | -0.226805 -0.836204 -0.499322
18 | -0.050749 -0.892054 -0.449070
19 | 0.165028 -0.674466 -0.719625
20 | 0.724126 -0.457800 0.515810
21 | 0.796597 0.212648 0.565874
22 | 0.908520 0.413776 -0.058139
23 | 0.368700 -0.369517 -0.852947
24 | 0.754449 0.303999 -0.581714
25 | 0.221427 -0.937689 0.267786
26 | -0.228964 -0.686995 -0.689648
27 | -0.172788 -0.680618 -0.711972
28 | 0.232157 -0.810294 -0.538077
29 | 0.244796 -0.907828 -0.340474
30 | 0.533249 -0.811180 -0.240069
31 | 0.117774 -0.965246 0.233301
32 | 0.088522 -0.995949 0.015821
33 | 0.541042 -0.325837 0.775309
34 | 0.654195 0.660889 0.367770
35 | 0.238293 0.901266 0.361850
36 | 0.167563 0.719793 0.673662
37 | 0.199530 0.377263 0.904356
38 | 0.210031 -0.024678 0.977383
39 | 0.457334 0.799681 -0.389046
40 | 0.441159 0.897261 -0.017361
41 | -0.175765 0.195770 -0.964770
42 | 0.105844 -0.639840 0.761185
43 | -0.458952 -0.101844 -0.882605
44 | 0.177282 -0.596034 -0.783144
45 | 0.554771 -0.660676 -0.505703
46 | 0.604523 -0.717134 -0.346801
47 | -0.282773 -0.957284 0.060394
48 | -0.301869 -0.395634 0.867381
49 | -0.674854 -0.098545 0.731342
50 | -0.718172 -0.671561 0.182305
51 | -0.203369 0.957908 -0.202616
52 | -0.421352 0.859794 0.288474
53 | -0.251660 0.521164 0.815510
54 | -0.290216 0.704895 0.647223
55 | -0.394138 0.218566 0.892684
56 | -0.614263 0.758619 -0.217205
57 | -0.306263 0.345781 -0.886926
58 | 0.337234 0.052622 -0.939949
59 | -0.155084 -0.936499 -0.314512
60 | 0.601244 -0.503577 -0.620415
61 | -0.929003 -0.353059 0.110915
62 | -0.850800 -0.487582 -0.195968
63 | -0.989060 -0.019101 0.146272
64 | -0.841525 0.238604 0.484669
65 | -0.938031 -0.310400 0.154108
66 | -0.632710 0.571363 0.522707
67 | -0.797245 0.546154 0.257131
68 | -0.678863 0.698399 -0.226682
69 | -0.829023 0.540555 -0.143255
70 | 0.049819 0.757822 -0.650557
71 | -0.549501 -0.492618 -0.674815
72 | 0.196164 0.592451 -0.781359
73 | -0.878357 0.476504 -0.037846
74 | -0.985681 -0.117631 0.120810
75 |
76 |
77 |
78 |
79 | 0.006942 -0.005752 0.003262
80 | 0.004551 -0.009215 0.007804
81 | 0.004990 -0.007899 0.004332
82 | 0.006033 -0.004796 0.000427
83 | 0.006404 -0.007793 0.008042
84 | 0.007614 -0.002037 0.003447
85 | 0.006342 -0.003671 -0.000093
86 | 0.006544 -0.002501 -0.001122
87 | 0.003113 -0.009773 0.011046
88 | 0.004042 -0.004393 0.001085
89 | 0.002158 -0.005212 0.003514
90 | -0.000578 -0.007111 0.009213
91 | 0.005858 -0.003116 -0.000983
92 | 0.005024 -0.008322 0.010713
93 | 0.006156 -0.002218 0.009622
94 | 0.007499 0.000208 0.003468
95 | 0.005355 -0.001842 -0.002250
96 | 0.005920 -0.000466 -0.001626
97 | 0.001146 -0.009880 0.012837
98 | -0.000299 -0.003177 0.001685
99 | 0.004787 -0.001913 -0.002186
100 | -0.001827 -0.005571 0.004185
101 | -0.001032 -0.006029 0.005978
102 | -0.006068 -0.008869 0.005982
103 | -0.003959 -0.010357 0.013294
104 | -0.001239 -0.009940 0.013497
105 | 0.001071 -0.008110 0.015063
106 | 0.005113 0.002271 0.007105
107 | 0.001903 0.003545 0.008247
108 | 0.001456 0.001924 0.011834
109 | -0.000797 -0.003036 0.015591
110 | -0.001790 -0.005907 0.016647
111 | 0.005204 0.001387 -0.000508
112 | 0.004310 0.003200 0.005352
113 | 0.003712 -0.000111 -0.003238
114 | -0.001184 -0.008367 0.015727
115 | -0.000779 -0.001288 0.000454
116 | -0.002451 -0.004004 0.002572
117 | -0.003713 -0.006798 0.004233
118 | -0.008240 -0.010453 0.001912
119 | -0.007919 -0.010191 0.005715
120 | -0.003415 -0.007365 0.016033
121 | -0.006551 -0.006564 0.014344
122 | -0.007614 -0.011666 0.010857
123 | 0.000322 0.003815 0.004819
124 | -0.003832 0.001584 0.009732
125 | -0.002896 -0.002622 0.015122
126 | -0.002234 0.000131 0.013307
127 | -0.003753 -0.005716 0.016229
128 | -0.005242 0.000603 0.007437
129 | -0.002935 -0.002121 0.001354
130 | -0.006766 -0.005057 0.000604
131 | -0.009550 -0.010868 0.001413
132 | -0.009415 -0.009672 0.000114
133 | -0.010717 -0.009418 0.001235
134 | -0.008295 -0.008931 0.009303
135 | -0.010224 -0.005679 0.005620
136 | -0.008272 -0.005152 0.011412
137 | -0.008908 -0.008834 0.010165
138 | -0.005538 -0.000838 0.011710
139 | -0.007489 -0.001578 0.009417
140 | -0.007745 -0.001415 0.006820
141 | -0.010560 -0.006233 0.002709
142 | -0.008141 -0.006093 -0.000629
143 | -0.010533 -0.007362 -0.002683
144 | -0.009718 -0.006413 -0.002336
145 | -0.011090 -0.007688 0.000310
146 | -0.009761 -0.006815 0.008669
147 |
148 |
149 |
150 |
151 | 0 1 2
152 | 3 0 2
153 | 4 1 0
154 | 5 4 0
155 | 3 6 0
156 | 6 7 0
157 | 5 0 7
158 | 8 2 1
159 | 8 1 4
160 | 9 2 10
161 | 3 2 9
162 | 8 11 2
163 | 10 2 11
164 | 12 3 9
165 | 3 12 6
166 | 13 8 4
167 | 14 13 4
168 | 14 4 5
169 | 15 5 7
170 | 5 15 14
171 | 6 12 7
172 | 12 16 7
173 | 7 16 17
174 | 7 17 15
175 | 8 13 18
176 | 11 8 18
177 | 19 9 10
178 | 20 9 19
179 | 20 12 9
180 | 19 10 21
181 | 22 21 10
182 | 11 22 10
183 | 22 11 23
184 | 23 11 24
185 | 11 18 25
186 | 11 25 24
187 | 16 12 20
188 | 14 26 13
189 | 13 26 18
190 | 15 27 14
191 | 27 28 14
192 | 14 29 30
193 | 31 14 30
194 | 31 26 14
195 | 14 28 29
196 | 15 17 32
197 | 15 33 27
198 | 15 32 33
199 | 34 16 20
200 | 34 17 16
201 | 17 34 32
202 | 35 18 26
203 | 35 25 18
204 | 34 19 36
205 | 34 20 19
206 | 36 19 37
207 | 19 21 37
208 | 37 21 38
209 | 23 38 21
210 | 21 22 23
211 | 39 23 40
212 | 23 39 38
213 | 40 23 24
214 | 35 41 24
215 | 42 24 41
216 | 25 35 24
217 | 43 24 42
218 | 43 40 24
219 | 26 31 35
220 | 33 28 27
221 | 33 44 28
222 | 28 44 45
223 | 29 28 45
224 | 29 46 30
225 | 46 29 47
226 | 45 47 29
227 | 48 30 46
228 | 48 31 30
229 | 35 31 41
230 | 48 41 31
231 | 34 44 32
232 | 44 33 32
233 | 34 36 49
234 | 34 49 44
235 | 49 36 50
236 | 37 50 36
237 | 50 37 51
238 | 37 38 51
239 | 51 38 39
240 | 39 40 52
241 | 39 53 51
242 | 53 39 52
243 | 40 54 52
244 | 55 56 40
245 | 40 56 54
246 | 55 40 43
247 | 48 42 41
248 | 42 57 58
249 | 59 57 42
250 | 48 59 42
251 | 42 58 43
252 | 55 43 58
253 | 49 45 44
254 | 49 59 45
255 | 47 45 59
256 | 59 48 46
257 | 59 46 47
258 | 60 49 61
259 | 59 49 60
260 | 49 50 61
261 | 61 50 51
262 | 62 51 63
263 | 51 62 61
264 | 53 63 51
265 | 52 54 64
266 | 53 52 64
267 | 53 65 63
268 | 65 53 64
269 | 54 56 62
270 | 66 54 62
271 | 64 54 66
272 | 67 56 55
273 | 58 67 55
274 | 67 60 56
275 | 61 62 56
276 | 61 56 60
277 | 67 58 57
278 | 57 59 60
279 | 57 60 67
280 | 62 63 66
281 | 65 66 63
282 | 64 66 65
283 |
284 |
285 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396
286 |
287 |
288 |
289 |
290 |
291 |
--------------------------------------------------------------------------------
/TestData/Geometry/lunate_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.172355 -0.847062 0.502772
8 | 0.403923 -0.893366 0.196835
9 | 0.804633 -0.521195 0.284466
10 | 0.306786 -0.686031 0.659730
11 | -0.226805 -0.836204 0.499322
12 | -0.322836 -0.719299 0.615130
13 | 0.100083 -0.992928 0.063849
14 | -0.050749 -0.892054 0.449070
15 | 0.864738 -0.482801 -0.138319
16 | 0.998461 -0.054414 -0.010742
17 | 0.663740 -0.517544 0.539998
18 | 0.812068 -0.255927 0.524450
19 | 0.165028 -0.674466 0.719625
20 | -0.228964 -0.686995 0.689648
21 | 0.232157 -0.810294 0.538077
22 | 0.244796 -0.907828 0.340474
23 | -0.172788 -0.680618 0.711972
24 | 0.724126 -0.457800 -0.515810
25 | 0.221427 -0.937689 -0.267786
26 | 0.533249 -0.811180 0.240069
27 | 0.117774 -0.965246 -0.233301
28 | 0.088522 -0.995949 -0.015821
29 | 0.796597 0.212648 -0.565874
30 | 0.908520 0.413776 0.058139
31 | 0.368700 -0.369517 0.852947
32 | 0.754449 0.303999 0.581714
33 | -0.458952 -0.101844 0.882605
34 | -0.175765 0.195770 0.964770
35 | 0.177282 -0.596034 0.783144
36 | 0.554771 -0.660676 0.505703
37 | 0.541042 -0.325837 -0.775309
38 | 0.105844 -0.639840 -0.761185
39 | -0.282773 -0.957284 -0.060394
40 | 0.604523 -0.717134 0.346801
41 | -0.301869 -0.395634 -0.867381
42 | -0.674854 -0.098545 -0.731342
43 | -0.718172 -0.671561 -0.182305
44 | 0.654195 0.660889 -0.367770
45 | 0.238293 0.901266 -0.361850
46 | 0.199530 0.377263 -0.904356
47 | 0.167563 0.719793 -0.673662
48 | 0.210031 -0.024678 -0.977383
49 | 0.457334 0.799681 0.389046
50 | 0.441159 0.897261 0.017361
51 | -0.614263 0.758619 0.217205
52 | -0.306263 0.345781 0.886926
53 | -0.203369 0.957908 0.202616
54 | 0.337234 0.052622 0.939949
55 | -0.155084 -0.936499 0.314512
56 | -0.929003 -0.353059 -0.110915
57 | -0.989060 -0.019101 -0.146272
58 | -0.850800 -0.487582 0.195968
59 | 0.601244 -0.503577 0.620415
60 | -0.394138 0.218566 -0.892684
61 | -0.938031 -0.310400 -0.154108
62 | -0.841525 0.238604 -0.484669
63 | -0.632710 0.571363 -0.522707
64 | -0.421352 0.859794 -0.288474
65 | -0.251660 0.521164 -0.815510
66 | -0.290216 0.704895 -0.647223
67 | -0.678863 0.698399 0.226682
68 | -0.797245 0.546154 -0.257131
69 | 0.049819 0.757822 0.650557
70 | -0.829023 0.540555 0.143255
71 | -0.549501 -0.492618 0.674815
72 | -0.878357 0.476504 0.037846
73 | -0.985681 -0.117631 -0.120810
74 | 0.196164 0.592451 0.781359
75 |
76 |
77 |
78 |
79 | 0.004990 -0.007899 -0.004332
80 | 0.004551 -0.009215 -0.007804
81 | 0.006942 -0.005752 -0.003262
82 | 0.006033 -0.004796 -0.000427
83 | 0.002158 -0.005212 -0.003514
84 | 0.004042 -0.004393 -0.001085
85 | 0.003113 -0.009773 -0.011046
86 | -0.000578 -0.007111 -0.009213
87 | 0.006404 -0.007793 -0.008042
88 | 0.007614 -0.002037 -0.003447
89 | 0.006342 -0.003671 0.000093
90 | 0.006544 -0.002501 0.001122
91 | 0.005858 -0.003116 0.000983
92 | -0.000299 -0.003177 -0.001685
93 | -0.001827 -0.005571 -0.004185
94 | -0.001032 -0.006029 -0.005978
95 | 0.004787 -0.001913 0.002186
96 | 0.005024 -0.008322 -0.010713
97 | 0.001146 -0.009880 -0.012837
98 | -0.006068 -0.008869 -0.005982
99 | -0.003959 -0.010357 -0.013294
100 | -0.001239 -0.009940 -0.013497
101 | 0.006156 -0.002218 -0.009622
102 | 0.007499 0.000208 -0.003468
103 | 0.005355 -0.001842 0.002250
104 | 0.005920 -0.000466 0.001626
105 | -0.000779 -0.001288 -0.000454
106 | 0.003712 -0.000111 0.003238
107 | -0.002451 -0.004004 -0.002572
108 | -0.003713 -0.006798 -0.004233
109 | 0.001071 -0.008110 -0.015063
110 | -0.001184 -0.008367 -0.015727
111 | -0.007919 -0.010191 -0.005715
112 | -0.008240 -0.010453 -0.001912
113 | -0.003415 -0.007365 -0.016033
114 | -0.006551 -0.006564 -0.014344
115 | -0.007614 -0.011666 -0.010857
116 | 0.005113 0.002271 -0.007105
117 | 0.001903 0.003545 -0.008247
118 | -0.000797 -0.003036 -0.015591
119 | 0.001456 0.001924 -0.011834
120 | -0.001790 -0.005907 -0.016647
121 | 0.005204 0.001387 0.000508
122 | 0.004310 0.003200 -0.005352
123 | -0.005242 0.000603 -0.007437
124 | -0.002935 -0.002121 -0.001354
125 | 0.000322 0.003815 -0.004819
126 | -0.006766 -0.005057 -0.000604
127 | -0.009550 -0.010868 -0.001413
128 | -0.010717 -0.009418 -0.001235
129 | -0.010224 -0.005679 -0.005620
130 | -0.008295 -0.008931 -0.009303
131 | -0.009415 -0.009672 -0.000114
132 | -0.003753 -0.005716 -0.016229
133 | -0.008908 -0.008834 -0.010165
134 | -0.008272 -0.005152 -0.011412
135 | -0.005538 -0.000838 -0.011710
136 | -0.003832 0.001584 -0.009732
137 | -0.002896 -0.002622 -0.015122
138 | -0.002234 0.000131 -0.013307
139 | -0.007745 -0.001415 -0.006820
140 | -0.007489 -0.001578 -0.009417
141 | -0.008141 -0.006093 0.000629
142 | -0.010560 -0.006233 -0.002709
143 | -0.010533 -0.007362 0.002683
144 | -0.011090 -0.007688 -0.000310
145 | -0.009761 -0.006815 -0.008669
146 | -0.009718 -0.006413 0.002336
147 |
148 |
149 |
150 |
151 | 0 1 2
152 | 0 2 3
153 | 4 0 5
154 | 5 0 3
155 | 1 0 6
156 | 0 7 6
157 | 7 0 4
158 | 8 1 6
159 | 2 1 8
160 | 2 8 9
161 | 2 10 3
162 | 2 11 10
163 | 11 2 9
164 | 5 3 12
165 | 10 12 3
166 | 4 5 13
167 | 14 4 13
168 | 4 14 15
169 | 4 15 7
170 | 13 5 16
171 | 5 12 16
172 | 8 6 17
173 | 18 17 6
174 | 18 6 7
175 | 19 7 15
176 | 20 7 19
177 | 21 18 7
178 | 20 21 7
179 | 8 17 22
180 | 9 8 22
181 | 11 9 23
182 | 22 23 9
183 | 11 12 10
184 | 11 24 12
185 | 25 24 11
186 | 23 25 11
187 | 16 12 24
188 | 26 13 27
189 | 13 16 27
190 | 28 13 26
191 | 28 14 13
192 | 29 14 28
193 | 14 29 19
194 | 19 15 14
195 | 16 24 27
196 | 17 30 22
197 | 18 30 17
198 | 30 18 31
199 | 18 21 31
200 | 32 19 33
201 | 29 33 19
202 | 20 19 32
203 | 20 34 31
204 | 34 20 35
205 | 20 31 21
206 | 35 20 36
207 | 20 32 36
208 | 22 37 23
209 | 22 38 37
210 | 39 40 22
211 | 39 22 41
212 | 22 30 41
213 | 40 38 22
214 | 42 25 23
215 | 37 43 23
216 | 43 42 23
217 | 24 25 27
218 | 42 27 25
219 | 44 26 27
220 | 45 26 44
221 | 26 45 28
222 | 42 46 27
223 | 46 44 27
224 | 47 28 45
225 | 47 29 28
226 | 33 29 47
