22 |
23 |
24 |
25 |
26 |
27 | ### Installation and Use
28 |
29 | #### *
30 | The Main branch relies on the paid OpenAI API to work. This has been resolved (not released yet❗) by implementing LlamaCpp for locally hosted Langchain agents instead.
31 | For setup refer to the main [repo](https://docs.shortgpt.ai/docs/how-to-install) and installation [guide](https://docs.shortgpt.ai/docs/how-to-install)
32 |
33 |
34 | ### Upload Automation
35 |
36 | 1. Authentication (client-secrets.json from Google API console)
37 |
38 | - Head to the Google API Console at https://console.cloud.google.com/ and create a project.
39 |
40 | - In the marketplace (search bar), find 'YouTube v3 API' and enable it.
41 |
42 | - After redirect, click on Oauth Screen and create.
43 |
44 | - Add google.com as the authorized domain.
45 |
46 |
47 |
48 | -> Add scopes for the YouTube v3 API.
49 |
50 |
51 |
52 | - Add the channel's email as the test user (in most cases, the email the channel was registered with).
53 |
54 | - Create Credentials (OAuth Client ID) in the Credentials Menu and select Web App.
55 |
56 | - For Authorized Redirect URIs, use:
57 | 1. http://localhost:8080
58 | 2. http://localhost:8080/
59 | 3. http://localhost:8090
60 | 4. http://localhost:8090/
61 |
62 | - Finish up with downloading the .JSON file and put it inside this repository's directory.
63 |
64 |
65 | > Note: For more information about the `client_secrets.json` file format, please visit: [api-client-library/python/guide/aaa_client_s](https://developers.google.com/api-client-library/python/guide/aaa_client_s)
66 |
67 | 2. Oauth2.json (within the repo itself)
68 |
69 | - Once a valid `client_secrets.json` is present in the directory, run `python3 upload.py` and follow further instructions. After successful authentication, an `oauth2.json` file will be created inside the directory.
70 |
71 |
72 | > Note: You can avoid quota bottlenecks by stacking up projects in the google console and repeat steps before
73 |
74 | 3. Automation
75 |
76 | Once valid oauth2 credentials exist in the directory you can let this run 100% on autopilot.
77 |
78 | - `ultra.py` is the main script to direct the video production pipeling
79 | - `upload.py` sets the backbone for youtube's v3 api to upload to YouTube without further authentification
80 | - `final_upload.py` combines the finsished product and uploads it to YouTube (title, description, tags get parsed automatically)
81 |
82 | Just craft your own bash script or use `automate.sh`
83 |
84 |
85 | ### Upgrades
86 | - access YouTube as provider of video assets, surpassing stock footage by large
87 | - avoids bans by using download streams with PyTube
88 | - avoids YouTube v3 API's rate limit and auth
89 | - avoids Pexels hard rate limit
90 |
91 | ### Features
92 |
93 |
94 | Inside `api_utils` functions provide utility for working with different APIs. Files: `image_api.py`, `pexels_api.py`, `youtube_api.py` and `eleven_api.py`. We added `youtube_api.py` to source video assets directly from YouTube. Feel free to modify `the _generateVideoUrls` function for the hierachy of video asset sources.
95 |
96 | - #### `search_videos_YouTube(query_string)`
97 |
98 | The search_videos_YouTube function takes a query string as input and searches for a video on YouTube based on that query. It returns the URL of the first search result if found, or None if no video is found.
99 |
100 | Integration of `shortGPT.api_utils.youtube_api`, which serves as an additional source for gathering footage based on the queried keyword. This is particularly useful when dealing with niche / comedy / meme topics where stock footage is not available. If nothing matches we backtrack to the pexels API.
101 |
102 | - #### `triage_videos_Youtube(expected_score_parameter)` ❗not released yet
103 |
104 | ### Demo (average view duration: 143% @ 10k views)
105 |
106 | demo_new shows the accuracy of the newly added youtube query policy ***without*** further guidance, backtesting or content analysis. This can be improved by adding a content triage based on Clip2 and transcript analysis.
107 |
108 |
109 |
110 |
111 |
112 |
--------------------------------------------------------------------------------
/assets/img/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/assets/img/logo.png
--------------------------------------------------------------------------------
/automate.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | log=$(date +%s)
4 | rm *.log
5 | python3 ultra.py >> $log.log &&
6 | python3 final_upload.py >> $log.log &&
7 |
8 | echo "run"
9 |
--------------------------------------------------------------------------------
/docs/.gitignore:
--------------------------------------------------------------------------------
1 | # Dependencies
2 | /node_modules
3 |
4 | # Production
5 | /build
6 |
7 | # Generated files
8 | .docusaurus
9 | .cache-loader
10 |
11 | # Misc
12 | .DS_Store
13 | .env.local
14 | .env.development.local
15 | .env.test.local
16 | .env.production.local
17 |
18 | npm-debug.log*
19 | yarn-debug.log*
20 | yarn-error.log*
21 |
--------------------------------------------------------------------------------
/docs/README.md:
--------------------------------------------------------------------------------
1 | # ShortGPT Documentation
2 | # Installation
3 |
4 | 1. `yarn install` in the root of this repository (two level above this directory).
5 | 1. In this directory, do `yarn start`.
6 | 1. A browser window will open up, pointing to the docs.
7 |
8 | # Deployment
9 |
10 | Vercel handles the deployment of this website.
11 |
--------------------------------------------------------------------------------
/docs/babel.config.js:
--------------------------------------------------------------------------------
1 | module.exports = {
2 | presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
3 | };
4 |
--------------------------------------------------------------------------------
/docs/docs/api-key-manager.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: ApiKeyManager in ShortGPT
3 | sidebar_label: ApiKeyManager
4 | ---
5 |
6 | # ApiKeyManager in ShortGPT
7 |
8 | ApiKeyManager is a class in the ShortGPT framework that manages the API keys for different providers. It interacts with the database to get and set API keys.
9 |
10 | ## Importing ApiKeyManager
11 |
12 | ```python
13 | from shortGPT.config.api_db import ApiKeyManager, ApiProvider
14 | ```
15 |
16 | ## Using ApiKeyManager
17 |
18 | ApiKeyManager provides two main methods: `get_api_key` and `set_api_key`.
19 |
20 | ### set_api_key
21 |
22 | This method is used to set the API key for a specific provider in the database. It takes two arguments: the key (provider name) and the value (API key).
23 |
24 | ```python
25 | ApiKeyManager.set_api_key(ApiProvider.OPENAI, "your_openai_key")
26 | ApiKeyManager.set_api_key(ApiProvider.ELEVEN_LABS, "your_eleven_labs_key")
27 | ```
28 |
29 | In the above example, we are setting the API keys for OPENAI and ELEVEN_LABS.
30 |
31 | ### get_api_key
32 |
33 | This method is used to retrieve the API key for a specific provider from the database. It takes one argument: the key (provider name).
34 |
35 | ```python
36 | openai_key = ApiKeyManager.get_api_key(ApiProvider.OPENAI)
37 | eleven_labs_key = ApiKeyManager.get_api_key(ApiProvider.ELEVEN_LABS)
38 | ```
39 | In the above example, we are retrieving the API keys for OPENAI and ELEVEN_LABS.
40 |
41 | ## Note
42 |
43 | The `key` argument in both methods can either be a string or an instance of the `ApiProvider` enum. If it is an instance of `ApiProvider`, the `value` attribute of the enum instance will be used as the key.
44 |
45 | ```python
46 | ApiKeyManager.set_api_key("OPENAI", "your_openai_key")
47 | ApiKeyManager.set_api_key("ELEVEN LABS", "your_eleven_labs_key")
48 |
49 | openai_key = ApiKeyManager.get_api_key("OPENAI")
50 | eleven_labs_key = ApiKeyManager.get_api_key("ELEVEN LABS")
51 | ```
52 | In the above example, we are setting and retrieving the API keys using string keys instead of `ApiProvider` instances.
--------------------------------------------------------------------------------
/docs/docs/asset-database.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: AssetDatabase in ShortGPT
3 | sidebar_label: AssetDatabase
4 | ---
5 |
6 | # AssetDatabase in ShortGPT
7 |
8 | The `AssetDatabase` in ShortGPT is a powerful tool that allows you to manage both local and remote assets. This guide will provide you with examples of how to use the `AssetDatabase`.
9 |
10 | ## Importing AssetDatabase and AssetType
11 |
12 | ```python
13 | from shortGPT.config.asset_db import AssetDatabase, AssetType
14 | ```
15 |
16 | ## Adding Assets
17 |
18 | You can add both remote and local assets to the `AssetDatabase`.
19 |
20 | ### Adding Remote Assets
21 |
22 | ```python
23 | AssetDatabase.add_remote_asset("minecraft background cube", AssetType.BACKGROUND_VIDEO, "https://www.youtube.com/watch?v=Pt5_GSKIWQM")
24 | AssetDatabase.add_remote_asset('chill music', AssetType.BACKGROUND_MUSIC, "https://www.youtube.com/watch?v=uUu1NcSHg2E")
25 | ```
26 |
27 | ### Adding Local Assets
28 |
29 | ```python
30 | AssetDatabase.add_local_asset('my_music', AssetType.AUDIO, "./my_music.wav")
31 | ```
32 |
33 | ## Asset Types
34 |
35 | The `AssetType` enum is used to specify the type of asset being added to the `AssetDatabase`. The available asset types are:
36 |
37 | - VIDEO
38 | - AUDIO
39 | - IMAGE
40 | - BACKGROUND_MUSIC
41 | - BACKGROUND_VIDEO
42 | - OTHER
43 |
44 | ## Getting Asset Information
45 |
46 | You can retrieve information about an asset using the following methods:
47 |
48 | ### Get Asset Duration
49 |
50 | This method returns the duration in seconds of a video or audio asset. If the asset is neither video nor audio, it returns `None`.
51 |
52 | ```python
53 | AssetDatabase.get_asset_duration('minecraft background cube')
54 | ```
55 |
56 | ### Get Asset Link
57 |
58 | This method returns a source URL, or the path of the resource. If the asset is a YouTube video or audio, it uses `yt-dlp` to extract a download URL or a direct video/audio link.
59 |
60 | ```python
61 | AssetDatabase.get_asset_link('minecraft background cube')
62 | ```
63 |
64 | ## Synchronizing Local Assets
65 |
66 | The `sync_local_assets` method synchronizes the database with local assets found in the `/public` folder. If it doesn't find one, it doesn't do anything.
67 |
68 | ```python
69 | AssetDatabase.sync_local_assets()
70 | ```
71 |
72 | ## Removing Assets
73 |
74 | You can remove an asset from the database by providing its name to the `remove_asset` method.
75 |
76 | ```python
77 | AssetDatabase.remove_asset('name')
78 | ```
79 |
80 | ## Getting Database State
81 |
82 | You can get the state of the asset database as a pandas dataframe using the `get_df` method.
83 |
84 | ```python
85 | AssetDatabase.get_df()
86 | ```
87 |
88 | This method returns a dataframe that includes the name, type, link, source, and timestamp of each asset in the database.
--------------------------------------------------------------------------------
/docs/docs/content-translation-engine.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: ContentTranslationEngine
3 | sidebar_label: ContentTranslationEngine
4 | ---
5 |
6 | The `ContentTranslationEngine` in ShortGPT is a powerful tool that automates the process of translating video content. This guide will provide you with an overview of how to use the `ContentTranslationEngine`.
7 |
8 | ## Importing ContentTranslationEngine
9 |
10 | ```python
11 | from shortGPT.engine.content_translation_engine import ContentTranslationEngine
12 | ```
13 |
14 | ## Initializing ContentTranslationEngine
15 |
16 | The `ContentTranslationEngine` requires a `VoiceModule`, a source URL (either a local video file path or a YouTube link), a target language, and an optional flag indicating whether to use captions for translation.
17 |
18 | ```python
19 | content_engine = ContentTranslationEngine(voice_module, src_url, target_language, use_captions=False)
20 | ```
21 |
22 | ## Example
23 |
24 | ```python
25 | from shortGPT.config.api_db import ApiKeyManager, ApiProvider
26 | from shortGPT.engine.content_translation_engine import ContentTranslationEngine
27 | from shortGPT.config.languages import Language
28 | from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule, EDGE_TTS_VOICENAME_MAPPING
29 |
30 | # Set API Keys
31 | ApiKeyManager.set_api_key(ApiProvider.OPENAI, "your_openai_key")
32 | ApiKeyManager.set_api_key(ApiProvider.ELEVEN_LABS, "your_eleven_labs_key")
33 |
34 | # Configure the Voice Module
35 | voice_name = EDGE_TTS_VOICENAME_MAPPING[Language.SPANISH]['male']
36 | voice_module = EdgeTTSVoiceModule(voice_name)
37 |
38 | # Configure Content Engine
39 | src_url = "https://www.youtube.com/watch?v=QQz5hj8y1TE"
40 | target_language = Language.SPANISH
41 | use_captions = False
42 | content_engine = ContentTranslationEngine(voice_module, src_url, target_language, use_captions)
43 |
44 | # Generate Content
45 | for step_num, step_logs in content_engine.makeContent():
46 | print(f" {step_logs}")
47 |
48 | # Get Video Output Path
49 | print(content_engine.get_video_output_path())
50 | ```
51 |
52 | ## How ContentTranslationEngine Works
53 |
54 | The `ContentTranslationEngine` works by executing a series of steps defined in the `stepDict` dictionary. Each step is a method that performs a specific task in the video translation process. Here's what each step does:
55 |
56 | 1. `_transcribe_audio`: Transcribes the audio from the source video
57 | 2. `_translate_content`: Translates the transcribed content from the source language to the target language.
58 | 3. `_generate_translated_audio`: Generates translated audio using the translated content and the specified `VoiceModule`.
59 | 4. `_edit_and_render_video`: Edits and renders the translated video.
60 | 5. `_add_metadata`: Adds metadata to the translated video.
61 |
62 | ## Providing a Source URL
63 |
64 | The `ContentTranslationEngine` requires a source URL, which can be either a local video file path or a YouTube link for a youtube Video, or a Youtube Shorts. The engine uses this source URL to retrieve the audio and video content for translation.
65 |
66 | ## Using Captions for Translation
67 |
68 | Set the `use_captions` flag to `True` to see text captions on the video generated that are timed with the audio voice.
69 |
70 |
--------------------------------------------------------------------------------
/docs/docs/content-video-engine.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: ContentVideoEngine
3 | sidebar_label: ContentVideoEngine
4 | ---
5 |
6 | The `ContentVideoEngine` in ShortGPT is a powerful tool that encapsulates all the automation required to create a video. This guide will provide you with an overview of how to use the `ContentVideoEngine`.
7 |
8 | ## Importing ContentVideoEngine
9 |
10 | ```python
11 | from shortGPT.engine.content_video_engine import ContentVideoEngine
12 | ```
13 |
14 | ## Initializing ContentVideoEngine
15 |
16 | The `ContentVideoEngine` requires a `VoiceModule`, a script, and optionally a background music name, a watermark (string with the name of your channel / brand), a flag indicating whether the video you want is in vertical format, and a language.
17 |
18 | ```python
19 | content_engine = ContentVideoEngine(voice_module, script, background_music_name="", watermark=None, isVerticalFormat=False, language=Language.ENGLISH)
20 | ```
21 | ## Example
22 |
23 | ```python
24 | from shortGPT.config.api_db import ApiKeyManager, ApiProvider
25 | from shortGPT.config.asset_db import AssetDatabase, AssetType
26 | from shortGPT.engine.content_video_engine import ContentVideoEngine
27 | from shortGPT.config.languages import Language
28 | from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule, EDGE_TTS_VOICENAME_MAPPING
29 |
30 | # Set API Keys
31 | ApiKeyManager.set_api_key(ApiProvider.OPENAI, "your_openai_key")
32 | ApiKeyManager.set_api_key(ApiProvider.PEXELS, "your_pexels_key")
33 |
34 | # Add Assets
35 | AssetDatabase.add_remote_asset('chill music', AssetType.BACKGROUND_MUSIC, "https://www.youtube.com/watch?v=uUu1NcSHg2E")
36 |
37 | # Configure the Voice Module
38 | voice_name = EDGE_TTS_VOICENAME_MAPPING[Language.SPANISH]['male']
39 | voice_module = EdgeTTSVoiceModule(voice_name)
40 |
41 | # Prepare the script
42 | script = "La inteligencia artificial (IA) está revolucionando nuestro mundo de manera sorprendente. Los robots y asistentes virtuales nos ayudan en nuestras tareas diarias y simplifican nuestra vida. En la medicina, la IA permite diagnósticos más precisos y avances en tratamientos. En la industria automotriz, los vehículos autónomos están cambiando la forma en que nos desplazamos. Sin embargo, surgen interrogantes sobre el impacto en el empleo y la ética de su uso. A pesar de los desafíos, la IA promete un futuro emocionante y lleno de posibilidades. ¿Estamos preparados para abrazar este avance tecnológico?"
43 |
44 | # Configure Content Engine
45 | content_engine = ContentVideoEngine(voice_module, script, background_music_name='chill music', language=Language.SPANISH)
46 |
47 | # Generate Content
48 | for step_num, step_logs in content_engine.makeContent():
49 | print(f" {step_logs}")
50 |
51 | # Get Video Output Path
52 | print(content_engine.get_video_output_path())
53 | ```
54 |
55 | In this example, we first set the API keys for OpenAI, and Pexels. We then add a remote asset for background music. We configure the voice module to use EdgeTTS for voice synthesis. We prepare a script for the video and then configure the `ContentVideoEngine` with the voice module, script, and background music. We then generate the content and print the output path of the video.
56 | ## How ContentVideoEngine Works
57 |
58 | The `ContentVideoEngine` works by executing a series of steps defined in the `stepDict` dictionary. Each step is a method that performs a specific task in the video creation process. Here's what each step does:
59 |
60 | 1. `_generateTempAudio`: Generates a temporary audio file from the provided script using the specified `VoiceModule`.
61 | 2. `_speedUpAudio`: Speeds up the generated audio file to match the pace of a typical video.
62 | 3. `_timeCaptions`: Generates timed captions for the video based on the script.
63 | 4. `_generateVideoSearchTerms`: Generates search terms to find relevant videos on Pexels based on the script.
64 | 5. `_generateVideoUrls`: Retrieves video URLs from Pexels using the generated search terms.
65 | 6. `_chooseBackgroundMusic`: Chooses background music for the video.
66 | 7. `_prepareBackgroundAssets`: Prepares the background assets for the video.
67 | 8. `_prepareCustomAssets`: Prepares any custom assets for the video.
68 | 9. `_editAndRenderShort`: Edits and renders the video.
69 | 10. `_addMetadata`: Adds metadata to the video.
70 |
71 | ## Using Pexels API
72 |
73 | The `ContentVideoEngine` sources video assets from the Pexels API. To use it, you need to provide your Pexels API key. The engine uses this key to retrieve relevant videos based on the search terms generated from the script.
74 |
75 | ## Providing a Script
76 |
77 | The `ContentVideoEngine` requires a script to generate the video. The script is used to generate the audio, captions, and search terms for sourcing videos from Pexels. The script should be a string containing the narration for the video.
--------------------------------------------------------------------------------
/docs/docs/facts-short-engine.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: FactsShortEngine
3 | sidebar_label: FactsShortEngine
4 | ---
5 |
6 | The `FactsShortEngine` in ShortGPT is a content engine specifically designed for generating short videos that present interesting facts. This guide will provide you with an overview of how to use the `FactsShortEngine`.
7 |
8 | ## Importing FactsShortEngine
9 |
10 | ```python
11 | from shortGPT.engine.facts_short_engine import FactsShortEngine
12 | ```
13 |
14 | ## Initializing FactsShortEngine
15 |
16 | The `FactsShortEngine` requires a `VoiceModule`, the type of facts you want to generate, a background video name, a background music name, the number of images to include in the video, a watermark (string with the name of your channel / brand), and a language.
17 |
18 | ```python
19 | content_engine = FactsShortEngine(voice_module, facts_type, background_video_name, background_music_name, num_images=None, watermark=None, language=Language.ENGLISH)
20 | ```
21 |
22 | ## Example
23 |
24 | ```python
25 | from shortGPT.config.api_db import ApiKeyManager, ApiProvider
26 | from shortGPT.config.asset_db import AssetDatabase, AssetType
27 | from shortGPT.engine.facts_short_engine import FactsShortEngine
28 | from shortGPT.config.languages import Language
29 | from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule, EDGE_TTS_VOICENAME_MAPPING
30 |
31 | # Set API Keys
32 | ApiKeyManager.set_api_key(ApiProvider.OPENAI, "your_openai_key")
33 |
34 | # Add Assets
35 | AssetDatabase.add_remote_asset("minecraft background cube", AssetType.BACKGROUND_VIDEO, "https://www.youtube.com/watch?v=Pt5_GSKIWQM")
36 | AssetDatabase.add_remote_asset('chill music', AssetType.BACKGROUND_MUSIC, "https://www.youtube.com/watch?v=uUu1NcSHg2E")
37 |
38 | # Configure the Voice Module
39 | voice_name = EDGE_TTS_VOICENAME_MAPPING[Language.GERMAN]['male']
40 | voice_module = EdgeTTSVoiceModule(voice_name)
41 |
42 | # Configure Content Engine
43 | facts_video_topic = "Interesting scientific facts from the 19th century"
44 | content_engine = FactsShortEngine(voice_module=voice_module,
45 | facts_type=facts_video_topic,
46 | background_video_name="minecraft background cube", # <--- use the same name you saved in the AssetDatabase
47 | background_music_name='chill music', # <--- use the same name you saved in the AssetDatabase
48 | num_images=5, # If you don't want images in your video, put 0 or None
49 | language=Language.GERMAN)
50 |
51 | # Generate Content
52 | for step_num, step_logs in content_engine.makeContent():
53 | print(f" {step_logs}")
54 |
55 | # Get Video Output Path
56 | print(content_engine.get_video_output_path())
57 | ```
58 |
59 | In this example, we first set the API keys for OpenAI. We then add remote assets for the background video and background music. We configure the voice module to use EdgeTTS for voice synthesis. We configure the `FactsShortEngine` with the voice module, facts type, background video name, background music name, number of images, and language. We then generate the content and print the output path of the video.
60 |
61 | ## How FactsShortEngine Works
62 |
63 | The `FactsShortEngine` works by executing a series of steps defined in the `stepDict` dictionary. Each step is a method that performs a specific task in the video creation process. Here's what each step does:
64 |
65 | 1. `_generateScript`: Generates the script for the facts short using the provided `facts_type`.
66 | 2. `_generateTempAudio`: Generates a temporary audio file from the generated script using the specified `VoiceModule`.
67 | 3. `_speedUpAudio`: Speeds up the generated audio file to match the pace of a typical video.
68 | 4. `_timeCaptions`: Generates timed captions for the video based on the script.
69 | 5. `_generateImageSearchTerms`: Generates search terms to find relevant images using the Bing search engine based on the script.
70 | 6. `_generateImageUrls`: Retrieves image URLs from Bing using the generated search terms.
71 | 7. `_chooseBackgroundMusic`: Chooses background music for the video.
72 | 8. `_chooseBackgroundVideo`: Chooses a background video for the video.
73 | 9. `_prepareBackgroundAssets`: Prepares the background assets for the video.
74 | 10. `_prepareCustomAssets`: Prepares any custom assets for the video.
75 | 11. `_editAndRenderShort`: Edits and renders the video.
76 | 12. `_addYoutubeMetadata`: Adds metadata to the video.
77 |
78 |
79 | ## Providing a Facts Type
80 |
81 | The `FactsShortEngine` requires a facts type to generate the script. The facts type should be a string indicating the specific category or topic of facts you want to include in the video.
82 |
83 |
84 | That's it! You have now successfully generated a facts short video using the FactsShortEngine in the ShortGPT framework.
--------------------------------------------------------------------------------
/docs/docs/getting-started.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: ShortGPT Hello World Example
3 | sidebar_label: ShortGPT Hello World Example
4 | ---
5 | # ShortGPT Hello World Example
6 |
7 | This guide provides a basic example of how to use the shortGPT framework. ShortGPT encapsulates the entire process of content automation into `content engines`. In this example, we'll show you how to instantiate the FactsShortEngine, which will automate the production of the "Interesting Facts" niche of Shorts.
8 |
9 | ## Prerequisites
10 |
11 | Before you start, make sure you have [followed the installation steps](./how-to-install) and have your API keys ready.
