├── .github
└── ISSUE_TEMPLATE
│ ├── bug_report.md
│ └── feature_request.md
├── .gitignore
├── CITATION.cff
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── _config.yml
├── backup
├── Conference.md
├── header.md
├── papers.csv
├── rl.md
├── script.py
└── years.md
├── conferences
├── 2014.md
├── 2016.md
├── 2017.md
├── 2018.md
├── 2019.md
├── 2020.md
├── 2021.md
├── 2022.md
├── 2023.md
└── 2024.md
└── journal
├── 2019.md
├── 2020.md
├── 2021.md
├── 2022.md
├── 2023.md
├── 2024.md
└── 2025.md
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Desktop (please complete the following information):**
27 | - OS: [e.g. iOS]
28 | - Browser [e.g. chrome, safari]
29 | - Version [e.g. 22]
30 |
31 | **Smartphone (please complete the following information):**
32 | - Device: [e.g. iPhone6]
33 | - OS: [e.g. iOS8.1]
34 | - Browser [e.g. stock browser, safari]
35 | - Version [e.g. 22]
36 |
37 | **Additional context**
38 | Add any other context about the problem here.
39 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Feature request
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.ipynb
2 | __pycache__
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 0.0.1
2 | message: "If you use this software, please cite it as below."
3 | authors:
4 | - family-names: "Le"
5 | given-names: "Nam"
6 | orcid: "https://orcid.org/0000-0002-2273-5089"
7 | title: "Recently working on Temporal Knowledge Graph Embedding and Reasoning"
8 | url: "https://github.com/stmrdus/tkger"
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | In the interest of fostering an open and welcoming environment, we as
6 | contributors and maintainers pledge to making participation in our project and
7 | our community a harassment-free experience for everyone, regardless of age, body
8 | size, disability, ethnicity, gender identity and expression, level of experience,
9 | education, socio-economic status, nationality, personal appearance, race,
10 | religion, or sexual identity and orientation.
11 |
12 | ## Our Standards
13 |
14 | Examples of behavior that contributes to creating a positive environment
15 | include:
16 |
17 | * Using welcoming and inclusive language
18 | * Being respectful of differing viewpoints and experiences
19 | * Gracefully accepting constructive criticism
20 | * Focusing on what is best for the community
21 | * Showing empathy towards other community members
22 |
23 | Examples of unacceptable behavior by participants include:
24 |
25 | * The use of sexualized language or imagery and unwelcome sexual attention or
26 | advances
27 | * Trolling, insulting/derogatory comments, and personal or political attacks
28 | * Public or private harassment
29 | * Publishing others' private information, such as a physical or electronic
30 | address, without explicit permission
31 | * Other conduct which could reasonably be considered inappropriate in a
32 | professional setting
33 |
34 | ## Our Responsibilities
35 |
36 | Project maintainers are responsible for clarifying the standards of acceptable
37 | behavior and are expected to take appropriate and fair corrective action in
38 | response to any instances of unacceptable behavior.
39 |
40 | Project maintainers have the right and responsibility to remove, edit, or
41 | reject comments, commits, code, wiki edits, issues, and other contributions
42 | that are not aligned to this Code of Conduct, or to ban temporarily or
43 | permanently any contributor for other behaviors that they deem inappropriate,
44 | threatening, offensive, or harmful.
45 |
46 | ## Scope
47 |
48 | This Code of Conduct applies both within project spaces and in public spaces
49 | when an individual is representing the project or its community. Examples of
50 | representing a project or community include using an official project e-mail
51 | address, posting via an official social media account, or acting as an appointed
52 | representative at an online or offline event. Representation of a project may be
53 | further defined and clarified by project maintainers.
54 |
55 | ## Enforcement
56 |
57 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
58 | reported by contacting the project team at {{ email }}. All
59 | complaints will be reviewed and investigated and will result in a response that
60 | is deemed necessary and appropriate to the circumstances. The project team is
61 | obligated to maintain confidentiality with regard to the reporter of an incident.
62 | Further details of specific enforcement policies may be posted separately.
63 |
64 | Project maintainers who do not follow or enforce the Code of Conduct in good
65 | faith may face temporary or permanent repercussions as determined by other
66 | members of the project's leadership.
67 |
68 | ## Attribution
69 |
70 | This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71 | available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72 |
73 | [homepage]: https://www.contributor-covenant.org
74 |
75 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing to TKGER
2 |
3 | Hi there! We're thrilled that you'd like to contribute to this project. We want to make contributing to this project as easy and transparent as
4 | possible. Your help is essential for keeping it great.
5 |
6 | Please note that this project is released with a [Contributor Code of Conduct](./CODE_OF_CONDUCT.md). By participating in this project you agree to abide by its terms.
7 |
8 | ## Issues and PRs
9 |
10 | If you have suggestions for how this project could be improved, or want to report a bug, open an issue! We'd love all and any contributions. If you have questions, too, we'd love to hear them.
11 |
12 | We'd also love PRs. If you're thinking of a large PR, we advise opening up an issue first to talk about it, though! Look at the links below if you're not sure how to open a PR.
13 |
14 | We use GitHub issues to track public bugs. Please ensure your description is clear and has sufficient instructions to be able to reproduce the issue.
15 |
16 | ## Submitting a pull request
17 |
18 | 1. [Fork][fork] and clone the repository.
19 | 1. Create a new branch: `git checkout -b my-branch-name`.
20 | 1. Make your change
21 | 1. Push to your fork and [submit a pull request][pr].
22 | 1. Pat your self on the back and wait for your pull request to be reviewed and merged.
23 |
24 | ## License
25 |
26 | By contributing to kbc, you agree that your contributions will be licensed under the [LICENSE](./LICENSE) file in the root directory of this source tree.
27 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](https://github.com/sindresorhus/awesome)
2 | 
3 | 
4 |
5 | 
6 |
7 |
8 |
9 |
10 |
11 |
12 | # TKGER
13 |
14 | Some papers on Temporal Knowledge Graph Embedding and Reasoning
15 |
16 | ## Useful research resources
17 |
18 | 1. Graph-based Deep Learning Literature, [Github](https://github.com/naganandy/graph-based-deep-learning-literature)
19 |
20 | _links to conference publications in graph-based deep learning_
21 |
22 | 2. Reinforcement learning on graphs: A survey, [Github](https://github.com/neunms/Reinforcement-learning-on-graphs-A-survey)
23 |
24 | _This collection of papers can be used to summarize research about graph reinforcement learning for the convenience of researchers._
25 |
26 | 3. Awesome Machine Learning for Combinatorial Optimization Resources, [Github](https://github.com/Thinklab-SJTU/awesome-ml4co)
27 |
28 | _Awesome machine learning for combinatorial optimization papers._
29 |
30 | 4. Awesome-TKGC, [Github](https://github.com/jiapuwang/Awesome-TKGC)
31 |
32 | _A collection of papers and resources about temporal knowledge graph completion (TKGC)._
33 |
34 | 5. AKGR: Awesome Knowledge Graph Reasoning, [Github](https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning)
35 |
36 | _AKGR: Awesome Knowledge Graph Reasoning is a collection of knowledge graph reasoning works, including papers, codes and datasets._
37 |
38 | 6. Awesome Knowledge Graph, [Github](https://github.com/totogo/awesome-knowledge-graph)
39 |
40 | _A curated list of Knowledge Graph related learning materials, databases, tools and other resources._
41 |
42 | 7. Awesome-DynamicGraphLearning, [Github](https://github.com/SpaceLearner/Awesome-DynamicGraphLearning)
43 |
44 | _Awesome papers about machine learning (deep learning) on dynamic (temporal) graphs (networks / knowledge graphs)._
45 |
46 | 8. KGE, [Github](https://github.com/Yueshengxia/KGE)
47 |
48 | _Some papers on Knowledge Graph Embedding(KGE)_
49 |
50 | 9. KGLQ, [Github](https://github.com/xinguoxia/KGLQ)
51 |
52 | _Some papers about Logical Query on Knowledge Graphs (KGLQ)_
53 |
54 | 10. ADGC: Awesome Deep Graph Clustering, [Github](https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering)
55 |
56 | _Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods (papers, codes, and datasets)._
57 |
58 | 11. Graph Adversarial Learning Literature, [Github](https://github.com/safe-graph/graph-adversarial-learning-literature)
59 |
60 | _A curated list of adversarial attacks and defenses papers on graph-structured data._
61 |
62 | ## Tutorial
63 |
64 | ### 2024
65 |
66 | [1] New Frontiers of Knowledge Graph Reasoning: Recent Advances and Future Trends - WWW 2024, [Webpage](https://lihuiliullh.github.io/)
67 |
68 | ### 2023
69 |
70 | [1] Knowledge Graph Reasoning and Its Applications - KDD 2023, [Webpage](https://sites.google.com/view/kg-reasoning/home)
71 |
72 | ### 2022
73 |
74 | [1] Reasoning on Knowledge Graphs: Symbolic or Neural? - AAAI 2022, [Webpage](https://aaai2022kgreasoning.github.io/)
75 |
76 | ### 2021
77 |
78 | [1] All You Need to Know to Build a Product Knowledge Graph - KDD 2021 Tutorial, [Webpage](https://naixlee.github.io/Product_Knowledge_Graph_Tutorial_KDD2021/)
79 |
80 | ### 2018
81 |
82 | [1] Fact Checking: Theory and Practice - KDD 2018 Tutorial, [Webpage](https://shiralkarprashant.github.io/fact-checking-tutorial-KDD2018/)
83 |
84 | ## [Survey Papers](#content)
85 |
86 | ### 2024
87 |
88 | 1. **Knowledge Graph Embedding: An Overview**, APSIPA Transactions on Signal and Information Processing, 2024. [paper](https://www.nowpublishers.com/article/OpenAccessDownload/SIP-2023-0065)
89 | _Ge, X., Wang, Y. C., Wang, B., & Kuo, C. C. J_
90 |
91 | 2. **Survey of Temporal Knowledge Graph Completion Methods**, Journal of Computer Engineering & Applications, 2024. [paper](https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10028331&AN=176129207&h=DToC9Tr7AnmJWLoaA0YmQwvLuqZfB5Mob0vIC4exEuOy6nI%2FQwPZGxv9jhrYizxjbbBYIwGfa8ISO34gRohnxw%3D%3D&crl=c)
92 | _Lei, X. I. A. O., & Qi, L. I._
93 |
94 | 3. **Overview of Knowledge Reasoning for Knowledge Graph**, Neurocomputing, 2024. [paper](https://www.sciencedirect.com/science/article/pii/S0925231224003424)
95 | _Liu, X., Mao, T., Shi, Y., & Ren, Y._
96 |
97 | 4. **Knowledge graph embedding: A survey from the perspective of representation spaces**, ACM Computing Surveys, 2024. [paper](https://dl.acm.org/doi/abs/10.1145/3643806)
98 | _Cao, J., Fang, J., Meng, Z., & Liang, S._
99 |
100 | 5. **A survey on graph representation learning methods**, ACM Transactions on Intelligent Systems and Technology, 2024. [paper](https://dl.acm.org/doi/abs/10.1145/3633518)
101 | _Khoshraftar, S., & An, A._
102 |
103 | 6. **Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey**, ArXiv, 2024. [paper](https://arxiv.org/abs/2402.05391)
104 | _Chen, Z., Zhang, Y., Fang, Y., Geng, Y., Guo, L., Chen, X., ... & Chen, H._
105 |
106 | 7. **A survey for managing temporal data in RDF**, Information Systems, 2024. [paper](https://www.sciencedirect.com/science/article/pii/S0306437924000267)
107 | _Wu, Di, Hsien-Tseng Wang, and Abdullah Uz Tansel_
108 |
109 | 8. **A Survey on Temporal Knowledge Graph: Representation Learning and Applications**, ArXiv, 2024. [paper](https://arxiv.org/abs/2403.04782)
110 | _Cai, Li, Xin Mao, Yuhao Zhou, Zhaoguang Long, Changxu Wu, and Man Lan._
111 |
112 | 9. **A survey of inductive knowledge graph completion**. Neural Computing and Applications, 36(8), 3837-3858, 2024. [paper](https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00521-023-09286-2&casa_token=0CojBb7x7e4AAAAA:D6ZmmIdunksdtDal1bnlv-kniB7uSh20ghORVye4p8XW55UnY-Su2KqkpopQEX6Upea4mIkJmd2Dyvgv)
113 | _Liang, X., Si, G., Li, J., Tian, P., An, Z., & Zhou, F._
114 |
115 | 10. **Survey and open problems in privacy-preserving knowledge graph: merging, query, representation, completion, and applications**. International Journal of Machine Learning and Cybernetics, 1-20., 2024. [paper](https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s13042-024-02106-6&casa_token=aHFdBA3-Z4oAAAAA:SbDNlbpjx2MAJ6htmB1GDOTUYUOQuWNJ6x0Xy0vIfjstxtUNsVRLkRP5r9zvahzClb7nLTfP1q5Nt-Xp)
116 | _Chen, C., Zheng, F., Cui, J., Cao, Y., Liu, G., Wu, J., & Zhou, J._
117 |
118 | 11. **A comprehensive survey on deep graph representation learning**. Neural Networks, 106207, 2024. [paper](https://www.sciencedirect.com/science/article/pii/S089360802400131X)
119 | _Ju, W., Fang, Z., Gu, Y., Liu, Z., Long, Q., Qiao, Z., ... & Zhang, M._
120 |
121 | 12. **Knowledge Graph Embedding: An Overview**. APSIPA Transactions on Signal and Information Processing, 13(1), 2024. [paper](https://www.nowpublishers.com/article/OpenAccessDownload/SIP-2023-0065)
122 | _Ge, X., Wang, Y. C., Wang, B., & Kuo, C. C. J._
123 |
124 | 13. **Temporal Knowledge Graph Question Answering: A Survey**. arXiv preprint arXiv:2406.14191. [paper]()
125 | _Su, M., Li, Z., Chen, Z., Bai, L., Jin, X., & Guo, J._
126 |
127 | 14. **Temporal Knowledge Graph Reasoning: A Review**. ig Data and Social Computing. BDSC 2024. [paper](https://link.springer.com/chapter/10.1007/978-981-97-5803-6_26)
128 | _Yu, C., Luo, T., Wang, J., Cao, Z._
129 |
130 | 15. **Neural-Symbolic Methods for Knowledge Graph Reasoning: A Survey**. ACM Transactions on Knowledge Discovery from Data. [paper](https://dl.acm.org/doi/abs/10.1145/3686806)
131 | _Cheng, K., Ahmed, N. K., Rossi, R. A., Willke, T., & Sun, Y. (2024)._
132 |
133 | 16. **A survey on temporal knowledge graph embedding: Models and applications**. Knowledge-Based Systems (2024): 112454. [paper](https://www.sciencedirect.com/science/article/pii/S0950705124010888)
134 | _Zhang, Yuchao, Xiangjie Kong, Zhehui Shen, Jianxin Li, Qiuhua Yi, Guojiang Shen, and Bo Dong_
135 |
136 |
137 | ### 2023
138 |
139 | 1. **A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects**, ArXiv, 2023. [paper](https://arxiv.org/abs/2308.02457)
140 |
141 | _Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan, Bo Xiong, Heng Liu, Linhao Luo, Tengfei Liu, Yongli Hu, Baocai Yin, Wen Gao_
142 |
143 | 2. **Knowledge Graphs: Opportunities and Challenges**, Artificial Intelligence Review, 2023, [paper](https://link.springer.com/article/10.1007/s10462-023-10465-9#citeas)
144 |
145 | _Ciyuan Peng, Feng Xia, Mehdi Naseriparsa & Francesco Osborne_
146 |
147 | 3. **Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs**, ArXiv, 2023. [paper](https://arxiv.org/abs/2302.01859)
148 |
149 | _Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, Huajun Chen_
150 |
151 | 4. **A Comprehensive Survey on Automatic Knowledge Graph Construction**, ArXiv, 2023. [paper](https://arxiv.org/abs/2302.05019)
152 |
153 | _Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, Xindong Wu_
154 |
155 | ### 2022
156 |
157 | 1. **Temporal Knowledge Graph Completion: A Survey** ArXiv, 2022. [paper](https://arxiv.org/abs/2201.08236)
158 |
159 | _Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, Jianxin Li._
160 |
161 | > **Update**: Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, Jianxin Li, **Temporal Knowledge Graph Completion: A Survey**, 2023 Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, Survey Track. Pages 6545-6553. [paper](https://doi.org/10.24963/ijcai.2023/734)
162 |
163 | 2. **Reasoning over different types of knowledge graphs: Static, temporal and multi-modal**, ArXiv, 2022. [paper](https://arxiv.org/pdf/2212.05767)
164 |
165 | 3. **A Survey on Temporal Knowledge Graphs-Extrapolation and Interpolation Tasks**, Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, [paper](https://link.springer.com/chapter/10.1007/978-3-031-20738-9_110)
166 |
167 | _Sulin Chen & Jingbin Wang_
168 |
169 | 4. **Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs**. 2023 Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, Survey Track. [paper](https://arxiv.org/abs/2302.01859)
170 |
171 | _Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, Huajun Chen_
172 |
173 | ### 2021
174 |
175 | 1. **Survey on Temporal Knowledge Graph**, 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). [paper](https://ieeexplore.ieee.org/abstract/document/9750459)
176 |
177 | _Chong Mo; Ye Wang; Yan Jia; Qing Liao_
178 |
179 | ## Datasets
180 |
181 | | Name | #Entities | #Relations | #Timestamps | #Collections | Timestamp | Link download |
182 | | ---------- | --------- | ---------- | ----------- | ------------ | --------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
183 | | ICEWS14 | 7128 | 230 | 365 | 90730 | point | [https://paperswithcode.com/sota/link-prediction-on-icews14-1](https://paperswithcode.com/sota/link-prediction-on-icews14-1) |
184 | | ICEWS05-15 | 10488 | 251 | 4017 | 479329 | point | [https://paperswithcode.com/sota/link-prediction-on-icews05-15-1](https://paperswithcode.com/sota/link-prediction-on-icews05-15-1) |
185 | | ICEWS18 | 23033 | 256 | 304 | 468558 | point | [https://docs.dgl.ai/en/0.8.x/generated/dgl.data.ICEWS18Dataset.html](https://docs.dgl.ai/en/0.8.x/generated/dgl.data.ICEWS18Dataset.html) |
186 | | GDELT | 500 | 20 | 366 | 3419607 | point | [https://www.gdeltproject.org/](https://www.gdeltproject.org/) |
187 | | YAGO15k | 15403 | 32 | 169 | 138048 | interval | [https://paperswithcode.com/sota/link-prediction-on-yago15k-1](https://paperswithcode.com/sota/link-prediction-on-yago15k-1) |
188 | | WIKIDATA | 11153 | 96 | 328 | 150079 | interval | [https://www.wikidata.org/wiki/Wikidata:Main_Page](https://www.wikidata.org/wiki/Wikidata:Main_Page)
189 |
190 | ## 2025
191 |
192 | **Neural Networks**
193 |
194 | [1] Bai, L., Han, S., & Zhu, L. (2025). [Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0893608024009109). Neural Networks, 183, 106981.
195 |
196 | [2] Chen, T., Yang, L., Wang, Z., & Long, J. (2025). A rule-and query-guided reinforcement learning for extrapolation reasoning in temporal knowledge graphs. Neural Networks, 107186.
197 |
198 | **Science China Information Sciences**
199 |
200 | [1] Cai, W., Li, M., Shi, X., Fan, Y., Zhu, Q., & Jin, H. (2025). RE-SEGNN: recurrent semantic evidence-aware graph neural network for temporal knowledge graph forecasting. Science China Information Sciences, 68(2), 122104.
201 |
202 | **Expert Systems With Applications**
203 |
204 | [1] Ma, R., Wang, L., Wu, H., Gao, B., Wang, X., & Zhao, L. (2025). Historical Trends and Normalizing Flow for One-shot Temporal Knowledge Graph Reasoning. Expert Systems With Applications, 260, 125366.
205 |
206 | **Information Processing & Management**
207 |
208 | [1] Bai, L., Zhang, H., An, X., & Zhu, L. (2025). Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs. Information Processing & Management, 62(3), 104001.
209 |
210 | [2] Li, Q., & Wu, G. (2025). Explainable reasoning over temporal knowledge graphs by pre-trained language model. Information Processing & Management, 62(1), 103903.
211 |
212 | [3] Xu, W., Liu, B., Peng, M., Jiang, Z., Jia, X., Liu, K., ... & Peng, M. (2025). Historical facts learning from Long-Short Terms with Language Model for Temporal Knowledge Graph Reasoning. Information Processing & Management, 62(3), 104047.
213 |
214 | **Pattern Recognition**
215 |
216 | [1] Zhang, J., Hui, B., Zhu, X., Tian, L., & Hua, F. (2025). Temporal knowledge graph reasoning based on discriminative neighboring semantic learning. Pattern Recognition, 111392.
217 |
218 | **IEEE Transactions on Neural Networks and Learning Systems**
219 |
220 | [1] Qian, Y., Wang, X., Sun, F., & Pan, L. (2025). Compressing Transfer: Mutual Learning-Empowered Knowledge Distillation for Temporal Knowledge Graph Reasoning. IEEE Transactions on Neural Networks and Learning Systems.
221 |
222 | **Information Fusion**
223 |
224 | [1] Yang, R., Zhu, J., Man, J., Liu, H., Fang, L., & Zhou, Y. (2025). GS-KGC: A generative subgraph-based framework for knowledge graph completion with large language models. Information Fusion, 117, 102868.
225 |
226 | **Knowledge-Based Systems**
227 |
228 | [1] Zhu, J., Hu, J., Bai, D., Fu, Y., Zhou, J., & Chen, D. (2025). Multi-dimension rotations based on quaternion system for modeling various patterns in temporal knowledge graphs. Knowledge-Based Systems, 113114.
229 |
230 | **PeerJ Computer Science**
231 |
232 | [1] Liu, W., Hasikin, K., Khairuddin, A. S. M., Liu, M., & Zhao, X. (2025). A temporal knowledge graph reasoning model based on recurrent encoding and contrastive learning. PeerJ Computer Science, 11, e2595.
233 |
234 | **Data & Knowledge Engineering**
235 |
236 | [1] Zhu, L., Duan, X., & Bai, L. (2025). SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph. Data & Knowledge Engineering, 155, 102372.
237 |
238 | **Symmetry**
239 |
240 | [1] Chen, Y., Li, X., Liu, Y., & Hu, T. (2025). Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP. Symmetry, 17(2), 173.
241 |
242 | **Expert Systems**
243 |
244 | [1] Chen, H., Zhang, M., & Chen, Z. (2025). Temporal Knowledge Graph Reasoning Based on Dynamic Fusion Representation Learning. Expert Systems, 42(2), e13758.
245 |
246 | **Information Sciences**
247 |
248 | [1] Guo, J., Zhao, M., Yu, J., Yu, R., Song, J., Wang, Q., ... & Yu, M. (2025). EHPR: Learning evolutionary hierarchy perception representation based on quaternion for temporal knowledge graph completion. Information Sciences, 688, 121409.
249 |
250 | [2] Si, Y., Hu, X., Cheng, Q., Liu, X., Liu, S., & Huang, J. (2025). Coherence mode: Characterizing local graph structural information for temporal knowledge graph. Information Sciences, 686, 121357.
251 |
252 | **Engineering Applications of Artificial Intelligence**
253 |
254 | [1] Nguyen, N. T., Ngo, T., Hoang, N., & Le, T. (2025). FTPComplEx: A flexible time perspective approach to temporal knowledge graph completion. Engineering Applications of Artificial Intelligence, 139, 109717.
255 |
256 | **Journal of Intelligent Information Systems**
257 |
258 | [1] Chen, Z., & Wu, J. (2025). Temporal knowledge graph completion based on product space and contrastive learning of commonsense. Journal of Intelligent Information Systems, 1-20.
259 |
260 | **Computer Science and Information Systems**
261 |
262 | [1] Li, S., Wang, Q., Li, Z., & Zhang, L. (2025). TPBoxE: Temporal knowledge graph completion based on time probability box embedding. Computer Science and Information Systems, (00), 6-6. |
263 |
264 | ## 2024
265 |
266 | **Knowledge-Based Systems**
267 |
268 | [1] Yue, L., Ren, Y., Zeng, Y., Zhang, J., Zeng, K., Wan, J., & Zhou, M. (2024). [Complex expressional characterizations learning based on block decomposition for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0950705124002260). Knowledge-Based Systems, 111591.
269 |
270 | [2] Zhu, L., Zhang, H., & Bai, L. (2024). [Hierarchical pattern-based complex query of temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0950705123010493). Knowledge-Based Systems, 284, 111301.
271 |
272 | [3] Huang, H., Xie, L., Liu, M., Lin, J., & Shen, H. (2024). [An embedding model for temporal knowledge graphs with long and irregular intervals](https://www.sciencedirect.com/science/article/pii/S0950705124005276). Knowledge-Based Systems, 111893.
273 |
274 | [4] Guo, J., Yu, J., Zhao, M., Yu, M., Yu, R., Xu, L., ... & Li, X. (2024). [TELS: Learning time-evolving information and latent semantics using dual quaternion for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S095070512400902X). Knowledge-Based Systems, 112268.
275 |
276 | [5] Hu, J., Zhu, Y., Teng, F., & Li, T. (2024). [Temporal knowledge graph reasoning based on relation graphs and time-guided attention mechanism](https://www.sciencedirect.com/science/article/pii/S0950705124009146). Knowledge-Based Systems, 112280.