227 | 31 41 30
228 | 34 41 31
229 | 48 49 32
230 | 32 50 51
231 | 49 50 32
232 | 36 32 51
233 | 48 32 33
234 | 47 52 33
235 | 48 33 52
236 | 34 35 53
237 | 41 34 53
238 | 54 55 35
239 | 35 55 56
240 | 35 56 53
241 | 36 54 35
242 | 54 36 51
243 | 37 38 43
244 | 38 46 43
245 | 57 46 38
246 | 57 38 40
247 | 39 58 40
248 | 58 39 53
249 | 39 41 53
250 | 59 40 58
251 | 40 59 57
252 | 42 43 46
253 | 60 44 61
254 | 57 56 44
255 | 61 44 56
256 | 46 57 44
257 | 60 45 44
258 | 47 45 60
259 | 62 47 63
260 | 60 63 47
261 | 47 62 52
262 | 64 49 48
263 | 64 48 52
264 | 63 50 49
265 | 63 49 65
266 | 65 49 64
267 | 50 61 66
268 | 51 50 66
269 | 50 63 60
270 | 61 50 60
271 | 51 66 54
272 | 62 67 52
273 | 64 52 67
274 | 58 53 56
275 | 55 54 66
276 | 61 56 55
277 | 66 61 55
278 | 59 58 56
279 | 56 57 59
280 | 62 65 67
281 | 65 62 63
282 | 67 65 64
283 |
284 |
285 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396
286 |
287 |
288 |
289 |
290 |
291 |
--------------------------------------------------------------------------------
/TestData/Geometry/pisiform_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.239591 0.405164 0.882291
8 | -0.344787 0.110590 0.932144
9 | -0.312371 0.127729 0.941334
10 | 0.118105 0.278914 0.953026
11 | -0.703616 0.005124 0.710562
12 | -0.672334 0.557354 0.487158
13 | 0.013610 0.706510 0.707573
14 | -0.646938 -0.208267 0.733550
15 | -0.162811 -0.163938 0.972943
16 | 0.586594 0.581855 0.563341
17 | 0.339985 -0.265789 0.902090
18 | 0.770720 0.299910 0.562179
19 | -0.893414 -0.351553 -0.279680
20 | 0.252013 0.945033 -0.208330
21 | -0.766359 0.478978 -0.428106
22 | 0.656931 0.727741 0.197065
23 | -0.835375 -0.513542 0.196017
24 | -0.347637 -0.639424 0.685774
25 | 0.901744 0.431552 -0.024917
26 | 0.130819 -0.973450 0.187833
27 | 0.884684 -0.249975 0.393505
28 | -0.645081 -0.745535 -0.167475
29 | -0.246361 0.307176 -0.919211
30 | -0.148275 -0.148802 -0.977687
31 | -0.476270 -0.709835 -0.518941
32 | 0.746739 0.546496 -0.379108
33 | 0.428685 0.455780 -0.780061
34 | 0.966437 -0.058739 -0.250097
35 | 0.818148 0.278187 -0.503236
36 | 0.179706 -0.835194 -0.519766
37 | 0.698851 -0.699945 -0.147254
38 | 0.571875 0.197096 -0.796312
39 | 0.157296 -0.426288 -0.890807
40 | 0.618061 -0.295042 -0.728663
41 |
42 |
43 |
44 |
45 | 0.006563 -0.008432 0.026074
46 | 0.004025 -0.010821 0.025805
47 | 0.006025 -0.011087 0.026877
48 | 0.008373 -0.009841 0.026966
49 | 0.002161 -0.009758 0.025320
50 | 0.001440 -0.007377 0.023499
51 | 0.007672 -0.006837 0.025205
52 | 0.002976 -0.012780 0.025374
53 | 0.006856 -0.013298 0.026956
54 | 0.008917 -0.007862 0.025656
55 | 0.009679 -0.013579 0.026831
56 | 0.010479 -0.010566 0.026051
57 | 0.003715 -0.015198 0.020397
58 | 0.006499 -0.005626 0.022297
59 | 0.001767 -0.006394 0.020584
60 | 0.008430 -0.007049 0.025186
61 | 0.004647 -0.017995 0.024424
62 | 0.005401 -0.018710 0.024596
63 | 0.011129 -0.011699 0.023587
64 | 0.007194 -0.019645 0.023202
65 | 0.012078 -0.014729 0.024456
66 | 0.005385 -0.018720 0.022524
67 | 0.003537 -0.009196 0.018351
68 | 0.005959 -0.014570 0.017626
69 | 0.006032 -0.018178 0.020312
70 | 0.009118 -0.008541 0.021620
71 | 0.007386 -0.008732 0.019803
72 | 0.012292 -0.014974 0.022050
73 | 0.011253 -0.012746 0.021015
74 | 0.007783 -0.019071 0.020933
75 | 0.010719 -0.017318 0.021035
76 | 0.010038 -0.012272 0.020017
77 | 0.006931 -0.016271 0.018140
78 | 0.010497 -0.016841 0.020255
79 |
80 |
81 |
82 |
83 | 0 1 2
84 | 2 3 0
85 | 4 1 0
86 | 5 0 6
87 | 0 5 4
88 | 6 0 3
89 | 1 7 2
90 | 7 1 4
91 | 7 8 2
92 | 8 3 2
93 | 3 9 6
94 | 3 8 10
95 | 3 10 11
96 | 9 3 11
97 | 7 4 12
98 | 12 4 5
99 | 13 5 6
100 | 5 13 14
101 | 5 14 12
102 | 15 6 9
103 | 6 15 13
104 | 7 12 16
105 | 7 16 17
106 | 8 7 17
107 | 17 10 8
108 | 11 18 9
109 | 9 18 15
110 | 19 10 17
111 | 19 20 10
112 | 10 20 11
113 | 18 11 20
114 | 12 21 16
115 | 22 23 12
116 | 12 24 21
117 | 23 24 12
118 | 12 14 22
119 | 25 13 15
120 | 13 22 14
121 | 22 13 26
122 | 26 13 25
123 | 15 18 25
124 | 21 17 16
125 | 21 19 17
126 | 27 18 20
127 | 18 27 28
128 | 25 18 28
129 | 24 19 21
130 | 24 29 19
131 | 29 30 19
132 | 30 20 19
133 | 20 30 27
134 | 26 23 22
135 | 31 23 26
136 | 31 32 23
137 | 23 32 24
138 | 32 29 24
139 | 25 31 26
140 | 31 25 28
141 | 30 33 27
142 | 33 28 27
143 | 33 31 28
144 | 32 33 29
145 | 30 29 33
146 | 32 31 33
147 |
148 |
149 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192
150 |
151 |
152 |
153 |
154 |
155 |
--------------------------------------------------------------------------------
/TestData/Geometry/pisiform_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.312371 0.127729 -0.941334
8 | -0.344787 0.110590 -0.932144
9 | -0.239591 0.405164 -0.882291
10 | -0.646938 -0.208267 -0.733550
11 | 0.118105 0.278914 -0.953026
12 | -0.162811 -0.163938 -0.972943
13 | -0.703616 0.005124 -0.710562
14 | 0.013610 0.706510 -0.707573
15 | -0.672334 0.557354 -0.487158
16 | -0.835375 -0.513542 -0.196017
17 | -0.893414 -0.351553 0.279680
18 | -0.347637 -0.639424 -0.685774
19 | 0.586594 0.581855 -0.563341
20 | 0.339985 -0.265789 -0.902090
21 | 0.770720 0.299910 -0.562179
22 | 0.656931 0.727741 -0.197065
23 | 0.252013 0.945033 0.208330
24 | -0.766359 0.478978 0.428106
25 | -0.645081 -0.745535 0.167475
26 | -0.148275 -0.148802 0.977687
27 | -0.246361 0.307176 0.919211
28 | -0.476270 -0.709835 0.518941
29 | 0.130819 -0.973450 -0.187833
30 | 0.901744 0.431552 0.024917
31 | 0.884684 -0.249975 -0.393505
32 | 0.746739 0.546496 0.379108
33 | 0.428685 0.455780 0.780061
34 | 0.571875 0.197096 0.796312
35 | 0.157296 -0.426288 0.890807
36 | 0.179706 -0.835194 0.519766
37 | 0.698851 -0.699945 0.147254
38 | 0.966437 -0.058739 0.250097
39 | 0.818148 0.278187 0.503236
40 | 0.618061 -0.295042 0.728663
41 |
42 |
43 |
44 |
45 | 0.006025 -0.011087 -0.026877
46 | 0.004025 -0.010821 -0.025805
47 | 0.006563 -0.008432 -0.026074
48 | 0.002976 -0.012780 -0.025374
49 | 0.008373 -0.009841 -0.026966
50 | 0.006856 -0.013298 -0.026956
51 | 0.002161 -0.009758 -0.025320
52 | 0.007672 -0.006837 -0.025205
53 | 0.001440 -0.007377 -0.023499
54 | 0.004647 -0.017995 -0.024424
55 | 0.003715 -0.015198 -0.020397
56 | 0.005401 -0.018710 -0.024596
57 | 0.008917 -0.007862 -0.025656
58 | 0.009679 -0.013579 -0.026831
59 | 0.010479 -0.010566 -0.026051
60 | 0.008430 -0.007049 -0.025186
61 | 0.006499 -0.005626 -0.022297
62 | 0.001767 -0.006394 -0.020584
63 | 0.005385 -0.018720 -0.022524
64 | 0.005959 -0.014570 -0.017626
65 | 0.003537 -0.009196 -0.018351
66 | 0.006032 -0.018178 -0.020312
67 | 0.007194 -0.019645 -0.023202
68 | 0.011129 -0.011699 -0.023587
69 | 0.012078 -0.014729 -0.024456
70 | 0.009118 -0.008541 -0.021620
71 | 0.007386 -0.008732 -0.019803
72 | 0.010038 -0.012272 -0.020017
73 | 0.006931 -0.016271 -0.018140
74 | 0.007783 -0.019071 -0.020933
75 | 0.010719 -0.017318 -0.021035
76 | 0.012292 -0.014974 -0.022050
77 | 0.011253 -0.012746 -0.021015
78 | 0.010497 -0.016841 -0.020255
79 |
80 |
81 |
82 |
83 | 0 1 2
84 | 0 3 1
85 | 2 4 0
86 | 0 5 3
87 | 0 4 5
88 | 6 1 3
89 | 2 1 6
90 | 7 2 8
91 | 6 8 2
92 | 4 2 7
93 | 9 10 3
94 | 11 9 3
95 | 11 3 5
96 | 10 6 3
97 | 7 12 4
98 | 13 5 4
99 | 14 13 4
100 | 14 4 12
101 | 5 13 11
102 | 8 6 10
103 | 12 7 15
104 | 7 8 16
105 | 16 15 7
106 | 17 16 8
107 | 10 17 8
108 | 9 11 18
109 | 9 18 10
110 | 10 19 20
111 | 18 21 10
112 | 10 21 19
113 | 20 17 10
114 | 11 13 22
115 | 11 22 18
116 | 12 23 14
117 | 15 23 12
118 | 13 24 22
119 | 14 24 13
120 | 24 14 23
121 | 25 23 15
122 | 15 16 25
123 | 17 20 16
124 | 26 16 20
125 | 25 16 26
126 | 18 22 21
127 | 26 19 27
128 | 20 19 26
129 | 19 28 27
130 | 21 28 19
131 | 22 29 21
132 | 21 29 28
133 | 22 30 29
134 | 22 24 30
135 | 24 23 31
136 | 32 31 23
137 | 32 23 25
138 | 31 30 24
139 | 26 27 25
140 | 32 25 27
141 | 33 27 28
142 | 32 27 33
143 | 29 33 28
144 | 33 29 30
145 | 31 33 30
146 | 31 32 33
147 |
148 |
149 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192
150 |
151 |
152 |
153 |
154 |
155 |
--------------------------------------------------------------------------------
/TestData/Geometry/r_patella.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.195918 0.980604 0.005724
8 | -0.010377 0.946435 -0.322728
9 | -0.203832 0.677010 -0.707184
10 | -0.232363 0.048436 -0.971422
11 | -0.065546 -0.466146 -0.882276
12 | 0.037547 -0.475147 -0.879105
13 | 0.044928 -0.563107 -0.825162
14 | 0.079727 -0.831177 -0.550263
15 | 0.096243 -0.992191 -0.079331
16 | 0.493988 0.859371 -0.132127
17 | 0.658798 0.634931 -0.403543
18 | 0.784488 0.109290 -0.610437
19 | 0.670676 -0.251401 -0.697847
20 | 0.622110 -0.414081 -0.664467
21 | 0.611688 -0.586582 -0.530809
22 | 0.465990 -0.795060 -0.388243
23 | 0.605698 0.795549 0.015230
24 | 0.795269 0.601184 -0.078257
25 | 0.977407 0.138796 -0.159411
26 | 0.960925 -0.146581 -0.234811
27 | 0.895912 -0.385014 -0.221600
28 | 0.796049 -0.586348 -0.150005
29 | 0.645786 -0.754308 -0.118236
30 | 0.611537 0.790927 -0.021379
31 | 0.798241 0.601859 0.024030
32 | 0.984971 0.126795 0.117281
33 | 0.955089 -0.226060 0.191580
34 | 0.910107 -0.374978 0.176341
35 | 0.867625 -0.490376 0.082210
36 | 0.699280 -0.714552 0.020601
37 | 0.532244 0.843953 0.066787
38 | 0.674742 0.693024 0.253852
39 | 0.829350 0.143958 0.539865
40 | 0.679878 -0.412745 0.606142
41 | 0.679560 -0.441512 0.585888
42 | 0.777279 -0.422496 0.466192
43 | 0.599004 -0.759902 0.252474
44 | 0.007726 0.971134 0.238408
45 | -0.200570 0.806443 0.556257
46 | -0.218650 0.183401 0.958413
47 | -0.220210 -0.311871 0.924253
48 | -0.103206 -0.308856 0.945493
49 | 0.047198 -0.501684 0.863763
50 | 0.070406 -0.866958 0.493383
51 | -0.612060 0.785956 0.087498
52 | -0.972404 0.232664 0.017260
53 | -0.999090 0.006526 0.042141
54 | -0.944783 0.138370 0.297051
55 | -0.826212 0.035253 0.562256
56 | -0.711445 -0.459911 0.531346
57 | -0.449506 -0.826595 0.338652
58 | -0.767334 0.638774 -0.056272
59 | -0.980285 -0.079971 -0.180682
60 | -0.971011 -0.097056 -0.218443
61 | -0.961576 0.262501 -0.080400
62 | -0.986320 0.128822 0.102844
63 | -0.898008 -0.418193 0.136734
64 | -0.610441 -0.786029 0.097577
65 | -0.746393 0.661341 0.074329
66 | -0.979380 0.003616 0.201996
67 | -0.973229 -0.061005 0.221594
68 | -0.989326 0.144539 0.018502
69 | -0.980294 0.033798 -0.194629
70 | -0.870128 -0.441364 -0.219261
71 | -0.558223 -0.807355 -0.191221
72 | -0.570435 0.815365 -0.098917
73 | -0.956218 0.290866 -0.032305
74 | -0.998714 -0.004973 -0.050462
75 | -0.895821 -0.264233 -0.357331
76 | -0.698052 -0.295002 -0.652455
77 | -0.590317 -0.495926 -0.636854
78 | -0.307997 -0.828035 -0.468503
79 |
80 |
81 |
82 |
83 | 0.000000 0.052920 0.000000
84 | 0.000000 0.050274 -0.012600
85 | 0.000000 0.044982 -0.021764
86 | 0.000000 0.035280 -0.024709
87 | 0.000000 0.023814 -0.021436
88 | 0.000000 0.018345 -0.015546
89 | 0.000000 0.008643 -0.013418
90 | 0.000000 0.004233 -0.008182
91 | 0.000000 0.000000 0.000000
92 | 0.005482 0.049127 -0.007546
93 | 0.010147 0.044365 -0.013966
94 | 0.012023 0.033957 -0.016548
95 | 0.011013 0.023814 -0.015158
96 | 0.008512 0.016493 -0.011716
97 | 0.006925 0.008732 -0.009531
98 | 0.003991 0.003969 -0.005495
99 | 0.005758 0.047980 -0.001871
100 | 0.012139 0.043747 -0.003944
101 | 0.015407 0.032634 -0.005006
102 | 0.015251 0.023814 -0.004955
103 | 0.012761 0.014641 -0.004146
104 | 0.009649 0.008820 -0.003135
105 | 0.005135 0.003705 -0.001669
106 | 0.005758 0.047980 0.001871
107 | 0.012139 0.043747 0.003944
108 | 0.015407 0.032634 0.005006
109 | 0.015251 0.023814 0.004955
110 | 0.012761 0.014641 0.004146
111 | 0.009649 0.008820 0.003135
112 | 0.005135 0.003705 0.001669
113 | 0.003895 0.049744 0.005362
114 | 0.008993 0.046569 0.012378
115 | 0.012600 0.034927 0.017343
116 | 0.011590 0.023460 0.015953
117 | 0.009089 0.016229 0.012511
118 | 0.007551 0.008556 0.010392
119 | 0.004617 0.003440 0.006355
120 | 0.000000 0.051509 0.007200
121 | 0.000000 0.049392 0.017836
122 | 0.000000 0.037220 0.026673
123 | 0.000000 0.023109 0.023400
124 | 0.000000 0.017816 0.017509
125 | 0.000000 0.008291 0.015546
126 | 0.000000 0.003174 0.010309
127 | -0.003367 0.051596 0.004633
128 | -0.006781 0.045599 0.009333
129 | -0.008752 0.035986 0.012047
130 | -0.007935 0.025225 0.010922
131 | -0.008464 0.015171 0.011650
132 | -0.007551 0.007761 0.010392
133 | -0.005049 0.003087 0.006950
134 | -0.004046 0.051685 0.001315
135 | -0.004981 0.041807 0.001618
136 | -0.002957 0.034751 0.000961
137 | -0.003424 0.027342 0.001112