12 |
13 | ## Code
14 |
15 | ```python
16 | from shortGPT.config.api_db import ApiKeyManager, ApiProvider
17 | from shortGPT.config.asset_db import AssetDatabase, AssetType
18 | from shortGPT.engine.facts_short_engine import FactsShortEngine
19 | from shortGPT.audio.eleven_voice_module import ElevenLabsVoiceModule
20 | from shortGPT.config.languages import Language
21 | from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule, EDGE_TTS_VOICENAME_MAPPING
22 |
23 | # Set API Keys
24 | ApiKeyManager.set_api_key(ApiProvider.OPENAI, "your_openai_key")
25 | ApiKeyManager.set_api_key(ApiProvider.ELEVEN_LABS, "your_eleven_labs_key")
26 |
27 | # Add Assets
28 | AssetDatabase.add_remote_asset("minecraft background cube", AssetType.BACKGROUND_VIDEO, "https://www.youtube.com/watch?v=Pt5_GSKIWQM")
29 | AssetDatabase.add_remote_asset('chill music', AssetType.BACKGROUND_MUSIC, "https://www.youtube.com/watch?v=uUu1NcSHg2E")
30 | AssetDatabase.add_local_asset('my_music', AssetType.AUDIO, "./my_music.wav")
31 |
32 | USE_ELEVEN_LABS = False
33 | # Configure the ElevenLabs Voice Module
34 | if USE_ELEVEN_LABS:
35 | eleven_labs_key = ApiKeyManager.get_api_key(ApiProvider.ELEVEN_LABS)
36 | voice_module = ElevenLabsVoiceModule(api_key = eleven_labs_key, voiceName="Antoni")
37 | else:
38 | ## You can also use the EdgeTTS for Free voice synthesis
39 | voice_name = EDGE_TTS_VOICENAME_MAPPING[Language.GERMAN]['male']
40 | voice_module = EdgeTTSVoiceModule(voice_name)
41 |
42 | # Configure Content Engine
43 | facts_video_topic = "Interesting scientific facts from the 19th century"
44 | content_engine = FactsShortEngine(voiceModule=voice_module,
45 | facts_type=facts_video_topic,
46 | background_video_name="minecraft background cube", # <--- use the same name you saved in the AssetDatabase
47 | background_music_name='chill music', # <--- use the same name you saved in the AssetDatabase
48 | num_images=5, # If you don't want images in your video, put 0 or None
49 | language=Language.GERMAN)
50 |
51 | # Generate Content
52 | for step_num, step_logs in content_engine.makeContent():
53 | print(f" {step_logs}")
54 |
55 | # Get Video Output Path
56 | print(content_engine.get_video_output_path())
57 | ```
58 |
59 | That's it! You have now successfully generated your first content using the shortGPT framework.
60 |
--------------------------------------------------------------------------------
/docs/docs/how-to-install.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: Step-by-Step Guide to Installing ShortGPT
3 | sidebar_label: Installation Guide
4 | ---
5 | import Tabs from '@theme/Tabs';
6 | import TabItem from '@theme/TabItem';
7 |
8 | # Launching Your ShortGPT Experience
9 |
10 | This guide will walk you through the process of setting up your machine to run the **ShortGPT** library. The setup requires two key components, ImageMagick and FFmpeg. Follow the steps below to get these dependencies installed.
11 |
12 | ## Before You Begin
13 |
14 | Make sure you have the following installed on your machine:
15 |
16 | - Python 3.x
17 | - Pip (Python package installer)
18 |
19 | ## Installation Process
20 |
21 | Here are the steps to install ImageMagick, FFmpeg, and the ShortGPT library.
22 |
23 |
24 |
25 |
26 | ### Step 1: Install ImageMagick
27 |
28 | ImageMagick is a crucial component for ShortGPT. Download the installer from the official ImageMagick website. Click on the link below to get started.
29 |
30 | > **[👉 Download ImageMagick Here 👈](https://imagemagick.org/script/download.php)**
31 |
32 | After downloading, follow the installation instructions provided on the website.
33 |
34 | ### Step 2: Install FFmpeg (Essential for ShortGPT)
35 |
36 | FFmpeg is another key component for ShortGPT. Download the FFmpeg binaries from the link below:
37 |
38 | > **[👉 Download FFmpeg Here (click on
39 | FFmpeg_Full.msi ) 👈](https://github.com/icedterminal/ffmpeg-installer/releases/tag/6.0.0.20230306)**
40 |
41 | The download will include ffmpeg and ffprobe and will add it to your path. Follow the installation instructions as guided.
42 |
43 | Step 3: Install ShortGPT Library
44 |
45 | - Open a terminal or command prompt.
46 | - Execute the following command:
47 |
48 | ```bash
49 | pip install --upgrade shortgpt
50 | ```
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 | ### Step 1: Install ImageMagick
59 |
60 | Run the command below in your command line:
61 |
62 | ```bash
63 | brew install imagemagick
64 | ```
65 |
66 | ### Step 2: Install FFmpeg (Essential for ShortGPT)
67 |
68 | Run the command below in your command line:
69 |
70 | ```bash
71 | brew install ffmpeg
72 | ```
73 |
74 |
75 | Step 3: Install ShortGPT Library
76 |
77 | - Open a terminal or command prompt.
78 | - Execute the following command:
79 |
80 | ```bash
81 | pip install --upgrade shortgpt
82 | ```
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 | ### Step 1: Install ImageMagick
91 |
92 | Execute the following command:
93 |
94 | ```bash
95 | sudo apt-get install imagemagick
96 | ```
97 |
98 | ### Step 2: Install FFmpeg
99 |
100 | Execute the following command:
101 |
102 | ```bash
103 | sudo apt-get install ffmpeg
104 | ```
105 |
106 |
107 | Step 3: Install ShortGPT Library
108 |
109 | - Open a terminal or command prompt.
110 | - Execute the following command:
111 |
112 | ```bash
113 | pip install --upgrade shortgpt
114 | ```
115 |
116 |
117 |
118 |
119 |
120 |
121 | And there you have it! Your machine is now ready to run ShortGPT. Dive into the world of automated video content creation with ShortGPT!
--------------------------------------------------------------------------------
/docs/docusaurus.config.js:
--------------------------------------------------------------------------------
1 | /* eslint-disable @typescript-eslint/no-var-requires */
2 | const darkCodeTheme = require('prism-react-renderer/themes/dracula');
3 | const lightCodeTheme = require('prism-react-renderer/themes/github');
4 |
5 | // With JSDoc @type annotations, IDEs can provide config autocompletion
6 | /** @type {import('@docusaurus/types').DocusaurusConfig} */
7 | (
8 | module.exports = {
9 | title: 'ShortGPT',
10 | tagline:
11 | 'Open-Source Framework for AI content automation',
12 | url: 'https://dev.shortgpt.ai',
13 | baseUrl: '/',
14 | favicon: 'img/favicon.ico',
15 | organizationName: 'RayVentura',
16 | projectName: 'ShortGPT',
17 | onBrokenLinks: 'throw',
18 | onBrokenMarkdownLinks: 'throw',
19 | presets: [
20 | [
21 | '@docusaurus/preset-classic',
22 | /** @type {import('@docusaurus/preset-classic').Options} */
23 | ({
24 | docs: {
25 | path: 'docs',
26 | sidebarPath: 'sidebars.js',
27 | editUrl:
28 | 'https://github.com/RayVentura/ShortGPT/edit/stable/docs/',
29 | versions: {
30 | current: {
31 | label: 'current',
32 | },
33 | },
34 | lastVersion: 'current',
35 | showLastUpdateAuthor: true,
36 | showLastUpdateTime: true,
37 | },
38 | theme: {
39 | customCss: require.resolve('./src/css/custom.css'),
40 | },
41 | }),
42 | ],
43 | ],
44 | plugins: ['tailwind-loader'],
45 | themeConfig:
46 | /** @type {import('@docusaurus/preset-classic').ThemeConfig} */
47 | ({
48 |
49 | navbar: {
50 | hideOnScroll: true,
51 | logo: {
52 | alt: 'ShortGPT',
53 | src: 'img/logo.png',
54 | },
55 | items: [
56 | // left
57 | {
58 | label: 'Docs',
59 | to: 'docs/how-to-install',
60 | position: 'right',
61 | },
62 | // right
63 | {
64 | type: 'docsVersionDropdown',
65 | position: 'right',
66 | },
67 | {
68 | href: 'https://github.com/RayVentura/ShortGPT',
69 | position: 'right',
70 | className: 'header-github-link',
71 | },
72 | ],
73 | },
74 | colorMode: {
75 | defaultMode: 'light',
76 | disableSwitch: false,
77 | respectPrefersColorScheme: true,
78 | },
79 | announcementBar: {
80 | content:
81 | '⭐️ If you like ShortGPT, give it a star on GitHub! ⭐️',
82 | },
83 | footer: {
84 | links: [
85 | {
86 | title: 'Docs',
87 | items: [
88 | {
89 | label: 'Getting Started',
90 | to: 'docs/how-to-install',
91 | },
92 |
93 | ],
94 | },
95 | {
96 | title: 'ShortGPT',
97 | items: [
98 | {
99 | label: 'Issues',
100 | to: 'https://github.com/RayVentura/ShortGPT/issues',
101 | },
102 | ],
103 | },
104 | {
105 | title: 'Community',
106 | items: [
107 | {
108 | label: 'Discord',
109 | to: 'https://discord.com/invite/bRTacwYrfX',
110 | },
111 | ],
112 | },
113 | {
114 | title: 'Social',
115 | items: [
116 | {
117 | label: 'GitHub',
118 | to: 'https://github.com/RayVentura/ShortGPT',
119 | },
120 | {
121 | label: 'Twitter',
122 | to: 'https://twitter.com/RayVenturaHQ',
123 | },
124 | ],
125 | },
126 | ],
127 | copyright: `ShortGPT ${new Date().getFullYear()}`,
128 | },
129 | prism: {
130 | theme: lightCodeTheme,
131 | darkTheme: darkCodeTheme,
132 | },
133 | }),
134 | }
135 | );
136 |
--------------------------------------------------------------------------------
/docs/package.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "shortgpt-documentation",
3 | "version": "3.5.1",
4 | "private": true,
5 | "scripts": {
6 | "build:clean": "rm -rf dist build .docusaurus node_modules",
7 | "docusaurus": "docusaurus",
8 | "start": "docusaurus start",
9 | "build": "docusaurus build",
10 | "swizzle": "docusaurus swizzle",
11 | "deploy": "docusaurus deploy",
12 | "clear": "docusaurus clear",
13 | "serve": "docusaurus serve",
14 | "write-translations": "docusaurus write-translations",
15 | "write-heading-ids": "docusaurus write-heading-ids"
16 | },
17 | "dependencies": {
18 | "@algolia/ui-library": "9.10.2",
19 | "@docsearch/react": "3.5.1",
20 | "@docusaurus/core": "2.4.1",
21 | "@docusaurus/preset-classic": "2.4.1",
22 | "@mdx-js/react": "^1.6.22",
23 | "clsx": "^1.1.1",
24 | "file-loader": "6.2.0",
25 | "my-loaders": "file:plugins/my-loaders",
26 | "postcss": "8.4.25",
27 | "postcss-import": "15.0.0",
28 | "postcss-preset-env": "7.8.2",
29 | "prism-react-renderer": "1.2.1",
30 | "react": "^18.2.0",
31 | "react-dom": "^18.2.0",
32 | "tailwind-loader": "file:plugins/tailwind-loader",
33 | "url-loader": "4.1.1"
34 | },
35 | "devDependencies": {
36 | "postcss-loader": "6.2.1",
37 | "tailwindcss": "npm:@tailwindcss/postcss7-compat"
38 | },
39 | "browserslist": {
40 | "production": [
41 | ">0.5%",
42 | "not dead",
43 | "not op_mini all"
44 | ],
45 | "development": [
46 | "last 1 chrome version",
47 | "last 1 firefox version",
48 | "last 1 safari version"
49 | ]
50 | }
51 | }
--------------------------------------------------------------------------------
/docs/plugins/my-loaders/index.js:
--------------------------------------------------------------------------------
1 | module.exports = function () {
2 | return {
3 | name: 'loaders',
4 | configureWebpack() {
5 | return {
6 | module: {
7 | rules: [
8 | {
9 | test: /\.(gif|png|jpe?g|svg)$/i,
10 | exclude: /\.(mdx?)$/i,
11 | use: ['file-loader', { loader: 'image-webpack-loader' }],
12 | },
13 | ],
14 | },
15 | };
16 | },
17 | };
18 | };
19 |
--------------------------------------------------------------------------------
/docs/plugins/tailwind-loader/index.js:
--------------------------------------------------------------------------------
1 | /* eslint-disable @typescript-eslint/no-var-requires */
2 | module.exports = function () {
3 | return {
4 | name: 'postcss-tailwindcss-loader',
5 | configurePostCss(postcssOptions) {
6 | postcssOptions.plugins.push(
7 | require('postcss-import'),
8 | require('tailwindcss'),
9 | require('postcss-preset-env')({
10 | autoprefixer: {
11 | flexbox: 'no-2009',
12 | },
13 | stage: 4,
14 | })
15 | );
16 | return postcssOptions;
17 | },
18 | };
19 | };
20 |
--------------------------------------------------------------------------------
/docs/sidebars.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Creating a sidebar enables you to:
3 | * - create an ordered group of docs
4 | * - render a sidebar for each doc of that group
5 | * - provide next/previous navigation.
6 | *
7 | * The sidebars can be generated from the filesystem, or explicitly defined here.
8 | *
9 | * Create as many sidebars as you want.
10 | */
11 |
12 | module.exports = {
13 | docs: [
14 | {
15 | type: 'category',
16 | label: 'Introduction',
17 | collapsed: false,
18 | items: ['how-to-install', 'getting-started'],
19 | },
20 | {
21 | type: 'category',
22 | label: 'Content Engines',
23 | collapsed: false,
24 | items: ['content-video-engine', 'content-translation-engine', 'facts-short-engine'],
25 | },
26 | {
27 | type: 'category',
28 | label: 'API Key and Asset',
29 | collapsed: false,
30 | items: ['api-key-manager', 'asset-database'],
31 | },
32 | ],
33 | };
34 |
--------------------------------------------------------------------------------
/docs/src/css/custom.css:
--------------------------------------------------------------------------------
1 | @import url(fragments.css);
2 | @import 'tailwindcss/tailwind.css';
3 |
4 | :root {
5 | --ifm-font-size-base: 16px;
6 | --ifm-code-font-size: 90%;
7 | --ifm-background-color: var(--white);
8 | --ifm-color-primary: var(--nebula-500);
9 | --ifm-footer-background-color: var(--grey-100);
10 | --ifm-menu-color-background-active: var(--ifm-color-emphasis-200);
11 | }
12 |
13 | html[data-theme='dark'] {
14 | --ifm-font-base-color: #dee0f2;
15 | --ifm-navbar-link-hover-color: #8b9dff;
16 | --ifm-link-color: #8b9dff;
17 | --ifm-menu-color-active: #8b9dff;
18 | --ifm-background-color: #0a141c;
19 | --ifm-footer-background-color: #0a141c;
20 | --ifm-navbar-background-color: #21243d;
21 | --ifm-menu-color-background-active: #21243d;
22 | }
23 |
24 | .docusaurus-highlight-code-line {
25 | background-color: rgba(0, 0, 0, 0.1);
26 | display: block;
27 | margin: 0 calc(-1 * var(--ifm-pre-padding));
28 | padding: 0 var(--ifm-pre-padding);
29 | }
30 |
31 | html[data-theme='dark'] .docusaurus-highlight-code-line {
32 | background-color: rgba(0, 0, 0, 0.3);
33 | }
34 |
35 | .diagonal-box {
36 | transform: skewY(-6deg);
37 | }
38 |
39 | .diagonal-content {
40 | transform: skewY(6deg);
41 | }
42 |
43 | [class^='announcementBar'] {
44 | z-index: 10;
45 | }
46 |
47 | .showcase {
48 | background-color: #fff;
49 | }
50 |
51 | html[data-theme='dark'] .showcase {
52 | background-color: #21243d;
53 | }
54 |
55 | .showcase-border {
56 | border-color: rgba(243, 244, 246, 1);
57 | }
58 |
59 | html[data-theme='dark'] .showcase-border {
60 | border-color: rgba(55, 65, 81, 1);
61 | }
62 |
63 | .text-description {
64 | color: rgba(107, 114, 128, 1);
65 | }
66 |
67 | html[data-theme='dark'] .text-description {
68 | color: rgba(209, 213, 219, 1);
69 | }
70 |
71 | /* apply */
72 | #hero-apply {
73 | z-index: -1;
74 | background-image: linear-gradient(
75 | var(--ifm-footer-background-color),
76 | var(--ifm-navbar-background-color)
77 | );
78 | }
79 |
80 | html[data-theme='dark'] #hero-apply {
81 | background-image: linear-gradient(
82 | var(--ifm-navbar-background-color),
83 | var(--ifm-background-color)
84 | );
85 | }
86 |
87 | html[data-theme='dark'] #hero-apply > div:first-child {
88 | opacity: 0.4;
89 | }
90 |
91 | .apply-form {
92 | background-image: linear-gradient(#fff, #f5f5fa);
93 | max-width: 600px;
94 | }
95 |
96 | html[data-theme='dark'] .apply-form {
97 | background-image: radial-gradient(
98 | circle at 50% 0px,
99 | rgb(72, 76, 122),
100 | rgb(35, 38, 59)
101 | );
102 | }
103 |
104 | .apply-text {
105 | color: #36395a;
106 | }
107 |
108 | html[data-theme='dark'] .apply-text {
109 | color: #fff;
110 | }
111 |
112 | /* index */
113 | #hero {
114 | background-image: linear-gradient(
115 | var(--ifm-footer-background-color),
116 | var(--ifm-navbar-background-color)
117 | );
118 | }
119 |
120 | html[data-theme='dark'] #hero {
121 | background-image: linear-gradient(
122 | var(--ifm-navbar-background-color),
123 | var(--ifm-background-color)
124 | );
125 | }
126 |
127 | html[data-theme='dark'] #hero > div:first-child {
128 | opacity: 0.4;
129 | }
130 |
131 | /**
132 | * Hero component title overrides to match other heading styles
133 | */
134 | .hero-title {
135 | color: rgb(28, 30, 33);
136 | font-family: var(--ifm-heading-font-family);
137 | }
138 |
139 | html[data-theme='dark'] .hero-title {
140 | color: rgb(227, 227, 227);
141 | }
142 |
143 |
144 | .apply-button:hover {
145 | color: #000000;
146 | }
147 |
148 | /* GitHub */
149 | .header-github-link:hover {
150 | opacity: 0.6;
151 | }
152 |
153 | .header-github-link:before {
154 | content: '';
155 | width: 24px;
156 | height: 24px;
157 | display: flex;
158 | background: url("data:image/svg+xml,%3Csvg viewBox='0 0 24 24' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='M12 .297c-6.63 0-12 5.373-12 12 0 5.303 3.438 9.8 8.205 11.385.6.113.82-.258.82-.577 0-.285-.01-1.04-.015-2.04-3.338.724-4.042-1.61-4.042-1.61C4.422 18.07 3.633 17.7 3.633 17.7c-1.087-.744.084-.729.084-.729 1.205.084 1.838 1.236 1.838 1.236 1.07 1.835 2.809 1.305 3.495.998.108-.776.417-1.305.76-1.605-2.665-.3-5.466-1.332-5.466-5.93 0-1.31.465-2.38 1.235-3.22-.135-.303-.54-1.523.105-3.176 0 0 1.005-.322 3.3 1.23.96-.267 1.98-.399 3-.405 1.02.006 2.04.138 3 .405 2.28-1.552 3.285-1.23 3.285-1.23.645 1.653.24 2.873.12 3.176.765.84 1.23 1.91 1.23 3.22 0 4.61-2.805 5.625-5.475 5.92.42.36.81 1.096.81 2.22 0 1.606-.015 2.896-.015 3.286 0 .315.21.69.825.57C20.565 22.092 24 17.592 24 12.297c0-6.627-5.373-12-12-12'/%3E%3C/svg%3E")
159 | no-repeat;
160 | }
161 |
162 | html[data-theme='dark'] .header-github-link:before {
163 | background: url("data:image/svg+xml,%3Csvg viewBox='0 0 24 24' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath fill='white' d='M12 .297c-6.63 0-12 5.373-12 12 0 5.303 3.438 9.8 8.205 11.385.6.113.82-.258.82-.577 0-.285-.01-1.04-.015-2.04-3.338.724-4.042-1.61-4.042-1.61C4.422 18.07 3.633 17.7 3.633 17.7c-1.087-.744.084-.729.084-.729 1.205.084 1.838 1.236 1.838 1.236 1.07 1.835 2.809 1.305 3.495.998.108-.776.417-1.305.76-1.605-2.665-.3-5.466-1.332-5.466-5.93 0-1.31.465-2.38 1.235-3.22-.135-.303-.54-1.523.105-3.176 0 0 1.005-.322 3.3 1.23.96-.267 1.98-.399 3-.405 1.02.006 2.04.138 3 .405 2.28-1.552 3.285-1.23 3.285-1.23.645 1.653.24 2.873.12 3.176.765.84 1.23 1.91 1.23 3.22 0 4.61-2.805 5.625-5.475 5.92.42.36.81 1.096.81 2.22 0 1.606-.015 2.896-.015 3.286 0 .315.21.69.825.57C20.565 22.092 24 17.592 24 12.297c0-6.627-5.373-12-12-12'/%3E%3C/svg%3E")
164 | no-repeat;
165 | }
166 |
167 | /* Images */
168 | .image-rendering-crisp {
169 | image-rendering: crisp-edges;
170 |
171 | /* alias for google chrome */
172 | image-rendering: -webkit-optimize-contrast;
173 | }
174 |
175 | .image-rendering-pixel {
176 | image-rendering: pixelated;
177 | }
178 |
179 | /* Tailwindcss */
180 |
181 | #tailwind dd,
182 | #tailwind dt {
183 | margin: 0;
184 | }
185 |
186 | #tailwind *,
187 | #tailwind ::before,
188 | #tailwind ::after {
189 | border-width: 0;
190 | border-style: solid;
191 | }
192 |
193 | #tailwind ol,
194 | #tailwind ul {
195 | list-style: none;
196 | margin: 0;
197 | padding: 0;
198 | }
199 |
--------------------------------------------------------------------------------
/docs/src/pages/index.js:
--------------------------------------------------------------------------------
1 | import Layout from '@theme/Layout';
2 | import React from 'react';
3 |
4 | import Home from '../components/Home';
5 |
6 | function HomePage() {
7 | return (
8 |
12 |
13 |
14 | );
15 | }
16 |
17 | export default HomePage;
18 |
--------------------------------------------------------------------------------
/docs/static/img/favicon.ico:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/docs/static/img/favicon.ico
--------------------------------------------------------------------------------
/docs/static/img/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/docs/static/img/logo.png
--------------------------------------------------------------------------------
/docs/tailwind.config.js:
--------------------------------------------------------------------------------
1 | module.exports = {
2 | purge: ['./src/**/*.html', './src/**/*.js', './src/**/*.tsx'],
3 | corePlugins: { preflight: false, container: false },
4 | important: '#tailwind',
5 | theme: {
6 | extend: {
7 | maxWidth: {
8 | xxs: '18rem',
9 | },
10 | },
11 | },
12 | };
13 |
--------------------------------------------------------------------------------
/final_upload.py:
--------------------------------------------------------------------------------
1 | import re
2 | import os
3 | from typing_extensions import Text
4 |
5 | directory = "videos/"
6 | file_names = os.listdir(directory)
7 |
8 | # Filter files that are txt or mp4
9 | file_names = [f for f in file_names if os.path.isfile(os.path.join(directory, f)) and (f.endswith('.txt') or f.endswith('.mp4'))]
10 |
11 | # Sort the file names by modification time in descending order
12 | file_names.sort(key=lambda x: os.path.getmtime(os.path.join(directory, x)), reverse=True)
13 |
14 | # Get the latest txt and mp4 file names
15 | latest_files = {}
16 | for file in file_names:
17 | if file.endswith('.txt') and 'txt' not in latest_files:
18 | latest_files['txt'] = file
19 | elif file.endswith('.mp4') and 'mp4' not in latest_files:
20 | latest_files['mp4'] = file
21 | if len(latest_files) == 2:
22 | break
23 |
24 | # Get the text file content and extract title and description
25 | text_file = latest_files.get('txt')
26 | video_file = latest_files.get('mp4')
27 | with open(os.path.join(directory, text_file), 'r') as file:
28 | content = file.read()
29 | title_match = re.search(r'---Youtube title---\n(.*?)\n', content, flags=re.DOTALL)
30 | title = title_match.group(1) if title_match else None
31 | description_match = re.search(r'---Youtube description---\n([\s\S]*)', content)
32 | description = description_match.group(1) if description_match else None
33 |
34 | # Run the upload script with the latest mp4 and txt files
35 | if video_file and text_file:
36 | os.system(f'python3 upload.py --file="{directory}{video_file}" --privacyStatus="public" --title="{title}" --description="{description}"')
37 |
--------------------------------------------------------------------------------
/gui/__pycache__/content_automation_ui.cpython-39.pyc.1849492106672:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/gui/__pycache__/content_automation_ui.cpython-39.pyc.1849492106672
--------------------------------------------------------------------------------
/gui/__pycache__/short_automation_ui.cpython-39.pyc.1870860912944:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/gui/__pycache__/short_automation_ui.cpython-39.pyc.1870860912944
--------------------------------------------------------------------------------
/gui/asset_components.py:
--------------------------------------------------------------------------------
1 | import os
2 | import platform
3 | import subprocess
4 |
5 | import gradio as gr
6 |
7 | from shortGPT.api_utils.eleven_api import ElevenLabsAPI
8 | from shortGPT.config.api_db import ApiKeyManager
9 | from shortGPT.config.asset_db import AssetDatabase
10 |
11 |
12 | class AssetComponentsUtils:
13 | EDGE_TTS = "Free EdgeTTS (lower quality)"
14 | ELEVEN_TTS = "ElevenLabs(Very High Quality)"
15 | instance_background_video_checkbox = None
16 | instance_background_music_checkbox = None
17 | instance_voiceChoice = None
18 | instance_voiceChoiceTranslation = None
19 |
20 | @classmethod
21 | def getBackgroundVideoChoices(cls):
22 | df = AssetDatabase.get_df()
23 | choices = list(df.loc['background video' == df['type']]['name'])[:20]
24 | return choices
25 |
26 | @classmethod
27 | def getBackgroundMusicChoices(cls):
28 | df = AssetDatabase.get_df()
29 | choices = list(df.loc['background music' == df['type']]['name'])[:20]
30 | return choices
31 |
32 | @classmethod
33 | def getElevenlabsVoices(cls):
34 | api_key = ApiKeyManager.get_api_key("ELEVEN LABS")
35 | voices = list(reversed(ElevenLabsAPI(api_key).get_voices().keys()))
36 | return voices
37 |
38 | @classmethod
39 | def start_file(cls, path):
40 | if platform.system() == "Windows":
41 | os.startfile(path)
42 | elif platform.system() == "Darwin":
43 | subprocess.Popen(["open", path])
44 | else:
45 | subprocess.Popen(["xdg-open", path])
46 |
47 | @classmethod
48 | def background_video_checkbox(cls):
49 | if cls.instance_background_video_checkbox is None:
50 | cls.instance_background_video_checkbox = gr.CheckboxGroup(
51 | choices=cls.getBackgroundVideoChoices(),
52 | interactive=True,
53 | label="Choose background video",
54 | )
55 | return cls.instance_background_video_checkbox
56 |
57 | @classmethod
58 | def background_music_checkbox(cls):
59 | if cls.instance_background_music_checkbox is None:
60 | cls.instance_background_music_checkbox = gr.CheckboxGroup(
61 | choices=cls.getBackgroundMusicChoices(),
62 | interactive=True,
63 | label="Choose background music",
64 | )
65 | return cls.instance_background_music_checkbox
66 |
67 | @classmethod
68 | def voiceChoice(cls):
69 | if cls.instance_voiceChoice is None:
70 | cls.instance_voiceChoice = gr.Radio(
71 | cls.getElevenlabsVoices(),
72 | label="Elevenlabs voice",
73 | value="Antoni",
74 | interactive=True,
75 | )
76 | return cls.instance_voiceChoice
77 |
78 | @classmethod
79 | def voiceChoiceTranslation(cls):
80 | if cls.instance_voiceChoiceTranslation is None:
81 | cls.instance_voiceChoiceTranslation = gr.Radio(
82 | cls.getElevenlabsVoices(),
83 | label="Elevenlabs voice",
84 | value="Antoni",
85 | interactive=True,
86 | )
87 | return cls.instance_voiceChoiceTranslation
88 |
--------------------------------------------------------------------------------
/gui/content_automation_ui.py:
--------------------------------------------------------------------------------
1 | import gradio as gr
2 |
3 | from gui.ui_tab_short_automation import ShortAutomationUI
4 | from gui.ui_tab_video_automation import VideoAutomationUI
5 | from gui.ui_tab_video_translation import VideoTranslationUI
6 |
7 |
8 | class GradioContentAutomationUI:
9 | def __init__(self, shortGPTUI):
10 | self.shortGPTUI = shortGPTUI
11 | self.content_automation_ui = None
12 |
13 | def create_ui(self):
14 | '''Create Gradio interface'''
15 | with gr.Tab("Content Automation") as self.content_automation_ui:
16 | gr.Markdown("# 🏆 Content Automation 🚀")
17 | gr.Markdown("## Choose your desired automation task.")
