├── .gitignore ├── LICENSE.md ├── README.md ├── firmware ├── cec-arduino │ ├── CEC.cpp │ ├── CEC.h │ ├── USBComm.cpp │ ├── USBComm.h │ └── cec-arduino.ino └── libraries │ └── usbdrv │ ├── Changelog.txt │ ├── CommercialLicense.txt │ ├── License.txt │ ├── Readme.txt │ ├── USB-ID-FAQ.txt │ ├── USB-IDs-for-free.txt │ ├── asmcommon.inc │ ├── oddebug.c │ ├── oddebug.h │ ├── usbconfig-prototype.h │ ├── usbconfig.h │ ├── usbdrv.c │ ├── usbdrv.h │ ├── usbdrvasm.S │ ├── usbdrvasm.asm │ ├── usbdrvasm12.inc │ ├── usbdrvasm128.inc │ ├── usbdrvasm15.inc │ ├── usbdrvasm16.inc │ ├── usbdrvasm165.inc │ ├── usbdrvasm18-crc.inc │ ├── usbdrvasm20.inc │ └── usbportability.h └── schematic └── CEC_Electrical.png /.gitignore: -------------------------------------------------------------------------------- 1 | # Object files 2 | *.o 3 | *.ko 4 | *.obj 5 | *.elf 6 | 7 | # Precompiled Headers 8 | *.gch 9 | *.pch 10 | 11 | # Libraries 12 | *.lib 13 | *.a 14 | *.la 15 | *.lo 16 | 17 | # Shared objects (inc. Windows DLLs) 18 | *.dll 19 | *.so 20 | *.so.* 21 | *.dylib 22 | 23 | # Executables 24 | *.exe 25 | *.out 26 | *.app 27 | *.i*86 28 | *.x86_64 29 | *.hex 30 | 31 | # Debug files 32 | *.dSYM/ 33 | 34 | # Additional folders 35 | misc* -------------------------------------------------------------------------------- /LICENSE.md: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 2, June 1991 3 | 4 | Copyright (C) 1989, 1991 Free Software Foundation, Inc., 5 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 6 | Everyone is permitted to copy and distribute verbatim copies 7 | of this license document, but changing it is not allowed. 8 | 9 | Preamble 10 | 11 | The licenses for most software are designed to take away your 12 | freedom to share and change it. By contrast, the GNU General Public 13 | License is intended to guarantee your freedom to share and change free 14 | software--to make sure the software is free for all its users. This 15 | General Public License applies to most of the Free Software 16 | Foundation's software and to any other program whose authors commit to 17 | using it. (Some other Free Software Foundation software is covered by 18 | the GNU Lesser General Public License instead.) You can apply it to 19 | your programs, too. 20 | 21 | When we speak of free software, we are referring to freedom, not 22 | price. Our General Public Licenses are designed to make sure that you 23 | have the freedom to distribute copies of free software (and charge for 24 | this service if you wish), that you receive source code or can get it 25 | if you want it, that you can change the software or use pieces of it 26 | in new free programs; and that you know you can do these things. 27 | 28 | To protect your rights, we need to make restrictions that forbid 29 | anyone to deny you these rights or to ask you to surrender the rights. 30 | These restrictions translate to certain responsibilities for you if you 31 | distribute copies of the software, or if you modify it. 32 | 33 | For example, if you distribute copies of such a program, whether 34 | gratis or for a fee, you must give the recipients all the rights that 35 | you have. You must make sure that they, too, receive or can get the 36 | source code. And you must show them these terms so they know their 37 | rights. 38 | 39 | We protect your rights with two steps: (1) copyright the software, and 40 | (2) offer you this license which gives you legal permission to copy, 41 | distribute and/or modify the software. 42 | 43 | Also, for each author's protection and ours, we want to make certain 44 | that everyone understands that there is no warranty for this free 45 | software. If the software is modified by someone else and passed on, we 46 | want its recipients to know that what they have is not the original, so 47 | that any problems introduced by others will not reflect on the original 48 | authors' reputations. 49 | 50 | Finally, any free program is threatened constantly by software 51 | patents. We wish to avoid the danger that redistributors of a free 52 | program will individually obtain patent licenses, in effect making the 53 | program proprietary. To prevent this, we have made it clear that any 54 | patent must be licensed for everyone's free use or not licensed at all. 55 | 56 | The precise terms and conditions for copying, distribution and 57 | modification follow. 58 | 59 | GNU GENERAL PUBLIC LICENSE 60 | TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 61 | 62 | 0. This License applies to any program or other work which contains 63 | a notice placed by the copyright holder saying it may be distributed 64 | under the terms of this General Public License. The "Program", below, 65 | refers to any such program or work, and a "work based on the Program" 66 | means either the Program or any derivative work under copyright law: 67 | that is to say, a work containing the Program or a portion of it, 68 | either verbatim or with modifications and/or translated into another 69 | language. (Hereinafter, translation is included without limitation in 70 | the term "modification".) Each licensee is addressed as "you". 71 | 72 | Activities other than copying, distribution and modification are not 73 | covered by this License; they are outside its scope. The act of 74 | running the Program is not restricted, and the output from the Program 75 | is covered only if its contents constitute a work based on the 76 | Program (independent of having been made by running the Program). 77 | Whether that is true depends on what the Program does. 78 | 79 | 1. You may copy and distribute verbatim copies of the Program's 80 | source code as you receive it, in any medium, provided that you 81 | conspicuously and appropriately publish on each copy an appropriate 82 | copyright notice and disclaimer of warranty; keep intact all the 83 | notices that refer to this License and to the absence of any warranty; 84 | and give any other recipients of the Program a copy of this License 85 | along with the Program. 86 | 87 | You may charge a fee for the physical act of transferring a copy, and 88 | you may at your option offer warranty protection in exchange for a fee. 89 | 90 | 2. You may modify your copy or copies of the Program or any portion 91 | of it, thus forming a work based on the Program, and copy and 92 | distribute such modifications or work under the terms of Section 1 93 | above, provided that you also meet all of these conditions: 94 | 95 | a) You must cause the modified files to carry prominent notices 96 | stating that you changed the files and the date of any change. 97 | 98 | b) You must cause any work that you distribute or publish, that in 99 | whole or in part contains or is derived from the Program or any 100 | part thereof, to be licensed as a whole at no charge to all third 101 | parties under the terms of this License. 102 | 103 | c) If the modified program normally reads commands interactively 104 | when run, you must cause it, when started running for such 105 | interactive use in the most ordinary way, to print or display an 106 | announcement including an appropriate copyright notice and a 107 | notice that there is no warranty (or else, saying that you provide 108 | a warranty) and that users may redistribute the program under 109 | these conditions, and telling the user how to view a copy of this 110 | License. (Exception: if the Program itself is interactive but 111 | does not normally print such an announcement, your work based on 112 | the Program is not required to print an announcement.) 113 | 114 | These requirements apply to the modified work as a whole. If 115 | identifiable sections of that work are not derived from the Program, 116 | and can be reasonably considered independent and separate works in 117 | themselves, then this License, and its terms, do not apply to those 118 | sections when you distribute them as separate works. But when you 119 | distribute the same sections as part of a whole which is a work based 120 | on the Program, the distribution of the whole must be on the terms of 121 | this License, whose permissions for other licensees extend to the 122 | entire whole, and thus to each and every part regardless of who wrote it. 123 | 124 | Thus, it is not the intent of this section to claim rights or contest 125 | your rights to work written entirely by you; rather, the intent is to 126 | exercise the right to control the distribution of derivative or 127 | collective works based on the Program. 128 | 129 | In addition, mere aggregation of another work not based on the Program 130 | with the Program (or with a work based on the Program) on a volume of 131 | a storage or distribution medium does not bring the other work under 132 | the scope of this License. 133 | 134 | 3. You may copy and distribute the Program (or a work based on it, 135 | under Section 2) in object code or executable form under the terms of 136 | Sections 1 and 2 above provided that you also do one of the following: 137 | 138 | a) Accompany it with the complete corresponding machine-readable 139 | source code, which must be distributed under the terms of Sections 140 | 1 and 2 above on a medium customarily used for software interchange; or, 141 | 142 | b) Accompany it with a written offer, valid for at least three 143 | years, to give any third party, for a charge no more than your 144 | cost of physically performing source distribution, a complete 145 | machine-readable copy of the corresponding source code, to be 146 | distributed under the terms of Sections 1 and 2 above on a medium 147 | customarily used for software interchange; or, 148 | 149 | c) Accompany it with the information you received as to the offer 150 | to distribute corresponding source code. (This alternative is 151 | allowed only for noncommercial distribution and only if you 152 | received the program in object code or executable form with such 153 | an offer, in accord with Subsection b above.) 154 | 155 | The source code for a work means the preferred form of the work for 156 | making modifications to it. For an executable work, complete source 157 | code means all the source code for all modules it contains, plus any 158 | associated interface definition files, plus the scripts used to 159 | control compilation and installation of the executable. However, as a 160 | special exception, the source code distributed need not include 161 | anything that is normally distributed (in either source or binary 162 | form) with the major components (compiler, kernel, and so on) of the 163 | operating system on which the executable runs, unless that component 164 | itself accompanies the executable. 165 | 166 | If distribution of executable or object code is made by offering 167 | access to copy from a designated place, then offering equivalent 168 | access to copy the source code from the same place counts as 169 | distribution of the source code, even though third parties are not 170 | compelled to copy the source along with the object code. 171 | 172 | 4. You may not copy, modify, sublicense, or distribute the Program 173 | except as expressly provided under this License. Any attempt 174 | otherwise to copy, modify, sublicense or distribute the Program is 175 | void, and will automatically terminate your rights under this License. 176 | However, parties who have received copies, or rights, from you under 177 | this License will not have their licenses terminated so long as such 178 | parties remain in full compliance. 179 | 180 | 5. You are not required to accept this License, since you have not 181 | signed it. However, nothing else grants you permission to modify or 182 | distribute the Program or its derivative works. These actions are 183 | prohibited by law if you do not accept this License. Therefore, by 184 | modifying or distributing the Program (or any work based on the 185 | Program), you indicate your acceptance of this License to do so, and 186 | all its terms and conditions for copying, distributing or modifying 187 | the Program or works based on it. 188 | 189 | 6. Each time you redistribute the Program (or any work based on the 190 | Program), the recipient automatically receives a license from the 191 | original licensor to copy, distribute or modify the Program subject to 192 | these terms and conditions. You may not impose any further 193 | restrictions on the recipients' exercise of the rights granted herein. 194 | You are not responsible for enforcing compliance by third parties to 195 | this License. 196 | 197 | 7. If, as a consequence of a court judgment or allegation of patent 198 | infringement or for any other reason (not limited to patent issues), 199 | conditions are imposed on you (whether by court order, agreement or 200 | otherwise) that contradict the conditions of this License, they do not 201 | excuse you from the conditions of this License. If you cannot 202 | distribute so as to satisfy simultaneously your obligations under this 203 | License and any other pertinent obligations, then as a consequence you 204 | may not distribute the Program at all. For example, if a patent 205 | license would not permit royalty-free redistribution of the Program by 206 | all those who receive copies directly or indirectly through you, then 207 | the only way you could satisfy both it and this License would be to 208 | refrain entirely from distribution of the Program. 209 | 210 | If any portion of this section is held invalid or unenforceable under 211 | any particular circumstance, the balance of the section is intended to 212 | apply and the section as a whole is intended to apply in other 213 | circumstances. 214 | 215 | It is not the purpose of this section to induce you to infringe any 216 | patents or other property right claims or to contest validity of any 217 | such claims; this section has the sole purpose of protecting the 218 | integrity of the free software distribution system, which is 219 | implemented by public license practices. Many people have made 220 | generous contributions to the wide range of software distributed 221 | through that system in reliance on consistent application of that 222 | system; it is up to the author/donor to decide if he or she is willing 223 | to distribute software through any other system and a licensee cannot 224 | impose that choice. 225 | 226 | This section is intended to make thoroughly clear what is believed to 227 | be a consequence of the rest of this License. 228 | 229 | 8. If the distribution and/or use of the Program is restricted in 230 | certain countries either by patents or by copyrighted interfaces, the 231 | original copyright holder who places the Program under this License 232 | may add an explicit geographical distribution limitation excluding 233 | those countries, so that distribution is permitted only in or among 234 | countries not thus excluded. In such case, this License incorporates 235 | the limitation as if written in the body of this License. 236 | 237 | 9. The Free Software Foundation may publish revised and/or new versions 238 | of the General Public License from time to time. Such new versions will 239 | be similar in spirit to the present version, but may differ in detail to 240 | address new problems or concerns. 241 | 242 | Each version is given a distinguishing version number. If the Program 243 | specifies a version number of this License which applies to it and "any 244 | later version", you have the option of following the terms and conditions 245 | either of that version or of any later version published by the Free 246 | Software Foundation. If the Program does not specify a version number of 247 | this License, you may choose any version ever published by the Free Software 248 | Foundation. 249 | 250 | 10. If you wish to incorporate parts of the Program into other free 251 | programs whose distribution conditions are different, write to the author 252 | to ask for permission. For software which is copyrighted by the Free 253 | Software Foundation, write to the Free Software Foundation; we sometimes 254 | make exceptions for this. Our decision will be guided by the two goals 255 | of preserving the free status of all derivatives of our free software and 256 | of promoting the sharing and reuse of software generally. 257 | 258 | NO WARRANTY 259 | 260 | 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY 261 | FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN 262 | OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES 263 | PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED 264 | OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 265 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS 266 | TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE 267 | PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, 268 | REPAIR OR CORRECTION. 269 | 270 | 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 271 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR 272 | REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, 273 | INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING 274 | OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED 275 | TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY 276 | YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER 277 | PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 278 | POSSIBILITY OF SUCH DAMAGES. 279 | 280 | END OF TERMS AND CONDITIONS 281 | 282 | How to Apply These Terms to Your New Programs 283 | 284 | If you develop a new program, and you want it to be of the greatest 285 | possible use to the public, the best way to achieve this is to make it 286 | free software which everyone can redistribute and change under these terms. 287 | 288 | To do so, attach the following notices to the program. It is safest 289 | to attach them to the start of each source file to most effectively 290 | convey the exclusion of warranty; and each file should have at least 291 | the "copyright" line and a pointer to where the full notice is found. 292 | 293 | {description} 294 | Copyright (C) {year} {fullname} 295 | 296 | This program is free software; you can redistribute it and/or modify 297 | it under the terms of the GNU General Public License as published by 298 | the Free Software Foundation; either version 2 of the License, or 299 | (at your option) any later version. 300 | 301 | This program is distributed in the hope that it will be useful, 302 | but WITHOUT ANY WARRANTY; without even the implied warranty of 303 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 304 | GNU General Public License for more details. 