138 | -0.010738 0.012524 0.003489
139 | -0.009649 0.007232 0.003135
140 | -0.006536 0.002999 0.002124
141 | -0.004046 0.051685 -0.001315
142 | -0.004981 0.041807 -0.001618
143 | -0.002957 0.034751 -0.000961
144 | -0.003424 0.027342 -0.001112
145 | -0.010738 0.012524 -0.003489
146 | -0.009649 0.007232 -0.003135
147 | -0.006536 0.002999 -0.002124
148 | -0.004954 0.050979 -0.006818
149 | -0.007935 0.043395 -0.010922
150 | -0.008176 0.035015 -0.011253
151 | -0.007358 0.025577 -0.010128
152 | -0.007887 0.015435 -0.010856
153 | -0.006925 0.007937 -0.009531
154 | -0.004424 0.003616 -0.006089
155 |
156 |
157 |
158 |
159 | 9 1 0
160 | 9 10 2 1
161 | 10 11 3 2
162 | 11 12 4 3
163 | 12 13 5 4
164 | 13 14 6 5
165 | 14 15 7 6
166 | 15 8 7
167 | 16 9 0
168 | 16 17 10 9
169 | 17 18 11 10
170 | 18 19 12 11
171 | 19 20 13 12
172 | 20 21 14 13
173 | 21 22 15 14
174 | 22 8 15
175 | 23 16 0
176 | 23 24 17 16
177 | 24 25 18 17
178 | 25 26 19 18
179 | 26 27 20 19
180 | 27 28 21 20
181 | 28 29 22 21
182 | 29 8 22
183 | 30 23 0
184 | 30 31 24 23
185 | 31 32 25 24
186 | 32 33 26 25
187 | 33 34 27 26
188 | 34 35 28 27
189 | 35 36 29 28
190 | 36 8 29
191 | 37 30 0
192 | 37 38 31 30
193 | 38 39 32 31
194 | 39 40 33 32
195 | 40 41 34 33
196 | 41 42 35 34
197 | 42 43 36 35
198 | 43 8 36
199 | 44 37 0
200 | 44 45 38 37
201 | 45 46 39 38
202 | 46 47 40 39
203 | 47 48 41 40
204 | 48 49 42 41
205 | 49 50 43 42
206 | 50 8 43
207 | 51 44 0
208 | 51 52 45 44
209 | 52 53 46 45
210 | 53 54 47 46
211 | 54 55 48 47
212 | 55 56 49 48
213 | 56 57 50 49
214 | 57 8 50
215 | 58 51 0
216 | 58 59 52 51
217 | 59 60 53 52
218 | 60 61 54 53
219 | 61 62 55 54
220 | 62 63 56 55
221 | 63 64 57 56
222 | 64 8 57
223 | 65 58 0
224 | 65 66 59 58
225 | 66 67 60 59
226 | 67 68 61 60
227 | 68 69 62 61
228 | 69 70 63 62
229 | 70 71 64 63
230 | 71 8 64
231 | 1 65 0
232 | 1 2 66 65
233 | 2 3 67 66
234 | 3 4 68 67
235 | 4 5 69 68
236 | 5 6 70 69
237 | 6 7 71 70
238 | 7 8 71
239 |
240 |
241 | 3 7 11 15 19 23 27 30 33 37 41 45 49 53 57 60 63 67 71 75 79 83 87 90 93 97 101 105 109 113 117 120 123 127 131 135 139 143 147 150 153 157 161 165 169 173 177 180 183 187 191 195 199 203 207 210 213 217 221 225 229 233 237 240 243 247 251 255 259 263 267 270 273 277 281 285 289 293 297 300
242 |
243 |
244 |
245 |
246 |
247 |
--------------------------------------------------------------------------------
/TestData/Geometry/r_talus.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.984280 0.011050 -0.176269
8 | -0.889975 0.310137 -0.334306
9 | -0.886128 0.142050 -0.441134
10 | -0.875364 -0.262436 -0.406035
11 | -0.699910 -0.714103 0.013489
12 | -0.631485 -0.579492 0.515186
13 | -0.898519 0.055506 0.435410
14 | -0.913291 0.403889 -0.052658
15 | -0.645537 0.705260 -0.293071
16 | -0.665611 0.370935 -0.647587
17 | -0.643716 0.214909 -0.734468
18 | -0.449121 -0.310887 -0.837639
19 | 0.013125 -0.993433 -0.113663
20 | 0.172633 -0.856752 0.485978
21 | -0.243129 -0.602713 0.760016
22 | -0.613210 0.302424 0.729735
23 | -0.568393 0.792868 0.219750
24 | -0.262769 0.935520 -0.236124
25 | -0.307473 0.393522 -0.866372
26 | -0.067519 0.210519 -0.975255
27 | 0.203740 -0.594941 -0.777518
28 | 0.398168 -0.917308 0.002903
29 | 0.457610 -0.847788 0.268047
30 | 0.241111 -0.938348 0.247725
31 | -0.293712 -0.770467 0.565786
32 | -0.209268 -0.387412 0.897841
33 | -0.457859 0.547910 0.700115
34 | -0.517300 0.825819 0.224553
35 | -0.127716 0.988731 0.078105
36 | -0.321777 0.776454 -0.541829
37 | -0.068233 0.116729 -0.990817
38 | 0.300439 -0.229351 -0.925816
39 | 0.572692 0.053986 -0.817991
40 | 0.439573 -0.857279 -0.268046
41 | 0.159001 -0.982720 0.094760
42 | -0.051729 -0.998325 -0.025898
43 | -0.411722 -0.858876 -0.304659
44 | -0.794617 -0.590510 0.141003
45 | -0.735698 -0.040305 0.676109
46 | -0.429338 -0.017921 0.902966
47 | -0.561752 0.108288 0.820188
48 | -0.756988 0.447975 0.475697
49 | -0.407856 0.896787 -0.171541
50 | -0.290660 0.942357 -0.165769
51 | -0.256521 0.965738 0.039325
52 | 0.069622 0.827712 -0.556818
53 | -0.025508 0.247147 -0.968642
54 | -0.197544 -0.397323 -0.896165
55 | -0.185747 -0.819476 -0.542178
56 | 0.141806 -0.810050 -0.568955
57 | -0.269020 -0.944656 -0.187758
58 | 0.045154 -0.948716 -0.312889
59 | 0.100469 -0.987746 -0.119430
60 | -0.217686 -0.379032 0.899415
61 | -0.157880 0.295538 0.942195
62 | -0.188285 -0.003522 0.982108
63 | -0.236394 -0.058785 0.969877
64 | -0.082075 0.844337 0.529490
65 | -0.012394 0.982001 -0.188468
66 | -0.041575 0.998387 -0.038650
67 | -0.066973 0.990301 0.121732
68 | 0.464029 0.851134 -0.245453
69 | 0.291783 0.323515 -0.900111
70 | -0.257490 -0.418525 -0.870940
71 | -0.361093 -0.759438 -0.541170
72 | -0.187001 -0.958509 -0.215154
73 | 0.019261 -0.991653 0.127493
74 | 0.244811 -0.966690 -0.074687
75 | 0.637039 -0.494853 0.591018
76 | 0.412423 0.141494 0.899937
77 | 0.350768 0.184651 0.918077
78 | 0.371815 -0.216600 0.902684
79 | 0.412499 -0.018783 0.910764
80 | 0.530909 0.610500 0.587729
81 | 0.429044 0.902539 0.036664
82 | 0.321411 0.945649 -0.049435
83 | 0.585629 0.615431 -0.527526
84 | 0.553267 0.184933 -0.812217
85 | 0.495341 -0.544382 -0.676968
86 | 0.289972 -0.930030 -0.225745
87 | 0.292929 -0.879480 -0.375111
88 | 0.406275 -0.908648 -0.096435
89 | 0.187531 -0.951854 0.242502
90 | 0.360333 -0.932306 0.031072
91 | 0.457080 -0.756931 0.467047
92 | 0.303022 0.164693 0.938645
93 | 0.305328 0.298617 0.904214
94 | 0.584993 -0.035514 0.810260
95 | 0.716904 0.418282 0.557754
96 | 0.561350 0.802336 0.202837
97 | 0.367945 0.929052 0.038450
98 | 0.456838 0.880593 -0.125915
99 | 0.921099 0.263114 -0.286963
100 | 0.785741 -0.618547 -0.003236
101 | 0.711039 -0.375816 0.594295
102 | 0.640610 0.465076 0.611001
103 | 0.630212 0.736191 0.246690
104 | 0.867628 -0.488842 0.090859
105 | 0.934469 0.100719 0.341500
106 |
107 |
108 |
109 |
110 | -0.017534 -0.005773 -0.001672
111 | -0.015336 -0.001709 -0.005020
112 | -0.014889 -0.004263 -0.007677
113 | -0.015134 -0.009392 -0.006469
114 | -0.016145 -0.011160 -0.000750
115 | -0.016894 -0.008737 0.003632
116 | -0.017213 -0.004306 0.005621
117 | -0.016408 -0.000916 0.001140
118 | -0.009812 0.008402 -0.009034
119 | -0.008588 0.000363 -0.016332
120 | -0.008109 -0.002378 -0.019176
121 | -0.008156 -0.010315 -0.019210
122 | -0.009509 -0.013840 -0.011591
123 | -0.011753 -0.011069 0.001350
124 | -0.012790 -0.004464 0.007535
125 | -0.013200 0.000903 0.010083
126 | -0.011834 0.006489 0.002472
127 | -0.002403 0.009072 -0.015098
128 | -0.001819 0.005958 -0.018558
129 | -0.001849 0.000709 -0.018580
130 | -0.001458 -0.007908 -0.021141
131 | -0.002952 -0.009810 -0.012653
132 | -0.003984 -0.009892 -0.006743
133 | -0.005343 -0.006355 0.001153
134 | -0.006902 -0.002759 0.010219
135 | -0.007451 -0.000894 0.013429
136 | -0.007312 0.002795 0.012766
137 | -0.006053 0.006568 0.005703
138 | -0.004040 0.008542 -0.005741
139 | 0.004224 0.010541 -0.016663
140 | 0.004404 0.008107 -0.017781
141 | 0.004365 0.001357 -0.017810
142 | 0.004701 -0.003949 -0.019925
143 | 0.004377 -0.007954 -0.018219
144 | 0.002490 -0.006676 -0.007377
145 | 0.001319 -0.004636 -0.000596
146 | 0.000020 -0.008159 0.006716
147 | -0.001083 -0.009117 0.012991
148 | -0.001320 -0.007122 0.014416
149 | -0.000879 -0.001614 0.012100
150 | -0.001113 0.006381 0.013734
151 | -0.000964 0.011758 0.013080
152 | -0.000284 0.012208 0.009203
153 | 0.001097 0.009358 0.001186
154 | 0.002786 0.009264 -0.008480
155 | 0.010816 0.013197 -0.017977
156 | 0.011067 0.008327 -0.019597
157 | 0.010820 0.001011 -0.018459
158 | 0.009790 -0.000758 -0.012617
159 | 0.008875 -0.006587 -0.007593
160 | 0.008122 -0.008226 -0.003352
161 | 0.006425 -0.009819 0.006307
162 | 0.004808 -0.016224 0.015331
163 | 0.004027 -0.013425 0.019898
164 | 0.003969 -0.008552 0.020410
165 | 0.004587 -0.002166 0.017112
166 | 0.004393 0.005266 0.018499
167 | 0.004559 0.013894 0.017860
168 | 0.006297 0.013113 0.007881
169 | 0.007844 0.010954 -0.001054
170 | 0.009372 0.012608 -0.009729
171 | 0.016815 0.009905 -0.016115
172 | 0.017353 0.006290 -0.019331
173 | 0.017451 -0.000895 -0.020162
174 | 0.016136 -0.007106 -0.012861
175 | 0.015590 -0.010241 -0.009858
176 | 0.014124 -0.007268 -0.001350
177 | 0.012082 -0.006681 0.010352
178 | 0.011014 -0.007763 0.016441
179 | 0.011147 -0.005011 0.015775
180 | 0.011431 -0.002194 0.014249
181 | 0.011223 0.000865 0.015554
182 | 0.010979 0.007109 0.017182
183 | 0.011171 0.012550 0.016281
184 | 0.011494 0.012555 0.014434
185 | 0.013560 0.010656 0.002543
186 | 0.022744 0.006111 -0.013885
187 | 0.023483 -0.002124 -0.018414
188 | 0.023415 -0.006313 -0.018186
189 | 0.022780 -0.008386 -0.014624
190 | 0.022242 -0.008646 -0.011547
191 | 0.021713 -0.010781 -0.008600
192 | 0.020847 -0.009610 -0.003608
193 | 0.018541 -0.006527 0.009704
194 | 0.018140 -0.007222 0.011979
195 | 0.017952 -0.004539 0.013159
196 | 0.018189 -0.002472 0.011876
197 | 0.018252 0.003153 0.011715
198 | 0.018275 0.006965 0.011730
199 | 0.018882 0.007665 0.008285
200 | 0.020859 0.007388 -0.003044
201 | 0.022406 0.007167 -0.011911
202 | 0.028566 0.003878 -0.010972
203 | 0.027208 -0.004271 -0.003496
204 | 0.024665 -0.001069 0.011172
205 | 0.025728 0.002451 0.005214
206 | 0.026307 0.005710 0.002026
207 | 0.028607 -0.002347 -0.002356
208 | 0.027173 -0.000936 0.005899
209 |
210 |
211 |
212 |
213 | 1 2 0
214 | 2 3 0
215 | 3 4 0
216 | 4 5 0
217 | 5 6 0
218 | 6 7 0
219 | 7 1 0
220 | 8 9 1
221 | 9 2 1
222 | 9 10 2
223 | 10 3 2
224 | 10 11 3
225 | 11 12 3
226 | 12 4 3
227 | 12 13 4
228 | 13 5 4
229 | 13 14 5
230 | 14 6 5
231 | 14 15 6
232 | 15 16 6
233 | 16 7 6
234 | 16 8 7
235 | 8 1 7
236 | 17 18 8
237 | 18 9 8
238 | 18 19 9
239 | 19 10 9
240 | 19 11 10
241 | 19 20 11
242 | 20 12 11
243 | 20 21 12
244 | 21 22 12
245 | 22 13 12
246 | 22 23 13
247 | 23 24 13
248 | 24 14 13
249 | 24 25 14
250 | 25 15 14
251 | 25 26 15
252 | 26 27 15
253 | 27 16 15
254 | 27 28 16
255 | 28 8 16
256 | 28 17 8
257 | 29 18 17
258 | 29 30 18
259 | 30 19 18
260 | 30 31 19
261 | 31 32 19
262 | 32 20 19
263 | 32 33 20
264 | 33 21 20
265 | 33 34 21
266 | 34 22 21
267 | 34 35 22
268 | 35 23 22
269 | 35 36 23
270 | 36 24 23
271 | 36 37 24
272 | 37 38 24
273 | 38 39 24
274 | 39 25 24
275 | 39 40 25
276 | 40 26 25
277 | 40 27 26
278 | 40 41 27
279 | 41 42 27
280 | 42 43 27
281 | 43 28 27
282 | 43 44 28
283 | 44 17 28
284 | 44 29 17
285 | 45 46 29
286 | 46 30 29
287 | 46 47 30
288 | 47 31 30
289 | 47 48 31
290 | 48 49 31
291 | 49 32 31
292 | 49 33 32
293 | 49 34 33
294 | 49 50 34
295 | 50 35 34
296 | 50 51 35
297 | 51 36 35
298 | 51 52 36
299 | 52 37 36
300 | 52 53 37
301 | 53 38 37
302 | 53 54 38
303 | 54 39 38
304 | 54 55 39
305 | 55 40 39
306 | 55 56 40
307 | 56 41 40
308 | 56 57 41
309 | 57 42 41
310 | 57 58 42
311 | 58 43 42
312 | 58 59 43
313 | 59 44 43
314 | 59 60 44
315 | 60 29 44
316 | 60 45 29
317 | 61 46 45
318 | 61 62 46
319 | 62 47 46
320 | 62 63 47
321 | 63 48 47
322 | 63 49 48
323 | 63 64 49
324 | 64 50 49
325 | 64 65 50
326 | 65 66 50
327 | 66 51 50
328 | 66 67 51
329 | 67 52 51
330 | 67 68 52
331 | 68 53 52
332 | 68 69 53
333 | 69 54 53
334 | 69 70 54
335 | 70 55 54
336 | 70 71 55
337 | 71 56 55
338 | 71 72 56
339 | 72 57 56
340 | 72 73 57
341 | 73 74 57
342 | 74 58 57
343 | 74 75 58
344 | 75 59 58
345 | 75 61 59
346 | 61 60 59
347 | 61 45 60
348 | 76 62 61
349 | 76 77 62
350 | 77 63 62
351 | 77 78 63
352 | 78 64 63
353 | 78 79 64
354 | 79 80 64
355 | 80 65 64
356 | 80 81 65
357 | 81 82 65
358 | 82 66 65
359 | 82 67 66
360 | 82 83 67
361 | 83 84 67
362 | 84 68 67
363 | 84 69 68
364 | 84 85 69
365 | 85 70 69
366 | 85 86 70
367 | 86 71 70
368 | 86 87 71
369 | 87 72 71
370 | 87 88 72
371 | 88 73 72
372 | 88 74 73
373 | 88 89 74
374 | 89 75 74
375 | 89 90 75
376 | 90 61 75
377 | 90 91 61
378 | 91 76 61
379 | 92 77 76
380 | 92 78 77
381 | 92 93 78
382 | 93 79 78
383 | 93 80 79
384 | 93 81 80
385 | 93 82 81
386 | 93 94 82
387 | 94 83 82
388 | 94 84 83
389 | 94 85 84
390 | 94 86 85
391 | 94 95 86
392 | 95 87 86
393 | 95 88 87
394 | 95 89 88
395 | 95 96 89
396 | 96 90 89
397 | 96 91 90
398 | 96 92 91
399 | 92 76 91
400 | 97 93 92
401 | 97 94 93
402 | 97 98 94
403 | 98 95 94
404 | 98 96 95
405 | 98 92 96
406 | 98 97 92
407 |
408 |
409 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486 489 492 495 498 501 504 507 510 513 516 519 522 525 528 531 534 537 540 543 546 549 552 555 558 561 564 567 570 573 576 579 582
410 |
411 |