277 |
278 | **Applied Intelligence**
279 |
280 | [1] Wang, J., Wu, R., Wu, Y., Zhang, F., Zhang, S., & Guo, K. (2024). [MPNet: temporal knowledge graph completion based on a multi-policy network](https://link.springer.com/article/10.1007/s10489-024-05320-5). Applied Intelligence, 1-17. [Github](https://github.com/Mike-RF/MPNet)
281 |
282 | [2] Ma, Q., Zhang, X., Ding, Z., Gao, C., Shang, W., Nong, Q., ... & Jin, Z. (2024). [Temporal knowledge graph reasoning based on evolutional representation and contrastive learning](https://link.springer.com/article/10.1007/s10489-024-05767-6). Applied Intelligence, 1-19.
283 |
284 | **ACM TKDD**
285 |
286 | [1] Li, X., Zhou, H., Yao, W., Li, W., Liu, B., & Lin, Y. (2024). [Intricate Spatiotemporal Dependency Learning for Temporal Knowledge Graph Reasoning](https://dl.acm.org/doi/abs/10.1145/3648366). ACM Transactions on Knowledge Discovery from Data.
287 |
288 | **Information Science**
289 |
290 | [1] (THOR) Lee, Y. C., Lee, J., Lee, D., & Kim, S. W. (2024). [Learning to compensate for lack of information: Extracting latent knowledge for effective temporal knowledge graph completion](https://www.sciencedirect.com/science/article/abs/pii/S0020025523014421?casa_token=clrOVF8uX6sAAAAA:CbR7aGo0qkRov9ss746qvbbzKHTyqhD9jLULqbGBFigjj8pOiRq7Vd2e9_xbnLO_sZlDjU-DmLo). Information Sciences, 654, 119857.
291 |
292 | > Extended version from: Y. -C. Lee, J. Lee, D. Lee and S. -W. Kim, ["THOR: Self-Supervised Temporal Knowledge Graph Embedding via Three-Tower Graph Convolutional Networks,"](https://ieeexplore.ieee.org/document/10027723) 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022, pp. 1035-1040, doi: 10.1109/ICDM54844.2022.00127. [Github](https://github.com/EJHyun/THOR)
293 |
294 | [2] (Joint-MTComplEx) Zhang, F., Chen, H., Shi, Y., Cheng, J., & Lin, J. (2024). [Joint framework for tensor decomposition-based temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S002002552301438X). Information Sciences, 654, 119853.
295 |
296 | [3] (DGTL) Liu, Z., Li, Z., Li, W., & Duan, L. (2024). [Deep Graph Tensor Learning for Temporal Link Prediction](https://www.sciencedirect.com/science/article/abs/pii/S0020025523016717). Information Sciences, 120085. [Github](https://github.com/xiaolaosao/DGTL)
297 |
298 | [4] (CRmod) Zhu, L., Chai, D., & Bai, L. (2024). [CRmod: Context-Aware Rule-Guided reasoning over temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0020025524002561). Information Sciences, 120343. [Github](https://github.com/DMKE-Lab/CRmod)
299 |
300 | [5] Dai, Y., Guo, W., & Eickhoff, C. (2024). [Wasserstein adversarial learning based temporal knowledge graph embedding](https://www.sciencedirect.com/science/article/pii/S002002552301647X?via%3Dihub). Information Sciences, 659, 120061.
301 |
302 | [6] Xu, X., Jia, W., Yan, L., Lu, X., Wang, C., & Ma, Z. (2024). [Spatiotemporal knowledge graph completion via diachronic and transregional word embedding](https://www.sciencedirect.com/science/article/pii/S0020025524003906). Information Sciences, 120477.
303 |
304 | [7] Guo, J., Zhao, M., Yu, J., Yu, R., Song, J., Wang, Q., ... & Yu, M. (2024). [EHPR: Learning Evolutionary Hierarchy Perception Representation based on Quaternion for Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0020025524013239). Information Sciences, 121409.
305 |
306 | [8] Si, Y., Hu, X., Cheng, Q., Liu, X., Liu, S., & Huang, J. (2025). [Coherence mode: Characterizing local graph structural information for temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0020025524012714). Information Sciences, 686, 121357.
307 |
308 | **Information Fusion**
309 |
310 | [1] (MvTuckER) Wang, H., Yang, J., Yang, L. T., Gao, Y., Ding, J., Zhou, X., & Liu, H. (2024). [MvTuckER: Multi-view knowledge graphs represention learning based on tensor tucker model](https://www.sciencedirect.com/science/article/abs/pii/S1566253524000277). Information Fusion, 102249.
311 |
312 | **Information Processing & Management**
313 |
314 | [1] (STKGR-PR) Meng, X., Bai, L., Hu, J., & Zhu, L. (2024). [Multi-hop path reasoning over sparse temporal knowledge graphs based on path completion and reward shaping](https://www.sciencedirect.com/science/article/pii/S0306457323003424). Information Processing & Management, 61(2), 103605. [Github](https://github.com/DMKE-Lab/STKGR-PR)
315 |
316 | [2] Ma, J., Li, K., Zhang, F., Wang, Y., Luo, X., Li, C., & Qiao, Y. (2024). [TaReT: Temporal knowledge graph reasoning based on topology-aware dynamic relation graph and temporal fusion](https://www.sciencedirect.com/science/article/pii/S0306457324002073). Information Processing & Management, 61(6), 103848.
317 |
318 | [3] Bai, L., Zhang, H., An, X., & Zhu, L. (2025). [Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs](https://www.sciencedirect.com/science/article/pii/S0306457324003601). Information Processing & Management, 62(3), 104001.
319 |
320 | **Expert Systems with Applications**
321 |
322 | [1] (CDRGN-SDE) Zhang, D., Feng, W., Wu, Z., Li, G., & Ning, B. (2024). [CDRGN-SDE: Cross-Dimensional Recurrent Graph Network with neural Stochastic Differential Equation for temporal knowledge graph embedding](https://www.sciencedirect.com/science/article/pii/S095741742400160X). Expert Systems with Applications, 123295. [Github](https://github.com/zhangdddong/CDRGN-SDE)
323 |
324 | [2] (TPComplEx) Yang, J., Ying, X., Shi, Y., & Xing, B. (2024). [Tensor decompositions for temporal knowledge graph completion with time perspective](https://www.sciencedirect.com/science/article/pii/S0957417423017694). Expert Systems with Applications, 237, 121267. [Github](https://github.com/Jinfa/TPComplEx)
325 |
326 | **Frontiers of Computer Science**
327 |
328 | [1] (EvolveKG) Liu, J., Yu, Z., Guo, B., Deng, C., Fu, L., Wang, X., & Zhou, C. (2024). [EvolveKG: a general framework to learn evolving knowledge graphs](https://link.springer.com/article/10.1007/s11704-022-2467-9). Frontiers of Computer Science, 18(3), 183309.
329 |
330 | **Neural networks**
331 |
332 | [1] Shao, P., Tao, J., & Zhang, D. (2024). [Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction](https://www.sciencedirect.com/science/article/pii/S0893608024000704). Neural Networks, 106146.
333 |
334 | [2] Bai, L., Li, N., Li, G., Zhang, Z., & Zhu, L. (2024). [Embedding-based Entity Alignment of Cross-Lingual Temporal Knowledge Graphs](https://www.sciencedirect.com/science/article/pii/S0893608024000595). Neural Networks, 106143.
335 |
336 | [3] 🔥 Mei, X., Yang, L., Jiang, Z., Cai, X., Gao, D., Han, J., & Pan, S. (2024). [An Inductive Reasoning Model based on Interpretable Logical Rules over temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0893608024001436). Neural Networks, 106219. [Github](https://github.com/mxadorable/ILR-IR)
337 |
338 | [4] Zhang, J., Sun, M., Huang, Q., & Tian, L. (2024). [PLEASING: Exploring the historical and potential events for temporal knowledge graph reasoning](https://www.sciencedirect.com/science/article/pii/S0893608024004404). Neural Networks, 106516. [Github](https://github.com/KcAcoZhang/PLEASING)
339 |
340 | **Engineering Applications of Artificial Intelligence**
341 |
342 | [1] Zhu, L., Zhao, W., & Bai, L. (2024). [Quadruple mention text-enhanced temporal knowledge graph reasoning](https://www.sciencedirect.com/science/article/pii/S0952197624002161). Engineering Applications of Artificial Intelligence, 133, 108058. [Github](https://github.com/DMKE-Lab/QM-mod)
343 |
344 | **Journal of Intelligent Information Systems**
345 |
346 | [1] Du, C., Li, X., & Li, Z. (2024). [Semantic-enhanced reasoning question answering over temporal knowledge graphs](https://link.springer.com/article/10.1007/s10844-024-00840-5). Journal of Intelligent Information Systems, 1-23.
347 |
348 | **Artificial Intelligence**
349 |
350 | [1] Dong, H., Wang, P., Xiao, M., Ning, Z., Wang, P., & Zhou, Y. (2024). [Temporal Inductive Path Neural Network for Temporal Knowledge Graph Reasoning](https://www.sciencedirect.com/science/article/pii/S0004370224000213). Artificial Intelligence, 104085. [Github](https://github.com/hhdo/TiPNN)
351 |
352 | **IEEE Transactions on Fuzzy Systems**
353 |
354 | [1] Ji, H., Yan, L., & Ma, Z. (2023). [FSTRE: Fuzzy Spatiotemporal RDF Knowledge Graph Embedding Using Uncertain Dynamic Vector Projection and Rotation](https://ieeexplore.ieee.org/document/10198282). IEEE Transactions on Fuzzy Systems.
355 |
356 | [2] An, X., Bai, L., Zhou, L., & Song, J. (2024). [Few-shot Fuzzy Temporal Knowledge Graph Completion via Fuzzy Semantics and Dynamic Attention Network](https://ieeexplore.ieee.org/abstract/document/10643313/). IEEE Transactions on Fuzzy Systems.
357 |
358 | [3] Wang, C., Yan, L., & Ma, Z. (2024). [Fuzzy Event Knowledge Graph Embedding Through Event Temporal and Causal Transfer](https://ieeexplore.ieee.org/abstract/document/10646584/). IEEE Transactions on Fuzzy Systems.
359 |
360 | **Electronics**
361 |
362 | [1] 🔥 Xu, H., Bao, J., Li, H., He, C., & Chen, F. (2024). [A Multi-View Temporal Knowledge Graph Reasoning Framework with Interpretable Logic Rules and Feature Fusion](https://www.mdpi.com/2079-9292/13/4/742). Electronics, 13(4), 742.
363 |
364 | [2] Liu, Y., Shen, Y., & Dai, Y. (2024). [Enhancing Temporal Knowledge Graph Representation with Curriculum Learning](https://www.mdpi.com/2079-9292/13/17/3397). Electronics, 13(17), 3397.
365 |
366 | **Neurocomputing**
367 |
368 | [1] He, M., Zhu, L., & Bai, L. (2024). [ConvTKG: A query-aware convolutional neural network-based embedding model for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S092523122400451X). Neurocomputing, 127680.
369 |
370 | [2] Song, J., Bai, L., An, X., & Zhou, L. (2024). [Unsupervised fuzzy temporal knowledge graph entity alignment via joint fuzzy semantics learning and global structure learning](https://www.sciencedirect.com/science/article/pii/S0925231224017909). Neurocomputing, 129019.
371 |
372 | [3] Zhu, Y., Ma, T., Sun, S., Rong, H., Bian, Y., & Huang, K. (2024). [RTA: A reinforcement learning-based temporal knowledge graph question answering model](https://www.sciencedirect.com/science/article/pii/S092523122401765X). Neurocomputing, 128994.
373 |
374 | **IEEE TKDE**
375 |
376 | [1] Zhang, F., Zhang, Z., Zhuang, F., Zhao, Y., Wang, D., & Zheng, H. (2024). [Temporal Knowledge Graph Reasoning With Dynamic Memory Enhancement](https://ieeexplore.ieee.org/abstract/document/10504973/). IEEE Transactions on Knowledge and Data Engineering.
377 |
378 | [2] Liao, L., Zheng, L., Shang, J., Li, X., & Chen, F. (2024). [ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph](https://ieeexplore.ieee.org/abstract/document/10777929/). IEEE Transactions on Knowledge and Data Engineering.
379 |
380 | **Tsinghua Science and Technology**
381 |
382 | [1] Han, Y., Lu, G., Zhang, S., Zhang, L., Zou, C., & Wen, G. (2024). [A Temporal Knowledge Graph Embedding Model Based on Variable Translation](https://ieeexplore.ieee.org/abstract/document/10517975/). Tsinghua Science and Technology, 29(5), 1554-1565.
383 |
384 | **Applied Soft Computing**
385 |
386 | [1] Bai, L., Chen, M., & Xiao, Q. (2024). Multi-Hop Temporal Knowledge Graph Reasoning with Multi-Agent Reinforcement Learning. Applied Soft Computing, 111727. [Github](https://github.com/DMKE-Lab/MA-TPath)
387 |
388 | **IEEE Transactions on Cybernetics**
389 |
390 | [1] Wang, J., Wang, B., Gao, J., Pan, S., Liu, T., Yin, B., & Gao, W. (2024). [MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10535899/). IEEE Transactions on Cybernetics.
391 |
392 | **IEEE Transaction on AI**
393 |
394 | [1] Yang, J., Huang, C., Yang, X., Yang, L. T., Gao, Y., & Liu, C. (2024). Temporal Knowledge Extrapolation Based on Fine-grained Tensor Graph Attention Network for Responsible AI. IEEE Transactions on Artificial Intelligence.
395 |
396 | **IAENG International Journal of Computer Science**
397 |
398 | [1] Huang, C., & Zhong, Y. (2024). A Novel Approach for Representing Temporal Knowledge Graphs. IAENG International Journal of Computer Science, 51(6).
399 |
400 | **Information Systems**
401 |
402 | [1] Jia, W., Ma, R., Niu, W., Yan, L., & Ma, Z. (2024). [SFTe: Temporal Knowledge Graphs Embedding for Future Interaction Prediction](https://www.sciencedirect.com/science/article/pii/S0306437924000814). Information Systems, 102423.
403 |
404 | **IEEE/ACM Transactions on Audio, Speech, and Language Processing**
405 |
406 | [1] Gao, Y., Qiao, L., Huang, Z., Kan, Z., He, Y., & Li, D. (2024). [Unified Contextualized Knowledge Embedding Method for Static and Temporal Knowledge Graph](https://ieeexplore.ieee.org/abstract/document/10771697/). IEEE/ACM Transactions on Audio, Speech, and Language Processing.
407 |
408 | ## 2023
409 |
410 | **Semantic Web Journal**
411 |
412 | [1] (TRKGE) Song, B., Amouzouvi, K., Xu, C., Wang, M., Lehmann, J., & Vahdati, S. [Temporal Relevance for Representing Learning over Temporal Knowledge Graphs](https://www.semantic-web-journal.net/system/files/swj3557.pdf).
413 |
414 | **Expert Systems with Applications**
415 |
416 | [1] (TPRG) Bai, L., Chen, M., Zhu, L., & Meng, X. (2023). [Multi-hop temporal knowledge graph reasoning with temporal path rules guidance](https://www.sciencedirect.com/science/article/abs/pii/S0957417423003056). Expert Systems with Applications, 223, 119804. [Github](https://github.com/DMKE-Lab/TPRG)
417 |
418 | **The Journal of Supercomputing**
419 |
420 | [1] (TKGA) Wang, Z., You, X., & Lv, X. (2023). [A relation enhanced model for temporal knowledge graph alignment](https://link.springer.com/article/10.1007/s11227-023-05670-w). The Journal of Supercomputing, 1-23.
421 |
422 | **Information Systems**
423 |
424 | [1] (RITI) Liu, R., Yin, G., Liu, Z., & Tian, Y. (2023). [Reinforcement learning with time intervals for temporal knowledge graph reasoning](https://www.sciencedirect.com/science/article/pii/S030643792300128X). Information Systems, 102292.
425 |
426 | **Information Sciences**
427 |
428 | [1] (T-GAE) Hou, X., Ma, R., Yan, L., & Ma, Z. (2023). [T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0020025523008101). Information Sciences, 119225.
429 |
430 | [2] (TASTER) Wang, X., Lyu, S., Wang, X., Wu, X., & Chen, H. (2023). [Temporal knowledge graph embedding via sparse transfer matrix](https://www.sciencedirect.com/science/article/pii/S0020025522015122). Information Sciences, 623, 56-69.
431 |
432 | [3] (TLmod) Bai, L., Yu, W., Chai, D., Zhao, W., & Chen, M. (2023). [Temporal knowledge graphs reasoning with iterative guidance by temporal logical rules](https://www.sciencedirect.com/science/article/pii/S0020025522013871). Information Sciences, 621, 22-35.
433 |
434 | **IEEE/ACM Transactions on Audio, Speech, and Language Processing**
435 |
436 | [1] (TARGAT) Xie, Z., Zhu, R., Liu, J., Zhou, G., & Huang, J. X. (2023). [TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding](https://ieeexplore.ieee.org/abstract/document/10141863/). IEEE/ACM Transactions on Audio, Speech, and Language Processing.
437 |
438 | **Applied Intelligence**
439 |
440 | [1] (TBDRI) Yu, M., Guo, J., Yu, J., Xu, T., Zhao, M., Liu, H., ... & Yu, R. (2023). [TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion](https://link.springer.com/article/10.1007/s10489-022-03601-5). Applied Intelligence, 53(5), 5072-5084.
441 |
442 | [2] (GLANet) Wang, J., Lin, X., Huang, H., Ke, X., Wu, R., You, C., & Guo, K. (2023). [GLANet: temporal knowledge graph completion based on global and local information-aware network](https://link.springer.com/article/10.1007/s10489-023-04481-z). Applied Intelligence, 1-17.
443 |
444 | [3] (ChronoR-CP) Li, M., Sun, Z., Zhang, W., & Liu, W. (2023). [Leveraging semantic property for temporal knowledge graph completion](https://link.springer.com/article/10.1007/s10489-022-03981-8). Applied Intelligence, 53(8), 9247-9260.
445 |
446 | [4] (TIAR) Mu, C., Zhang, L., Ma, Y., & Tian, L. (2023). [Temporal knowledge subgraph inference based on time-aware relation representation](https://link.springer.com/article/10.1007/s10489-023-04833-9). Applied Intelligence, 53(20), 24237-24252.
447 |
448 | [5] (TNTSimplE) He, P., Zhou, G., Zhang, M., Wei, J., & Chen, J. (2023). [Improving temporal knowledge graph embedding using tensor factorization](https://link.springer.com/article/10.1007/s10489-021-03149-w). Applied Intelligence, 53(8), 8746-8760.
449 |
450 | **Neural Networks**
451 |
452 | [1] (TFSC) Zhang, H., & Bai, L. (2023). [Few-shot link prediction for temporal knowledge graphs based on time-aware translation and attention mechanism](https://www.sciencedirect.com/science/article/pii/S0893608023000552). Neural Networks, 161, 371-381. [Github](https://github.com/DMKE-Lab/TFSC)
453 |
454 | [2] Shao, P., Liu, T., Che, F., Zhang, D., & Tao, J. (2023). [Adaptive pseudo-Siamese policy network for temporal knowledge prediction](https://www.sciencedirect.com/science/article/pii/S0893608023000047). Neural Networks.
455 |
456 | [3] Bai, L., Han, S., & Zhu, L. (2024). [Multi-Hop Interpretable Meta Learning for Few-Shot Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0893608024009109). Neural Networks, 106981.
457 |
458 | **Neurocomputing**
459 |
460 | [1] Shao, P., He, J., Li, G., Zhang, D., & Tao, J. (2023). [Hierarchical Graph Attention Network for Temporal Knowledge Graph Reasoning](https://www.sciencedirect.com/science/article/pii/S0925231223005131). Neurocomputing, 126390.
461 |
462 | [2] (TANGO) Wang, Z., Ding, D., Ren, M., & Conti, M. (2023). [TANGO: A Temporal Spatial Dynamic Graph Model for Event Prediction](https://www.sciencedirect.com/science/article/pii/S0925231223003727). Neurocomputing, 126249.
463 |
464 | **IEEE Transactions on Neural Networks and Learning Systems**
465 |
466 | [1] (QDN) Wang, J., Wang, B., Gao, J., Li, X., Hu, Y., & Yin, B. (2023). [QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10132432/). IEEE Transactions on Neural Networks and Learning Systems. [Github](https://github.com/jiapuwang/QDN-A-Quadruplet-Distributor-Network-for-Temporal-Knowledge-Graph-Completion)
467 |
468 | **Journal of Systems Science and Systems Engineering**
469 |
470 | [1] Yan, Z., & Tang, X. (2023). [Narrative Graph: Telling Evolving Stories Based on Event-centric Temporal Knowledge Graph](https://link.springer.com/article/10.1007/s11518-023-5561-0). Journal of Systems Science and Systems Engineering, 32(2), 206-221.
471 |
472 | **Engineering Applications of Artificial Intelligence**
473 |
474 | [1] (RoAN) Bai, L., Ma, X., Meng, X., Ren, X., & Ke, Y. (2023). [RoAN: A relation-oriented attention network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S095219762300492X). Engineering Applications of Artificial Intelligence, 123, 106308. [Github](https://github.com/DMKE-Lab/RoAN)
475 |
476 | **Future Generation Computer Systems**
477 |
478 | [1] (TAL-TKGC) Nie, H., Zhao, X., Yao, X., Jiang, Q., Bi, X., Ma, Y., & Sun, Y. (2023). [Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0167739X23000195). Future Generation Computer Systems.
479 |
480 | **Cognitive Computation**
481 |
482 | [2] (MsCNN) Liu, W., Wang, P., Zhang, Z., & Liu, Q. (2023). [Multi-Scale Convolutional Neural Network for Temporal Knowledge Graph Completion](https://link.springer.com/article/10.1007/s12559-023-10134-7). Cognitive Computation, 1-7.
483 |
484 | **ACM Transactions on Knowledge Discovery from Data**
485 |
486 | [1] (DuCape) Zhang, S., Liang, X., Tang, H., Zheng, X., Zhang, A. X., & Ma, Y. [DuCape: Dual Quaternion and Capsule Network Based Temporal Knowledge Graph Embedding](https://dl.acm.org/doi/abs/10.1145/3589644). ACM Transactions on Knowledge Discovery from Data.
487 |
488 | **IEEE Transactions on Knowledge and Data Engineering**
489 |
490 | [1] Li, Y., Chen, H., Li, Y., Li, L., Philip, S. Y., & Xu, G. (2023). [Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation](https://arxiv.org/abs/2111.12262). IEEE Transactions on Knowledge and Data Engineering. [Github](https://github.com/Abigale001/TMER-RL)
491 |
492 | **Knowledge-Based Systems**
493 |
494 | [1] (RLAT) Bai, L., Chai, D., & Zhu, L. (2023). [RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism](https://www.sciencedirect.com/science/article/pii/S0950705123002642). Knowledge-Based Systems, 269, 110514.
495 |
496 | [2] Luo, X., Zhu, A., Zhang, J., & Shao, J. (2024). HierarT: Multi-hop temporal knowledge graph forecasting with hierarchical reinforcement learning. Knowledge-Based Systems, 112164.
497 |
498 | **Journal of Computational Design and Engineering**
499 |
500 | [1] (MetaRT) Zhu, L., Xing, Y., Bai, L., & Chen, X. (2023). [Few-shot link prediction with meta-learning for temporal knowledge graphs](https://academic.oup.com/jcde/article-abstract/10/2/711/7069330). Journal of Computational Design and Engineering, 10(2), 711-721.
501 |
502 | **Entropy**
503 |
504 | [1] 🔥 (IMF) Du, Z., Qu, L., Liang, Z., Huang, K., Cui, L., & Gao, Z. (2023). [IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs](https://www.mdpi.com/1099-4300/25/4/666). Entropy, 25(4), 666. [Github](https://github.com/lfxx123/TKBC)
505 |
506 | **Complex & Intelligent Systems**
507 |
508 | [1] (FTMO) Zhu, L., Bai, L., Han, S., & Zhang, M. (2023). [Few-shot temporal knowledge graph completion based on meta-optimization](https://link.springer.com/article/10.1007/s40747-023-01146-9). Complex & Intelligent Systems, 9(6), 7461-7474. [Github](https://github.com/DMKE-Lab/FTMO)
509 |
510 | **World Wide Web**
511 |
512 | [1] (FTMF) Bai, L., Zhang, M., Zhang, H., & Zhang, H. (2023). [FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism](https://link.springer.com/article/10.1007/s11280-022-01091-6). World Wide Web, 26(3), 1243-1270. [Github](https://github.com/DMKE-Lab/FTMF)
513 |
514 | **DMKD**
515 |
516 | [1] (OSLT) Ma, R., Mei, B., Ma, Y., Zhang, H., Liu, M., & Zhao, L. (2023). [One-shot relational learning for extrapolation reasoning on temporal knowledge graphs](https://link.springer.com/article/10.1007/s10618-023-00935-7). Data Mining and Knowledge Discovery, 1-18.