305 | 306 | You should have received a copy of the GNU General Public License along 307 | with this program; if not, write to the Free Software Foundation, Inc., 308 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 309 | 310 | Also add information on how to contact you by electronic and paper mail. 311 | 312 | If the program is interactive, make it output a short notice like this 313 | when it starts in an interactive mode: 314 | 315 | Gnomovision version 69, Copyright (C) year name of author 316 | Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 317 | This is free software, and you are welcome to redistribute it 318 | under certain conditions; type `show c' for details. 319 | 320 | The hypothetical commands `show w' and `show c' should show the appropriate 321 | parts of the General Public License. Of course, the commands you use may 322 | be called something other than `show w' and `show c'; they could even be 323 | mouse-clicks or menu items--whatever suits your program. 324 | 325 | You should also get your employer (if you work as a programmer) or your 326 | school, if any, to sign a "copyright disclaimer" for the program, if 327 | necessary. Here is a sample; alter the names: 328 | 329 | Yoyodyne, Inc., hereby disclaims all copyright interest in the program 330 | `Gnomovision' (which makes passes at compilers) written by James Hacker. 331 | 332 | {signature of Ty Coon}, 1 April 1989 333 | Ty Coon, President of Vice 334 | 335 | This General Public License does not permit incorporating your program into 336 | proprietary programs. If your program is a subroutine library, you may 337 | consider it more useful to permit linking proprietary applications with the 338 | library. If this is what you want to do, use the GNU Lesser General 339 | Public License instead of this License. 340 | 341 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | CEC portion of this code is a compilation of work done by phil123 and AndrewNC: https://code.google.com/p/cec-arduino/ 2 | Code license: GNU GPL v2 3 | 4 | Some additional CEC work posted by Biffidus over at Arduino forum: http://forum.arduino.cc/index.php?topic=22327.60 5 | No license posted. 6 | 7 | HID-class USB communication using V-USB adopted to Arduino by Ray Wang at Rayshobby LLC: https://github.com/rayshobby/hid-serial 8 | Creative Commons Attribution-ShareAlike (CC-SA) 3.0 license. 9 | 10 | ## Overview 11 | 12 | This is an Arduino project which implements the HDMI v1.3a CEC wire protocol which allows communication with HDMI CEC capable devices. A typical usage scenario would be a Home Theater PC environment which uses HDMI but does not support CEC. This would allow the HTPC to communicate with other HDMI CEC equipment. 13 | 14 | Tested with Arduino 1.6.5 using ATtiny85. 15 | 16 | Here is the folder structure: 17 | - firmware 18 | - cec-arduino -- contains Arduino code. 19 | - libraries -- contains V-USB library that needs to be copied into your Arduino libraries folder. 20 | - schematic -- contains cirtcuit schematic for interfacing Arduino/ATtiny85 to HDMI CEC line. 21 | 22 | ## Other Resources 23 | 24 | See http://www.cec-o-matic.com/index.php for a list of CEC op-codes. -------------------------------------------------------------------------------- /firmware/cec-arduino/CEC.h: -------------------------------------------------------------------------------- 1 | #ifndef CEC_H__ 2 | #define CEC_H__ 3 | 4 | extern "C" 5 | { 6 | extern unsigned long micros(); 7 | extern void delayMicroseconds(unsigned int); 8 | } 9 | 10 | #define ASSERT(x) ((void)0) 11 | #define NULL 0 12 | 13 | #define SERIAL_BUFFER_SIZE 16 14 | #define CEC_E_MAX_RETRANSMIT 5 15 | 16 | class CEC_Device 17 | { 18 | public: 19 | CEC_Device(int physicalAddress); 20 | 21 | // From SerialLine 22 | void ClearTransmitBuffer(); 23 | bool Transmit(unsigned char* buffer, int count); 24 | bool TransmitPartial(unsigned char* buffer, int count); 25 | 26 | // From CEC_Electrical 27 | void Initialize(); 28 | void SetAddress(int address); 29 | 30 | unsigned long Process(); 31 | bool TransmitPending() { return _primaryState == CEC_E_TRANSMIT && _secondaryState == CEC_E_IDLE_WAIT; } 32 | 33 | int Promiscuous; 34 | int MonitorMode; 35 | 36 | // From CEC_LogicalDevice 37 | typedef enum { 38 | CDT_TV, 39 | CDT_RECORDING_DEVICE, 40 | CDT_PLAYBACK_DEVICE, 41 | CDT_TUNER, 42 | CDT_AUDIO_SYSTEM, 43 | CDT_OTHER, // Not a real CEC type.. 44 | } CEC_DEVICE_TYPE; 45 | 46 | void Initialize(CEC_DEVICE_TYPE type); 47 | 48 | void Run(); 49 | bool TransmitFrame(int targetAddress, unsigned char* buffer, int count); 50 | 51 | // From CEC_Device 52 | //void Run(); 53 | 54 | 55 | protected: 56 | // From SerialLine 57 | unsigned char _transmitBuffer[SERIAL_BUFFER_SIZE]; 58 | unsigned char _receiveBuffer[SERIAL_BUFFER_SIZE]; 59 | int _transmitBufferCount; 60 | int _transmitBufferBit; 61 | int _transmitBufferByte; 62 | int _receiveBufferCount; 63 | int _receiveBufferBit; 64 | int _receiveBufferByte; 65 | 66 | //virtual void OnTransmitBegin() {;} 67 | void OnReceiveComplete(unsigned char* buffer, int count); 68 | 69 | int PopTransmitBit(); 70 | int RemainingTransmitBytes(); 71 | int TransmitSize(); 72 | void ResetTransmitBuffer(); 73 | 74 | void PushReceiveBit(int); 75 | int ReceivedBytes(); 76 | void ResetReceiveBuffer(); 77 | 78 | // From CEC_Electrical 79 | //virtual bool LineState() = 0; 80 | //virtual void SetLineState(bool) = 0; 81 | 82 | // From CEC_LogicalDevice 83 | //virtual bool IsISRTriggered() = 0; 84 | 85 | bool ProcessStateMachine(bool* success); 86 | 87 | //void OnReceiveComplete(unsigned char* buffer, int count); 88 | void OnTransmitComplete(bool); 89 | 90 | //virtual void OnReady() {;} 91 | //virtual void OnReceive(int sourceAddress, int targetAddress, unsigned char* buffer, int count) = 0; 92 | 93 | // From CEC_Device 94 | bool LineState(); 95 | void SetLineState(bool); 96 | void SignalIRQ(); 97 | bool IsISRTriggered(); 98 | //virtual bool IsISRTriggered2() { return _isrTriggered; } 99 | 100 | void OnReady(); 101 | //void OnReceive(int source, int dest, unsigned char* buffer, int count); 102 | 103 | private: 104 | // From SerialLine 105 | 106 | // From CEC_Electrical 107 | typedef enum { 108 | CEC_E_IDLE, 109 | CEC_E_TRANSMIT, 110 | CEC_E_RECEIVE, 111 | } CEC_E_PRIMARY_STATE; 112 | 113 | typedef enum { 114 | CEC_E_RCV_STARTBIT1, 115 | CEC_E_RCV_STARTBIT2, 116 | CEC_E_RCV_DATABIT1, 117 | CEC_E_RCV_DATABIT2, 118 | CEC_E_RCV_ACK_SENT, 119 | CEC_E_RCV_ACK1, 120 | CEC_E_RCV_ACK2, 121 | CEC_E_RCV_LINEERROR, 122 | 123 | CEC_E_IDLE_WAIT, 124 | CEC_E_XMIT_STARTBIT1, 125 | CEC_E_XMIT_STARTBIT2, 126 | CEC_E_XMIT_DATABIT1, 127 | CEC_E_XMIT_DATABIT2, 128 | CEC_E_XMIT_ACK, 129 | CEC_E_XMIT_ACK2, 130 | CEC_E_XMIT_ACK3, 131 | CEC_E_XMIT_ACK_TEST, 132 | } CEC_E_SECONDARY_STATE; 133 | 134 | typedef enum { 135 | CEC_E_RCV_BIT0, 136 | CEC_E_RCV_BIT1, 137 | CEC_E_RCV_BIT2, 138 | CEC_E_RCV_BIT3, 139 | CEC_E_RCV_BIT4, 140 | CEC_E_RCV_BIT5, 141 | CEC_E_RCV_BIT6, 142 | CEC_E_RCV_BIT7, 143 | CEC_E_RCV_BIT_EOM, 144 | CEC_E_RCV_BIT_ACK, 145 | 146 | CEC_E_ACK, 147 | CEC_E_NAK, 148 | 149 | CEC_E_XMIT_BIT0, 150 | CEC_E_XMIT_BIT1, 151 | CEC_E_XMIT_BIT2, 152 | CEC_E_XMIT_BIT3, 153 | CEC_E_XMIT_BIT4, 154 | CEC_E_XMIT_BIT5, 155 | CEC_E_XMIT_BIT6, 156 | CEC_E_XMIT_BIT7, 157 | CEC_E_XMIT_BIT_EOM, 158 | CEC_E_XMIT_BIT_ACK, 159 | 160 | 161 | CEC_E_IDLE_RETRANSMIT_FRAME, 162 | CEC_E_IDLE_NEW_FRAME, 163 | CEC_E_IDLE_SUBSEQUENT_FRAME, 164 | } CEC_E_TERTIARY_STATE; 165 | 166 | 167 | bool ResetState(); 168 | void ResetTransmit(bool retransmit); 169 | void OnTransmitBegin(); 170 | //virtual void OnTransmitComplete(bool) {;} 171 | 172 | void ProcessFrame(); 173 | 174 | // Helper functions 175 | bool Raise(); 176 | bool Lower(); 177 | void HasRaised(unsigned long); 178 | void HasLowered(unsigned long); 179 | bool CheckAddress(); 180 | void ReceivedBit(bool); 181 | unsigned long LineError(); 182 | 183 | int _address; 184 | 185 | bool _lastLineState; 186 | unsigned long _lastStateChangeTime; 187 | unsigned long _bitStartTime; 188 | 189 | int _xmitretry; 190 | 191 | bool _eom; 192 | bool _follower; 193 | bool _broadcast; 194 | bool _amLastTransmittor; 195 | bool _transmitPending; 196 | 197 | CEC_E_PRIMARY_STATE _e_primaryState; 198 | CEC_E_SECONDARY_STATE _e_secondaryState; 199 | CEC_E_TERTIARY_STATE _e_tertiaryState; 200 | int _tertiaryState; 201 | 202 | // From CEC_LogicalDevice 203 | typedef enum { 204 | CLA_TV = 0, 205 | CLA_RECORDING_DEVICE_1, 206 | CLA_RECORDING_DEVICE_2, 207 | CLA_TUNER_1, 208 | CLA_PLAYBACK_DEVICE_1, 209 | CLA_AUDIO_SYSTEM, 210 | CLA_TUNER_2, 211 | CLA_TUNER_3, 212 | CLA_PLAYBACK_DEVICE_2, 213 | CLA_RECORDING_DEVICE_3, 214 | CLA_TUNER_4, 215 | CLA_PLAYBACK_DEVICE_3, 216 | CLA_RESERVED_1, 217 | CLA_RESERVED_2, 218 | CLA_FREE_USE, 219 | CLA_UNREGISTERED, 220 | } CEC_LOGICAL_ADDRESS; 221 | 222 | typedef enum { 223 | CEC_IDLE, 224 | CEC_READY, 225 | CEC_ALLOCATE_LOGICAL_ADDRESS, 226 | } CEC_PRIMARY_STATE; 227 | 228 | typedef enum { 229 | CEC_XMIT_POLLING_MESSAGE, 230 | CEC_RCV_POLLING_MESSAGE, 231 | } CEC_SECONDARY_STATE; 232 | 233 | typedef enum { 234 | } CEC_TERTIARY_STATE; 235 | 236 | static int _validLogicalAddresses[6][5]; 237 | int _physicalAddress; 238 | int _logicalAddress; 239 | bool _done; 240 | unsigned long _waitTime; 241 | 242 | CEC_PRIMARY_STATE _primaryState; 243 | CEC_DEVICE_TYPE _deviceType; 244 | CEC_SECONDARY_STATE _secondaryState; 245 | //int _tertiaryState; 246 | 247 | // From CEC_Device 248 | friend void User_SetLineState(CEC_Device* device, bool state); 249 | friend bool User_GetLineState(); 250 | bool _isrTriggered; 251 | bool _lastLineState2; 252 | 253 | // Custom 254 | friend void User_OnReady(); 255 | //friend void User_OnReceive(int source, int dest, unsigned char* rxBuffer, int count); 256 | friend void User_OnReceive(unsigned char* rxBuffer, int count); 257 | 258 | }; 259 | 260 | 261 | #endif // CEC_H__ 262 | -------------------------------------------------------------------------------- /firmware/cec-arduino/USBComm.cpp: -------------------------------------------------------------------------------- 1 | #include "USBComm.h" 2 | 3 | #include 4 | #include 5 | #include /* for sei() */ 6 | #include /* for _delay_ms() */ 7 | #include 8 | #include /* required by usbdrv.h */ 9 | #include /* for clock speed management (Trinket/ATtiny) */ 10 | #include 11 | 12 | #include 13 | #include 14 | #include 15 | 16 | static uchar received = 0; 17 | static uchar outBuffer[8]; 18 | static uchar inBuffer[HIDSERIAL_INBUFFER_SIZE]; 19 | static uchar reportId = 0; 20 | static uchar bytesRemaining; 21 | static uchar* pos; 22 | 23 | PROGMEM const char usbHidReportDescriptor[USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = { /* USB report descriptor */ 24 | 0x06, 0x00, 0xff, // USAGE_PAGE (Generic Desktop) 25 | 0x09, 0x01, // USAGE (Vendor Usage 1) 26 | 0xa1, 0x01, // COLLECTION (Application) 27 | 0x15, 0x00, // LOGICAL_MINIMUM (0) 28 | 0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255) 29 | 0x75, 0x08, // REPORT_SIZE (8) 30 | 0x95, 0x08, // REPORT_COUNT (8) 31 | 0x09, 0x00, // USAGE (Undefined) 32 | 0x82, 0x02, 0x01, // INPUT (Data,Var,Abs,Buf) 33 | 0x95, HIDSERIAL_INBUFFER_SIZE, // REPORT_COUNT (32) 34 | 0x09, 0x00, // USAGE (Undefined) 35 | 0xb2, 0x02, 0x01, // FEATURE (Data,Var,Abs,Buf) 36 | 0xc0 // END_COLLECTION 37 | }; 38 | 39 | /* usbFunctionRead() is called when the host requests a chunk of data from 40 | * the device. For more information see the documentation in usbdrv/usbdrv.h. 41 | */ 42 | uchar usbFunctionRead(uchar *data, uchar len) 43 | { 44 | return 0; 45 | } 46 | 47 | /* usbFunctionWrite() is called when the host sends a chunk of data to the 48 | * device. For more information see the documentation in usbdrv/usbdrv.h. 49 | */ 50 | uchar usbFunctionWrite(uchar *data, uchar len) 51 | { 52 | if (reportId == 0) { 53 | int i; 54 | if(len > bytesRemaining) 55 | len = bytesRemaining; 56 | bytesRemaining -= len; 57 | //int start = (pos==inBuffer)?1:0; 58 | for(i=0;iwValue.bytes[0]; 80 | if((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS){ /* HID class request */ 81 | if(rq->bRequest == USBRQ_HID_GET_REPORT){ 82 | /* wValue: ReportType (highbyte), ReportID (lowbyte) */ 83 | /* since we have only one report type, we can ignore the report-ID */ 84 | return USB_NO_MSG; /* use usbFunctionRead() to obtain data */ 85 | }else if(rq->bRequest == USBRQ_HID_SET_REPORT){ 86 | /* since we have only one report type, we can ignore the report-ID */ 87 | pos = inBuffer; 88 | bytesRemaining = rq->wLength.word; 89 | if(bytesRemaining > sizeof(inBuffer)) 90 | bytesRemaining = sizeof(inBuffer); 91 | return USB_NO_MSG; /* use usbFunctionWrite() to receive data from host */ 92 | } 93 | }else{ 94 | /* ignore vendor type requests, we don't use any */ 95 | } 96 | return 0; 97 | } 98 | 99 | HIDSerial::HIDSerial() 100 | { 101 | 102 | } 103 | 104 | void HIDSerial::begin() 105 | { 106 | uchar i; 107 | cli(); 108 | 109 | #if defined(__AVR_ATtiny85__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny25__) 110 | // run at full speed, because Trinket defaults to 8MHz for low voltage compatibility reasons 111 | clock_prescale_set(clock_div_1); 112 | #endif 113 | 114 | usbDeviceDisconnect(); 115 | i = 0; 116 | while(--i){ /* fake USB disconnect for > 250 ms */ 117 | _delay_ms(1); 118 | } 119 | usbDeviceConnect(); 120 | usbInit(); 121 | sei(); 122 | 123 | received = 0; 124 | } 125 | 126 | void HIDSerial::poll() 127 | { 128 | usbPoll(); 129 | } 130 | 131 | uchar HIDSerial::available() 132 | { 133 | return received; 134 | } 135 | 136 | uchar HIDSerial::read(uchar *buffer) 137 | { 138 | if(received == 0) return 0; 139 | int i; 140 | for(i=0;inBuffer[i]!=0&&i>= 1; 218 | }while(step > 0); 219 | /* We have a precision of +/- 1 for optimum OSCCAL here */ 220 | /* now do a neighborhood search for optimum value */ 221 | optimumValue = trialValue; 222 | optimumDev = x; /* this is certainly far away from optimum */ 223 | for(OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++){ 224 | x = usbMeasureFrameLength() - targetValue; 225 | if(x < 0) 226 | x = -x; 227 | if(x < optimumDev){ 228 | optimumDev = x; 229 | optimumValue = OSCCAL; 230 | } 231 | } 232 | OSCCAL = optimumValue; 233 | } 234 | /* 235 | Note: This calibration algorithm may try OSCCAL values of up to 192 even if 236 | the optimum value is far below 192. It may therefore exceed the allowed clock 237 | frequency of the CPU in low voltage designs! 238 | You may replace this search algorithm with any other algorithm you like if 239 | you have additional constraints such as a maximum CPU clock. 240 | For version 5.x RC oscillators (those with a split range of 2x128 steps, e.g. 241 | ATTiny25, ATTiny45, ATTiny85), it may be useful to search for the optimum in 242 | both regions. 243 | */ 244 | 245 | void usbEventResetReady(void) 246 | { 247 | calibrateOscillator(); 248 | } 249 | #endif 250 | -------------------------------------------------------------------------------- /firmware/cec-arduino/USBComm.h: -------------------------------------------------------------------------------- 1 | #ifndef USBComm_h 2 | #define USBComm_h 3 | 4 | #include "Arduino.h" 5 | #include "Print.h" 6 | 7 | #define __AVR_ATtiny85__ 8 | #define HIDSERIAL_INBUFFER_SIZE 32 9 | 10 | class HIDSerial : public Print { 11 | public: 12 | HIDSerial(); 13 | size_t write(uint8_t); // write one character 14 | size_t write(const uint8_t *buffer, size_t size); // write a string 15 | 16 | static void poll(); 17 | static unsigned char available(); 18 | static unsigned char read(unsigned char *buffer); 19 | static void begin(); 20 | private: 21 | size_t write8(const uint8_t *buffer, size_t size); // write up to 8 characters 22 | }; 23 | 24 | #endif 25 | -------------------------------------------------------------------------------- /firmware/cec-arduino/cec-arduino.ino: -------------------------------------------------------------------------------- 1 | #include "CEC.h" 2 | #include "USBComm.h" 3 | #include 4 | 5 | /* 6 | Used shared PID/VID: 7 | PID dec (hex) | VID dec (hex) | Description of use 8 | ==============+===============+============================================ 9 | 1503 (0x05df) | 5824 (0x16c0) | For generic HID class devices (which are 10 | | | NOT mice, keyboards or joysticks) 11 | 12 | #define USB_CFG_VENDOR_NAME 's','t','e','f','s','l','o','n','@','g','m','a','i','l','.','c','o','m' 13 | #define USB_CFG_DEVICE_NAME 'C','E','C','-','C','o','n','t','r','o','l','l','e','r' 14 | */ 15 | 16 | // On ATtiny85 these are PB0 and PB2 17 | #define IN_LINE 0 18 | #define OUT_LINE 2 19 | 20 | // List device types: 21 | // 0x1000 -- Recording 1 22 | // 0x2000 -- Recording 2 23 | // 0x3000 -- Tuner 1 24 | // 0x4000 -- Playback 1 25 | 26 | //CEC_Device device(0x1000); 27 | extern CEC_Device device(0x4000); 28 | HIDSerial serial; 29 | 30 | unsigned char serBuffer[32]; 31 | 32 | 33 | bool User_GetLineState() 34 | { 35 | int state = digitalRead(IN_LINE); 36 | return state == LOW; 37 | } 38 | 39 | void User_SetLineState(CEC_Device* device, bool state) 40 | { 41 | digitalWrite(OUT_LINE, state?LOW:HIGH); 42 | // give enough time for the line to settle before sampling it 43 | delayMicroseconds(50); 44 | device->_lastLineState2 = User_GetLineState(); 45 | } 46 | 47 | void User_OnReady() 48 | { 49 | // This is called after the logical address has been allocated 50 | //serial.write('K'); 51 | } 52 | 53 | void User_OnReceive(unsigned char* rxBuffer, int count) 54 | { 55 | // This is called when a frame is received. To transmit 56 | // a frame call TransmitFrame. To receive all frames, even 57 | // those not addressed to this device, set Promiscuous to true. 58 | 59 | //DbgPrint("Packet received at %ld: %d -> %d\n", millis(), source, dest); 60 | //for (int i = 0; i < count; i++) 61 | // serial.write(rxBuffer[i]); 62 | serial.write(rxBuffer,count); 63 | } 64 | 65 | /********************************/ 66 | 67 | 68 | 69 | 70 | /********************************/ 71 | 72 | 73 | 74 | 75 | void setup() 76 | { 77 | pinMode(OUT_LINE, OUTPUT); 78 | pinMode(IN_LINE, INPUT); 79 | 80 | digitalWrite(OUT_LINE, LOW); 81 | delay(200); 82 | 83 | serial.begin(); 84 | 85 | device.MonitorMode = false; // only receive and do not transmit 86 | device.Promiscuous = true; // listen in on all CEC line transmissions 87 | device.Initialize(CEC_Device::CDT_PLAYBACK_DEVICE); 88 | } 89 | 90 | void loop() 91 | { 92 | 93 | // device.TransmitFrame(target, cmdbuffer, buffpos); 94 | 95 | if(serial.available()) { 96 | int serSize = serial.read(serBuffer); 97 | if (serSize!