├── DATA.py └── README.md /DATA.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import numpy as np 3 | df=pd.read_csv("data.csv") 4 | print(df) 5 | df['nst']=df['nst'].replace(np.nan, 0) 6 | df['magNst']=df['magNst'].replace(np.nan, 0) 7 | check_nan = df['nst'].isnull().values.any() 8 | check_nan1= df['latitude'].isnull().values.any() 9 | check_nan2= df['longitude'].isnull().values.any() 10 | check_nan3= df['depth'].isnull().values.any() 11 | check_nan4= df['magNst'].isnull().values.any() 12 | print(check_nan) 13 | print(check_nan1) 14 | print(check_nan2) 15 | print(check_nan3) 16 | print(check_nan4) 17 | x=df[['latitude','longitude','depth','nst','magNst']] 18 | y=df['mag'] 19 | print(x) 20 | print(y) 21 | from sklearn.linear_model import LinearRegression 22 | from sklearn.metrics import mean_squared_error 23 | from sklearn.model_selection import train_test_split 24 | x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0) 25 | print("x_test",x_test.shape) 26 | print("x_train",x_train.shape) 27 | print("y_test",x_test.shape) 28 | print("y_train",y_train.shape) 29 | print(df.shape) 30 | lr=LinearRegression() 31 | lr.fit(x_train,y_train) 32 | y_pred=lr.predict(x_test) 33 | print("y_pred",y_pred) 34 | print("y_test",y_test) 35 | print("MEAN SQUARED ERROR ",mean_squared_error(y_test,y_pred)) 36 | result=pd.DataFrame({'Actual':y_test,'Predicted':y_pred}) 37 | print(result) 38 | import matplotlib.pyplot as plt 39 | import seaborn as sns 40 | plt.scatter(range(len(y_test)),result['Actual'],label='Actual') 41 | plt.scatter(range(len(y_test)),result['Predicted'],label='Predicted') 42 | plt.legend(loc='best') 43 | plt.show() 44 | sns.scatterplot(x='latitude',y='longitude',data=df,hue='magSource') 45 | plt.show() 46 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # data --------------------------------------------------------------------------------