517 |
518 | ## 2022
519 |
520 | **Knowledge-Based Systems**
521 |
522 | [1] (EvoExplore) Jiasheng Zhang, Shuang Liang, Yongpan Sheng, Jie Shao. ["Temporal knowledge graph representation learning with local and global evolutions"](https://www.sciencedirect.com/science/article/abs/pii/S0950705122006141?via%3Dihub). Knowledge-Based Systems 2022. [Github](https://github.com/zjs123/EvoExplore)
523 |
524 | [2] (TuckERT) Pengpeng Shao, Dawei Zhang, Guohua Yang, Jianhua Tao, Feihu Che, Tong Liu. ["Tucker decomposition-based temporal knowledge graph completion"](https://www.sciencedirect.com/science/article/abs/pii/S0950705121010303?via%3Dihub). Knowledge Based Systems 2022. [Github](https://github.com/MaxenceGiraud/TensorTemporalKG)
525 |
526 | **Expert Systems with Applications**
527 |
528 | [1] (BTDG) Yujing Lai, Chuan Chen, Zibin Zheng, Yangqing Zhang. ["Block term decomposition with distinct time granularities for temporal knowledge graph completion"](https://www.sciencedirect.com/science/article/abs/pii/S0957417422004511?via%3Dihub). Expert Systems with Applications 2022. [Github](https://github.com/JaneYul/BTDG)
529 |
530 | ## 2021
531 |
532 | **Applied Soft Computing**
533 |
534 | [1] (TPath) Luyi Bai, Wenting Yu, Mingzhuo Chen, Xiangnan Ma. ["Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning"](https://www.sciencedirect.com/science/article/abs/pii/S1568494621000673?via%3Dihub). Applied Soft Computing 2021.
535 |
536 | **TKDD**
537 |
538 | [1] (TPmod) Bai, L., Ma, X., Zhang, M., & Yu, W. (2021). [Tpmod: A tendency-guided prediction model for temporal knowledge graph completion](https://dl.acm.org/doi/abs/10.1145/3443687). ACM Transactions on Knowledge Discovery from Data, 15(3), 1-17. [Github](https://github.com/DMKE-Lab/TPmod)
539 |
540 | [2] (Dacha) Chen, L., Tang, X., Chen, W., Qian, Y., Li, Y., & Zhang, Y. (2021). [Dacha: A dual graph convolution based temporal knowledge graph representation learning method using historical relation](https://dl.acm.org/doi/abs/10.1145/3477051). ACM Transactions on Knowledge Discovery from Data (TKDD), 16(3), 1-18.
541 |
542 | ## 2020
543 |
544 | **IEEE Access**
545 |
546 | [1] (TDG2E) Tang, X., Yuan, R., Li, Q., Wang, T., Yang, H., Cai, Y., & Song, H. (2020). [Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution](https://ieeexplore.ieee.org/abstract/document/8950081/). IEEE Access, 8, 6849-6860.
547 |
548 | [2] (3DRTE) Wang, J., Zhang, W., Chen, X., Lei, J., & Lai, X. (2020). [3drte: 3d rotation embedding in temporal knowledge graph](https://ieeexplore.ieee.org/abstract/document/9253009/). IEEE Access, 8, 207515-207523.
549 |
550 | ## 2019
551 |
552 | **Journal of Web Semantics**
553 |
554 | [1] (ConT) Ma, Y., Tresp, V., & Daxberger, E. A. (2019). [Embedding models for episodic knowledge graphs](https://www.sciencedirect.com/science/article/pii/S1570826818300702). Journal of Web Semantics, 59, 100490.
555 |
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | remote_theme: pages-themes/cayman@v0.2.0
2 | plugins:
3 | - jekyll-remote-theme # add this line to the plugins list if you already have one
4 | relative_links:
5 | enabled: true
6 | collections: true
7 | include:
8 | - README.md
9 | title: Papers on Temporal Knowledge Graph Embedding and Reasoning
10 | description: Papers on TKGE-R
--------------------------------------------------------------------------------
/backup/Conference.md:
--------------------------------------------------------------------------------
1 | [76] Xie, B., Wang, S., Ding, L., Chen, J., & Xiang, Y. (2023). [TBTC: A Temporal Knowledge Graph Reasoning Model with Bidirectional Temporal Correlation](https://www.researchsquare.com/article/rs-3299558/latest).
2 |
3 |
4 | [67] Sälzer, M., & Beddar-Wiesing, S. (2023). Time-Aware Robustness of Temporal Graph Neural Networks for Link Prediction. In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
5 |
6 |
7 | [47] Liu, X., Wu, J., Li, T., Chen, L., & Gao, Y. (2023). [Unsupervised entity alignment for temporal knowledge graphs](https://arxiv.org/pdf/2302.00796). arXiv preprint arXiv:2302.00796. [Github](https://github.com/ZJU-DAILY/DualMatch)
8 |
9 |
10 | [35] Chunyang Jiang, Tianchen Zhu, Haoyi Zhou, Chang Liu, Ting Deng, Chunming Hu, and Jianxin Li. 2023. [Path Spuriousness-aware Reinforcement Learning for Multi-Hop Knowledge Graph Reasoning](https://aclanthology.org/2023.eacl-main.232/). In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3173–3184, Dubrovnik, Croatia. Association for Computational Linguistics.
11 |
12 | [34] Chau Nguyen, Tim French, Wei Liu, and Michael Stewart. 2023. [CylE: Cylinder Embeddings for Multi-hop Reasoning over Knowledge Graphs](https://aclanthology.org/2023.eacl-main.127/). In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1728–1743, Dubrovnik, Croatia. Association for Computational Linguistics.
13 |
14 |
15 | [28] Zhao, X., Li, A., Jiang, R., Chen, K., & Peng, Z. (2023). [Householder Transformation-Based Temporal Knowledge Graph Reasoning](https://www.mdpi.com/2079-9292/12/9/2001). Electronics, 12(9), 2001.
16 |
17 |
18 | [7] Wen, H., Lin, Y., Xia, Y., Wan, H., Zimmermann, R., & Liang, Y. (2023). [DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models](https://arxiv.org/abs/2301.13629). arXiv preprint arXiv:2301.13629.
19 |
20 |
21 |
22 |
--------------------------------------------------------------------------------
/backup/header.md:
--------------------------------------------------------------------------------
1 | # TKGER
2 | Some papers on Temporal Knowledge Graph Embedding and Reasoning
3 |
4 | ## Datasets
5 |
6 | | Name | #Entities | #Relations | #Timestamps | #Collections | Timestamp | Link download |
7 | |---|---|---|---|---|---|---|
8 | | ICEWS14 | 7128 | 230 | 365 | 90730 | point | https://paperswithcode.com/sota/link-prediction-on-icews14-1 |
9 | | ICEWS05-15 | 10488 | 251 | 4017 | 479329 | point | https://paperswithcode.com/sota/link-prediction-on-icews05-15-1 |
10 | | ICEWS18 | 23033 | 256 | 304 | 468558 | point | https://docs.dgl.ai/en/0.8.x/generated/dgl.data.ICEWS18Dataset.html |
11 | | GDELT | 500 | 20 | 366 | 3419607 | point | https://www.gdeltproject.org/ |
12 | | YAGO15k | 15403 | 32 | 169 | 138048 | interval | https://paperswithcode.com/sota/link-prediction-on-yago15k-1 |
13 | | WIKIDATA | 11153 | 96 | 328 | 150079 | interval | https://www.wikidata.org/wiki/Wikidata:Main_Page |
14 |
15 | ## [Content](#content)
16 |
17 |
18 | 1. Survey |
19 | 2. Approaches |
20 |
21 | plugins:
22 | - jekyll-relative-links
23 | relative_links:
24 | enabled: true
25 | collections: true
26 | include:
27 | - CONTRIBUTING.md
28 | - README.md
29 | - LICENSE.md
30 | - COPYING.md
31 | - CODE_OF_CONDUCT.md
32 | - CONTRIBUTING.md
33 | - ISSUE_TEMPLATE.md
34 | - PULL_REQUEST_TEMPLATE.md
35 |
--------------------------------------------------------------------------------
/backup/papers.csv:
--------------------------------------------------------------------------------
1 | category,title,publisher,year,type,link,authors,code
2 | Survey Papers,Temporal Knowledge Graph Completion: A Survey,ArXiv,2022,paper,https://arxiv.org/abs/2201.08236,"Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, Jianxin Li.",
3 | Timestamp-included Tensor Decomposition, Tensor decomposition-based temporal knowledge graph embedding, ICTAI, 2020, paper, https://ieeexplore.ieee.org/abstract/document/9288194/,"Lin, Lifan and She, Kun",
4 | Timestamp-included Tensor Decomposition, Tensor decompositions for temporal knowledge base completion, ArXiv, 2020, paper, https://arxiv.org/abs/2004.04926, "Timothee Lacroix, Guillaume Obozinski, and Nicolas Usunier",
--------------------------------------------------------------------------------
/backup/rl.md:
--------------------------------------------------------------------------------
1 | [1] DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning, Shangfei Zheng et.al, http://arxiv.org/abs/2304.03984v1
2 |
3 | [2] Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using Confidence-Augmented Reinforcement Learning, Zifeng Ding et.al., http://arxiv.org/abs/2304.00613v1
4 |
5 | [3] GTRL: An Entity Group-Aware Temporal Knowledge Graph Representation Learning Method, Xing Tang et.al., http://arxiv.org/abs/2302.11091v1, https://github.com/xt-55/GTRL
6 |
7 | [4] Deep Active Alignment of Knowledge Graph Entities and Schemata, Jiacheng Huang et.al., http://arxiv.org/abs/2304.04389v1, https://github.com/nju-websoft/daakg
8 |
9 | [5] Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph Completion, Linhao Luo et.al., http://arxiv.org/abs/2304.08183v1, https://github.com/rmanluo/np-fkgc
10 |
11 | [6] Rethinking GNN-based Entity Alignment on Heterogeneous Knowledge Graphs: New Datasets and A New Method, Xuhui Jiang et.al., http://arxiv.org/abs/2304.03468v2
12 |
13 | [7] Quantifying and Defending against Privacy Threats on Federated Knowledge Graph Embedding, Yuke Hu et.al., http://arxiv.org/abs/2304.02932v1
14 |
15 | [8] Attribute-Consistent Knowledge Graph Representation Learning for Multi-Modal Entity Alignment, Qian Li et.al., http://arxiv.org/abs/2304.01563v1
16 |
17 | [9] Logical Expressiveness of Graph Neural Network for Knowledge Graph Reasoning, Haiquan Qiu et.al., http://arxiv.org/abs/2303.12306v1
18 |
--------------------------------------------------------------------------------
/backup/script.py:
--------------------------------------------------------------------------------
1 | # https://github.com/Thinklab-SJTU/awesome-ml4co/blob/master/src/generator.py
2 |
3 | import csv
4 | import os
5 | import copy
6 |
7 | abbr = {'Timestamp-included Tensor Decomposition': 'TiTD',
8 | 'Timestamp-based Transformation': 'TbT',
9 | 'Dynamic Embedding': 'DE',
10 | 'Learning from Knowledge Graph Snapshots': 'LKGS',
11 | 'Reasoning with Historical Context': 'RHC',
12 | }
13 |
14 |
15 | def md2csv(mdFile, csvFile): # From the md file to generate a csv file that contains the paper list.
16 | f = open(mdFile)
17 | line = f.readline()
18 | problem_start = False
19 | paper_list = []
20 | category = None
21 | while line:
22 | print(line)
23 | if problem_start and "### [" in line:
24 | category = line[line.find("[") + 1: line.find("]")]
25 | if problem_start and '0' <= line[0] <= '9':
26 | new_paper = ["" for _ in range(7)] # 0 category, 1 title, 2 publisher, 3 year, 4 type, 5 link, 6 authors;
27 | new_paper[0] = category
28 | index = 1
29 | i = -1
30 | while i + 1 < len(line):
31 | i += 1
32 | if i < line.find(". **") + 4:
33 | continue
34 | new_paper[index] += line[i]
35 | if i == line.find(".**") and index == 1: # title -> publisher
36 | i += 3
37 | index += 1
38 | continue
39 | if line[i + 1] == "," and index == 2: # publisher -> year
40 | i += 2
41 | index += 1
42 | continue
43 | if line[i + 1] == "." and index == 3: # year -> type
44 | i += 3
45 | index += 1
46 | continue
47 | if line[i + 1] == "]" and index == 4: # type -> link
48 | i += 2
49 | index += 1
50 | continue
51 | if line[i + 1] == ")" and index == 5: # link->authors
52 | index += 1
53 | break
54 | assert index == 6
55 | _ = f.readline()
56 | line = f.readline()
57 | new_paper[index] = line[line.find('*') + 1:-2]
58 | paper_list.append(new_paper)
59 |
60 | if "
" in line:
61 | problem_start = True
62 | line = f.readline()
63 | f.close()
64 | with open(csvFile, "w") as file:
65 | writer = csv.writer(file)
66 | writer.writerow(["category", "title", "publisher", "year", "type", "link", "authors"])
67 | for paper in paper_list:
68 | writer.writerow(paper)
69 |
70 |
71 | def sort_by_time(elem):
72 | return elem[3]
73 |
74 |
75 | def csv2md(csvFile, mdFile, header):
76 | csvFile = open(csvFile, "r", encoding='utf-8')
77 | reader = csv.reader(csvFile)
78 | raw_papers = []
79 | papers = []
80 | for item in reader:
81 | if reader.line_num == 1:
82 | continue
83 | raw_papers.append(item)
84 | csvFile.close()
85 |
86 | classes = []
87 | for paper in raw_papers:
88 | if ";" in paper[0]:
89 | paper_classes = paper[0].split(";")
90 | paper_classes = [cls.strip() for cls in paper_classes]
91 | else:
92 | paper_classes = [paper[0].strip()]
93 | for cls in paper_classes:
94 | if cls not in classes:
95 | classes.append(cls)
96 |
97 | for c in classes:
98 | p = []
99 | for paper in raw_papers:
100 | if c in paper[0]:
101 | new_paper = copy.deepcopy(paper)
102 | new_paper[0] = c
103 | p.append(new_paper)
104 | p.sort(key=sort_by_time)
105 | papers = papers + p
106 |
107 | # command = "cp " + "years.md" + " " + header
108 | # os.system(command)
109 | command = "cp " + header + " " + mdFile
110 | os.system(command)
111 | with open(mdFile, "a", encoding='utf-8') as file:
112 | # write category
113 | for i in range(len(classes) // 2):
114 | name1 = classes[2 * i + 1]
115 | name_index1 = classes[2 * i + 1].replace(" ", "-").lower()
116 | file.writelines('\n')
117 | if name1 in abbr:
118 | file.writelines('\t 2.{} {} ({}) | \n'.format(name_index1, 2 * i + 1, name1,
119 | abbr[name1]))
120 | else:
121 | file.writelines('\t 2.{} {} | \n'.format(name_index1, 2 * i + 1, name1))
122 | if 2 * i + 1 < len(classes) - 1:
123 | name2 = classes[2 * i + 2]
124 | name_index2 = classes[2 * i + 2].replace(" ", "-").lower()
125 | if name2 in abbr:
126 | file.writelines(
127 | '\t 2.{} {} ({}) | \n'.format(name_index2, 2 * i + 2, name2,
128 | abbr[name2]))
129 | else:
130 | file.writelines('\t 2.{} {} | \n'.format(name_index2, 2 * i + 2, name2))
131 | else:
132 | file.writelines(' | \n')
133 | file.writelines('
\n')
134 | file.writelines('\n')
135 |
136 | # write content
137 | file.write('\n')
138 | file.write('\n')
139 | file.write('\n')
140 | file.write('\n')
141 | num = 0
142 | category = papers[0][0]
143 | file.writelines("### [{}](#content)".format(category))
144 | file.write('\n')
145 | file.write('\n')
146 | for paper in papers:
147 | paper = [p.strip() for p in paper]
148 | if paper[0] != category:
149 | if category == "Survey Papers":
150 | file.writelines("## [Approaches](#content)")
151 | file.write('\n')
152 | file.write('\n')
153 | category = paper[0]
154 | file.writelines("### [{}](#content)".format(category))
155 | file.write('\n')
156 | file.write('\n')
157 | num = 0
158 | num += 1
159 | # "category", "title", "publisher", "year", "type", "link", "authors, *code"
160 | if paper[7] == "":
161 | file.writelines(
162 | "{}. **{}** {}, {}. [{}]({})".format(num, paper[1], paper[2], paper[3], paper[4], paper[5]))
163 | else:
164 | file.writelines(
165 | "{}. **{}** {}, {}. [{}]({}), [code]({})".format(num, paper[1], paper[2], paper[3], paper[4],
166 | paper[5], paper[7]))
167 | file.write('\n')
168 | file.write('\n')
169 | file.writelines(" *{}*".format(paper[6]))
170 | file.write('\n')
171 | file.write('\n')
172 |
173 |
174 | if __name__ == '__main__':
175 | # md2csv("../README.md", "../data/papers.csv")
176 | csv2md("papers.csv", "README.md", "years.md")
--------------------------------------------------------------------------------
/backup/years.md:
--------------------------------------------------------------------------------
1 | [](https://github.com/sindresorhus/awesome)
2 | 
3 | 
4 | 
5 |
6 | 
7 |
8 |
9 |
10 |
11 |
12 |
13 | # TKGER
14 | Some papers on Temporal Knowledge Graph Embedding and Reasoning
15 |
16 | ## Datasets
17 |
18 | | Name | #Entities | #Relations | #Timestamps | #Collections | Timestamp | Link download |
19 | |---|---|---|---|---|---|---|
20 | | ICEWS14 | 7128 | 230 | 365 | 90730 | point | [https://paperswithcode.com/sota/link-prediction-on-icews14-1](https://paperswithcode.com/sota/link-prediction-on-icews14-1) |
21 | | ICEWS05-15 | 10488 | 251 | 4017 | 479329 | point | [https://paperswithcode.com/sota/link-prediction-on-icews05-15-1](https://paperswithcode.com/sota/link-prediction-on-icews05-15-1) |
22 | | ICEWS18 | 23033 | 256 | 304 | 468558 | point | [https://docs.dgl.ai/en/0.8.x/generated/dgl.data.ICEWS18Dataset.html](https://docs.dgl.ai/en/0.8.x/generated/dgl.data.ICEWS18Dataset.html) |
23 | | GDELT | 500 | 20 | 366 | 3419607 | point | [https://www.gdeltproject.org/](https://www.gdeltproject.org/) |
24 | | YAGO15k | 15403 | 32 | 169 | 138048 | interval | [https://paperswithcode.com/sota/link-prediction-on-yago15k-1](https://paperswithcode.com/sota/link-prediction-on-yago15k-1) |
25 | | WIKIDATA | 11153 | 96 | 328 | 150079 | interval | [https://www.wikidata.org/wiki/Wikidata:Main_Page](https://www.wikidata.org/wiki/Wikidata:Main_Page) |
26 |
27 |
28 | ### 2023
29 |
30 | [43] Shao, P., He, J., Li, G., Zhang, D., & Tao, J. (2023). [Hierarchical Graph Attention Network for Temporal Knowledge Graph Reasoning](https://www.sciencedirect.com/science/article/pii/S0925231223005131). Neurocomputing, 126390.
31 |
32 | [42] Mirtaheri, M., Rostami, M., & Galstyan, A. (2023). [History Repeats: Overcoming Catastrophic Forgetting For Event-Centric Temporal Knowledge Graph Completion](https://arxiv.org/pdf/2305.18675.pdf). arXiv preprint arXiv:2305.18675.
33 |
34 | [41] Hou, X., Ma, R., Yan, L., & Ma, Z. (2023). [T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0020025523008101). Information Sciences, 119225.
35 |
36 | [40] Rage, U. K., Maharana, A., & Polepalli, K. R. (2023, May). [A Novel Explainable Link Forecasting Framework for Temporal Knowledge Graphs Using Time-Relaxed Cyclic and Acyclic Rules](https://link.springer.com/chapter/10.1007/978-3-031-33374-3_21). In Advances in Knowledge Discovery and Data Mining: 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part I (pp. 264-275). Cham: Springer Nature Switzerland.
37 |
38 | [39] Wang, J., Wang, B., Gao, J., Li, X., Hu, Y., & Yin, B. (2023). [QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10132432/). IEEE Transactions on Neural Networks and Learning Systems.
39 |
40 | [38] Xu, W., Liu, B., Peng, M., Jia, X., & Peng, M. (2023). [Pre-trained Language Model with Prompts for Temporal Knowledge Graph Completion](https://arxiv.org/abs/2305.07912). arXiv preprint arXiv:2305.07912.
41 |
42 | [37] Yan, Z., & Tang, X. (2023). [Narrative Graph: Telling Evolving Stories Based on Event-centric Temporal Knowledge Graph](https://link.springer.com/article/10.1007/s11518-023-5561-0). Journal of Systems Science and Systems Engineering, 32(2), 206-221.
43 |
44 | [36] Bai, L., Ma, X., Meng, X., Ren, X., & Ke, Y. (2023). [RoAN: A relation-oriented attention network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S095219762300492X). Engineering Applications of Artificial Intelligence, 123, 106308.
45 |
46 | [35] Chunyang Jiang, Tianchen Zhu, Haoyi Zhou, Chang Liu, Ting Deng, Chunming Hu, and Jianxin Li. 2023. [Path Spuriousness-aware Reinforcement Learning for Multi-Hop Knowledge Graph Reasoning](https://aclanthology.org/2023.eacl-main.232/). In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3173–3184, Dubrovnik, Croatia. Association for Computational Linguistics.
47 |
48 | [34] Chau Nguyen, Tim French, Wei Liu, and Michael Stewart. 2023. [CylE: Cylinder Embeddings for Multi-hop Reasoning over Knowledge Graphs](https://aclanthology.org/2023.eacl-main.127/). In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1728–1743, Dubrovnik, Croatia. Association for Computational Linguistics.
49 |
50 | [33] Xin Ren, Luyi Bai, Qianwen Xiao, and Xiangxi Meng. 2023. [Hierarchical Self-Attention Embedding for Temporal Knowledge Graph Completion](https://dl.acm.org/doi/abs/10.1145/3543507.3583397). In Proceedings of the ACM Web Conference 2023 (WWW '23). Association for Computing Machinery, New York, NY, USA, 2539–2547. https://doi.org/10.1145/3543507.3583397
51 |
52 | [32] Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and Liang Wang. 2023. [Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning](https://dl.acm.org/doi/abs/10.1145/3543507.3583242). In Proceedings of the ACM Web Conference 2023 (WWW '23). Association for Computing Machinery, New York, NY, USA, 2412–2422. https://doi.org/10.1145/3543507.3583242
53 |
54 | [31] Wang, Z., Ding, D., Ren, M., & Conti, M. (2023). [TANGO: A Temporal Spatial Dynamic Graph Model for Event Prediction](https://www.sciencedirect.com/science/article/pii/S0925231223003727). Neurocomputing, 126249.
55 |
56 | [30] Guozhen Zhang, Tian Ye, Depeng Jin, and Yong Li. 2023. [An Attentional Multi-scale Co-evolving Model for Dynamic Link Prediction](https://dl.acm.org/doi/abs/10.1145/3543507.3583396). In Proceedings of the ACM Web Conference 2023 (WWW '23). Association for Computing Machinery, New York, NY, USA, 429–437. https://doi.org/10.1145/3543507.3583396
57 |
58 | [29] Yu Liu, Wen Hua, Kexuan Xin, Saeid Hosseini, and Xiaofang Zhou. 2023. [TEA: Time-aware Entity Alignment in Knowledge Graphs](https://dl.acm.org/doi/abs/10.1145/3543507.3583317). In Proceedings of the ACM Web Conference 2023 (WWW '23). Association for Computing Machinery, New York, NY, USA, 2591–2599. https://doi.org/10.1145/3543507.3583317
59 |
60 | [28] Zhao, X., Li, A., Jiang, R., Chen, K., & Peng, Z. (2023). [Householder Transformation-Based Temporal Knowledge Graph Reasoning](https://www.mdpi.com/2079-9292/12/9/2001). Electronics, 12(9), 2001.
61 |
62 | [27] Dong, H., Ning, Z., Wang, P., Qiao, Z., Wang, P., Zhou, Y., & Fu, Y. (2023). [Adaptive Path-Memory Network for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2304.12604). arXiv preprint arXiv:2304.12604.
63 |
64 | [26] Zhang, S., Liang, X., Li, Z., Feng, J., Zheng, X., & Wu, B. (2023, April). [BiQCap: A Biquaternion and Capsule Network-Based Embedding Model for Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-30672-3_45). In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part II (pp. 673-688). Cham: Springer Nature Switzerland.
65 |
66 | [25] Mo, C., Wang, Y., Jia, Y., & Luo, C. (2023, April). [Time-aware Quaternion Convolutional Network for Temporal Knowledge Graph Reasoning](https://link.springer.com/chapter/10.1007/978-981-99-1639-9_25). In Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22–26, 2022, Proceedings, Part IV (pp. 300-312). Singapore: Springer Nature Singapore.
67 |
68 | [24] Zheng, S., Yin, H., Chen, T., Nguyen, Q. V. H., Chen, W., & Zhao, L. (2023). [DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2304.03984). arXiv preprint arXiv:2304.03984.
69 |
70 | [23] Yue, L., Ren, Y., Zeng, Y., Zhang, J., Zeng, K., & Wan, J. (2023, April). [Block Decomposition with Multi-granularity Embedding for Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-30672-3_47). In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part II (pp. 706-715). Cham: Springer Nature Switzerland.
71 |
72 | [22] Gong, X., Qin, J., Chai, H., Ding, Y., Jia, Y., & Liao, Q. (2023, April). [Temporal-Relational Matching Network for Few-Shot Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-30672-3_52). In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part II (pp. 768-783). Cham: Springer Nature Switzerland.
73 |
74 | [21] Liu, W., Wang, P., Zhang, Z., & Liu, Q. (2023). [Multi-Scale Convolutional Neural Network for Temporal Knowledge Graph Completion](https://link.springer.com/article/10.1007/s12559-023-10134-7). Cognitive Computation, 1-7.
75 |
76 | [20] Zhang, S., Liang, X., Tang, H., Zheng, X., Zhang, A. X., & Ma, Y. [DuCape: Dual Quaternion and Capsule Network Based Temporal Knowledge Graph Embedding](https://dl.acm.org/doi/abs/10.1145/3589644). ACM Transactions on Knowledge Discovery from Data.