=0) { 98 | 99 | bool retState = device.TransmitFrame(serBuffer[0], serBuffer+1, serSize-1); 100 | //serial.write(retState?'K':'F'); 101 | 102 | //bool retState = device.TransmitFrame(1, serBuffer, serSize); 103 | //serial.write(retState?'K':'F'); 104 | } 105 | } 106 | 107 | serial.poll(); 108 | device.Run(); 109 | } 110 | 111 | 112 | -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/Changelog.txt: -------------------------------------------------------------------------------- 1 | This file documents changes in the firmware-only USB driver for atmel's AVR 2 | microcontrollers. New entries are always appended to the end of the file. 3 | Scroll down to the bottom to see the most recent changes. 4 | 5 | 2005-04-01: 6 | - Implemented endpoint 1 as interrupt-in endpoint. 7 | - Moved all configuration options to usbconfig.h which is not part of the 8 | driver. 9 | - Changed interface for usbVendorSetup(). 10 | - Fixed compatibility with ATMega8 device. 11 | - Various minor optimizations. 12 | 13 | 2005-04-11: 14 | - Changed interface to application: Use usbFunctionSetup(), usbFunctionRead() 15 | and usbFunctionWrite() now. Added configuration options to choose which 16 | of these functions to compile in. 17 | - Assembler module delivers receive data non-inverted now. 18 | - Made register and bit names compatible with more AVR devices. 19 | 20 | 2005-05-03: 21 | - Allow address of usbRxBuf on any memory page as long as the buffer does 22 | not cross 256 byte page boundaries. 23 | - Better device compatibility: works with Mega88 now. 24 | - Code optimization in debugging module. 25 | - Documentation updates. 26 | 27 | 2006-01-02: 28 | - Added (free) default Vendor- and Product-IDs bought from voti.nl. 29 | - Added USBID-License.txt file which defines the rules for using the free 30 | shared VID/PID pair. 31 | - Added Readme.txt to the usbdrv directory which clarifies administrative 32 | issues. 33 | 34 | 2006-01-25: 35 | - Added "configured state" to become more standards compliant. 36 | - Added "HALT" state for interrupt endpoint. 37 | - Driver passes the "USB Command Verifier" test from usb.org now. 38 | - Made "serial number" a configuration option. 39 | - Minor optimizations, we now recommend compiler option "-Os" for best 40 | results. 41 | - Added a version number to usbdrv.h 42 | 43 | 2006-02-03: 44 | - New configuration variable USB_BUFFER_SECTION for the memory section where 45 | the USB rx buffer will go. This defaults to ".bss" if not defined. Since 46 | this buffer MUST NOT cross 256 byte pages (not even touch a page at the 47 | end), the user may want to pass a linker option similar to 48 | "-Wl,--section-start=.mybuffer=0x800060". 49 | - Provide structure for usbRequest_t. 50 | - New defines for USB constants. 51 | - Prepared for HID implementations. 52 | - Increased data size limit for interrupt transfers to 8 bytes. 53 | - New macro usbInterruptIsReady() to query interrupt buffer state. 54 | 55 | 2006-02-18: 56 | - Ensure that the data token which is sent as an ack to an OUT transfer is 57 | always zero sized. This fixes a bug where the host reports an error after 58 | sending an out transfer to the device, although all data arrived at the 59 | device. 60 | - Updated docs in usbdrv.h to reflect changed API in usbFunctionWrite(). 61 | 62 | * Release 2006-02-20 63 | 64 | - Give a compiler warning when compiling with debugging turned on. 65 | - Added Oleg Semyonov's changes for IAR-cc compatibility. 66 | - Added new (optional) functions usbDeviceConnect() and usbDeviceDisconnect() 67 | (also thanks to Oleg!). 68 | - Rearranged tests in usbPoll() to save a couple of instructions in the most 69 | likely case that no actions are pending. 70 | - We need a delay between the SET ADDRESS request until the new address 71 | becomes active. This delay was handled in usbPoll() until now. Since the 72 | spec says that the delay must not exceed 2ms, previous versions required 73 | aggressive polling during the enumeration phase. We have now moved the 74 | handling of the delay into the interrupt routine. 75 | - We must not reply with NAK to a SETUP transaction. We can only achieve this 76 | by making sure that the rx buffer is empty when SETUP tokens are expected. 77 | We therefore don't pass zero sized data packets from the status phase of 78 | a transfer to usbPoll(). This change MAY cause troubles if you rely on 79 | receiving a less than 8 bytes long packet in usbFunctionWrite() to 80 | identify the end of a transfer. usbFunctionWrite() will NEVER be called 81 | with a zero length. 82 | 83 | * Release 2006-03-14 84 | 85 | - Improved IAR C support: tiny memory model, more devices 86 | - Added template usbconfig.h file under the name usbconfig-prototype.h 87 | 88 | * Release 2006-03-26 89 | 90 | - Added provision for one more interrupt-in endpoint (endpoint 3). 91 | - Added provision for one interrupt-out endpoint (endpoint 1). 92 | - Added flowcontrol macros for USB. 93 | - Added provision for custom configuration descriptor. 94 | - Allow ANY two port bits for D+ and D-. 95 | - Merged (optional) receive endpoint number into global usbRxToken variable. 96 | - Use USB_CFG_IOPORTNAME instead of USB_CFG_IOPORT. We now construct the 97 | variable name from the single port letter instead of computing the address 98 | of related ports from the output-port address. 99 | 100 | * Release 2006-06-26 101 | 102 | - Updated documentation in usbdrv.h and usbconfig-prototype.h to reflect the 103 | new features. 104 | - Removed "#warning" directives because IAR does not understand them. Use 105 | unused static variables instead to generate a warning. 106 | - Do not include when compiling with IAR. 107 | - Introduced USB_CFG_DESCR_PROPS_* in usbconfig.h to configure how each 108 | USB descriptor should be handled. It is now possible to provide descriptor 109 | data in Flash, RAM or dynamically at runtime. 110 | - STALL is now a status in usbTxLen* instead of a message. We can now conform 111 | to the spec and leave the stall status pending until it is cleared. 112 | - Made usbTxPacketCnt1 and usbTxPacketCnt3 public. This allows the 113 | application code to reset data toggling on interrupt pipes. 114 | 115 | * Release 2006-07-18 116 | 117 | - Added an #if !defined __ASSEMBLER__ to the warning in usbdrv.h. This fixes 118 | an assembler error. 119 | - usbDeviceDisconnect() takes pull-up resistor to high impedance now. 120 | 121 | * Release 2007-02-01 122 | 123 | - Merged in some code size improvements from usbtiny (thanks to Dick 124 | Streefland for these optimizations!) 125 | - Special alignment requirement for usbRxBuf not required any more. Thanks 126 | again to Dick Streefland for this hint! 127 | - Reverted to "#warning" instead of unused static variables -- new versions 128 | of IAR CC should handle this directive. 129 | - Changed Open Source license to GNU GPL v2 in order to make linking against 130 | other free libraries easier. We no longer require publication of the 131 | circuit diagrams, but we STRONGLY encourage it. If you improve the driver 132 | itself, PLEASE grant us a royalty free license to your changes for our 133 | commercial license. 134 | 135 | * Release 2007-03-29 136 | 137 | - New configuration option "USB_PUBLIC" in usbconfig.h. 138 | - Set USB version number to 1.10 instead of 1.01. 139 | - Code used USB_CFG_DESCR_PROPS_STRING_DEVICE and 140 | USB_CFG_DESCR_PROPS_STRING_PRODUCT inconsistently. Changed all occurrences 141 | to USB_CFG_DESCR_PROPS_STRING_PRODUCT. 142 | - New assembler module for 16.5 MHz RC oscillator clock with PLL in receiver 143 | code. 144 | - New assembler module for 16 MHz crystal. 145 | - usbdrvasm.S contains common code only, clock-specific parts have been moved 146 | to usbdrvasm12.S, usbdrvasm16.S and usbdrvasm165.S respectively. 147 | 148 | * Release 2007-06-25 149 | 150 | - 16 MHz module: Do SE0 check in stuffed bits as well. 151 | 152 | * Release 2007-07-07 153 | 154 | - Define hi8(x) for IAR compiler to limit result to 8 bits. This is necessary 155 | for negative values. 156 | - Added 15 MHz module contributed by V. Bosch. 157 | - Interrupt vector name can now be configured. This is useful if somebody 158 | wants to use a different hardware interrupt than INT0. 159 | 160 | * Release 2007-08-07 161 | 162 | - Moved handleIn3 routine in usbdrvasm16.S so that relative jump range is 163 | not exceeded. 164 | - More config options: USB_RX_USER_HOOK(), USB_INITIAL_DATATOKEN, 165 | USB_COUNT_SOF 166 | - USB_INTR_PENDING can now be a memory address, not just I/O 167 | 168 | * Release 2007-09-19 169 | 170 | - Split out common parts of assembler modules into separate include file 171 | - Made endpoint numbers configurable so that given interface definitions 172 | can be matched. See USB_CFG_EP3_NUMBER in usbconfig-prototype.h. 173 | - Store endpoint number for interrupt/bulk-out so that usbFunctionWriteOut() 174 | can handle any number of endpoints. 175 | - Define usbDeviceConnect() and usbDeviceDisconnect() even if no 176 | USB_CFG_PULLUP_IOPORTNAME is defined. Directly set D+ and D- to 0 in this 177 | case. 178 | 179 | * Release 2007-12-01 180 | 181 | - Optimize usbDeviceConnect() and usbDeviceDisconnect() for less code size 182 | when USB_CFG_PULLUP_IOPORTNAME is not defined. 183 | 184 | * Release 2007-12-13 185 | 186 | - Renamed all include-only assembler modules from *.S to *.inc so that 187 | people don't add them to their project sources. 188 | - Distribute leap bits in tx loop more evenly for 16 MHz module. 189 | - Use "macro" and "endm" instead of ".macro" and ".endm" for IAR 190 | - Avoid compiler warnings for constant expr range by casting some values in 191 | USB descriptors. 192 | 193 | * Release 2008-01-21 194 | 195 | - Fixed bug in 15 and 16 MHz module where the new address set with 196 | SET_ADDRESS was already accepted at the next NAK or ACK we send, not at 197 | the next data packet we send. This caused problems when the host polled 198 | too fast. Thanks to Alexander Neumann for his help and patience debugging 199 | this issue! 200 | 201 | * Release 2008-02-05 202 | 203 | - Fixed bug in 16.5 MHz module where a register was used in the interrupt 204 | handler before it was pushed. This bug was introduced with version 205 | 2007-09-19 when common parts were moved to a separate file. 206 | - Optimized CRC routine (thanks to Reimar Doeffinger). 207 | 208 | * Release 2008-02-16 209 | 210 | - Removed outdated IAR compatibility stuff (code sections). 211 | - Added hook macros for USB_RESET_HOOK() and USB_SET_ADDRESS_HOOK(). 212 | - Added optional routine usbMeasureFrameLength() for calibration of the 213 | internal RC oscillator. 214 | 215 | * Release 2008-02-28 216 | 217 | - USB_INITIAL_DATATOKEN defaults to USBPID_DATA1 now, which means that we 218 | start with sending USBPID_DATA0. 219 | - Changed defaults in usbconfig-prototype.h 220 | - Added free USB VID/PID pair for MIDI class devices 221 | - Restructured AVR-USB as separate package, not part of PowerSwitch any more. 222 | 223 | * Release 2008-04-18 224 | 225 | - Restructured usbdrv.c so that it is easier to read and understand. 226 | - Better code optimization with gcc 4. 227 | - If a second interrupt in endpoint is enabled, also add it to config 228 | descriptor. 229 | - Added config option for long transfers (above 254 bytes), see 230 | USB_CFG_LONG_TRANSFERS in usbconfig.h. 231 | - Added 20 MHz module contributed by Jeroen Benschop. 232 | 233 | * Release 2008-05-13 234 | 235 | - Fixed bug in libs-host/hiddata.c function usbhidGetReport(): length 236 | was not incremented, pointer to length was incremented instead. 237 | - Added code to command line tool(s) which claims an interface. This code 238 | is disabled by default, but may be necessary on newer Linux kernels. 239 | - Added usbconfig.h option "USB_CFG_CHECK_DATA_TOGGLING". 240 | - New header "usbportability.h" prepares ports to other development 241 | environments. 242 | - Long transfers (above 254 bytes) did not work when usbFunctionRead() was 243 | used to supply the data. Fixed this bug. [Thanks to Alexander Neumann!] 244 | - In hiddata.c (example code for sending/receiving data over HID), use 245 | USB_RECIP_DEVICE instead of USB_RECIP_INTERFACE for control transfers so 246 | that we need not claim the interface. 247 | - in usbPoll() loop 20 times polling for RESET state instead of 10 times. 248 | This accounts for the higher clock rates we now support. 249 | - Added a module for 12.8 MHz RC oscillator with PLL in receiver loop. 250 | - Added hook to SOF code so that oscillator can be tuned to USB frame clock. 251 | - Added timeout to waitForJ loop. Helps preventing unexpected hangs. 252 | - Added example code for oscillator tuning to libs-device (thanks to 253 | Henrik Haftmann for the idea to this routine). 254 | - Implemented option USB_CFG_SUPPRESS_INTR_CODE. 255 | 256 | * Release 2008-10-22 257 | 258 | - Fixed libs-device/osctune.h: OSCCAL is memory address on ATMega88 and 259 | similar, not offset of 0x20 needs to be added. 260 | - Allow distribution under GPLv3 for those who have to link against other 261 | code distributed under GPLv3. 262 | 263 | * Release 2008-11-26 264 | 265 | - Removed libusb-win32 dependency for hid-data example in Makefile.windows. 266 | It was never required and confused many people. 267 | - Added extern uchar usbRxToken to usbdrv.h. 268 | - Integrated a module with CRC checks at 18 MHz by Lukas Schrittwieser. 269 | 270 | * Release 2009-03-23 271 | 272 | - Hid-mouse example used settings from hid-data example, fixed that. 273 | - Renamed project to V-USB due to a trademark issue with Atmel(r). 274 | - Changed CommercialLicense.txt and USBID-License.txt to make the 275 | background of USB ID registration clearer. 276 | 277 | * Release 2009-04-15 278 | 279 | - Changed CommercialLicense.txt to reflect the new range of PIDs from 280 | Jason Kotzin. 281 | - Removed USBID-License.txt in favor of USB-IDs-for-free.txt and 282 | USB-ID-FAQ.txt 283 | - Fixed a bug in the 12.8 MHz module: End Of Packet decection was made in 284 | the center between bit 0 and 1 of each byte. This is where the data lines 285 | are expected to change and the sampled data may therefore be nonsense. 286 | We therefore check EOP ONLY if bits 0 AND 1 have both been read as 0 on D-. 287 | - Fixed a bitstuffing problem in the 16 MHz module: If bit 6 was stuffed, 288 | the unstuffing code in the receiver routine was 1 cycle too long. If 289 | multiple bytes had the unstuffing in bit 6, the error summed up until the 290 | receiver was out of sync. 291 | - Included option for faster CRC routine. 292 | Thanks to Slawomir Fras (BoskiDialer) for this code! 293 | - Updated bits in Configuration Descriptor's bmAttributes according to 294 | USB 1.1 (in particular bit 7, it is a must-be-set bit now). 295 | 296 | * Release 2009-08-22 297 | 298 | - Moved first DBG1() after odDebugInit() in all examples. 299 | - Use vector INT0_vect instead of SIG_INTERRUPT0 if defined. This makes 300 | V-USB compatible with the new "p" suffix devices (e.g. ATMega328p). 301 | - USB_CFG_CLOCK_KHZ setting is now required in usbconfig.h (no default any 302 | more). 303 | - New option USB_CFG_DRIVER_FLASH_PAGE allows boot loaders on devices with 304 | more than 64 kB flash. 305 | - Built-in configuration descriptor allows custom definition for second 306 | endpoint now. 307 | 308 | * Release 2010-07-15 309 | 310 | - Fixed bug in usbDriverSetup() which prevented descriptor sizes above 255 311 | bytes. 312 | - Avoid a compiler warning for unused parameter in usbHandleResetHook() when 313 | compiler option -Wextra is enabled. 314 | - Fixed wrong hex value for some IDs in USB-IDs-for-free.txt. 315 | - Keep a define for USBATTR_BUSPOWER, although the flag does not exist 316 | in USB 1.1 any more. Set it to 0. This is for backward compatibility. 317 | 318 | * Release 2012-01-09 319 | 320 | - Define a separate (defined) type for usbMsgPtr so that projects using a 321 | tiny memory model can define it to an 8 bit type in usbconfig.h. This 322 | change also saves a couple of bytes when using a scalar 16 bit type. 323 | - Inserted "const" keyword for all PROGMEM declarations because new GCC 324 | requires it. 325 | - Fixed problem with dependence of usbportability.h on usbconfig.h. This 326 | problem occurred with IAR CC only. 327 | - Prepared repository for github.com. 328 | 329 | * Release 2012-12-06 -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/CommercialLicense.txt: -------------------------------------------------------------------------------- 1 | V-USB Driver Software License Agreement 2 | Version 2012-07-09 3 | 4 | THIS LICENSE AGREEMENT GRANTS YOU CERTAIN RIGHTS IN A SOFTWARE. YOU CAN 5 | ENTER INTO THIS AGREEMENT AND ACQUIRE THE RIGHTS OUTLINED BELOW BY PAYING 6 | THE AMOUNT ACCORDING TO SECTION 4 ("PAYMENT") TO OBJECTIVE DEVELOPMENT. 7 | 8 | 9 | 1 DEFINITIONS 10 | 11 | 1.1 "OBJECTIVE DEVELOPMENT" shall mean OBJECTIVE DEVELOPMENT Software GmbH, 12 | Grosse Schiffgasse 1A/7, 1020 Wien, AUSTRIA. 13 | 14 | 1.2 "You" shall mean the Licensee. 15 | 16 | 1.3 "V-USB" shall mean all files included in the package distributed under 17 | the name "vusb" by OBJECTIVE DEVELOPMENT (http://www.obdev.at/vusb/) 18 | unless otherwise noted. This includes the firmware-only USB device 19 | implementation for Atmel AVR microcontrollers, some simple device examples 20 | and host side software examples and libraries. 21 | 22 | 23 | 2 LICENSE GRANTS 24 | 25 | 2.1 Source Code. OBJECTIVE DEVELOPMENT shall furnish you with the source 26 | code of V-USB. 27 | 28 | 2.2 Distribution and Use. OBJECTIVE DEVELOPMENT grants you the 29 | non-exclusive right to use, copy and distribute V-USB with your hardware 30 | product(s), restricted by the limitations in section 3 below. 31 | 32 | 2.3 Modifications. OBJECTIVE DEVELOPMENT grants you the right to modify 33 | the source code and your copy of V-USB according to your needs. 34 | 35 | 2.4 USB IDs. OBJECTIVE DEVELOPMENT furnishes you with one or two USB 36 | Product ID(s), sent to you in e-mail. These Product IDs are reserved 37 | exclusively for you. OBJECTIVE DEVELOPMENT has obtained USB Product ID 38 | ranges under the Vendor ID 5824 from Wouter van Ooijen (Van Ooijen 39 | Technische Informatica, www.voti.nl) and under the Vendor ID 8352 from 40 | Jason Kotzin (now flirc.tv, Inc.). Both owners of the Vendor IDs have 41 | obtained these IDs from the USB Implementers Forum, Inc. (www.usb.org). 