18 | choice = gr.Radio(['🎬 Automate the creation of shorts', '🎞️ Automate a video with stock assets', '🌐 Automate multilingual video dubbing'], label="Choose an option")
19 | video_automation_ui = VideoAutomationUI(self.shortGPTUI).create_ui()
20 | short_automation_ui = ShortAutomationUI(self.shortGPTUI).create_ui()
21 | video_translation_ui = VideoTranslationUI(self.shortGPTUI).create_ui()
22 | choice.change(lambda x: (gr.update(visible=x == choice.choices[1]), gr.update(visible=x == choice.choices[0]), gr.update(
23 | visible=x == choice.choices[2])), [choice], [video_automation_ui, short_automation_ui, video_translation_ui])
24 | return self.content_automation_ui
25 |
--------------------------------------------------------------------------------
/gui/gui_gradio.py:
--------------------------------------------------------------------------------
1 | import gradio as gr
2 |
3 | from gui.content_automation_ui import GradioContentAutomationUI
4 | from gui.ui_abstract_base import AbstractBaseUI
5 | from gui.ui_components_html import GradioComponentsHTML
6 | from gui.ui_tab_asset_library import AssetLibrary
7 | from gui.ui_tab_config import ConfigUI
8 | from shortGPT.utils.cli import CLI
9 |
10 |
11 | class ShortGptUI(AbstractBaseUI):
12 | '''Class for the GUI. This class is responsible for creating the UI and launching the server.'''
13 |
14 | def __init__(self, colab=False):
15 | super().__init__(ui_name='gradio_shortgpt')
16 | self.colab = colab
17 | CLI.display_header()
18 |
19 | def create_interface(self):
20 | '''Create Gradio interface'''
21 | with gr.Blocks(css="footer {visibility: hidden}", title="ShortGPT Demo") as shortGptUI:
22 | with gr.Row(variant='compact'):
23 | gr.HTML(GradioComponentsHTML.get_html_header())
24 |
25 | self.content_automation = GradioContentAutomationUI(shortGptUI).create_ui()
26 | self.asset_library_ui = AssetLibrary().create_ui()
27 | self.config_ui = ConfigUI().create_ui()
28 | return shortGptUI
29 |
30 | def launch(self):
31 | '''Launch the server'''
32 | shortGptUI = self.create_interface()
33 | shortGptUI.queue(concurrency_count=5, max_size=20).launch(server_port=31415, height=1000, share=self.colab)
34 |
35 |
36 | if __name__ == "__main__":
37 | app = ShortGptUI()
38 | app.launch()
39 |
--------------------------------------------------------------------------------
/gui/ui_abstract_base.py:
--------------------------------------------------------------------------------
1 |
2 | import gradio as gr
3 |
4 |
5 | class AbstractBaseUI:
6 | '''Base class for the GUI. This class is responsible for creating the UI and launching the server.'''
7 | max_choices = 20
8 | ui_asset_dataframe = gr.Dataframe(interactive=False)
9 | LOGO_PATH = "http://localhost:31415/file=public/logo.png"
10 | LOGO_DIM = 64
11 |
12 | def __init__(self, ui_name='default'):
13 | self.ui_name = ui_name
14 | self.content_automation = None
15 | self.asset_library_ui = None
16 | self.config_ui = None
17 |
18 | def create_interface(self):
19 | raise NotImplementedError
20 |
--------------------------------------------------------------------------------
/gui/ui_abstract_component.py:
--------------------------------------------------------------------------------
1 |
2 |
3 | class AbstractComponentUI:
4 | def create_ui(self):
5 | raise NotImplementedError
6 |
--------------------------------------------------------------------------------
/gui/ui_components_html.py:
--------------------------------------------------------------------------------
1 | class GradioComponentsHTML:
2 |
3 | @staticmethod
4 | def get_html_header() -> str:
5 | '''Create HTML for the header'''
6 | return '''
7 |
29 | '''
30 |
31 | @staticmethod
32 | def get_html_video_template(file_url_path, file_name, width="auto", height="auto"):
33 | """
34 | Generate an HTML code snippet for embedding and downloading a video.
35 |
36 | Parameters:
37 | file_url_path (str): The URL or path to the video file.
38 | file_name (str): The name of the video file.
39 | width (str, optional): The width of the video. Defaults to "auto".
40 | height (str, optional): The height of the video. Defaults to "auto".
41 |
42 | Returns:
43 | str: The generated HTML code snippet.
44 | """
45 | html = f'''
46 |
55 | '''
56 | return html
57 |
--------------------------------------------------------------------------------
/gui/ui_tab_config.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | import gradio as gr
4 |
5 | from gui.asset_components import AssetComponentsUtils
6 | from gui.ui_abstract_component import AbstractComponentUI
7 | from shortGPT.api_utils.eleven_api import ElevenLabsAPI
8 | from shortGPT.config.api_db import ApiKeyManager
9 |
10 |
11 | class ConfigUI(AbstractComponentUI):
12 | def __init__(self):
13 | self.api_key_manager = ApiKeyManager()
14 | eleven_key = self.api_key_manager.get_api_key('ELEVEN LABS')
15 | self.eleven_labs_api = ElevenLabsAPI(eleven_key) if eleven_key else None
16 |
17 | def on_show(self, button_text, textbox, button):
18 | '''Show or hide the API key'''
19 | if button_text == "Show":
20 | return gr.Textbox.update(type="text"), gr.Button.update(value="Hide")
21 | return gr.Textbox.update(type="password"), gr.Button.update(value="Show")
22 |
23 | def verify_eleven_key(self, eleven_key, remaining_chars):
24 | '''Verify the ElevenLabs API key'''
25 | if (eleven_key and self.api_key_manager.get_api_key('ELEVEN LABS') != eleven_key):
26 | try:
27 | self.eleven_labs_api = ElevenLabsAPI(eleven_key)
28 | print(self.eleven_labs_api)
29 | return self.eleven_labs_api.get_remaining_characters()
30 | except Exception as e:
31 | raise gr.Error(e.args[0])
32 | return remaining_chars
33 |
34 | def save_keys(self, openai_key, eleven_key, pexels_key):
35 | '''Save the keys in the database'''
36 | if (self.api_key_manager.get_api_key('OPENAI') != openai_key):
37 | self.api_key_manager.set_api_key("OPENAI", openai_key)
38 | if (self.api_key_manager.get_api_key('PEXELS') != pexels_key):
39 | self.api_key_manager.set_api_key("PEXELS", pexels_key)
40 | if (self.api_key_manager.get_api_key('ELEVEN LABS') != eleven_key):
41 | self.api_key_manager.set_api_key("ELEVEN LABS", eleven_key)
42 | new_eleven_voices = AssetComponentsUtils.getElevenlabsVoices()
43 | return gr.Textbox.update(value=openai_key),\
44 | gr.Textbox.update(value=eleven_key),\
45 | gr.Textbox.update(value=pexels_key),\
46 | gr.Radio.update(choices=new_eleven_voices),\
47 | gr.Radio.update(choices=new_eleven_voices)
48 |
49 | return gr.Textbox.update(value=openai_key),\
50 | gr.Textbox.update(value=eleven_key),\
51 | gr.Textbox.update(value=pexels_key),\
52 | gr.Radio.update(visible=True),\
53 | gr.Radio.update(visible=True)
54 |
55 | def get_eleven_remaining(self,):
56 | '''Get the remaining characters from ElevenLabs API'''
57 | if (self.eleven_labs_api):
58 | try:
59 | return self.eleven_labs_api.get_remaining_characters()
60 | except Exception as e:
61 | return e.args[0]
62 | return ""
63 |
64 | def back_to_normal(self):
65 | '''Back to normal after 3 seconds'''
66 | time.sleep(3)
67 | return gr.Button.update(value="save")
68 |
69 | def create_ui(self):
70 | '''Create the config UI'''
71 | with gr.Tab("Config") as config_ui:
72 | with gr.Row():
73 | with gr.Column():
74 | with gr.Row():
75 | openai_textbox = gr.Textbox(value=self.api_key_manager.get_api_key("OPENAI"), label=f"OPENAI API KEY", show_label=True, interactive=True, show_copy_button=True, type="password", scale=40)
76 | show_openai_key = gr.Button("Show", size="sm", scale=1)
77 | show_openai_key.click(self.on_show, [show_openai_key], [openai_textbox, show_openai_key])
78 | with gr.Row():
79 | eleven_labs_textbox = gr.Textbox(value=self.api_key_manager.get_api_key("ELEVEN LABS"), label=f"ELEVEN LABS API KEY", show_label=True, interactive=True, show_copy_button=True, type="password", scale=40)
80 | eleven_characters_remaining = gr.Textbox(value=self.get_eleven_remaining(), label=f"CHARACTERS REMAINING", show_label=True, interactive=False, type="text", scale=40)
81 | show_eleven_key = gr.Button("Show", size="sm", scale=1)
82 | show_eleven_key.click(self.on_show, [show_eleven_key], [eleven_labs_textbox, show_eleven_key])
83 | with gr.Row():
84 | pexels_textbox = gr.Textbox(value=self.api_key_manager.get_api_key("PEXELS"), label=f"PEXELS KEY", show_label=True, interactive=True, show_copy_button=True, type="password", scale=40)
85 | show_pexels_key = gr.Button("Show", size="sm", scale=1)
86 | show_pexels_key.click(self.on_show, [show_pexels_key], [pexels_textbox, show_pexels_key])
87 | save_button = gr.Button("save", size="sm", scale=1)
88 | save_button.click(self.verify_eleven_key, [eleven_labs_textbox, eleven_characters_remaining], [eleven_characters_remaining]).success(
89 | self.save_keys, [openai_textbox, eleven_labs_textbox, pexels_textbox], [openai_textbox, eleven_labs_textbox, pexels_textbox, AssetComponentsUtils.voiceChoice(), AssetComponentsUtils.voiceChoiceTranslation()])
90 | save_button.click(lambda _: gr.Button.update(value="Keys Saved !"), [], [save_button])
91 | save_button.click(self.back_to_normal, [], [save_button])
92 | return config_ui
93 |
--------------------------------------------------------------------------------
/public/subscribe-animation.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/public/subscribe-animation.mp4
--------------------------------------------------------------------------------
/public/white_reddit_template.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/public/white_reddit_template.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | ffmpeg
2 | python-dotenv
3 | gradio==3.38.0
4 | openai
5 | tiktoken
6 | tinydb
7 | tinymongo
8 | proglog
9 | yt-dlp
10 | torch
11 | torchaudio
12 | ### whisper timestamped
13 | whisper-timestamped
14 | protobuf==3.20.0
15 | pillow==9.0.0
16 | moviepy==1.0.3
17 | progress
18 | questionary
19 | edge-tts
20 | pytube
21 | typing-extensions==4.7.1
22 | google-api-python-client
23 | oauth2client
24 |
--------------------------------------------------------------------------------
/runShortGPT.py:
--------------------------------------------------------------------------------
1 | from gui.gui_gradio import ShortGptUI
2 |
3 | app = ShortGptUI(colab=False)
4 | app.launch()
--------------------------------------------------------------------------------
/runShortGPTColab.py:
--------------------------------------------------------------------------------
1 | from gui.gui_gradio import ShortGptUI
2 |
3 | app = ShortGptUI(colab=True)
4 | app.launch()
5 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup, find_packages
2 | import codecs
3 | import os
4 |
5 | here = os.path.abspath(os.path.dirname(__file__))
6 |
7 | with codecs.open(os.path.join(here, "README.md"), encoding="utf-8") as fh:
8 | long_description = "\n" + fh.read()
9 |
10 | VERSION = '0.1.3'
11 | DESCRIPTION = 'Automating video and short content creation with AI'
12 | LONG_DESCRIPTION = 'A powerful tool for automating content creation. It simplifies video creation, footage sourcing, voiceover synthesis, and editing tasks.'
13 |
14 |
15 | setup(
16 | name="shortgpt",
17 | version=VERSION,
18 | author="RayVentura",
19 | author_email="",
20 | description=DESCRIPTION,
21 | long_description_content_type="text/markdown",
22 | long_description=long_description,
23 | packages=find_packages(),
24 | package_data={'': ['*.yaml', '*.json']}, # This will include all yaml files in package
25 | install_requires=[
26 | 'ffmpeg',
27 | 'python-dotenv',
28 | 'openai',
29 | 'tiktoken',
30 | 'tinydb',
31 | 'tinymongo',
32 | 'proglog',
33 | 'yt-dlp',
34 | 'torch',
35 | 'whisper-timestamped',
36 | 'torchaudio',
37 | 'pillow==9.0.0',
38 | 'protobuf==3.20.0',
39 | 'edge-tts',
40 | 'moviepy==1.0.3',
41 | 'progress',
42 | 'questionary',
43 | ],
44 | keywords=['python', 'video', 'content creation', 'AI', 'automation', 'editing', 'voiceover synthesis', 'video captions', 'asset sourcing', 'tinyDB'],
45 | classifiers=[
46 | "Development Status :: 5 - Production/Stable",
47 | "Intended Audience :: Developers",
48 | "Programming Language :: Python :: 3",
49 | "Operating System :: Unix",
50 | "Operating System :: MacOS :: MacOS X",
51 | "Operating System :: Microsoft :: Windows",
52 | ]
53 | )
--------------------------------------------------------------------------------
/shortGPT/__init__.py:
--------------------------------------------------------------------------------
1 | # import time
2 | # t1 = time.time()
3 | # from . import config
4 | # print("Took", time.time() - t1, "seconds to import config")
5 | # t1 = time.time()
6 | # from . import editing
7 | # print("Took", time.time() - t1, "seconds to import editing")
8 | # t1 = time.time()
9 | # from . import audio
10 | # print("Took", time.time() - t1, "seconds to import audio")
11 | # t1 = time.time()
12 | # from . import engine
13 | # print("Took", time.time() - t1, "seconds to import engine")
14 | # t1 = time.time()
15 | # from . import database
16 | # print("Took", time.time() - t1, "seconds to import database")
17 | # t1 = time.time()
18 | # from . import gpt
19 | # print("Took", time.time() - t1, "seconds to import gpt")
20 | # t1 = time.time()
21 | # from . import tracking
22 | # print("Took", time.time() - t1, "seconds to import tracking")
23 |
24 | # from . import config
25 | # from . import database
26 | # from . import editing_functions
27 | # from . import audio
28 | # from . import engine
29 | # from . import gpt
30 | # from . import tracking
--------------------------------------------------------------------------------
/shortGPT/api_utils/README.md:
--------------------------------------------------------------------------------
1 | # Module: api_utils
2 |
3 | The `api_utils` module provides utility functions for working with different APIs. It includes three files: `image_api.py`, `pexels_api.py`, and `eleven_api.py`. Each file contains functions related to a specific API.
4 |
5 | ## File: image_api.py
6 |
7 | This file contains functions for interacting with the Bing Images API and extracting image URLs from the HTML response.
8 |
9 | ### Functions:
10 |
11 | #### `_extractBingImages(html)`
12 |
13 | This function takes an HTML response as input and extracts image URLs, widths, and heights from it. It uses regular expressions to find the necessary information. The extracted image URLs are returned as a list of dictionaries, where each dictionary contains the URL, width, and height of an image.
14 |
15 | #### `_extractGoogleImages(html)`
16 |
17 | This function takes an HTML response as input and extracts image URLs from it. It uses regular expressions to find the necessary information. The extracted image URLs are returned as a list.
18 |
19 | #### `getBingImages(query, retries=5)`
20 |
21 | This function takes a query string as input and retrieves a list of image URLs from the Bing Images API. It replaces spaces in the query string with `+` and sends a GET request to the API. If the request is successful (status code 200), the HTML response is passed to `_extractBingImages` to extract the image URLs. If the request fails or no images are found, an exception is raised.
22 |
23 | ## File: pexels_api.py
24 |
25 | This file contains functions for interacting with the Pexels Videos API and retrieving video URLs based on a query string.
26 |
27 | ### Functions:
28 |
29 | #### `search_videos(query_string, orientation_landscape=True)`
30 |
31 | This function takes a query string and an optional boolean parameter `orientation_landscape` as input. It sends a GET request to the Pexels Videos API to search for videos based on the query string. The orientation of the videos can be specified as landscape or portrait. The function returns the JSON response from the API.
32 |
33 | #### `getBestVideo(query_string, orientation_landscape=True, used_vids=[])`
34 |
35 | This function takes a query string, an optional boolean parameter `orientation_landscape`, and an optional list `used_vids` as input. It calls the `search_videos` function to retrieve a list of videos based on the query string. It then filters and sorts the videos based on their dimensions and duration, and returns the URL of the best matching video. The `used_vids` parameter can be used to exclude previously used videos from the search results.
36 |
37 | ## File: eleven_api.py
38 |
39 | This file contains functions for interacting with the Eleven API and generating voice recordings based on text input.
40 |
41 | ### Functions:
42 |
43 | #### `getVoices(api_key="")`
44 |
45 | This function takes an optional API key as input and retrieves a dictionary of available voices from the Eleven API. The voices are returned as a dictionary, where the keys are voice names and the values are voice IDs.
46 |
47 | #### `getCharactersFromKey(key)`
48 |
49 | This function takes an API key as input and retrieves the remaining character limit for the given key. It sends a GET request to the Eleven API and extracts the character limit and count from the response.
50 |
51 | #### `generateVoice(text, character, fileName, stability=0.2, clarity=0.1, api_key="")`
52 |
53 | This function takes a text input, a character name, a file name, and optional parameters `stability`, `clarity`, and `api_key` as input. It generates a voice recording using the Eleven API and saves it to the specified file. The character name is used to select the appropriate voice. The stability and clarity parameters control the quality of the voice recording. The API key is required for authentication. If the request is successful, the file name is returned. Otherwise, an empty string is returned.
54 |
55 | ## File: youtube_api.py
56 |
57 | #### `search_videos_YouTube(query_string)`
58 |
59 | The search_videos_YouTube function takes a query string as input and searches for a video on YouTube based on that query. It returns the URL of the first search result if found, or None if no video is found.