77 |
78 | [19] Nie, H., Zhao, X., Yao, X., Jiang, Q., Bi, X., Ma, Y., & Sun, Y. (2023). [Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0167739X23000195). Future Generation Computer Systems.
79 |
80 | [18] Wang, X., Lyu, S., Wang, X., Wu, X., & Chen, H. (2023). [Temporal knowledge graph embedding via sparse transfer matrix](https://www.sciencedirect.com/science/article/pii/S0020025522015122). Information Sciences, 623, 56-69.
81 |
82 | [17] Bai, L., Yu, W., Chai, D., Zhao, W., & Chen, M. (2023). [Temporal knowledge graphs reasoning with iterative guidance by temporal logical rules](https://www.sciencedirect.com/science/article/pii/S0020025522013871). Information Sciences, 621, 22-35.
83 |
84 | [16] Nolting, S., Han, Z., & Tresp, V. (2023). [Modeling the evolution of temporal knowledge graphs with uncertainty](https://arxiv.org/abs/2301.04977). arXiv preprint arXiv:2301.04977.
85 |
86 | [15] Gottschalk, S., Kacupaj, E., Abdollahi, S., Alves, D., Amaral, G., Koutsiana, E., ... & Thakkar, G. (2023). [Oekg: The open event knowledge graph](https://arxiv.org/abs/2302.14688). arXiv preprint arXiv:2302.14688.
87 |
88 | [14] Hou, X., Ma, R., Yan, L., & Ma, Z. (2023). [DAuCNet: deep autoregressive framework for temporal link prediction combining copy mechanism network](https://link.springer.com/article/10.1007/s10115-022-01823-0). Knowledge and Information Systems, 1-25.
89 |
90 | [13] Shao, P., Liu, T., Che, F., Zhang, D., & Tao, J. (2023). [Adaptive pseudo-Siamese policy network for temporal knowledge prediction](https://www.sciencedirect.com/science/article/pii/S0893608023000047). Neural Networks.
91 |
92 | [12] Gao, Q., Wang, W., Huang, L., Yang, X., Li, T., & Fujita, H. (2023). [Dual-grained human mobility learning for location-aware trip recommendation with spatial–temporal graph knowledge fusion](https://www.sciencedirect.com/science/article/pii/S1566253522002287). Information Fusion, 92, 46-63.
93 |
94 | [11] Zhong, Y., & Huang, C. (2023). [A dynamic graph representation learning based on temporal graph transformer](https://www.sciencedirect.com/science/article/pii/S1110016822005336). Alexandria Engineering Journal, 63, 359-369.
95 |
96 | [10] Zhao, N., Long, Z., Wang, J., & Zhao, Z. D. (2023). [AGRE: A knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder](https://www.sciencedirect.com/science/article/pii/S0950705122011741). Knowledge-Based Systems, 259, 110078.
97 |
98 | [9] Li, Z., Yu, J., Zhang, G., & Xu, L. (2023). [Dynamic spatio-temporal graph network with adaptive propagation mechanism for multivariate time series forecasting](https://www.sciencedirect.com/science/article/pii/S0957417422023922). Expert Systems with Applications, 216, 119374.
99 |
100 | [8] Wang, H., Cai, S., Liu, P., Zhang, J., Shen, Z., & Liu, K. (2023). [DP-STGAT: Traffic statistics publishing with differential privacy and a spatial-temporal graph attention network](https://www.sciencedirect.com/science/article/pii/S0020025522013421). Information Sciences, 623, 258-274.
101 |
102 | [7] Wen, H., Lin, Y., Xia, Y., Wan, H., Zimmermann, R., & Liang, Y. (2023). [DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models](https://arxiv.org/abs/2301.13629). arXiv preprint arXiv:2301.13629.
103 |
104 | [6] Mo, X., Tang, R., & Liu, H. (2023). [A relation-aware heterogeneous graph convolutional network for relationship prediction](https://www.sciencedirect.com/science/article/pii/S0020025522015535). Information Sciences, 623, 311-323.
105 |
106 | [5] Lou, Y., Wang, C., Gu, T., Feng, H., Chen, J., & Yu, J. X. (2023). [Time-topology analysis on temporal graphs](https://link.springer.com/article/10.1007/s00778-022-00772-y). The VLDB Journal, 1-29.
107 |
108 | [4] Wang, J., Shi, Y., Yu, H., Zhang, K., Wang, X., Yan, Z., & Li, H. (2023). [Temporal Density-aware Sequential Recommendation Networks with Contrastive Learning](https://www.sciencedirect.com/science/article/pii/S095741742201627X). Expert Systems with Applications, 211, 118563.
109 |
110 | [3] Huan, C., Song, S. L., Pandey, S., Liu, H., Liu, Y., Lepers, B., ... & Wu, Y. (2023). [TEA: A General-Purpose Temporal Graph Random Walk Engine](https://madsys.cs.tsinghua.edu.cn/publications/eurosys23-huan.pdf).
111 |
112 | [2] Huang, N., Wang, S., Wang, R., Cai, G., Liu, Y., & Dai, Q. (2023). [Gated spatial-temporal graph neural network based short-term load forecasting for wide-area multiple buses](https://www.sciencedirect.com/science/article/pii/S0142061522006470). International Journal of Electrical Power & Energy Systems, 145, 108651.
113 |
114 | [1] Li, Y., Chen, H., Li, Y., Li, L., Philip, S. Y., & Xu, G. (2023). [Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation](https://arxiv.org/abs/2111.12262). IEEE Transactions on Knowledge and Data Engineering.
115 |
116 | Chen, H., Li, Y., Sun, X., Xu, G., & Yin, H. (2021, March). [Temporal meta-path guided explainable recommendation](https://arxiv.org/abs/2101.01433). In Proceedings of the 14th ACM international conference on web search and data mining (pp. 1056-1064).
117 |
118 | ### 2022
119 |
120 | [1] (BTDG) Yujing Lai, Chuan Chen, Zibin Zheng, Yangqing Zhang. ["Block term decomposition with distinct time granularities for temporal knowledge graph completion"](https://www.sciencedirect.com/science/article/abs/pii/S0957417422004511?via%3Dihub). Expert Systems with Applications 2022.
121 |
122 | [2] (EvoExplore) Jiasheng Zhang, Shuang Liang, Yongpan Sheng, Jie Shao. ["Temporal knowledge graph representation learning with local and global evolutions"](https://www.sciencedirect.com/science/article/abs/pii/S0950705122006141?via%3Dihub). Knowledge-Based Systems 2022.
123 |
124 | [3] (TuckERT) Pengpeng Shao, Dawei Zhang, Guohua Yang, Jianhua Tao, Feihu Che, Tong Liu. ["Tucker decomposition-based temporal knowledge graph completion"](https://www.sciencedirect.com/science/article/abs/pii/S0950705121010303?via%3Dihub). Knowledge Based Systems 2022.
125 |
126 | [4] (BoxTE) Johannes Messner, Ralph Abboud, Ismail Ilkan Ceylan. ["Temporal Knowledge Graph Completion Using Box Embeddings"](https://ojs.aaai.org/index.php/AAAI/article/view/20746). AAAI 2022.
127 |
128 | [5] (TempoQR) Costas Mavromatis, Prasanna Lakkur Subramanyam, Vassilis N. Ioannidis, Adesoji Adeshina, Phillip R. Howard, Tetiana Grinberg, Nagib Hakim, George Karypis. ["TempoQR: Temporal Question Reasoning over Knowledge Graphs"](https://ojs.aaai.org/index.php/AAAI/article/view/20526). AAAI 2022. https://github.com/cmavro/TempoQR
129 |
130 | [6] (TLogic) Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, Volker Tresp. ["TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs"](https://ojs.aaai.org/index.php/AAAI/article/view/20330). AAAI 2022. [https://github.com/liu-yushan/TLogic](https://github.com/liu-yushan/TLogic)
131 |
132 | [7] (MetaTKGR) Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, Tarek Abdelzaher. ["Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graphs"](https://openreview.net/forum?id=1LmgISIDZJ). NeurIPS 2022.
133 |
134 | [8] (CEN) Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng Guo, Xueqi Cheng. ["Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning"](https://aclanthology.org/2022.acl-short.32/). ACL 2022. [https://github.com/lee-zix/cen](https://github.com/lee-zix/cen)
135 |
136 | [9] (RotateQVS) Kai Chen, Ye Wang, Yitong Li, Aiping Li. ["RotateQVS: Representing Temporal Information as Rotations in Quaternion Vector Space for Temporal Knowledge Graph Completion"](https://aclanthology.org/2022.acl-long.402/). ACL 2022.
137 |
138 | [10] (rGalT) Yifu Gao, Linhui Feng, Zhigang Kan, Yi Han, Linbo Qiao, Dongsheng Li. ["Modeling Precursors for Temporal Knowledge Graph Reasoning via Auto-encoder Structure"](https://www.ijcai.org/proceedings/2022/284). IJCAI 2022.
139 |
140 | [11] (TiRGN) Yujia Li, Shiliang Sun, Jing Zhao. ["TiRGN: Time-Guided Recurrent Graph Network with Local-Global Historical Patterns for Temporal Knowledge Graph Reasoning"](https://www.ijcai.org/proceedings/2022/299). IJCAI 2022. [https://github.com/Liyyy2122/TiRGN](https://github.com/Liyyy2122/TiRGN)
141 |
142 | [12] (ALRE-IR) Xin Mei∗, Libin Yang∗, Zuowei Jiang, Xiaoyan Cai. ["An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs"](https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.493/). EMNLP 2022.
143 |
144 | [13] (TKGC-AGP) Linhai Zhang, Deyu Zhou. ["Temporal Knowledge Graph Completion with Approximated Gaussian Process Embedding"](https://aclanthology.org/2022.coling-1.416/). COLING 2022.
145 |
146 | [14] (DA-Net) Kangzheng Liu, Feng Zhao, Hongxu Chen, Yicong Li, Guandong Xu, Hai Jin. ["DA-Net: Distributed Attention Network for Temporal Knowledge Graph Reasoning"](https://dl.acm.org/doi/10.1145/3511808.3557280). CIKM 2022.
147 |
148 | [15] (TLT-KGE) Fuwei Zhang, Zhao Zhang, Xiang Ao, Fuzhen Zhuang, Yongjun Xu, Qing He. ["Along the Time: Timeline-traced Embedding for Temporal Knowledge Graph Completion"](https://dl.acm.org/doi/10.1145/3511808.3557233). CIKM 2022.
149 |
150 | [16] EvoKG) Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana Cristofor, Christos Faloutsos, Yuxiao Dong. ["EvoKG: Jointly Modeling Event Time and Network Structure for Reasoning over Temporal Knowledge Graphs"](https://dl.acm.org/doi/10.1145/3488560.3498451). WSDM 2022. [https://github.com/NamyongPark/EvoKG](https://github.com/NamyongPark/EvoKG)
151 |
152 | [17] (ARIM-TE) Tingyi Zhang, Zhixu Li, Jiaan Wang, Jianfeng Qu, Lin Yuan, An Liu, Lei Zhao, Zhigang Chen. ["Aligning Internal Regularity and External Influence of Multi-granularity for Temporal Knowledge Graph Embedding"](https://link.springer.com/chapter/10.1007/978-3-031-00129-1_10). DASFAA 2022.
153 |
154 | [18] (TRHyTE) Lin Yuan, Zhixu Li, Jianfeng Qu, Tingyi Zhang, An Liu, Lei Zhao, Zhigang Chen. ["TRHyTE: Temporal Knowledge Graph Embedding Based on Temporal-Relational Hyperplanes"](https://link.springer.com/chapter/10.1007/978-3-031-00123-9_10). DASFAA 2022.
155 |
156 | [19] (SANe) Yancong Li, Xiaoming Zhang, Bo Zhang, Haiying Ren. ["Each Snapshot to Each Space: Space Adaptation for Temporal Knowledge Graph Completion"](https://link.springer.com/chapter/10.1007/978-3-031-19433-7_15). ISWC 2022.
157 |
158 | [20] (ST-KGE) Mojtaba Nayyeri, Sahar Vahdati, Md Tansen Khan, Mirza Mohtashim Alam, Lisa Wenige, Andreas Behrend, Jens Lehmann. ["Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion"](https://link.springer.com/chapter/10.1007/978-3-031-06981-9_15). ESWC 2022.
159 |
160 | ### 2021
161 |
162 | [1] (TPath) Luyi Bai, Wenting Yu, Mingzhuo Chen, Xiangnan Ma. ["Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning"](https://www.sciencedirect.com/science/article/abs/pii/S1568494621000673?via%3Dihub). Applied Soft Computing 2021.
163 |
164 | [2] (xERTE) Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. ["Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs"](https://iclr.cc/virtual/2021/poster/3378). ICLR 2021. [https://github.com/TemporalKGTeam/xERTE](https://github.com/TemporalKGTeam/xERTE)
165 |
166 | [3] (ChronoR) Ali Sadeghian, Mohammadreza Armandpour, Anthony Colas, Daisy Zhe Wang. ["ChronoR: Rotation Based Temporal Knowledge Graph Embedding"](https://ojs.aaai.org/index.php/AAAI/article/view/16802). AAAI 2021.
167 |
168 | [4] (CyGNet) Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, Yan Zhang. ["Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks"](https://ojs.aaai.org/index.php/AAAI/article/view/16604). AAAI 2021. [https://github.com/CunchaoZ/CyGNet](https://github.com/CunchaoZ/CyGNet)
169 |
170 | [5] (NLSM) Tony Gracious, Shubham Gupta, Arun Kanthali, Rui M. Castro, Ambedkar Dukkipati. ["Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs"](https://ojs.aaai.org/index.php/AAAI/article/view/16526). AAAI 2021.
171 |
172 | [6] (CluSTeR) Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng Guo, Yuanzhuo Wang, Xueqi Cheng. ["Search from History and Reason for Future: Two-stage Reasoning on Temporal Knowledge Graphs"](https://aclanthology.org/2021.acl-long.365/). ACL/IJCNLP 2021.
173 |
174 | [7] (HERCULES) Sebastien Montella, Lina Maria Rojas-Barahona, Johannes Heinecke. ["Hyperbolic Temporal Knowledge Graph Embeddings with Relational and Time Curvatures"](https://aclanthology.org/2021.findings-acl.292/). ACL/IJCNLP (Findings) 2021.
175 |
176 | [8] (HIPNet) Yongquan He, Peng Zhang, Luchen Liu, Qi Liang, Wenyuan Zhang, Chuang Zhang, ["HIP Network: Historical Information Passing Network for Extrapolation Reasoning on Temporal Knowledge Graph"](https://www.ijcai.org/proceedings/2021/264). IJCAI 2021. [https://github.com/Yongquan-He/HIP-network](https://github.com/Yongquan-He/HIP-network)
177 |
178 | [9] (TANGO) Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, Volker Tresp. ["Learning Neural Ordinary Equations for Forecasting Future Links on Temporal Knowledge Graphs"](https://aclanthology.org/2021.emnlp-main.658/). EMNLP 2021.
179 |
180 | [10] (TEA-GNN) Chengjin Xu, Fenglong Su, Jens Lehmann. ["Time-aware Graph Neural Network for Entity Alignment between Temporal Knowledge Graphs"](https://aclanthology.org/2021.emnlp-main.709/). EMNLP 2021. [https://github.com/soledad921/TEA-GNN](https://github.com/soledad921/TEA-GNN)
181 |
182 | [11] (TEE) Zhen Han, Gengyuan Zhang, Yunpu Ma, Volker Tresp. ["Time-dependent Entity Embedding is not All You Need: A Re-evaluation of Temporal Knowledge Graph Completion Models under a Unified Framework"](https://aclanthology.org/2021.emnlp-main.639/). EMNLP 2021.
183 |
184 | [12] (TITer) Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, Kun He. ["TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting"](https://aclanthology.org/2021.emnlp-main.655/). EMNLP 2021. [https://github.com/JHL-HUST/TITer](https://github.com/JHL-HUST/TITer)
185 |
186 | [13] (RTFE) Youri Xu, Haihong E, Meina Song, Wenyu Song, Xiaodong Lv, Haotian Wang, Jinrui Yang. ["RTFE: A Recursive Temporal Fact Embedding Framework for Temporal Knowledge Graph Completion"](https://www.aclweb.org/anthology/2021.naacl-main.451/). NAACL-HLT 2021.
187 |
188 | [14] (TeLM) Chengjin Xu, Yung-Yu Chen, Mojtaba Nayyeri, Jens Lehmann. ["Temporal Knowledge Graph Completion using a Linear Temporal Regularizer and Multivector Embeddings"](https://www.aclweb.org/anthology/2021.naacl-main.202/). NAACL-HLT 2021. [https://github.com/soledad921/TeLM](https://github.com/soledad921/TeLM)
189 |
190 | [15] (T-GAP) Jaehun Jung, Jinhong Jung, U. Kang. ["Learning to Walk across Time for Interpretable Temporal Knowledge Graph Completion"](https://dl.acm.org/doi/10.1145/3447548.3467292). KDD 2021. [https://github.com/anonymoususer99/T-GAP](https://github.com/anonymoususer99/T-GAP)
191 |
192 | [16] (RE-GCN) Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, Xueqi Cheng. ["Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning"](https://dl.acm.org/doi/10.1145/3404835.3462963). SIGIR 2021. [https://github.com/Lee-zix/RE-GCN](https://github.com/Lee-zix/RE-GCN)
193 |
194 | [17] (TIE) Jiapeng Wu, Yishi Xu, Yingxue Zhang, Chen Ma, Mark Coates, Jackie Chi Kit Cheung. ["TIE: A Framework for Embedding-based Incremental Temporal Knowledge Graph Completion"](https://dl.acm.org/doi/10.1145/3404835.3462961). SIGIR 2021. [https://github.com/JiapengWu/Time-Aware-Incremental-Embedding](https://github.com/JiapengWu/Time-Aware-Incremental-Embedding)
195 |
196 | [18] (DBKGE) Siyuan Liao, Shangsong Liang, Zaiqiao Meng, Qiang Zhang. ["Learning Dynamic Embeddings for Temporal Knowledge Graphs"](https://dl.acm.org/doi/10.1145/3437963.3441741). WSDM 2021.
197 |
198 | [19] (ST-ConvKB) Jiasheng Zhang, Shuang Liang, Zhiyi Deng, Jie Shao. ["Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion"](https://link.springer.com/chapter/10.1007%2F978-3-030-73194-6_15). DASFAA 2021.
199 |
200 | [20] (RETRA) Simon Werner, Achim Rettinger, Lavdim Halilaj, Jürgen Lüttin. ["RETRA: Recurrent Transformers for Learning Temporally Contextualized Knowledge Graph Embeddings"](https://link.springer.com/chapter/10.1007%2F978-3-030-77385-4_25). ESWC 2021. [https://github.com/siwer/Retra](https://github.com/siwer/Retra)
201 |
202 |
203 | ### 2020
204 |
205 | [1] (TComplEx) Timothée Lacroix, Guillaume Obozinski, Nicolas Usunier. ["Tensor Decompositions for Temporal Knowledge Base Completion"](https://openreview.net/forum?id=rke2P1BFwS). ICLR 2020. [https://github.com/facebookresearch/tkbc](https://github.com/facebookresearch/tkbc)
206 |
207 | [2] (DE-SimplE) Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, Pascal Poupart. ["Diachronic Embedding for Temporal Knowledge Graph Completion"](https://aaai.org/ojs/index.php/AAAI/article/view/5815). AAAI 2020. [https://github.com/BorealisAI/DE-SimplE](https://github.com/BorealisAI/DE-SimplE)
208 |
209 | [3] (DArtNet) Sankalp Garg, Navodita Sharma, Woojeong Jin, Xiang Ren. ["Temporal Attribute Prediction via Joint Modeling of Multi-Relational Structure Evolution"](https://www.ijcai.org/Proceedings/2020/386). IJCAI 2020. [https://github.com/INK-USC/DArtNet](https://github.com/INK-USC/DArtNet)
210 |
211 | [4] (DyERNIE) Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. ["DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion"](https://www.aclweb.org/anthology/2020.emnlp-main.593/). EMNLP 2020.
212 |
213 | [5] (RE-NET) Woojeong Jin, Meng Qu, Xisen Jin, Xiang Ren. ["Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs"](https://www.aclweb.org/anthology/2020.emnlp-main.541/). EMNLP 2020. [https://github.com/INK-USC/RE-Net](https://github.com/INK-USC/RE-Net)
214 |
215 | [6] (TeMP) Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, William L. Hamilton. ["TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion"](https://www.aclweb.org/anthology/2020.emnlp-main.462/). EMNLP 2020. [https://github.com/JiapengWu/TeMP](https://github.com/JiapengWu/TeMP)
216 |
217 | [7] (TIMEPLEX) Prachi Jain, Sushant Rathi, Mausam, Soumen Chakrabarti. ["Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols"](https://www.aclweb.org/anthology/2020.emnlp-main.305/). EMNLP 2020. [https://github.com/dair-iitd/tkbi](https://github.com/dair-iitd/tkbi)
218 |
219 | [8] (TeRo) Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, Jens Lehmann. ["TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation"](https://www.aclweb.org/anthology/2020.coling-main.139/). COLING 2020. [https://github.com/soledad921/ATISE](https://github.com/soledad921/ATISE)
220 |
221 | [9] (ToKE) Julien Leblay, Melisachew Wudage Chekol, Xin Liu. ["Towards Temporal Knowledge Graph Embeddings with Arbitrary Time Precision"](https://dl.acm.org/doi/10.1145/3340531.3412028). CIKM 2020. [https://gitlab.com/jleblay/tokei](https://gitlab.com/jleblay/tokei)
222 |
223 | [10] (ATiSE) Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, Jens Lehmann. ["Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding"](https://link.springer.com/chapter/10.1007%2F978-3-030-62419-4_37). ISWC 2020. [https://github.com/soledad921/ATISE](https://github.com/soledad921/ATISE)
224 |
225 | [11] (TDGNN) Liang Qu, Huaisheng Zhu, Qiqi Duan, Yuhui Shi. ["Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network"](https://dl.acm.org/doi/10.1145/3366423.3380073). WWW 2020. [https://github.com/Leo-Q-316/TDGNN](https://github.com/Leo-Q-316/TDGNN)
226 |
227 | ### 2018
228 |
229 | [1] (HyTE) Shib Sankar Dasgupta, Swayambhu Nath Ray, Partha Talukdar. ["HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding"](https://www.aclweb.org/anthology/D18-1225/). EMNLP 2018. [https://github.com/malllabiisc/HyTE](https://github.com/malllabiisc/HyTE)
230 |
231 | [2] (TA-DistMult) Alberto Garcia-Duran, Sebastijan Dumančić, Mathias Niepert. ["Learning Sequence Encoders for Temporal Knowledge Graph Completion"](https://www.aclweb.org/anthology/D18-1516/). EMNLP 2018.
232 |
233 |
234 | ### 2017
235 |
236 | [1] (Know-Evolve) Rakshit Trivedi, Hanjun Dai, Yichen Wang, Le Song. ["Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs"](http://proceedings.mlr.press/v70/trivedi17a.html). ICML 2017.
237 |
238 | ### 2016
239 |
240 | [1] (t-TransE) Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui. ["Encoding Temporal Information for Time-Aware Link Prediction"](https://www.aclweb.org/anthology/D16-1260/). EMNLP 2016.
241 |
242 |
243 | ### 2014
244 |
245 | [1] (CTPs) Derry Tanti Wijaya, Ndapandula Nakashole, Tom M. Mitchell. ["CTPs: Contextual Temporal Profiles for Time Scoping Facts using State Change Detection"](https://www.aclweb.org/anthology/D14-1207/). EMNLP 2014.
246 |
247 |
--------------------------------------------------------------------------------
/conferences/2014.md:
--------------------------------------------------------------------------------
1 | # 2014
2 |
3 | **EMNLP**
4 |
5 | [1] (CTPs) Wijaya, D. T., Nakashole, N., & Mitchell, T. (2014, October). [CTPs: Contextual temporal profiles for time scoping facts using state change detection](https://www.aclweb.org/anthology/D14-1207/). In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1930-1936).
--------------------------------------------------------------------------------
/conferences/2016.md:
--------------------------------------------------------------------------------
1 | # 2016
2 |
3 | **EMNLP**
4 |
5 | [1] (t-TransE) Jiang, T., Liu, T., Ge, T., Sha, L., Li, S., Chang, B., & Sui, Z. (2016, November). [Encoding temporal information for time-aware link prediction](https://www.aclweb.org/anthology/D16-1260/). In Proceedings of the 2016 conference on empirical methods in natural language processing (pp. 2350-2354).
6 |
7 | [2] (TransE-TAE) Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., Li, S., & Sui, Z. (2016, December). [Towards time-aware knowledge graph completion](https://aclanthology.org/C16-1161.pdf). In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers (pp. 1715-1724).
8 |
9 |
10 |
--------------------------------------------------------------------------------
/conferences/2017.md:
--------------------------------------------------------------------------------
1 | # 2017
2 |
3 | **ICML**
4 |
5 | [1] (Know-Evolve) Trivedi, R., Dai, H., Wang, Y., & Song, L. (2017, July). [Know-evolve: Deep temporal reasoning for dynamic knowledge graphs](http://proceedings.mlr.press/v70/trivedi17a.html). In international conference on machine learning (pp. 3462-3471). PMLR.
6 |
7 | [2] Chekol, M., Pirrò, G., Schoenfisch, J., & Stuckenschmidt, H. (2017, February). [Marrying uncertainty and time in knowledge graphs](https://ojs.aaai.org/index.php/AAAI/article/download/10495/10354). In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).