42 | OBJECTIVE DEVELOPMENT disclaims all liability which might arise from the 43 | assignment of USB IDs. 44 | 45 | 2.5 USB Certification. Although not part of this agreement, we want to make 46 | it clear that you cannot become USB certified when you use V-USB or a USB 47 | Product ID assigned by OBJECTIVE DEVELOPMENT. AVR microcontrollers don't 48 | meet the electrical specifications required by the USB specification and 49 | the USB Implementers Forum certifies only members who bought a Vendor ID of 50 | their own. 51 | 52 | 53 | 3 LICENSE RESTRICTIONS 54 | 55 | 3.1 Number of Units. Only one of the following three definitions is 56 | applicable. Which one is determined by the amount you pay to OBJECTIVE 57 | DEVELOPMENT, see section 4 ("Payment") below. 58 | 59 | Hobby License: You may use V-USB according to section 2 above in no more 60 | than 5 hardware units. These units must not be sold for profit. 61 | 62 | Entry Level License: You may use V-USB according to section 2 above in no 63 | more than 150 hardware units. 64 | 65 | Professional License: You may use V-USB according to section 2 above in 66 | any number of hardware units, except for large scale production ("unlimited 67 | fair use"). Quantities below 10,000 units are not considered large scale 68 | production. If your reach quantities which are obviously large scale 69 | production, you must pay a license fee of 0.10 EUR per unit for all units 70 | above 10,000. 71 | 72 | 3.2 Rental. You may not rent, lease, or lend V-USB or otherwise encumber 73 | any copy of V-USB, or any of the rights granted herein. 74 | 75 | 3.3 Transfer. You may not transfer your rights under this Agreement to 76 | another party without OBJECTIVE DEVELOPMENT's prior written consent. If 77 | such consent is obtained, you may permanently transfer this License to 78 | another party. The recipient of such transfer must agree to all terms and 79 | conditions of this Agreement. 80 | 81 | 3.4 Reservation of Rights. OBJECTIVE DEVELOPMENT retains all rights not 82 | expressly granted. 83 | 84 | 3.5 Non-Exclusive Rights. Your license rights under this Agreement are 85 | non-exclusive. 86 | 87 | 3.6 Third Party Rights. This Agreement cannot grant you rights controlled 88 | by third parties. In particular, you are not allowed to use the USB logo or 89 | other trademarks owned by the USB Implementers Forum, Inc. without their 90 | consent. Since such consent depends on USB certification, it should be 91 | noted that V-USB will not pass certification because it does not 92 | implement checksum verification and the microcontroller ports do not meet 93 | the electrical specifications. 94 | 95 | 96 | 4 PAYMENT 97 | 98 | The payment amount depends on the variation of this agreement (according to 99 | section 3.1) into which you want to enter. Concrete prices are listed on 100 | OBJECTIVE DEVELOPMENT's web site, usually at 101 | http://www.obdev.at/vusb/license.html. You agree to pay the amount listed 102 | there to OBJECTIVE DEVELOPMENT or OBJECTIVE DEVELOPMENT's payment processor 103 | or reseller. 104 | 105 | 106 | 5 COPYRIGHT AND OWNERSHIP 107 | 108 | V-USB is protected by copyright laws and international copyright 109 | treaties, as well as other intellectual property laws and treaties. V-USB 110 | is licensed, not sold. 111 | 112 | 113 | 6 TERM AND TERMINATION 114 | 115 | 6.1 Term. This Agreement shall continue indefinitely. However, OBJECTIVE 116 | DEVELOPMENT may terminate this Agreement and revoke the granted license and 117 | USB-IDs if you fail to comply with any of its terms and conditions. 118 | 119 | 6.2 Survival of Terms. All provisions regarding secrecy, confidentiality 120 | and limitation of liability shall survive termination of this agreement. 121 | 122 | 123 | 7 DISCLAIMER OF WARRANTY AND LIABILITY 124 | 125 | LIMITED WARRANTY. V-USB IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY 126 | KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, OBJECTIVE 127 | DEVELOPMENT AND ITS SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES, EITHER 128 | EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 129 | OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND 130 | NON-INFRINGEMENT, WITH REGARD TO V-USB, AND THE PROVISION OF OR FAILURE 131 | TO PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL 132 | RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE/JURISDICTION TO 133 | STATE/JURISDICTION. 134 | 135 | LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 136 | IN NO EVENT SHALL OBJECTIVE DEVELOPMENT OR ITS SUPPLIERS BE LIABLE FOR ANY 137 | SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER 138 | (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, 139 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY 140 | LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE V-USB OR THE 141 | PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF OBJECTIVE 142 | DEVELOPMENT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY 143 | CASE, OBJECTIVE DEVELOPMENT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS 144 | AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR V-USB. 145 | 146 | 147 | 8 MISCELLANEOUS TERMS 148 | 149 | 8.1 Marketing. OBJECTIVE DEVELOPMENT has the right to mention for marketing 150 | purposes that you entered into this agreement. 151 | 152 | 8.2 Entire Agreement. This document represents the entire agreement between 153 | OBJECTIVE DEVELOPMENT and you. It may only be modified in writing signed by 154 | an authorized representative of both, OBJECTIVE DEVELOPMENT and you. 155 | 156 | 8.3 Severability. In case a provision of these terms and conditions should 157 | be or become partly or entirely invalid, ineffective, or not executable, 158 | the validity of all other provisions shall not be affected. 159 | 160 | 8.4 Applicable Law. This agreement is governed by the laws of the Republic 161 | of Austria. 162 | 163 | 8.5 Responsible Courts. The responsible courts in Vienna/Austria will have 164 | exclusive jurisdiction regarding all disputes in connection with this 165 | agreement. 166 | 167 | -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/Readme.txt: -------------------------------------------------------------------------------- 1 | This is the Readme file to Objective Development's firmware-only USB driver 2 | for Atmel AVR microcontrollers. For more information please visit 3 | http://www.obdev.at/vusb/ 4 | 5 | This directory contains the USB firmware only. Copy it as-is to your own 6 | project and add all .c and .S files to your project (these files are marked 7 | with an asterisk in the list below). Then copy usbconfig-prototype.h as 8 | usbconfig.h to your project and edit it according to your configuration. 9 | 10 | 11 | TECHNICAL DOCUMENTATION 12 | ======================= 13 | The technical documentation (API) for the firmware driver is contained in the 14 | file "usbdrv.h". Please read all of it carefully! Configuration options are 15 | documented in "usbconfig-prototype.h". 16 | 17 | The driver consists of the following files: 18 | Readme.txt ............. The file you are currently reading. 19 | Changelog.txt .......... Release notes for all versions of the driver. 20 | usbdrv.h ............... Driver interface definitions and technical docs. 21 | * usbdrv.c ............... High level language part of the driver. Link this 22 | module to your code! 23 | * usbdrvasm.S ............ Assembler part of the driver. This module is mostly 24 | a stub and includes one of the usbdrvasm*.S files 25 | depending on processor clock. Link this module to 26 | your code! 27 | usbdrvasm*.inc ......... Assembler routines for particular clock frequencies. 28 | Included by usbdrvasm.S, don't link it directly! 29 | asmcommon.inc .......... Common assembler routines. Included by 30 | usbdrvasm*.inc, don't link it directly! 31 | usbconfig-prototype.h .. Prototype for your own usbdrv.h file. 32 | * oddebug.c .............. Debug functions. Only used when DEBUG_LEVEL is 33 | defined to a value greater than 0. Link this module 34 | to your code! 35 | oddebug.h .............. Interface definitions of the debug module. 36 | usbportability.h ....... Header with compiler-dependent stuff. 37 | usbdrvasm.asm .......... Compatibility stub for IAR-C-compiler. Use this 38 | module instead of usbdrvasm.S when you assembler 39 | with IAR's tools. 40 | License.txt ............ Open Source license for this driver. 41 | CommercialLicense.txt .. Optional commercial license for this driver. 42 | USB-ID-FAQ.txt ......... General infos about USB Product- and Vendor-IDs. 43 | USB-IDs-for-free.txt ... List and terms of use for free shared PIDs. 44 | 45 | (*) ... These files should be linked to your project. 46 | 47 | 48 | CPU CORE CLOCK FREQUENCY 49 | ======================== 50 | We supply assembler modules for clock frequencies of 12 MHz, 12.8 MHz, 15 MHz, 51 | 16 MHz, 16.5 MHz 18 MHz and 20 MHz. Other clock rates are not supported. The 52 | actual clock rate must be configured in usbconfig.h. 53 | 54 | 12 MHz Clock 55 | This is the traditional clock rate of V-USB because it's the lowest clock 56 | rate where the timing constraints of the USB spec can be met. 57 | 58 | 15 MHz Clock 59 | Similar to 12 MHz, but some NOPs inserted. On the other hand, the higher clock 60 | rate allows for some loops which make the resulting code size somewhat smaller 61 | than the 12 MHz version. 62 | 63 | 16 MHz Clock 64 | This clock rate has been added for users of the Arduino board and other 65 | ready-made boards which come with a fixed 16 MHz crystal. It's also an option 66 | if you need the slightly higher clock rate for performance reasons. Since 67 | 16 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code 68 | is somewhat tricky and has to insert a leap cycle every third byte. 69 | 70 | 12.8 MHz and 16.5 MHz Clock 71 | The assembler modules for these clock rates differ from the other modules 72 | because they have been built for an RC oscillator with only 1% precision. The 73 | receiver code inserts leap cycles to compensate for clock deviations. 1% is 74 | also the precision which can be achieved by calibrating the internal RC 75 | oscillator of the AVR. Please note that only AVRs with internal 64 MHz PLL 76 | oscillator can reach 16.5 MHz with the RC oscillator. This includes the very 77 | popular ATTiny25, ATTiny45, ATTiny85 series as well as the ATTiny26. Almost 78 | all AVRs can reach 12.8 MHz, although this is outside the specified range. 79 | 80 | See the EasyLogger example at http://www.obdev.at/vusb/easylogger.html for 81 | code which calibrates the RC oscillator based on the USB frame clock. 82 | 83 | 18 MHz Clock 84 | This module is closer to the USB specification because it performs an on the 85 | fly CRC check for incoming packets. Packets with invalid checksum are 86 | discarded as required by the spec. If you also implement checks for data 87 | PID toggling on application level (see option USB_CFG_CHECK_DATA_TOGGLING 88 | in usbconfig.h for more info), this ensures data integrity. Due to the CRC 89 | tables and alignment requirements, this code is bigger than modules for other 90 | clock rates. To activate this module, you must define USB_CFG_CHECK_CRC to 1 91 | and USB_CFG_CLOCK_KHZ to 18000 in usbconfig.h. 92 | 93 | 20 MHz Clock 94 | This module is for people who won't do it with less than the maximum. Since 95 | 20 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code 96 | uses similar tricks as the 16 MHz module to insert leap cycles. 97 | 98 | 99 | USB IDENTIFIERS 100 | =============== 101 | Every USB device needs a vendor- and a product-identifier (VID and PID). VIDs 102 | are obtained from usb.org for a price of 1,500 USD. Once you have a VID, you 103 | can assign PIDs at will. 104 | 105 | Since an entry level cost of 1,500 USD is too high for most small companies 106 | and hobbyists, we provide some VID/PID pairs for free. See the file 107 | USB-IDs-for-free.txt for details. 108 | 109 | Objective Development also has some license offerings which include product 110 | IDs. See http://www.obdev.at/vusb/ for details. 111 | 112 | 113 | DEVELOPMENT SYSTEM 114 | ================== 115 | This driver has been developed and optimized for the GNU compiler version 3 116 | and 4. We recommend that you use the GNU compiler suite because it is freely 117 | available. V-USB has also been ported to the IAR compiler and assembler. It 118 | has been tested with IAR 4.10B/W32 and 4.12A/W32 on an ATmega8 with the 119 | "small" and "tiny" memory model. Not every release is tested with IAR CC and 120 | the driver may therefore fail to compile with IAR. Please note that gcc is 121 | more efficient for usbdrv.c because this module has been deliberately 122 | optimized for gcc. 123 | 124 | Gcc version 3 produces smaller code than version 4 due to new optimizing 125 | capabilities which don't always improve things on 8 bit CPUs. The code size 126 | generated by gcc 4 can be reduced with the compiler options 127 | -fno-move-loop-invariants, -fno-tree-scev-cprop and 128 | -fno-inline-small-functions in addition to -Os. On devices with more than 129 | 8k of flash memory, we also recommend the linker option --relax (written as 130 | -Wl,--relax for gcc) to convert absolute calls into relative where possible. 131 | 132 | For more information about optimizing options see: 133 | 134 | http://www.tty1.net/blog/2008-04-29-avr-gcc-optimisations_en.html 135 | 136 | These optimizations are good for gcc 4.x. Version 3.x of gcc does not support 137 | most of these options and produces good code anyway. 138 | 139 | 140 | USING V-USB FOR FREE 141 | ==================== 142 | The AVR firmware driver is published under the GNU General Public License 143 | Version 2 (GPL2) and the GNU General Public License Version 3 (GPL3). It is 144 | your choice whether you apply the terms of version 2 or version 3. 145 | 146 | If you decide for the free GPL2 or GPL3, we STRONGLY ENCOURAGE you to do the 147 | following things IN ADDITION to the obligations from the GPL: 148 | 149 | (1) Publish your entire project on a web site and drop us a note with the URL. 150 | Use the form at http://www.obdev.at/vusb/feedback.html for your submission. 151 | If you don't have a web site, you can publish the project in obdev's 152 | documentation wiki at 153 | http://www.obdev.at/goto.php?t=vusb-wiki&p=hosted-projects. 154 | 155 | (2) Adhere to minimum publication standards. Please include AT LEAST: 156 | - a circuit diagram in PDF, PNG or GIF format 157 | - full source code for the host software 158 | - a Readme.txt file in ASCII format which describes the purpose of the 159 | project and what can be found in which directories and which files 160 | - a reference to http://www.obdev.at/vusb/ 161 | 162 | (3) If you improve the driver firmware itself, please give us a free license 163 | to your modifications for our commercial license offerings. 164 | 165 | 166 | COMMERCIAL LICENSES FOR V-USB 167 | ============================= 168 | If you don't want to publish your source code under the terms of the GPL, 169 | you can simply pay money for V-USB. As an additional benefit you get 170 | USB PIDs for free, reserved exclusively to you. See the file 171 | "CommercialLicense.txt" for details. 172 | 173 | -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/USB-ID-FAQ.txt: -------------------------------------------------------------------------------- 1 | Version 2012-07-09 2 | 3 | ========================== 4 | WHY DO WE NEED THESE IDs? 5 | ========================== 6 | 7 | USB is more than a low level protocol for data transport. It also defines a 8 | common set of requests which must be understood by all devices. And as part 9 | of these common requests, the specification defines data structures, the 10 | USB Descriptors, which are used to describe the properties of the device. 11 | 12 | From the perspective of an operating system, it is therefore possible to find 13 | out basic properties of a device (such as e.g. the manufacturer and the name 14 | of the device) without a device-specific driver. This is essential because 15 | the operating system can choose a driver to load based on this information 16 | (Plug-And-Play). 17 | 18 | Among the most important properties in the Device Descriptor are the USB 19 | Vendor- and Product-ID. Both are 16 bit integers. The most simple form of 20 | driver matching is based on these IDs. The driver announces the Vendor- and 21 | Product-IDs of the devices it can handle and the operating system loads the 22 | appropriate driver when the device is connected. 23 | 24 | It is obvious that this technique only works if the pair Vendor- plus 25 | Product-ID is unique: Only devices which require the same driver can have the 26 | same pair of IDs. 27 | 28 | 29 | ===================================================== 30 | HOW DOES THE USB STANDARD ENSURE THAT IDs ARE UNIQUE? 31 | ===================================================== 32 | 33 | Since it is so important that USB IDs are unique, the USB Implementers Forum, 34 | Inc. (usb.org) needs a way to enforce this legally. It is not forbidden by 35 | law to build a device and assign it any random numbers as IDs. Usb.org 36 | therefore needs an agreement to regulate the use of USB IDs. The agreement 37 | binds only parties who agreed to it, of course. Everybody else is free to use 38 | any numbers for their IDs. 39 | 40 | So how can usb.org ensure that every manufacturer of USB devices enters into 41 | an agreement with them? They do it via trademark licensing. Usb.org has 42 | registered the trademark "USB", all associated logos and related terms. If 43 | you want to put an USB logo on your product or claim that it is USB 44 | compliant, you must license these trademarks from usb.org. And this is where 45 | you enter into an agreement. See the "USB-IF Trademark License Agreement and 46 | Usage Guidelines for the USB-IF Logo" at 47 | http://www.usb.org/developers/logo_license/. 48 | 49 | Licensing the USB trademarks requires that you buy a USB Vendor-ID from 50 | usb.org (one-time fee of ca. 2,000 USD), that you become a member of usb.org 51 | (yearly fee of ca. 4,000 USD) and that you meet all the technical 52 | specifications from the USB spec. 53 | 54 | This means that most hobbyists and small companies will never be able to 55 | become USB compliant, just because membership is so expensive. And you can't 56 | be compliant with a driver based on V-USB anyway, because the AVR's port pins 57 | don't meet the electrical specifications for USB. So, in principle, all 58 | hobbyists and small companies are free to choose any random numbers for their 59 | IDs. They have nothing to lose... 60 | 61 | There is one exception worth noting, though: If you use a sub-component which 62 | implements USB, the vendor of the sub-components may guarantee USB 63 | compliance. This might apply to some or all of FTDI's solutions. 