60 |
--------------------------------------------------------------------------------
/shortGPT/api_utils/__init__.py:
--------------------------------------------------------------------------------
1 | from . import image_api
2 | from . import eleven_api
--------------------------------------------------------------------------------
/shortGPT/api_utils/eleven_api.py:
--------------------------------------------------------------------------------
1 | import json
2 |
3 | import requests
4 |
5 |
6 | class ElevenLabsAPI:
7 |
8 | def __init__(self, api_key):
9 | self.api_key = api_key
10 | self.url_base = 'https://api.elevenlabs.io/v1/'
11 | self.get_voices()
12 |
13 | def get_voices(self):
14 | '''Get the list of voices available'''
15 | url = self.url_base + 'voices'
16 | headers = {'accept': 'application/json'}
17 | if self.api_key:
18 | headers['xi-api-key'] = self.api_key
19 | response = requests.get(url, headers=headers)
20 | self.voices = {voice['name']: voice['voice_id'] for voice in response.json()['voices']}
21 | return self.voices
22 |
23 | def get_remaining_characters(self):
24 | '''Get the number of characters remaining'''
25 | url = self.url_base + 'user'
26 | headers = {'accept': '*/*', 'xi-api-key': self.api_key, 'Content-Type': 'application/json'}
27 | response = requests.get(url, headers=headers)
28 |
29 | if response.status_code == 200:
30 | sub = response.json()['subscription']
31 | return sub['character_limit'] - sub['character_count']
32 | else:
33 | raise Exception(response.json()['detail']['message'])
34 |
35 | def generate_voice(self, text, character, filename, stability=0.2, clarity=0.1):
36 | '''Generate a voice'''
37 | if character not in self.voices:
38 | print(character, 'is not in the array of characters: ', list(self.voices.keys()))
39 |
40 | voice_id = self.voices[character]
41 | url = f'{self.url_base}text-to-speech/{voice_id}/stream'
42 | headers = {'accept': '*/*', 'xi-api-key': self.api_key, 'Content-Type': 'application/json'}
43 | data = json.dumps({"model_id": "eleven_multilingual_v1", "text": text, "stability": stability, "similarity_boost": clarity})
44 | response = requests.post(url, headers=headers, data=data)
45 |
46 | if response.status_code == 200:
47 | with open(filename, 'wb') as f:
48 | f.write(response.content)
49 | return filename
50 | else:
51 | message = response.text
52 | raise Exception(f'Error in response, {response.status_code} , message: {message}')
53 |
--------------------------------------------------------------------------------
/shortGPT/api_utils/image_api.py:
--------------------------------------------------------------------------------
1 | import json
2 | import requests
3 | import re
4 | import urllib.parse
5 |
6 | def _extractBingImages(html):
7 | pattern = r'mediaurl=(.*?)&.*?expw=(\d+).*?exph=(\d+)'
8 | matches = re.findall(pattern, html)
9 | result = []
10 |
11 | for match in matches:
12 | url, width, height = match
13 | if url.endswith('.jpg') or url.endswith('.png') or url.endswith('.jpeg'):
14 | result.append({'url': urllib.parse.unquote(url), 'width': int(width), 'height': int(height)})
15 |
16 | return result
17 |
18 |
19 | def _extractGoogleImages(html):
20 | images = []
21 | regex = re.compile(r"AF_initDataCallback\({key: 'ds:1', hash: '2', data:(.*?), sideChannel: {}}\);")
22 | match = regex.search(html)
23 | if match:
24 | dz = json.loads(match.group(1))
25 | for c in dz[56][1][0][0][1][0]:
26 | try:
27 | thing = list(c[0][0].values())[0]
28 | images.append(thing[1][3])
29 | except:
30 | pass
31 | return images
32 |
33 |
34 | def getBingImages(query, retries=5):
35 | query = query.replace(" ", "+")
36 | images = []
37 | tries = 0
38 | while(len(images) == 0 and tries < retries):
39 | response = requests.get(f"https://www.bing.com/images/search?q={query}&first=1")
40 | if(response.status_code == 200):
41 | images = _extractBingImages(response.text)
42 | else:
43 | print("Error While making bing image searches", response.text)
44 | raise Exception("Error While making bing image searches")
45 | if(images):
46 | return images
47 | raise Exception("Error While making bing image searches")
48 |
49 |
--------------------------------------------------------------------------------
/shortGPT/api_utils/pexels_api.py:
--------------------------------------------------------------------------------
1 | import requests
2 |
3 | from shortGPT.config.api_db import ApiKeyManager
4 |
5 |
6 | def search_videos(query_string, orientation_landscape=True):
7 | url = "https://api.pexels.com/videos/search"
8 | headers = {
9 | "Authorization": ApiKeyManager.get_api_key("PEXELS")
10 | }
11 | params = {
12 | "query": query_string,
13 | "orientation": "landscape" if orientation_landscape else "portrait",
14 | "per_page": 15
15 | }
16 |
17 | response = requests.get(url, headers=headers, params=params)
18 | json_data = response.json()
19 | # print(response.headers['X-Ratelimit-Limit'])
20 | # print(response.headers['X-Ratelimit-Remaining'])
21 | # print(response.headers['X-Ratelimit-Reset'])
22 |
23 | return json_data
24 |
25 |
26 | def getBestVideo(query_string, orientation_landscape=True, used_vids=[]):
27 | vids = search_videos(query_string, orientation_landscape)
28 | videos = vids['videos'] # Extract the videos list from JSON
29 |
30 | # Filter and extract videos with width and height as 1920x1080 for landscape or 1080x1920 for portrait
31 | if orientation_landscape:
32 | filtered_videos = [video for video in videos if video['width'] >= 1920 and video['height'] >= 1080 and video['width']/video['height'] == 16/9]
33 | else:
34 | filtered_videos = [video for video in videos if video['width'] >= 1080 and video['height'] >= 1920 and video['height']/video['width'] == 16/9]
35 |
36 | # Sort the filtered videos by duration in ascending order
37 | sorted_videos = sorted(filtered_videos, key=lambda x: abs(15-int(x['duration'])))
38 |
39 | # Extract the top 3 videos' URLs
40 | for video in sorted_videos:
41 | for video_file in video['video_files']:
42 | if orientation_landscape:
43 | if video_file['width'] == 1920 and video_file['height'] == 1080:
44 | if not (video_file['link'].split('.hd')[0] in used_vids):
45 | return video_file['link']
46 | else:
47 | if video_file['width'] == 1080 and video_file['height'] == 1920:
48 | if not (video_file['link'].split('.hd')[0] in used_vids):
49 | return video_file['link']
50 | print("NO LINKS found for this round of search with query :", query_string)
51 | return None
52 |
--------------------------------------------------------------------------------
/shortGPT/api_utils/youtube_api.py:
--------------------------------------------------------------------------------
1 | from time import sleep
2 | from time import sleep
3 | from yt_dlp import YoutubeDL
4 |
5 |
6 | def search_videos_YouTube(query_string): # or query?
7 | ydl_opts = {
8 | 'default_search': 'ytsearch',
9 | 'format': 'bestvideo[height=1920][height=1080]+bestaudio/best', # Optional: Specify desired video format
10 | 'max_downloads': 1,
11 | 'no_playlist' : True,
12 | 'ignoreerrors': True,
13 | #'width': 1920,
14 | #'height': 1080,
15 | #'start_time': 10,
16 | #'duration': 100,
17 | 'min_views': 2000
18 | }
19 |
20 | with YoutubeDL(ydl_opts) as ydl:
21 | try:
22 | search_results = ydl.extract_info(query_string, download=False)
23 | video_url = search_results['entries'][0]['webpage_url']
24 | print(video_url, ", we can proceed")
25 | return video_url
26 | except:
27 | return None
28 |
--------------------------------------------------------------------------------
/shortGPT/audio/README.md:
--------------------------------------------------------------------------------
1 | # Audio Module
2 |
3 | The audio module provides a set of functions and classes for working with audio files and performing various operations on them.
4 |
5 | ## audio_utils.py
6 |
7 | This file contains utility functions for audio processing.
8 |
9 | ### downloadYoutubeAudio(url, outputFile)
10 | Downloads audio from a YouTube video given its URL and saves it to the specified output file. Returns the path to the downloaded audio file and its duration.
11 |
12 | ### speedUpAudio(tempAudioPath, outputFile, expected_chars_per_sec=CONST_CHARS_PER_SEC)
13 | Speeds up the audio to make it under 60 seconds. If the duration of the audio is greater than 57 seconds, it will be sped up to fit within the time limit. Otherwise, the audio will be left unchanged. Returns the path to the sped up audio file.
14 |
15 | ### ChunkForAudio(alltext, chunk_size=2500)
16 | Splits a text into chunks of a specified size (default is 2500 characters) to be used for audio generation. Returns a list of text chunks.
17 |
18 | ### audioToText(filename, model_size="tiny")
19 | Converts an audio file to text using a pre-trained model. Returns a generator object that yields the transcribed text and its corresponding timestamps.
20 |
21 | ### getWordsPerSec(filename)
22 | Calculates the average number of words per second in an audio file. Returns the words per second value.
23 |
24 | ### getCharactersPerSec(filename)
25 | Calculates the average number of characters per second in an audio file. Returns the characters per second value.
26 |
27 | ## audio_duration.py
28 |
29 | This file contains functions for getting the duration of audio files.
30 |
31 | ### get_duration_yt_dlp(url)
32 | Gets the duration of a YouTube video or audio using the yt_dlp library. Returns the duration in seconds.
33 |
34 | ### get_duration_ffprobe(signed_url)
35 | Gets the duration of an audio or video file using the ffprobe command line tool. Returns the duration in seconds.
36 |
37 | ### getAssetDuration(url, isVideo=True)
38 | Gets the duration of an audio or video asset from various sources, including YouTube and cloud storage providers. Returns the URL of the asset and its duration in seconds.
39 |
40 | ### getYoutubeAudioLink(url)
41 | Gets the audio link of a YouTube video given its URL. Returns the audio URL and its duration in seconds.
42 |
43 | ### getYoutubeVideoLink(url)
44 | Gets the video link of a YouTube video given its URL. Returns the video URL and its duration in seconds.
45 |
46 | ## voice_module.py
47 |
48 | This file contains an abstract base class for voice modules.
49 |
50 | ### VoiceModule
51 | An abstract base class that defines the interface for voice modules. Voice modules are responsible for generating voice recordings from text.
52 |
53 | #### update_usage()
54 | Updates the usage statistics of the voice module.
55 |
56 | #### get_remaining_characters()
57 | Gets the number of remaining characters that can be generated using the voice module.
58 |
59 | #### generate_voice(text, outputfile)
60 | Generates a voice recording from the specified text and saves it to the specified output file.
61 |
62 | ## eleven_voice_module.py
63 |
64 | This file contains a voice module implementation for the ElevenLabs API.
65 |
66 | ### ElevenLabsVoiceModule
67 | A voice module implementation for the ElevenLabs API. Requires an API key and a voice name to be initialized.
68 |
69 | #### update_usage()
70 | Updates the usage statistics of the ElevenLabs API.
71 |
72 | #### get_remaining_characters()
73 | Gets the number of remaining characters that can be generated using the ElevenLabs API.
74 |
75 | #### generate_voice(text, outputfile)
76 | Generates a voice recording from the specified text using the ElevenLabs API and saves it to the specified output file. Raises an exception if the API key does not have enough credits to generate the text.
--------------------------------------------------------------------------------
/shortGPT/audio/__init__.py:
--------------------------------------------------------------------------------
1 | from . import audio_utils
2 | from . import eleven_voice_module
3 | from . import audio_duration
--------------------------------------------------------------------------------
/shortGPT/audio/audio_duration.py:
--------------------------------------------------------------------------------
1 | import json
2 | import subprocess
3 |
4 | import yt_dlp
5 |
6 | from shortGPT.editing_utils.handle_videos import getYoutubeVideoLink
7 |
8 |
9 | def get_duration_yt_dlp(url):
10 | ydl_opts = {
11 | "quiet": True,
12 | "no_warnings": True,
13 | "no_color": True,
14 | "no_call_home": True,
15 | "no_check_certificate": True
16 | }
17 | try:
18 | with yt_dlp.YoutubeDL(ydl_opts) as ydl:
19 | dictMeta = ydl.extract_info(url, download=False, )
20 | return dictMeta['duration'], ""
21 | except Exception as e:
22 | return None, f"Failed getting duration from the following video/audio url/path using yt_dlp. {e.args[0]}"
23 |
24 |
25 | def get_duration_ffprobe(signed_url):
26 | try:
27 | cmd = [
28 | "ffprobe",
29 | "-v",
30 | "quiet",
31 | "-print_format",
32 | "json",
33 | "-show_format",
34 | "-i",
35 | signed_url
36 | ]
37 | output = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
38 |
39 | if output.returncode != 0:
40 | return None, f"Error executing command using ffprobe. {output.stderr.strip()}"
41 |
42 | metadata = json.loads(output.stdout)
43 | duration = float(metadata["format"]["duration"])
44 | return duration, ""
45 | except Exception as e:
46 | print("Failed getting the duration of the asked ressource", e.args[0])
47 | return None, ""
48 |
49 |
50 | def get_asset_duration(url, isVideo=True):
51 | if ("youtube.com" in url):
52 | if not isVideo:
53 | url, _ = getYoutubeAudioLink(url)
54 | else:
55 | url, _ = getYoutubeVideoLink(url)
56 | # Trying two different method to get the duration of the video / audio
57 | duration, err_ffprobe = get_duration_ffprobe(url)
58 | if duration is not None:
59 | return url, duration
60 |
61 | duration, err_yt_dlp = get_duration_yt_dlp(url)
62 | if duration is not None:
63 | return url, duration
64 | print(err_yt_dlp)
65 | print(err_ffprobe)
66 | print(f"The url/path {url} does not point to a video/ audio. Impossible to extract its duration")
67 | return url, None
68 |
69 |
70 | def getYoutubeAudioLink(url):
71 | ydl_opts = {
72 | "quiet": True,
73 | "no_warnings": True,
74 | "no_color": True,
75 | "no_call_home": True,
76 | "no_check_certificate": True,
77 | "format": "bestaudio/best"
78 | }
79 | try:
80 | with yt_dlp.YoutubeDL(ydl_opts) as ydl:
81 | dictMeta = ydl.extract_info(
82 | url,
83 | download=False)
84 | return dictMeta['url'], dictMeta['duration']
85 | except Exception as e:
86 | print("Failed getting audio link from the following video/url", e.args[0])
87 | return None
88 |
--------------------------------------------------------------------------------
/shortGPT/audio/audio_utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import subprocess
3 |
4 | import yt_dlp
5 |
6 | from shortGPT.audio.audio_duration import get_asset_duration
7 |
8 | CONST_CHARS_PER_SEC = 20.5 # Arrived to this result after whispering a ton of shorts and calculating the average number of characters per second of speech.
9 |
10 | WHISPER_MODEL = None
11 |
12 |
13 | def downloadYoutubeAudio(url, outputFile):
14 | ydl_opts = {
15 | "quiet": True,
16 | "no_warnings": True,
17 | "no_color": True,
18 | "no_call_home": True,
19 | "no_check_certificate": True,
20 | "format": "bestaudio/best",
21 | "outtmpl": outputFile
22 | }
23 | try:
24 | with yt_dlp.YoutubeDL(ydl_opts) as ydl:
25 | dictMeta = ydl.extract_info(
26 | url,
27 | download=True)
28 | if (not os.path.exists(outputFile)):
29 | raise Exception("Audio Download Failed")
30 | return outputFile, dictMeta['duration']
31 | except Exception as e:
32 | print("Failed downloading audio from the following video/url", e.args[0])
33 | return None
34 |
35 |
36 | def speedUpAudio(tempAudioPath, outputFile, expected_duration=None): # Speeding up the audio to make it under 60secs, otherwise the output video is not considered as a short.
37 | tempAudioPath, duration = get_asset_duration(tempAudioPath, False)
38 | if not expected_duration:
39 | if (duration > 57):
40 | subprocess.run(['ffmpeg', '-i', tempAudioPath, '-af', f'atempo={(duration/57):.5f}', outputFile])
41 | else:
42 | subprocess.run(['ffmpeg', '-i', tempAudioPath, outputFile])
43 | else:
44 | subprocess.run(['ffmpeg', '-i', tempAudioPath, '-af', f'atempo={(duration/expected_duration):.5f}', outputFile])
45 | if (os.path.exists(outputFile)):
46 | return outputFile
47 |
48 |
49 | def ChunkForAudio(alltext, chunk_size=2500):
50 | alltext_list = alltext.split('.')
51 | chunks = []
52 | curr_chunk = ''
53 | for text in alltext_list:
54 | if len(curr_chunk) + len(text) <= chunk_size:
55 | curr_chunk += text + '.'
56 | else:
57 | chunks.append(curr_chunk)
58 | curr_chunk = text + '.'
59 | if curr_chunk:
60 | chunks.append(curr_chunk)
61 | return chunks
62 |
63 |
64 | def audioToText(filename, model_size="base"):
65 | from whisper_timestamped import load_model, transcribe_timestamped
66 | global WHISPER_MODEL
67 | if (WHISPER_MODEL == None):
68 | WHISPER_MODEL = load_model(model_size)
69 | gen = transcribe_timestamped(WHISPER_MODEL, filename, verbose=False, fp16=False)
70 | return gen
71 |
72 |
73 | def getWordsPerSec(filename):
74 | a = audioToText(filename)
75 | return len(a['text'].split()) / a['segments'][-1]['end']
76 |
77 |
78 | def getCharactersPerSec(filename):
79 | a = audioToText(filename)
80 | return len(a['text']) / a['segments'][-1]['end']
81 |
82 | def run_background_audio_split(sound_file_path):
83 | try:
84 | # Run spleeter command
85 | # Get absolute path of sound file
86 | output_dir = os.path.dirname(sound_file_path)
87 | command = f"spleeter separate -p spleeter:2stems -o '{output_dir}' '{sound_file_path}'"
88 |
89 | process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
90 |
91 | # If spleeter runs successfully, return the path to the background music file
92 | if process.returncode == 0:
93 | return os.path.join(output_dir, sound_file_path.split("/")[-1].split(".")[0], "accompaniment.wav")
94 | else:
95 | return None
96 | except Exception:
97 | # If spleeter crashes, return None
98 | return None
99 |
--------------------------------------------------------------------------------
/shortGPT/audio/edge_voice_module.py:
--------------------------------------------------------------------------------
1 | import asyncio
2 | import os
3 | from concurrent.futures import ThreadPoolExecutor
4 |
5 | import edge_tts
6 |
7 | from shortGPT.audio.voice_module import VoiceModule
8 | from shortGPT.config.languages import (EDGE_TTS_VOICENAME_MAPPING,
9 | LANGUAGE_ACRONYM_MAPPING, Language)
10 |
11 |
12 | def run_async_func(loop, func):
13 | return loop.run_until_complete(func)
14 |
15 |
16 | class EdgeTTSVoiceModule(VoiceModule):
17 | def __init__(self, voiceName):
18 | self.voiceName = voiceName
19 | super().__init__()
20 |
21 | def update_usage(self):
22 | return None
23 |
24 | def get_remaining_characters(self):
25 | return 999999999999
26 |
27 | def generate_voice(self, text, outputfile):
28 | loop = asyncio.new_event_loop()
29 | asyncio.set_event_loop(loop)
30 |
31 | try:
32 | with ThreadPoolExecutor() as executor:
33 | loop.run_in_executor(executor, run_async_func, loop, self.async_generate_voice(text, outputfile))
34 |
35 | finally:
36 | loop.close()
37 | if not os.path.exists(outputfile):
38 | print("An error happened during edge_tts audio generation, no output audio generated")
39 | raise Exception("An error happened during edge_tts audio generation, no output audio generated")
40 | return outputfile
41 |
42 | async def async_generate_voice(self, text, outputfile):
43 | try:
44 | communicate = edge_tts.Communicate(text, self.voiceName)
45 | with open(outputfile, "wb") as file:
46 | async for chunk in communicate.stream():
47 | if chunk["type"] == "audio":
48 | file.write(chunk["data"])
49 | except Exception as e:
50 | print("Error generating audio using edge_tts", e)
51 | raise Exception("An error happened during edge_tts audio generation, no output audio generated", e)
52 | return outputfile
53 |
--------------------------------------------------------------------------------
/shortGPT/audio/eleven_voice_module.py:
--------------------------------------------------------------------------------
1 | from shortGPT.api_utils.eleven_api import ElevenLabsAPI
2 | from shortGPT.audio.voice_module import VoiceModule
3 |
4 |
5 | class ElevenLabsVoiceModule(VoiceModule):
6 | def __init__(self, api_key, voiceName, checkElevenCredits=False):
7 | self.api_key = api_key
8 | self.voiceName = voiceName
9 | self.remaining_credits = None
10 | self.eleven_labs_api = ElevenLabsAPI(self.api_key)
11 | self.update_usage()
12 | if checkElevenCredits and self.get_remaining_characters() < 1200:
13 | raise Exception(f"Your ElevenLabs API KEY doesn't have enough credits ({self.remaining_credits} character remaining). Minimum required: 1200 characters (equivalent to a 45sec short)")
14 | super().__init__()
15 |
16 | def update_usage(self):
17 | self.remaining_credits = self.eleven_labs_api.get_remaining_characters()
18 | return self.remaining_credits
19 |
20 | def get_remaining_characters(self):
21 | return self.remaining_credits if self.remaining_credits else self.eleven_labs_api.get_remaining_characters()
22 |
23 | def generate_voice(self, text, outputfile):
24 | if self.get_remaining_characters() >= len(text):
25 | file_path =self.eleven_labs_api.generate_voice(text=text, character=self.voiceName, filename=outputfile)
26 | self.update_usage()
27 | return file_path
28 | else:
29 | raise Exception(f"You cannot generate {len(text)} characters as your ElevenLabs key has only {self.remaining_credits} characters remaining")
30 |
--------------------------------------------------------------------------------
/shortGPT/audio/voice_module.py:
--------------------------------------------------------------------------------
1 | from abc import ABC, abstractmethod
2 | class VoiceModule(ABC):
3 |
4 | def __init__(self):
5 | pass
6 | @abstractmethod
7 | def update_usage(self):
8 | pass
9 |
10 | @abstractmethod
11 | def get_remaining_characters(self):
12 | pass
13 |
14 | @abstractmethod
15 | def generate_voice(self,text, outputfile):
16 | pass
--------------------------------------------------------------------------------
/shortGPT/config/README.md:
--------------------------------------------------------------------------------
1 | # Module: config
2 |
3 | The `config` module contains various files and functions related to configuration settings and utilities.
4 |
5 | ## File: config.py
6 |
7 | This file contains functions for reading and writing YAML files, as well as loading local assets specified in a YAML configuration file.
8 |
9 | ### Functions:
10 |
11 | #### `read_yaml_config(file_path: str) -> dict`
12 |
13 | This function reads and returns the contents of a YAML file as a dictionary.
14 |
15 | Parameters:
16 | - `file_path` - The path to the YAML file to be read.
17 |
18 | Returns:
19 | - A dictionary containing the contents of the YAML file.
20 |
21 | #### `write_yaml_config(file_path: str, data: dict)`
22 |
23 | This function writes a dictionary to a YAML file.
24 |
25 | Parameters:
26 | - `file_path` - The path to the YAML file to be written.
27 | - `data` - The dictionary to be written to the YAML file.
28 |
29 | #### `load_editing_assets() -> dict`
30 |
31 | This function loads all local assets from the static-assets folder specified in the yaml_config.
32 |
33 | Returns:
34 | - A dictionary containing the YAML configuration with updated local assets.
35 |
36 | ## File: asset_db.py
37 |
38 | This file contains a class `AssetDatabase` that provides methods for managing a database of assets.
39 |
40 | ### Class: AssetDatabase
41 |
42 | This class represents a database of assets and provides methods for adding, removing, and retrieving assets.
43 |
44 | Methods:
45 |
46 | #### `__init__()`
47 |
48 | This method initializes the `AssetDatabase` object. It creates the local and remote asset collections if they don't already exist.
49 |
50 | #### `asset_exists(name)`
51 |
52 | This method checks if an asset with the given name exists in the database.
53 |
54 | Parameters:
55 | - `name` - The name of the asset.
56 |
57 | Returns:
58 | - `True` if the asset exists, `False` otherwise.
59 |
60 | #### `add_local_asset(name, type, path)`
61 |
62 | This method adds a local asset to the database.
63 |
64 | Parameters:
65 | - `name` - The name of the asset.
66 | - `type` - The type of the asset.
67 | - `path` - The path to the asset file.
68 |
69 | #### `add_remote_asset(name, type, url)`
70 |
71 | This method adds a remote asset to the database.
72 |
73 | Parameters:
74 | - `name` - The name of the asset.
75 | - `type` - The type of the asset.
76 | - `url` - The URL of the remote asset.
77 |
78 | #### `remove_asset(name)`
79 |
80 | This method removes an asset from the database.
81 |
82 | Parameters:
83 | - `name` - The name of the asset.
84 |
85 | #### `get_df()`
86 |
87 | This method returns a pandas DataFrame with specific asset details.
88 |
89 | Returns:
90 | - A pandas DataFrame containing the asset details.
91 |
92 | #### `sync_local_assets()`
93 |
94 | This method loads all local assets from the static-assets folder into the database.
95 |
96 | #### `getAssetLink(key)`
97 |
98 | This method returns the link or path of an asset with the given key.
99 |
100 | Parameters:
101 | - `key` - The key of the asset.
102 |
103 | Returns:
104 | - The link or path of the asset.
105 |
106 | #### `getAssetDuration(key)`
107 |
108 | This method returns the duration of an asset with the given key.
109 |
110 | Parameters:
111 | - `key` - The key of the asset.
112 |
113 | Returns:
114 | - The duration of the asset.
115 |
116 | #### `updateLocalAsset(key: str)`
117 |
118 | This method updates the local asset with the given key.
119 |
120 | Parameters:
121 | - `key` - The key of the asset.
122 |
123 | Returns:
124 | - The file path and duration of the updated asset.
125 |
126 | #### `updateYoutubeAsset(key: str)`
127 |
128 | This method updates the YouTube asset with the given key.
129 |
130 | Parameters:
131 | - `key` - The key of the asset.
132 |
133 | Returns:
134 | - The remote URL and duration of the updated asset.
135 |
136 | ## File: api_db.py
137 |
138 | This file contains functions for managing API keys.
139 |
140 | ### Functions:
141 |
142 | #### `get_api_key(name)`
143 |
144 | This function retrieves the API key with the given name.
145 |
146 | Parameters:
147 | - `name` - The name of the API key.
148 |
149 | Returns:
150 | - The API key.
151 |
152 | #### `set_api_key(name, value)`
153 |
154 | This function sets the API key with the given name to the specified value.
155 |
156 | Parameters:
157 | - `name` - The name of the API key.
158 | - `value` - The value of the API key.
159 |
160 | ## File: languages.py
161 |
162 | This file contains an enumeration class `Language` that represents different languages.