412 |
413 |
414 |
415 |
--------------------------------------------------------------------------------
/TestData/Geometry/scaphoid_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.718028 -0.373592 0.587252
8 | -0.987479 -0.049826 -0.149676
9 | -0.756283 -0.628058 0.183248
10 | -0.500405 -0.527912 0.686225
11 | -0.928360 -0.158736 0.336082
12 | 0.151268 -0.161676 0.975182
13 | 0.005035 -0.480153 0.877170
14 | -0.580456 -0.560503 0.590684
15 | -0.780185 -0.424034 -0.459899
16 | -0.908651 0.417036 -0.020858
17 | -0.501666 0.578789 -0.642911
18 | -0.636446 0.164726 -0.753526
19 | -0.294811 -0.889068 0.350208
20 | -0.622767 -0.764515 -0.166367
21 | -0.540409 -0.838664 0.067830
22 | -0.402198 -0.900425 0.165744
23 | 0.127418 -0.231226 0.964520
24 | 0.049079 -0.520769 0.852286
25 | -0.857316 0.311268 0.410026
26 | -0.597171 -0.624735 0.503083
27 | -0.788272 -0.155731 0.595294
28 | 0.627851 0.119577 0.769093
29 | 0.913113 -0.183486 0.364084
30 | 0.249126 -0.766721 0.591672
31 | -0.092773 -0.942427 0.321285
32 | -0.120524 -0.362296 -0.924238
33 | -0.140162 -0.873543 -0.466130
34 | -0.462883 0.766394 -0.445398
35 | -0.764135 0.640343 -0.077835
36 | -0.742212 0.627300 0.235830
37 | -0.278339 0.424227 -0.861719
38 | 0.119219 0.586429 -0.801179
39 | 0.179439 0.603260 -0.777096
40 | 0.099929 0.531701 -0.841016
41 | -0.329818 -0.006263 -0.944024
42 | 0.057191 -0.994472 -0.088061
43 | 0.260803 -0.948818 0.178116
44 | 0.502955 -0.630174 0.591538
45 | -0.232925 -0.962474 -0.139250
46 | -0.579837 0.175253 0.795660
47 | -0.511070 0.708199 0.487096
48 | -0.367783 -0.391236 0.843605
49 | -0.069315 -0.918052 0.390353
50 | 0.919477 -0.191909 0.343121
51 | 0.938425 0.128651 0.320637
52 | 0.912678 0.077332 -0.401297
53 | 0.969164 -0.177033 -0.171407
54 | 0.915639 -0.329132 -0.230819
55 | 0.650875 -0.753296 0.094382
56 | 0.579332 -0.612804 -0.537444
57 | 0.210071 0.048465 -0.976484
58 | 0.574556 -0.147610 -0.805045
59 | 0.333826 -0.876439 -0.347009
60 | -0.535824 0.838553 -0.098601
61 | 0.601988 0.612274 -0.512573
62 | -0.094390 0.977614 -0.188045
63 | -0.378425 0.909687 0.171067
64 | 0.084580 0.322474 -0.942792
65 | 0.690761 0.269758 -0.670880
66 | 0.565083 0.398481 -0.722422
67 | 0.588973 0.293777 -0.752865
68 | 0.600027 -0.790784 -0.120949
69 | 0.246443 -0.295763 0.922925
70 | 0.100009 0.247683 0.963665
71 | 0.176607 0.719624 0.671529
72 | -0.047956 0.963892 0.261939
73 | 0.525276 -0.752392 0.397481
74 | 0.845559 0.005589 -0.533852
75 | 0.973008 -0.227305 -0.039853
76 | 0.714360 0.692691 0.099343
77 | 0.871582 -0.034064 0.489064
78 | 0.621993 0.651892 0.433776
79 | 0.902763 0.302538 0.305761
80 |
81 |
82 |
83 |
84 | -0.009491 -0.009290 -0.008409
85 | -0.010032 -0.011440 -0.017199
86 | -0.007679 -0.014888 -0.012198
87 | -0.006256 -0.014409 -0.008465
88 | -0.010304 -0.006042 -0.008476
89 | -0.005647 -0.011193 -0.007338
90 | -0.006249 -0.009197 -0.006477
91 | -0.007792 -0.006734 -0.006118
92 | -0.009209 -0.012774 -0.018990
93 | -0.009608 -0.003219 -0.008522
94 | -0.009022 -0.004904 -0.014871
95 | -0.008559 -0.010603 -0.019510
96 | -0.004358 -0.016987 -0.010230
97 | -0.007631 -0.015033 -0.017904
98 | -0.005570 -0.016901 -0.012706
99 | -0.004585 -0.017121 -0.011246
100 | -0.004006 -0.015354 -0.008170
101 | -0.003413 -0.016292 -0.008565
102 | -0.007675 -0.001982 -0.003042
103 | -0.007427 -0.005554 -0.003176
104 | -0.007926 -0.004351 -0.002874
105 | -0.001666 -0.013828 -0.009552
106 | -0.000065 -0.005867 -0.012949
107 | -0.006053 -0.007829 -0.005424
108 | -0.005677 -0.006549 -0.003135
109 | -0.004718 -0.014214 -0.021614
110 | -0.005206 -0.015742 -0.019712
111 | -0.005404 0.000039 -0.012475
112 | -0.007502 0.000058 -0.006208
113 | -0.006855 0.000611 -0.004180
114 | -0.005270 -0.010847 -0.021308
115 | -0.000883 0.000801 -0.013188
116 | -0.004431 -0.010212 -0.020754
117 | -0.003306 -0.004762 -0.016230
118 | -0.004664 -0.012864 -0.021759
119 | -0.003295 -0.017593 -0.012944
120 | -0.002150 -0.017489 -0.011006
121 | -0.001458 -0.016456 -0.009369
122 | -0.004657 -0.017254 -0.014231
123 | -0.004604 -0.000817 0.000807
124 | -0.003818 0.001747 -0.000793
125 | -0.004188 -0.003894 0.000611
126 | -0.004779 -0.006340 -0.001310
127 | 0.000039 -0.015470 -0.010812
128 | -0.000152 -0.012892 -0.012256
129 | -0.000838 -0.007878 -0.015907
130 | 0.001051 -0.001320 -0.010576
131 | 0.000100 -0.015191 -0.013799
132 | -0.003846 -0.005330 -0.004887
133 | -0.003384 -0.014449 -0.020631
134 | -0.004181 -0.012441 -0.021804
135 | -0.003760 -0.013173 -0.021654
136 | -0.003487 -0.017108 -0.014412
137 | -0.004120 0.003264 -0.006937
138 | 0.001044 0.003654 -0.008789
139 | -0.000884 0.004358 -0.007097
140 | -0.002253 0.004019 -0.005105
141 | -0.004592 -0.011520 -0.021715
142 | -0.000459 -0.001468 -0.013819
143 | -0.002209 -0.006869 -0.017263
144 | -0.003170 -0.011631 -0.020976
145 | -0.000858 -0.016548 -0.012439
146 | -0.002640 -0.002192 0.001303
147 | -0.001943 0.000426 0.001461
148 | -0.000757 0.002341 0.000302
149 | -0.000242 0.004181 -0.003882
150 | -0.003240 -0.005749 -0.000741
151 | -0.001592 -0.012172 -0.019069
152 | 0.002652 0.000424 -0.006137
153 | 0.002004 0.003846 -0.006249
154 | 0.001949 0.000449 -0.002624
155 | -0.000040 0.003241 -0.001540
156 | 0.001946 0.002109 -0.004869
157 |
158 |
159 |
160 |
161 | 0 1 2
162 | 2 3 0
163 | 4 1 0
164 | 5 0 3
165 | 0 5 6
166 | 6 7 0
167 | 0 7 4
168 | 8 2 1
169 | 1 9 10
170 | 4 9 1
171 | 1 10 11
172 | 11 8 1
173 | 12 3 2
174 | 13 14 2
175 | 13 2 8
176 | 2 15 12
177 | 2 14 15
178 | 3 16 5
179 | 3 17 16
180 | 17 3 12
181 | 4 18 9
182 | 7 19 4
183 | 20 4 19
184 | 4 20 18
185 | 21 5 16
186 | 22 6 5
187 | 22 5 21
188 | 7 6 23
189 | 22 23 6
190 | 24 7 23
191 | 19 7 24
192 | 25 26 8
193 | 8 11 25
194 | 8 26 13
195 | 27 10 9
196 | 28 27 9
197 | 9 29 28
198 | 29 9 18
199 | 11 10 30
200 | 31 10 27
201 | 30 10 32
202 | 33 32 10
203 | 10 31 33
204 | 11 34 25
205 | 11 30 34
206 | 12 35 36
207 | 12 15 35
208 | 37 17 12
209 | 12 36 37
210 | 13 38 14
211 | 38 13 26
212 | 14 38 15
213 | 38 35 15
214 | 21 16 17
215 | 21 17 37
216 | 20 39 18
217 | 18 40 29
218 | 39 40 18
219 | 41 19 42
220 | 42 19 24
221 | 19 41 20
222 | 39 20 41
223 | 43 21 37
224 | 43 44 21
225 | 21 44 22
226 | 45 46 22
227 | 47 45 22
228 | 47 22 44
229 | 23 22 48
230 | 22 46 48
231 | 48 24 23
232 | 48 42 24
233 | 25 49 26
234 | 50 51 25
235 | 34 50 25
236 | 25 51 49
237 | 49 52 26
238 | 38 26 52
239 | 28 53 27
240 | 54 31 27
241 | 54 27 55
242 | 55 27 53
243 | 29 53 28
244 | 56 53 29
245 | 29 40 56
246 | 30 57 34
247 | 32 57 30
248 | 58 33 31
249 | 58 31 54
250 | 33 59 32
251 | 32 59 60
252 | 60 57 32
253 | 33 58 59
254 | 57 50 34
255 | 35 61 36
256 | 38 52 35
257 | 35 52 61
258 | 37 36 61
259 | 37 61 43
260 | 39 41 62
261 | 62 63 39
262 | 39 63 40
263 | 64 65 40
264 | 65 56 40
265 | 40 63 64
266 | 41 42 66
267 | 66 62 41
268 | 48 66 42
269 | 43 61 47
270 | 47 44 43
271 | 45 59 58
272 | 58 46 45
273 | 59 45 67
274 | 67 45 47
275 | 46 58 54
276 | 54 68 46
277 | 46 68 48
278 | 52 47 61
279 | 47 52 49
280 | 49 67 47
281 | 48 68 66
282 | 67 49 51
283 | 51 50 60
284 | 50 57 60
285 | 51 60 67
286 | 56 55 53
287 | 68 54 69
288 | 55 69 54
289 | 55 65 69
290 | 65 55 56
291 | 60 59 67
292 | 70 63 62
293 | 70 62 66
294 | 70 64 63
295 | 64 71 65
296 | 71 64 70
297 | 65 71 69
298 | 70 66 68
299 | 72 68 69
300 | 70 68 72
301 | 72 69 71
302 | 70 72 71
303 |
304 |
305 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426
306 |
307 |
308 |
309 |
310 |
311 |
--------------------------------------------------------------------------------
/TestData/Geometry/scaphoid_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.756283 -0.628058 -0.183248
8 | -0.987479 -0.049826 0.149676
9 | -0.718028 -0.373592 -0.587252
10 | -0.500405 -0.527912 -0.686225
11 | -0.294811 -0.889068 -0.350208
12 | -0.780185 -0.424034 0.459899
13 | -0.540409 -0.838664 -0.067830
14 | -0.622767 -0.764515 0.166367
15 | -0.402198 -0.900425 -0.165744
16 | -0.501666 0.578789 0.642911
17 | -0.908651 0.417036 0.020858
18 | -0.928360 -0.158736 -0.336082
19 | -0.636446 0.164726 0.753526
20 | 0.151268 -0.161676 -0.975182
21 | 0.005035 -0.480153 -0.877170
22 | -0.580456 -0.560503 -0.590684
23 | 0.127418 -0.231226 -0.964520
24 | 0.049079 -0.520769 -0.852286
25 | 0.260803 -0.948818 -0.178116
26 | 0.057191 -0.994472 0.088061
27 | 0.502955 -0.630174 -0.591538
28 | -0.140162 -0.873543 0.466130
29 | -0.120524 -0.362296 0.924238
30 | -0.232925 -0.962474 0.139250
31 | -0.462883 0.766394 0.445398
32 | -0.278339 0.424227 0.861719
33 | 0.119219 0.586429 0.801179
34 | 0.179439 0.603260 0.777096
35 | 0.099929 0.531701 0.841016
36 | -0.857316 0.311268 -0.410026
37 | -0.764135 0.640343 0.077835
38 | -0.742212 0.627300 -0.235830
39 | -0.597171 -0.624735 -0.503083
40 | -0.788272 -0.155731 -0.595294
41 | -0.329818 -0.006263 0.944024
42 | 0.627851 0.119577 -0.769093
43 | 0.913113 -0.183486 -0.364084
44 | 0.249126 -0.766721 -0.591672
45 | -0.092773 -0.942427 -0.321285
46 | 0.600027 -0.790784 0.120949
47 | 0.333826 -0.876439 0.347009
48 | 0.919477 -0.191909 -0.343121
49 | 0.579332 -0.612804 0.537444
50 | 0.574556 -0.147610 0.805045
51 | 0.210071 0.048465 0.976484
52 | -0.535824 0.838553 0.098601
53 | 0.601988 0.612274 0.512573
54 | -0.094390 0.977614 0.188045
55 | 0.084580 0.322474 0.942792
56 | 0.690761 0.269758 0.670880
57 | 0.565083 0.398481 0.722422
58 | 0.588973 0.293777 0.752865
59 | -0.579837 0.175253 -0.795660
60 | -0.511070 0.708199 -0.487096
61 | -0.378425 0.909687 -0.171067
62 | -0.069315 -0.918052 -0.390353
63 | -0.367783 -0.391236 -0.843605
64 | 0.938425 0.128651 -0.320637
65 | 0.969164 -0.177033 0.171407
66 | 0.912678 0.077332 0.401297
67 | 0.915639 -0.329132 0.230819
68 | 0.650875 -0.753296 -0.094382
69 | 0.845559 0.005589 0.533852
70 | 0.973008 -0.227305 0.039853
71 | 0.714360 0.692691 -0.099343
72 | -0.047956 0.963892 -0.261939
73 | 0.246443 -0.295763 -0.922925
74 | 0.100009 0.247683 -0.963665
75 | 0.176607 0.719624 -0.671529
76 | 0.525276 -0.752392 -0.397481
77 | 0.902763 0.302538 -0.305761
78 | 0.871582 -0.034064 -0.489064
79 | 0.621993 0.651892 -0.433776
80 |
81 |
82 |
83 |
84 | -0.007679 -0.014888 0.012198
85 | -0.010032 -0.011440 0.017199
86 | -0.009491 -0.009290 0.008409
87 | -0.006256 -0.014409 0.008465
88 | -0.004358 -0.016987 0.010230
89 | -0.009209 -0.012774 0.018990
90 | -0.005570 -0.016901 0.012706
91 | -0.007631 -0.015033 0.017904
92 | -0.004585 -0.017121 0.011246
93 | -0.009022 -0.004904 0.014871
94 | -0.009608 -0.003219 0.008522
95 | -0.010304 -0.006042 0.008476
96 | -0.008559 -0.010603 0.019510
97 | -0.005647 -0.011193 0.007338
98 | -0.006249 -0.009197 0.006477
99 | -0.007792 -0.006734 0.006118
100 | -0.004006 -0.015354 0.008170
101 | -0.003413 -0.016292 0.008565
102 | -0.002150 -0.017489 0.011006
103 | -0.003295 -0.017593 0.012944
104 | -0.001458 -0.016456 0.009369
105 | -0.005206 -0.015742 0.019712
106 | -0.004718 -0.014214 0.021614
107 | -0.004657 -0.017254 0.014231
108 | -0.005404 0.000039 0.012475
109 | -0.005270 -0.010847 0.021308
110 | -0.000883 0.000801 0.013188
111 | -0.004431 -0.010212 0.020754
112 | -0.003306 -0.004762 0.016230
113 | -0.007675 -0.001982 0.003042
114 | -0.007502 0.000058 0.006208
115 | -0.006855 0.000611 0.004180
116 | -0.007427 -0.005554 0.003176
117 | -0.007926 -0.004351 0.002874
118 | -0.004664 -0.012864 0.021759
119 | -0.001666 -0.013828 0.009552
120 | -0.000065 -0.005867 0.012949
121 | -0.006053 -0.007829 0.005424
122 | -0.005677 -0.006549 0.003135
123 | -0.000858 -0.016548 0.012439
124 | -0.003487 -0.017108 0.014412
125 | 0.000039 -0.015470 0.010812
126 | -0.003384 -0.014449 0.020631
127 | -0.003760 -0.013173 0.021654
128 | -0.004181 -0.012441 0.021804
129 | -0.004120 0.003264 0.006937
130 | 0.001044 0.003654 0.008789
131 | -0.000884 0.004358 0.007097
132 | -0.004592 -0.011520 0.021715
133 | -0.000459 -0.001468 0.013819
134 | -0.002209 -0.006869 0.017263
135 | -0.003170 -0.011631 0.020976
136 | -0.004604 -0.000817 -0.000807
137 | -0.003818 0.001747 0.000793
138 | -0.002253 0.004019 0.005105
139 | -0.004779 -0.006340 0.001310
140 | -0.004188 -0.003894 -0.000611
141 | -0.000152 -0.012892 0.012256
142 | 0.001051 -0.001320 0.010576
143 | -0.000838 -0.007878 0.015907
144 | 0.000100 -0.015191 0.013799
145 | -0.003846 -0.005330 0.004887
146 | -0.001592 -0.012172 0.019069
147 | 0.002652 0.000424 0.006137
148 | 0.002004 0.003846 0.006249