64 | 65 | 66 | ======================================================================= 67 | WHY SHOULD YOU OBTAIN USB IDs EVEN IF YOU DON'T LICENSE USB TRADEMARKS? 68 | ======================================================================= 69 | 70 | You have learned in the previous section that you are free to choose any 71 | numbers for your IDs anyway. So why not do exactly this? There is still the 72 | technical issue. If you choose IDs which are already in use by somebody else, 73 | operating systems will load the wrong drivers and your device won't work. 74 | Even if you choose IDs which are not currently in use, they may be in use in 75 | the next version of the operating system or even after an automatic update. 76 | 77 | So what you need is a pair of Vendor- and Product-IDs for which you have the 78 | guarantee that no USB compliant product uses them. This implies that no 79 | operating system will ever ship with drivers responsible for these IDs. 80 | 81 | 82 | ============================================== 83 | HOW DOES OBJECTIVE DEVELOPMENT HANDLE USB IDs? 84 | ============================================== 85 | 86 | Objective Development gives away pairs of USB-IDs with their V-USB licenses. 87 | In order to ensure that these IDs are unique, Objective Development has an 88 | agreement with the company/person who has bought the USB Vendor-ID from 89 | usb.org. This agreement ensures that a range of USB Product-IDs is reserved 90 | for assignment by Objective Development and that the owner of the Vendor-ID 91 | won't give it to anybody else. 92 | 93 | This means that you have to trust three parties to ensure uniqueness of 94 | your IDs: 95 | 96 | - Objective Development, that they don't give the same PID to more than 97 | one person. 98 | - The owner of the Vendor-ID that they don't assign PIDs from the range 99 | assigned to Objective Development to anybody else. 100 | - Usb.org that they don't assign the same Vendor-ID a second time. 101 | 102 | 103 | ================================== 104 | WHO IS THE OWNER OF THE VENDOR-ID? 105 | ================================== 106 | 107 | Objective Development has obtained ranges of USB Product-IDs under two 108 | Vendor-IDs: Under Vendor-ID 5824 from Wouter van Ooijen (Van Ooijen 109 | Technische Informatica, www.voti.nl) and under Vendor-ID 8352 from Jason 110 | Kotzin (now flirc.tv, Inc.). Both VID owners have received their Vendor-ID 111 | directly from usb.org. 112 | 113 | 114 | ========================================================================= 115 | CAN I USE USB-IDs FROM OBJECTIVE DEVELOPMENT WITH OTHER DRIVERS/HARDWARE? 116 | ========================================================================= 117 | 118 | The short answer is: Yes. All you get is a guarantee that the IDs are never 119 | assigned to anybody else. What more do you need? 120 | 121 | 122 | ============================ 123 | WHAT ABOUT SHARED ID PAIRS? 124 | ============================ 125 | 126 | Objective Development has reserved some PID/VID pairs for shared use. You 127 | have no guarantee of uniqueness for them, except that no USB compliant device 128 | uses them. In order to avoid technical problems, we must ensure that all 129 | devices with the same pair of IDs use the same driver on kernel level. For 130 | details, see the file USB-IDs-for-free.txt. 131 | 132 | 133 | ====================================================== 134 | I HAVE HEARD THAT SUB-LICENSING OF USB-IDs IS ILLEGAL? 135 | ====================================================== 136 | 137 | A 16 bit integer number cannot be protected by copyright laws. It is not 138 | sufficiently complex. And since none of the parties involved entered into the 139 | USB-IF Trademark License Agreement, we are not bound by this agreement. So 140 | there is no reason why it should be illegal to sub-license USB-IDs. 141 | 142 | 143 | ============================================= 144 | WHO IS LIABLE IF THERE ARE INCOMPATIBILITIES? 145 | ============================================= 146 | 147 | Objective Development disclaims all liabilities which might arise from the 148 | assignment of IDs. If you guarantee product features to your customers 149 | without proper disclaimer, YOU are liable for that. 150 | -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/USB-IDs-for-free.txt: -------------------------------------------------------------------------------- 1 | Version 2009-08-22 2 | 3 | =========================== 4 | FREE USB-IDs FOR SHARED USE 5 | =========================== 6 | 7 | Objective Development has reserved a set of USB Product-IDs for use according 8 | to the guidelines outlined below. For more information about the concept of 9 | USB IDs please see the file USB-ID-FAQ.txt. Objective Development guarantees 10 | that the IDs listed below are not used by any USB compliant devices. 11 | 12 | 13 | ==================== 14 | MECHANISM OF SHARING 15 | ==================== 16 | 17 | From a technical point of view, two different devices can share the same USB 18 | Vendor- and Product-ID if they require the same driver on operating system 19 | level. We make use of this fact by assigning separate IDs for various device 20 | classes. On application layer, devices must be distinguished by their textual 21 | name or serial number. We offer separate sets of IDs for discrimination by 22 | textual name and for serial number. 23 | 24 | Examples for shared use of USB IDs are included with V-USB in the "examples" 25 | subdirectory. 26 | 27 | 28 | ====================================== 29 | IDs FOR DISCRIMINATION BY TEXTUAL NAME 30 | ====================================== 31 | 32 | If you use one of the IDs listed below, your device and host-side software 33 | must conform to these rules: 34 | 35 | (1) The USB device MUST provide a textual representation of the manufacturer 36 | and product identification. The manufacturer identification MUST be available 37 | at least in USB language 0x0409 (English/US). 38 | 39 | (2) The textual manufacturer identification MUST contain either an Internet 40 | domain name (e.g. "mycompany.com") registered and owned by you, or an e-mail 41 | address under your control (e.g. "myname@gmx.net"). You can embed the domain 42 | name or e-mail address in any string you like, e.g. "Objective Development 43 | http://www.obdev.at/vusb/". 44 | 45 | (3) You are responsible for retaining ownership of the domain or e-mail 46 | address for as long as any of your products are in use. 47 | 48 | (4) You may choose any string for the textual product identification, as long 49 | as this string is unique within the scope of your textual manufacturer 50 | identification. 51 | 52 | (5) Application side device look-up MUST be based on the textual manufacturer 53 | and product identification in addition to VID/PID matching. The driver 54 | matching MUST be a comparison of the entire strings, NOT a sub-string match. 55 | 56 | (6) For devices which implement a particular USB device class (e.g. HID), the 57 | operating system's default class driver MUST be used. If an operating system 58 | driver for Vendor Class devices is needed, this driver must be libusb or 59 | libusb-win32 (see http://libusb.org/ and 60 | http://libusb-win32.sourceforge.net/). 61 | 62 | Table if IDs for discrimination by textual name: 63 | 64 | PID dec (hex) | VID dec (hex) | Description of use 65 | ==============+===============+============================================ 66 | 1500 (0x05dc) | 5824 (0x16c0) | For Vendor Class devices with libusb 67 | --------------+---------------+-------------------------------------------- 68 | 1503 (0x05df) | 5824 (0x16c0) | For generic HID class devices (which are 69 | | | NOT mice, keyboards or joysticks) 70 | --------------+---------------+-------------------------------------------- 71 | 1505 (0x05e1) | 5824 (0x16c0) | For CDC-ACM class devices (modems) 72 | --------------+---------------+-------------------------------------------- 73 | 1508 (0x05e4) | 5824 (0x16c0) | For MIDI class devices 74 | --------------+---------------+-------------------------------------------- 75 | 76 | Note that Windows caches the textual product- and vendor-description for 77 | mice, keyboards and joysticks. Name-bsed discrimination is therefore not 78 | recommended for these device classes. 79 | 80 | 81 | ======================================= 82 | IDs FOR DISCRIMINATION BY SERIAL NUMBER 83 | ======================================= 84 | 85 | If you use one of the IDs listed below, your device and host-side software 86 | must conform to these rules: 87 | 88 | (1) The USB device MUST provide a textual representation of the serial 89 | number, unless ONLY the operating system's default class driver is used. 90 | The serial number string MUST be available at least in USB language 0x0409 91 | (English/US). 92 | 93 | (2) The serial number MUST start with either an Internet domain name (e.g. 94 | "mycompany.com") registered and owned by you, or an e-mail address under your 95 | control (e.g. "myname@gmx.net"), both terminated with a colon (":") character. 96 | You MAY append any string you like for further discrimination of your devices. 97 | 98 | (3) You are responsible for retaining ownership of the domain or e-mail 99 | address for as long as any of your products are in use. 100 | 101 | (5) Application side device look-up MUST be based on the serial number string 102 | in addition to VID/PID matching. The matching must start at the first 103 | character of the serial number string and include the colon character 104 | terminating your domain or e-mail address. It MAY stop anywhere after that. 105 | 106 | (6) For devices which implement a particular USB device class (e.g. HID), the 107 | operating system's default class driver MUST be used. If an operating system 108 | driver for Vendor Class devices is needed, this driver must be libusb or 109 | libusb-win32 (see http://libusb.org/ and 110 | http://libusb-win32.sourceforge.net/). 111 | 112 | (7) If ONLY the operating system's default class driver is used, e.g. for 113 | mice, keyboards, joysticks, CDC or MIDI devices and no discrimination by an 114 | application is needed, the serial number may be omitted. 115 | 116 | 117 | Table if IDs for discrimination by serial number string: 118 | 119 | PID dec (hex) | VID dec (hex) | Description of use 120 | ===============+===============+=========================================== 121 | 10200 (0x27d8) | 5824 (0x16c0) | For Vendor Class devices with libusb 122 | ---------------+---------------+------------------------------------------- 123 | 10201 (0x27d9) | 5824 (0x16c0) | For generic HID class devices (which are 124 | | | NOT mice, keyboards or joysticks) 125 | ---------------+---------------+------------------------------------------- 126 | 10202 (0x27da) | 5824 (0x16c0) | For USB Mice 127 | ---------------+---------------+------------------------------------------- 128 | 10203 (0x27db) | 5824 (0x16c0) | For USB Keyboards 129 | ---------------+---------------+------------------------------------------- 130 | 10204 (0x27dc) | 5824 (0x16c0) | For USB Joysticks 131 | ---------------+---------------+------------------------------------------- 132 | 10205 (0x27dd) | 5824 (0x16c0) | For CDC-ACM class devices (modems) 133 | ---------------+---------------+------------------------------------------- 134 | 10206 (0x27de) | 5824 (0x16c0) | For MIDI class devices 135 | ---------------+---------------+------------------------------------------- 136 | 137 | 138 | ================= 139 | ORIGIN OF USB-IDs 140 | ================= 141 | 142 | OBJECTIVE DEVELOPMENT Software GmbH has obtained all VID/PID pairs listed 143 | here from Wouter van Ooijen (see www.voti.nl) for exclusive disposition. 144 | Wouter van Ooijen has obtained the VID from the USB Implementers Forum, Inc. 145 | (see www.usb.org). The VID is registered for the company name "Van Ooijen 146 | Technische Informatica". 147 | 148 | 149 | ========== 150 | DISCLAIMER 151 | ========== 152 | 153 | OBJECTIVE DEVELOPMENT Software GmbH disclaims all liability for any 154 | problems which are caused by the shared use of these VID/PID pairs. 155 | -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/asmcommon.inc: -------------------------------------------------------------------------------- 1 | /* Name: asmcommon.inc 2 | * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers 3 | * Author: Christian Starkjohann 4 | * Creation Date: 2007-11-05 5 | * Tabsize: 4 6 | * Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH 7 | * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt) 8 | */ 9 | 10 | /* Do not link this file! Link usbdrvasm.S instead, which includes the 11 | * appropriate implementation! 12 | */ 13 | 14 | /* 15 | General Description: 16 | This file contains assembler code which is shared among the USB driver 17 | implementations for different CPU cocks. Since the code must be inserted 18 | in the middle of the module, it's split out into this file and #included. 19 | 20 | Jump destinations called from outside: 21 | sofError: Called when no start sequence was found. 22 | se0: Called when a package has been successfully received. 23 | overflow: Called when receive buffer overflows. 24 | doReturn: Called after sending data. 25 | 26 | Outside jump destinations used by this module: 27 | waitForJ: Called to receive an already arriving packet. 28 | sendAckAndReti: 29 | sendNakAndReti: 30 | sendCntAndReti: 31 | usbSendAndReti: 32 | 33 | The following macros must be defined before this file is included: 34 | .macro POP_STANDARD 35 | .endm 36 | .macro POP_RETI 37 | .endm 38 | */ 39 | 40 | #define token x1 41 | 42 | overflow: 43 | ldi x2, 1< 0 13 | 14 | #warning "Never compile production devices with debugging enabled" 15 | 16 | static void uartPutc(char c) 17 | { 18 | while(!(ODDBG_USR & (1 << ODDBG_UDRE))); /* wait for data register empty */ 19 | ODDBG_UDR = c; 20 | } 21 | 22 | static uchar hexAscii(uchar h) 23 | { 24 | h &= 0xf; 25 | if(h >= 10) 26 | h += 'a' - (uchar)10 - '0'; 27 | h += '0'; 28 | return h; 29 | } 30 | 31 | static void printHex(uchar c) 32 | { 33 | uartPutc(hexAscii(c >> 4)); 34 | uartPutc(hexAscii(c)); 35 | } 36 | 37 | void odDebug(uchar prefix, uchar *data, uchar len) 38 | { 39 | printHex(prefix); 40 | uartPutc(':'); 41 | while(len--){ 42 | uartPutc(' '); 43 | printHex(*data++); 44 | } 45 | uartPutc('\r'); 46 | uartPutc('\n'); 47 | } 48 | 49 | #endif 50 | -------------------------------------------------------------------------------- /firmware/libraries/usbdrv/oddebug.h: -------------------------------------------------------------------------------- 1 | /* Name: oddebug.h 2 | * Project: AVR library 3 | * Author: Christian Starkjohann 4 | * Creation Date: 2005-01-16 5 | * Tabsize: 4 6 | * Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH 7 | * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt) 8 | */ 9 | 10 | #ifndef __oddebug_h_included__ 11 | #define __oddebug_h_included__ 12 | 13 | /* 14 | General Description: 15 | This module implements a function for debug logs on the serial line of the 16 | AVR microcontroller. Debugging can be configured with the define 17 | 'DEBUG_LEVEL'. If this macro is not defined or defined to 0, all debugging 18 | calls are no-ops. If it is 1, DBG1 logs will appear, but not DBG2. If it is 19 | 2, DBG1 and DBG2 logs will be printed. 20 | 21 | A debug log consists of a label ('prefix') to indicate which debug log created 22 | the output and a memory block to dump in hex ('data' and 'len'). 23 | */ 24 | 25 | 26 | #ifndef F_CPU 27 | # define F_CPU 12000000 /* 12 MHz */ 28 | #endif 29 | 30 | /* make sure we have the UART defines: */ 31 | #include "usbportability.h" 32 | 33 | #ifndef uchar 34 | # define uchar unsigned char 35 | #endif 36 | 37 | #if DEBUG_LEVEL > 0 && !(defined TXEN || defined TXEN0) /* no UART in device */ 38 | # warning "Debugging disabled because device has no UART" 39 | # undef DEBUG_LEVEL 40 | #endif 41 | 42 | #ifndef DEBUG_LEVEL 43 | # define DEBUG_LEVEL 0 44 | #endif 45 | 46 | /* ------------------------------------------------------------------------- */ 47 | 48 | #if DEBUG_LEVEL > 0 49 | # define DBG1(prefix, data, len) odDebug(prefix, data, len) 50 | #else 51 | # define DBG1(prefix, data, len) 52 | #endif 53 | 54 | #if DEBUG_LEVEL > 1 55 | # define DBG2(prefix, data, len) odDebug(prefix, data, len) 56 | #else 57 | # define DBG2(prefix, data, len) 58 | #endif 59 | 60 | /* ------------------------------------------------------------------------- */ 61 | 62 | #if DEBUG_LEVEL > 0 63 | extern void odDebug(uchar prefix, uchar *data, uchar len); 64 | 65 | /* Try to find our control registers; ATMEL likes to rename these */ 66 | 67 | #if defined UBRR 68 | # define ODDBG_UBRR UBRR 69 | #elif defined UBRRL 70 | # define ODDBG_UBRR UBRRL 71 | #elif defined UBRR0 72 | # define ODDBG_UBRR UBRR0 73 | #elif defined UBRR0L 74 | # define ODDBG_UBRR UBRR0L 75 | #endif 76 | 77 | #if defined UCR 78 | # define ODDBG_UCR UCR 79 | #elif defined UCSRB 80 | # define ODDBG_UCR UCSRB 81 | #elif defined UCSR0B 82 | # define ODDBG_UCR UCSR0B 83 | #endif 84 | 85 | #if defined TXEN 86 | # define ODDBG_TXEN TXEN 87 | #else 88 | # define ODDBG_TXEN TXEN0 89 | #endif 90 | 91 | #if defined USR 92 | # define ODDBG_USR USR 93 | #elif defined UCSRA 94 | # define ODDBG_USR UCSRA 95 | #elif defined UCSR0A 96 | # define ODDBG_USR UCSR0A 97 | #endif 98 | 99 | #if defined UDRE 100 | # define ODDBG_UDRE UDRE 101 | #else 102 | # define ODDBG_UDRE UDRE0 103 | #endif 104 | 105 | #if defined UDR 106 | # define ODDBG_UDR UDR 107 | #elif defined UDR0 108 | # define ODDBG_UDR UDR0 109 | #endif 110 | 111 | static inline void odDebugInit(void) 112 | { 113 | ODDBG_UCR |= (1< max 25 cycles interrupt disable 38 | ;max stack usage: [ret(2), YL, SREG, YH, shift, x1, x2, x3, cnt, x4] = 11 bytes 39 | ;Numbers in brackets are maximum cycles since SOF. 40 | USB_INTR_VECTOR: 41 | ;order of registers pushed: YL, SREG [sofError], YH, shift, x1, x2, x3, cnt 42 | push YL ;2 [35] push only what is necessary to sync with edge ASAP 43 | in YL, SREG ;1 [37] 44 | push YL ;2 [39] 45 | ;---------------------------------------------------------------------------- 46 | ; Synchronize with sync pattern: 47 | ;---------------------------------------------------------------------------- 48 | ;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] 49 | ;sync up with J to K edge during sync pattern -- use fastest possible loops 50 | ;The first part waits at most 1 bit long since we must be in sync pattern. 