163 |
164 | ### Enum: Language
165 |
166 | This enumeration class represents different languages and provides a list of supported languages.
167 |
168 | Supported Languages:
169 | - ENGLISH
170 | - SPANISH
171 | - FRENCH
172 | - ARABIC
173 | - GERMAN
174 | - POLISH
175 | - ITALIAN
176 | - PORTUGUESE
177 |
178 | ## File: path_utils.py
179 |
180 | This file contains utility functions for searching for program paths.
181 |
182 | ### Functions:
183 |
184 | #### `search_program(program_name)`
185 |
186 | This function searches for the specified program and returns its path.
187 |
188 | Parameters:
189 | - `program_name` - The name of the program to search for.
190 |
191 | Returns:
192 | - The path of the program, or None if the program is not found.
193 |
194 | #### `get_program_path(program_name)`
195 |
196 | This function retrieves the path of the specified program.
197 |
198 | Parameters:
199 | - `program_name` - The name of the program.
200 |
201 | Returns:
202 | - The path of the program, or None if the program is not found.
203 |
204 | Note: The `magick_path` variable sets the `IMAGEMAGICK_BINARY` environment variable to the path of the `magick` program if it exists.
--------------------------------------------------------------------------------
/shortGPT/config/__init__.py:
--------------------------------------------------------------------------------
1 | from . import config
--------------------------------------------------------------------------------
/shortGPT/config/api_db.py:
--------------------------------------------------------------------------------
1 | import enum
2 | from shortGPT.database.db_document import TinyMongoDocument
3 |
4 | class ApiProvider(enum.Enum):
5 | OPENAI = "OPENAI"
6 | ELEVEN_LABS = "ELEVEN LABS"
7 | PEXELS = "PEXELS"
8 |
9 |
10 | class ApiKeyManager:
11 | api_key_doc_manager = TinyMongoDocument("api_db", "api_keys", "key_doc", create=True)
12 |
13 | @classmethod
14 | def get_api_key(cls, key: str or ApiProvider):
15 | if isinstance(key, ApiProvider):
16 | key = key.value
17 | return cls.api_key_doc_manager._get(key) or ""
18 |
19 | @classmethod
20 | def set_api_key(cls, key: str or ApiProvider, value: str):
21 | if isinstance(key, ApiProvider):
22 | key = key.value
23 | return cls.api_key_doc_manager._save({key: value})
--------------------------------------------------------------------------------
/shortGPT/config/config.py:
--------------------------------------------------------------------------------
1 | import yaml
2 | import os
3 | from dotenv import load_dotenv
4 |
5 | load_dotenv()
6 |
7 | ELEVEN_LABS_KEY = os.getenv('ELEVEN_LABS_API_KEY')
8 | OPENAI_KEY = os.getenv('OPENAI_API_KEY')
9 | PLAY_HT_USERID = os.getenv('PLAY_HT_USERID')
10 | PLAY_HT_API_KEY = os.getenv('PLAY_HT_API_KEY')
11 |
12 |
13 | def read_yaml_config(file_path: str) -> dict:
14 | """Reads and returns the contents of a YAML file as dictionary"""
15 | with open(file_path, 'r') as file:
16 | contents = yaml.safe_load(file)
17 | return contents
18 |
19 | def write_yaml_config(file_path: str, data: dict):
20 | """Writes a dictionary to a YAML file"""
21 | with open(file_path, 'w') as file:
22 | yaml.dump(data, file)
23 |
24 | def load_editing_assets() -> dict:
25 | """Loads all local assets from the static-assets folder specified in the yaml_config"""
26 | yaml_config = read_yaml_config("public.yaml")
27 | if yaml_config['local-assets'] == None:
28 | yaml_config['local-assets'] = {}
29 | # Create a copy of the dictionary before iterating over it
30 | local_paths = []
31 | if yaml_config['local-assets'] != {}:
32 | local_assets = yaml_config['local-assets'].copy()
33 | # Removing local paths that don't exist
34 | for key in local_assets:
35 | asset = local_assets[key]
36 | if(type(asset) == str):
37 | filePath = local_assets[key]
38 | else:
39 | filePath = local_assets[key]['path']
40 | if not os.path.exists(filePath):
41 | del yaml_config['local-assets'][key]
42 | else:
43 | local_paths.append(filePath)
44 |
45 | folder_path = 'public'
46 | for foldername, subfolders, filenames in os.walk(folder_path):
47 | for filename in filenames:
48 | file_path = os.path.join(foldername, filename).replace("\\", "/")
49 | if not file_path in local_paths:
50 | yaml_config['local-assets'][filename] = file_path
51 |
52 | write_yaml_config("public.yaml", yaml_config)
53 |
54 | return yaml_config
55 |
56 |
57 | # print(load_editing_assets())
58 | # print(read_yaml_config("editing_assets.yaml")['local-assets'])
59 |
--------------------------------------------------------------------------------
/shortGPT/config/path_utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import platform
3 | import sys
4 | import subprocess
5 | import subprocess
6 | import tempfile
7 | def search_program(program_name):
8 | try:
9 | search_cmd = "where" if platform.system() == "Windows" else "which"
10 | return subprocess.check_output([search_cmd, program_name]).decode().strip()
11 | except subprocess.CalledProcessError:
12 | return None
13 |
14 | def get_program_path(program_name):
15 | program_path = search_program(program_name)
16 | return program_path
17 |
18 | magick_path = get_program_path("magick")
19 | if magick_path:
20 | os.environ['IMAGEMAGICK_BINARY'] = magick_path
21 |
22 | import os
23 |
24 | def is_running_in_colab():
25 | return 'COLAB_GPU' in os.environ
26 |
27 | def handle_path(path, extension = ".mp4"):
28 | if 'https' in path:
29 | if is_running_in_colab():
30 | temp_file = tempfile.NamedTemporaryFile(suffix= extension, delete=False)
31 | # The '-y' option overwrites the output file if it already exists.
32 | command = ['ffmpeg', '-y', '-i', path, temp_file.name]
33 | subprocess.run(command, check=True)
34 | temp_file.close()
35 | return temp_file.name
36 | return path
--------------------------------------------------------------------------------
/shortGPT/database/README.md:
--------------------------------------------------------------------------------
1 | # Database Module Documentation
2 |
3 | The `database` module provides classes for managing database documents and data in the ShortGPT application. The module consists of three files:
4 |
5 | - `content_data_manager.py`: Defines the `ContentDataManager` class, which manages the content data for a document in the database.
6 | - `content_database.py`: Defines the `ContentDatabase` class, which provides methods for creating and accessing `ContentDataManager` instances.
7 | - `db_document.py`: Defines the `DatabaseDocument` abstract base class and the `TinyMongoDocument` class, which represents a document in a TinyMongo database.
8 |
9 | ## File: content_data_manager.py
10 |
11 | The `content_data_manager.py` file contains the `ContentDataManager` class, which is responsible for managing the content data for a document in the database.
12 |
13 | ### Class: ContentDataManager
14 |
15 | #### `__init__(self, db_doc: DatabaseDocument, content_type: str, new=False)`
16 |
17 | - Initializes a new instance of the `ContentDataManager` class.
18 | - Parameters:
19 | - `db_doc`: The `DatabaseDocument` instance representing the document in the database.
20 | - `content_type`: The type of content to be managed by the `ContentDataManager`.
21 | - `new`: (Optional) A boolean flag indicating whether the document is new or existing. Default is `False`.
22 |
23 | #### `save(self, key, value)`
24 |
25 | - Saves the specified key-value pair to the document.
26 | - Parameters:
27 | - `key`: The key of the data to be saved.
28 | - `value`: The value of the data to be saved.
29 |
30 | #### `get(self, key)`
31 |
32 | - Retrieves the value associated with the specified key from the document.
33 | - Parameters:
34 | - `key`: The key of the data to be retrieved.
35 | - Returns:
36 | - The value associated with the specified key.
37 |
38 | #### `_getId(self)`
39 |
40 | - Retrieves the ID of the document.
41 | - Returns:
42 | - The ID of the document.
43 |
44 | #### `delete(self)`
45 |
46 | - Deletes the document from the database.
47 |
48 | #### `__str__(self)`
49 |
50 | - Returns a string representation of the document.
51 |
52 | ## File: content_database.py
53 |
54 | The `content_database.py` file contains the `ContentDatabase` class, which provides methods for creating and accessing `ContentDataManager` instances.
55 |
56 | ### Class: ContentDatabase
57 |
58 | #### `instanciateContentDataManager(self, id: str, content_type: str, new=False)`
59 |
60 | - Creates a new `ContentDataManager` instance for the specified document ID and content type.
61 | - Parameters:
62 | - `id`: The ID of the document.
63 | - `content_type`: The type of content to be managed by the `ContentDataManager`.
64 | - `new`: (Optional) A boolean flag indicating whether the document is new or existing. Default is `False`.
65 | - Returns:
66 | - A new `ContentDataManager` instance.
67 |
68 | #### `getContentDataManager(self, id, content_type: str)`
69 |
70 | - Retrieves an existing `ContentDataManager` instance for the specified document ID and content type.
71 | - Parameters:
72 | - `id`: The ID of the document.
73 | - `content_type`: The type of content to be managed by the `ContentDataManager`.
74 | - Returns:
75 | - The existing `ContentDataManager` instance, or `None` if not found.
76 |
77 | #### `createContentDataManager(self, content_type: str) -> ContentDataManager`
78 |
79 | - Creates a new `ContentDataManager` instance for a new document with the specified content type.
80 | - Parameters:
81 | - `content_type`: The type of content to be managed by the `ContentDataManager`.
82 | - Returns:
83 | - A new `ContentDataManager` instance.
84 |
85 | ## File: db_document.py
86 |
87 | The `db_document.py` file contains the `DatabaseDocument` abstract base class and the `TinyMongoDocument` class, which represents a document in a TinyMongo database.
88 |
89 | ### Abstract Class: DatabaseDocument
90 |
91 | - An abstract base class that defines the interface for a database document.
92 | - Subclasses must implement the abstract methods:
93 | - `_save(self, key, data)`
94 | - `_get(self, key)`
95 | - `_getId(self)`
96 | - `__str__(self)`
97 | - `_delete(self)`
98 |
99 | ### Class: TinyMongoDocument
100 |
101 | - Represents a document in a TinyMongo database.
102 | - Inherits from the `DatabaseDocument` abstract base class.
103 |
104 | #### `__init__(self, db_name: str, collection_name: str, document_id: str, create=False)`
105 |
106 | - Initializes a new instance of the `TinyMongoDocument` class.
107 | - Parameters:
108 | - `db_name`: The name of the database.
109 | - `collection_name`: The name of the collection.
110 | - `document_id`: The ID of the document.
111 | - `create`: (Optional) A boolean flag indicating whether to create the document if it doesn't exist. Default is `False`.
112 |
113 | #### `exists(self)`
114 |
115 | - Checks if the document exists in the database.
116 | - Returns:
117 | - `True` if the document exists, `False` otherwise.
118 |
119 | #### `_save(self, data)`
120 |
121 | - Saves the specified data to the document.
122 | - Parameters:
123 | - `data`: The data to be saved.
124 |
125 | #### `_get(self, key=None)`
126 |
127 | - Retrieves the value associated with the specified key from the document.
128 | - Parameters:
129 | - `key`: (Optional) The key of the data to be retrieved. If not specified, returns the entire document.
130 | - Returns:
131 | - The value associated with the specified key, or the entire document if no key is specified.
132 |
133 | #### `_delete(self, key)`
134 |
135 | - Deletes the specified key from the document.
136 | - Parameters:
137 | - `key`: The key to be deleted.
138 |
139 | #### `_getId(self)`
140 |
141 | - Retrieves the ID of the document.
142 | - Returns:
143 | - The ID of the document.
144 |
145 | #### `__str__(self)`
146 |
147 | - Returns a string representation of the document.
--------------------------------------------------------------------------------
/shortGPT/database/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/shortGPT/database/__init__.py
--------------------------------------------------------------------------------
/shortGPT/database/content_data_manager.py:
--------------------------------------------------------------------------------
1 | from shortGPT.database.db_document import AbstractDatabaseDocument
2 |
3 |
4 | class ContentDataManager():
5 |
6 | def __init__(self, db_doc: AbstractDatabaseDocument, content_type: str, new=False):
7 | self.contentType = content_type
8 | self.db_doc = db_doc
9 | if new:
10 | self.db_doc._save({
11 | 'content_type': content_type,
12 | 'ready_to_upload': False,
13 | 'last_completed_step': 0,
14 | })
15 |
16 | def save(self, key, value):
17 | self.db_doc._save({key: value})
18 |
19 | def get(self, key):
20 | return self.db_doc._get(key)
21 |
22 | def _getId(self):
23 | return self.db_doc._getId()
24 |
25 | def delete(self):
26 | self.db_doc.delete()
27 |
28 | def __str__(self):
29 | return self.db_doc.__str__()
30 |
--------------------------------------------------------------------------------
/shortGPT/database/content_database.py:
--------------------------------------------------------------------------------
1 | from uuid import uuid4
2 | from shortGPT.database.db_document import TINY_MONGO_DATABASE, TinyMongoDocument
3 |
4 | from shortGPT.database.content_data_manager import ContentDataManager
5 | class ContentDatabase:
6 | def __init__(self, ):
7 | self.content_collection = TINY_MONGO_DATABASE["content_db"]["content_documents"]
8 |
9 | def instanciateContentDataManager(self, id: str, content_type: str, new=False):
10 | db_doc = TinyMongoDocument("content_db", "content_documents", id)
11 | return ContentDataManager(db_doc, content_type, new)
12 |
13 | def getContentDataManager(self, id, content_type: str):
14 | try:
15 | db_doc = TinyMongoDocument("content_db", "content_documents", id)
16 | return ContentDataManager(db_doc, content_type, False)
17 | except:
18 | return None
19 |
20 | def createContentDataManager(self, content_type: str) -> ContentDataManager:
21 | try:
22 | new_short_id = uuid4().hex[:24]
23 | db_doc = TinyMongoDocument("content_db", "content_documents", new_short_id, True)
24 | return ContentDataManager(db_doc, content_type, True)
25 | except:
26 | return None
27 |
28 |
--------------------------------------------------------------------------------
/shortGPT/database/db_document.py:
--------------------------------------------------------------------------------
1 | import threading
2 | from abc import ABC, abstractmethod
3 |
4 | import tinydb
5 | import tinymongo as tm
6 |
7 |
8 | class AbstractDatabaseDocument(ABC):
9 |
10 | @abstractmethod
11 | def _save(self, key, data):
12 | '''Save the data in the database'''
13 | pass
14 |
15 | @abstractmethod
16 | def _get(self, key):
17 | '''Get the data from the database'''
18 | pass
19 |
20 | @abstractmethod
21 | def _getId(self):
22 | '''Get the id of the document'''
23 | pass
24 |
25 | @abstractmethod
26 | def __str__(self):
27 | '''Return the string representation of the document'''
28 | pass
29 |
30 | @abstractmethod
31 | def _delete(self):
32 | '''Delete the document'''
33 | pass
34 |
35 |
36 | class TinyMongoClient(tm.TinyMongoClient):
37 | @property
38 | def _storage(self):
39 | return tinydb.storages.JSONStorage
40 |
41 |
42 | TINY_MONGO_DATABASE = TinyMongoClient("./.database")
43 |
44 |
45 | class TinyMongoDocument(AbstractDatabaseDocument):
46 | _lock = threading.Lock()
47 |
48 | def __init__(self, db_name: str, collection_name: str, document_id: str, create=False):
49 | self.collection = TINY_MONGO_DATABASE[db_name][collection_name]
50 | self.collection_name = collection_name
51 | self.document_id = document_id
52 | if (not self.exists()):
53 | if create:
54 | self.collection.insert_one({"_id": document_id})
55 | else:
56 | raise Exception(f"The document with id {document_id} in collection {collection_name} of database {db_name} does not exist")
57 |
58 | def exists(self):
59 | with self._lock:
60 | return self.collection.find({"_id": self.document_id}).count() == 1
61 |
62 | def _save(self, data):
63 | with self._lock:
64 | try:
65 | update_data = {'$set': {}}
66 | for key, value in data.items():
67 | path_parts = key.split(".")
68 |
69 | if len(path_parts) > 1:
70 | root_key = ".".join(path_parts[:-1])
71 | last_key = path_parts[-1]
72 | current_value = self._get(root_key)
73 | if not isinstance(current_value, dict):
74 | current_value = {}
75 | current_value[last_key] = value
76 | update_data['$set'][root_key] = current_value
77 | else:
78 | update_data['$set'][key] = value
79 |
80 | self.collection.update_one({'_id': self.document_id}, update_data)
81 | except Exception as e:
82 | print(f"Error saving data: {e}")
83 |
84 | def _get(self, key=None):
85 | with self._lock:
86 | try:
87 | document = self.collection.find_one({'_id': self.document_id})
88 | if not key:
89 | del document['_id']
90 | return document
91 | keys = key.split(".")
92 | value = document[keys[0]]
93 | for k in keys[1:]:
94 | value = value[k]
95 | return value
96 | except Exception as e:
97 | #print(f"Error getting value for key '{key}': {e}")
98 | return None
99 |
100 | def _delete(self, key):
101 | with self._lock:
102 | try:
103 | document = self.collection.find_one({'_id': self.document_id})
104 | if key in document:
105 | del document[key]
106 | self.collection.remove({'_id': self.document_id})
107 | self.collection.insert(document)
108 | else:
109 | print(f"Key '{key}' not found in the document")
110 | except Exception as e:
111 | print(f"Error deleting key '{key}': {e}")
112 |
113 | def _getId(self):
114 | return self.document_id
115 |
116 | def __str__(self):
117 | with self._lock:
118 | document = self.collection.find_one({'_id': self.document_id})
119 | return str(document)
120 |
--------------------------------------------------------------------------------
/shortGPT/editing_framework/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/shortGPT/editing_framework/__init__.py
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/shortGPT/editing_framework/editing_steps/__init__.py
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/add_background_video.json:
--------------------------------------------------------------------------------
1 | {
2 | "background_video": {
3 | "type": "video",
4 | "z": 0,
5 | "inputs":{
6 | "parameters": ["url"],
7 | "actions": ["set_time_start", "set_time_end"]
8 | },
9 | "parameters": {
10 | "url": null,
11 | "audio": false
12 | },
13 | "actions": [
14 | {
15 | "type": "set_time_start",
16 | "param": null
17 | },
18 | {
19 | "type": "set_time_end",
20 | "param": null
21 | }
22 | ]
23 | }
24 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/add_background_voiceover.json:
--------------------------------------------------------------------------------
1 | {
2 | "background_voiceover": {
3 | "inputs": {
4 | "parameters": ["url"],
5 | "actions": ["volume_percentage"]
6 | },
7 | "type": "audio",
8 | "z": -1,
9 | "parameters": {
10 | "url": null
11 | },
12 | "actions": [
13 | {
14 | "type": "volume_percentage",
15 | "param": null
16 | }
17 | ]
18 | }
19 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/add_voiceover.json:
--------------------------------------------------------------------------------
1 | {
2 | "voiceover": {
3 | "inputs": {
4 | "parameters": [
5 | "url"
6 | ]
7 | },
8 | "type": "audio",
9 | "z": -1,
10 | "parameters": {
11 | "url": null
12 | },
13 | "actions": [
14 |
15 | ]
16 | }
17 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/background_music.json:
--------------------------------------------------------------------------------
1 | {
2 | "background_music": {
3 | "inputs": {
4 | "parameters": ["url", "volume_percentage"],
5 | "actions":["loop_background_music"]
6 | },
7 | "type": "audio",
8 | "z": -1,
9 | "parameters": {
10 | "url": null
11 | },
12 | "actions": [
13 | {
14 | "type": "loop_background_music",
15 | "param": {
16 | "duration": null
17 | }
18 | },
19 | {
20 | "type":"normalize_audio",
21 | "param":{}
22 | },
23 | {
24 | "type": "volume_percentage",
25 | "param": null
26 | }
27 | ]
28 | }
29 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/crop_1920x1080_to_short.json:
--------------------------------------------------------------------------------
1 | {
2 | "background_video": {
3 | "type": "video",
4 | "z": 0,
5 | "inputs":{
6 | "parameters": ["url"]
7 | },
8 | "parameters": {
9 | "url": null,
10 | "audio": false
11 | },
12 | "actions": [
13 | {
14 | "type": "crop",
15 | "param": {
16 | "x1": 420,
17 | "y1": 0,
18 | "width": 1080,
19 | "height": 1080
20 | }
21 | },
22 | {
23 | "type": "resize",
24 | "param": {
25 | "width": 1920,
26 | "height": 1920
27 | }
28 | },
29 | {
30 | "type": "crop",
31 | "param": {
32 | "x1": 420,
33 | "y1": 0,
34 | "width": 1080,
35 | "height": 1920
36 | }
37 | }
38 | ]
39 | }
40 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/extract_audio.json:
--------------------------------------------------------------------------------
1 | {
2 | "extract_audio": {
3 | "inputs": {
4 | "parameters": ["url"],
5 | "actions": ["subclip", "set_time_start", "set_time_end"]
6 | },
7 | "type": "audio",
8 | "z": -2,
9 | "parameters": {
10 | "url": null
11 | },
12 | "actions": [
13 | {
14 | "type": "subclip",
15 | "param": null
16 | },
17 | {
18 | "type": "set_time_start",
19 | "param": null
20 | },
21 | {
22 | "type": "set_time_end",
23 | "param": null
24 | }
25 | ]
26 | }
27 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/insert_audio.json:
--------------------------------------------------------------------------------
1 | {
2 | "insert_audio": {
3 | "inputs": {
4 | "parameters": ["url"],
5 | "actions": ["set_time_start", "set_time_end"]
6 | },
7 | "type": "audio",
8 | "z": -1,
9 | "parameters": {
10 | "url": null
11 | },
12 | "actions": [
13 | {
14 | "type":"set_time_start",
15 | "param":null
16 | },
17 | {
18 | "type": "set_time_end",
19 | "param": null
20 | }
21 | ]
22 | }
23 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/make_caption.json:
--------------------------------------------------------------------------------
1 | {
2 | "caption": {
3 | "type": "text",
4 | "z": 4,
5 | "inputs":{
6 | "parameters": ["text"],
7 | "actions": ["set_time_start", "set_time_end"]
8 | },
9 | "parameters": {
10 | "text": null,
11 | "fontsize": 100,
12 | "font": "Calibri-Bold",
13 | "color": "white",
14 | "stroke_width": 3,
15 | "stroke_color": "black",
16 | "method": "caption",
17 | "size": [
18 | 900,
19 | null
20 | ]
21 | },
22 | "actions": [
23 | {
24 | "type": "set_time_start",
25 | "param": null
26 | },
27 | {
28 | "type": "set_time_end",
29 | "param": null
30 | },
31 | {
32 | "type": "screen_position",
33 | "param": {
34 | "pos": "center"
35 | }
36 | }
37 | ]
38 | }
39 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/make_caption_arabic.json:
--------------------------------------------------------------------------------
1 | {
2 | "caption": {
3 | "type": "text",
4 | "z": 4,
5 | "inputs":{
6 | "parameters": ["text"],
7 | "actions": ["set_time_start", "set_time_end"]
8 | },
9 | "parameters": {
10 | "text": null,
11 | "fontsize": 150,
12 | "font": "Segoe-UI-Bold",
13 | "color": "white",
14 | "stroke_width": 2,
15 | "stroke_color": "black",
16 | "method": "caption",
17 | "size": [
18 | 900,
19 | null
20 | ]
21 | },
22 | "actions": [
23 | {
24 | "type": "set_time_start",
25 | "param": null
26 | },
27 | {
28 | "type": "set_time_end",
29 | "param": null
30 | },
31 | {
32 | "type": "screen_position",
33 | "param": {
34 | "pos": "center"
35 | }
36 | }
37 | ]
38 | }
39 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/make_caption_arabic_landscape.json:
--------------------------------------------------------------------------------
1 | {
2 | "caption": {
3 | "type": "text",
4 | "z": 4,
5 | "inputs":{
6 | "parameters": ["text"],
7 | "actions": ["set_time_start", "set_time_end"]
8 | },
9 | "parameters": {
10 | "text": null,
11 | "fontsize": 105,
12 | "font": "Segoe-UI-Bold",
13 | "color": "white",
14 | "stroke_width": 2,
15 | "stroke_color": "black"
16 | },
17 | "actions": [
18 | {
19 | "type": "set_time_start",
20 | "param": null
21 | },
22 | {
23 | "type": "set_time_end",
24 | "param": null
25 | },
26 | {
27 | "type": "screen_position",
28 | "param": {
29 | "pos": ["center", 800]
30 | }
31 | }
32 | ]
33 | }
34 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/make_caption_landscape.json:
--------------------------------------------------------------------------------
1 | {
2 | "caption": {
3 | "type": "text",
4 | "z": 4,
5 | "inputs":{