--------------------------------------------------------------------------------
/conferences/2018.md:
--------------------------------------------------------------------------------
1 | # 2018
2 |
3 | **EMNLP**
4 |
5 | [1] (TTransE) Leblay, J., & Chekol, M. W. (2018, April). [Deriving validity time in knowledge graph](https://dl.acm.org/doi/abs/10.1145/3184558.3191639). In Companion Proceedings of the The Web Conference 2018 (pp. 1771-1776).
6 |
7 | [2] (HyTE) Dasgupta, S. S., Ray, S. N., & Talukdar, P. (2018). [Hyte: Hyperplane-based temporally aware knowledge graph embedding](https://www.aclweb.org/anthology/D18-1225/). In Proceedings of the 2018 conference on empirical methods in natural language processing (pp. 2001-2011). [Github](https://github.com/malllabiisc/HyTE)
8 |
9 | [3] (TA-DistMult) García-Durán, A., Dumančić, S., & Niepert, M. (2018). [Learning sequence encoders for temporal knowledge graph completion](https://www.aclweb.org/anthology/D18-1516/). arXiv preprint arXiv:1809.03202.
--------------------------------------------------------------------------------
/conferences/2019.md:
--------------------------------------------------------------------------------
1 | # 2019
2 |
3 | **ICLR**
4 |
5 | [1] Jin, W., Jiang, H., Qu, M., Chen, T., Zhang, C., Szekely, P., & Ren, X. (2019). [Recurrent event network: Global structure inference over temporal knowledge graph](https://openreview.net/forum?id=SyeyF0VtDr). (Rejected from ICLR 2019)
6 |
7 | [2] (DyRep) Trivedi, R., Farajtabar, M., Biswal, P., & Zha, H. (2019, May). [Dyrep: Learning representations over dynamic graphs](https://par.nsf.gov/biblio/10099025). In International conference on learning representations.
8 |
9 | **ICTAI**
10 |
11 | [1] (Hybrid-TE) Wang, Z., & Li, X. (2019, November). Hybrid-te: Hybrid translation-based temporal knowledge graph embedding. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1446-1451). IEEE.
12 |
13 | **WISE**
14 |
15 | [1] Liu, Y., Hua, W., Xin, K., & Zhou, X. (2019). Context-aware temporal knowledge graph embedding. In Web Information Systems Engineering–WISE 2019: 20th International Conference, Hong Kong, China, November 26–30, 2019, Proceedings 20 (pp. 583-598). Springer International Publishing.
--------------------------------------------------------------------------------
/conferences/2020.md:
--------------------------------------------------------------------------------
1 | # 2020
2 |
3 | **EMNLP**
4 |
5 | [1] (Temp) Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L. Hamilton. 2020. [TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion](https://aclanthology.org/2020.emnlp-main.462/). In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5730–5746, Online. Association for Computational Linguistics.
6 |
7 | > Wu, J., Cao, M., Cheung, J. C. K., & Hamilton, W. L. (2020). [Temp: Temporal message passing for temporal knowledge graph completion](https://arxiv.org/pdf/2010.03526). arXiv preprint arXiv:2010.03526. [Github](https://github.com/JiapengWu/TeMP)
8 |
9 | [2] (RE-NET) Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. [Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs](https://aclanthology.org/2020.emnlp-main.541/). In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6669–6683, Online. Association for Computational Linguistics.
10 |
11 | > Jin, W., Qu, M., Jin, X., & Ren, X. (2019). [Recurrent event network: Autoregressive structure inference over temporal knowledge graphs](https://arxiv.org/pdf/1904.05530). arXiv preprint arXiv:1904.05530. [Github](https://github.com/INK-USC/RE-Net)
12 |
13 | [3] (DyERNIE) Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. ["DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion"](https://www.aclweb.org/anthology/2020.emnlp-main.593/). EMNLP 2020.
14 |
15 | [4] (TIMEPLEX) Prachi Jain, Sushant Rathi, Mausam, Soumen Chakrabarti. ["Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols"](https://www.aclweb.org/anthology/2020.emnlp-main.305/). EMNLP 2020. [Github](https://github.com/dair-iitd/tkbi)
16 |
17 | **ICLR**
18 |
19 | [1] (TComplEx) Timothée Lacroix, Guillaume Obozinski, Nicolas Usunier. ["Tensor Decompositions for Temporal Knowledge Base Completion"](https://openreview.net/forum?id=rke2P1BFwS). ICLR 2020. [Github](https://github.com/facebookresearch/tkbc)
20 |
21 | **AAAI**
22 |
23 | [1] (DE-SimplE) Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, Pascal Poupart. ["Diachronic Embedding for Temporal Knowledge Graph Completion"](https://aaai.org/ojs/index.php/AAAI/article/view/5815). AAAI 2020. [Github](https://github.com/BorealisAI/DE-SimplE)
24 |
25 | [2] (EvolveGCN) Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., ... & Leiserson, C. (2020, April). [Evolvegcn: Evolving graph convolutional networks for dynamic graphs](https://aaai.org/ojs/index.php/AAAI/article/view/5984). In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 04, pp. 5363-5370).
26 |
27 | **IJCAI**
28 |
29 | [1] (DArtNet) Sankalp Garg, Navodita Sharma, Woojeong Jin, Xiang Ren. ["Temporal Attribute Prediction via Joint Modeling of Multi-Relational Structure Evolution"](https://www.ijcai.org/Proceedings/2020/386). IJCAI 2020. [Github](https://github.com/INK-USC/DArtNet)
30 |
31 | **COLING**
32 |
33 | [1] (TeRo) Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, Jens Lehmann. ["TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation"](https://www.aclweb.org/anthology/2020.coling-main.139/). COLING 2020. [Github](https://github.com/soledad921/ATISE)
34 |
35 | **CIKM**
36 |
37 | [1] (ToKE) Julien Leblay, Melisachew Wudage Chekol, Xin Liu. ["Towards Temporal Knowledge Graph Embeddings with Arbitrary Time Precision"](https://dl.acm.org/doi/10.1145/3340531.3412028). CIKM 2020. [Github](https://gitlab.com/jleblay/tokei)
38 |
39 | **ISWC**
40 |
41 | [1] (ATiSE) Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, Jens Lehmann. ["Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding"](https://link.springer.com/chapter/10.1007%2F978-3-030-62419-4_37). ISWC 2020. [Github](https://github.com/soledad921/ATISE)
42 |
43 | **WWW**
44 |
45 | [1] (TDGNN) Liang Qu, Huaisheng Zhu, Qiqi Duan, Yuhui Shi. ["Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network"](https://dl.acm.org/doi/10.1145/3366423.3380073). 2020. [Github](https://github.com/Leo-Q-316/TDGNN)
46 |
47 | **ICTAI**
48 |
49 | [1] Lin, L., & She, K. (2020, November). Tensor decomposition-based temporal knowledge graph embedding. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 969-975). IEEE.
50 |
51 | **ArXiv**
52 |
53 | [1] Jung, J., Jung, J., & Kang, U. (2020). [T-gap: Learning to walk across time for temporal knowledge graph completion](https://arxiv.org/pdf/2012.10595). arXiv preprint arXiv:2012.10595.
--------------------------------------------------------------------------------
/conferences/2021.md:
--------------------------------------------------------------------------------
1 | # 2021
2 |
3 | **KDD**
4 |
5 | [1] (T-GAP) Jaehun Jung, Jinhong Jung, U. Kang. ["Learning to Walk across Time for Interpretable Temporal Knowledge Graph Completion"](https://dl.acm.org/doi/10.1145/3447548.3467292). KDD 2021. [https://github.com/anonymoususer99/T-GAP](https://github.com/anonymoususer99/T-GAP)
6 |
7 | **ICLR**
8 |
9 | [1] (xERTE) Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. ["Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs"](https://iclr.cc/virtual/2021/poster/3378). ICLR 2021. [https://github.com/TemporalKGTeam/xERTE](https://github.com/TemporalKGTeam/xERTE)
10 |
11 | **AAAI**
12 |
13 | [1] (ChronoR) Ali Sadeghian, Mohammadreza Armandpour, Anthony Colas, Daisy Zhe Wang. ["ChronoR: Rotation Based Temporal Knowledge Graph Embedding"](https://ojs.aaai.org/index.php/AAAI/article/view/16802). AAAI 2021.
14 |
15 | [2] (CyGNet) Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, Yan Zhang. ["Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks"](https://ojs.aaai.org/index.php/AAAI/article/view/16604). AAAI 2021. [Github](https://github.com/CunchaoZ/CyGNet)
16 |
17 | [3] (NLSM) Tony Gracious, Shubham Gupta, Arun Kanthali, Rui M. Castro, Ambedkar Dukkipati. ["Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs"](https://ojs.aaai.org/index.php/AAAI/article/view/16526). AAAI 2021.
18 |
19 | **ACL/IJCNLP**
20 |
21 | [1] (CluSTeR) Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng Guo, Yuanzhuo Wang, Xueqi Cheng. ["Search from History and Reason for Future: Two-stage Reasoning on Temporal Knowledge Graphs"](https://aclanthology.org/2021.acl-long.365/). ACL/IJCNLP 2021.
22 |
23 | [2] (HERCULES) Sebastien Montella, Lina Maria Rojas-Barahona, Johannes Heinecke. ["Hyperbolic Temporal Knowledge Graph Embeddings with Relational and Time Curvatures"](https://aclanthology.org/2021.findings-acl.292/). ACL/IJCNLP (Findings) 2021.
24 |
25 | **IJCAI**
26 |
27 | [1] (HIPNet) Yongquan He, Peng Zhang, Luchen Liu, Qi Liang, Wenyuan Zhang, Chuang Zhang, ["HIP Network: Historical Information Passing Network for Extrapolation Reasoning on Temporal Knowledge Graph"](https://www.ijcai.org/proceedings/2021/264). IJCAI 2021. [Github](https://github.com/Yongquan-He/HIP-network)
28 |
29 | **EMNLP**
30 |
31 | [1] (TANGO) Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, Volker Tresp. ["Learning Neural Ordinary Equations for Forecasting Future Links on Temporal Knowledge Graphs"](https://aclanthology.org/2021.emnlp-main.658/). EMNLP 2021.
32 |
33 | [2] (TEA-GNN) Chengjin Xu, Fenglong Su, Jens Lehmann. ["Time-aware Graph Neural Network for Entity Alignment between Temporal Knowledge Graphs"](https://aclanthology.org/2021.emnlp-main.709/). EMNLP 2021. [Github](https://github.com/soledad921/TEA-GNN)
34 |
35 | [3] (TEE) Zhen Han, Gengyuan Zhang, Yunpu Ma, Volker Tresp. ["Time-dependent Entity Embedding is not All You Need: A Re-evaluation of Temporal Knowledge Graph Completion Models under a Unified Framework"](https://aclanthology.org/2021.emnlp-main.639/). EMNLP 2021.
36 |
37 | [4] (TITer) Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, Kun He. ["TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting"](https://aclanthology.org/2021.emnlp-main.655/). EMNLP 2021. [Github](https://github.com/JHL-HUST/TITer)
38 |
39 | **NAACL-HLT**
40 |
41 | [1] (RTFE) Youri Xu, Haihong E, Meina Song, Wenyu Song, Xiaodong Lv, Haotian Wang, Jinrui Yang. ["RTFE: A Recursive Temporal Fact Embedding Framework for Temporal Knowledge Graph Completion"](https://www.aclweb.org/anthology/2021.naacl-main.451/). NAACL-HLT 2021.
42 |
43 | [2] (TeLM) Chengjin Xu, Yung-Yu Chen, Mojtaba Nayyeri, Jens Lehmann. ["Temporal Knowledge Graph Completion using a Linear Temporal Regularizer and Multivector Embeddings"](https://www.aclweb.org/anthology/2021.naacl-main.202/). NAACL-HLT 2021. [Github](https://github.com/soledad921/TeLM)
44 |
45 | **SIGIR**
46 |
47 | [1] (RE-GCN) Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, Xueqi Cheng. ["Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning"](https://dl.acm.org/doi/10.1145/3404835.3462963). SIGIR 2021. [Github](https://github.com/Lee-zix/RE-GCN)
48 |
49 | [2] (TIE) Jiapeng Wu, Yishi Xu, Yingxue Zhang, Chen Ma, Mark Coates, Jackie Chi Kit Cheung. ["TIE: A Framework for Embedding-based Incremental Temporal Knowledge Graph Completion"](https://dl.acm.org/doi/10.1145/3404835.3462961). SIGIR 2021. [Github](https://github.com/JiapengWu/Time-Aware-Incremental-Embedding)
50 |
51 | **WSDM**
52 |
53 | [1] (DBKGE) Siyuan Liao, Shangsong Liang, Zaiqiao Meng, Qiang Zhang. ["Learning Dynamic Embeddings for Temporal Knowledge Graphs"](https://dl.acm.org/doi/10.1145/3437963.3441741). WSDM 2021.
54 |
55 | [2] Chen, H., Li, Y., Sun, X., Xu, G., & Yin, H. (2021, March). [Temporal meta-path guided explainable recommendation](https://arxiv.org/abs/2101.01433). In Proceedings of the 14th ACM international conference on web search and data mining (pp. 1056-1064).
56 |
57 | **DASFAA**
58 |
59 | [1] (ST-ConvKB) Jiasheng Zhang, Shuang Liang, Zhiyi Deng, Jie Shao. ["Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion"](https://link.springer.com/chapter/10.1007%2F978-3-030-73194-6_15). DASFAA 2021.
60 |
61 | **ESWC**
62 |
63 | [1] (RETRA) Simon Werner, Achim Rettinger, Lavdim Halilaj, Jürgen Lüttin. ["RETRA: Recurrent Transformers for Learning Temporally Contextualized Knowledge Graph Embeddings"](https://link.springer.com/chapter/10.1007%2F978-3-030-77385-4_25). ESWC 2021. [Github](https://github.com/siwer/Retra)
64 |
65 | **ICFEICT**
66 |
67 | [1] Wang, T. (2021, May). [Learning Diachronic Embedding and Time-Encoding Sequences for Temporal Knowledge Graph Completion](https://dl.acm.org/doi/abs/10.1145/3474198.3478171). In International Conference on Frontiers of Electronics, Information and Computation Technologies (pp. 1-7).
68 |
69 | **CKC**
70 |
71 | [1] Chekol, M. W. (2021, December). [Tensor decomposition for link prediction in temporal knowledge graphs](https://dl.acm.org/doi/abs/10.1145/3460210.3493558). In Proceedings of the 11th on Knowledge Capture Conference (pp. 253-256).
72 |
73 | **IJCNN**
74 |
75 | [1] Wang, Z., Li, L., & Zeng, D. D. (2021, July). Time-Aware Representation Learning of Knowledge Graphs. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
76 |
77 | **TGL Workshop**
78 |
79 | [1] Ding, Z., Ma, Y., He, B., & Tresp, V. (2021). [A simple but powerful graph encoder for temporal knowledge graph completion](https://arxiv.org/pdf/2112.07791). arXiv preprint arXiv:2112.07791.
--------------------------------------------------------------------------------
/conferences/2022.md:
--------------------------------------------------------------------------------
1 | # 2022
2 |
3 | **ICDM**
4 |
5 | [1] (DHU-Net) Liu, K., Zhao, F., Xu, G., Wang, X., & Jin, H. (2022, November). [Temporal Knowledge Graph Reasoning via Time-Distributed Representation Learning](https://ieeexplore.ieee.org/abstract/document/10027745/). In 2022 IEEE International Conference on Data Mining (ICDM) (pp. 279-288). IEEE.
6 |
7 | [2] (THOR) Y. -C. Lee, J. Lee, D. Lee and S. -W. Kim, ["THOR: Self-Supervised Temporal Knowledge Graph Embedding via Three-Tower Graph Convolutional Networks,"](https://ieeexplore.ieee.org/document/10027723) 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022, pp. 1035-1040, doi: 10.1109/ICDM54844.2022.00127.
8 |
9 | **CIKM**
10 |
11 | [1] (DA-Net) Kangzheng Liu, Feng Zhao, Hongxu Chen, Yicong Li, Guandong Xu, Hai Jin. ["DA-Net: Distributed Attention Network for Temporal Knowledge Graph Reasoning"](https://dl.acm.org/doi/10.1145/3511808.3557280). CIKM 2022.
12 |
13 | [2] (TLT-KGE) Fuwei Zhang, Zhao Zhang, Xiang Ao, Fuzhen Zhuang, Yongjun Xu, Qing He. ["Along the Time: Timeline-traced Embedding for Temporal Knowledge Graph Completion"](https://dl.acm.org/doi/10.1145/3511808.3557233). CIKM 2022. [Github](https://github.com/zhangfw123/TLT-KGE)
14 |
15 | [3] Li, D., Tan, S., Wang, Y., Funakoshi, K., & Okumura, M. (2023, October). [Temporal and Topological Augmentation-based Cross-view Contrastive Learning Model for Temporal Link Prediction](https://dl.acm.org/doi/pdf/10.1145/3583780.3615231). In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (pp. 4059-4063).
16 |
17 | **AAAI**
18 |
19 | [1] (BoxTE) Johannes Messner, Ralph Abboud, Ismail Ilkan Ceylan. ["Temporal Knowledge Graph Completion Using Box Embeddings"](https://ojs.aaai.org/index.php/AAAI/article/view/20746). AAAI 2022.
20 |
21 | [2] (TempoQR) Costas Mavromatis, Prasanna Lakkur Subramanyam, Vassilis N. Ioannidis, Adesoji Adeshina, Phillip R. Howard, Tetiana Grinberg, Nagib Hakim, George Karypis. ["TempoQR: Temporal Question Reasoning over Knowledge Graphs"](https://ojs.aaai.org/index.php/AAAI/article/view/20526). AAAI 2022. https://github.com/cmavro/TempoQR
22 |
23 | [3] (TLogic) Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, Volker Tresp. ["TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs"](https://ojs.aaai.org/index.php/AAAI/article/view/20330). AAAI 2022. [https://github.com/liu-yushan/TLogic](https://github.com/liu-yushan/TLogic)
24 |
25 | **ACL**
26 |
27 | [1] (CEN) Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng Guo, Xueqi Cheng. ["Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning"](https://aclanthology.org/2022.acl-short.32/). ACL 2022. [https://github.com/lee-zix/cen](https://github.com/lee-zix/cen)
28 |
29 | [2] (RotateQVS) Kai Chen, Ye Wang, Yitong Li, Aiping Li. ["RotateQVS: Representing Temporal Information as Rotations in Quaternion Vector Space for Temporal Knowledge Graph Completion"](https://aclanthology.org/2022.acl-long.402/). ACL 2022.
30 |
31 | **IJCAI**
32 |
33 | [1] (rGalT) Yifu Gao, Linhui Feng, Zhigang Kan, Yi Han, Linbo Qiao, Dongsheng Li. ["Modeling Precursors for Temporal Knowledge Graph Reasoning via Auto-encoder Structure"](https://www.ijcai.org/proceedings/2022/284). IJCAI 2022.
34 |
35 | [2] (TiRGN) Yujia Li, Shiliang Sun, Jing Zhao. ["TiRGN: Time-Guided Recurrent Graph Network with Local-Global Historical Patterns for Temporal Knowledge Graph Reasoning"](https://www.ijcai.org/proceedings/2022/299). IJCAI 2022. [https://github.com/Liyyy2122/TiRGN](https://github.com/Liyyy2122/TiRGN)
36 |
37 | **NIPS**
38 |
39 | [1] (MetaTKGR) Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, Tarek Abdelzaher. ["Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graphs"](https://openreview.net/forum?id=1LmgISIDZJ). NeurIPS 2022.
40 |
41 | **EMNLP**
42 |
43 | [1] (ALRE-IR) Xin Mei∗, Libin Yang∗, Zuowei Jiang, Xiaoyan Cai. ["An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs"](https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.493/). EMNLP 2022.
44 |
45 | [2] Zhen Wang, Haotong Du, Quanming Yao, and Xuelong Li. 2022. [Search to Pass Messages for Temporal Knowledge Graph Completion](https://aclanthology.org/2022.findings-emnlp.458/). In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6160–6172, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
46 | > Wang, Z., Du, H., Yao, Q., & Li, X. (2022). [Search to Pass Messages for Temporal Knowledge Graph Completion](https://arxiv.org/pdf/2210.16740). arXiv preprint arXiv:2210.16740. [Github](https://github.com/striderdu/SPA)
47 |
48 | [3] Sun, H., Geng, S., Zhong, J., Hu, H., & He, K. (2022, December). [Graph Hawkes Transformer for Extrapolated Reasoning on Temporal Knowledge Graphs](https://aclanthology.org/2022.emnlp-main.507.pdf). In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 7481-7493). [Github](https://github.com/JHL-HUST/GHT)
49 |
50 | [4] Yuwei Xia, Mengqi Zhang, Qiang Liu, Shu Wu, and Xiao-Yu Zhang. 2022. MetaTKG: Learning Evolutionary Meta-Knowledge for Temporal Knowledge Graph Reasoning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7230–7240, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
51 |
52 | **COLING**
53 |
54 | [1] (TKGC-AGP) Linhai Zhang, Deyu Zhou. ["Temporal Knowledge Graph Completion with Approximated Gaussian Process Embedding"](https://aclanthology.org/2022.coling-1.416/). COLING 2022.
55 |
56 | **WSDM**
57 |
58 | [1] (EvoKG) Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana Cristofor, Christos Faloutsos, Yuxiao Dong. ["EvoKG: Jointly Modeling Event Time and Network Structure for Reasoning over Temporal Knowledge Graphs"](https://dl.acm.org/doi/10.1145/3488560.3498451). WSDM 2022. [https://github.com/NamyongPark/EvoKG](https://github.com/NamyongPark/EvoKG)
59 |
60 | **DASFAA**
61 |
62 | [1] (ARIM-TE) Tingyi Zhang, Zhixu Li, Jiaan Wang, Jianfeng Qu, Lin Yuan, An Liu, Lei Zhao, Zhigang Chen. ["Aligning Internal Regularity and External Influence of Multi-granularity for Temporal Knowledge Graph Embedding"](https://link.springer.com/chapter/10.1007/978-3-031-00129-1_10). DASFAA 2022.
63 |
64 | [2] (TRHyTE) Lin Yuan, Zhixu Li, Jianfeng Qu, Tingyi Zhang, An Liu, Lei Zhao, Zhigang Chen. ["TRHyTE: Temporal Knowledge Graph Embedding Based on Temporal-Relational Hyperplanes"](https://link.springer.com/chapter/10.1007/978-3-031-00123-9_10). DASFAA 2022.
65 |
66 | **ISWC**
67 |
68 | [1] (SANe) Yancong Li, Xiaoming Zhang, Bo Zhang, Haiying Ren. ["Each Snapshot to Each Space: Space Adaptation for Temporal Knowledge Graph Completion"](https://link.springer.com/chapter/10.1007/978-3-031-19433-7_15). ISWC 2022.
69 |
70 | [2] Wang, S., Cai, X., Zhang, Y., & Yuan, X. (2022, October). [Crnet: Modeling concurrent events over temporal knowledge graph](https://iswc2022.semanticweb.org/wp-content/uploads/2022/11/978-3-031-19433-7_30.pdf). In International Semantic Web Conference (pp. 516-533). Cham: Springer International Publishing.
71 |
72 | **ESWC**
73 |
74 | [1] (ST-KGE) Mojtaba Nayyeri, Sahar Vahdati, Md Tansen Khan, Mirza Mohtashim Alam, Lisa Wenige, Andreas Behrend, Jens Lehmann. ["Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion"](https://link.springer.com/chapter/10.1007/978-3-031-06981-9_15). ESWC 2022.
75 |
76 | **CAKBC**
77 |
78 | [1] Ding, Z., Wu, J., He, B., Ma, Y., Han, Z., & Tresp, V. (2022). [Few-shot inductive learning on temporal knowledge graphs using concept-aware information](https://arxiv.org/pdf/2211.08169). arXiv preprint arXiv:2211.08169. [Github](https://github.com/Jasper-Wu/FILT)
79 |
80 | **ECMLKDD**
81 |
82 | [1] Wei, H., Huang, H., Zhang, T., Shi, X., & Jin, H. (2022, September). [Enhance Temporal Knowledge Graph Completion via Time-Aware Attention Graph Convolutional Network](https://link.springer.com/chapter/10.1007/978-3-031-26390-3_8). In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 122-137). Cham: Springer International Publishing.
83 |
84 | **ICMSN**
85 |
86 | [1] Peng, C. C., Shi, X., Yu, R., Ma, C., Wu, L., & Zhang, D. (2022, December). [Multi-timescale History Modeling for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10076710/). In 2022 18th International Conference on Mobility, Sensing and Networking (MSN) (pp. 477-484). IEEE.
87 |
88 | **PRICAI**
89 |
90 | [1] (ST-Net) Zuo, Y., Zhou, Y., Liu, Z., Wu, J., & Zhan, M. (2022, November). [Learning Temporal and Spatial Embedding for Temporal Knowledge Graph Reasoning](https://link.springer.com/chapter/10.1007/978-3-031-20865-2_10). In Pacific Rim International Conference on Artificial Intelligence (pp. 127-138). Cham: Springer Nature Switzerland.
91 |
92 | **ICMLNLP**
93 |
94 | [1] (TAE) Duan, H., Jin, H., Chen, K., Du, S., Fang, T., & Huo, H. (2022, December). [An effective Time-Aware Encoder for Temporal Knowledge Graph Reasoning](https://dl.acm.org/doi/abs/10.1145/3578741.3578758). In Proceedings of the 2022 5th International Conference on Machine Learning and Natural Language Processing (pp. 81-87).