51 | ;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to 52 | ;waitForJ, ensure that this prerequisite is met. 53 | waitForJ: 54 | inc YL 55 | sbis USBIN, USBMINUS 56 | brne waitForJ ; just make sure we have ANY timeout 57 | waitForK: 58 | ;The following code results in a sampling window of 1/4 bit which meets the spec. 59 | sbis USBIN, USBMINUS 60 | rjmp foundK 61 | sbis USBIN, USBMINUS 62 | rjmp foundK 63 | sbis USBIN, USBMINUS 64 | rjmp foundK 65 | sbis USBIN, USBMINUS 66 | rjmp foundK 67 | sbis USBIN, USBMINUS 68 | rjmp foundK 69 | #if USB_COUNT_SOF 70 | lds YL, usbSofCount 71 | inc YL 72 | sts usbSofCount, YL 73 | #endif /* USB_COUNT_SOF */ 74 | #ifdef USB_SOF_HOOK 75 | USB_SOF_HOOK 76 | #endif 77 | rjmp sofError 78 | foundK: 79 | ;{3, 5} after falling D- edge, average delay: 4 cycles [we want 4 for center sampling] 80 | ;we have 1 bit time for setup purposes, then sample again. Numbers in brackets 81 | ;are cycles from center of first sync (double K) bit after the instruction 82 | push YH ;2 [2] 83 | lds YL, usbInputBufOffset;2 [4] 84 | clr YH ;1 [5] 85 | subi YL, lo8(-(usbRxBuf));1 [6] 86 | sbci YH, hi8(-(usbRxBuf));1 [7] 87 | 88 | sbis USBIN, USBMINUS ;1 [8] we want two bits K [sample 1 cycle too early] 89 | rjmp haveTwoBitsK ;2 [10] 90 | pop YH ;2 [11] undo the push from before 91 | rjmp waitForK ;2 [13] this was not the end of sync, retry 92 | haveTwoBitsK: 93 | ;---------------------------------------------------------------------------- 94 | ; push more registers and initialize values while we sample the first bits: 95 | ;---------------------------------------------------------------------------- 96 | push shift ;2 [16] 97 | push x1 ;2 [12] 98 | push x2 ;2 [14] 99 | 100 | in x1, USBIN ;1 [17] <-- sample bit 0 101 | ldi shift, 0xff ;1 [18] 102 | bst x1, USBMINUS ;1 [19] 103 | bld shift, 0 ;1 [20] 104 | push x3 ;2 [22] 105 | push cnt ;2 [24] 106 | 107 | in x2, USBIN ;1 [25] <-- sample bit 1 108 | ser x3 ;1 [26] [inserted init instruction] 109 | eor x1, x2 ;1 [27] 110 | bst x1, USBMINUS ;1 [28] 111 | bld shift, 1 ;1 [29] 112 | ldi cnt, USB_BUFSIZE;1 [30] [inserted init instruction] 113 | rjmp rxbit2 ;2 [32] 114 | 115 | ;---------------------------------------------------------------------------- 116 | ; Receiver loop (numbers in brackets are cycles within byte after instr) 117 | ;---------------------------------------------------------------------------- 118 | 119 | unstuff0: ;1 (branch taken) 120 | andi x3, ~0x01 ;1 [15] 121 | mov x1, x2 ;1 [16] x2 contains last sampled (stuffed) bit 122 | in x2, USBIN ;1 [17] <-- sample bit 1 again 123 | ori shift, 0x01 ;1 [18] 124 | rjmp didUnstuff0 ;2 [20] 125 | 126 | unstuff1: ;1 (branch taken) 127 | mov x2, x1 ;1 [21] x1 contains last sampled (stuffed) bit 128 | andi x3, ~0x02 ;1 [22] 129 | ori shift, 0x02 ;1 [23] 130 | nop ;1 [24] 131 | in x1, USBIN ;1 [25] <-- sample bit 2 again 132 | rjmp didUnstuff1 ;2 [27] 133 | 134 | unstuff2: ;1 (branch taken) 135 | andi x3, ~0x04 ;1 [29] 136 | ori shift, 0x04 ;1 [30] 137 | mov x1, x2 ;1 [31] x2 contains last sampled (stuffed) bit 138 | nop ;1 [32] 139 | in x2, USBIN ;1 [33] <-- sample bit 3 140 | rjmp didUnstuff2 ;2 [35] 141 | 142 | unstuff3: ;1 (branch taken) 143 | in x2, USBIN ;1 [34] <-- sample stuffed bit 3 [one cycle too late] 144 | andi x3, ~0x08 ;1 [35] 145 | ori shift, 0x08 ;1 [36] 146 | rjmp didUnstuff3 ;2 [38] 147 | 148 | unstuff4: ;1 (branch taken) 149 | andi x3, ~0x10 ;1 [40] 150 | in x1, USBIN ;1 [41] <-- sample stuffed bit 4 151 | ori shift, 0x10 ;1 [42] 152 | rjmp didUnstuff4 ;2 [44] 153 | 154 | unstuff5: ;1 (branch taken) 155 | andi x3, ~0x20 ;1 [48] 156 | in x2, USBIN ;1 [49] <-- sample stuffed bit 5 157 | ori shift, 0x20 ;1 [50] 158 | rjmp didUnstuff5 ;2 [52] 159 | 160 | unstuff6: ;1 (branch taken) 161 | andi x3, ~0x40 ;1 [56] 162 | in x1, USBIN ;1 [57] <-- sample stuffed bit 6 163 | ori shift, 0x40 ;1 [58] 164 | rjmp didUnstuff6 ;2 [60] 165 | 166 | ; extra jobs done during bit interval: 167 | ; bit 0: store, clear [SE0 is unreliable here due to bit dribbling in hubs] 168 | ; bit 1: se0 check 169 | ; bit 2: overflow check 170 | ; bit 3: recovery from delay [bit 0 tasks took too long] 171 | ; bit 4: none 172 | ; bit 5: none 173 | ; bit 6: none 174 | ; bit 7: jump, eor 175 | rxLoop: 176 | eor x3, shift ;1 [0] reconstruct: x3 is 0 at bit locations we changed, 1 at others 177 | in x1, USBIN ;1 [1] <-- sample bit 0 178 | st y+, x3 ;2 [3] store data 179 | ser x3 ;1 [4] 180 | nop ;1 [5] 181 | eor x2, x1 ;1 [6] 182 | bst x2, USBMINUS;1 [7] 183 | bld shift, 0 ;1 [8] 184 | in x2, USBIN ;1 [9] <-- sample bit 1 (or possibly bit 0 stuffed) 185 | andi x2, USBMASK ;1 [10] 186 | breq se0 ;1 [11] SE0 check for bit 1 187 | andi shift, 0xf9 ;1 [12] 188 | didUnstuff0: 189 | breq unstuff0 ;1 [13] 190 | eor x1, x2 ;1 [14] 191 | bst x1, USBMINUS;1 [15] 192 | bld shift, 1 ;1 [16] 193 | rxbit2: 194 | in x1, USBIN ;1 [17] <-- sample bit 2 (or possibly bit 1 stuffed) 195 | andi shift, 0xf3 ;1 [18] 196 | breq unstuff1 ;1 [19] do remaining work for bit 1 197 | didUnstuff1: 198 | subi cnt, 1 ;1 [20] 199 | brcs overflow ;1 [21] loop control 200 | eor x2, x1 ;1 [22] 201 | bst x2, USBMINUS;1 [23] 202 | bld shift, 2 ;1 [24] 203 | in x2, USBIN ;1 [25] <-- sample bit 3 (or possibly bit 2 stuffed) 204 | andi shift, 0xe7 ;1 [26] 205 | breq unstuff2 ;1 [27] 206 | didUnstuff2: 207 | eor x1, x2 ;1 [28] 208 | bst x1, USBMINUS;1 [29] 209 | bld shift, 3 ;1 [30] 210 | didUnstuff3: 211 | andi shift, 0xcf ;1 [31] 212 | breq unstuff3 ;1 [32] 213 | in x1, USBIN ;1 [33] <-- sample bit 4 214 | eor x2, x1 ;1 [34] 215 | bst x2, USBMINUS;1 [35] 216 | bld shift, 4 ;1 [36] 217 | didUnstuff4: 218 | andi shift, 0x9f ;1 [37] 219 | breq unstuff4 ;1 [38] 220 | nop2 ;2 [40] 221 | in x2, USBIN ;1 [41] <-- sample bit 5 222 | eor x1, x2 ;1 [42] 223 | bst x1, USBMINUS;1 [43] 224 | bld shift, 5 ;1 [44] 225 | didUnstuff5: 226 | andi shift, 0x3f ;1 [45] 227 | breq unstuff5 ;1 [46] 228 | nop2 ;2 [48] 229 | in x1, USBIN ;1 [49] <-- sample bit 6 230 | eor x2, x1 ;1 [50] 231 | bst x2, USBMINUS;1 [51] 232 | bld shift, 6 ;1 [52] 233 | didUnstuff6: 234 | cpi shift, 0x02 ;1 [53] 235 | brlo unstuff6 ;1 [54] 236 | nop2 ;2 [56] 237 | in x2, USBIN ;1 [57] <-- sample bit 7 238 | eor x1, x2 ;1 [58] 239 | bst x1, USBMINUS;1 [59] 240 | bld shift, 7 ;1 [60] 241 | didUnstuff7: 242 | cpi shift, 0x04 ;1 [61] 243 | brsh rxLoop ;2 [63] loop control 244 | unstuff7: 245 | andi x3, ~0x80 ;1 [63] 246 | ori shift, 0x80 ;1 [64] 247 | in x2, USBIN ;1 [65] <-- sample stuffed bit 7 248 | nop ;1 [66] 249 | rjmp didUnstuff7 ;2 [68] 250 | 251 | macro POP_STANDARD ; 12 cycles 252 | pop cnt 253 | pop x3 254 | pop x2 255 | pop x1 256 | pop shift 257 | pop YH 258 | endm 259 | macro POP_RETI ; 5 cycles 260 | pop YL 261 | out SREG, YL 262 | pop YL 263 | endm 264 | 265 | #include "asmcommon.inc" 266 | 267 | ;---------------------------------------------------------------------------- 268 | ; Transmitting data 269 | ;---------------------------------------------------------------------------- 270 | 271 | txByteLoop: 272 | txBitloop: 273 | stuffN1Delay: ; [03] 274 | ror shift ;[-5] [11] [59] 275 | brcc doExorN1 ;[-4] [60] 276 | subi x4, 1 ;[-3] 277 | brne commonN1 ;[-2] 278 | lsl shift ;[-1] compensate ror after rjmp stuffDelay 279 | nop ;[00] stuffing consists of just waiting 8 cycles 280 | rjmp stuffN1Delay ;[01] after ror, C bit is reliably clear 281 | 282 | sendNakAndReti: ;0 [-19] 19 cycles until SOP 283 | ldi x3, USBPID_NAK ;1 [-18] 284 | rjmp usbSendX3 ;2 [-16] 285 | sendAckAndReti: ;0 [-19] 19 cycles until SOP 286 | ldi x3, USBPID_ACK ;1 [-18] 287 | rjmp usbSendX3 ;2 [-16] 288 | sendCntAndReti: ;0 [-17] 17 cycles until SOP 289 | mov x3, cnt ;1 [-16] 290 | usbSendX3: ;0 [-16] 291 | ldi YL, 20 ;1 [-15] 'x3' is R20 292 | ldi YH, 0 ;1 [-14] 293 | ldi cnt, 2 ;1 [-13] 294 | ; rjmp usbSendAndReti fallthrough 295 | 296 | ; USB spec says: 297 | ; idle = J 298 | ; J = (D+ = 0), (D- = 1) or USBOUT = 0x01 299 | ; K = (D+ = 1), (D- = 0) or USBOUT = 0x02 300 | ; Spec allows 7.5 bit times from EOP to SOP for replies (= 60 cycles) 301 | 302 | ;usbSend: 303 | ;pointer to data in 'Y' 304 | ;number of bytes in 'cnt' -- including sync byte 305 | ;uses: x1...x2, x4, shift, cnt, Y [x1 = mirror USBOUT, x2 = USBMASK, x4 = bitstuff cnt] 306 | ;Numbers in brackets are time since first bit of sync pattern is sent (start of instruction) 307 | usbSendAndReti: 308 | in x2, USBDDR ;[-12] 12 cycles until SOP 309 | ori x2, USBMASK ;[-11] 310 | sbi USBOUT, USBMINUS ;[-10] prepare idle state; D+ and D- must have been 0 (no pullups) 311 | out USBDDR, x2 ;[-8] <--- acquire bus 312 | in x1, USBOUT ;[-7] port mirror for tx loop 313 | ldi shift, 0x40 ;[-6] sync byte is first byte sent (we enter loop after ror) 314 | ldi x2, USBMASK ;[-5] 315 | push x4 ;[-4] 316 | doExorN1: 317 | eor x1, x2 ;[-2] [06] [62] 318 | ldi x4, 6 ;[-1] [07] [63] 319 | commonN1: 320 | stuffN2Delay: 321 | out USBOUT, x1 ;[00] [08] [64] <--- set bit 322 | ror shift ;[01] 323 | brcc doExorN2 ;[02] 324 | subi x4, 1 ;[03] 325 | brne commonN2 ;[04] 326 | lsl shift ;[05] compensate ror after rjmp stuffDelay 327 | rjmp stuffN2Delay ;[06] after ror, C bit is reliably clear 328 | doExorN2: 329 | eor x1, x2 ;[04] [12] 330 | ldi x4, 6 ;[05] [13] 331 | commonN2: 332 | nop ;[06] [14] 333 | subi cnt, 171 ;[07] [15] trick: (3 * 171) & 0xff = 1 334 | out USBOUT, x1 ;[08] [16] <--- set bit 335 | brcs txBitloop ;[09] [25] [41] 336 | 337 | stuff6Delay: 338 | ror shift ;[42] [50] 339 | brcc doExor6 ;[43] 340 | subi x4, 1 ;[44] 341 | brne common6 ;[45] 342 | lsl shift ;[46] compensate ror after rjmp stuffDelay 343 | nop ;[47] stuffing consists of just waiting 8 cycles 344 | rjmp stuff6Delay ;[48] after ror, C bit is reliably clear 345 | doExor6: 346 | eor x1, x2 ;[45] [53] 347 | ldi x4, 6 ;[46] 348 | common6: 349 | stuff7Delay: 350 | ror shift ;[47] [55] 351 | out USBOUT, x1 ;[48] <--- set bit 352 | brcc doExor7 ;[49] 353 | subi x4, 1 ;[50] 354 | brne common7 ;[51] 355 | lsl shift ;[52] compensate ror after rjmp stuffDelay 356 | rjmp stuff7Delay ;[53] after ror, C bit is reliably clear 357 | doExor7: 358 | eor x1, x2 ;[51] [59] 359 | ldi x4, 6 ;[52] 360 | common7: 361 | ld shift, y+ ;[53] 362 | tst cnt ;[55] 363 | out USBOUT, x1 ;[56] <--- set bit 364 | brne txByteLoop ;[57] 365 | 366 | ;make SE0: 367 | cbr x1, USBMASK ;[58] prepare SE0 [spec says EOP may be 15 to 18 cycles] 368 | lds x2, usbNewDeviceAddr;[59] 369 | lsl x2 ;[61] we compare with left shifted address 370 | subi YL, 2 + 20 ;[62] Only assign address on data packets, not ACK/NAK in x3 371 | sbci YH, 0 ;[63] 372 | out USBOUT, x1 ;[00] <-- out SE0 -- from now 2 bits = 16 cycles until bus idle 373 | ;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm: 374 | ;set address only after data packet was sent, not after handshake 375 | breq skipAddrAssign ;[01] 376 | sts usbDeviceAddr, x2 ; if not skipped: SE0 is one cycle longer 377 | skipAddrAssign: 378 | ;end of usbDeviceAddress transfer 379 | ldi x2, 1< 10.0 cycles per bit, 80.0 cycles per byte 29 | ; Numbers in brackets are clocks counted from center of last sync bit 30 | ; when instruction starts 31 | 32 | ;---------------------------------------------------------------------------- 33 | ; order of registers pushed: 34 | ; YL, SREG [sofError] YH, shift, x1, x2, x3, bitcnt, cnt, x4 35 | ;---------------------------------------------------------------------------- 36 | USB_INTR_VECTOR: 37 | push YL ;2 push only what is necessary to sync with edge ASAP 38 | in YL, SREG ;1 39 | push YL ;2 40 | ;---------------------------------------------------------------------------- 41 | ; Synchronize with sync pattern: 42 | ; 43 | ; sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] 44 | ; sync up with J to K edge during sync pattern -- use fastest possible loops 45 | ;The first part waits at most 1 bit long since we must be in sync pattern. 46 | ;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to 47 | ;waitForJ, ensure that this prerequisite is met. 48 | waitForJ: 49 | inc YL 50 | sbis USBIN, USBMINUS 51 | brne waitForJ ; just make sure we have ANY timeout 52 | ;------------------------------------------------------------------------------- 53 | ; The following code results in a sampling window of < 1/4 bit 54 | ; which meets the spec. 55 | ;------------------------------------------------------------------------------- 56 | waitForK: ;- 57 | sbis USBIN, USBMINUS ;1 [00] <-- sample 58 | rjmp foundK ;2 [01] 59 | sbis USBIN, USBMINUS ; <-- sample 60 | rjmp foundK 61 | sbis USBIN, USBMINUS ; <-- sample 62 | rjmp foundK 63 | sbis USBIN, USBMINUS ; <-- sample 64 | rjmp foundK 65 | sbis USBIN, USBMINUS ; <-- sample 66 | rjmp foundK 67 | sbis USBIN, USBMINUS ; <-- sample 68 | rjmp foundK 69 | #if USB_COUNT_SOF 70 | lds YL, usbSofCount 71 | inc YL 72 | sts usbSofCount, YL 73 | #endif /* USB_COUNT_SOF */ 74 | #ifdef USB_SOF_HOOK 75 | USB_SOF_HOOK 76 | #endif 77 | rjmp sofError 78 | ;------------------------------------------------------------------------------ 79 | ; {3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for 80 | ; center sampling] 81 | ; we have 1 bit time for setup purposes, then sample again. 82 | ; Numbers in brackets are cycles from center of first sync (double K) 83 | ; bit after the instruction 84 | ;------------------------------------------------------------------------------ 85 | foundK: ;- [02] 86 | lds YL, usbInputBufOffset;2 [03+04] tx loop 87 | push YH ;2 [05+06] 88 | clr YH ;1 [07] 89 | subi YL, lo8(-(usbRxBuf)) ;1 [08] [rx loop init] 90 | sbci YH, hi8(-(usbRxBuf)) ;1 [09] [rx loop init] 91 | push shift ;2 [10+11] 92 | ser shift ;1 [12] 93 | sbis USBIN, USBMINUS ;1 [-1] [13] <--sample:we want two bits K (sample 1 cycle too early) 94 | rjmp haveTwoBitsK ;2 [00] [14] 95 | pop shift ;2 [15+16] undo the push from before 96 | pop YH ;2 [17+18] undo the push from before 97 | rjmp waitForK ;2 [19+20] this was not the end of sync, retry 98 | ; The entire loop from waitForK until rjmp waitForK above must not exceed two 99 | ; bit times (= 20 cycles). 100 | 101 | ;---------------------------------------------------------------------------- 102 | ; push more registers and initialize values while we sample the first bits: 103 | ;---------------------------------------------------------------------------- 104 | haveTwoBitsK: ;- [01] 105 | push x1 ;2 [02+03] 106 | push x2 ;2 [04+05] 107 | push x3 ;2 [06+07] 108 | push bitcnt ;2 [08+09] 109 | in x1, USBIN ;1 [00] [10] <-- sample bit 0 110 | bst x1, USBMINUS ;1 [01] 111 | bld shift, 0 ;1 [02] 112 | push cnt ;2 [03+04] 113 | ldi cnt, USB_BUFSIZE ;1 [05] 114 | push x4 ;2 [06+07] tx loop 115 | rjmp rxLoop ;2 [08] 116 | ;---------------------------------------------------------------------------- 117 | ; Receiver loop (numbers in brackets are cycles within byte after instr) 118 | ;---------------------------------------------------------------------------- 119 | unstuff0: ;- [07] (branch taken) 120 | andi x3, ~0x01 ;1 [08] 121 | mov x1, x2 ;1 [09] x2 contains last sampled (stuffed) bit 122 | in x2, USBIN ;1 [00] [10] <-- sample bit 1 again 123 | andi x2, USBMASK ;1 [01] 124 | breq se0Hop ;1 [02] SE0 check for bit 1 125 | ori shift, 0x01 ;1 [03] 0b00000001 126 | nop ;1 [04] 127 | rjmp didUnstuff0 ;2 [05] 128 | ;----------------------------------------------------- 129 | unstuff1: ;- [05] (branch taken) 130 | mov x2, x1 ;1 [06] x1 contains last sampled (stuffed) bit 131 | andi x3, ~0x02 ;1 [07] 132 | ori shift, 0x02 ;1 [08] 0b00000010 133 | nop ;1 [09] 134 | in x1, USBIN ;1 [00] [10] <-- sample bit 2 again 135 | andi x1, USBMASK ;1 [01] 136 | breq se0Hop ;1 [02] SE0 check for bit 2 137 | rjmp didUnstuff1 ;2 [03] 138 | ;----------------------------------------------------- 139 | unstuff2: ;- [05] (branch taken) 140 | andi x3, ~0x04 ;1 [06] 141 | ori shift, 0x04 ;1 [07] 0b00000100 142 | mov x1, x2 ;1 [08] x2 contains last sampled (stuffed) bit 143 | nop ;1 [09] 144 | in x2, USBIN ;1 [00] [10] <-- sample bit 3 145 | andi x2, USBMASK ;1 [01] 146 | breq se0Hop ;1 [02] SE0 check for bit 3 147 | rjmp didUnstuff2 ;2 [03] 148 | ;----------------------------------------------------- 149 | unstuff3: ;- [00] [10] (branch taken) 150 | in x2, USBIN ;1 [01] [11] <-- sample stuffed bit 3 one cycle too late 151 | andi x2, USBMASK ;1 [02] 152 | breq se0Hop ;1 [03] SE0 check for stuffed bit 3 153 | andi x3, ~0x08 ;1 [04] 154 | ori shift, 0x08 ;1 [05] 0b00001000 155 | rjmp didUnstuff3 ;2 [06] 156 | ;---------------------------------------------------------------------------- 157 | ; extra jobs done during bit interval: 158 | ; 159 | ; bit 0: store, clear [SE0 is unreliable here due to bit dribbling in hubs], 160 | ; overflow check, jump to the head of rxLoop 161 | ; bit 1: SE0 check 162 | ; bit 2: SE0 check, recovery from delay [bit 0 tasks took too long] 163 | ; bit 3: SE0 check, recovery from delay [bit 0 tasks took too long] 164 | ; bit 4: SE0 check, none 165 | ; bit 5: SE0 check, none 166 | ; bit 6: SE0 check, none 167 | ; bit 7: SE0 check, reconstruct: x3 is 0 at bit locations we changed, 1 at others 168 | ;---------------------------------------------------------------------------- 169 | rxLoop: ;- [09] 170 | in x2, USBIN ;1 [00] [10] <-- sample bit 1 (or possibly bit 0 stuffed) 171 | andi x2, USBMASK ;1 [01] 172 | brne SkipSe0Hop ;1 [02] 173 | se0Hop: ;- [02] 174 | rjmp se0 ;2 [03] SE0 check for bit 1 175 | SkipSe0Hop: ;- [03] 176 | ser x3 ;1 [04] 177 | andi shift, 0xf9 ;1 [05] 0b11111001 178 | breq unstuff0 ;1 [06] 179 | didUnstuff0: ;- [06] 180 | eor x1, x2 ;1 [07] 181 | bst x1, USBMINUS ;1 [08] 182 | bld shift, 1 ;1 [09] 183 | in x1, USBIN ;1 [00] [10] <-- sample bit 2 (or possibly bit 1 stuffed) 184 | andi x1, USBMASK ;1 [01] 185 | breq se0Hop ;1 [02] SE0 check for bit 2 186 | andi shift, 0xf3 ;1 [03] 0b11110011 187 | breq unstuff1 ;1 [04] do remaining work for bit 1 188 | didUnstuff1: ;- [04] 189 | eor x2, x1 ;1 [05] 190 | bst x2, USBMINUS ;1 [06] 191 | bld shift, 2 ;1 [07] 192 | nop2 ;2 [08+09] 193 | in x2, USBIN ;1 [00] [10] <-- sample bit 3 (or possibly bit 2 stuffed) 194 | andi x2, USBMASK ;1 [01] 195 | breq se0Hop ;1 [02] SE0 check for bit 3 196 | andi shift, 0xe7 ;1 [03] 0b11100111 197 | breq unstuff2 ;1 [04] 198 | didUnstuff2: ;- [04] 199 | eor x1, x2 ;1 [05] 200 | bst x1, USBMINUS ;1 [06] 201 | bld shift, 3 ;1 [07] 202 | didUnstuff3: ;- [07] 203 | andi shift, 0xcf ;1 [08] 0b11001111 204 | breq unstuff3 ;1 [09] 205 | in x1, USBIN ;1 [00] [10] <-- sample bit 4 206 | andi x1, USBMASK ;1 [01] 207 | breq se0Hop ;1 [02] SE0 check for bit 4 208 | eor x2, x1 ;1 [03] 209 | bst x2, USBMINUS ;1 [04] 210 | bld shift, 4 ;1 [05] 211 | didUnstuff4: ;- [05] 212 | andi shift, 0x9f ;1 [06] 0b10011111 213 | breq unstuff4 ;1 [07] 214 | nop2 ;2 [08+09] 215 | in x2, USBIN ;1 [00] [10] <-- sample bit 5 216 | andi x2, USBMASK ;1 [01] 217 | breq se0 ;1 [02] SE0 check for bit 5 218 | eor x1, x2 ;1 [03] 219 | bst x1, USBMINUS ;1 [04] 220 | bld shift, 5 ;1 [05] 221 | didUnstuff5: ;- [05] 222 | andi shift, 0x3f ;1 [06] 0b00111111 223 | breq unstuff5 ;1 [07] 224 | nop2 ;2 [08+09] 225 | in x1, USBIN ;1 [00] [10] <-- sample bit 6 226 | andi x1, USBMASK ;1 [01] 227 | breq se0 ;1 [02] SE0 check for bit 6 228 | eor x2, x1 ;1 [03] 229 | bst x2, USBMINUS ;1 [04] 230 | bld shift, 6 ;1 [05] 231 | didUnstuff6: ;- [05] 232 | cpi shift, 0x02 ;1 [06] 0b00000010 233 | brlo unstuff6 ;1 [07] 234 | nop2 ;2 [08+09] 235 | in x2, USBIN ;1 [00] [10] <-- sample bit 7 236 | andi x2, USBMASK ;1 [01] 237 | breq se0 ;1 [02] SE0 check for bit 7 238 | eor x1, x2 ;1 [03] 239 | bst x1, USBMINUS ;1 [04] 240 | bld shift, 7 ;1 [05] 241 | didUnstuff7: ;- [05] 242 | cpi shift, 0x04 ;1 [06] 0b00000100 243 | brlo unstuff7 ;1 [07] 244 | eor x3, shift ;1 [08] reconstruct: x3 is 0 at bit locations we changed, 1 at others 245 | nop ;1 [09] 246 | in x1, USBIN ;1 [00] [10] <-- sample bit 0 247 | st y+, x3 ;2 [01+02] store data 248 | eor x2, x1 ;1 [03] 249 | bst x2, USBMINUS ;1 [04] 250 | bld shift, 0 ;1 [05] 251 | subi cnt, 1 ;1 [06] 252 | brcs overflow ;1 [07] 253 | rjmp rxLoop ;2 [08] 254 | ;----------------------------------------------------- 255 | unstuff4: ;- [08] 256 | andi x3, ~0x10 ;1 [09] 257 | in x1, USBIN ;1 [00] [10] <-- sample stuffed bit 4 258 | andi x1, USBMASK ;1 [01] 259 | breq se0 ;1 [02] SE0 check for stuffed bit 4 260 | ori shift, 0x10 ;1 [03] 261 | rjmp didUnstuff4 ;2 [04] 262 | ;----------------------------------------------------- 263 | unstuff5: ;- [08] 264 | ori shift, 0x20 ;1 [09] 265 | in x2, USBIN ;1 [00] [10] <-- sample stuffed bit 5 266 | andi x2, USBMASK ;1 [01] 267 | breq se0 ;1 [02] SE0 check for stuffed bit 5 268 | andi x3, ~0x20 ;1 [03] 269 | rjmp didUnstuff5 ;2 [04] 270 | ;----------------------------------------------------- 271 | unstuff6: ;- [08] 272 | andi x3, ~0x40 ;1 [09] 273 | in x1, USBIN ;1 [00] [10] <-- sample stuffed bit 6 274 | andi x1, USBMASK ;1 [01] 275 | breq se0 ;1 [02] SE0 check for stuffed bit 6 276 | ori shift, 0x40 ;1 [03] 277 | rjmp didUnstuff6 ;2 [04] 278 | ;----------------------------------------------------- 279 | unstuff7: ;- [08] 280 | andi x3, ~0x80 ;1 [09] 281 | in x2, USBIN ;1 [00] [10] <-- sample stuffed bit 7 282 | andi x2, USBMASK ;1 [01] 283 | breq se0 ;1 [02] SE0 check for stuffed bit 7 284 | ori shift, 0x80 ;1 [03] 285 | rjmp didUnstuff7 ;2 [04] 286 | 287 | macro POP_STANDARD ; 16 cycles 288 | pop x4 289 | pop cnt 290 | pop bitcnt 291 | pop x3 292 | pop x2 293 | pop x1 294 | pop shift 295 | pop YH 296 | endm 297 | macro POP_RETI ; 5 cycles 298 | pop YL 299 | out SREG, YL 300 | pop YL 301 | endm 302 | 303 | #include "asmcommon.inc" 304 | 305 | ;--------------------------------------------------------------------------- 306 | ; USB spec says: 307 | ; idle = J 308 | ; J = (D+ = 0), (D- = 1) 309 | ; K = (D+ = 1), (D- = 0) 310 | ; Spec allows 7.5 bit times from EOP to SOP for replies 311 | ;--------------------------------------------------------------------------- 312 | bitstuffN: ;- [04] 313 | eor x1, x4 ;1 [05] 314 | clr x2 ;1 [06] 315 | nop ;1 [07] 316 | rjmp didStuffN ;1 [08] 317 | ;--------------------------------------------------------------------------- 318 | bitstuff6: ;- [04] 319 | eor x1, x4 ;1 [05] 320 | clr x2 ;1 [06] 321 | rjmp didStuff6 ;1 [07] 322 | ;--------------------------------------------------------------------------- 323 | bitstuff7: ;- [02] 324 | eor x1, x4 ;1 [03] 325 | clr x2 ;1 [06] 326 | nop ;1 [05] 327 | rjmp didStuff7 ;1 [06] 328 | ;--------------------------------------------------------------------------- 329 | sendNakAndReti: ;- [-19] 330 | ldi x3, USBPID_NAK ;1 [-18] 331 | rjmp sendX3AndReti ;1 [-17] 332 | ;--------------------------------------------------------------------------- 333 | sendAckAndReti: ;- [-17] 334 | ldi cnt, USBPID_ACK ;1 [-16] 335 | sendCntAndReti: ;- [-16] 336 | mov x3, cnt ;1 [-15] 337 | sendX3AndReti: ;- [-15] 338 | ldi YL, 20 ;1 [-14] x3==r20 address is 20 339 | ldi YH, 0 ;1 [-13] 340 | ldi cnt, 2 ;1 [-12] 341 | ; rjmp usbSendAndReti fallthrough 342 | ;--------------------------------------------------------------------------- 343 | ;usbSend: 344 | ;pointer to data in 'Y' 345 | ;number of bytes in 'cnt' -- including sync byte [range 2 ... 12] 346 | ;uses: x1...x4, btcnt, shift, cnt, Y 347 | ;Numbers in brackets are time since first bit of sync pattern is sent 348 | ;We need not to match the transfer rate exactly because the spec demands 349 | ;only 1.5% precision anyway. 350 | usbSendAndReti: ;- [-13] 13 cycles until SOP 351 | in x2, USBDDR ;1 [-12] 352 | ori x2, USBMASK ;1 [-11] 353 | sbi USBOUT, USBMINUS ;2 [-09-10] prepare idle state; D+ and D- must have been 0 (no pullups) 354 | in x1, USBOUT ;1 [-08] port mirror for tx loop 355 | out USBDDR, x2 ;1 [-07] <- acquire bus 356 | ; need not init x2 (bitstuff history) because sync starts with 0 357 | ldi x4, USBMASK ;1 [-06] exor mask 358 | ldi shift, 0x80 ;1 [-05] sync byte is first byte sent 359 | ldi bitcnt, 6 ;1 [-04] 360 | txBitLoop: ;- [-04] [06] 361 | sbrs shift, 0 ;1 [-03] [07] 362 | eor x1, x4 ;1 [-02] [08] 363 | ror shift ;1 [-01] [09] 364 | didStuffN: ;- [09] 365 | out USBOUT, x1 ;1 [00] [10] <-- out N 366 | ror x2 ;1 [01] 367 | cpi x2, 0xfc ;1 [02] 368 | brcc bitstuffN ;1 [03] 369 | dec bitcnt ;1 [04] 370 | brne txBitLoop ;1 [05] 371 | sbrs shift, 0 ;1 [06] 372 | eor x1, x4 ;1 [07] 373 | ror shift ;1 [08] 374 | didStuff6: ;- [08] 375 | nop ;1 [09] 376 | out USBOUT, x1 ;1 [00] [10] <-- out 6 377 | ror x2 ;1 [01] 378 | cpi x2, 0xfc ;1 [02] 379 | brcc bitstuff6 ;1 [03] 380 | sbrs shift, 0 ;1 [04] 381 | eor x1, x4 ;1 [05] 382 | ror shift ;1 [06] 383 | ror x2 ;1 [07] 384 | didStuff7: ;- [07] 385 | ldi bitcnt, 6 ;1 [08] 386 | cpi x2, 0xfc ;1 [09] 387 | out USBOUT, x1 ;1 [00] [10] <-- out 7 388 | brcc bitstuff7 ;1 [01] 389 | ld shift, y+ ;2 [02+03] 390 | dec cnt ;1 [04] 391 | brne txBitLoop ;1 [05] 392 | makeSE0: 393 | cbr x1, USBMASK ;1 [06] prepare SE0 [spec says EOP may be 19 to 23 cycles] 394 | lds x2, usbNewDeviceAddr;2 [07+08] 395 | lsl x2 ;1 [09] we compare with left shifted address 396 | ;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm: 397 | ;set address only after data packet was sent, not after handshake 398 | out USBOUT, x1 ;1 [00] [10] <-- out SE0-- from now 2 bits==20 cycl. until bus idle 399 | subi YL, 20 + 2 ;1 [01] Only assign address on data packets, not ACK/NAK in x3 400 | sbci YH, 0 ;1 [02] 401 | breq skipAddrAssign ;1 [03] 402 | sts usbDeviceAddr, x2 ;2 [04+05] if not skipped: SE0 is one cycle longer 403 | ;---------------------------------------------------------------------------- 404 | ;end of usbDeviceAddress transfer 405 | skipAddrAssign: ;- [03/04] 406 | ldi x2, 1< 10.6666666 cycles per bit, 85.333333333 cycles per byte 29 | ; Numbers in brackets are clocks counted from center of last sync bit 30 | ; when instruction starts 31 | 32 | USB_INTR_VECTOR: 33 | ;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt 34 | push YL ;[-25] push only what is necessary to sync with edge ASAP 35 | in YL, SREG ;[-23] 36 | push YL ;[-22] 37 | push YH ;[-20] 38 | ;---------------------------------------------------------------------------- 39 | ; Synchronize with sync pattern: 40 | ;---------------------------------------------------------------------------- 41 | ;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] 42 | ;sync up with J to K edge during sync pattern -- use fastest possible loops 43 | ;The first part waits at most 1 bit long since we must be in sync pattern. 44 | ;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to 45 | ;waitForJ, ensure that this prerequisite is met. 46 | waitForJ: 47 | inc YL 48 | sbis USBIN, USBMINUS 49 | brne waitForJ ; just make sure we have ANY timeout 50 | waitForK: 51 | ;The following code results in a sampling window of < 1/4 bit which meets the spec. 52 | sbis USBIN, USBMINUS ;[-15] 53 | rjmp foundK ;[-14] 54 | sbis USBIN, USBMINUS 55 | rjmp foundK 56 | sbis USBIN, USBMINUS 57 | rjmp foundK 58 | sbis USBIN, USBMINUS 59 | rjmp foundK 60 | sbis USBIN, USBMINUS 61 | rjmp foundK 62 | sbis USBIN, USBMINUS 63 | rjmp foundK 64 | #if USB_COUNT_SOF 65 | lds YL, usbSofCount 66 | inc YL 67 | sts usbSofCount, YL 68 | #endif /* USB_COUNT_SOF */ 69 | #ifdef USB_SOF_HOOK 70 | USB_SOF_HOOK 71 | #endif 72 | rjmp sofError 73 | foundK: ;[-12] 74 | ;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling] 75 | ;we have 1 bit time for setup purposes, then sample again. Numbers in brackets 76 | ;are cycles from center of first sync (double K) bit after the instruction 77 | push bitcnt ;[-12] 78 | ; [---] ;[-11] 79 | lds YL, usbInputBufOffset;[-10] 80 | ; [---] ;[-9] 81 | clr YH ;[-8] 82 | subi YL, lo8(-(usbRxBuf));[-7] [rx loop init] 83 | sbci YH, hi8(-(usbRxBuf));[-6] [rx loop init] 84 | push shift ;[-5] 85 | ; [---] ;[-4] 86 | ldi bitcnt, 0x55 ;[-3] [rx loop init] 87 | sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early) 88 | rjmp haveTwoBitsK ;[-1] 89 | pop shift ;[0] undo the push from before 90 | pop bitcnt ;[2] undo the push from before 91 | rjmp waitForK ;[4] this was not the end of sync, retry 92 | ; The entire loop from waitForK until rjmp waitForK above must not exceed two 93 | ; bit times (= 21 cycles). 94 | 95 | ;---------------------------------------------------------------------------- 96 | ; push more registers and initialize values while we sample the first bits: 97 | ;---------------------------------------------------------------------------- 98 | haveTwoBitsK: 99 | push x1 ;[1] 100 | push x2 ;[3] 101 | push x3 ;[5] 102 | ldi shift, 0 ;[7] 103 | ldi x3, 1<<4 ;[8] [rx loop init] first sample is inverse bit, compensate that 104 | push x4 ;[9] == leap 105 | 106 | in x1, USBIN ;[11] <-- sample bit 0 107 | andi x1, USBMASK ;[12] 108 | bst x1, USBMINUS ;[13] 109 | bld shift, 7 ;[14] 110 | push cnt ;[15] 111 | ldi leap, 0 ;[17] [rx loop init] 112 | ldi cnt, USB_BUFSIZE;[18] [rx loop init] 113 | rjmp rxbit1 ;[19] arrives at [21] 114 | 115 | ;---------------------------------------------------------------------------- 116 | ; Receiver loop (numbers in brackets are cycles within byte after instr) 117 | ;---------------------------------------------------------------------------- 118 | 119 | ; duration of unstuffing code should be 10.66666667 cycles. We adjust "leap" 120 | ; accordingly to approximate this value in the long run. 121 | 122 | unstuff6: 123 | andi x2, USBMASK ;[03] 124 | ori x3, 1<<6 ;[04] will not be shifted any more 125 | andi shift, ~0x80;[05] 126 | mov x1, x2 ;[06] sampled bit 7 is actually re-sampled bit 6 127 | subi leap, -1 ;[07] total duration = 11 bits -> subtract 1/3 128 | rjmp didUnstuff6 ;[08] 129 | 130 | unstuff7: 131 | ori x3, 1<<7 ;[09] will not be shifted any more 132 | in x2, USBIN ;[00] [10] re-sample bit 7 133 | andi x2, USBMASK ;[01] 134 | andi shift, ~0x80;[02] 135 | subi leap, 2 ;[03] total duration = 10 bits -> add 1/3 136 | rjmp didUnstuff7 ;[04] 137 | 138 | unstuffEven: 139 | ori x3, 1<<6 ;[09] will be shifted right 6 times for bit 0 140 | in x1, USBIN ;[00] [10] 141 | andi shift, ~0x80;[01] 142 | andi x1, USBMASK ;[02] 143 | breq se0 ;[03] 144 | subi leap, -1 ;[04] total duration = 11 bits -> subtract 1/3 145 | nop2 ;[05] 146 | rjmp didUnstuffE ;[06] 147 | 148 | unstuffOdd: 149 | ori x3, 1<<5 ;[09] will be shifted right 4 times for bit 1 150 | in x2, USBIN ;[00] [10] 151 | andi shift, ~0x80;[01] 152 | andi x2, USBMASK ;[02] 153 | breq se0 ;[03] 154 | subi leap, -1 ;[04] total duration = 11 bits -> subtract 1/3 155 | nop2 ;[05] 156 | rjmp didUnstuffO ;[06] 157 | 158 | rxByteLoop: 159 | andi x1, USBMASK ;[03] 160 | eor x2, x1 ;[04] 161 | subi leap, 1 ;[05] 162 | brpl skipLeap ;[06] 163 | subi leap, -3 ;1 one leap cycle every 3rd byte -> 85 + 1/3 cycles per byte 164 | nop ;1 165 | skipLeap: 166 | subi x2, 1 ;[08] 167 | ror shift ;[09] 168 | didUnstuff6: 169 | cpi shift, 0xfc ;[10] 170 | in x2, USBIN ;[00] [11] <-- sample bit 7 171 | brcc unstuff6 ;[01] 172 | andi x2, USBMASK ;[02] 173 | eor x1, x2 ;[03] 174 | subi x1, 1 ;[04] 175 | ror shift ;[05] 176 | didUnstuff7: 177 | cpi shift, 0xfc ;[06] 178 | brcc unstuff7 ;[07] 179 | eor x3, shift ;[08] reconstruct: x3 is 1 at bit locations we changed, 0 at others 180 | st y+, x3 ;[09] store data 181 | rxBitLoop: 182 | in x1, USBIN ;[00] [11] <-- sample bit 0/2/4 183 | andi x1, USBMASK ;[01] 184 | eor x2, x1 ;[02] 185 | andi x3, 0x3f ;[03] topmost two bits reserved for 6 and 7 186 | subi x2, 1 ;[04] 187 | ror shift ;[05] 188 | cpi shift, 0xfc ;[06] 189 | brcc unstuffEven ;[07] 190 | didUnstuffE: 191 | lsr x3 ;[08] 192 | lsr x3 ;[09] 193 | rxbit1: 194 | in x2, USBIN ;[00] [10] <-- sample bit 1/3/5 195 | andi x2, USBMASK ;[01] 196 | breq se0 ;[02] 197 | eor x1, x2 ;[03] 198 | subi x1, 1 ;[04] 199 | ror shift ;[05] 200 | cpi shift, 0xfc ;[06] 201 | brcc unstuffOdd ;[07] 202 | didUnstuffO: 203 | subi bitcnt, 0xab;[08] == addi 0x55, 0x55 = 0x100/3 204 | brcs rxBitLoop ;[09] 205 | 206 | subi cnt, 1 ;[10] 207 | in x1, USBIN ;[00] [11] <-- sample bit 6 208 | brcc rxByteLoop ;[01] 209 | rjmp overflow 210 | 211 | macro POP_STANDARD ; 14 cycles 212 | pop cnt 213 | pop x4 214 | pop x3 215 | pop x2 216 | pop x1 217 | pop shift 218 | pop bitcnt 219 | endm 220 | macro POP_RETI ; 7 cycles 221 | pop YH 222 | pop YL 223 | out SREG, YL 224 | pop YL 225 | endm 226 | 227 | #include "asmcommon.inc" 228 | 229 | ; USB spec says: 230 | ; idle = J 231 | ; J = (D+ = 0), (D- = 1) 232 | ; K = (D+ = 1), (D- = 0) 233 | ; Spec allows 7.5 bit times from EOP to SOP for replies 234 | 235 | bitstuffN: 236 | eor x1, x4 ;[5] 237 | ldi x2, 0 ;[6] 238 | nop2 ;[7] 239 | nop ;[9] 240 | out USBOUT, x1 ;[10] <-- out 241 | rjmp didStuffN ;[0] 242 | 243 | bitstuff6: 244 | eor x1, x4 ;[5] 245 | ldi x2, 0 ;[6] Carry is zero due to brcc 246 | rol shift ;[7] compensate for ror shift at branch destination 247 | rjmp didStuff6 ;[8] 248 | 249 | bitstuff7: 250 | ldi x2, 0 ;[2] Carry is zero due to brcc 251 | rjmp didStuff7 ;[3] 252 | 253 | 254 | sendNakAndReti: 255 | ldi x3, USBPID_NAK ;[-18] 256 | rjmp sendX3AndReti ;[-17] 257 | sendAckAndReti: 258 | ldi cnt, USBPID_ACK ;[-17] 259 | sendCntAndReti: 260 | mov x3, cnt ;[-16] 261 | sendX3AndReti: 262 | ldi YL, 20 ;[-15] x3==r20 address is 20 263 | ldi YH, 0 ;[-14] 264 | ldi cnt, 2 ;[-13] 265 | ; rjmp usbSendAndReti fallthrough 266 | 267 | ;usbSend: 268 | ;pointer to data in 'Y' 269 | ;number of bytes in 'cnt' -- including sync byte [range 2 ... 12] 270 | ;uses: x1...x4, btcnt, shift, cnt, Y 271 | ;Numbers in brackets are time since first bit of sync pattern is sent 272 | ;We don't match the transfer rate exactly (don't insert leap cycles every third 273 | ;byte) because the spec demands only 1.5% precision anyway. 274 | usbSendAndReti: ; 12 cycles until SOP 275 | in x2, USBDDR ;[-12] 276 | ori x2, USBMASK ;[-11] 277 | sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups) 278 | in x1, USBOUT ;[-8] port mirror for tx loop 279 | out USBDDR, x2 ;[-7] <- acquire bus 280 | ; need not init x2 (bitstuff history) because sync starts with 0 281 | ldi x4, USBMASK ;[-6] exor mask 282 | ldi shift, 0x80 ;[-5] sync byte is first byte sent 283 | txByteLoop: 284 | ldi bitcnt, 0x35 ;[-4] [6] binary 0011 0101 285 | txBitLoop: 286 | sbrs shift, 0 ;[-3] [7] 287 | eor x1, x4 ;[-2] [8] 288 | out USBOUT, x1 ;[-1] [9] <-- out N 289 | ror shift ;[0] [10] 290 | ror x2 ;[1] 291 | didStuffN: 292 | cpi x2, 0xfc ;[2] 293 | brcc bitstuffN ;[3] 294 | lsr bitcnt ;[4] 295 | brcc txBitLoop ;[5] 296 | brne txBitLoop ;[6] 297 | 298 | sbrs shift, 0 ;[7] 299 | eor x1, x4 ;[8] 300 | didStuff6: 301 | out USBOUT, x1 ;[-1] [9] <-- out 6 302 | ror shift ;[0] [10] 303 | ror x2 ;[1] 304 | cpi x2, 0xfc ;[2] 305 | brcc bitstuff6 ;[3] 306 | ror shift ;[4] 307 | didStuff7: 308 | ror x2 ;[5] 309 | sbrs x2, 7 ;[6] 310 | eor x1, x4 ;[7] 311 | nop ;[8] 312 | cpi x2, 0xfc ;[9] 313 | out USBOUT, x1 ;[-1][10] <-- out 7 314 | brcc bitstuff7 ;[0] [11] 315 | ld shift, y+ ;[1] 316 | dec cnt ;[3] 317 | brne txByteLoop ;[4] 318 | ;make SE0: 319 | cbr x1, USBMASK ;[5] prepare SE0 [spec says EOP may be 21 to 25 cycles] 320 | lds x2, usbNewDeviceAddr;[6] 321 | lsl x2 ;[8] we compare with left shifted address 322 | subi YL, 20 + 2 ;[9] Only assign address on data packets, not ACK/NAK in x3 323 | sbci YH, 0 ;[10] 324 | out USBOUT, x1 ;[11] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle 325 | ;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm: 326 | ;set address only after data packet was sent, not after handshake 327 | breq skipAddrAssign ;[0] 328 | sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer 329 | skipAddrAssign: 330 | ;end of usbDeviceAddress transfer 331 | ldi x2, 1< max 52 cycles interrupt disable 31 | ;max stack usage: [ret(2), r0, SREG, YL, YH, shift, x1, x2, x3, x4, cnt] = 12 bytes 32 | ;nominal frequency: 16.5 MHz -> 11 cycles per bit 33 | ; 16.3125 MHz < F_CPU < 16.6875 MHz (+/- 1.1%) 34 | ; Numbers in brackets are clocks counted from center of last sync bit 35 | ; when instruction starts 36 | 37 | 38 | USB_INTR_VECTOR: 39 | ;order of registers pushed: YL, SREG [sofError], r0, YH, shift, x1, x2, x3, x4, cnt 40 | push YL ;[-23] push only what is necessary to sync with edge ASAP 41 | in YL, SREG ;[-21] 42 | push YL ;[-20] 43 | ;---------------------------------------------------------------------------- 44 | ; Synchronize with sync pattern: 45 | ;---------------------------------------------------------------------------- 46 | ;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] 47 | ;sync up with J to K edge during sync pattern -- use fastest possible loops 48 | ;The first part waits at most 1 bit long since we must be in sync pattern. 