6 | "parameters": ["text"],
7 | "actions": ["set_time_start", "set_time_end"]
8 | },
9 | "parameters": {
10 | "text": null,
11 | "fontsize": 70,
12 | "font": "Calibri-Bold",
13 | "color": "white",
14 | "stroke_width": 3,
15 | "stroke_color": "black",
16 | "method": "label"
17 | },
18 | "actions": [
19 | {
20 | "type": "set_time_start",
21 | "param": null
22 | },
23 | {
24 | "type": "set_time_end",
25 | "param": null
26 | },
27 | {
28 | "type": "screen_position",
29 | "param": {
30 | "pos": ["center", 820]
31 | }
32 | }
33 | ]
34 | }
35 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/show_reddit_image.json:
--------------------------------------------------------------------------------
1 | {
2 | "reddit_image": {
3 | "type": "image",
4 | "inputs":{
5 | "parameters": ["url"]
6 | },
7 | "z": 5,
8 | "parameters": {
9 | "url": null
10 | },
11 | "actions": [
12 | {
13 | "type": "set_time_start",
14 | "param": 0
15 | },
16 | {
17 | "type": "set_time_end",
18 | "param": 3.5
19 | },
20 |
21 | {
22 | "type": "screen_position",
23 | "param": {
24 | "pos": [
25 | "center","center"
26 | ]
27 | }
28 | }
29 | ]
30 | }
31 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/show_top_image.json:
--------------------------------------------------------------------------------
1 | {
2 | "top_image_1": {
3 | "type": "image",
4 | "inputs":{
5 | "parameters": ["url"],
6 | "actions": ["set_time_start", "set_time_end"]
7 | },
8 | "z": 5,
9 | "parameters": {
10 | "url": null
11 | },
12 | "actions": [
13 | {
14 | "type": "set_time_start",
15 | "param": null
16 | },
17 | {
18 | "type": "set_time_end",
19 | "param": null
20 | },
21 | {
22 | "type": "auto_resize_image",
23 | "param":{
24 | "maxWidth": 690,
25 | "maxHeight": 690
26 | }
27 | },
28 | {
29 | "type": "normalize_image",
30 | "param":{
31 | "maxWidth": 690,
32 | "maxHeight": 690
33 | }
34 | },
35 | {
36 | "type": "screen_position",
37 | "param": {
38 | "pos": [
39 | "center",
40 | 50
41 | ]
42 | }
43 | }
44 | ]
45 | }
46 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/show_watermark.json:
--------------------------------------------------------------------------------
1 | {
2 | "short_watermark": {
3 | "inputs":{
4 | "parameters": ["text"]
5 | },
6 | "type": "text",
7 | "z": 3,
8 | "parameters": {
9 | "text": null,
10 | "fontsize": 80,
11 | "font": "Berlin-Sans-FB-Demi-Bold",
12 | "color": "white",
13 | "stroke_width": 1,
14 | "stroke_color": "black",
15 | "method": "caption",
16 | "size": [
17 | 650,
18 | 400
19 | ]
20 | },
21 | "actions": [
22 | {
23 | "type": "screen_position",
24 | "param": {
25 | "pos": [
26 | "center",
27 | 0.7
28 | ],
29 | "relative": true
30 | }
31 | }
32 | ]
33 | }
34 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/editing_steps/subscribe_animation.json:
--------------------------------------------------------------------------------
1 | {
2 | "subscribe_animation": {
3 | "type": "video",
4 | "z": 6,
5 | "inputs":{
6 | "parameters": ["url"]
7 | },
8 | "parameters": {
9 | "url": null,
10 | "audio": false
11 | },
12 | "actions": [
13 | {
14 | "type": "set_time_start",
15 | "param": 3.5
16 | },
17 | {
18 | "type": "resize",
19 | "param": {
20 | "newsize": 0.4
21 | }
22 | },
23 | {
24 | "type": "green_screen",
25 | "param": {
26 | "color": [
27 | 52,
28 | 255,
29 | 20
30 | ],
31 | "thr": 100,
32 | "s": 5
33 | }
34 | },
35 | {
36 | "type": "screen_position",
37 | "param": {
38 | "pos": ["center",
39 | 1160]
40 | }
41 | }
42 | ]
43 | }
44 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/flows/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/shortGPT/editing_framework/flows/__init__.py
--------------------------------------------------------------------------------
/shortGPT/editing_framework/flows/build_reddit_image.json:
--------------------------------------------------------------------------------
1 | {
2 | "inputs":{
3 | "username_text": "visual_assets/username_txt/parameters/text",
4 | "ncomments_text": "visual_assets/ncomments_txt/parameters/text",
5 | "nupvote_text": "visual_assets/nupvote_txt/parameters/text",
6 | "question_text": "visual_assets/question_txt/parameters/text"
7 | },
8 | "visual_assets":{
9 | "white_reddit_template_image": {
10 | "type": "image",
11 | "z": 0,
12 | "parameters": {
13 | "url": "public/white_reddit_template.png"
14 | },
15 | "actions": [
16 | ]
17 | },
18 | "username_txt": {
19 | "type": "text",
20 | "z": 1,
21 | "parameters": {
22 | "text": null,
23 | "fontsize": 32,
24 | "font" : "Arial",
25 | "color": "rgb(129, 131, 132)",
26 | "kerning": -0.7
27 | },
28 | "actions": [
29 | {
30 | "type": "screen_position",
31 | "param": {
32 | "pos":[350, 43],
33 | "relative": false
34 | }
35 | }
36 | ]
37 | },
38 | "ncomments_txt":{
39 | "type": "text",
40 | "z": 1,
41 | "parameters": {
42 | "text": null,
43 | "fontsize": 34,
44 | "font" : "Arial-Bold",
45 | "color": "rgb(129, 131, 132)",
46 | "kerning": -0.7
47 | },
48 | "actions": [
49 | {
50 | "type": "screen_position",
51 | "param": {
52 | "pos":[222, 301],
53 | "relative": false
54 | }
55 | }
56 | ]
57 | },
58 | "nupvote_txt":{
59 | "type": "text",
60 | "z": 1,
61 | "parameters": {
62 | "text": null,
63 | "fontsize": 36,
64 | "font" : "Arial-Bold",
65 | "color": "rgb(26, 26 , 27)",
66 | "kerning": -0.7
67 | },
68 | "actions": [
69 | {
70 | "type": "screen_position",
71 | "param": {
72 | "pos":[28, 115],
73 | "relative": false
74 | }
75 | }
76 | ]
77 | },
78 | "question_txt": {
79 | "type": "text",
80 | "z": 1,
81 | "parameters": {
82 | "text": null,
83 | "fontsize": 40,
84 | "font" : "Arial-Bold",
85 | "color": "rgb(26, 26, 27)",
86 | "size": [850, null],
87 | "method": "caption",
88 | "align": "West",
89 | "kerning": -1.7
90 | },
91 | "actions": [
92 | {
93 | "type": "screen_position",
94 | "param": {
95 | "pos":[150, 110],
96 | "relative": false
97 | }
98 | }
99 | ]
100 | }
101 |
102 | }
103 | }
--------------------------------------------------------------------------------
/shortGPT/editing_framework/rendering_logger.py:
--------------------------------------------------------------------------------
1 | from proglog import ProgressBarLogger
2 | import time
3 |
4 | class MoviepyProgressLogger(ProgressBarLogger):
5 |
6 | def __init__(self, callBackFunction = None):
7 | super().__init__()
8 | self.callBackFunction = callBackFunction
9 | self.start_time = time.time()
10 |
11 | def bars_callback(self, bar, attr, value, old_value=None):
12 | # Every time the logger progress is updated, this function is called
13 | percentage = (value / self.bars[bar]['total']) * 100
14 | elapsed_time = time.time() - self.start_time
15 | estimated_time = (elapsed_time / percentage) * (100 - percentage) if percentage != 0 else 0
16 | progress_string = f'Rendering progress : {value}/{self.bars[bar]["total"]} | Time spent: {self.format_time(elapsed_time)} | Time left: {self.format_time(estimated_time)}'
17 | if (self.callBackFunction):
18 | self.callBackFunction(progress_string)
19 | else:
20 | print(progress_string)
21 |
22 | def format_time(self, seconds):
23 | minutes, seconds = divmod(seconds, 60)
24 | return f'{int(minutes)}m {int(seconds)}s'
25 |
--------------------------------------------------------------------------------
/shortGPT/editing_utils/README.md:
--------------------------------------------------------------------------------
1 | # Module: editing_utils
2 |
3 | The `editing_utils` module provides utility functions for editing videos and images. It consists of three files: `editing_images.py`, `captions.py`, and `handle_videos.py`.
4 |
5 | ## File: editing_images.py
6 |
7 | This file contains functions related to editing images.
8 |
9 | ### Function: getImageUrlsTimed(imageTextPairs)
10 |
11 | This function takes a list of image-text pairs and returns a list of tuples containing the image URL and the corresponding text. It uses the `searchImageUrlsFromQuery` function to search for image URLs based on the provided text.
12 |
13 | ### Function: searchImageUrlsFromQuery(query, top=3, expected_dim=[720,720], retries=5)
14 |
15 | This function searches for image URLs based on a given query. It uses the `getBingImages` function from the `shortGPT.api_utils.image_api` module to fetch the images. The `top` parameter specifies the number of images to fetch (default is 3), and the `expected_dim` parameter specifies the expected dimensions of the images (default is [720,720]). If no images are found, the function returns None. Otherwise, it selects the images with the closest dimensions to the expected dimensions and returns the URL of the first image.
16 |
17 | ## File: captions.py
18 |
19 | This file contains functions related to handling captions.
20 |
21 | ### Function: interpolateTimeFromDict(word_position, d)
22 |
23 | This function interpolates the time based on the word position in a dictionary. The dictionary contains word positions as keys and corresponding timestamps as values. Given a word position, the function returns the interpolated timestamp.
24 |
25 | ### Function: cleanWord(word)
26 |
27 | This function cleans a word by removing any non-alphanumeric characters.
28 |
29 | ### Function: getTimestampMapping(whisper_analysis)
30 |
31 | This function extracts the mapping of word positions to timestamps from a Whisper analysis. The `whisper_analysis` parameter is a dictionary containing the analysis results. The function returns a dictionary with word positions as keys and corresponding timestamps as values.
32 |
33 | ### Function: splitWordsBySize(words, maxCaptionSize)
34 |
35 | This function splits a list of words into captions based on a maximum caption size. The `maxCaptionSize` parameter specifies the maximum number of characters allowed in a caption (default is 15). The function returns a list of captions.
36 |
37 | ### Function: getCaptionsWithTime(whisper_analysis, maxCaptionSize=15)
38 |
39 | This function generates captions with their corresponding timestamps from a Whisper analysis. The `whisper_analysis` parameter is a dictionary containing the analysis results. The `maxCaptionSize` parameter specifies the maximum number of characters allowed in a caption (default is 15). The function uses the `getTimestampMapping` function to get the word position to timestamp mapping and the `splitWordsBySize` function to split the words into captions. It returns a list of caption-time pairs.
40 |
41 | ## File: handle_videos.py
42 |
43 | This file contains functions related to handling videos.
44 |
45 | ### Function: getYoutubeAudio(url)
46 |
47 | This function retrieves the audio URL and duration from a YouTube video. The `url` parameter specifies the URL of the YouTube video. The function uses the `yt_dlp` library to extract the audio information. It returns the audio URL and duration as a tuple. If the retrieval fails, it returns None.
48 |
49 | ### Function: getYoutubeVideoLink(url)
50 |
51 | This function retrieves the video URL and duration from a YouTube video. The `url` parameter specifies the URL of the YouTube video. The function uses the `yt_dlp` library to extract the video information. It returns the video URL and duration as a tuple. If the retrieval fails, it returns None.
52 |
53 | ### Function: extract_random_clip_from_video(video_url, video_duration, clip_duration, output_file)
54 |
55 | This function extracts a random clip from a video and saves it to an output file. The `video_url` parameter specifies the URL of the video, the `video_duration` parameter specifies the duration of the video, the `clip_duration` parameter specifies the duration of the desired clip, and the `output_file` parameter specifies the file path for the extracted clip. The function uses the `ffmpeg` library to perform the extraction. It randomly selects a start time within 15% to 85% of the video duration and extracts a clip of the specified duration starting from the selected start time. If the extraction fails or the output file is not created, an exception is raised.
--------------------------------------------------------------------------------
/shortGPT/editing_utils/__init__.py:
--------------------------------------------------------------------------------
1 | from . import editing_images
2 | from . import captions
--------------------------------------------------------------------------------
/shortGPT/editing_utils/captions.py:
--------------------------------------------------------------------------------
1 | import re
2 |
3 | def getSpeechBlocks(whispered, silence_time=2):
4 | text_blocks, (st, et, txt) = [], (0,0,"")
5 | for i, seg in enumerate(whispered['segments']):
6 | if seg['start'] - et > silence_time:
7 | if txt: text_blocks.append([[st, et], txt])
8 | (st, et, txt) = (seg['start'], seg['end'], seg['text'])
9 | else:
10 | et, txt = seg['end'], txt + seg['text']
11 |
12 | if txt: text_blocks.append([[st, et], txt]) # For last text block
13 |
14 | return text_blocks
15 |
16 | def cleanWord(word):
17 | return re.sub(r'[^\w\s\-_"\'\']', '', word)
18 |
19 | def interpolateTimeFromDict(word_position, d):
20 | for key, value in d.items():
21 | if key[0] <= word_position <= key[1]:
22 | return value
23 | return None
24 |
25 | def getTimestampMapping(whisper_analysis):
26 | index = 0
27 | locationToTimestamp = {}
28 | for segment in whisper_analysis['segments']:
29 | for word in segment['words']:
30 | newIndex = index + len(word['text'])+1
31 | locationToTimestamp[(index, newIndex)] = word['end']
32 | index = newIndex
33 | return locationToTimestamp
34 |
35 |
36 | def splitWordsBySize(words, maxCaptionSize):
37 | halfCaptionSize = maxCaptionSize / 2
38 | captions = []
39 | while words:
40 | caption = words[0]
41 | words = words[1:]
42 | while words and len(caption + ' ' + words[0]) <= maxCaptionSize:
43 | caption += ' ' + words[0]
44 | words = words[1:]
45 | if len(caption) >= halfCaptionSize and words:
46 | break
47 | captions.append(caption)
48 | return captions
49 |
50 | def getCaptionsWithTime(whisper_analysis, maxCaptionSize=15, considerPunctuation=False):
51 | wordLocationToTime = getTimestampMapping(whisper_analysis)
52 | position = 0
53 | start_time = 0
54 | CaptionsPairs = []
55 | text = whisper_analysis['text']
56 |
57 | if considerPunctuation:
58 | sentences = re.split(r'(?<=[.!?]) +', text)
59 | words = [word for sentence in sentences for word in splitWordsBySize(sentence.split(), maxCaptionSize)]
60 | else:
61 | words = text.split()
62 | words = [cleanWord(word) for word in splitWordsBySize(words, maxCaptionSize)]
63 |
64 | for word in words:
65 | position += len(word) + 1
66 | end_time = interpolateTimeFromDict(position, wordLocationToTime)
67 | if end_time and word:
68 | CaptionsPairs.append(((start_time, end_time), word))
69 | start_time = end_time
70 |
71 | return CaptionsPairs
--------------------------------------------------------------------------------
/shortGPT/editing_utils/editing_images.py:
--------------------------------------------------------------------------------
1 | from shortGPT.api_utils.image_api import getBingImages
2 | from tqdm import tqdm
3 | import random
4 | import math
5 |
6 | def getImageUrlsTimed(imageTextPairs):
7 | return [(pair[0], searchImageUrlsFromQuery(pair[1])) for pair in tqdm(imageTextPairs, desc='Search engine queries for images...')]
8 |
9 |
10 |
11 | def searchImageUrlsFromQuery(query, top=3, expected_dim=[720,720], retries=5):
12 | images = getBingImages(query, retries=retries)
13 | if(images):
14 | distances = list(map(lambda x: math.dist([x['width'], x['height']], expected_dim), images[0:top]))
15 | shortest_ones = sorted(distances)
16 | random.shuffle(shortest_ones)
17 | for distance in shortest_ones:
18 | image_url = images[distances.index(distance)]['url']
19 | return image_url
20 | return None
--------------------------------------------------------------------------------
/shortGPT/editing_utils/handle_videos.py:
--------------------------------------------------------------------------------
1 | import ffmpeg
2 | import os
3 | import random
4 | import yt_dlp
5 | import subprocess
6 | import json
7 |
8 | def getYoutubeVideoLink(url):
9 | if 'shorts' in url:
10 | ydl_opts = {
11 | "quiet": True,
12 | "no_warnings": True,
13 | "no_color": True,
14 | "no_call_home": True,
15 | "no_check_certificate": True,
16 | "format": "bestvideo[height<=1920]"
17 | }
18 | else:
19 | ydl_opts = {
20 | "quiet": True,
21 | "no_warnings": True,
22 | "no_color": True,
23 | "no_call_home": True,
24 | "no_check_certificate": True,
25 | "format": "bestvideo[height<=1080]"
26 | }
27 | try:
28 | with yt_dlp.YoutubeDL(ydl_opts) as ydl:
29 | dictMeta = ydl.extract_info(
30 | url,
31 | download=False)
32 | return dictMeta['url'], dictMeta['duration']
33 | except Exception as e:
34 | print("Failed getting video link from the following video/url", e.args[0])
35 | return None, None
36 |
37 | def extract_random_clip_from_video(video_url, video_duration, clip_duration , output_file):
38 | print(video_url, video_duration, clip_duration , output_file)
39 | """Extracts a clip from a video using a signed URL.
40 | Args:
41 | video_url (str): The signed URL of the video.
42 | video_url (int): Duration of the video.
43 | start_time (int): The start time of the clip in seconds.
44 | clip_duration (int): The duration of the clip in seconds.
45 | output_file (str): The output file path for the extracted clip.
46 | """
47 | if not video_duration:
48 | raise Exception("Could not get video duration")
49 | if not video_duration*0.7 > 120:
50 | raise Exception("Video too short")
51 | start_time = video_duration*0.15 + random.random()* (0.7*video_duration-clip_duration)
52 |
53 | (
54 | ffmpeg
55 | .input(video_url, ss=start_time, t=clip_duration)
56 | .output(output_file, codec="libx264", preset="ultrafast")
57 | .run()
58 | )
59 | if not os.path.exists(output_file):
60 | raise Exception("Random clip failed to be written")
61 | return output_file
62 |
63 |
64 | def get_aspect_ratio(video_file):
65 | cmd = 'ffprobe -i "{}" -v quiet -print_format json -show_format -show_streams'.format(video_file)
66 | # jsonstr = subprocess.getoutput(cmd)
67 | jsonstr = subprocess.check_output(cmd, shell=True, encoding='utf-8')
68 | r = json.loads(jsonstr)
69 | # look for "codec_type": "video". take the 1st one if there are mulitple
70 | video_stream_info = [x for x in r['streams'] if x['codec_type']=='video'][0]
71 | if 'display_aspect_ratio' in video_stream_info and video_stream_info['display_aspect_ratio']!="0:1":
72 | a,b = video_stream_info['display_aspect_ratio'].split(':')
73 | dar = int(a)/int(b)
74 | else:
75 | # some video do not have the info of 'display_aspect_ratio'
76 | w,h = video_stream_info['width'], video_stream_info['height']
77 | dar = int(w)/int(h)
78 | ## not sure if we should use this
79 | #cw,ch = video_stream_info['coded_width'], video_stream_info['coded_height']
80 | #sar = int(cw)/int(ch)
81 | if 'sample_aspect_ratio' in video_stream_info and video_stream_info['sample_aspect_ratio']!="0:1":
82 | # some video do not have the info of 'sample_aspect_ratio'
83 | a,b = video_stream_info['sample_aspect_ratio'].split(':')
84 | sar = int(a)/int(b)
85 | else:
86 | sar = dar
87 | par = dar/sar
88 | return dar
--------------------------------------------------------------------------------
/shortGPT/engine/__init__.py:
--------------------------------------------------------------------------------
1 | from . import abstract_content_engine
2 | from . import reddit_short_engine
--------------------------------------------------------------------------------
/shortGPT/engine/abstract_content_engine.py:
--------------------------------------------------------------------------------
1 | import os
2 | from abc import ABC
3 |
4 | from shortGPT.audio.voice_module import VoiceModule
5 | from shortGPT.config.languages import Language
6 | from shortGPT.config.path_utils import get_program_path
7 | from shortGPT.database.content_database import ContentDatabase
8 |
9 | CONTENT_DB = ContentDatabase()
10 |
11 |
12 | class AbstractContentEngine(ABC):
13 | def __init__(self, short_id: str, content_type: str, language: Language, voiceModule: VoiceModule):
14 | if short_id:
15 | self.dataManager = CONTENT_DB.getContentDataManager(
16 | short_id, content_type
17 | )
18 | else:
19 | self.dataManager = CONTENT_DB.createContentDataManager(content_type)
20 | self.id = str(self.dataManager._getId())
21 | self.initializeMagickAndFFMPEG()
22 | self.prepareEditingPaths()
23 | self._db_language = language.value
24 | self.voiceModule = voiceModule
25 | self.stepDict = {}
26 | self.default_logger = lambda _: None
27 | self.logger = self.default_logger
28 |
29 | def __getattr__(self, name):
30 | if name.startswith('_db_'):
31 | db_path = name[4:] # remove '_db_' prefix
32 | cache_attr = '_' + name
33 | if not hasattr(self, cache_attr):
34 | setattr(self, cache_attr, self.dataManager.get(db_path))
35 | return getattr(self, cache_attr)
36 | else:
37 | return super().__getattr__(name)
38 |
39 | def __setattr__(self, name, value):
40 | if name.startswith('_db_'):
41 | db_path = name[4:] # remove '_db_' prefix
42 | cache_attr = '_' + name
43 | setattr(self, cache_attr, value)
44 | self.dataManager.save(db_path, value)
45 | else:
46 | super().__setattr__(name, value)
47 |
48 | def prepareEditingPaths(self):
49 | self.dynamicAssetDir = f".editing_assets/{self.dataManager.contentType}_assets/{self.id}/"
50 | if not os.path.exists(self.dynamicAssetDir):
51 | os.makedirs(self.dynamicAssetDir)
52 |
53 | def verifyParameters(*args, **kargs):
54 | keys = list(kargs.keys())
55 | for key in keys:
56 | if not kargs[key]:
57 | print(kargs)
58 | raise Exception(f"Parameter :{key} is null")
59 |
60 | def isShortDone(self):
61 | return self._db_ready_to_upload
62 |
63 | def makeContent(self):
64 | while (not self.isShortDone()):
65 | currentStep = self._db_last_completed_step + 1
66 | if currentStep not in self.stepDict:
67 | raise Exception(f'Incorrect step {currentStep}')
68 | if self.stepDict[currentStep].__name__ == "_editAndRenderShort":
69 | yield currentStep, f'Current step ({currentStep} / {self.get_total_steps()}) : ' + "Preparing rendering assets..."
70 | else:
71 | yield currentStep, f'Current step ({currentStep} / {self.get_total_steps()}) : ' + self.stepDict[currentStep].__name__
72 | if self.logger is not self.default_logger:
73 | print(f'Step {currentStep} {self.stepDict[currentStep].__name__}')
74 | self.stepDict[currentStep]()
75 | self._db_last_completed_step = currentStep
76 |
77 | def get_video_output_path(self):
78 | return self._db_video_path
79 |
80 | def get_total_steps(self):
81 | return len(self.stepDict)
82 |
83 | def set_logger(self, logger):
84 | self.logger = logger
85 |
86 | def initializeMagickAndFFMPEG(self):
87 | ffmpeg_path = get_program_path("ffmpeg")
88 | if not ffmpeg_path:
89 | raise Exception("FFmpeg, a program used for automated editing within ShortGPT was not found on your computer. Please go back to the README and follow the instructions to install FFMPEG")
90 | ffprobe_path = get_program_path("ffprobe")
91 | if not ffprobe_path:
92 | raise Exception("FFProbe, a dependecy of FFmpeg was not found. Please go back to the README and follow the instructions to install FFMPEG")
93 | convert_path = get_program_path("convert")
94 | if not convert_path:
95 | raise Exception("ImageMagick, a program required for making Captions with ShortGPT was not found on your computer. Please go back to the README and follow the instructions to install ImageMagick")
96 |
--------------------------------------------------------------------------------
/shortGPT/engine/facts_short_engine.py:
--------------------------------------------------------------------------------
1 | from shortGPT.audio.voice_module import VoiceModule
2 | from shortGPT.gpt import facts_gpt
3 | from shortGPT.config.languages import Language
4 | from shortGPT.engine.content_short_engine import ContentShortEngine
5 |
6 |
7 | class FactsShortEngine(ContentShortEngine):
8 |
9 | def __init__(self, voiceModule: VoiceModule, facts_type: str, background_video_name: str, background_music_name: str,short_id="",
10 | num_images=None, watermark=None, language:Language = Language.ENGLISH):
11 | super().__init__(short_id=short_id, short_type="facts_shorts", background_video_name=background_video_name, background_music_name=background_music_name,
12 | num_images=num_images, watermark=watermark, language=language, voiceModule=voiceModule)
13 |
14 | self._db_facts_type = facts_type
15 |
16 | def _generateScript(self):
17 | """
18 | Implements Abstract parent method to generate the script for the Facts short.