149 | -0.000242 0.004181 0.003882
150 | -0.002640 -0.002192 -0.001303
151 | -0.001943 0.000426 -0.001461
152 | -0.000757 0.002341 -0.000302
153 | -0.003240 -0.005749 0.000741
154 | 0.001946 0.002109 0.004869
155 | 0.001949 0.000449 0.002624
156 | -0.000040 0.003241 0.001540
157 |
158 |
159 |
160 |
161 | 0 1 2
162 | 0 3 4
163 | 2 3 0
164 | 1 0 5
165 | 0 6 7
166 | 5 0 7
167 | 4 8 0
168 | 8 6 0
169 | 9 10 1
170 | 1 10 11
171 | 2 1 11
172 | 12 9 1
173 | 1 5 12
174 | 3 2 13
175 | 14 13 2
176 | 2 15 14
177 | 11 15 2
178 | 13 16 3
179 | 16 17 3
180 | 4 3 17
181 | 18 19 4
182 | 19 8 4
183 | 4 17 20
184 | 20 18 4
185 | 5 21 22
186 | 22 12 5
187 | 7 21 5
188 | 6 23 7
189 | 8 23 6
190 | 21 7 23
191 | 8 19 23
192 | 10 9 24
193 | 25 9 12
194 | 24 9 26
195 | 27 9 25
196 | 9 27 28
197 | 28 26 9
198 | 10 29 11
199 | 10 24 30
200 | 30 31 10
201 | 29 10 31
202 | 11 32 15
203 | 32 11 33
204 | 29 33 11
205 | 22 34 12
206 | 34 25 12
207 | 16 13 35
208 | 13 14 36
209 | 35 13 36
210 | 37 14 15
211 | 14 37 36
212 | 37 15 38
213 | 38 15 32
214 | 17 16 35
215 | 20 17 35
216 | 18 39 19
217 | 39 18 20
218 | 19 40 23
219 | 39 40 19
220 | 41 39 20
221 | 20 35 41
222 | 21 42 22
223 | 21 40 42
224 | 40 21 23
225 | 22 43 44
226 | 22 44 34
227 | 42 43 22
228 | 24 45 30
229 | 24 26 46
230 | 47 24 46
231 | 45 24 47
232 | 34 48 25
233 | 25 48 27
234 | 26 28 49
235 | 46 26 49
236 | 27 50 28
237 | 51 50 27
238 | 27 48 51
239 | 50 49 28
240 | 29 52 33
241 | 31 53 29
242 | 29 53 52
243 | 30 45 31
244 | 31 45 54
245 | 54 53 31
246 | 55 32 56
247 | 38 32 55
248 | 33 56 32
249 | 56 33 52
250 | 34 44 48
251 | 35 57 41
252 | 36 57 35
253 | 36 58 59
254 | 36 59 60
255 | 57 36 60
256 | 61 36 37
257 | 61 58 36
258 | 37 38 61
259 | 38 55 61
260 | 39 60 40
261 | 60 39 41
262 | 42 40 60
263 | 41 57 60
264 | 43 42 62
265 | 60 62 42
266 | 62 51 43
267 | 51 44 43
268 | 51 48 44
269 | 45 47 54
270 | 46 49 58
271 | 58 63 46
272 | 64 46 63
273 | 46 64 47
274 | 64 65 47
275 | 54 47 65
276 | 49 50 59
277 | 59 58 49
278 | 62 50 51
279 | 62 59 50
280 | 66 56 52
281 | 52 67 66
282 | 53 67 52
283 | 53 65 68
284 | 53 54 65
285 | 68 67 53
286 | 69 55 56
287 | 55 69 61
288 | 56 66 69
289 | 61 63 58
290 | 60 59 62
291 | 69 63 61
292 | 64 63 70
293 | 70 63 71
294 | 63 69 71
295 | 72 64 70
296 | 64 72 65
297 | 65 72 68
298 | 66 67 71
299 | 69 66 71
300 | 67 68 71
301 | 71 68 72
302 | 72 70 71
303 |
304 |
305 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426
306 |
307 |
308 |
309 |
310 |
311 |
--------------------------------------------------------------------------------
/TestData/Geometry/trapezoid_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.384101 0.799662 -0.461526
8 | -0.415886 0.854322 0.311724
9 | 0.125313 0.970835 -0.204391
10 | 0.106861 0.415729 -0.903189
11 | -0.798862 0.601322 0.015224
12 | -0.234561 0.382135 -0.893842
13 | 0.066189 0.971918 0.225820
14 | -0.059100 0.897654 0.436721
15 | -0.027330 0.680764 0.731992
16 | -0.439386 0.639542 0.630813
17 | -0.746213 0.509261 0.428741
18 | 0.348987 0.762317 -0.545051
19 | 0.300854 0.953602 -0.011419
20 | 0.058700 0.355338 -0.932893
21 | -0.970131 0.193340 0.146512
22 | -0.649812 -0.090349 -0.754706
23 | 0.007841 -0.244105 -0.969717
24 | 0.021894 0.069582 -0.997336
25 | 0.201064 0.977815 0.058743
26 | 0.160070 0.839922 0.518564
27 | -0.241732 0.346438 0.906392
28 | 0.301970 0.340311 0.890507
29 | 0.201221 0.596659 0.776858
30 | -0.679112 0.041580 0.732856
31 | -0.902679 0.091315 0.420515
32 | 0.376811 0.919803 -0.109435
33 | 0.257761 0.752496 -0.606060
34 | 0.202450 -0.023893 -0.979001
35 | 0.130886 0.377436 -0.916739
36 | -0.354618 -0.754084 -0.552814
37 | -0.735214 -0.677795 -0.007357
38 | -0.033684 -0.655553 -0.754398
39 | -0.178579 -0.550520 -0.815499
40 | 0.109190 -0.348793 -0.930817
41 | 0.304135 0.920570 0.245058
42 | 0.162408 0.577303 0.800216
43 | 0.230626 0.833542 0.502015
44 | 0.237657 -0.188839 0.952816
45 | 0.011540 -0.476152 0.879288
46 | 0.319318 0.295363 0.900442
47 | 0.484358 -0.010218 0.874810
48 | 0.520520 -0.371682 0.768707
49 | 0.548589 -0.027486 0.835640
50 | -0.210464 -0.659069 0.722034
51 | -0.421793 -0.821430 0.383852
52 | 0.324512 0.943913 -0.060995
53 | 0.619125 0.590500 -0.517682
54 | 0.534386 -0.069163 -0.842406
55 | 0.612039 -0.160610 -0.774347
56 | -0.088054 -0.890145 -0.447089
57 | 0.214563 -0.970950 -0.105920
58 | 0.336683 -0.733998 -0.589824
59 | 0.547216 0.200082 0.812725
60 | 0.827707 0.523360 0.202473
61 | 0.402803 -0.764589 0.503144
62 | 0.310053 -0.891156 0.331222
63 | 0.481250 -0.454195 0.749736
64 | 0.819873 -0.326064 0.470628
65 | 0.339489 -0.841865 0.419536
66 | 0.852752 -0.221179 -0.473175
67 | 0.727824 -0.579650 -0.366439
68 | 0.136863 -0.987340 0.080180
69 | 0.943997 -0.227179 -0.239290
70 | 0.317139 -0.786748 0.529577
71 | 0.644655 -0.738141 0.198919
72 |
73 |
74 |
75 |
76 | -0.008342 -0.018183 -0.014597
77 | -0.009152 -0.018579 -0.011381
78 | -0.005640 -0.017322 -0.013969
79 | -0.007001 -0.018645 -0.014963
80 | -0.012866 -0.021554 -0.012787
81 | -0.012424 -0.022626 -0.016288
82 | -0.005005 -0.017888 -0.012336
83 | -0.007020 -0.018929 -0.009347
84 | -0.007563 -0.020459 -0.007417
85 | -0.010093 -0.022503 -0.006132
86 | -0.011256 -0.023327 -0.006809
87 | -0.001362 -0.019175 -0.013396
88 | -0.004191 -0.018032 -0.013093
89 | -0.003985 -0.022220 -0.015605
90 | -0.015117 -0.028125 -0.009671
91 | -0.013952 -0.025192 -0.016289
92 | -0.008494 -0.023872 -0.016299
93 | -0.005123 -0.023686 -0.016152
94 | -0.002906 -0.018125 -0.011902
95 | -0.002581 -0.018806 -0.010179
96 | -0.011297 -0.026951 -0.003743
97 | -0.003941 -0.023957 -0.005821
98 | -0.004254 -0.020008 -0.008510
99 | -0.012474 -0.028571 -0.004128
100 | -0.014417 -0.028937 -0.007008
101 | -0.001115 -0.018735 -0.011972
102 | -0.000022 -0.020573 -0.014252
103 | -0.001224 -0.025076 -0.015969
104 | -0.000670 -0.022598 -0.016138
105 | -0.015018 -0.029889 -0.011884
106 | -0.014657 -0.031399 -0.008937
107 | -0.009016 -0.025610 -0.015160
108 | -0.005093 -0.026480 -0.015521
109 | -0.002014 -0.026752 -0.016319
110 | -0.000975 -0.018851 -0.010678
111 | 0.000393 -0.020715 -0.009054
112 | 0.000162 -0.019606 -0.010179
113 | -0.008555 -0.028758 -0.003451
114 | -0.010598 -0.029688 -0.003593
115 | -0.000543 -0.023223 -0.007838
116 | 0.000435 -0.025272 -0.008175
117 | -0.005145 -0.026982 -0.004535
118 | -0.002120 -0.025547 -0.006657
119 | -0.012061 -0.030866 -0.004507
120 | -0.013586 -0.031691 -0.006527
121 | 0.000064 -0.019271 -0.011494
122 | 0.003124 -0.020047 -0.012583
123 | 0.001188 -0.023096 -0.015732
124 | 0.000251 -0.026604 -0.014827
125 | -0.005381 -0.027753 -0.013416
126 | -0.004604 -0.028868 -0.008963
127 | 0.000311 -0.028088 -0.014934
128 | 0.003134 -0.020914 -0.009476
129 | 0.003037 -0.020042 -0.009983
130 | -0.009495 -0.029858 -0.004318
131 | -0.010578 -0.030830 -0.005160
132 | -0.002701 -0.027032 -0.006592
133 | 0.002668 -0.026728 -0.009571
134 | -0.003522 -0.028118 -0.007517
135 | 0.001687 -0.025174 -0.014231
136 | 0.001560 -0.028112 -0.012979
137 | -0.001446 -0.028733 -0.010162
138 | 0.002534 -0.026384 -0.012282
139 | -0.000805 -0.028194 -0.008836
140 | 0.002377 -0.027334 -0.009885
141 |
142 |
143 |
144 |
145 | 0 1 2
146 | 0 2 3
147 | 1 0 4
148 | 3 5 0
149 | 0 5 4
150 | 1 6 2
151 | 7 1 8
152 | 9 8 1
153 | 10 9 1
154 | 10 1 4
155 | 6 1 7
156 | 11 2 12
157 | 2 11 3
158 | 12 2 6
159 | 13 3 11
160 | 5 3 13
161 | 14 4 15
162 | 15 4 5
163 | 14 10 4
164 | 16 15 5
165 | 17 16 5
166 | 17 5 13
167 | 12 6 18
168 | 6 7 18
169 | 8 19 7
170 | 7 19 18
171 | 8 9 20
172 | 21 22 8
173 | 21 8 20
174 | 8 22 19
175 | 9 10 20
176 | 20 10 23
177 | 14 24 10
178 | 23 10 24
179 | 12 18 11
180 | 18 25 11
181 | 11 25 26
182 | 11 26 13
183 | 13 27 17
184 | 13 28 27
185 | 26 28 13
186 | 29 14 15
187 | 29 30 14
188 | 14 30 24
189 | 29 15 31
190 | 15 16 31
191 | 32 31 16
192 | 16 17 32
193 | 17 33 32
194 | 17 27 33
195 | 25 18 19
196 | 19 34 25
197 | 19 22 35
198 | 34 19 36
199 | 19 35 36
200 | 37 20 38
201 | 38 20 23
202 | 37 21 20
203 | 22 21 39
204 | 39 21 40
205 | 37 41 21
206 | 21 41 42
207 | 40 21 42
208 | 39 35 22
209 | 43 23 44
210 | 24 44 23
211 | 38 23 43
212 | 30 44 24
213 | 45 25 34
214 | 25 45 26
215 | 46 28 26
216 | 26 45 46
217 | 47 48 27
218 | 48 33 27
219 | 47 27 28
220 | 28 46 47
221 | 49 29 31
222 | 50 30 29
223 | 29 49 50
224 | 30 50 44
225 | 31 32 49
226 | 32 33 49
227 | 33 48 51
228 | 33 51 49
229 | 36 45 34
230 | 35 39 52
231 | 35 53 36
232 | 35 52 53
233 | 45 36 53
234 | 54 37 38
235 | 54 41 37
236 | 38 43 55
237 | 54 38 55
238 | 39 40 52
239 | 40 42 56
240 | 40 57 52
241 | 40 56 57
242 | 41 54 58
243 | 56 42 41
244 | 58 56 41
245 | 44 55 43
246 | 44 50 55
247 | 45 53 46
248 | 46 53 59
249 | 59 47 46
250 | 48 47 59
251 | 51 48 60
252 | 59 60 48
253 | 61 50 49
254 | 49 51 61
255 | 55 50 58
256 | 58 50 61
257 | 51 60 61
258 | 52 57 53
259 | 57 62 53
260 | 59 53 62
261 | 54 55 58
262 | 63 56 58
263 | 63 57 56
264 | 62 57 64
265 | 63 64 57
266 | 63 58 61
267 | 60 59 62
268 | 60 62 64
269 | 64 61 60
270 | 61 64 63
271 |
272 |
273 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378
274 |
275 |
276 |
277 |
278 |
279 |
--------------------------------------------------------------------------------
/TestData/Geometry/trapezoid_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.125313 0.970835 0.204391
8 | -0.415886 0.854322 -0.311724
9 | -0.384101 0.799662 0.461526
10 | 0.300854 0.953602 0.011419
11 | 0.348987 0.762317 0.545051
12 | 0.106861 0.415729 0.903189
13 | 0.066189 0.971918 -0.225820
14 | -0.798862 0.601322 -0.015224
15 | -0.027330 0.680764 -0.731992
16 | -0.059100 0.897654 -0.436721
17 | -0.439386 0.639542 -0.630813
18 | -0.746213 0.509261 -0.428741
19 | -0.234561 0.382135 0.893842
20 | 0.201064 0.977815 -0.058743
21 | 0.058700 0.355338 0.932893
22 | 0.376811 0.919803 0.109435
23 | 0.257761 0.752496 0.606060
24 | -0.649812 -0.090349 0.754706
25 | -0.970131 0.193340 -0.146512
26 | -0.241732 0.346438 -0.906392
27 | 0.201221 0.596659 -0.776858
28 | 0.301970 0.340311 -0.890507
29 | 0.160070 0.839922 -0.518564
30 | -0.679112 0.041580 -0.732856
31 | -0.902679 0.091315 -0.420515
32 | 0.007841 -0.244105 0.969717
33 | 0.021894 0.069582 0.997336
34 | 0.202450 -0.023893 0.979001
35 | 0.130886 0.377436 0.916739
36 | 0.304135 0.920570 -0.245058
37 | 0.324512 0.943913 0.060995
38 | 0.619125 0.590500 0.517682
39 | -0.354618 -0.754084 0.552814
40 | -0.033684 -0.655553 0.754398
41 | -0.735214 -0.677795 0.007357
42 | 0.011540 -0.476152 -0.879288
43 | 0.237657 -0.188839 -0.952816
44 | 0.319318 0.295363 -0.900442
45 | 0.162408 0.577303 -0.800216
46 | 0.484358 -0.010218 -0.874810
47 | 0.520520 -0.371682 -0.768707
48 | 0.548589 -0.027486 -0.835640
49 | 0.230626 0.833542 -0.502015
50 | -0.421793 -0.821430 -0.383852
51 | -0.210464 -0.659069 -0.722034
52 | -0.178579 -0.550520 0.815499
53 | 0.109190 -0.348793 0.930817
54 | 0.612039 -0.160610 0.774347
55 | 0.534386 -0.069163 0.842406
56 | 0.827707 0.523360 -0.202473
57 | 0.852752 -0.221179 0.473175
58 | -0.088054 -0.890145 0.447089
59 | 0.214563 -0.970950 0.105920
60 | 0.402803 -0.764589 -0.503144
61 | 0.310053 -0.891156 -0.331222
62 | 0.547216 0.200082 -0.812725
63 | 0.481250 -0.454195 -0.749736
64 | 0.819873 -0.326064 -0.470628
65 | 0.339489 -0.841865 -0.419536
66 | 0.336683 -0.733998 0.589824
67 | 0.727824 -0.579650 0.366439
68 | 0.943997 -0.227179 0.239290
69 | 0.136863 -0.987340 -0.080180
70 | 0.317139 -0.786748 -0.529577
71 | 0.644655 -0.738141 -0.198919
72 |
73 |
74 |
75 |
76 | -0.005640 -0.017322 0.013969
77 | -0.009152 -0.018579 0.011381
78 | -0.008342 -0.018183 0.014597
79 | -0.004191 -0.018032 0.013093
80 | -0.001362 -0.019175 0.013396
81 | -0.007001 -0.018645 0.014963
82 | -0.005005 -0.017888 0.012336
83 | -0.012866 -0.021554 0.012787
84 | -0.007563 -0.020459 0.007417
85 | -0.007020 -0.018929 0.009347
86 | -0.010093 -0.022503 0.006132
87 | -0.011256 -0.023327 0.006809
88 | -0.012424 -0.022626 0.016288
89 | -0.002906 -0.018125 0.011902
90 | -0.003985 -0.022220 0.015605
91 | -0.001115 -0.018735 0.011972
92 | -0.000022 -0.020573 0.014252
93 | -0.013952 -0.025192 0.016289
94 | -0.015117 -0.028125 0.009671
95 | -0.011297 -0.026951 0.003743
96 | -0.004254 -0.020008 0.008510
97 | -0.003941 -0.023957 0.005821
98 | -0.002581 -0.018806 0.010179
99 | -0.012474 -0.028571 0.004128
100 | -0.014417 -0.028937 0.007008
101 | -0.008494 -0.023872 0.016299