--------------------------------------------------------------------------------
/conferences/2023.md:
--------------------------------------------------------------------------------
1 | # 2023
2 |
3 | **NIPS**
4 |
5 | [1] *(TFLEX) Lin, X., Xu, C., Su, F., Zhou, G., Hu, T., Li, N., ... & Luo, H. (2022). [TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph](https://arxiv.org/pdf/2205.14307). arXiv preprint arXiv:2205.14307., [Github](https://github.com/LinXueyuanStdio/
6 |
7 | **IJCAI**
8 |
9 | [1] *(DaeMon) Dong, H., Ning, Z., Wang, P., Qiao, Z., Wang, P., Zhou, Y., & Fu, Y. (2023). [Adaptive Path-Memory Network for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2304.12604). arXiv preprint arXiv:2304.12604. [Github](https://github.com/hhdo/DaeMon)
10 |
11 | **AAAI**
12 |
13 | [1] (CENET) Xu, Y., Ou, J., Xu, H., & Fu, L. (2023, June). [Temporal knowledge graph reasoning with historical contrastive learning](https://ojs.aaai.org/index.php/AAAI/article/view/25601/25373). In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 4, pp. 4765-4773). [Github](https://github.com/xyjigsaw/CENET)
14 |
15 | [2] (LCGE) Niu, G., & Li, B. (2023, June). [Logic and Commonsense-Guided Temporal Knowledge Graph Completion](https://ojs.aaai.org/index.php/AAAI/article/download/25579/25351). In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 4, pp. 4569-4577). [Github](https://github.com/ngl567/LCGE)
16 |
17 | [3] Xu, Y., Ou, J., Xu, H., Fu, L., Zhou, L., Wang, X., & Zhou, C. (2023). [Exploring the Limits of Historical Information for Temporal Knowledge Graph Extrapolation](https://arxiv.org/abs/2308.15002). arXiv preprint arXiv:2308.15002.
18 |
19 | > Extended version: [46] Xu, Y., Ou, J., Xu, H., & Fu, L. (2023, June). [Temporal knowledge graph reasoning with historical contrastive learning](https://ojs.aaai.org/index.php/AAAI/article/view/25601/25373). In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 4, pp. 4765-4773). [Github](https://github.com/xyjigsaw/CENET)
20 |
21 | **ICLR**
22 |
23 | [1] *(TILP) Xiong, S., Yang, Y., Fekri, F., & Kerce, J. C. (2022, September). [TILP: Differentiable Learning of Temporal Logical Rules on Knowledge Graphs](https://openreview.net/forum?id=_X12NmQKvX). In The Eleventh International Conference on Learning Representations.
24 |
25 | **DASFAA**
26 |
27 | [1] Gong, X., Qin, J., Chai, H., Ding, Y., Jia, Y., & Liao, Q. (2023, April). [Temporal-Relational Matching Network for Few-Shot Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-30672-3_52). In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part II (pp. 768-783). Cham: Springer Nature Switzerland.
28 |
29 | [2] Yue, L., Ren, Y., Zeng, Y., Zhang, J., Zeng, K., & Wan, J. (2023, April). [Block Decomposition with Multi-granularity Embedding for Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-30672-3_47). In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part II (pp. 706-715). Cham: Springer Nature Switzerland.
30 |
31 | [3] Zhang, S., Liang, X., Li, Z., Feng, J., Zheng, X., & Wu, B. (2023, April). [BiQCap: A Biquaternion and Capsule Network-Based Embedding Model for Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-30672-3_45). In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part II (pp. 673-688). Cham: Springer Nature Switzerland.
32 |
33 | **ICONIP**
34 |
35 | [1] Mo, C., Wang, Y., Jia, Y., & Luo, C. (2023, April). [Time-aware Quaternion Convolutional Network for Temporal Knowledge Graph Reasoning](https://link.springer.com/chapter/10.1007/978-981-99-1639-9_25). In Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22–26, 2022, Proceedings, Part IV (pp. 300-312). Singapore: Springer Nature Singapore.
36 |
37 | **PAKDD**
38 |
39 | [1] *(TRKG-Miner) Rage, U. K., Maharana, A., & Polepalli, K. R. (2023, May). [A Novel Explainable Link Forecasting Framework for Temporal Knowledge Graphs Using Time-Relaxed Cyclic and Acyclic Rules](https://link.springer.com/chapter/10.1007/978-3-031-33374-3_21). In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 264-275). Cham: Springer Nature Switzerland. [Github](https://github.com/ab1nash/TRKG-Miner)
40 |
41 | **IJCNN**
42 |
43 | [1] Yu, R., Liu, T., Yu, J., Zhang, W., Zhao, Y., Yang, M., ... & Guo, J. (2023, June). [Combination of Translation and Rotation in Dual Quaternion Space for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10191552/). In 2023 International Joint Conference on Neural Networks (IJCNN) (pp. 01-08). IEEE.
44 |
45 | [2] *(MOST) Ding, Z., He, B., Wu, J., Ma, Y., Han, Z., & Tresp, V. (2023, June). [Learning Meta-Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction](https://ieeexplore.ieee.org/abstract/document/10191619/). In 2023 International Joint Conference on Neural Networks (IJCNN) (pp. 1-10). IEEE.
46 |
47 | **ICASSP**
48 |
49 | [1] Guo, J., Chen, M., Zhang, Y., Huang, J., & Liu, Z. (2023, June). [Hierarchical Hypergraph Recurrent Attention Network for Temporal Knowledge Graph Reasoning](https://ieeexplore.ieee.org/abstract/document/10095378/). In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
50 |
51 | **ICKS**
52 |
53 | [1] Liang, Y., Zhao, S., Cheng, B., & Yang, H. (2023, August). [Twin Graph Attention Network with Evolution Pattern Learner for Few-Shot Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-40283-8_20). In International Conference on Knowledge Science, Engineering and Management (pp. 234-246). Cham: Springer Nature Switzerland.
54 |
55 | **ICWSA**
56 |
57 | [1] Zhai, H., Cao, X., Sun, P., Shen, D., Nie, T., & Kou, Y. (2023, September). [Rule-Enhanced Evolutional Dual Graph Convolutional Network for Temporal Knowledge Graph Link Prediction](https://link.springer.com/chapter/10.1007/978-981-99-6222-8_6). In International Conference on Web Information Systems and Applications (pp. 64-75). Singapore: Springer Nature Singapore.
58 |
59 | **ICANN**
60 |
61 | [1] Li, L., Liu, W., Xiong, Z., & Wang, Y. (2023, September). [Sequence-Based Modeling for Temporal Knowledge Graph Link Prediction](https://link.springer.com/chapter/10.1007/978-3-031-44216-2_45). In International Conference on Artificial Neural Networks (pp. 550-562). Cham: Springer Nature Switzerland.
62 |
63 | [2] Li, N., E, H., Shi, L., Lin, X., Song, M., & Li, Y. (2023, September). [LorenTzE: Temporal Knowledge Graph Embedding Based on Lorentz Transformation](https://link.springer.com/chapter/10.1007/978-3-031-44223-0_38). In International Conference on Artificial Neural Networks (pp. 472-484). Cham: Springer Nature Switzerland.
64 |
65 | [3] Liu, Y., Mo, Y., Chen, Z., & Liu, H. (2023, September). [LogE-Net: Logic Evolution Network for Temporal Knowledge Graph Forecasting](https://link.springer.com/chapter/10.1007/978-3-031-44216-2_39). In International Conference on Artificial Neural Networks (pp. 472-485). Cham: Springer Nature Switzerland.
66 |
67 | [4] Hou, J., Guo, X., Liu, J., Li, J., Pan, L., & Wang, W. (2023, September). [Structure-Enhanced Graph Neural ODE Network for Temporal Link Prediction](https://link.springer.com/chapter/10.1007/978-3-031-44216-2_46). In International Conference on Artificial Neural Networks (pp. 563-575). Cham: Springer Nature Switzerland.
68 |
69 | **ECMLDD**
70 |
71 | [1] Gastinger, J., Sztyler, T., Sharma, L., Schuelke, A., & Stuckenschmidt, H. (2023, September). [Comparing Apples and Oranges? On the Evaluation of Methods for Temporal Knowledge Graph Forecasting](https://link.springer.com/chapter/10.1007/978-3-031-43418-1_32). In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 533-549). Cham: Springer Nature Switzerland. [Github](https://github.com/nec-research/TKG-Forecasting-Evaluation)
72 |
73 | **ICNLPCC**
74 |
75 | [1] Wang, Y., Li, L., Jian, M., Zhang, Y., & Ouyang, X. (2023, October). [A Novel Semantic-Enhanced Time-Aware Model for Temporal Knowledge Graph Completion](https://link.springer.com/chapter/10.1007/978-3-031-44696-2_12). In CCF International Conference on Natural Language Processing and Chinese Computing (pp. 148-160). Cham: Springer Nature Switzerland.
76 |
77 | **SIGIR**
78 |
79 | [1] *(DREAM) Shangfei Zheng, Hongzhi Yin, Tong Chen, Quoc Viet Hung Nguyen, Wei Chen, and Lei Zhao. 2023. [DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning](https://dl.acm.org/doi/abs/10.1145/3539618.3591671). In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '23). Association for Computing Machinery, New York, NY, USA, 1578–1588. https://doi.org/10.1145/3539618.3591671
80 | > Zheng, S., Yin, H., Chen, T., Nguyen, Q. V. H., Chen, W., & Zhao, L. (2023). [DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2304.03984). arXiv preprint arXiv:2304.03984.
81 |
82 | [2] *(StreamE) Zhang, J., Shao, J., & Cui, B. (2023, July). [StreamE: Learning to Update Representations for Temporal Knowledge Graphs in Streaming Scenarios](https://dl.acm.org/doi/abs/10.1145/3539618.3591772). In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 622-631).
83 |
84 | [3] *(RPC) Liang, K., Meng, L., Liu, M., Liu, Y., Tu, W., Wang, S., ... & Liu, X. (2023, July). [Learn from relational correlations and periodic events for temporal knowledge graph reasoning](https://dl.acm.org/doi/abs/10.1145/3539618.3591711). In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1559-1568).
85 |
86 | **WWW**
87 |
88 | [1] *(HGLS) Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and Liang Wang. 2023. [Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning](https://dl.acm.org/doi/abs/10.1145/3543507.3583242). In Proceedings of the ACM Web Conference 2023 (WWW '23). Association for Computing Machinery, New York, NY, USA, 2412–2422. https://doi.org/10.1145/3543507.3583242, [Github](https://github.com/CRIPAC-DIG/HGLS)
89 |
90 | [2] Xin Ren, Luyi Bai, Qianwen Xiao, and Xiangxi Meng. 2023. [Hierarchical Self-Attention Embedding for Temporal Knowledge Graph Completion](https://dl.acm.org/doi/abs/10.1145/3543507.3583397). In Proceedings of the ACM Web Conference 2023 (WWW '23). Association for Computing Machinery, New York, NY, USA, 2539–2547. https://doi.org/10.1145/3543507.3583397
91 |
92 | [3] *(HyIE) Zhang, S., Liang, X., Tang, H., & Guan, Z. (2023, October). [Hybrid Interaction Temporal Knowledge Graph Embedding Based on Householder Transformations](https://dl.acm.org/doi/10.1145/3581783.3613446). In Proceedings of the 31st ACM International Conference on Multimedia (pp. 8954-8962).
93 |
94 | **ICMM**
95 |
96 | [1] Zhang, S., Liang, X., Tang, H., & Guan, Z. (2023, October). [Hybrid Interaction Temporal Knowledge Graph Embedding Based on Householder Transformations](https://dl.acm.org/doi/abs/10.1145/3581783.3613446). In Proceedings of the 31st ACM International Conference on Multimedia (pp. 8954-8962).
97 |
98 | **ACL**
99 |
100 | [1] Xu, W., Liu, B., Peng, M., Jia, X., & Peng, M. (2023). [Pre-trained Language Model with Prompts for Temporal Knowledge Graph Completion](https://arxiv.org/abs/2305.07912). arXiv preprint arXiv:2305.07912., [Github](https://github.com/JaySaligia/PPT)
101 |
102 | [2] Li, J., Su, X., & Gao, G. (2023, July). [TeAST: Temporal Knowledge Graph Embedding via Archimedean Spiral Timeline](https://aclanthology.org/2023.acl-long.862.pdf). In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 15460-15474). [Github](https://github.com/dellixx/TeAST)
103 |
104 | [3] Lin, Q., Liu, J., Mao, R., Xu, F., & Cambria, E. (2023, July). [TECHS: Temporal Logical Graph Networks for Explainable Extrapolation Reasoning](https://aclanthology.org/2023.acl-long.71.pdf). In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1281-1293).
105 |
106 | **ACL-EMNLP**
107 |
108 | [1] (Re-Temp) Kunze Wang, Caren Han, and Josiah Poon. 2023. [Re-Temp: Relation-Aware Temporal Representation Learning for Temporal Knowledge Graph Completion](https://aclanthology.org/2023.findings-emnlp.20/). In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 258–269, Singapore. Association for Computational Linguistics.
109 |
110 | [2] Zhongni Hou, Xiaolong Jin, Zixuan Li, Long Bai, Saiping Guan, Yutao Zeng, Jiafeng Guo, and Xueqi Cheng. 2023. [Temporal Knowledge Graph Reasoning Based on N-tuple Modeling](https://aclanthology.org/2023.findings-emnlp.77/). In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 1090–1100, Singapore. Association for Computational Linguistics.
111 |
112 | [3] Zhengtao Liu, Lei Tan, Mengfan Li, Yao Wan, Hai Jin, and Xuanhua Shi. 2023. [SiMFy: A Simple Yet Effective Approach for Temporal Knowledge Graph Reasoning](https://aclanthology.org/2023.findings-emnlp.249/). In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3825–3836, Singapore. Association for Computational Linguistics.
113 |
114 | [4] Zhongwu Chen, Chengjin Xu, Fenglong Su, Zhen Huang, and Yong Dou. 2023. [Temporal Extrapolation and Knowledge Transfer for Lifelong Temporal Knowledge Graph Reasoning](https://aclanthology.org/2023.findings-emnlp.448/). In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 6736–6746, Singapore. Association for Computational Linguistics.
115 |
116 | [5] Ningyuan Li, Haihong E, Shi Li, Mingzhi Sun, Tianyu Yao, Meina Song, Yong Wang, and Haoran Luo. 2023. [TR-Rules: Rule-based Model for Link Forecasting on Temporal Knowledge Graph Considering Temporal Redundancy](https://aclanthology.org/2023.findings-emnlp.529/). In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 7885–7894, Singapore. Association for Computational Linguistics. [Github](https://github.com/JasonLee-22/TR-Rules)
117 |
118 | **ICWS**
119 |
120 | [1] *(TKGF-NTP) Han, G., Chen, W., Zhang, X., Xu, J., Liu, A., & Zhao, L. (2023, July). [TKGF-NTP: Temporal Knowledge Graph Forecasting via Neural Temporal Point Process](https://ieeexplore.ieee.org/abstract/document/10248330/). In 2023 IEEE International Conference on Web Services (ICWS) (pp. 318-328). IEEE.
121 |
122 | **CCAI**
123 |
124 | [1] Hu, S., Wang, B., Wang, J., Ma, Y., & Zhao, L. (2023, May). Transformer-based Temporal Knowledge Graph Completion. In 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI) (pp. 443-448). IEEE.
125 |
126 | **ICDE**
127 |
128 | [1] *(RETIA) Liu, K., Zhao, F., Xu, G., Wang, X., & Jin, H. (2023, November). [RETIA: relation-entity twin-interact aggregation for temporal knowledge graph extrapolation](https://opus.lib.uts.edu.au/bitstream/10453/166395/3/RETIA%20relation-entity%20twin-interact%20aggregation%20for%20temporal%20knowledge%20graph%20extrapolation.pdf). In IEEE International Conference on Data Engineering. IEEE.
129 |
130 | **TGL Workshop**
131 |
132 | [1] Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2023, November). [Do Temporal Knowledge Graph Embedding Models Learn or Memorize](https://openreview.net/forum?id=UMokRwWfLW). In Temporal Graph Learning Workshop@ NeurIPS 2023.
133 |
134 | **ArXiv**
135 |
136 | [1] Nolting, S., Han, Z., & Tresp, V. (2023). [Modeling the evolution of temporal knowledge graphs with uncertainty](https://arxiv.org/abs/2301.04977). arXiv preprint arXiv:2301.04977.
137 |
138 | [2] Mirtaheri, M., Rostami, M., & Galstyan, A. (2023). [History Repeats: Overcoming Catastrophic Forgetting For Event-Centric Temporal Knowledge Graph Completion](https://arxiv.org/pdf/2305.18675.pdf). arXiv preprint arXiv:2305.18675.
139 |
140 | [3] Chen, Z., Xu, C., Su, F., Huang, Z., & Dou, Y. (2023). [Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph](https://arxiv.org/abs/2302.05640). arXiv preprint arXiv:2302.05640.
141 |
142 | [4] Tang, X., & Chen, L. (2023). [GTRL: An Entity Group-Aware Temporal Knowledge Graph Representation Learning Method](https://arxiv.org/pdf/2302.11091). arXiv preprint arXiv:2302.11091.
143 |
144 | [5] Dong, H., Wang, P., Xiao, M., Ning, Z., Wang, P., & Zhou, Y. (2023). [Temporal Inductive Path Neural Network for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2309.03251). arXiv preprint arXiv:2309.03251.
145 |
146 | [6] Wang, K., Han, S. C., & Poon, J. (2023). [Re-Temp: Relation-Aware Temporal Representation Learning for Temporal Knowledge Graph Completion](https://arxiv.org/abs/2310.15722). arXiv preprint arXiv:2310.15722.
--------------------------------------------------------------------------------
/conferences/2024.md:
--------------------------------------------------------------------------------
1 | # 2024
2 |
3 | ## Conferences ❄️ ❄️ ❄️
4 |
5 | **IJICAI**
6 |
7 | [1] Gastinger, J., Meilicke, C., Errica, F., Sztyler, T., Schuelke, A., & Stuckenschmidt, H. (2024). [History repeats itself: A Baseline for Temporal Knowledge Graph Forecasting](https://arxiv.org/abs/2404.16726). arXiv preprint arXiv:2404.16726.
8 |
9 | [2] Shang, Z., Wang, P., Ke, W., Liu, J., Huang, H., Li, G., ... & Li, Y. Learning Multi-Granularity and Adaptive Representation for Knowledge Graph Reasoning.
10 |
11 | **ICLR**
12 |
13 | [1] Yin, H., Wang, Z., & Song, Y. (2023, October). [Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors](https://openreview.net/forum?id=1BmveEMNbG). In The Twelfth International Conference on Learning Representations.
14 |
15 | [2] Galkin, M., Yuan, X., Mostafa, H., Tang, J., & Zhu, Z. (2023). [Towards foundation models for knowledge graph reasoning](https://arxiv.org/abs/2310.04562). arXiv preprint arXiv:2310.04562.
16 |
17 | [3] Jiang, P., Xiao, C., Cross, A. R., & Sun, J. (2023, October). [GraphCare: Enhancing Healthcare Predictions with Personalized Knowledge Graphs](https://openreview.net/forum?id=tVTN7Zs0ml). In The Twelfth International Conference on Learning Representations.
18 |
19 | **WSDM**
20 |
21 | [1] Hu, H., Guo, W., Liu, X., Liu, Y., Tang, R., Zhang, R., & Kan, M. Y. (2024). User Behavior Enriched Temporal Knowledge Graphs for Sequential Recommendation.
22 |
23 | [2] Jiang, Y., Yang, Y., Xia, L., & Huang, C. (2024, March). DiffKG: Knowledge Graph Diffusion Model for Recommendation. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining (pp. 313-321).
24 |
25 | [3] Liu, X., Yang, L., Liu, Z., Yang, M., Wang, C., Peng, H., & Yu, P. S. (2024, March). Knowledge Graph Context-Enhanced Diversified Recommendation. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining (pp. 462-471).
26 |
27 | [4] Liu, Y., Cao, Y., Wang, S., Wang, Q., & Bi, G. (2024, March). Generative Models for Complex Logical Reasoning over Knowledge Graphs. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining (pp. 492-500).
28 |
29 | **AAAI**
30 |
31 | [1] Chen, Z., Zhang, D., Feng, S., Chen, K., Chen, L., Han, P., & Shang, S. (2024, March). KGTS: Contrastive Trajectory Similarity Learning over Prompt Knowledge Graph Embedding. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 8311-8319).
32 |
33 | [2] Liu, R., Wu, L., & Zhang, P. (2024, March). KG-TREAT: Pre-training for Treatment Effect Estimation by Synergizing Patient Data with Knowledge Graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 8805-8814).
34 |
35 | [3] Long, X., Zhuang, L., Li, A., Wei, J., Li, H., & Wang, S. (2024, March). KGDM: A Diffusion Model to Capture Multiple Relation Semantics for Knowledge Graph Embedding. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 8850-8858).
36 |
37 | [4] Shang, B., Zhao, Y., Liu, J., & Wang, D. (2024, March). LAFA: Multimodal Knowledge Graph Completion with Link Aware Fusion and Aggregation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 8957-8965).
38 |
39 | [5] Shang, B., Zhao, Y., Liu, J., & Wang, D. (2024, March). Mixed Geometry Message and Trainable Convolutional Attention Network for Knowledge Graph Completion. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 8966-8974).
40 |
41 | [6] Fan, C., Chen, Y., Xue, J., Kong, Y., Tao, J., & Lv, Z. (2024). Progressive Distillation Based on Masked Generation Feature Method for Knowledge Graph Completion. arXiv preprint arXiv:2401.12997.
42 |
43 | [7] Su, Z., Wang, D., Miao, C., & Cui, L. (2024, March). Anchoring Path for Inductive Relation Prediction in Knowledge Graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 9011-9018).
44 |
45 | [8] Liang, K., Meng, L., Zhou, S., Tu, W., Wang, S., Liu, Y., ... & Liu, X. (2024, March). MINES: Message Intercommunication for Inductive Relation Reasoning over Neighbor-Enhanced Subgraphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 9, pp. 10645-10653).
46 |
47 | [9] Liang, M., Du, J., Liang, Z., Xing, Y., Huang, W., & Xue, Z. (2024, March). Self-Supervised Multi-Modal Knowledge Graph Contrastive Hashing for Cross-Modal Search. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 12, pp. 13744-13753).
48 |
49 | [10] Wu, D., Sun, W., He, Y., Chen, Z., & Luo, X. (2024, March). MKG-FENN: A Multimodal Knowledge Graph Fused End-to-End Neural Network for Accurate Drug–Drug Interaction Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 9, pp. 10216-10224).
50 |
51 | [11] Xiong, S., Yang, Y., Payani, A., Kerce, J. C., & Fekri, F. (2024, March). Teilp: Time prediction over knowledge graphs via logical reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 14, pp. 16112-16119).
52 |
53 |
54 | **ICDE2024**
55 |
56 | [1] Chen, W., Wan, H., Wu, Y., Zhao, S., Cheng, J., Li, Y., & Lin, Y. (2023). Local-Global History-aware Contrastive Learning for Temporal Knowledge Graph Reasoning. arXiv preprint arXiv:2312.01601.
57 |
58 | **ICASSP**
59 |
60 | [1] Huang, S., Wang, Y., Chen, K., & Jia, Y. (2024, April). Temporal Relational Context Learning for Extrapolation Reasoning on Temporal Knowledge Graphs. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6430-6434). IEEE.
61 |
62 | [2] Zhang, S., Liang, X., Niu, S., Feng, J., Feng, C., & Wang, M. (2024, April). [Temporal Knowledge Graph Embedding using Householder Transformations](https://ieeexplore.ieee.org/abstract/document/10447572). In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 10106-10110). IEEE.
63 |
64 | **NIPS**
65 |
66 | [1] Shengyuan, C., Cai, Y., Fang, H., Huang, X., & Sun, M. (2024). Differentiable neuro-symbolic reasoning on large-scale knowledge graphs. Advances in Neural Information Processing Systems, 36.
67 |
68 | [2] Zhu, Z., Yuan, X., Galkin, M., Xhonneux, L. P., Zhang, M., Gazeau, M., & Tang, J. (2024). A* net: A scalable path-based reasoning approach for knowledge graphs. Advances in Neural Information Processing Systems, 36.
69 |
70 | [3] Lin, X., Xu, C., Zhou, G., Luo, H., Hu, T., Su, F., ... & Sun, M. (2024). TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph. Advances in Neural Information Processing Systems, 36.
71 |
72 | [4] Bai, J., Liu, X., Wang, W., Luo, C., & Song, Y. (2024). Complex query answering on eventuality knowledge graph with implicit logical constraints. Advances in Neural Information Processing Systems, 36.
73 |
74 | **[LREC-COLING](https://aclanthology.org/volumes/2024.lrec-main/)**
75 |
76 | [1] Turki, H., Owodunni, A. T., Taieb, M. A. H., Bile, R. F., Aouicha, M. B., & Zouhar, V. (2023). A Decade of Scholarly Research on Open Knowledge Graphs. arXiv preprint arXiv:2306.13186.
77 |
78 | [2] Fang, Z., Qin, J., Zhu, X., Yang, C., & Yin, X. C. (2024). Arbitrary Time Information Modeling via Polynomial Approximation for Temporal Knowledge Graph Embedding. arXiv preprint arXiv:2405.00358.
79 |
80 | [3] Wasi, A. T., Rafi, T. H., Islam, R., & Chae, D. K. (2024). BanglaAutoKG: Automatic Bangla Knowledge Graph Construction with Semantic Neural Graph Filtering. arXiv preprint arXiv:2404.03528.