19 | """
20 | self._db_script = facts_gpt.generateFacts(self._db_facts_type)
21 |
22 |
--------------------------------------------------------------------------------
/shortGPT/gpt/__init__.py:
--------------------------------------------------------------------------------
1 | from . import gpt_utils
2 | from . import reddit_gpt
--------------------------------------------------------------------------------
/shortGPT/gpt/facts_gpt.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 | import json
3 | def generateFacts(facts_type):
4 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/facts_generator.yaml')
5 | chat = chat.replace("<>", facts_type)
6 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1.3)
7 | return result
8 |
9 | def generateFactSubjects(n):
10 | out = []
11 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/facts_subjects_generation.yaml')
12 | chat = chat.replace("<>", f"{n}")
13 | count = 0
14 | while len(out) != n:
15 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1.69)
16 | count+=1
17 | try:
18 | out = json.loads(result.replace("'", '"'))
19 | except Exception as e:
20 | print(f"INFO - Failed generating {n} fact subjects after {count} trials", e)
21 | pass
22 |
23 | return out
--------------------------------------------------------------------------------
/shortGPT/gpt/gpt_chat_video.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 | import json
3 | def generateScript(script_description, language):
4 | out = {'script': ''}
5 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/chat_video_script.yaml')
6 | chat = chat.replace("<>", script_description).replace("<>", language)
7 | while not ('script' in out and out['script']):
8 | try:
9 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1)
10 | out = json.loads(result)
11 | except Exception as e:
12 | print(e, "Difficulty parsing the output in gpt_chat_video.generateScript")
13 | return out['script']
14 |
15 | def correctScript(script, correction):
16 | out = {'script': ''}
17 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/chat_video_edit_script.yaml')
18 | chat = chat.replace("<>", script).replace("<>", correction)
19 |
20 | while not ('script' in out and out['script']):
21 | try:
22 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1)
23 | out = json.loads(result)
24 | except Exception as e:
25 | print("Difficulty parsing the output in gpt_chat_video.generateScript")
26 | return out['script']
--------------------------------------------------------------------------------
/shortGPT/gpt/gpt_editing.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 | import json
3 | def getImageQueryPairs(captions,n=15 ,maxTime=2):
4 | chat, _ = gpt_utils.load_local_yaml_prompt('prompt_templates/editing_generate_images.yaml')
5 | prompt = chat.replace('<>', f"{captions}").replace("<>", f"{n}")
6 | res = gpt_utils.gpt3Turbo_completion(chat_prompt=prompt)
7 | imagesCouples = ('{'+res).replace('{','').replace('}','').replace('\n', '').split(',')
8 | pairs = []
9 | t0 = 0
10 | end_audio = captions[-1][0][1]
11 | for a in imagesCouples:
12 | try:
13 | query = a[a.find("'")+1:a.rfind("'")]
14 | time = float(a.split(":")[0].replace(' ',''))
15 | if (time > t0 and time< end_audio):
16 | pairs.append((time, query+" image"))
17 | t0 = time
18 | except:
19 | print('problem extracting image queries from ', a)
20 | for i in range(len(pairs)):
21 | if(i!= len(pairs)-1):
22 | end = pairs[i][0]+ maxTime if (pairs[i+1][0] - pairs[i][0]) > maxTime else pairs[i+1][0]
23 | else:
24 | end = pairs[i][0]+ maxTime if (end_audio - pairs[i][0]) > maxTime else end_audio
25 | pairs[i] = ((pairs[i][0], end), pairs[i][1])
26 | return pairs
27 |
28 |
29 | def getVideoSearchQueriesTimed(captions_timed):
30 | end = captions_timed[-1][0][1]
31 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/editing_generate_videos.yaml')
32 | chat = chat.replace("<>", f"{captions_timed}")
33 | out = [[[0,0],""]]
34 | while out[-1][0][1] != end:
35 | try:
36 | out = json.loads(gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1).replace("'", '"'))
37 | except Exception as e:
38 | print(e)
39 | print("not the right format")
40 | return out
--------------------------------------------------------------------------------
/shortGPT/gpt/gpt_translate.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 |
3 | def translateContent(content, language):
4 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/translate_content.yaml')
5 | if language == "arabic":
6 | language =="arabic, and make the translated text two third of the length of the original."
7 | system = system.replace("<>", language)
8 | chat = chat.replace("<>", content)
9 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1)
10 | return result
--------------------------------------------------------------------------------
/shortGPT/gpt/gpt_utils.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import re
4 | from time import sleep, time
5 |
6 | import openai
7 | import tiktoken
8 | import yaml
9 |
10 | from shortGPT.config.api_db import ApiKeyManager
11 |
12 |
13 | def num_tokens_from_messages(texts, model="gpt-3.5-turbo-0301"):
14 | """Returns the number of tokens used by a list of messages."""
15 | try:
16 | encoding = tiktoken.encoding_for_model(model)
17 | except KeyError:
18 | encoding = tiktoken.get_encoding("cl100k_base")
19 | if model == "gpt-3.5-turbo-0301": # note: future models may deviate from this
20 | if isinstance(texts, str):
21 | texts = [texts]
22 | score = 0
23 | for text in texts:
24 | score += 4 + len(encoding.encode(text))
25 | return score
26 | else:
27 | raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
28 | See https://github.com/openai/openai-python/blob/main/chatml.md for information""")
29 |
30 |
31 | def extract_biggest_json(string):
32 | json_regex = r"\{(?:[^{}]|(?R))*\}"
33 | json_objects = re.findall(json_regex, string)
34 | if json_objects:
35 | return max(json_objects, key=len)
36 | return None
37 |
38 |
39 | def get_first_number(string):
40 | pattern = r'\b(0|[1-9]|10)\b'
41 | match = re.search(pattern, string)
42 | if match:
43 | return int(match.group())
44 | else:
45 | return None
46 |
47 |
48 | def load_yaml_file(file_path: str) -> dict:
49 | """Reads and returns the contents of a YAML file as dictionary"""
50 | return yaml.safe_load(open_file(file_path))
51 |
52 |
53 | def load_json_file(file_path):
54 | with open(file_path, 'r', encoding='utf-8') as f:
55 | json_data = json.load(f)
56 | return json_data
57 |
58 | from pathlib import Path
59 |
60 | def load_local_yaml_prompt(file_path):
61 | _here = Path(__file__).parent
62 | _absolute_path = (_here / '..' / file_path).resolve()
63 | json_template = load_yaml_file(str(_absolute_path))
64 | return json_template['chat_prompt'], json_template['system_prompt']
65 |
66 |
67 | def open_file(filepath):
68 | with open(filepath, 'r', encoding='utf-8') as infile:
69 | return infile.read()
70 |
71 |
72 | def gpt3Turbo_completion(chat_prompt="", system="You are an AI that can give the answer to anything", temp=0.7, model="gpt-3.5-turbo", max_tokens=1000, remove_nl=True, conversation=None):
73 | openai.api_key = ApiKeyManager.get_api_key("OPENAI")
74 | max_retry = 5
75 | retry = 0
76 | while True:
77 | try:
78 | if conversation:
79 | messages = conversation
80 | else:
81 | messages = [
82 | {"role": "system", "content": system},
83 | {"role": "user", "content": chat_prompt}
84 | ]
85 | response = openai.ChatCompletion.create(
86 | model=model,
87 | messages=messages,
88 | max_tokens=max_tokens,
89 | temperature=temp)
90 | text = response['choices'][0]['message']['content'].strip()
91 | if remove_nl:
92 | text = re.sub('\s+', ' ', text)
93 | filename = '%s_gpt3.txt' % time()
94 | if not os.path.exists('.logs/gpt_logs'):
95 | os.makedirs('.logs/gpt_logs')
96 | with open('.logs/gpt_logs/%s' % filename, 'w', encoding='utf-8') as outfile:
97 | outfile.write(f"System prompt: ===\n{system}\n===\n"+f"Chat prompt: ===\n{chat_prompt}\n===\n" + f'RESPONSE:\n====\n{text}\n===\n')
98 | return text
99 | except Exception as oops:
100 | retry += 1
101 | if retry >= max_retry:
102 | raise Exception("GPT3 error: %s" % oops)
103 | print('Error communicating with OpenAI:', oops)
104 | sleep(1)
105 |
--------------------------------------------------------------------------------
/shortGPT/gpt/gpt_voice.py:
--------------------------------------------------------------------------------
1 |
2 | from shortGPT.gpt import gpt_utils
3 | def getGenderFromText(text):
4 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/voice_identify_gender.yaml')
5 | chat = chat.replace("<>", text)
6 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system).replace("\n", "").lower()
7 | if 'female' in result:
8 | return 'female'
9 | return 'male'
--------------------------------------------------------------------------------
/shortGPT/gpt/gpt_yt.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 | import json
3 |
4 | def generate_title_description_dict(content):
5 | out = {"title": "", "description":""}
6 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/yt_title_description.yaml')
7 | chat = chat.replace("<>", f"{content}")
8 |
9 | while out["title"] == "" or out["description"] == "":
10 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1)
11 | try:
12 | response = json.loads(result)
13 | if "title" in response:
14 | out["title"] = response["title"]
15 | if "description" in response:
16 | out["description"] = response["description"]
17 | except Exception as e:
18 | pass
19 |
20 | return out['title'], out['description']
21 |
--------------------------------------------------------------------------------
/shortGPT/gpt/reddit_gpt.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 | import random
3 | import json
4 | def generateRedditPostMetadata(title):
5 | name = generateUsername()
6 | if title and title[0] == '"':
7 | title = title.replace('"', '')
8 | n_months = random.randint(1,11)
9 | header = f"{name} - {n_months} months ago"
10 | n_comments = random.random() * 10 + 2
11 | n_upvotes = n_comments*(1.2+ random.random()*2.5)
12 | return title, header, f"{n_comments:.1f}k", f"{n_upvotes:.1f}k"
13 |
14 |
15 | def getInterestingRedditQuestion():
16 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/reddit_generate_question.yaml')
17 | return gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1.08)
18 |
19 | def createRedditScript(question):
20 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/reddit_generate_script.yaml')
21 | chat = chat.replace("<>", question)
22 | result = "Reddit, " + question +" "+gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1.08)
23 | return result
24 |
25 |
26 | def getRealisticness(text):
27 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/reddit_filter_realistic.yaml')
28 | chat = chat.replace("<>", text)
29 | while True:
30 | try:
31 | result = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1)
32 | return json.loads(result)['score']
33 | except Exception as e:
34 | print("Error in getRealisticness", e.args[0])
35 |
36 |
37 | def getQuestionFromThread(text):
38 | if ((text.find("Reddit, ") < 15) and (10 < text.find("?") < 100)):
39 | question = text.split("?")[0].replace("Reddit, ", "").strip().capitalize()
40 | else:
41 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/reddit_filter_realistic.yaml')
42 | chat = chat.replace("<>", text)
43 | question = gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system).replace("\n", "")
44 | question = question.replace('"', '').replace("?", "")
45 | return question
46 |
47 |
48 | def generateUsername():
49 | chat, system = gpt_utils.load_local_yaml_prompt('prompt_templates/reddit_username.yaml')
50 | return gpt_utils.gpt3Turbo_completion(chat_prompt=chat, system=system, temp=1.2).replace("u/", "")
51 |
52 |
53 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/su77ungr/FreeShortGPT/8e8032c8ed9cb7de87fd861e787a8d05822411e8/shortGPT/prompt_templates/__init__.py
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/chat_video_edit_script.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | You are an expert video script writer / editor. You ONLY write text that is read. You only write the script that will be read by a voice actor for a video. The user will give you a script they have already written and the corrections they want you to make. From that, you will edit the script. Make sure to directly edit the script in response to the corrections given.
3 | Your edited script will not have any reference to the audio footage / video footage shown. Only the text that will be narrated by the voice actor.
4 | You will edit purely text.
5 | Don't write any other textual thing than the text itself.
6 | Make sure the text is not longer than 200 words (keep the video pretty short and neat).
7 | # Output
8 | You will output the edited script in a JSON format of this kind, and only a parsable JSON object
9 | {"script": "did you know that ... ?"}
10 |
11 | chat_prompt: |
12 | Original script:
13 | <>
14 | Corrections:
15 | <>
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/chat_video_script.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | You are an expert video writer. You ONLY produce text that is read. You only produce the script. that will be read by a voice actor for a video. The user will give you the description of the video they want you to make and from that, you will write the script. Make sure to directly write the script in response to the video description.
3 | Your script will not have any reference to the audio footage / video footage shown. Only the text that will be narrated by the voice actor.
4 | You will produce purely text.
5 | Don't write any other textual thing than the text itself.
6 | Make sure the text is not longer than 200 words (keep the video pretty short and neat).
7 | # Output
8 | You will output the script in a JSON format of this kind, and only a parsable JSON object
9 | {"script": "did you know that ... ?"}
10 |
11 | chat_prompt: |
12 | Language: <>
13 | Video description:
14 | <>
15 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/editing_generate_images.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 |
3 | chat_prompt: |
4 | You are a shorts video editor. Your audience is people from 18 yo to 40yo. Your style of editing is pretty simple, you take the transcript of your short and put a very simple google image to illustrate the narrated sentances.
5 |
6 | Each google image is searched with a short query of two words maximum. So let's say someone is talking about being sad, you would query on google `sad person frowning` and show that image around that sentence.
7 |
8 | I will give you a transcript which contains which words are shown at the screen, and the timestamps where they are shown. Understand the transcript, and time images at timestamps and, write me the query for each image. For the image queries you have two choices: concrete objects, like 'cash', 'old table', and other objects, or people in situations like 'sad person', 'happy family', ect... Generate a maximum of <> image queries equally distributed in the video.
9 |
10 | Avoid depicting shocking or nude / crude images, since your video will get demonetized. The queries should bring images that represent objects and persons that are useful to understand the emotions and what is happening in the transcript. The queries should describe OBJECTS or PERSONS. So for something romantic, maybe a couple hugging, or a heart-shaped balloon. For the image queries you have two choices: concrete objects, like 'cash', 'old table', and other objects, or people in situations like 'sad person', 'happy family', ect..
11 |
12 | The images should be an image representation of what is happening. Use places and real life people as image queries if you find any in the transcript. Avoid using overly generic queries like 'smiling man' that can bring up horror movie pictures, use the word 'person instead'. Instead, try to use more specific words that describe the action or emotion in the scene. Also, try to avoid queries that don't represent anything in images, such as abstract concepts, ideas, or feelings. MAKE SURE THAT THE QUERIES ARE VERY DESCRIPTIVE AND VISUAL AND CAN BE DRAWN AND NEVER USE WORDS THAT ONLY DESCRIBE AN ABSTRACT IDEA. NEVER USE ABSTRACT NOUNS IN THE QUERIES. ALWAYS USE REAL OBJECTS OR PERSONS IN THE QUERIES.
13 |
14 | Transcript:
15 |
16 | <>
17 |
18 |
19 | Every few transcript captions, find an image that can be shown. Really understand the context and emotions for the image to be good ! The queries should describe OBJECTS or PERSONS. Write it in a dictionary with timestamp to query format like { 1.0: 'happy person', 3.2: 'sad person', ...} . DON'T GENERATE A QUERY FOR EACH CAPTION. Generate <> image queries and time them accordingly in the video. NEVER use the same search query for multiple captions. Make sure that the timestamps make sense.
20 | NEVER USE ABSTRACT NOUNS IN THE QUERIES. ALWAYS USE REAL OBJECTS OR PERSONS IN THE QUERIES.
21 | For the image queries you have two choices: concrete objects, like 'cash', 'old table', 'red car', 'broken pen' and other objects, or people in situations like 'sad person', 'happy family', ect.. Choose more objects than people.
22 | The <> generated image queries and their timestamps, make sure to respect the number <>:
23 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/editing_generate_videos.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | # Instructions
3 |
4 | You're a video research expert. The user will give you the timed captions of a video they will make, and you will give back a list of couples of text search queries that will be used to search for background video footage, and the time t1 and t2 when it will be shown in the video.
5 | # Output format
6 | The format will be JSON parasable and look like this:
7 | [[[0.0, 4.4], ["Dog barking", "Dog angry", Canine angry"]], [[4.4, 7.8], "bone", "pet food", "food", "canine"], ect...
8 |
9 | # Time periods t1 and t2
10 | Time periods t1 and t2 must always be consecutive, and last between 4 to 5 seconds, and must cover the whole video.
11 | For example, [0, 2.5] <= IS BAD, because 2.5-0 = 2.5 < 3
12 | [0, 11] <= IS BAD, because 11sec > 5 sec
13 | [0, 4.2] <= IS GOOD
14 |
15 | # Query search string list
16 | YOU ALWAYS USE ENGLISH IN YOUR TEXT QUERIES
17 | As you have seen above, for each time period you will be tasked to generate 3 strings that will be searched on the video search engine, to find the appropriate clip to find.
18 | Each string has to be between ONE to TWO words.
19 | Each search string must DEPICT something visual.
20 | The depictions have to be extremely visually concrete, like `coffee beans`, or `dog running`.
21 | 'confused feelings' <= BAD, because it doesn't depict something visually
22 | 'heartbroken man' <= GOOD, because it depicts something visual.
23 | 'man feeling very lonely' <= BAD, because it contains 4 words.
24 | The list must always contain 3 query searches.
25 | ['Sad person'] <= BAD, because it's one string
26 | ['Sad person', 'depressed man', 'depressed person'] <= GOOD, because it's 3 strings
27 | ['Une Pomme', 'un enfant qui rit', 'une personne heureuse'] <= BAD, because the text query is NOT in english
28 |
29 | chat_prompt: |
30 | Timed captions:
31 | <>
32 | Video search queries:
33 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/facts_generator.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: >
2 | You are an expert content writer of a YouTube shorts channel. You specialize in `facts` shorts.
3 | Your facts shorts are less than 50 seconds verbally ( around 140 words maximum). They are extremely captivating, and original.
4 | The user will ask you a type of facts short and you will produce it.
5 | For examples, when the user Asks :
6 | `Weird facts`
7 | You produce the following content script:
8 |
9 | ---
10 | Weird facts you don't know.
11 | A swarm of 20,000 bees followed a car for two days because their queen was stuck inside.
12 | Rockados cannot stick their tongue out because it's attached to the roof of their mouths.
13 |
14 | If you tickle a rat day after day, it will start laughing whenever it sees you.
15 |
16 | In 2013, police and the Maldives arrested a coconut for lordering near a polling station for the presidential election.
17 | Locals fear the coconut may have been ingrained with a black magic spell to influence the election.
18 |
19 | A Chinese farmer who always wanted to own his own plane built a full scale,
20 | non-working replica of an airbus A320 out of 50 tons of steel. It took him and his friends over two years and costed over $400,000.
21 |
22 | When invited by a lady to spend a night with her, Benjamin Franklin asked to postpone until winter when nights were longer.
23 | ---
24 |
25 | You are now tasked to produce the greatest short script depending on the user's request type of 'facts'.
26 | Only give the first `hook`, like "Weird facts you don't know. " in the example. Then the facts.
27 | Keep it short, extremely interesting and original.
28 |
29 | chat_prompt: >
30 | <>
31 |
32 |
33 |
34 |
35 |
36 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/facts_subjects_generation.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: >
2 |
3 | chat_prompt: >
4 | For a series of <> youtube video about top 10 facts on a certain subject,
5 | pick a random subject. Be very original. Put it in the '`Subject` facts' format.
6 | Give the output in an array format that's json parseable., like ['Police facts', 'prison facts'].
7 | Only give the array and nothing else.
8 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/reddit_extract_question.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | From the transcript of a reddit ask, tell me the question in the title. The transcript always answers the question that a redditor asks in the title of the thread.
3 | The question in the title must be a very shorts open-ended question that requires opinion/anecdotal-based answers. Examples of questions are:
4 | ---
5 | What’s the worst part of having a child?
6 | What screams “this person peaked in high school” to you?
7 | What was your “it can’t be that easy / it was that easy” moment in your life?
8 | ---
9 | Rules:
10 | Most important rule : The question MUST be directed at the person reading it, the subject of the question should ALWAYS be the reader. It must contain 'you' or 'your', or something asking THEM their experience.
11 | * The question is always very general, and then, people answer it with a specific anecdote that is related to that question. The question is always short and can bring spicy answers. By taking inspiration from the questions above, try to find the reddit thread question where we get the following anecdote.
12 | * The question NEVER contains "I" as it is NOT answered by the person asking it.
13 | * The question is NEVER specific too specific about a certain situation.
14 | * The question should be as short and consise as possible. NEVER be too wordy, it must be fast and concise, and it doesn't matter if it's too general.
15 | * The question must sound good to the ear, and bring interest. It should sound natural.
16 | * The question must use the vocabulary of reddit users. Young, not too complicated, and very straight to the point.
17 | * The question must be relatable for anyone, girl or guy.
18 | The question should ALWAYS START with "What"
19 | chat_prompt: |
20 | -Transcript:
21 | <>
22 | The question should ALWAYS START with "What"
23 | -Most probable very short and conssise open-ended question from the transcript (50 characters MAXIMUM):
24 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/reddit_filter_realistic.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | You are the judge of the story. Your goal will be to judge if it can possibly happen.
3 | If it's possible and the story makes sense, then it's a 10, and if it's something that wouldn't ever happen in real life or something that doesn't make sense at all, it's a 0.
4 | You have to be tolerant and keep in mind that the stories are sometimes very unlikely, but really happened, so you will only give a low score when something doesn't make sense in the story.
5 |
6 | For parsing purposes, you will ALWAYS the output as a JSON OBJECT with the key `score` and the value being the number between 1 to 10 and.
7 | The output should look like:
8 | {score: 1.3}
9 |
10 | chat_prompt: |
11 | Story:
12 | <>
13 | Output:
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/reddit_generate_question.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | You will write an interesting reddit ask thread question.
3 |
4 | Instructions for the question:
5 | The question in the must be a very shorts open-ended question that requires opinion/anecdotal-based answers. Examples of questions are:
6 | ---
7 | What’s the worst part of having a child?
8 | What screams “this person peaked in high school” to you?
9 | What was your “it can’t be that easy / it was that easy” moment in your life?
10 | Have you ever had a bad date turning into a good one?
11 | ---
12 | Most important rule for questions : The question MUST be directed at the person reading it, the subject of the question should ALWAYS be the reader. It must contain 'you' or 'your', or something asking THEM their experience.
13 | * The question is always very general, and then, people answer it with a specific anecdote that is related to that question. The question is always short and can bring spicy answers.
14 | * The question NEVER contains 'I' as it is NOT answered by the person asking it.
15 | * The question is NEVER too specific about a certain situation.
16 | * The question should be as short and consise as possible. NEVER be too wordy, it must be fast and concise.
17 | * The question must sound good to the ear, and bring interest. It should sound natural.
18 | * The question must use the vocabulary of reddit users. Young, not too complicated, and very straight to the point.
19 | The question must spark curiosity and interest, and must create very entertaining answers
20 | * The question must be relatable for anyone, girl or guy.
21 | * The question is maximum 80 characters long
22 |
23 | chat_prompt: |
24 | Totally new question:
25 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/reddit_generate_script.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | Instructions for the new story:
3 | You are a YouTube shorts content creator who makes extremely good YouTube shorts over answers from AskReddit questions. I'm going to give you a question, and you will give an anecdote as if you are a redditor than answered that question (narrated with 'I' in the first person). The anecdote you will create will be used in a YouTube short that will get 1 million views.
4 | 1- The story must be between 120 and 140 words MAXIMUM.
5 | 2- DO NOT end the story with a moral conclusion or any sort of conclusion that elongates the personal story. Just stop it when it makes sense.
6 | 3- Make sure that the story is very SPICY, very unusual, HIGHLY entertaining to listen to, not boring, and not a classic story that everyone tells.
7 | 4- Make sure that the new short's content is totally captivating and will bang with the YouTube algorithm.
8 | 5- Make sure that the story directly answers the title.
9 | 6- Make the question sound like an r/AskReddit question: open-ended and very interesting, very short and not too specific.
10 | 7- The language used in the story must be familiar, casual that a normal person telling an story would use. Even youthful.