102 | -0.005123 -0.023686 0.016152
103 | -0.001224 -0.025076 0.015969
104 | -0.000670 -0.022598 0.016138
105 | -0.000975 -0.018851 0.010678
106 | 0.000064 -0.019271 0.011494
107 | 0.003124 -0.020047 0.012583
108 | -0.015018 -0.029889 0.011884
109 | -0.009016 -0.025610 0.015160
110 | -0.014657 -0.031399 0.008937
111 | -0.010598 -0.029688 0.003593
112 | -0.008555 -0.028758 0.003451
113 | -0.000543 -0.023223 0.007838
114 | 0.000393 -0.020715 0.009054
115 | 0.000435 -0.025272 0.008175
116 | -0.005145 -0.026982 0.004535
117 | -0.002120 -0.025547 0.006657
118 | 0.000162 -0.019606 0.010179
119 | -0.013586 -0.031691 0.006527
120 | -0.012061 -0.030866 0.004507
121 | -0.005093 -0.026480 0.015521
122 | -0.002014 -0.026752 0.016319
123 | 0.000251 -0.026604 0.014827
124 | 0.001188 -0.023096 0.015732
125 | 0.003037 -0.020042 0.009983
126 | 0.001687 -0.025174 0.014231
127 | -0.005381 -0.027753 0.013416
128 | -0.004604 -0.028868 0.008963
129 | -0.009495 -0.029858 0.004318
130 | -0.010578 -0.030830 0.005160
131 | 0.003134 -0.020914 0.009476
132 | -0.002701 -0.027032 0.006592
133 | 0.002668 -0.026728 0.009571
134 | -0.003522 -0.028118 0.007517
135 | 0.000311 -0.028088 0.014934
136 | 0.001560 -0.028112 0.012979
137 | 0.002534 -0.026384 0.012282
138 | -0.001446 -0.028733 0.010162
139 | -0.000805 -0.028194 0.008836
140 | 0.002377 -0.027334 0.009885
141 |
142 |
143 |
144 |
145 | 0 1 2
146 | 3 0 4
147 | 5 0 2
148 | 0 6 1
149 | 5 4 0
150 | 6 0 3
151 | 7 2 1
152 | 8 1 9
153 | 1 8 10
154 | 1 10 11
155 | 7 1 11
156 | 9 1 6
157 | 2 12 5
158 | 7 12 2
159 | 4 13 3
160 | 13 6 3
161 | 4 5 14
162 | 4 15 13
163 | 16 15 4
164 | 14 16 4
165 | 14 5 12
166 | 13 9 6
167 | 17 7 18
168 | 12 7 17
169 | 7 11 18
170 | 19 10 8
171 | 8 20 21
172 | 19 8 21
173 | 9 22 8
174 | 22 20 8
175 | 13 22 9
176 | 19 11 10
177 | 23 11 19
178 | 11 24 18
179 | 24 11 23
180 | 12 17 25
181 | 12 25 26
182 | 14 12 26
183 | 22 13 15
184 | 26 27 14
185 | 27 28 14
186 | 14 28 16
187 | 15 29 22
188 | 29 15 30
189 | 16 30 15
190 | 16 28 31
191 | 31 30 16
192 | 17 18 32
193 | 33 17 32
194 | 33 25 17
195 | 18 34 32
196 | 24 34 18
197 | 35 19 36
198 | 23 19 35
199 | 19 21 36
200 | 37 21 20
201 | 38 20 22
202 | 20 38 37
203 | 39 21 37
204 | 21 40 36
205 | 41 40 21
206 | 41 21 39
207 | 42 22 29
208 | 42 38 22
209 | 43 23 44
210 | 23 43 24
211 | 44 23 35
212 | 24 43 34
213 | 25 33 45
214 | 45 26 25
215 | 45 46 26
216 | 46 27 26
217 | 27 47 48
218 | 27 46 47
219 | 28 27 48
220 | 48 31 28
221 | 29 30 42
222 | 31 49 30
223 | 49 42 30
224 | 50 49 31
225 | 31 48 50
226 | 33 32 51
227 | 32 34 52
228 | 52 51 32
229 | 51 45 33
230 | 43 52 34
231 | 35 36 53
232 | 54 44 35
233 | 54 35 53
234 | 36 40 53
235 | 55 37 38
236 | 55 39 37
237 | 42 49 38
238 | 49 55 38
239 | 56 41 39
240 | 55 57 39
241 | 57 56 39
242 | 58 53 40
243 | 40 41 56
244 | 40 56 58
245 | 44 54 43
246 | 54 52 43
247 | 51 46 45
248 | 59 47 46
249 | 51 59 46
250 | 60 47 59
251 | 47 60 50
252 | 50 48 47
253 | 49 61 57
254 | 61 49 50
255 | 49 57 55
256 | 61 50 60
257 | 51 52 62
258 | 62 59 51
259 | 58 52 54
260 | 62 52 58
261 | 58 54 53
262 | 58 56 63
263 | 56 57 63
264 | 64 57 61
265 | 57 64 63
266 | 62 58 63
267 | 62 60 59
268 | 64 61 60
269 | 60 62 64
270 | 63 64 62
271 |
272 |
273 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378
274 |
275 |
276 |
277 |
278 |
279 |
--------------------------------------------------------------------------------
/TestData/Geometry/triquetrum_lvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 0.121126 -0.174726 -0.977138
8 | -0.324815 0.084002 -0.942040
9 | -0.258180 0.781421 -0.568088
10 | 0.257943 0.806183 -0.532479
11 | 0.272477 -0.766924 -0.581019
12 | 0.302514 -0.788904 -0.534898
13 | 0.289927 -0.025192 -0.956717
14 | 0.187781 -0.695542 -0.693513
15 | -0.853329 0.479610 -0.204459
16 | -0.740014 -0.398208 -0.542043
17 | -0.628527 0.773796 0.078695
18 | -0.039496 0.919321 -0.391521
19 | 0.816589 0.469746 -0.335442
20 | 0.542471 0.495205 -0.678600
21 | 0.758921 0.651023 -0.014417
22 | 0.275945 0.902133 -0.331678
23 | -0.704388 -0.683895 -0.190065
24 | -0.325644 -0.892909 -0.310919
25 | 0.608309 0.103392 -0.786937
26 | 0.458327 -0.474901 -0.751270
27 | 0.265087 -0.568289 -0.778959
28 | 0.696003 -0.431218 -0.574135
29 | -0.916764 0.231952 0.325179
30 | -0.945360 0.178554 0.272788
31 | -0.459553 0.671144 0.581702
32 | -0.255015 0.961583 0.101617
33 | -0.750053 0.366918 0.550265
34 | 0.174452 0.931814 -0.318259
35 | 0.983421 0.165292 -0.074578
36 | 0.838952 -0.026542 -0.543557
37 | 0.726768 0.353360 0.589021
38 | 0.691305 0.576722 0.435303
39 | 0.467102 0.882631 0.052713
40 | 0.990814 0.088974 -0.101840
41 | -0.796091 -0.026515 0.604596
42 | -0.554803 -0.831911 0.010862
43 | -0.714971 -0.283249 0.639208
44 | -0.115021 -0.750945 -0.650271
45 | 0.603702 -0.304887 -0.736605
46 | -0.063231 -0.551945 -0.831480
47 | -0.809548 -0.076952 0.581988
48 | -0.720434 0.155845 0.675786
49 | -0.277891 0.703034 0.654614
50 | -0.412986 0.398628 0.818864
51 | -0.116343 0.904435 0.410440
52 | 0.068339 0.996046 0.056767
53 | -0.638631 -0.145249 0.755681
54 | 0.244316 0.327248 0.912808
55 | 0.256675 -0.156895 0.953678
56 | 0.748137 0.100312 0.655918
57 | 0.223038 0.139402 0.964791
58 | 0.150006 0.824335 0.545866
59 | 0.057236 0.561976 0.825171
60 | 0.895071 -0.160173 0.416164
61 | 0.983231 -0.168160 0.070558
62 | -0.512599 0.028200 0.858165
63 | -0.452072 -0.877814 -0.158344
64 | -0.487862 0.460183 0.741769
65 | -0.385791 -0.894229 0.226980
66 | -0.599170 -0.379411 0.705012
67 | 0.810044 -0.502707 -0.301851
68 | 0.286329 -0.519749 -0.804908
69 | -0.144201 -0.941768 -0.303776
70 | -0.272153 -0.875004 -0.400376
71 | -0.340058 0.096125 0.935479
72 | -0.507988 -0.373055 0.776388
73 | -0.165698 0.274456 0.947216
74 | 0.081101 0.189026 0.978617
75 | 0.380884 -0.486706 0.786158
76 | -0.092989 -0.868000 0.487780
77 | 0.015638 -0.608559 0.793354
78 | 0.134202 0.133576 0.981910
79 | 0.755615 -0.476475 0.449464
80 | 0.460053 -0.705847 0.538637
81 | 0.731715 -0.628895 0.262837
82 | -0.615556 0.338610 0.711642
83 | -0.563189 0.508228 0.651554
84 | -0.225069 0.019410 0.974150
85 | 0.380698 -0.915478 -0.130264
86 | 0.239338 -0.907714 0.344635
87 | -0.702892 0.049703 0.709558
88 | -0.268015 0.438983 0.857591
89 | -0.711139 0.522322 0.470597
90 |
91 |
92 |
93 |
94 | -0.002791 -0.010802 0.013712
95 | -0.008368 -0.012117 0.013576
96 | -0.006227 -0.005999 0.019078
97 | -0.001091 -0.006372 0.017515
98 | -0.007909 -0.012536 0.014026
99 | -0.007617 -0.012699 0.014688
100 | -0.000987 -0.010584 0.014097
101 | -0.000494 -0.012897 0.016195
102 | -0.009177 -0.009207 0.017151
103 | -0.009708 -0.014488 0.015533
104 | -0.006400 -0.005650 0.020172
105 | -0.003519 -0.005579 0.019102
106 | 0.003013 -0.010693 0.016508
107 | 0.001978 -0.010222 0.015438
108 | -0.000791 -0.005790 0.020325
109 | -0.001689 -0.005491 0.019841
110 | -0.010097 -0.016565 0.018456
111 | -0.009056 -0.017487 0.020225
112 | 0.002216 -0.010920 0.015356
113 | 0.002385 -0.011413 0.015601
114 | 0.003258 -0.016033 0.020187
115 | 0.003239 -0.012300 0.017176
116 | -0.009096 -0.011887 0.020008
117 | -0.010015 -0.014486 0.019839
118 | -0.004644 -0.005772 0.022469
119 | -0.005218 -0.005167 0.020918
120 | -0.006913 -0.007970 0.022782
121 | -0.002003 -0.005135 0.020423
122 | 0.003476 -0.011808 0.017776
123 | 0.002814 -0.011144 0.015953
124 | 0.002424 -0.016092 0.027901
125 | -0.000745 -0.006716 0.023729
126 | -0.001315 -0.005069 0.021285
127 | 0.003732 -0.015708 0.020432
128 | -0.009092 -0.016033 0.022175
129 | -0.008198 -0.018093 0.021001
130 | -0.007076 -0.016816 0.023808
131 | -0.006940 -0.018561 0.021244
132 | 0.004109 -0.019388 0.022363
133 | -0.003027 -0.020575 0.022666
134 | -0.007653 -0.011263 0.022316
135 | -0.008356 -0.012954 0.021333
136 | -0.003552 -0.005604 0.022888
137 | -0.004808 -0.009255 0.025027
138 | -0.002989 -0.005079 0.022427
139 | -0.002607 -0.004869 0.021445
140 | -0.006451 -0.011171 0.024242
141 | 0.001621 -0.014616 0.027841
142 | 0.002323 -0.018405 0.028242
143 | 0.003153 -0.017429 0.027982
144 | 0.002073 -0.016547 0.028148
145 | -0.002104 -0.005485 0.023104
146 | -0.001692 -0.007977 0.025261
147 | 0.003779 -0.020365 0.026713
148 | 0.004536 -0.021513 0.024183
149 | -0.005184 -0.013940 0.023544
150 | -0.004869 -0.020067 0.022683
151 | -0.004911 -0.016507 0.025546
152 | -0.002708 -0.021179 0.023933
153 | -0.002433 -0.019899 0.028090
154 | 0.004300 -0.022027 0.023604
155 | 0.003804 -0.022214 0.023276
156 | 0.002064 -0.022265 0.023175
157 | -0.002635 -0.021163 0.023152
158 | -0.000978 -0.011626 0.027022
159 | -0.003518 -0.012404 0.025346
160 | -0.000290 -0.014894 0.027606
161 | 0.001685 -0.017078 0.028214
162 | 0.003351 -0.020710 0.027076
163 | 0.000956 -0.021507 0.025801
164 | -0.000378 -0.020255 0.028184
165 | 0.000936 -0.017747 0.028623
166 | 0.004065 -0.021356 0.025394
167 | 0.003565 -0.021688 0.025807
168 | 0.004235 -0.022046 0.024398
169 | -0.002814 -0.015117 0.023811
170 | -0.003015 -0.016826 0.027882
171 | -0.002162 -0.018023 0.028592
172 | 0.003819 -0.022497 0.023781
173 | 0.003651 -0.022426 0.024456
174 | -0.001664 -0.013749 0.026419
175 | -0.000637 -0.016111 0.028194
176 | -0.002091 -0.015488 0.026291
177 |
178 |
179 |
180 |
181 | 0 1 2
182 | 0 2 3
183 | 4 1 0
184 | 5 4 0
185 | 3 6 0
186 | 7 0 6
187 | 0 7 5
188 | 1 8 2
189 | 9 8 1
190 | 9 1 4
191 | 2 8 10
192 | 11 3 2
193 | 2 10 11
194 | 12 13 3
195 | 14 12 3
196 | 15 14 3
197 | 11 15 3
198 | 3 13 6
199 | 9 4 5
200 | 9 5 16
201 | 5 17 16
202 | 7 17 5
203 | 13 18 6
204 | 6 19 7
205 | 18 19 6
206 | 7 20 17
207 | 7 19 21
208 | 20 7 21
209 | 22 8 9
210 | 10 8 22
211 | 9 23 22
212 | 9 16 23
213 | 10 24 25
214 | 11 10 25
215 | 10 22 26
216 | 24 10 26
217 | 27 11 25
218 | 15 11 27
219 | 13 12 18
220 | 28 12 14
221 | 29 12 28
222 | 18 12 29
223 | 30 14 31
224 | 31 14 32
225 | 14 27 32
226 | 14 15 27
227 | 30 33 14
228 | 28 14 33
229 | 23 16 34
230 | 34 16 17
231 | 35 36 17
232 | 20 37 17
233 | 17 36 34
234 | 37 35 17
235 | 18 29 19
236 | 29 21 19
237 | 20 33 38
238 | 20 39 37
239 | 21 33 20
240 | 39 20 38
241 | 28 21 29
242 | 21 28 33
243 | 40 26 22
244 | 22 23 41
245 | 22 41 40
246 | 23 34 41
247 | 25 24 42
248 | 26 43 24
249 | 24 43 42
250 | 25 42 44
251 | 44 45 25
252 | 45 27 25
253 | 26 40 46
254 | 26 46 43
255 | 32 27 45
256 | 47 30 31
257 | 48 49 30
258 | 50 30 47
259 | 50 48 30
260 | 33 30 49
261 | 32 51 31
262 | 52 31 51
263 | 47 31 52
264 | 51 32 45
265 | 53 33 49
266 | 33 53 54
267 | 38 33 54
268 | 41 34 55
269 | 36 55 34
270 | 36 35 56
271 | 37 56 35
272 | 57 55 36
273 | 36 56 58
274 | 36 58 59
275 | 36 59 57
276 | 37 39 56
277 | 54 60 38
278 | 38 60 61
279 | 38 61 39
280 | 39 62 63
281 | 39 61 62
282 | 56 39 63
283 | 41 55 40
284 | 46 40 55
285 | 44 42 51
286 | 51 42 52
287 | 52 42 43
288 | 52 43 64
289 | 43 46 64
290 | 44 51 45
291 | 55 65 46
292 | 46 65 64
293 | 47 66 67
294 | 50 47 67
295 | 52 64 47
296 | 64 66 47
297 | 68 49 48
298 | 48 69 68
299 | 50 67 48
300 | 69 48 70
301 | 70 48 71
302 | 71 48 67
303 | 49 68 53
304 | 53 72 54
305 | 73 53 68
306 | 73 72 53
307 | 54 74 60
308 | 54 72 74
309 | 55 57 75
310 | 65 55 75
311 | 56 63 58
312 | 59 76 57
313 | 57 76 75
314 | 58 70 59
315 | 62 58 63
316 | 58 69 70
317 | 58 62 69
318 | 59 77 76
319 | 70 77 59
320 | 60 78 61
321 | 60 74 78
322 | 62 61 78
323 | 62 79 69
324 | 62 78 79
325 | 64 65 80
326 | 64 80 66
327 | 65 75 80
328 | 71 67 66
329 | 66 80 81
330 | 81 71 66
331 | 69 73 68
332 | 79 73 69
333 | 77 70 71
334 | 71 81 77
335 | 79 72 73
336 | 72 79 74
337 | 74 79 78
338 | 82 75 76
339 | 80 75 82
340 | 81 82 76
341 | 81 76 77
342 | 80 82 81
343 |
344 |
345 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486
346 |
347 |
348 |
349 |
350 |
351 |
--------------------------------------------------------------------------------
/TestData/Geometry/triquetrum_rvs.vtp:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | -0.258180 0.781421 0.568088
8 | -0.324815 0.084002 0.942040
9 | 0.121126 -0.174726 0.977138
10 | 0.257943 0.806183 0.532479
11 | -0.853329 0.479610 0.204459
12 | -0.628527 0.773796 -0.078695
13 | -0.039496 0.919321 0.391521
14 | -0.740014 -0.398208 0.542043
15 | 0.272477 -0.766924 0.581019
16 | 0.302514 -0.788904 0.534898
17 | 0.289927 -0.025192 0.956717
18 | 0.187781 -0.695542 0.693513
19 | 0.542471 0.495205 0.678600
20 | 0.816589 0.469746 0.335442
21 | 0.758921 0.651023 0.014417