81 |
82 | [4] Zhang, Y., Qian, X., Zhao, Y., Zhou, B., Song, K., & Yuan, X. (2024, May). Bring Invariant to Variant: A Contrastive Prompt-based Framework for Temporal Knowledge Graph Forecasting. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 2526-2536).
83 |
84 | [5] Wei, X., Chen, Y., Cheng, N., Cui, X., Xu, J., & Han, W. (2023). CollabKG: A Learnable Human-Machine-Cooperative Information Extraction Toolkit for (Event) Knowledge Graph Construction. arXiv preprint arXiv:2307.00769.
85 |
86 | [6] Mousavi, A., Zhan, X., Bai, H., Shi, P., Rekatsinas, T., Han, B., ... & Jaitly, N. (2023). Construction of Paired Knowledge Graph-Text Datasets Informed by Cyclic Evaluation. arXiv preprint arXiv:2309.11669.
87 |
88 | [7] Winter, B., Rosero, A. G. F., Loeser, A., Gers, F. A., Rosero, N. K. F., & Krestel, R. (2024, May). DDxGym: Online Transformer Policies in a Knowledge Graph Based Natural Language Environment. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 4438-4448).
89 |
90 | [8] Dong, Y., Kong, Q., Wang, L., & Luo, Y. (2024, May). Dual Complex Number Knowledge Graph Embeddings. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 5391-5400).
91 |
92 | [9] Sun, K., Jedema, N. P., Sharma, K., Janssen, R., Pujara, J., Szekely, P., & Moschitti, A. (2024, May). Efficient and Accurate Contextual Re-Ranking for Knowledge Graph Question Answering. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 5585-5595).
93 |
94 | [10] Sawczyn, A., Binkowski, J., Bielak, P., & Kajdanowicz, T. (2024, May). Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 5768-5782).
95 |
96 | [11] Jiayang, C., Qiu, L., Chan, C., Liu, X., Song, Y., & Zhang, Z. (2024). EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs. arXiv preprint arXiv:2404.00209.
97 |
98 | [12] Li, Y., Zhang, X., Cui, Y., & Ma, S. (2024, May). Hyperbolic Graph Neural Network for Temporal Knowledge Graph Completion. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 8474-8486).
99 |
100 | [13] Kim, Y., Rome, S., Foley, K., Nankani, M., Melamed, R., Morales, J., ... & Huang, H. H. (2024). Improving Content Recommendation: Knowledge Graph-Based Semantic Contrastive Learning for Diversity and Cold-Start Users. arXiv preprint arXiv:2403.18667.
101 |
102 | [14] Anil, A., Gutiérrez-Basulto, V., Ibañéz-García, Y., & Schockaert, S. (2023). Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis. arXiv preprint arXiv:2308.07942.
103 |
104 | [15] Wang, Y., Hu, M., Huang, Z., Li, D., Yang, D., & Lu, X. (2024). KC-GenRe: A Knowledge-constrained Generative Re-ranking Method Based on Large Language Models for Knowledge Graph Completion. arXiv preprint arXiv:2403.17532.
105 |
106 | [16] Zhang, S., Cao, B., & Fan, J. (2024, May). KCL: Few-shot Named Entity Recognition with Knowledge Graph and Contrastive Learning. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 9681-9692).
107 |
108 | [17] Amouzouvi, K., Song, B., Vahdati, S., & Lehmann, J. (2024, May). Knowledge GeoGebra: Leveraging Geometry of Relation Embeddings in Knowledge Graph Completion. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 9832-9842).
109 |
110 | [18] Dougrez-Lewis, J., Kochkina, E., Liakata, M., & He, Y. (2024, May). Knowledge Graphs for Real-World Rumour Verification. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 9843-9853).
111 |
112 | [19] Xu, D., Zhang, Z., Lin, Z., Wu, X., Zhu, Z., Xu, T., ... & Chen, E. (2024). Multi-perspective Improvement of Knowledge Graph Completion with Large Language Models. arXiv preprint arXiv:2403.01972.
113 |
114 | [20] Luo, R., Li, J., Zhang, J., Xiao, J., & Yang, Y. (2024, May). Prior Relational Schema Assists Effective Contrastive Learning for Inductive Knowledge Graph Completion. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 13014-13025).
115 |
116 | [21] Zong, L., Xie, Z., Ma, C., Liu, X., Zhang, X., & Xu, B. (2024, May). RENN: A Rule Embedding Enhanced Neural Network Framework for Temporal Knowledge Graph Completion. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 13919-13928).
117 |
118 | [22] Kruit, B., Xu, Y., & Kalo, J. C. (2024, May). Retrieval-based Question Answering with Passage Expansion Using a Knowledge Graph. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 14063-14072).
119 |
120 | [23] Hou, Z., Jin, X., Li, Z., Bai, L., Guo, J., & Cheng, X. (2024). Selective Temporal Knowledge Graph Reasoning. arXiv preprint arXiv:2404.01695.
121 |
122 | [24] Chen, Z., Zhang, Z., Li, Z., Wang, F., Zeng, Y., Jin, X., & Xu, Y. (2024). Self-Improvement Programming for Temporal Knowledge Graph Question Answering. arXiv preprint arXiv:2404.01720.
123 |
124 | [25] Xu, H., Wang, Y., & Fan, J. (2024, May). Self-Knowledge Distillation for Knowledge Graph Embedding. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 14595-14605).
125 |
126 | [26] Li, X., Zhou, H., Yao, W., Li, W., Lin, Y., & Du, L. (2024, May). Sequential and Repetitive Pattern Learning for Temporal Knowledge Graph Reasoning. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 14744-14754).
127 |
128 | [27] Liu, X., Zhang, J., Ma, C., Liang, W., Xu, B., & Zong, L. (2024, May). Temporal Knowledge Graph Reasoning with Dynamic Hypergraph Embedding. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 15742-15751).
129 |
130 | [28] Li, J., Su, X., Zhang, F., & Gao, G. (2024, May). TransERR: Translation-based Knowledge Graph Embedding via Efficient Relation Rotation. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 16727-16737).
131 |
132 | [29] Zhang, Y., Chen, Z., Liang, L., Chen, H., & Zhang, W. (2024). Unleashing the Power of Imbalanced Modality Information for Multi-modal Knowledge Graph Completion. arXiv preprint arXiv:2402.15444.
133 |
134 | **WWW**
135 |
136 | [1] Kouagou, N. D. J., Demir, C., Zahera, H. M., Wilke, A., Heindorf, S., Li, J., & Ngonga Ngomo, A. C. (2024, May). Universal Knowledge Graph Embeddings. In Companion Proceedings of the ACM on Web Conference 2024 (pp. 1793-1797).
137 |
138 | [2] Zhou, E., Guo, S., Ma, Z., Hong, Z., Guo, T., & Dong, P. (2024, May). Poisoning Attack on Federated Knowledge Graph Embedding. In Proceedings of the ACM on Web Conference 2024 (pp. 1998-2008).
139 |
140 | [3] Egger, M. K., Ma, W., Mottin, D., Karras, P., Bordino, I., Gullo, F., & Anagnostopoulos, A. (2024, May). ReliK: A Reliability Measure for Knowledge Graph Embeddings. In Proceedings of the ACM on Web Conference 2024 (pp. 2009-2019).
141 |
142 | [4] Long, X., Zhuang, L., Li, A., Li, H., & Wang, S. (2024, May). Fact Embedding through Diffusion Model for Knowledge Graph Completion. In Proceedings of the ACM on Web Conference 2024 (pp. 2020-2029).
143 |
144 | [5] Zhang, H., Zhang, J., & Molybog, I. (2024, May). HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding. In Proceedings of the ACM on Web Conference 2024 (pp. 2116-2127).
145 |
146 | [6] Wang, Y., Javari, A., Balaji, J., Shalaby, W., Derr, T., & Cui, X. (2024, May). Knowledge Graph-based Session Recommendation with Session-Adaptive Propagation. In Companion Proceedings of the ACM on Web Conference 2024 (pp. 264-273).
147 |
148 | [7] Zhang, X. S., Guan, W., Lu, J., Qiu, Z., Cheng, J., Wu, X., & Zheng, Y. (2024, May). GraphLeak: Patient Record Leakage through Gradients with Knowledge Graph. In Proceedings of the ACM on Web Conference 2024 (pp. 4706-4716).
149 |
150 | **NAACL**
151 |
152 | [1] Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024, June). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) (pp. 1877-1895).
153 |
154 | [2] Liao, R., Jia, X., Li, Y., Ma, Y., & Tresp, V. (2024, June). GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models. In Findings of the Association for Computational Linguistics: NAACL 2024 (pp. 4303-4317).
155 |
156 | **International Conference on Pattern Recognition**
157 |
158 | [1] Wang, F., Zhu, G., Hou, H., Yuan, C., & Huang, Y. (2024, November). Mining Long Short-Term Evolution Patterns for Temporal Knowledge Graph Reasoning. In International Conference on Pattern Recognition (pp. 227-242). Cham: Springer Nature Switzerland.
159 |
160 | **Other**
161 |
162 | [1] Jia, N., & Yao, C. (2024). ShallowBKGC: a BERT-enhanced shallow neural network model for knowledge graph completion. PeerJ Computer Science, 10, e2058.
163 |
164 | [2] He, P., Xiao, Y., He, C., & Duan, L. (2024, August). EvoREG: Evolutional Modeling with Relation-Entity Dual-Guidance for Temporal Knowledge Graph Reasoning. In Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data (pp. 256-271). Singapore: Springer Nature Singapore.
165 |
166 |
167 | ## ArXiv
168 |
169 | [1] Ma, Y., Ye, C., Wu, Z., Wang, X., Cao, Y., Pang, L., & Chua, T. S. (2023). [Structured, Complex and Time-complete Temporal Event Forecasting](https://arxiv.org/abs/2312.01052). arXiv preprint arXiv:2312.01052. [Github](https://github.com/yecchen/GDELT-ComplexEvent)
170 |
171 | [2] Zhang, J., Hui, B., Mu, C., & Tian, L. (2023). [Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2312.03004). arXiv preprint arXiv:2312.03004.
172 |
173 | [3] Luo, R., Gu, T., Li, H., Li, J., Lin, Z., Li, J., & Yang, Y. (2024). [Chain of History: Learning and Forecasting with LLMs for Temporal Knowledge Graph Completion](https://arxiv.org/abs/2401.06072). arXiv preprint arXiv:2401.06072.
174 |
175 | [4] Peng, M., Liu, B., Xu, W., Jiang, Z., Zhu, J., & Peng, M. (2024). [Deja vu: Contrastive Historical Modeling with Prefix-tuning for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2404.00051). arXiv preprint arXiv:2404.00051.
176 |
177 | [5] Lv, A., Huang, Y., Ouyang, G., Chen, Y., & Xie, H. (2024). [RLGNet: Repeating-Local-Global History Network for Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2404.00586). arXiv preprint arXiv:2404.00586.
178 |
179 | [6] Wang, J., Cui, Z., Wang, B., Pan, S., Gao, J., Yin, B., & Gao, W. (2024). [IME: Integrating Multi-curvature Shared and Specific Embedding for Temporal Knowledge Graph Completion](https://arxiv.org/abs/2403.19881). arXiv preprint arXiv:2403.19881.
180 |
181 | [7] Hou, Z., Jin, X., Li, Z., Bai, L., Guo, J., & Cheng, X. (2024). [Selective Temporal Knowledge Graph Reasoning](https://arxiv.org/abs/2404.01695). arXiv preprint arXiv:2404.01695.
182 |
183 | [8] Bronzini, M., Nicolini, C., Lepri, B., Staiano, J., & Passerini, A. (2024). [Unveiling LLMs: The Evolution of Latent Representations in a Temporal Knowledge Graph](https://arxiv.org/abs/2404.03623). arXiv preprint arXiv:2404.03623.
184 |
185 | [9] Maheshwari, P., Ren, H., Wang, Y., Sosic, R., & Leskovec, J. (2024). [TimeGraphs: Graph-based Temporal Reasoning](https://arxiv.org/abs/2401.03134). arXiv preprint arXiv:2401.03134.
186 |
187 | [10] Fang, Z., Qin, J., Zhu, X., Yang, C., & Yin, X. C. (2024). [Arbitrary Time Information Modeling via Polynomial Approximation for Temporal Knowledge Graph Embedding](https://arxiv.org/abs/2405.00358). arXiv preprint arXiv:2405.00358.
188 |
189 | [11] Fang, Z., Lei, S. L., Zhu, X., Yang, C., Zhang, S. X., Yin, X. C., & Qin, J. (2024). [Transformer-based Reasoning for Learning Evolutionary Chain of Events on Temporal Knowledge Graph](https://arxiv.org/abs/2405.00352). arXiv preprint arXiv:2405.00352.
190 |
191 | [12] Li, C., Zheng, H., Sun, Y., Wang, C., Yu, L., Chang, C., ... & Liu, B. (2024). Enhancing multi-hop knowledge graph reasoning through reward shaping techniques. arXiv preprint arXiv:2403.05801.
192 |
193 | [13] Chen, H., Ni, Y., Zakeri, A., Zou, Z., Yun, S., Wen, F., ... & Imani, M. (2024). HDReason: Algorithm-Hardware Codesign for Hyperdimensional Knowledge Graph Reasoning. arXiv preprint arXiv:2403.05763.
194 |
195 | [14] Zhang, J., Hui, B., Mu, C., Sun, M., & Tian, L. (2024). Historically Relevant Event Structuring for Temporal Knowledge Graph Reasoning. arXiv preprint arXiv:2405.10621.
196 |
197 | [15] Yang, J., Wang, X., Wang, Y., Wang, J., & Wang, F. Y. (2024). AMCEN: An Attention Masking-based Contrastive Event Network for Two-stage Temporal Knowledge Graph Reasoning. arXiv preprint arXiv:2405.10346.
198 |
199 | [16] Li, R., Li, C., Shen, Y., Zhang, Z., & Chen, X. (2024). Generalizing Knowledge Graph Embedding with Universal Orthogonal Parameterization. arXiv preprint arXiv:2405.08540.
200 |
201 | [17] Wang, J., Sun, K., Luo, L., Wei, W., Hu, Y., Liew, A. W. C., ... & Yin, B. (2024). Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning. arXiv preprint arXiv:2405.14170.
202 |
203 | [18] Ma, Y., Burns, O., Wang, M., Li, G., Du, N., Shafey, L. E., ... & Soltau, H. (2024). Knowledge Graph Reasoning with Self-supervised Reinforcement Learning. arXiv preprint arXiv:2405.13640.
204 |
205 | [19] Zhang, J., Wan, T., Mu, C., Lu, G., & Tian, L. (2024). Learning Granularity Representation for Temporal Knowledge Graph Completion. arXiv preprint arXiv:2408.15293.
206 |
207 | [20] Sun, J., Sheng, Y., & He, L. (2024). CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Improving Temporal Knowledge Graph Extrapolation Reasoning. arXiv preprint arXiv:2408.07911.
208 |
209 | [21] Sannidhi, G., Sakhinana, S. S., & Runkana, V. (2024). Retrieval-Augmented Generation Meets Data-Driven Tabula Rasa Approach for Temporal Knowledge Graph Forecasting. arXiv preprint arXiv:2408.13273.
210 |
211 | [22] Ying, R., Hu, M., Wu, J., Xie, Y., Liu, X., Wang, Z., ... & Cheng, R. (2024). Simple but Effective Compound Geometric Operations for Temporal Knowledge Graph Completion. arXiv preprint arXiv:2408.06603.
--------------------------------------------------------------------------------
/journal/2019.md:
--------------------------------------------------------------------------------
1 | # 2019
2 |
3 | **Journal of Web Semantics**
4 |
5 | [1] Ma, Y., Tresp, V., & Daxberger, E. A. (2019). [Embedding models for episodic knowledge graphs](https://www.sciencedirect.com/science/article/pii/S1570826818300702). Journal of Web Semantics, 59, 100490.
--------------------------------------------------------------------------------
/journal/2020.md:
--------------------------------------------------------------------------------
1 | # 2020
2 |
3 | **IEEE Access**
4 |
5 | [1] Tang, X., Yuan, R., Li, Q., Wang, T., Yang, H., Cai, Y., & Song, H. (2020). [Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution](https://ieeexplore.ieee.org/abstract/document/8950081/). IEEE Access, 8, 6849-6860.
6 |
7 | [2] Wang, J., Zhang, W., Chen, X., Lei, J., & Lai, X. (2020). [3drte: 3d rotation embedding in temporal knowledge graph](https://ieeexplore.ieee.org/abstract/document/9253009/). IEEE Access, 8, 207515-207523.
--------------------------------------------------------------------------------
/journal/2021.md:
--------------------------------------------------------------------------------
1 | # 2021
2 |
3 | **Applied Soft Computing**
4 |
5 | [1] (TPath) Luyi Bai, Wenting Yu, Mingzhuo Chen, Xiangnan Ma. ["Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning"](https://www.sciencedirect.com/science/article/abs/pii/S1568494621000673?via%3Dihub). Applied Soft Computing 2021.
6 |
7 | **TKDD**
8 |
9 | [1] (Tpmod) Bai, L., Ma, X., Zhang, M., & Yu, W. (2021). [Tpmod: A tendency-guided prediction model for temporal knowledge graph completion](https://dl.acm.org/doi/abs/10.1145/3443687). ACM Transactions on Knowledge Discovery from Data, 15(3), 1-17.
10 |
11 | [2] (Dacha) Chen, L., Tang, X., Chen, W., Qian, Y., Li, Y., & Zhang, Y. (2021). [Dacha: A dual graph convolution based temporal knowledge graph representation learning method using historical relation](https://dl.acm.org/doi/abs/10.1145/3477051). ACM Transactions on Knowledge Discovery from Data (TKDD), 16(3), 1-18.
--------------------------------------------------------------------------------
/journal/2022.md:
--------------------------------------------------------------------------------
1 | # 2022
2 |
3 | **Knowledge-Based Systems**
4 |
5 | [1] (EvoExplore) Jiasheng Zhang, Shuang Liang, Yongpan Sheng, Jie Shao. ["Temporal knowledge graph representation learning with local and global evolutions"](https://www.sciencedirect.com/science/article/abs/pii/S0950705122006141?via%3Dihub). Knowledge-Based Systems 2022.
6 |
7 | [2] (TuckERT) Pengpeng Shao, Dawei Zhang, Guohua Yang, Jianhua Tao, Feihu Che, Tong Liu. ["Tucker decomposition-based temporal knowledge graph completion"](https://www.sciencedirect.com/science/article/abs/pii/S0950705121010303?via%3Dihub). Knowledge Based Systems 2022.
8 |
9 | **Expert Systems with Applications**
10 |
11 | [1] (BTDG) Yujing Lai, Chuan Chen, Zibin Zheng, Yangqing Zhang. ["Block term decomposition with distinct time granularities for temporal knowledge graph completion"](https://www.sciencedirect.com/science/article/abs/pii/S0957417422004511?via%3Dihub). Expert Systems with Applications 2022.
--------------------------------------------------------------------------------
/journal/2023.md:
--------------------------------------------------------------------------------
1 | ## 2023
2 |
3 | **Semantic Web Journal**
4 |
5 | [1] (TRKGE) Song, B., Amouzouvi, K., Xu, C., Wang, M., Lehmann, J., & Vahdati, S. [Temporal Relevance for Representing Learning over Temporal Knowledge Graphs](https://www.semantic-web-journal.net/system/files/swj3557.pdf).
6 |
7 | **Expert Systems with Applications**
8 |
9 | [1] (TPRG) Bai, L., Chen, M., Zhu, L., & Meng, X. (2023). [Multi-hop temporal knowledge graph reasoning with temporal path rules guidance](https://www.sciencedirect.com/science/article/abs/pii/S0957417423003056). Expert Systems with Applications, 223, 119804. [Github](https://github.com/DMKE-Lab/TPRG)
10 |
11 | **The Journal of Supercomputing**
12 |
13 | [1] (TKGA) Wang, Z., You, X., & Lv, X. (2023). [A relation enhanced model for temporal knowledge graph alignment](https://link.springer.com/article/10.1007/s11227-023-05670-w). The Journal of Supercomputing, 1-23.
14 |
15 | **Information Systems**
16 |
17 | [1] (RITI) Liu, R., Yin, G., Liu, Z., & Tian, Y. (2023). [Reinforcement learning with time intervals for temporal knowledge graph reasoning](https://www.sciencedirect.com/science/article/pii/S030643792300128X). Information Systems, 102292.
18 |
19 | **Information Sciences**
20 |
21 | [1] (T-GAE) Hou, X., Ma, R., Yan, L., & Ma, Z. (2023). [T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0020025523008101). Information Sciences, 119225.
22 |
23 | [2] (TASTER) Wang, X., Lyu, S., Wang, X., Wu, X., & Chen, H. (2023). [Temporal knowledge graph embedding via sparse transfer matrix](https://www.sciencedirect.com/science/article/pii/S0020025522015122). Information Sciences, 623, 56-69.
24 |
25 | [3] (TLmod) Bai, L., Yu, W., Chai, D., Zhao, W., & Chen, M. (2023). [Temporal knowledge graphs reasoning with iterative guidance by temporal logical rules](https://www.sciencedirect.com/science/article/pii/S0020025522013871). Information Sciences, 621, 22-35.
26 |
27 | **IEEE/ACM Transactions on Audio, Speech, and Language Processing**
28 |
29 | [1] (TARGAT) Xie, Z., Zhu, R., Liu, J., Zhou, G., & Huang, J. X. (2023). [TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding](https://ieeexplore.ieee.org/abstract/document/10141863/). IEEE/ACM Transactions on Audio, Speech, and Language Processing.
30 |
31 | **Applied Intelligence**
32 |
33 | [1] (TBDRI) Yu, M., Guo, J., Yu, J., Xu, T., Zhao, M., Liu, H., ... & Yu, R. (2023). [TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion](https://link.springer.com/article/10.1007/s10489-022-03601-5). Applied Intelligence, 53(5), 5072-5084.
34 |
35 | [2] (GLANet) Wang, J., Lin, X., Huang, H., Ke, X., Wu, R., You, C., & Guo, K. (2023). [GLANet: temporal knowledge graph completion based on global and local information-aware network](https://link.springer.com/article/10.1007/s10489-023-04481-z). Applied Intelligence, 1-17.
36 |
37 | [3] (ChronoR-CP) Li, M., Sun, Z., Zhang, W., & Liu, W. (2023). [Leveraging semantic property for temporal knowledge graph completion](https://link.springer.com/article/10.1007/s10489-022-03981-8). Applied Intelligence, 53(8), 9247-9260.
38 |
39 | [4] (TIAR) Mu, C., Zhang, L., Ma, Y., & Tian, L. (2023). [Temporal knowledge subgraph inference based on time-aware relation representation](https://link.springer.com/article/10.1007/s10489-023-04833-9). Applied Intelligence, 53(20), 24237-24252.
40 |
41 | [5] (TNTSimplE) He, P., Zhou, G., Zhang, M., Wei, J., & Chen, J. (2023). [Improving temporal knowledge graph embedding using tensor factorization](https://link.springer.com/article/10.1007/s10489-021-03149-w). Applied Intelligence, 53(8), 8746-8760.
42 |
43 | **Neural Networks**
44 |
45 | [1] (TFSC) Zhang, H., & Bai, L. (2023). [Few-shot link prediction for temporal knowledge graphs based on time-aware translation and attention mechanism](https://www.sciencedirect.com/science/article/pii/S0893608023000552). Neural Networks, 161, 371-381. [Github](https://github.com/DMKE-Lab/TFSC)
46 |
47 | [2] Shao, P., Liu, T., Che, F., Zhang, D., & Tao, J. (2023). [Adaptive pseudo-Siamese policy network for temporal knowledge prediction](https://www.sciencedirect.com/science/article/pii/S0893608023000047). Neural Networks.
48 |
49 | [3] Bai, L., Han, S., & Zhu, L. (2024). [Multi-Hop Interpretable Meta Learning for Few-Shot Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0893608024009109). Neural Networks, 106981.
50 |
51 | **Neurocomputing**
52 |
53 | [1] Shao, P., He, J., Li, G., Zhang, D., & Tao, J. (2023). [Hierarchical Graph Attention Network for Temporal Knowledge Graph Reasoning](https://www.sciencedirect.com/science/article/pii/S0925231223005131). Neurocomputing, 126390.
54 |
55 | [2] (TANGO) Wang, Z., Ding, D., Ren, M., & Conti, M. (2023). [TANGO: A Temporal Spatial Dynamic Graph Model for Event Prediction](https://www.sciencedirect.com/science/article/pii/S0925231223003727). Neurocomputing, 126249.
56 |
57 | **IEEE Transactions on Neural Networks and Learning Systems**
58 |
59 | [1] (QDN) Wang, J., Wang, B., Gao, J., Li, X., Hu, Y., & Yin, B. (2023). [QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10132432/). IEEE Transactions on Neural Networks and Learning Systems. [Github](https://github.com/jiapuwang/QDN-A-Quadruplet-Distributor-Network-for-Temporal-Knowledge-Graph-Completion)
60 |
61 | **Journal of Systems Science and Systems Engineering**
62 |
63 | [1] Yan, Z., & Tang, X. (2023). [Narrative Graph: Telling Evolving Stories Based on Event-centric Temporal Knowledge Graph](https://link.springer.com/article/10.1007/s11518-023-5561-0). Journal of Systems Science and Systems Engineering, 32(2), 206-221.
64 |
65 | **Engineering Applications of Artificial Intelligence**
66 |
67 | [1] (RoAN) Bai, L., Ma, X., Meng, X., Ren, X., & Ke, Y. (2023). [RoAN: A relation-oriented attention network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S095219762300492X). Engineering Applications of Artificial Intelligence, 123, 106308. [Github](https://github.com/DMKE-Lab/RoAN)
68 |
69 | **Future Generation Computer Systems**
70 |
71 | [1] (TAL-TKGC) Nie, H., Zhao, X., Yao, X., Jiang, Q., Bi, X., Ma, Y., & Sun, Y. (2023). [Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0167739X23000195). Future Generation Computer Systems.