49 | ;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to 50 | ;waitForJ, ensure that this prerequisite is met. 51 | waitForJ: 52 | inc YL 53 | sbis USBIN, USBMINUS 54 | brne waitForJ ; just make sure we have ANY timeout 55 | waitForK: 56 | ;The following code results in a sampling window of < 1/4 bit which meets the spec. 57 | sbis USBIN, USBMINUS ;[-15] 58 | rjmp foundK ;[-14] 59 | sbis USBIN, USBMINUS 60 | rjmp foundK 61 | sbis USBIN, USBMINUS 62 | rjmp foundK 63 | sbis USBIN, USBMINUS 64 | rjmp foundK 65 | sbis USBIN, USBMINUS 66 | rjmp foundK 67 | sbis USBIN, USBMINUS 68 | rjmp foundK 69 | #if USB_COUNT_SOF 70 | lds YL, usbSofCount 71 | inc YL 72 | sts usbSofCount, YL 73 | #endif /* USB_COUNT_SOF */ 74 | #ifdef USB_SOF_HOOK 75 | USB_SOF_HOOK 76 | #endif 77 | rjmp sofError 78 | foundK: ;[-12] 79 | ;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling] 80 | ;we have 1 bit time for setup purposes, then sample again. Numbers in brackets 81 | ;are cycles from center of first sync (double K) bit after the instruction 82 | push r0 ;[-12] 83 | ; [---] ;[-11] 84 | push YH ;[-10] 85 | ; [---] ;[-9] 86 | lds YL, usbInputBufOffset;[-8] 87 | ; [---] ;[-7] 88 | clr YH ;[-6] 89 | subi YL, lo8(-(usbRxBuf));[-5] [rx loop init] 90 | sbci YH, hi8(-(usbRxBuf));[-4] [rx loop init] 91 | mov r0, x2 ;[-3] [rx loop init] 92 | sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early) 93 | rjmp haveTwoBitsK ;[-1] 94 | pop YH ;[0] undo the pushes from before 95 | pop r0 ;[2] 96 | rjmp waitForK ;[4] this was not the end of sync, retry 97 | ; The entire loop from waitForK until rjmp waitForK above must not exceed two 98 | ; bit times (= 22 cycles). 99 | 100 | ;---------------------------------------------------------------------------- 101 | ; push more registers and initialize values while we sample the first bits: 102 | ;---------------------------------------------------------------------------- 103 | haveTwoBitsK: ;[1] 104 | push shift ;[1] 105 | push x1 ;[3] 106 | push x2 ;[5] 107 | push x3 ;[7] 108 | ldi shift, 0xff ;[9] [rx loop init] 109 | ori x3, 0xff ;[10] [rx loop init] == ser x3, clear zero flag 110 | 111 | in x1, USBIN ;[11] <-- sample bit 0 112 | bst x1, USBMINUS ;[12] 113 | bld shift, 0 ;[13] 114 | push x4 ;[14] == phase 115 | ; [---] ;[15] 116 | push cnt ;[16] 117 | ; [---] ;[17] 118 | ldi phase, 0 ;[18] [rx loop init] 119 | ldi cnt, USB_BUFSIZE;[19] [rx loop init] 120 | rjmp rxbit1 ;[20] 121 | ; [---] ;[21] 122 | 123 | ;---------------------------------------------------------------------------- 124 | ; Receiver loop (numbers in brackets are cycles within byte after instr) 125 | ;---------------------------------------------------------------------------- 126 | /* 127 | byte oriented operations done during loop: 128 | bit 0: store data 129 | bit 1: SE0 check 130 | bit 2: overflow check 131 | bit 3: catch up 132 | bit 4: rjmp to achieve conditional jump range 133 | bit 5: PLL 134 | bit 6: catch up 135 | bit 7: jump, fixup bitstuff 136 | ; 87 [+ 2] cycles 137 | ------------------------------------------------------------------ 138 | */ 139 | continueWithBit5: 140 | in x2, USBIN ;[055] <-- bit 5 141 | eor r0, x2 ;[056] 142 | or phase, r0 ;[057] 143 | sbrc phase, USBMINUS ;[058] 144 | lpm ;[059] optional nop3; modifies r0 145 | in phase, USBIN ;[060] <-- phase 146 | eor x1, x2 ;[061] 147 | bst x1, USBMINUS ;[062] 148 | bld shift, 5 ;[063] 149 | andi shift, 0x3f ;[064] 150 | in x1, USBIN ;[065] <-- bit 6 151 | breq unstuff5 ;[066] *** unstuff escape 152 | eor phase, x1 ;[067] 153 | eor x2, x1 ;[068] 154 | bst x2, USBMINUS ;[069] 155 | bld shift, 6 ;[070] 156 | didUnstuff6: ;[ ] 157 | in r0, USBIN ;[071] <-- phase 158 | cpi shift, 0x02 ;[072] 159 | brlo unstuff6 ;[073] *** unstuff escape 160 | didUnstuff5: ;[ ] 161 | nop2 ;[074] 162 | ; [---] ;[075] 163 | in x2, USBIN ;[076] <-- bit 7 164 | eor x1, x2 ;[077] 165 | bst x1, USBMINUS ;[078] 166 | bld shift, 7 ;[079] 167 | didUnstuff7: ;[ ] 168 | eor r0, x2 ;[080] 169 | or phase, r0 ;[081] 170 | in r0, USBIN ;[082] <-- phase 171 | cpi shift, 0x04 ;[083] 172 | brsh rxLoop ;[084] 173 | ; [---] ;[085] 174 | unstuff7: ;[ ] 175 | andi x3, ~0x80 ;[085] 176 | ori shift, 0x80 ;[086] 177 | in x2, USBIN ;[087] <-- sample stuffed bit 7 178 | nop ;[088] 179 | rjmp didUnstuff7 ;[089] 180 | ; [---] ;[090] 181 | ;[080] 182 | 183 | unstuff5: ;[067] 184 | eor phase, x1 ;[068] 185 | andi x3, ~0x20 ;[069] 186 | ori shift, 0x20 ;[070] 187 | in r0, USBIN ;[071] <-- phase 188 | mov x2, x1 ;[072] 189 | nop ;[073] 190 | nop2 ;[074] 191 | ; [---] ;[075] 192 | in x1, USBIN ;[076] <-- bit 6 193 | eor r0, x1 ;[077] 194 | or phase, r0 ;[078] 195 | eor x2, x1 ;[079] 196 | bst x2, USBMINUS ;[080] 197 | bld shift, 6 ;[081] no need to check bitstuffing, we just had one 198 | in r0, USBIN ;[082] <-- phase 199 | rjmp didUnstuff5 ;[083] 200 | ; [---] ;[084] 201 | ;[074] 202 | 203 | unstuff6: ;[074] 204 | andi x3, ~0x40 ;[075] 205 | in x1, USBIN ;[076] <-- bit 6 again 206 | ori shift, 0x40 ;[077] 207 | nop2 ;[078] 208 | ; [---] ;[079] 209 | rjmp didUnstuff6 ;[080] 210 | ; [---] ;[081] 211 | ;[071] 212 | 213 | unstuff0: ;[013] 214 | eor r0, x2 ;[014] 215 | or phase, r0 ;[015] 216 | andi x2, USBMASK ;[016] check for SE0 217 | in r0, USBIN ;[017] <-- phase 218 | breq didUnstuff0 ;[018] direct jump to se0 would be too long 219 | andi x3, ~0x01 ;[019] 220 | ori shift, 0x01 ;[020] 221 | mov x1, x2 ;[021] mov existing sample 222 | in x2, USBIN ;[022] <-- bit 1 again 223 | rjmp didUnstuff0 ;[023] 224 | ; [---] ;[024] 225 | ;[014] 226 | 227 | unstuff1: ;[024] 228 | eor r0, x1 ;[025] 229 | or phase, r0 ;[026] 230 | andi x3, ~0x02 ;[027] 231 | in r0, USBIN ;[028] <-- phase 232 | ori shift, 0x02 ;[029] 233 | mov x2, x1 ;[030] 234 | rjmp didUnstuff1 ;[031] 235 | ; [---] ;[032] 236 | ;[022] 237 | 238 | unstuff2: ;[035] 239 | eor r0, x2 ;[036] 240 | or phase, r0 ;[037] 241 | andi x3, ~0x04 ;[038] 242 | in r0, USBIN ;[039] <-- phase 243 | ori shift, 0x04 ;[040] 244 | mov x1, x2 ;[041] 245 | rjmp didUnstuff2 ;[042] 246 | ; [---] ;[043] 247 | ;[033] 248 | 249 | unstuff3: ;[043] 250 | in x2, USBIN ;[044] <-- bit 3 again 251 | eor r0, x2 ;[045] 252 | or phase, r0 ;[046] 253 | andi x3, ~0x08 ;[047] 254 | ori shift, 0x08 ;[048] 255 | nop ;[049] 256 | in r0, USBIN ;[050] <-- phase 257 | rjmp didUnstuff3 ;[051] 258 | ; [---] ;[052] 259 | ;[042] 260 | 261 | unstuff4: ;[053] 262 | andi x3, ~0x10 ;[054] 263 | in x1, USBIN ;[055] <-- bit 4 again 264 | ori shift, 0x10 ;[056] 265 | rjmp didUnstuff4 ;[057] 266 | ; [---] ;[058] 267 | ;[048] 268 | 269 | rxLoop: ;[085] 270 | eor x3, shift ;[086] reconstruct: x3 is 0 at bit locations we changed, 1 at others 271 | in x1, USBIN ;[000] <-- bit 0 272 | st y+, x3 ;[001] 273 | ; [---] ;[002] 274 | eor r0, x1 ;[003] 275 | or phase, r0 ;[004] 276 | eor x2, x1 ;[005] 277 | in r0, USBIN ;[006] <-- phase 278 | ser x3 ;[007] 279 | bst x2, USBMINUS ;[008] 280 | bld shift, 0 ;[009] 281 | andi shift, 0xf9 ;[010] 282 | rxbit1: ;[ ] 283 | in x2, USBIN ;[011] <-- bit 1 284 | breq unstuff0 ;[012] *** unstuff escape 285 | andi x2, USBMASK ;[013] SE0 check for bit 1 286 | didUnstuff0: ;[ ] Z only set if we detected SE0 in bitstuff 287 | breq se0 ;[014] 288 | eor r0, x2 ;[015] 289 | or phase, r0 ;[016] 290 | in r0, USBIN ;[017] <-- phase 291 | eor x1, x2 ;[018] 292 | bst x1, USBMINUS ;[019] 293 | bld shift, 1 ;[020] 294 | andi shift, 0xf3 ;[021] 295 | didUnstuff1: ;[ ] 296 | in x1, USBIN ;[022] <-- bit 2 297 | breq unstuff1 ;[023] *** unstuff escape 298 | eor r0, x1 ;[024] 299 | or phase, r0 ;[025] 300 | subi cnt, 1 ;[026] overflow check 301 | brcs overflow ;[027] 302 | in r0, USBIN ;[028] <-- phase 303 | eor x2, x1 ;[029] 304 | bst x2, USBMINUS ;[030] 305 | bld shift, 2 ;[031] 306 | andi shift, 0xe7 ;[032] 307 | didUnstuff2: ;[ ] 308 | in x2, USBIN ;[033] <-- bit 3 309 | breq unstuff2 ;[034] *** unstuff escape 310 | eor r0, x2 ;[035] 311 | or phase, r0 ;[036] 312 | eor x1, x2 ;[037] 313 | bst x1, USBMINUS ;[038] 314 | in r0, USBIN ;[039] <-- phase 315 | bld shift, 3 ;[040] 316 | andi shift, 0xcf ;[041] 317 | didUnstuff3: ;[ ] 318 | breq unstuff3 ;[042] *** unstuff escape 319 | nop ;[043] 320 | in x1, USBIN ;[044] <-- bit 4 321 | eor x2, x1 ;[045] 322 | bst x2, USBMINUS ;[046] 323 | bld shift, 4 ;[047] 324 | didUnstuff4: ;[ ] 325 | eor r0, x1 ;[048] 326 | or phase, r0 ;[049] 327 | in r0, USBIN ;[050] <-- phase 328 | andi shift, 0x9f ;[051] 329 | breq unstuff4 ;[052] *** unstuff escape 330 | rjmp continueWithBit5;[053] 331 | ; [---] ;[054] 332 | 333 | macro POP_STANDARD ; 16 cycles 334 | pop cnt 335 | pop x4 336 | pop x3 337 | pop x2 338 | pop x1 339 | pop shift 340 | pop YH 341 | pop r0 342 | endm 343 | macro POP_RETI ; 5 cycles 344 | pop YL 345 | out SREG, YL 346 | pop YL 347 | endm 348 | 349 | #include "asmcommon.inc" 350 | 351 | 352 | ; USB spec says: 353 | ; idle = J 354 | ; J = (D+ = 0), (D- = 1) 355 | ; K = (D+ = 1), (D- = 0) 356 | ; Spec allows 7.5 bit times from EOP to SOP for replies 357 | 358 | bitstuff7: 359 | eor x1, x4 ;[4] 360 | ldi x2, 0 ;[5] 361 | nop2 ;[6] C is zero (brcc) 362 | rjmp didStuff7 ;[8] 363 | 364 | bitstuffN: 365 | eor x1, x4 ;[5] 366 | ldi x2, 0 ;[6] 367 | lpm ;[7] 3 cycle NOP, modifies r0 368 | out USBOUT, x1 ;[10] <-- out 369 | rjmp didStuffN ;[0] 370 | 371 | #define bitStatus x3 372 | 373 | sendNakAndReti: 374 | ldi cnt, USBPID_NAK ;[-19] 375 | rjmp sendCntAndReti ;[-18] 376 | sendAckAndReti: 377 | ldi cnt, USBPID_ACK ;[-17] 378 | sendCntAndReti: 379 | mov r0, cnt ;[-16] 380 | ldi YL, 0 ;[-15] R0 address is 0 381 | ldi YH, 0 ;[-14] 382 | ldi cnt, 2 ;[-13] 383 | ; rjmp usbSendAndReti fallthrough 384 | 385 | ;usbSend: 386 | ;pointer to data in 'Y' 387 | ;number of bytes in 'cnt' -- including sync byte [range 2 ... 12] 388 | ;uses: x1...x4, shift, cnt, Y 389 | ;Numbers in brackets are time since first bit of sync pattern is sent 390 | usbSendAndReti: ; 12 cycles until SOP 391 | in x2, USBDDR ;[-12] 392 | ori x2, USBMASK ;[-11] 393 | sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups) 394 | in x1, USBOUT ;[-8] port mirror for tx loop 395 | out USBDDR, x2 ;[-7] <- acquire bus 396 | ; need not init x2 (bitstuff history) because sync starts with 0 397 | ldi x4, USBMASK ;[-6] exor mask 398 | ldi shift, 0x80 ;[-5] sync byte is first byte sent 399 | ldi bitStatus, 0xff ;[-4] init bit loop counter, works for up to 12 bytes 400 | byteloop: 401 | bitloop: 402 | sbrs shift, 0 ;[8] [-3] 403 | eor x1, x4 ;[9] [-2] 404 | out USBOUT, x1 ;[10] [-1] <-- out 405 | ror shift ;[0] 406 | ror x2 ;[1] 407 | didStuffN: 408 | cpi x2, 0xfc ;[2] 409 | brcc bitstuffN ;[3] 410 | nop ;[4] 411 | subi bitStatus, 37 ;[5] 256 / 7 ~=~ 37 412 | brcc bitloop ;[6] when we leave the loop, bitStatus has almost the initial value 413 | sbrs shift, 0 ;[7] 414 | eor x1, x4 ;[8] 415 | ror shift ;[9] 416 | didStuff7: 417 | out USBOUT, x1 ;[10] <-- out 418 | ror x2 ;[0] 419 | cpi x2, 0xfc ;[1] 420 | brcc bitstuff7 ;[2] 421 | ld shift, y+ ;[3] 422 | dec cnt ;[5] 423 | brne byteloop ;[6] 424 | ;make SE0: 425 | cbr x1, USBMASK ;[7] prepare SE0 [spec says EOP may be 21 to 25 cycles] 426 | lds x2, usbNewDeviceAddr;[8] 427 | lsl x2 ;[10] we compare with left shifted address 428 | out USBOUT, x1 ;[11] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle 429 | ;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm: 430 | ;set address only after data packet was sent, not after handshake 431 | subi YL, 2 ;[0] Only assign address on data packets, not ACK/NAK in r0 432 | sbci YH, 0 ;[1] 433 | breq skipAddrAssign ;[2] 434 | sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer 435 | skipAddrAssign: 436 | ;end of usbDeviceAddress transfer 437 | ldi x2, 1< 13.333333 cycles per bit, 106.666667 cycles per byte 37 | ; Numbers in brackets are clocks counted from center of last sync bit 38 | ; when instruction starts 39 | ;register use in receive loop: 40 | ; shift assembles the byte currently being received 41 | ; x1 holds the D+ and D- line state 42 | ; x2 holds the previous line state 43 | ; x4 (leap) is used to add a leap cycle once every three bytes received 44 | ; X3 (leap2) is used to add a leap cycle once every three stuff bits received 45 | ; bitcnt is used to determine when a stuff bit is due 46 | ; cnt holds the number of bytes left in the receive buffer 47 | 48 | USB_INTR_VECTOR: 49 | ;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt 50 | push YL ;[-28] push only what is necessary to sync with edge ASAP 51 | in YL, SREG ;[-26] 52 | push YL ;[-25] 53 | push YH ;[-23] 54 | ;---------------------------------------------------------------------------- 55 | ; Synchronize with sync pattern: 56 | ;---------------------------------------------------------------------------- 57 | ;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] 58 | ;sync up with J to K edge during sync pattern -- use fastest possible loops 59 | ;The first part waits at most 1 bit long since we must be in sync pattern. 60 | ;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to 61 | ;waitForJ, ensure that this prerequisite is met. 62 | waitForJ: 63 | inc YL 64 | sbis USBIN, USBMINUS 65 | brne waitForJ ; just make sure we have ANY timeout 66 | waitForK: 67 | ;The following code results in a sampling window of < 1/4 bit which meets the spec. 68 | sbis USBIN, USBMINUS ;[-19] 69 | rjmp foundK ;[-18] 70 | sbis USBIN, USBMINUS 71 | rjmp foundK 72 | sbis USBIN, USBMINUS 73 | rjmp foundK 74 | sbis USBIN, USBMINUS 75 | rjmp foundK 76 | sbis USBIN, USBMINUS 77 | rjmp foundK 78 | sbis USBIN, USBMINUS 79 | rjmp foundK 80 | sbis USBIN, USBMINUS 81 | rjmp foundK 82 | sbis USBIN, USBMINUS 83 | rjmp foundK 84 | sbis USBIN, USBMINUS 85 | rjmp foundK 86 | #if USB_COUNT_SOF 87 | lds YL, usbSofCount 88 | inc YL 89 | sts usbSofCount, YL 90 | #endif /* USB_COUNT_SOF */ 91 | #ifdef USB_SOF_HOOK 92 | USB_SOF_HOOK 93 | #endif 94 | rjmp sofError 95 | foundK: ;[-16] 96 | ;{3, 5} after falling D- edge, average delay: 4 cycles 97 | ;bit0 should be at 34 for center sampling. Currently at 4 so 30 cylces till bit 0 sample 98 | ;use 1 bit time for setup purposes, then sample again. Numbers in brackets 99 | ;are cycles from center of first sync (double K) bit after the instruction 100 | push bitcnt ;[-16] 101 | ; [---] ;[-15] 102 | lds YL, usbInputBufOffset;[-14] 103 | ; [---] ;[-13] 104 | clr YH ;[-12] 105 | subi YL, lo8(-(usbRxBuf));[-11] [rx loop init] 106 | sbci YH, hi8(-(usbRxBuf));[-10] [rx loop init] 107 | push shift ;[-9] 108 | ; [---] ;[-8] 109 | ldi shift,0x40 ;[-7] set msb to "1" so processing bit7 can be detected 110 | nop2 ;[-6] 111 | ; [---] ;[-5] 112 | ldi bitcnt, 5 ;[-4] [rx loop init] 113 | sbis USBIN, USBMINUS ;[-3] we want two bits K (sample 3 cycles too early) 114 | rjmp haveTwoBitsK ;[-2] 115 | pop shift ;[-1] undo the push from before 116 | pop bitcnt ;[1] 117 | rjmp waitForK ;[3] this was not the end of sync, retry 118 | ; The entire loop from waitForK until rjmp waitForK above must not exceed two 119 | ; bit times (= 27 cycles). 120 | 121 | ;---------------------------------------------------------------------------- 122 | ; push more registers and initialize values while we sample the first bits: 123 | ;---------------------------------------------------------------------------- 124 | haveTwoBitsK: 125 | push x1 ;[0] 126 | push x2 ;[2] 127 | push x3 ;[4] (leap2) 128 | ldi leap2, 0x55 ;[6] add leap cycle on 2nd,5th,8th,... stuff bit 129 | push x4 ;[7] == leap 130 | ldi leap, 0x55 ;[9] skip leap cycle on 2nd,5th,8th,... byte received 131 | push cnt ;[10] 132 | ldi cnt, USB_BUFSIZE ;[12] [rx loop init] 133 | ldi x2, 1< 38 | #ifndef __IAR_SYSTEMS_ASM__ 39 | # include 40 | #endif 41 | 42 | #define __attribute__(arg) /* not supported on IAR */ 43 | 44 | #ifdef __IAR_SYSTEMS_ASM__ 45 | # define __ASSEMBLER__ /* IAR does not define standard macro for asm */ 46 | #endif 47 | 48 | #ifdef __HAS_ELPM__ 49 | # define PROGMEM __farflash 50 | #else 51 | # define PROGMEM __flash 52 | #endif 53 | 54 | #define USB_READ_FLASH(addr) (*(PROGMEM char *)(addr)) 55 | 56 | /* The following definitions are not needed by the driver, but may be of some 57 | * help if you port a gcc based project to IAR. 58 | */ 59 | #define cli() __disable_interrupt() 60 | #define sei() __enable_interrupt() 61 | #define wdt_reset() __watchdog_reset() 62 | #define _BV(x) (1 << (x)) 63 | 64 | /* assembler compatibility macros */ 65 | #define nop2 rjmp $+2 /* jump to next instruction */ 66 | #define XL r26 67 | #define XH r27 68 | #define YL r28 69 | #define YH r29 70 | #define ZL r30 71 | #define ZH r31 72 | #define lo8(x) LOW(x) 73 | #define hi8(x) (((x)>>8) & 0xff) /* not HIGH to allow XLINK to make a proper range check */ 74 | 75 | /* Depending on the device you use, you may get problems with the way usbdrv.h 76 | * handles the differences between devices. Since IAR does not use #defines 77 | * for MCU registers, we can't check for the existence of a particular 78 | * register with an #ifdef. If the autodetection mechanism fails, include 79 | * definitions for the required USB_INTR_* macros in your usbconfig.h. See 80 | * usbconfig-prototype.h and usbdrv.h for details. 81 | */ 82 | 83 | /* ------------------------------------------------------------------------- */ 84 | #elif __CODEVISIONAVR__ /* check for CodeVision AVR */ 85 | /* ------------------------------------------------------------------------- */ 86 | /* This port is not working (yet) */ 87 | 88 | /* #define F_CPU _MCU_CLOCK_FREQUENCY_ seems to be defined automatically */ 89 | 90 | #include 91 | #include 92 | 93 | #define __attribute__(arg) /* not supported on IAR */ 94 | 95 | #define PROGMEM __flash 96 | #define USB_READ_FLASH(addr) (*(PROGMEM char *)(addr)) 97 | 98 | #ifndef __ASSEMBLER__ 99 | static inline void cli(void) 100 | { 101 | #asm("cli"); 102 | } 103 | static inline void sei(void) 104 | { 105 | #asm("sei"); 106 | } 107 | #endif 108 | #define _delay_ms(t) delay_ms(t) 109 | #define _BV(x) (1 << (x)) 110 | #define USB_CFG_USE_SWITCH_STATEMENT 1 /* macro for if() cascase fails for unknown reason */ 111 | 112 | #define macro .macro 113 | #define endm .endmacro 114 | #define nop2 rjmp .+0 /* jump to next instruction */ 115 | 116 | /* ------------------------------------------------------------------------- */ 117 | #else /* default development environment is avr-gcc/avr-libc */ 118 | /* ------------------------------------------------------------------------- */ 119 | 120 | #include 121 | #ifdef __ASSEMBLER__ 122 | # define _VECTOR(N) __vector_ ## N /* io.h does not define this for asm */ 123 | #else 124 | # include 125 | #endif 126 | 127 | #if USB_CFG_DRIVER_FLASH_PAGE 128 | # define USB_READ_FLASH(addr) pgm_read_byte_far(((long)USB_CFG_DRIVER_FLASH_PAGE << 16) | (long)(addr)) 129 | #else 130 | # define USB_READ_FLASH(addr) pgm_read_byte(addr) 131 | #endif 132 | 133 | #define macro .macro 134 | #define endm .endm 135 | #define nop2 rjmp .+0 /* jump to next instruction */ 136 | 137 | #endif /* development environment */ 138 | 139 | /* for conveniecne, ensure that PRG_RDB exists */ 140 | #ifndef PRG_RDB 141 | # define PRG_RDB(addr) USB_READ_FLASH(addr) 142 | #endif 143 | #endif /* __usbportability_h_INCLUDED__ */ 144 | -------------------------------------------------------------------------------- /schematic/CEC_Electrical.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/stefslon/cec-arduino/0af51842c59281822801701e0caf67b882060788/schematic/CEC_Electrical.png --------------------------------------------------------------------------------