22 | 0.275945 0.902133 0.331678
23 | -0.916764 0.231952 -0.325179
24 | -0.255015 0.961583 -0.101617
25 | -0.459553 0.671144 -0.581702
26 | -0.750053 0.366918 -0.550265
27 | 0.174452 0.931814 0.318259
28 | -0.945360 0.178554 -0.272788
29 | -0.704388 -0.683895 0.190065
30 | -0.325644 -0.892909 0.310919
31 | 0.608309 0.103392 0.786937
32 | 0.458327 -0.474901 0.751270
33 | 0.265087 -0.568289 0.778959
34 | 0.696003 -0.431218 0.574135
35 | 0.983421 0.165292 0.074578
36 | 0.838952 -0.026542 0.543557
37 | 0.691305 0.576722 -0.435303
38 | 0.726768 0.353360 -0.589021
39 | 0.467102 0.882631 -0.052713
40 | 0.990814 0.088974 0.101840
41 | -0.809548 -0.076952 -0.581988
42 | -0.720434 0.155845 -0.675786
43 | -0.277891 0.703034 -0.654614
44 | -0.116343 0.904435 -0.410440
45 | 0.068339 0.996046 -0.056767
46 | -0.412986 0.398628 -0.818864
47 | -0.638631 -0.145249 -0.755681
48 | -0.796091 -0.026515 -0.604596
49 | -0.714971 -0.283249 -0.639208
50 | -0.554803 -0.831911 -0.010862
51 | -0.115021 -0.750945 0.650271
52 | 0.603702 -0.304887 0.736605
53 | -0.063231 -0.551945 0.831480
54 | 0.150006 0.824335 -0.545866
55 | 0.244316 0.327248 -0.912808
56 | 0.057236 0.561976 -0.825171
57 | 0.748137 0.100312 -0.655918
58 | 0.256675 -0.156895 -0.953678
59 | 0.223038 0.139402 -0.964791
60 | 0.895071 -0.160173 -0.416164
61 | 0.983231 -0.168160 -0.070558
62 | -0.512599 0.028200 -0.858165
63 | -0.340058 0.096125 -0.935479
64 | -0.507988 -0.373055 -0.776388
65 | -0.452072 -0.877814 0.158344
66 | -0.487862 0.460183 -0.741769
67 | -0.385791 -0.894229 -0.226980
68 | -0.599170 -0.379411 -0.705012
69 | 0.810044 -0.502707 0.301851
70 | 0.286329 -0.519749 0.804908
71 | -0.272153 -0.875004 0.400376
72 | -0.144201 -0.941768 0.303776
73 | 0.081101 0.189026 -0.978617
74 | -0.165698 0.274456 -0.947216
75 | 0.380884 -0.486706 -0.786158
76 | -0.092989 -0.868000 -0.487780
77 | 0.015638 -0.608559 -0.793354
78 | 0.134202 0.133576 -0.981910
79 | 0.755615 -0.476475 -0.449464
80 | 0.460053 -0.705847 -0.538637
81 | 0.731715 -0.628895 -0.262837
82 | -0.615556 0.338610 -0.711642
83 | -0.702892 0.049703 -0.709558
84 | -0.563189 0.508228 -0.651554
85 | -0.225069 0.019410 -0.974150
86 | 0.380698 -0.915478 0.130264
87 | 0.239338 -0.907714 -0.344635
88 | -0.268015 0.438983 -0.857591
89 | -0.711139 0.522322 -0.470597
90 |
91 |
92 |
93 |
94 | -0.006227 -0.005999 -0.019078
95 | -0.008368 -0.012117 -0.013576
96 | -0.002791 -0.010802 -0.013712
97 | -0.001091 -0.006372 -0.017515
98 | -0.009177 -0.009207 -0.017151
99 | -0.006400 -0.005650 -0.020172
100 | -0.003519 -0.005579 -0.019102
101 | -0.009708 -0.014488 -0.015533
102 | -0.007909 -0.012536 -0.014026
103 | -0.007617 -0.012699 -0.014688
104 | -0.000987 -0.010584 -0.014097
105 | -0.000494 -0.012897 -0.016195
106 | 0.001978 -0.010222 -0.015438
107 | 0.003013 -0.010693 -0.016508
108 | -0.000791 -0.005790 -0.020325
109 | -0.001689 -0.005491 -0.019841
110 | -0.009096 -0.011887 -0.020008
111 | -0.005218 -0.005167 -0.020918
112 | -0.004644 -0.005772 -0.022469
113 | -0.006913 -0.007970 -0.022782
114 | -0.002003 -0.005135 -0.020423
115 | -0.010015 -0.014486 -0.019839
116 | -0.010097 -0.016565 -0.018456
117 | -0.009056 -0.017487 -0.020225
118 | 0.002216 -0.010920 -0.015356
119 | 0.002385 -0.011413 -0.015601
120 | 0.003258 -0.016033 -0.020187
121 | 0.003239 -0.012300 -0.017176
122 | 0.003476 -0.011808 -0.017776
123 | 0.002814 -0.011144 -0.015953
124 | -0.000745 -0.006716 -0.023729
125 | 0.002424 -0.016092 -0.027901
126 | -0.001315 -0.005069 -0.021285
127 | 0.003732 -0.015708 -0.020432
128 | -0.007653 -0.011263 -0.022316
129 | -0.008356 -0.012954 -0.021333
130 | -0.003552 -0.005604 -0.022888
131 | -0.002989 -0.005079 -0.022427
132 | -0.002607 -0.004869 -0.021445
133 | -0.004808 -0.009255 -0.025027
134 | -0.006451 -0.011171 -0.024242
135 | -0.009092 -0.016033 -0.022175
136 | -0.007076 -0.016816 -0.023808
137 | -0.008198 -0.018093 -0.021001
138 | -0.006940 -0.018561 -0.021244
139 | 0.004109 -0.019388 -0.022363
140 | -0.003027 -0.020575 -0.022666
141 | -0.002104 -0.005485 -0.023104
142 | 0.001621 -0.014616 -0.027841
143 | -0.001692 -0.007977 -0.025261
144 | 0.003153 -0.017429 -0.027982
145 | 0.002323 -0.018405 -0.028242
146 | 0.002073 -0.016547 -0.028148
147 | 0.003779 -0.020365 -0.026713
148 | 0.004536 -0.021513 -0.024183
149 | -0.005184 -0.013940 -0.023544
150 | -0.000978 -0.011626 -0.027022
151 | -0.003518 -0.012404 -0.025346
152 | -0.004869 -0.020067 -0.022683
153 | -0.004911 -0.016507 -0.025546
154 | -0.002708 -0.021179 -0.023933
155 | -0.002433 -0.019899 -0.028090
156 | 0.004300 -0.022027 -0.023604
157 | 0.003804 -0.022214 -0.023276
158 | -0.002635 -0.021163 -0.023152
159 | 0.002064 -0.022265 -0.023175
160 | 0.001685 -0.017078 -0.028214
161 | -0.000290 -0.014894 -0.027606
162 | 0.003351 -0.020710 -0.027076
163 | 0.000956 -0.021507 -0.025801
164 | -0.000378 -0.020255 -0.028184
165 | 0.000936 -0.017747 -0.028623
166 | 0.004065 -0.021356 -0.025394
167 | 0.003565 -0.021688 -0.025807
168 | 0.004235 -0.022046 -0.024398
169 | -0.002814 -0.015117 -0.023811
170 | -0.001664 -0.013749 -0.026419
171 | -0.003015 -0.016826 -0.027882
172 | -0.002162 -0.018023 -0.028592
173 | 0.003819 -0.022497 -0.023781
174 | 0.003651 -0.022426 -0.024456
175 | -0.000637 -0.016111 -0.028194
176 | -0.002091 -0.015488 -0.026291
177 |
178 |
179 |
180 |
181 | 0 1 2
182 | 3 0 2
183 | 0 4 1
184 | 5 4 0
185 | 0 3 6
186 | 6 5 0
187 | 1 4 7
188 | 2 1 8
189 | 8 1 7
190 | 2 8 9
191 | 2 10 3
192 | 10 2 11
193 | 9 11 2
194 | 3 12 13
195 | 3 13 14
196 | 3 14 15
197 | 3 15 6
198 | 10 12 3
199 | 7 4 16
200 | 16 4 5
201 | 17 18 5
202 | 17 5 6
203 | 19 16 5
204 | 19 5 18
205 | 17 6 20
206 | 20 6 15
207 | 16 21 7
208 | 21 22 7
209 | 9 8 7
210 | 22 9 7
211 | 22 23 9
212 | 9 23 11
213 | 10 24 12
214 | 11 25 10
215 | 10 25 24
216 | 23 26 11
217 | 27 25 11
218 | 27 11 26
219 | 24 13 12
220 | 14 13 28
221 | 28 13 29
222 | 29 13 24
223 | 30 14 31
224 | 32 14 30
225 | 32 20 14
226 | 20 15 14
227 | 14 33 31
228 | 33 14 28
229 | 16 19 34
230 | 35 21 16
231 | 34 35 16
232 | 36 18 17
233 | 37 36 17
234 | 17 38 37
235 | 17 20 38
236 | 18 39 19
237 | 36 39 18
238 | 40 34 19
239 | 39 40 19
240 | 38 20 32
241 | 41 22 21
242 | 35 41 21
243 | 23 22 41
244 | 23 42 43
245 | 23 44 26
246 | 41 42 23
247 | 23 43 44
248 | 25 29 24
249 | 25 27 29
250 | 45 33 26
251 | 44 46 26
252 | 26 33 27
253 | 45 26 46
254 | 29 27 28
255 | 33 28 27
256 | 30 47 32
257 | 30 31 48
258 | 47 30 49
259 | 49 30 48
260 | 31 50 51
261 | 48 31 52
262 | 31 51 52
263 | 50 31 33
264 | 38 32 47
265 | 50 33 53
266 | 54 53 33
267 | 54 33 45
268 | 34 55 35
269 | 55 34 40
270 | 55 41 35
271 | 47 36 37
272 | 49 36 47
273 | 39 36 49
274 | 38 47 37
275 | 56 39 49
276 | 56 40 39
277 | 40 57 55
278 | 56 57 40
279 | 41 55 42
280 | 58 43 42
281 | 42 55 59
282 | 60 58 42
283 | 61 60 42
284 | 59 61 42
285 | 43 58 44
286 | 58 46 44
287 | 45 62 54
288 | 63 62 45
289 | 46 63 45
290 | 64 65 46
291 | 65 63 46
292 | 64 46 58
293 | 66 67 48
294 | 66 48 52
295 | 48 56 49
296 | 48 67 56
297 | 51 50 68
298 | 53 68 50
299 | 68 69 51
300 | 51 66 52
301 | 70 51 69
302 | 71 51 70
303 | 66 51 71
304 | 54 72 53
305 | 68 53 73
306 | 53 72 73
307 | 62 74 54
308 | 74 72 54
309 | 75 59 55
310 | 75 55 57
311 | 76 57 56
312 | 67 76 56
313 | 76 75 57
314 | 60 64 58
315 | 59 77 61
316 | 75 77 59
317 | 61 70 60
318 | 64 60 65
319 | 70 69 60
320 | 69 65 60
321 | 77 78 61
322 | 61 78 70
323 | 63 79 62
324 | 79 74 62
325 | 79 63 65
326 | 69 80 65
327 | 80 79 65
328 | 67 66 71
329 | 81 76 67
330 | 67 71 81
331 | 68 73 69
332 | 69 73 80
333 | 71 70 78
334 | 78 81 71
335 | 73 72 80
336 | 74 80 72
337 | 79 80 74
338 | 77 75 82
339 | 82 75 76
340 | 81 82 76
341 | 77 82 81
342 | 78 77 81
343 |
344 |
345 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486
346 |
347 |
348 |
349 |
350 |
351 |
--------------------------------------------------------------------------------
/TestData/activationExampleOutput.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/stanfordnmbl/MatlabStaticOptimization/7a54da3008cb9949722681b346ebe8d8f1bf04e7/TestData/activationExampleOutput.jpg
--------------------------------------------------------------------------------
/TestData/results_SO/API_staticOpt_settings.m:
--------------------------------------------------------------------------------
1 | % Custom static optimization code. Author: Scott Uhlrich, Stanford
2 | % University, 2020. Please cite:
3 | % Uhlrich SD, Jackson RW, Seth A, Kolesar JA, Delp SL, 2021.
4 | % Muscle coordination retraining inspired by musculoskeletal simulations: a study on reducing joint loading.
5 | % bioRxiv. doi: https://doi.org/10.1101/2020.12.30.424841.
6 |
7 | function [] = MAIN_StaticOptimizationAPI()
8 | % This main loop allows you to run StaticOptimizationAPI.m
9 |
10 | clear all; close all; format compact; clc; fclose all;
11 |
12 | % % Path to the data and utility functions. No need to change this, unless
13 | % you rearrange the folder structure, differently from github.
14 | baseDir = [pwd '\TestData\'] ; % Base Directory to base results directory.
15 | addpath(genpath('Utilities'))
16 |
17 | % % % Fill Path names
18 | INPUTS.trialname = 'walking_baseline1' ;
19 | INPUTS.forceFilePath = [baseDir '\walking_baseline1_forces.mot'] ; % Full path of forces file
20 | INPUTS.ikFilePath = [baseDir '\results_ik.sto'] ; % Full path of IK file
21 | INPUTS.idFilePath = [baseDir '\results_id.sto'] ; % Full path of ID file
22 | INPUTS.emgFilePath = [baseDir '\EMG_allMuscles.sto'] ; % location of *.mot file with normalized EMG (if using EMG)
23 | INPUTS.outputFilePath = [baseDir '\results_SO\'] ; % full path for SO & JRA outputs
24 | INPUTS.modelDir = [baseDir] ; % full path to folder where model is
25 | INPUTS.modelName = 'Rajagopal_scaled_Sub1_gasAvoid.osim' ; % model file name
26 | geometryPath = [baseDir '\Geometry'] ; % full path to geometry folder for Model. If pointing to Geometry folder in OpenSim install, leave this field blank: []
27 |
28 | % % % Set time for simulation % % %
29 | INPUTS.startTime = 10.9 ;
30 | INPUTS.endTime = 11.7 ;
31 |
32 | INPUTS.leg = 'l' ; % If deleteContralateralMuscles flag is true, actuates this leg
33 | % with muscles and contralateral leg with coordinate actuators
34 | % only. If deleteContralateralMuscles flag is false,
35 | % this input doesn't matter.
36 |
37 | % Flags
38 |
39 | % % Load up the INPUTS structure for static optimization parameters that are constant across all
40 | % trials and subjects
41 | INPUTS.filtFreq = 6 ; % Lowpass filter frequency for IK coordinates. -1 if no filtering
42 |
43 | % Flags
44 | INPUTS.appendActuators = true ; % Append reserve actuators at all coordinates?
45 | INPUTS.appendForces = true ; % True if you want to append grfs?
46 | INPUTS.deleteContralateralMuscles = false ; % replace muscles on contralateral leg with powerful reserve actuators (makes SO faster)
47 | INPUTS.useEmgRatios = false ; % true if you want to track EMG ratios defined in INPUTS.emgRatioPairs
48 | INPUTS.useEqualMuscles = false ; % true if you want to constrain INPUTS.equalMuscles muscle pairs to be equivalent
49 | INPUTS.useEmgConstraints = false ; % true if you want to constrain muscle activations to follow EMG input INPUTS.emgConstrainedMuscles
50 | INPUTS.changePassiveForce = false ; % true if want to turn passive forces off
51 | INPUTS.ignoreTendonCompliance = false ; % true if making all tendons rigid
52 |
53 |
54 | % Degrees of Freedom to ignore (patellar coupler constraints, etc.) during moment matching constraint
55 | INPUTS.fixedDOFs = {'knee_angle_r_beta','knee_angle_l_beta'} ;
56 |
57 | % EMG file
58 | INPUTS.emgRatioPairs = {} ; % nPairs x 2 cell for muscle names whos ratios you want to constrain with EMG. Can leave off '_[leg]' if you want it to apply to both
59 | INPUTS.equalMuscles = {} ; % nPairs x 2 cell of muscles for whom you want equal activations
60 | INPUTS.emgConstrainedMuscles = {} ; % nMuscles x 1 cell of muscles for which you want activation to track EMG. Can leave off '_[leg]' if you want it to apply to both
61 |
62 | INPUTS.emgSumThreshold = 0 ; % If sum of emg pairs is less than this it won't show up in the constraint or cost (wherever you put it)
63 |
64 | % Weights for reserves, muscles. The weight is in
65 | % the cost function as sum(w*(whatever^2)), so the weight is not squared.