72 |
73 | **Cognitive Computation**
74 |
75 | [2] (MsCNN) Liu, W., Wang, P., Zhang, Z., & Liu, Q. (2023). [Multi-Scale Convolutional Neural Network for Temporal Knowledge Graph Completion](https://link.springer.com/article/10.1007/s12559-023-10134-7). Cognitive Computation, 1-7.
76 |
77 | **ACM Transactions on Knowledge Discovery from Data**
78 |
79 | [1] (DuCape) Zhang, S., Liang, X., Tang, H., Zheng, X., Zhang, A. X., & Ma, Y. [DuCape: Dual Quaternion and Capsule Network Based Temporal Knowledge Graph Embedding](https://dl.acm.org/doi/abs/10.1145/3589644). ACM Transactions on Knowledge Discovery from Data.
80 |
81 | **IEEE Transactions on Knowledge and Data Engineering**
82 |
83 | [1] Li, Y., Chen, H., Li, Y., Li, L., Philip, S. Y., & Xu, G. (2023). [Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation](https://arxiv.org/abs/2111.12262). IEEE Transactions on Knowledge and Data Engineering. [Github](https://github.com/Abigale001/TMER-RL)
84 |
85 | **Knowledge-Based Systems**
86 |
87 | [1] (RLAT) Bai, L., Chai, D., & Zhu, L. (2023). [RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism](https://www.sciencedirect.com/science/article/pii/S0950705123002642). Knowledge-Based Systems, 269, 110514.
88 |
89 | [2] Luo, X., Zhu, A., Zhang, J., & Shao, J. (2024). HierarT: Multi-hop temporal knowledge graph forecasting with hierarchical reinforcement learning. Knowledge-Based Systems, 112164.
90 |
91 | **Journal of Computational Design and Engineering**
92 |
93 | [1] (MetaRT) Zhu, L., Xing, Y., Bai, L., & Chen, X. (2023). [Few-shot link prediction with meta-learning for temporal knowledge graphs](https://academic.oup.com/jcde/article-abstract/10/2/711/7069330). Journal of Computational Design and Engineering, 10(2), 711-721.
94 |
95 | **Entropy**
96 |
97 | [1] 🔥 (IMF) Du, Z., Qu, L., Liang, Z., Huang, K., Cui, L., & Gao, Z. (2023). [IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs](https://www.mdpi.com/1099-4300/25/4/666). Entropy, 25(4), 666. [Github](https://github.com/lfxx123/TKBC)
98 |
99 | **Complex & Intelligent Systems**
100 |
101 | [1] (FTMO) Zhu, L., Bai, L., Han, S., & Zhang, M. (2023). [Few-shot temporal knowledge graph completion based on meta-optimization](https://link.springer.com/article/10.1007/s40747-023-01146-9). Complex & Intelligent Systems, 9(6), 7461-7474. [Github](https://github.com/DMKE-Lab/FTMO)
102 |
103 | **World Wide Web**
104 |
105 | [1] (FTMF) Bai, L., Zhang, M., Zhang, H., & Zhang, H. (2023). [FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism](https://link.springer.com/article/10.1007/s11280-022-01091-6). World Wide Web, 26(3), 1243-1270. [Github](https://github.com/DMKE-Lab/FTMF)
106 |
107 | **DMKD**
108 |
109 | [1] (OSLT) Ma, R., Mei, B., Ma, Y., Zhang, H., Liu, M., & Zhao, L. (2023). [One-shot relational learning for extrapolation reasoning on temporal knowledge graphs](https://link.springer.com/article/10.1007/s10618-023-00935-7). Data Mining and Knowledge Discovery, 1-18.
--------------------------------------------------------------------------------
/journal/2024.md:
--------------------------------------------------------------------------------
1 | ## 2024
2 |
3 | **Knowledge-Based Systems**
4 |
5 | [1] Yue, L., Ren, Y., Zeng, Y., Zhang, J., Zeng, K., Wan, J., & Zhou, M. (2024). [Complex expressional characterizations learning based on block decomposition for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0950705124002260). Knowledge-Based Systems, 111591.
6 |
7 | [2] Zhu, L., Zhang, H., & Bai, L. (2024). [Hierarchical pattern-based complex query of temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0950705123010493). Knowledge-Based Systems, 284, 111301.
8 |
9 | [3] Huang, H., Xie, L., Liu, M., Lin, J., & Shen, H. (2024). [An embedding model for temporal knowledge graphs with long and irregular intervals](https://www.sciencedirect.com/science/article/pii/S0950705124005276). Knowledge-Based Systems, 111893.
10 |
11 | [4] Guo, J., Yu, J., Zhao, M., Yu, M., Yu, R., Xu, L., ... & Li, X. (2024). [TELS: Learning time-evolving information and latent semantics using dual quaternion for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S095070512400902X). Knowledge-Based Systems, 112268.
12 |
13 | [5] Hu, J., Zhu, Y., Teng, F., & Li, T. (2024). [Temporal knowledge graph reasoning based on relation graphs and time-guided attention mechanism](https://www.sciencedirect.com/science/article/pii/S0950705124009146). Knowledge-Based Systems, 112280.
14 |
15 | **Applied Intelligence**
16 |
17 | [1] Wang, J., Wu, R., Wu, Y., Zhang, F., Zhang, S., & Guo, K. (2024). [MPNet: temporal knowledge graph completion based on a multi-policy network](https://link.springer.com/article/10.1007/s10489-024-05320-5). Applied Intelligence, 1-17. [Github](https://github.com/Mike-RF/MPNet)
18 |
19 | [2] Ma, Q., Zhang, X., Ding, Z., Gao, C., Shang, W., Nong, Q., ... & Jin, Z. (2024). [Temporal knowledge graph reasoning based on evolutional representation and contrastive learning](https://link.springer.com/article/10.1007/s10489-024-05767-6). Applied Intelligence, 1-19.
20 |
21 | **ACM TKDD**
22 |
23 | [1] Li, X., Zhou, H., Yao, W., Li, W., Liu, B., & Lin, Y. (2024). [Intricate Spatiotemporal Dependency Learning for Temporal Knowledge Graph Reasoning](https://dl.acm.org/doi/abs/10.1145/3648366). ACM Transactions on Knowledge Discovery from Data.
24 |
25 | **Information Science**
26 |
27 | [1] (THOR) Lee, Y. C., Lee, J., Lee, D., & Kim, S. W. (2024). [Learning to compensate for lack of information: Extracting latent knowledge for effective temporal knowledge graph completion](https://www.sciencedirect.com/science/article/abs/pii/S0020025523014421?casa_token=clrOVF8uX6sAAAAA:CbR7aGo0qkRov9ss746qvbbzKHTyqhD9jLULqbGBFigjj8pOiRq7Vd2e9_xbnLO_sZlDjU-DmLo). Information Sciences, 654, 119857.
28 |
29 | > Extended version from: Y. -C. Lee, J. Lee, D. Lee and S. -W. Kim, ["THOR: Self-Supervised Temporal Knowledge Graph Embedding via Three-Tower Graph Convolutional Networks,"](https://ieeexplore.ieee.org/document/10027723) 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022, pp. 1035-1040, doi: 10.1109/ICDM54844.2022.00127. [Github](https://github.com/EJHyun/THOR)
30 |
31 | [2] (Joint-MTComplEx) Zhang, F., Chen, H., Shi, Y., Cheng, J., & Lin, J. (2024). [Joint framework for tensor decomposition-based temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S002002552301438X). Information Sciences, 654, 119853.
32 |
33 | [3] (DGTL) Liu, Z., Li, Z., Li, W., & Duan, L. (2024). [Deep Graph Tensor Learning for Temporal Link Prediction](https://www.sciencedirect.com/science/article/abs/pii/S0020025523016717). Information Sciences, 120085. [Github](https://github.com/xiaolaosao/DGTL)
34 |
35 | [4] (CRmod) Zhu, L., Chai, D., & Bai, L. (2024). [CRmod: Context-Aware Rule-Guided reasoning over temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0020025524002561). Information Sciences, 120343. [Github](https://github.com/DMKE-Lab/CRmod)
36 |
37 | [5] Dai, Y., Guo, W., & Eickhoff, C. (2024). [Wasserstein adversarial learning based temporal knowledge graph embedding](https://www.sciencedirect.com/science/article/pii/S002002552301647X?via%3Dihub). Information Sciences, 659, 120061.
38 |
39 | [6] Xu, X., Jia, W., Yan, L., Lu, X., Wang, C., & Ma, Z. (2024). [Spatiotemporal knowledge graph completion via diachronic and transregional word embedding](https://www.sciencedirect.com/science/article/pii/S0020025524003906). Information Sciences, 120477.
40 |
41 | [7] Guo, J., Zhao, M., Yu, J., Yu, R., Song, J., Wang, Q., ... & Yu, M. (2024). [EHPR: Learning Evolutionary Hierarchy Perception Representation based on Quaternion for Temporal Knowledge Graph Completion](https://www.sciencedirect.com/science/article/pii/S0020025524013239). Information Sciences, 121409.
42 |
43 | [8] Si, Y., Hu, X., Cheng, Q., Liu, X., Liu, S., & Huang, J. (2025). [Coherence mode: Characterizing local graph structural information for temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0020025524012714). Information Sciences, 686, 121357.
44 |
45 | **Information Fusion**
46 |
47 | [1] (MvTuckER) Wang, H., Yang, J., Yang, L. T., Gao, Y., Ding, J., Zhou, X., & Liu, H. (2024). [MvTuckER: Multi-view knowledge graphs represention learning based on tensor tucker model](https://www.sciencedirect.com/science/article/abs/pii/S1566253524000277). Information Fusion, 102249.
48 |
49 | **Information Processing & Management**
50 |
51 | [1] (STKGR-PR) Meng, X., Bai, L., Hu, J., & Zhu, L. (2024). [Multi-hop path reasoning over sparse temporal knowledge graphs based on path completion and reward shaping](https://www.sciencedirect.com/science/article/pii/S0306457323003424). Information Processing & Management, 61(2), 103605. [Github](https://github.com/DMKE-Lab/STKGR-PR)
52 |
53 | [2] Ma, J., Li, K., Zhang, F., Wang, Y., Luo, X., Li, C., & Qiao, Y. (2024). [TaReT: Temporal knowledge graph reasoning based on topology-aware dynamic relation graph and temporal fusion](https://www.sciencedirect.com/science/article/pii/S0306457324002073). Information Processing & Management, 61(6), 103848.
54 |
55 | [3] Bai, L., Zhang, H., An, X., & Zhu, L. (2025). [Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs](https://www.sciencedirect.com/science/article/pii/S0306457324003601). Information Processing & Management, 62(3), 104001.
56 |
57 | **Expert Systems with Applications**
58 |
59 | [1] (CDRGN-SDE) Zhang, D., Feng, W., Wu, Z., Li, G., & Ning, B. (2024). [CDRGN-SDE: Cross-Dimensional Recurrent Graph Network with neural Stochastic Differential Equation for temporal knowledge graph embedding](https://www.sciencedirect.com/science/article/pii/S095741742400160X). Expert Systems with Applications, 123295. [Github](https://github.com/zhangdddong/CDRGN-SDE)
60 |
61 | [2] (TPComplEx) Yang, J., Ying, X., Shi, Y., & Xing, B. (2024). [Tensor decompositions for temporal knowledge graph completion with time perspective](https://www.sciencedirect.com/science/article/pii/S0957417423017694). Expert Systems with Applications, 237, 121267. [Github](https://github.com/Jinfa/TPComplEx)
62 |
63 | **Frontiers of Computer Science**
64 |
65 | [1] (EvolveKG) Liu, J., Yu, Z., Guo, B., Deng, C., Fu, L., Wang, X., & Zhou, C. (2024). [EvolveKG: a general framework to learn evolving knowledge graphs](https://link.springer.com/article/10.1007/s11704-022-2467-9). Frontiers of Computer Science, 18(3), 183309.
66 |
67 | **Neural networks**
68 |
69 | [1] Shao, P., Tao, J., & Zhang, D. (2024). [Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction](https://www.sciencedirect.com/science/article/pii/S0893608024000704). Neural Networks, 106146.
70 |
71 | [2] Bai, L., Li, N., Li, G., Zhang, Z., & Zhu, L. (2024). [Embedding-based Entity Alignment of Cross-Lingual Temporal Knowledge Graphs](https://www.sciencedirect.com/science/article/pii/S0893608024000595). Neural Networks, 106143.
72 |
73 | [3] 🔥 Mei, X., Yang, L., Jiang, Z., Cai, X., Gao, D., Han, J., & Pan, S. (2024). [An Inductive Reasoning Model based on Interpretable Logical Rules over temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0893608024001436). Neural Networks, 106219. [Github](https://github.com/mxadorable/ILR-IR)
74 |
75 | [4] Zhang, J., Sun, M., Huang, Q., & Tian, L. (2024). [PLEASING: Exploring the historical and potential events for temporal knowledge graph reasoning](https://www.sciencedirect.com/science/article/pii/S0893608024004404). Neural Networks, 106516. [Github](https://github.com/KcAcoZhang/PLEASING)
76 |
77 | **Engineering Applications of Artificial Intelligence**
78 |
79 | [1] Zhu, L., Zhao, W., & Bai, L. (2024). [Quadruple mention text-enhanced temporal knowledge graph reasoning](https://www.sciencedirect.com/science/article/pii/S0952197624002161). Engineering Applications of Artificial Intelligence, 133, 108058. [Github](https://github.com/DMKE-Lab/QM-mod)
80 |
81 | **Journal of Intelligent Information Systems**
82 |
83 | [1] Du, C., Li, X., & Li, Z. (2024). [Semantic-enhanced reasoning question answering over temporal knowledge graphs](https://link.springer.com/article/10.1007/s10844-024-00840-5). Journal of Intelligent Information Systems, 1-23.
84 |
85 | **Artificial Intelligence**
86 |
87 | [1] Dong, H., Wang, P., Xiao, M., Ning, Z., Wang, P., & Zhou, Y. (2024). [Temporal Inductive Path Neural Network for Temporal Knowledge Graph Reasoning](https://www.sciencedirect.com/science/article/pii/S0004370224000213). Artificial Intelligence, 104085. [Github](https://github.com/hhdo/TiPNN)
88 |
89 | **IEEE Transactions on Fuzzy Systems**
90 |
91 | [1] Ji, H., Yan, L., & Ma, Z. (2023). [FSTRE: Fuzzy Spatiotemporal RDF Knowledge Graph Embedding Using Uncertain Dynamic Vector Projection and Rotation](https://ieeexplore.ieee.org/document/10198282). IEEE Transactions on Fuzzy Systems.
92 |
93 | [2] An, X., Bai, L., Zhou, L., & Song, J. (2024). [Few-shot Fuzzy Temporal Knowledge Graph Completion via Fuzzy Semantics and Dynamic Attention Network](https://ieeexplore.ieee.org/abstract/document/10643313/). IEEE Transactions on Fuzzy Systems.
94 |
95 | [3] Wang, C., Yan, L., & Ma, Z. (2024). [Fuzzy Event Knowledge Graph Embedding Through Event Temporal and Causal Transfer](https://ieeexplore.ieee.org/abstract/document/10646584/). IEEE Transactions on Fuzzy Systems.
96 |
97 | **Electronics**
98 |
99 | [1] 🔥 Xu, H., Bao, J., Li, H., He, C., & Chen, F. (2024). [A Multi-View Temporal Knowledge Graph Reasoning Framework with Interpretable Logic Rules and Feature Fusion](https://www.mdpi.com/2079-9292/13/4/742). Electronics, 13(4), 742.
100 |
101 | [2] Liu, Y., Shen, Y., & Dai, Y. (2024). [Enhancing Temporal Knowledge Graph Representation with Curriculum Learning](https://www.mdpi.com/2079-9292/13/17/3397). Electronics, 13(17), 3397.
102 |
103 | **Neurocomputing**
104 |
105 | [1] He, M., Zhu, L., & Bai, L. (2024). [ConvTKG: A query-aware convolutional neural network-based embedding model for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S092523122400451X). Neurocomputing, 127680.
106 |
107 | [2] Song, J., Bai, L., An, X., & Zhou, L. (2024). [Unsupervised fuzzy temporal knowledge graph entity alignment via joint fuzzy semantics learning and global structure learning](https://www.sciencedirect.com/science/article/pii/S0925231224017909). Neurocomputing, 129019.
108 |
109 | [3] Zhu, Y., Ma, T., Sun, S., Rong, H., Bian, Y., & Huang, K. (2024). [RTA: A reinforcement learning-based temporal knowledge graph question answering model](https://www.sciencedirect.com/science/article/pii/S092523122401765X). Neurocomputing, 128994.
110 |
111 | **IEEE TKDE**
112 |
113 | [1] Zhang, F., Zhang, Z., Zhuang, F., Zhao, Y., Wang, D., & Zheng, H. (2024). [Temporal Knowledge Graph Reasoning With Dynamic Memory Enhancement](https://ieeexplore.ieee.org/abstract/document/10504973/). IEEE Transactions on Knowledge and Data Engineering.
114 |
115 | [2] Liao, L., Zheng, L., Shang, J., Li, X., & Chen, F. (2024). [ATPF: An Adaptive Temporal Perturbation Framework for Adversarial Attacks on Temporal Knowledge Graph](https://ieeexplore.ieee.org/abstract/document/10777929/). IEEE Transactions on Knowledge and Data Engineering.
116 |
117 | **Tsinghua Science and Technology**
118 |
119 | [1] Han, Y., Lu, G., Zhang, S., Zhang, L., Zou, C., & Wen, G. (2024). [A Temporal Knowledge Graph Embedding Model Based on Variable Translation](https://ieeexplore.ieee.org/abstract/document/10517975/). Tsinghua Science and Technology, 29(5), 1554-1565.
120 |
121 | **Applied Soft Computing**
122 |
123 | [1] Bai, L., Chen, M., & Xiao, Q. (2024). Multi-Hop Temporal Knowledge Graph Reasoning with Multi-Agent Reinforcement Learning. Applied Soft Computing, 111727. [Github](https://github.com/DMKE-Lab/MA-TPath)
124 |
125 | **IEEE Transactions on Cybernetics**
126 |
127 | [1] Wang, J., Wang, B., Gao, J., Pan, S., Liu, T., Yin, B., & Gao, W. (2024). [MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10535899/). IEEE Transactions on Cybernetics.
128 |
129 | **IEEE Transaction on AI**
130 |
131 | [1] Yang, J., Huang, C., Yang, X., Yang, L. T., Gao, Y., & Liu, C. (2024). Temporal Knowledge Extrapolation Based on Fine-grained Tensor Graph Attention Network for Responsible AI. IEEE Transactions on Artificial Intelligence.
132 |
133 | **IAENG International Journal of Computer Science**
134 |
135 | [1] Huang, C., & Zhong, Y. (2024). A Novel Approach for Representing Temporal Knowledge Graphs. IAENG International Journal of Computer Science, 51(6).
136 |
137 | **Information Systems**
138 |
139 | [1] Jia, W., Ma, R., Niu, W., Yan, L., & Ma, Z. (2024). [SFTe: Temporal Knowledge Graphs Embedding for Future Interaction Prediction](https://www.sciencedirect.com/science/article/pii/S0306437924000814). Information Systems, 102423.
140 |
141 | **IEEE/ACM Transactions on Audio, Speech, and Language Processing**
142 |
143 | [1] Gao, Y., Qiao, L., Huang, Z., Kan, Z., He, Y., & Li, D. (2024). [Unified Contextualized Knowledge Embedding Method for Static and Temporal Knowledge Graph](https://ieeexplore.ieee.org/abstract/document/10771697/). IEEE/ACM Transactions on Audio, Speech, and Language Processing.
--------------------------------------------------------------------------------
/journal/2025.md:
--------------------------------------------------------------------------------
1 | ## 2025
2 |
3 | **Applied Intelligence**
4 |
5 | Zhang, C., Li, W., Mo, Y., Tang, W., Li, H., & Zeng, Z. (2025). BHRAM: a knowledge graph embedding model based on bidirectional and heterogeneous relational attention mechanism. Applied Intelligence, 55(3), 245.
6 |
7 | **Neural Networks**
8 |
9 | [1] Bai, L., Han, S., & Zhu, L. (2025). [Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0893608024009109). Neural Networks, 183, 106981.
10 |
11 | [2] Chen, T., Yang, L., Wang, Z., & Long, J. (2025). A rule-and query-guided reinforcement learning for extrapolation reasoning in temporal knowledge graphs. Neural Networks, 107186.
12 |
13 | **Science China Information Sciences**
14 |
15 | [1] Cai, W., Li, M., Shi, X., Fan, Y., Zhu, Q., & Jin, H. (2025). RE-SEGNN: recurrent semantic evidence-aware graph neural network for temporal knowledge graph forecasting. Science China Information Sciences, 68(2), 122104.
16 |
17 | **Expert Systems With Applications**
18 |
19 | [1] Ma, R., Wang, L., Wu, H., Gao, B., Wang, X., & Zhao, L. (2025). Historical Trends and Normalizing Flow for One-shot Temporal Knowledge Graph Reasoning. Expert Systems With Applications, 260, 125366.
20 |
21 | **Information Processing & Management**
22 |
23 | [1] Bai, L., Zhang, H., An, X., & Zhu, L. (2025). Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs. Information Processing & Management, 62(3), 104001.
24 |
25 | [2] Li, Q., & Wu, G. (2025). Explainable reasoning over temporal knowledge graphs by pre-trained language model. Information Processing & Management, 62(1), 103903.
26 |
27 | [3] Xu, W., Liu, B., Peng, M., Jiang, Z., Jia, X., Liu, K., ... & Peng, M. (2025). Historical facts learning from Long-Short Terms with Language Model for Temporal Knowledge Graph Reasoning. Information Processing & Management, 62(3), 104047.
28 |
29 | **Pattern Recognition**
30 |
31 | [1] Zhang, J., Hui, B., Zhu, X., Tian, L., & Hua, F. (2025). Temporal knowledge graph reasoning based on discriminative neighboring semantic learning. Pattern Recognition, 111392.
32 |
33 | **IEEE Transactions on Neural Networks and Learning Systems**
34 |
35 | [1] Qian, Y., Wang, X., Sun, F., & Pan, L. (2025). Compressing Transfer: Mutual Learning-Empowered Knowledge Distillation for Temporal Knowledge Graph Reasoning. IEEE Transactions on Neural Networks and Learning Systems.
36 |
37 | **Information Fusion**
38 |
39 | [1] Yang, R., Zhu, J., Man, J., Liu, H., Fang, L., & Zhou, Y. (2025). GS-KGC: A generative subgraph-based framework for knowledge graph completion with large language models. Information Fusion, 117, 102868.
40 |
41 | **Knowledge-Based Systems**
42 |
43 | [1] Zhu, J., Hu, J., Bai, D., Fu, Y., Zhou, J., & Chen, D. (2025). Multi-dimension rotations based on quaternion system for modeling various patterns in temporal knowledge graphs. Knowledge-Based Systems, 113114.
44 |
45 | **PeerJ Computer Science**
46 |
47 | [1] Liu, W., Hasikin, K., Khairuddin, A. S. M., Liu, M., & Zhao, X. (2025). A temporal knowledge graph reasoning model based on recurrent encoding and contrastive learning. PeerJ Computer Science, 11, e2595.
48 |
49 | **Data & Knowledge Engineering**
50 |
51 | [1] Zhu, L., Duan, X., & Bai, L. (2025). SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph. Data & Knowledge Engineering, 155, 102372.
52 |
53 | **Symmetry**
54 |
55 | [1] Chen, Y., Li, X., Liu, Y., & Hu, T. (2025). Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP. Symmetry, 17(2), 173.
56 |
57 | **Expert Systems**
58 |
59 | [1] Chen, H., Zhang, M., & Chen, Z. (2025). Temporal Knowledge Graph Reasoning Based on Dynamic Fusion Representation Learning. Expert Systems, 42(2), e13758.
60 |
61 | **Information Sciences**
62 |
63 | [1] Guo, J., Zhao, M., Yu, J., Yu, R., Song, J., Wang, Q., ... & Yu, M. (2025). EHPR: Learning evolutionary hierarchy perception representation based on quaternion for temporal knowledge graph completion. Information Sciences, 688, 121409.
64 |
65 | [2] Si, Y., Hu, X., Cheng, Q., Liu, X., Liu, S., & Huang, J. (2025). Coherence mode: Characterizing local graph structural information for temporal knowledge graph. Information Sciences, 686, 121357.
66 |
67 | **Engineering Applications of Artificial Intelligence**
68 |
69 | [1] Nguyen, N. T., Ngo, T., Hoang, N., & Le, T. (2025). FTPComplEx: A flexible time perspective approach to temporal knowledge graph completion. Engineering Applications of Artificial Intelligence, 139, 109717.
70 |
71 | **Journal of Intelligent Information Systems**
72 |
73 | [1] Chen, Z., & Wu, J. (2025). Temporal knowledge graph completion based on product space and contrastive learning of commonsense. Journal of Intelligent Information Systems, 1-20.
74 |
75 | **Computer Science and Information Systems**
76 |
77 | [1] Li, S., Wang, Q., Li, Z., & Zhang, L. (2025). TPBoxE: Temporal knowledge graph completion based on time probability box embedding. Computer Science and Information Systems, (00), 6-6.
--------------------------------------------------------------------------------