11 | 8- The story must be narrated as if you're a friend of the viewer telling them about the story.
12 | 9- Start the the story with 'I'
13 |
14 | chat_prompt: |
15 | Reddit question: <>
16 |
17 | -New Generated story. The story has to be highly unusual and spicy and must really surprise its listeners and hook them up to the story. Don't forget to make it between 120 and 140 words:
18 | Reddit, <>
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/reddit_story_filter.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: >
2 | You're a judge of the realisticness of a story for a youtube short.
3 | You must put yourself in the shoes of the youtube viewer hearing this story
4 | and determine if it's totally nonsense.
5 | Your goal will be to judge if it can possibly happen.
6 | If it's possible and the story makes sense, then it's a 10,
7 | and if it's something that wouldn't ever happen in real life or
8 | something that doesn't make sense at all, it's a 0.
9 |
10 | You have to be tolerant and keep in mind that the stories are meant to be unusual, they are sometimes very unlikely,
11 | but really happened, so you will only give a low score when something doesn't make sense in the story.
12 | For parsing purposes, you will ALWAYS the output as a JSON OBJECT with the key
13 | 'score' and the value being the number between 1 to 10 and the key 'explanation'
14 | with one sentence to explain why it's not. Make this explanation maximum 4 words.
15 | The output should look like:
16 | {score: number, explanation: "some words..."}
17 |
18 | Give perfect json with keys score and explanation, and nothing else.
19 |
20 | chat_prompt: >
21 | Story:
22 |
23 | <>
24 |
25 | Output:
26 |
27 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/reddit_username.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: >
2 |
3 | chat_prompt: >
4 | Generate a random Reddit name with one or two numbers inside the name. Only generate one name, and don't output anything else. Make it sound natural. The name must be between 7 and 10 characters:
5 | u/
6 |
7 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/translate_content.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: >
2 | You're an expert content translator to <>.
3 | You always translate sentences very properly, and you write down numbers in WORDS, you never write digits in your text.
4 |
5 | IMPORTANT INSTRUCTION:
6 | ***You write down numbers in words
7 | For example:
8 | Input: "There are 7 days in a week."
9 | Translation: "Existem sete dias em uma semana."
10 |
11 | Example 2:
12 | Input: "She bought 4 apples at the market."
13 | Translation: "Existem sete dias em uma semana."
14 |
15 | Example 3:
16 | Input:"The temperature is -2 degrees Celsius."
17 | Translation: "A temperatura está dois graus Celsius negativos."
18 |
19 |
20 | Example 4:
21 | Input: "He is 30 years old."
22 | Translation: "Ele tem trinta anos de idade."
23 | **
24 |
25 | chat_prompt: >
26 | <>
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/voice_identify_gender.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: |
2 | I will give you a narrated transcript and you must identify if it's most probably a male or female.
3 | If you think the narrator is more probable to be a male, answer "male" and if you think it's female, say "female".
4 | If you don't know, just say male.
5 |
6 |
7 | chat_prompt: |
8 | Transcript:
9 |
10 | <>
11 |
12 | Gender of narrator:
13 |
14 |
--------------------------------------------------------------------------------
/shortGPT/prompt_templates/yt_title_description.yaml:
--------------------------------------------------------------------------------
1 | system_prompt: >
2 | You are a youtube shorts title and description expert writer.
3 | The user will give you the transcript of a youtube short, and you will create a title, and a description. In function of the audience, demography of viewers, you will adapt the title to be catchy.
4 | Use only MAXIMUM 2 emojis in the title of the video ( very depending on the context, be careful)
5 | and use hashtags in the description
6 | The title has to be less than 80 characters (one small sentance of 10 words max)
7 | And the description maximum 240 characters (keep it small)
8 | You will give the title and description in a perfect json format. You will give nothing else but the perfect json object with key `title` and `description`
9 | In your JSON, use the double quotes "" instead of ''
10 | chat_prompt: >
11 | <>
12 |
--------------------------------------------------------------------------------
/shortGPT/tracking/README.md:
--------------------------------------------------------------------------------
1 | # Module: Tracking
2 |
3 | ## Goal
4 | The `tracking` module is responsible for tracking and analyzing the usage and cost of various APIs used in the project. It includes two files: `api_tracking.py` and `cost_analytics.py`.
5 |
6 | ## File: api_tracking.py
7 |
8 | ### Class: APITracker
9 | This class is responsible for tracking the usage of APIs and saving the data to a content manager.
10 |
11 | #### Method: `__init__()`
12 | - Initializes the APITracker object.
13 | - Calls the `initiateAPITracking()` method.
14 |
15 | #### Method: `setDataManager(contentManager: ContentDataManager)`
16 | - Sets the content manager for storing the API usage data.
17 | - Raises an exception if the content manager is null.
18 |
19 | #### Method: `openAIWrapper(gptFunc)`
20 | - Wrapper function for OpenAI API calls.
21 | - Saves the API usage data to the content manager.
22 | - Returns the result of the API call.
23 |
24 | #### Method: `elevenWrapper(audioFunc)`
25 | - Wrapper function for Eleven API calls.
26 | - Saves the API usage data to the content manager.
27 | - Returns the result of the API call.
28 |
29 | #### Method: `wrap_turbo()`
30 | - Wraps the `gpt3Turbo_completion` function from the `gpt_utils` module using the `openAIWrapper` method.
31 | - Replaces the original function with the wrapped function.
32 |
33 | #### Method: `wrap_eleven()`
34 | - Wraps the `generateVoice` function from the `audio_generation` module using the `elevenWrapper` method.
35 | - Replaces the original function with the wrapped function.
36 |
37 | #### Method: `initiateAPITracking()`
38 | - Initiates the tracking of APIs by wrapping the necessary functions using the `wrap_turbo` and `wrap_eleven` methods.
39 |
40 |
41 | ## File: cost_analytics.py
42 |
43 | ### Function: calculateCostAnalytics()
44 | This function calculates the average usage and cost of OpenAI and Eleven APIs based on the data stored in the content database.
45 |
46 | - Initializes the content database.
47 | - Retrieves the API usage data from the database.
48 | - Calculates the average usage and cost for OpenAI and Eleven APIs.
49 | - Prints the results.
50 |
51 | ### Usage example:
52 | ```python
53 | calculateCostAnalytics()
54 | ```
55 |
56 | Note: The commented code at the end of the file is unrelated and can be ignored.
--------------------------------------------------------------------------------
/shortGPT/tracking/__init__.py:
--------------------------------------------------------------------------------
1 | from . import api_tracking
--------------------------------------------------------------------------------
/shortGPT/tracking/api_tracking.py:
--------------------------------------------------------------------------------
1 | from shortGPT.gpt import gpt_utils
2 | from shortGPT.database.content_data_manager import ContentDataManager
3 | import json
4 |
5 | class APITracker:
6 |
7 | def __init__(self):
8 | self.initiateAPITracking()
9 |
10 | def setDataManager(self, contentManager : ContentDataManager):
11 | if(not contentManager):
12 | raise Exception("contentManager is null")
13 | self.datastore = contentManager
14 |
15 | def openAIWrapper(self, gptFunc):
16 |
17 | def wrapper(*args, **kwargs):
18 | result = gptFunc(*args, **kwargs)
19 | prompt = kwargs.get('prompt') or kwargs.get('conversation') or args[0]
20 | prompt = json.dumps(prompt)
21 | if self.datastore and result:
22 | tokensUsed = gpt_utils.num_tokens_from_messages([prompt, result])
23 | self.datastore.save('api_openai', tokensUsed, add=True)
24 | return result
25 |
26 | return wrapper
27 |
28 | def elevenWrapper(self, audioFunc):
29 |
30 | def wrapper(*args, **kwargs):
31 | result = audioFunc(*args, **kwargs)
32 | textInput = kwargs.get('text') or args[0]
33 | if self.datastore and result:
34 | self.datastore.save('api_eleven', len(textInput), add=True)
35 | return result
36 |
37 | return wrapper
38 |
39 |
40 | def wrap_turbo(self):
41 | func_name = "gpt3Turbo_completion"
42 | module = __import__("gpt_utils", fromlist=["gpt3Turbo_completion"])
43 | func = getattr(module, func_name)
44 | wrapped_func = self.openAIWrapper(func)
45 | setattr(module, func_name, wrapped_func)
46 |
47 | def wrap_eleven(self):
48 | func_name = "generateVoice"
49 | module = __import__("audio_generation", fromlist=["generateVoice"])
50 | func = getattr(module, func_name)
51 | wrapped_func = self.elevenWrapper(func)
52 | setattr(module, func_name, wrapped_func)
53 |
54 |
55 | def initiateAPITracking(self):
56 | self.wrap_turbo()
57 | self.wrap_eleven()
58 |
59 |
60 |
61 |
--------------------------------------------------------------------------------
/shortGPT/tracking/cost_analytics.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from shortGPT.database.content_database import ContentDatabase
3 | db = ContentDatabase()
4 | all = []
5 | # Calculate average and price of the average for OpenAI
6 | openai_array = [short.get('api_openai') for short in all]
7 | avr_openai = np.mean(openai_array)
8 | OPENAI_CONST = 0.002 / 1000
9 | price_openai = avr_openai * OPENAI_CONST
10 | max_openai = max(openai_array)
11 | price_max_openai = max_openai * OPENAI_CONST
12 |
13 | # Calculate average and price of the average for Eleven
14 | eleven_array = [short.get('api_openai') for short in all]
15 | avr_eleven = np.mean(eleven_array)
16 | ELEVEN_CONST = 0.3 / 1000
17 | price_eleven = avr_eleven * ELEVEN_CONST
18 | max_eleven = max(eleven_array)
19 | price_max_eleven = max_eleven * ELEVEN_CONST
20 |
21 |
22 |
23 | # Print results
24 | print("OpenAI:")
25 | print("- Average:", avr_openai)
26 | print("- Price of the average:", price_openai)
27 | print("- Max:", max_openai)
28 | print("- Price of the max:", price_max_openai)
29 |
30 | print("Eleven:")
31 | print("- Average:", avr_eleven)
32 | print("- Price of the average:", price_eleven)
33 | print("- Max:", max_eleven)
34 | print("- Price of the max:", price_max_eleven)
35 |
36 |
37 |
38 | # for id in ids:
39 | # builder = AskingRedditorShortBuilder(AR, id)
40 | # print(id, builder.dataManager.getVideoPath())
41 | #createShorts(30, 'AskingRedditors')
42 | # AR = ChannelManager("AskingRedditors")
43 | # newShort = AskingRedditorShortBuilder(channelDB= AR, short_id="FyhKkqx9xDxTEtRpanSD")
44 | # print(newShort.channelDB.getStaticEditingAsset('background_onepiece'))
45 | # print(newShort.channelDB.getStaticEditingAsset('reddit_template_dark'))
46 | # print(newShort.channelDB.getStaticEditingAsset('subscribe_animation'))
47 | #print("Scraping requests remaining: ",image_api.getScrapingCredits())
48 |
49 |
--------------------------------------------------------------------------------
/shortGPT/utils/cli.py:
--------------------------------------------------------------------------------
1 | from shortGPT.utils.requirements import Requirements
2 |
3 |
4 | class CLI:
5 |
6 | @staticmethod
7 | def display_header():
8 | '''Display the header of the CLI'''
9 | CLI.display_green_text('''
10 | .d88888b dP dP .88888. 888888ba d888888P .88888. 888888ba d888888P
11 | 88. "' 88 88 d8' `8b 88 `8b 88 d8' `88 88 `8b 88
12 | `Y88888b. 88aaaaa88 88 88 88aaaa8P' 88 88 88aaaa8P' 88
13 | `8b 88 88 88 88 88 `8b. 88 88 YP88 88 88
14 | d8' .8P 88 88 Y8. .8P 88 88 88 Y8. .88 88 88
15 | Y88888P dP dP `8888P' dP dP dP `88888' dP dP
16 |
17 | ''')
18 | CLI.display_green_text("Welcome to ShortGPT! This is an experimental AI framework to automate all aspects of content creation.")
19 | print("")
20 | CLI.display_requirements_check()
21 |
22 | @staticmethod
23 | def display_help():
24 | '''Display help'''
25 | print("Usage: python shortGPT.py [options]")
26 | print("")
27 | print("Options:")
28 | print(" -h, --help show this help message and exit")
29 |
30 | @staticmethod
31 | def display_requirements_check():
32 | '''Display information about the system and requirements'''
33 | print("Checking requirements...")
34 | requirements_manager = Requirements()
35 | print(" - Requirements : List of requirements and installed version:")
36 | all_req_versions = requirements_manager.get_all_requirements_versions()
37 | for req_name, req_version in all_req_versions.items():
38 | if req_version is None:
39 | CLI.display_red_text(f"---> Error : {req_name} is not installed")
40 | print(f"{req_name}=={req_version}")
41 |
42 | print("")
43 | # Skipping for now, because it assumes package have the same name as the python import itself, which is not true most sometimes.
44 | # if not requirements_manager.is_all_requirements_installed():
45 | # CLI.display_red_text("Error : Some requirements are missing")
46 | # print("Please install the missing requirements using the following command :")
47 | # print("pip install -r requirements.txt")
48 | # print("")
49 | # requirements_manager.get_all_requirements_not_installed()
50 | # print("")
51 |
52 | class bcolors:
53 | HEADER = '\033[95m'
54 | OKBLUE = '\033[94m'
55 | OKCYAN = '\033[96m'
56 | OKGREEN = '\033[92m'
57 | WARNING = '\033[93m'
58 | FAIL = '\033[91m'
59 | ENDC = '\033[0m'
60 | BOLD = '\033[1m'
61 | UNDERLINE = '\033[4m'
62 |
63 | @staticmethod
64 | def display_error(error_message, stack_trace):
65 | '''Display an error message in the console'''
66 | print(CLI.bcolors.FAIL + "ERROR : " + error_message + CLI.bcolors.ENDC)
67 | print(stack_trace)
68 | print("If the problem persists, don't hesitate to contact our support. We're here to assist you.")
69 | print("Get Help on Discord : https://discord.gg/qn2WJaRH")
70 |
71 | @staticmethod
72 | def get_console_green_text(text):
73 | '''Get the text in green color'''
74 | return CLI.bcolors.OKGREEN + text + CLI.bcolors.ENDC
75 |
76 | @staticmethod
77 | def get_console_red_text(text):
78 | '''Get the text in red color'''
79 | return CLI.bcolors.FAIL + text + CLI.bcolors.ENDC
80 |
81 | @staticmethod
82 | def get_console_yellow_text(text):
83 | '''Get the text in yellow color'''
84 | return CLI.bcolors.WARNING + text + CLI.bcolors.ENDC
85 |
86 | @staticmethod
87 | def get_console_blue_text(text):
88 | return CLI.bcolors.OKBLUE + text + CLI.bcolors.ENDC
89 |
90 | @staticmethod
91 | def get_console_bold_text(text):
92 | return CLI.bcolors.BOLD + text + CLI.bcolors.ENDC
93 |
94 | @staticmethod
95 | def get_console_underline_text(text):
96 | return CLI.bcolors.UNDERLINE + text + CLI.bcolors.ENDC
97 |
98 | @staticmethod
99 | def get_console_cyan_text(text):
100 | return CLI.bcolors.OKCYAN + text + CLI.bcolors.ENDC
101 |
102 | @staticmethod
103 | def get_console_header_text(text):
104 | return CLI.bcolors.HEADER + text + CLI.bcolors.ENDC
105 |
106 | @staticmethod
107 | def get_console_text(text, color):
108 | return color + text + CLI.bcolors.ENDC
109 |
110 | @staticmethod
111 | def display_blue_text(text):
112 | print(CLI.get_console_blue_text(text))
113 |
114 | @staticmethod
115 | def display_green_text(text):
116 | print(CLI.get_console_green_text(text))
117 |
118 | @staticmethod
119 | def display_red_text(text):
120 | print(CLI.get_console_red_text(text))
121 |
122 | @staticmethod
123 | def display_yellow_text(text):
124 | print(CLI.get_console_yellow_text(text))
125 |
126 | @staticmethod
127 | def display_bold_text(text):
128 | print(CLI.get_console_bold_text(text))
129 |
130 | @staticmethod
131 | def display_underline_text(text):
132 | print(CLI.get_console_underline_text(text))
133 |
134 | @staticmethod
135 | def display_cyan_text(text):
136 | print(CLI.get_console_cyan_text(text))
137 |
138 | @staticmethod
139 | def display_header_text(text):
140 | print(CLI.get_console_header_text(text))
141 |
--------------------------------------------------------------------------------
/shortGPT/utils/requirements.py:
--------------------------------------------------------------------------------
1 | import os
2 | import platform
3 |
4 |
5 | class Requirements:
6 | '''Manage requirements for the project'''
7 |
8 | def __init__(self):
9 | self.package_path = os.path.dirname(os.path.realpath(__file__))
10 | self.requirements_path = os.path.join(self.package_path, '..', '..', 'requirements.txt')
11 |
12 | def get_list_requirements(self):
13 | '''Get the list of requirements packages from requirements.txt'''
14 | with open(self.requirements_path) as f:
15 | requirements = f.read().splitlines()
16 |
17 | # remove comments and empty lines
18 | requirements = [line for line in requirements if not line.startswith('#')]
19 | requirements = [line for line in requirements if line.strip()]
20 |
21 | # extract package name from protocol
22 | requirements = [line.split('/')[-1] for line in requirements if not line.startswith('git+')]
23 | requirements = [line.split('/')[-1] for line in requirements if not line.startswith('http')]
24 | requirements = [line.split('/')[-1] for line in requirements if not line.startswith('https')]
25 | requirements = [line.split('/')[-1] for line in requirements if not line.startswith('ssh')]
26 | requirements = [line.split('/')[-1] for line in requirements if not line.startswith('git')]
27 |
28 | # sort alphabetically
29 | requirements.sort()
30 |
31 | return requirements
32 |
33 | def get_os_name(self):
34 | '''Get the name of the operating system'''
35 | return platform.system()
36 |
37 | def get_os_version(self):
38 | '''Get the version of the operating system'''
39 | return platform.version()
40 |
41 | def get_python_version(self):
42 | '''Get the version of Python installed'''
43 | return platform.python_version()
44 |
45 | def is_all_requirements_installed(self):
46 | '''Check if all requirements are installed'''
47 | requirements = self.get_list_requirements()
48 | for requirement in requirements:
49 | if not self.is_requirement_installed(requirement):
50 | return False
51 | return True
52 |
53 | def is_requirement_installed(self, package_name):
54 | '''Check if a package is installed'''
55 | import importlib
56 | try:
57 | importlib.import_module(package_name)
58 | return True
59 | except ImportError:
60 | return False
61 |
62 | def get_version(self, package_name):
63 | '''Get the version of a package'''
64 | import pkg_resources
65 | try:
66 | return pkg_resources.get_distribution(package_name).version
67 | except:
68 | return None
69 |
70 | def get_all_requirements_versions(self):
71 | '''Get the versions of all requirements'''
72 | requirements = self.get_list_requirements()
73 | versions = {}
74 | for requirement in requirements:
75 | versions[requirement] = self.get_version(requirement)
76 | return versions
77 |
78 | def get_all_requirements_not_installed(self):
79 | '''Get the list of all requirements not installed'''
80 | requirements = self.get_list_requirements()
81 | not_installed = {}
82 | for requirement in requirements:
83 | # if version is None then the package is not installed
84 | if self.get_version(requirement) is None:
85 | not_installed[requirement] = self.get_version(requirement)
86 | return not_installed
87 |
88 |
89 | if __name__ == '__main__':
90 | '''Display information about the system and requirements'''
91 | requirements_manager = Requirements()
92 | # Skipping for now, because it assumes package have the same name as the python import itself, which is not true most sometimes.
93 | # if not requirements_manager.is_all_requirements_installed():
94 | # print("Error : Some requirements are missing")
95 | # print("Please install all requirements from requirements.txt")
96 | # print("You can install them by running the following command:")
97 | # print("pip install -r requirements.txt")
98 |
99 | print(f"System information:")
100 | print(f"OS name : {requirements_manager.get_os_name()}")
101 | print(f"OS version : {requirements_manager.get_os_version()}")
102 | print(f"Python version : {requirements_manager.get_python_version()}")
103 |
104 | # list all requirements and their versions
105 | print("List of all requirements and their versions:")
106 | all_req_versions = requirements_manager.get_all_requirements_versions()
107 | for req_name, req_version in all_req_versions.items():
108 | print(f"{req_name}=={req_version}")
109 |
110 | print("List of all requirements not installed:")
111 | all_req_not_installed = requirements_manager.get_all_requirements_not_installed()
112 | for req_name, req_version in all_req_not_installed.items():
113 | print(f"{req_name}=={req_version}")
114 |
--------------------------------------------------------------------------------
/ultra.py:
--------------------------------------------------------------------------------
1 | from shortGPT.config.api_db import ApiKeyManager, ApiProvider
2 | from shortGPT.config.asset_db import AssetDatabase, AssetType
3 | from shortGPT.engine.reddit_short_engine import RedditShortEngine
4 | from shortGPT.audio.eleven_voice_module import ElevenLabsVoiceModule
5 | from shortGPT.config.languages import Language
6 | from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule, EDGE_TTS_VOICENAME_MAPPING
7 | from shortGPT.api_utils.youtube_api import search_videos_YouTube
8 | import random
9 |
10 | # Set or get API Keys here
11 | ApiKeyManager.set_api_key(ApiProvider.OPENAI, "")
12 | ApiKeyManager.set_api_key(ApiProvider.ELEVEN_LABS, "")
13 | ApiKeyManager.set_api_key(ApiProvider.PEXELS, "")
14 |
15 | # demo on how to leverage youtube as a stock footage aggregator
16 | try:
17 | new_video_url = search_videos_YouTube("Palmer Luckey Sucks")
18 | except:
19 | new_video_url = "https://www.youtube.com/watch?v=nZEQ4a1ZT8I"
20 |
21 | random_pairs = {
22 | "abba": ["https://www.youtube.com/watch?v=yJcCoZ34S5k", "https://www.youtube.com/watch?v=SQIawwMwVLs"],
23 | "onerepublic": ["https://www.youtube.com/watch?v=nZEQ4a1ZT8I", "https://www.youtube.com/watch?v=SQIawwMwVLs"],
24 | "afterdark": ["https://www.youtube.com/watch?v=As3LGNTlPQ0", new_video_url], # <---- variable use
25 | "materialgirl": ["https://www.youtube.com/watch?v=ng81ukSvV6s", "https://www.youtube.com/watch?v=_zvqSgPw_2M"]
26 | }
27 |
28 |
29 | random_keys = list(random_pairs.keys())
30 | random.shuffle(random_keys)
31 |
32 | random_pair = random.choice(random_keys)
33 | pair_urls = random_pairs[random_pair]
34 |
35 |
36 | video_url = pair_urls[1]
37 | music_url = pair_urls[0]
38 |
39 | music_title = random_pair + "_music"
40 | video_title = random_pair + "_video"
41 |
42 | AssetDatabase.add_remote_asset(music_title, AssetType.BACKGROUND_MUSIC, music_url)
43 | AssetDatabase.add_remote_asset(video_title, AssetType.BACKGROUND_VIDEO, video_url)
44 |
45 |
46 | USE_ELEVEN_LABS = True
47 | # Configure the ElevenLabs Voice Module
48 | if USE_ELEVEN_LABS:
49 | eleven_labs_key = ApiKeyManager.get_api_key(ApiProvider.ELEVEN_LABS)
50 | voice_module = ElevenLabsVoiceModule(api_key = eleven_labs_key, voiceName="Bella") #gigi aggressive
51 | else:
52 | ## You can also use the EdgeTTS for Free voice synthesis
53 | voice_name = EDGE_TTS_VOICENAME_MAPPING[Language.ENGLISH]['female']
54 | voice_module = EdgeTTSVoiceModule(voice_name)
55 |
56 | # Configure Content Engine
57 | content_engine = RedditShortEngine(voiceModule=voice_module,
58 | background_video_name=video_title, # <--- use the same name you saved in the AssetDatabase
59 | background_music_name=music_title, # <--- use the same name you saved in the AssetDatabase
60 | num_images=4, # If you don't want images in your video, put 0 or None
61 | language=Language.ENGLISH)
62 |
63 | # Generate Content
64 | for step_num, step_logs in content_engine.makeContent():
65 | print(f" {step_logs}")
66 |
67 | # Get Video Output Path
68 | print(content_engine.get_video_output_path())
69 |
--------------------------------------------------------------------------------
/videos/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything in this directory
2 | *
3 | # Except this file
4 | !.gitignore
5 | !archive/
--------------------------------------------------------------------------------
/videos/archive/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything in this directory
2 | *
3 | # Except this file
4 | !.gitignore
--------------------------------------------------------------------------------