66 | INPUTS.reserveActuatorWeights = 1 ;
67 | INPUTS.muscleWeights = 1 ;
68 | INPUTS.ipsilateralActuatorStrength = 1 ;
69 | INPUTS.contralateralActuatorStrength = 100 ;
70 | INPUTS.weightsToOverride = {} ; % Overrides the general actuator weight for muscles or reserves.
71 | % Can be a partial name. Eg. 'hip_rotation' will change hip_rotation_r and hip_rotation_l
72 | % or 'gastroc' to override the weight for the right and left gastroc muscles
73 | INPUTS.overrideWeights = [] ; % A column vector the same size as weights
74 | INPUTS.prescribedActuationCoords = {} ; % A column cell with coordinates (exact name) that will be prescribed from ID moments eg. 'knee_adduction_r'
75 | % The muscles will not aim to balance the moment at this DOF,
76 | % but their contribution to the moment will be computed at the
77 | % end of the optimization step, and the remaining moment generated by
78 | % the reserve actuator
79 |
80 |
81 | % External Forces Definitions
82 | INPUTS.externalForceName = {'GRF_r','GRF_l'} ; % nForces x 1 cell
83 | INPUTS.applied_to_body = {'calcn_r','calcn_l'} ;
84 | INPUTS.force_expressed_in_body = {'ground','ground'} ;
85 | INPUTS.force_identifier = {'ground_force_v','1_ground_force_v'} ;
86 | INPUTS.point_expressed_in_body = {'ground','ground'} ;
87 | INPUTS.point_identifier = {'ground_force_p','1_ground_force_p'} ;
88 |
89 | % Joint Reaction Fields
90 | INPUTS.jRxn.inFrame = 'child' ;
91 | INPUTS.jRxn.onBody = 'child' ;
92 | INPUTS.jRxn.jointNames = ['all'] ;
93 |
94 | INPUTS.passiveForceStrains = [3 4] ; % Default = [0,.7] this is strain at zero force and strain at 1 norm force in Millard model
95 | % This only matters if ignorePassiveForces = true
96 |
97 | % % % % % END OF USER INPUTS % % % % %% % % % %% % % % %% % % % %% % % % %
98 |
99 |
100 | if ~isempty(INPUTS.overrideWeights)
101 | disp('YOU ARE OVERRIDING SOME ACTUATOR WEIGHTS');
102 | end
103 |
104 | if ~isempty(geometryPath)
105 | org.opensim.modeling.ModelVisualizer.addDirToGeometrySearchPaths(geometryPath)
106 | end
107 |
108 | % Run it!
109 | StaticOptimizationAPIVectorized(INPUTS) ; % Run StaticOptimizationAPI
110 |
111 | % Save this script in the folder to reference settings
112 | FileNameAndLocation=[mfilename('fullpath')];
113 | newbackup=[INPUTS.outputFilePath 'API_staticOpt_settings.m'];
114 | currentfile=strcat(FileNameAndLocation, '.m');
115 | copyfile(currentfile,newbackup);
116 |
117 | end % Main
118 |
119 |
--------------------------------------------------------------------------------
/TestData/results_SO/JrxnSetup.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | true
6 |
7 | 1
8 |
9 | Inf
10 |
11 | 1
12 |
13 | true
14 |
15 |
16 |
17 | ground_pelvis hip_r walker_knee_r patellofemoral_r ankle_r subtalar_r mtp_r hip_l walker_knee_l patellofemoral_l ankle_l subtalar_l mtp_l back
18 |
19 | child
20 |
21 | child
22 |
23 |
24 |
--------------------------------------------------------------------------------
/Utilities/CostFunction.m:
--------------------------------------------------------------------------------
1 | function f = CostFunction(coeffs,params) ;
2 | % Runs model simulation for given coefficients, returns integration
3 | % coeffs = initial set of control values
4 | % params = optimization parameters; simulation parameters and
5 | % pointers to instantiated OpenSim objects.
6 |
7 |
8 | vars4Minimization = [1:params.nMuscles, (params.actuatorsForIDmatching + params.nMuscles)] ; % If actuator is on INPUTS.prescribedActuation Coords list, we don't want to minimize its control
9 |
10 | % Compute activation ratios act1/(act1+act2)
11 |
12 | % % Compute Cost Function
13 | activComponent = sum(params.weights(vars4Minimization) .* coeffs(vars4Minimization).^2) ;
14 | if params.useEmgRatios
15 |
16 | % Can put EMG tracking things in the cost function!
17 | % actRatios = coeffs(params.coeffRatioInds(:,1))'./(sum(coeffs(params.coeffRatioInds(:,:))));
18 | % emgRatioComponent = sum(params.weights(params.nActuators+1:params.nActuators+params.nRatios)' .* (actRatios-params.emgRatio_step).^2) ;
19 | emgRatioComponent = 0 ;
20 |
21 | else
22 | emgRatioComponent = 0 ;
23 | end
24 |
25 | f = activComponent + emgRatioComponent ;
26 | % fprintf('activComponent is %.1f and emg component is %.1f \n',activComponent,emgRatioComponent)
27 |
--------------------------------------------------------------------------------
/Utilities/DynamicsConstraint_accelerationMatching.m:
--------------------------------------------------------------------------------
1 | function [c ceq] = DynamicsConstraint(coeffs,params) ;
2 | % Runs model simulation for given coefficients, returns integration
3 | % coeffs = initial set of control values
4 | % params = optimization parameters; simulation parameters and
5 | % pointers to instantiated OpenSim objects.
6 |
7 | % import org.opensim.modeling.*
8 |
9 | % % Get a reference to the model and states
10 | osimModel = params.model ;
11 | state = params.state ;
12 | coords = params.coords ;
13 | muscles = params.muscles ;
14 | nActuators = params.nActuators ;
15 | nFreeCoords = params.nFreeCoords ;
16 | nMuscles = params.nMuscles ;
17 | coordVelNames = params.coordVelNames ;
18 | % stateVectorYMuscleInds = params.stateVectorYMuscleInds;
19 | % stateVectorY = params.stateVectorY ;
20 | controls = params.controls ;
21 | normalMuscInds = params.normalMuscleInds_ML ;
22 |
23 | % % % Set Muscle Activations by changing the state vector directly
24 | %This works the same as setActivation when there aren't reserve actuators.
25 | %But it gives a state error when I turn the reserves on. It was only
26 | %marginally (10%) faster using the arm26 model than setActivation.
27 | % for i = 1:nMuscles
28 | % stateVectorY.set(stateVectorYMuscleInds(i),coeffs(i))
29 | % end
30 | % state.setY(stateVectorY) ;
31 | % osimModel.calcMassCenterVelocity(state) ; % This does realizeDynamics to re initialize position and velocity info for the state
32 |
33 |
34 | % Set coordinate actuator controls
35 | % Assumes you have all coordinates actuated with a coordinate actuator.
36 | % Also assumes coeffs matrix has all muscles first, then coord
37 | % actuators
38 | for i = muscles.getSize:nActuators-1
39 | controls.set(i, coeffs(i+1)) ;
40 | end
41 | osimModel.setControls(state,controls) ;
42 |
43 | % % Special Case Activation Equality Constraints
44 | nRatios = size(params.coeffRatioInds,1) ;
45 | nEquals = size(params.equalMuscleInds_ML,1) ;
46 | actConstraints = zeros(1,nRatios+nEquals) ;
47 |
48 | % % Special Case: Sets muscle activation ratios
49 | if params.useEmgRatios
50 | ineqDif = 0.02 ; % allow this much difference on either side
51 | actRatios = coeffs(params.coeffRatioInds(:,1))'./(sum(coeffs(params.coeffRatioInds(:,:))));
52 | emgWeights = params.weights(nActuators+1:end) ;
53 | actConstraints(1:nRatios) = emgWeights.* (abs(actRatios-params.emgRatio_step)-ineqDif) ;
54 | end
55 |
56 | % % Special Case: Sets muscle activations of some muscles equal to each
57 | % other with some wiggle room
58 | if params.useEqualMuscles
59 | ineqDif = 0.02 ; % allow this much difference on either side
60 | actConstraints(nRatios+1:nRatios+nEquals) = ...
61 | abs((coeffs(params.equalMuscleInds_ML(:,2)) - ...
62 | coeffs(params.equalMuscleInds_ML(:,1)))') - ineqDif ;
63 | end
64 |
65 | % % % Set Muscle Activations the slow way
66 | for i = 1:nMuscles% (IMPROVE ME) this is really slow - it takes ~75% of the whole simulation time
67 | muscles.get(i-1).setActivation(state,coeffs(i)) ;
68 | end
69 |
70 | % % Equillibrate Muscles in Model
71 | osimModel.equilibrateMuscles(state);
72 | % % Get qdd_sim from model - only for the coordinate speeds
73 | osimModel.computeStateVariableDerivatives(state) ; % Osim3.3 gave back a vector here - no such luck in 4.0.
74 |
75 | qdd_sim = zeros(size(params.qddIK_step)) ;
76 | for i = 0:nFreeCoords-1
77 | % qdd_sim(i+1) = stateDerivs.get(params.coordVelIndicies_ML(i+1)-1) ;
78 | qdd_sim(i+1) = osimModel.getStateVariableDerivativeValue(state,coordVelNames{i+1}) ;
79 | end
80 |
81 | % %Compute differences in accelerations
82 | ceq= [qdd_sim-params.qddIK_step] ;
83 | c = actConstraints ;
84 |
85 |
--------------------------------------------------------------------------------
/Utilities/DynamicsConstraint_momentMatching.m:
--------------------------------------------------------------------------------
1 | function [c ceq] = DynamicsConstraint(coeffs,params) ;
2 | % Runs model simulation for given coefficients, returns integration
3 | % coeffs = initial set of control values
4 | % params = optimization parameters; simulation parameters and
5 | % pointers to instantiated OpenSim objects.
6 |
7 | % import org.opensim.modeling.*
8 |
9 | % % Get a reference to the model and states
10 |
11 | % state = params.state ;
12 | % coords = params.coords ;
13 | % muscles = params.muscles ;
14 | nActuators = params.nActuators ;
15 | nFreeCoords = params.nFreeCoords ;
16 | nMuscles = params.nMuscles ;
17 | % coordVelNames = params.coordVelNames ;
18 | % stateVectorYMuscleInds = params.stateVectorYMuscleInds;
19 | % stateVectorY = params.stateVectorY ;
20 | controls = params.controls ;
21 | normalMuscInds = params.normalMuscleInds_ML ;
22 |
23 | % % % Set Muscle Activations by changing the state vector directly
24 | %This works the same as setActivation when there aren't reserve actuators.
25 | %But it gives a state error when I turn the reserves on. It was only
26 | %marginally (10%) faster using the arm26 model than setActivation.
27 | % for i = 1:nMuscles
28 | % stateVectorY.set(stateVectorYMuscleInds(i),coeffs(i))
29 | % end
30 | % state.setY(stateVectorY) ;
31 | % osimModel.calcMassCenterVelocity(state) ; % This does realizeDynamics to re initialize position and velocity info for the state
32 |
33 |
34 | % Set coordinate actuator controls
35 | % Assumes you have all coordinates actuated with a coordinate actuator.
36 | % Also assumes coeffs matrix has all muscles first, then coord
37 | % actuators
38 | % for i = muscles.getSize:nActuators-1
39 | % controls.set(i, coeffs(i+1)) ;
40 | % end
41 | % osimModel.setControls(state,controls) ;
42 |
43 | % % Special Case Activation Equality Constraints
44 | nRatios = size(params.coeffRatioInds,1) ;
45 | nEquals = size(params.equalMuscleInds_ML,1) ;
46 | nConstrained = size(params.coeffEmgConstraintInds,1) ;
47 | actConstraints = zeros(nRatios+nEquals+nConstrained,1) ;
48 |
49 | % % Special Case: Sets muscle activation ratios
50 | if params.useEmgRatios
51 | ineqDif = 0.02 ; % allow this much difference on either side
52 | actRatios = coeffs(params.coeffRatioInds(:,1))'./(sum(coeffs(params.coeffRatioInds(:,:))));
53 | emgWeights = params.weights(nActuators+1:end) ;
54 | actConstraints(1:nRatios,1) = emgWeights' .* abs(actRatios-params.emgRatio_step)-ineqDif ;
55 | end
56 |
57 | % % Special Case: Sets muscle activations of some muscles equal to each
58 | % other with some wiggle room
59 | if params.useEqualMuscles
60 | ineqDif = 0.02 ; % allow this much difference on either side
61 | actConstraints(nRatios+1:nRatios+nEquals,1) = ...
62 | abs((coeffs(params.equalMuscleInds_ML(:,2)) - ...
63 | coeffs(params.equalMuscleInds_ML(:,1)))') - ineqDif ;
64 | end
65 |
66 | % % Special Case: Sets muscle activations of some muscles equal input EMG
67 | % with some wiggle room
68 | if params.useEmgConstraints
69 | ineqDif = 0.02 ; % allow this much difference on either side
70 | actConstraints(nRatios+nEquals+1:nRatios+nEquals+nConstrained,1) = ...
71 | abs(coeffs(params.coeffEmgConstraintInds) - max(params.emgConstraints_step',0)) - ineqDif ;
72 | end
73 |
74 | % % Special Case: Make Sure Actuation of Prescribed Actuators equals ID
75 | % moment
76 |
77 |
78 |
79 | % % % Set Muscle Activations the slow way
80 | % for i = 1:nMuscles% (IMPROVE ME) this is really slow - it takes ~75% of the whole simulation time
81 | % muscles.get(i-1).setActivation(state,coeffs(i)) ;
82 | % end
83 |
84 | % % Compute Model Moments and match with ID moments
85 | MP = params.muscParams ;
86 | moments_sim_muscles = ((coeffs(1:nMuscles)' .* MP.activeForceMult + MP.passiveForce) .* MP.cosAlpha) * MP.momentArms ;
87 | moments_sim_actuators = coeffs(nMuscles+1:nMuscles+nFreeCoords)' .* MP.coordOptForce ;
88 | moments_sim = moments_sim_muscles + moments_sim_actuators ;
89 | matchingInds = params.actuatorsForIDmatching ; % only match with ID moments if not a prescribed actuation coordinate
90 |
91 |
92 | % %Compute differences in accelerations
93 | ceq= [moments_sim(matchingInds) - params.moments_ID(matchingInds)] ;
94 | c = actConstraints ;
95 |
96 |
--------------------------------------------------------------------------------
/Utilities/getMuscleParams.m:
--------------------------------------------------------------------------------
1 | function OUT = getMuscleParams(params,coeffs_initial) ;
2 | % Pre-computes the following variables and stores in structure.
3 | % Note: state must be realized through velocity!
4 | %
5 | % passiveForce = 1 x nMuscles vector of passive muscle forces
6 | % activeForceMult = 1 x nMuscles vector containing sum of F_0_m*f_act(l)*f_act(v)
7 | % cosAlpha = 1 x nMuscles of cosine of pennation angle
8 | % momentArms = nMuscles x nFreeCoords of moment arms
9 | % coordOptForce = 1 x nFreeCoords of optimal force for coordinate actuators
10 |
11 |
12 | import org.opensim.modeling.*
13 |
14 | % Initialize Matricies
15 | OUT.passiveForce = zeros(1,params.nMuscles) ;
16 | OUT.activeForceMult = OUT.passiveForce ;
17 | OUT.cosAlpha = OUT.passiveForce ;
18 | OUT.momentArms = zeros(params.nMuscles,params.nFreeCoords) ;
19 | OUT.coordOptForce = zeros(1,params.nFreeCoords) ;
20 |
21 | if ~params.ignoreTendonCompliance
22 | % try % this is a hack for thelen muscle that doesn't equilibrate sometimes...
23 | for i = 0:params.nMuscles-1
24 | params.muscles.get(i).setActivation(params.state,coeffs_initial(i+1)) ;
25 | end
26 | params.model.equilibrateMuscles(params.state) ;
27 | % catch
28 | % warning('muscles didnt equilibrate - reduced activation 10% to try again')
29 | % for i = 0:params.nMuscles-1
30 | % params.muscles.get(i).setActivation(params.state,0.9*coeffs_initial(i+1)) ;
31 | % end
32 | % params.model.equilibrateMuscles(params.state) ;
33 | % end
34 |
35 |
36 | else % rigid tendon, still equilibrate Muscles (may be unneccesary)
37 | params.model.equilibrateMuscles(params.state) ;
38 | end
39 |
40 | for i = 1:params.nMuscles
41 | OUT.passiveForce(i) = max([params.muscles.get(i-1).getPassiveFiberForce(params.state),0]) ;
42 | OUT.activeForceMult(i) = params.muscles.get(i-1).getActiveForceLengthMultiplier(params.state)* ...
43 | params.muscles.get(i-1).getForceVelocityMultiplier(params.state)* ...
44 | params.muscles.get(i-1).getMaxIsometricForce ;
45 | OUT.cosAlpha(i) = params.muscles.get(i-1).getCosPennationAngle(params.state) ;
46 | for j = 1:params.nFreeCoords
47 | OUT.momentArms(i,j) = params.muscles.get(i-1).computeMomentArm(params.state,params.coords.get(params.freeCoordsNames{j})) ;
48 | end
49 | end
50 |
51 | for i = 1:params.nFreeCoords
52 | thisCoordActuator = CoordinateActuator.safeDownCast(params.actuators.get(params.nMuscles-1+i)) ;
53 | OUT.coordOptForce(i) = thisCoordActuator.get_optimal_force ;
54 | end
55 |
56 |
57 |
58 |
59 |
--------------------------------------------------------------------------------