├── ChatTTS
├── __init__.py
├── utils
│ ├── io_utils.py
│ ├── gpu_utils.py
│ └── infer_utils.py
├── experimental
│ └── llm.py
├── infer
│ └── api.py
├── model
│ ├── dvae.py
│ └── gpt.py
└── core.py
├── requirements.txt
├── .gitignore
├── webui.py
├── README_CN.md
├── README.md
└── LICENSE
/ChatTTS/__init__.py:
--------------------------------------------------------------------------------
1 | from .core import Chat
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | omegaconf~=2.3.0
2 | torch~=2.1.0
3 | tqdm
4 | einops
5 | vector_quantize_pytorch
6 | transformers~=4.41.1
7 | vocos
8 | IPython
--------------------------------------------------------------------------------
/ChatTTS/utils/io_utils.py:
--------------------------------------------------------------------------------
1 |
2 | import os
3 | import logging
4 |
5 | def get_latest_modified_file(directory):
6 | logger = logging.getLogger(__name__)
7 |
8 | files = [os.path.join(directory, f) for f in os.listdir(directory)]
9 | if not files:
10 | logger.log(logging.WARNING, f'No files found in the directory: {directory}')
11 | return None
12 | latest_file = max(files, key=os.path.getmtime)
13 |
14 | return latest_file
--------------------------------------------------------------------------------
/ChatTTS/utils/gpu_utils.py:
--------------------------------------------------------------------------------
1 |
2 | import torch
3 | import logging
4 |
5 | def select_device(min_memory = 2048):
6 | logger = logging.getLogger(__name__)
7 | if torch.cuda.is_available():
8 | available_gpus = []
9 | for i in range(torch.cuda.device_count()):
10 | props = torch.cuda.get_device_properties(i)
11 | free_memory = props.total_memory - torch.cuda.memory_reserved(i)
12 | available_gpus.append((i, free_memory))
13 | selected_gpu, max_free_memory = max(available_gpus, key=lambda x: x[1])
14 | device = torch.device(f'cuda:{selected_gpu}')
15 | free_memory_mb = max_free_memory / (1024 * 1024)
16 | if free_memory_mb < min_memory:
17 | logger.log(logging.WARNING, f'GPU {selected_gpu} has {round(free_memory_mb, 2)} MB memory left.')
18 | device = torch.device('cpu')
19 | else:
20 | logger.log(logging.WARNING, f'No GPU found, use CPU instead')
21 | device = torch.device('cpu')
22 |
23 | return device
24 |
--------------------------------------------------------------------------------
/ChatTTS/experimental/llm.py:
--------------------------------------------------------------------------------
1 |
2 | from openai import OpenAI
3 |
4 | prompt_dict = {
5 | 'kimi': [ {"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。"},
6 | {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"},
7 | {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},],
8 | 'deepseek': [
9 | {"role": "system", "content": "You are a helpful assistant"},
10 | {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"},
11 | {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},],
12 | 'deepseek_TN': [
13 | {"role": "system", "content": "You are a helpful assistant"},
14 | {"role": "user", "content": "你好,现在我们在处理TTS的文本输入,下面将会给你输入一段文本,请你将其中的阿拉伯数字等等转为文字表达,并且输出的文本里仅包含逗号和句号这两个标点符号"},
15 | {"role": "assistant", "content": "好的,我现在对TTS的文本输入进行处理。这一般叫做text normalization。下面请输入"},
16 | {"role": "user", "content": "We paid $123 for this desk."},
17 | {"role": "assistant", "content": "We paid one hundred and twenty three dollars for this desk."},
18 | {"role": "user", "content": "详询请拨打010-724654"},
19 | {"role": "assistant", "content": "详询请拨打零幺零,七二四六五四"},
20 | {"role": "user", "content": "罗森宣布将于7月24日退市,在华门店超6000家!"},
21 | {"role": "assistant", "content": "罗森宣布将于七月二十四日退市,在华门店超过六千家。"},
22 | ],
23 | }
24 |
25 | class llm_api:
26 | def __init__(self, api_key, base_url, model):
27 | self.client = OpenAI(
28 | api_key = api_key,
29 | base_url = base_url,
30 | )
31 | self.model = model
32 | def call(self, user_question, temperature = 0.3, prompt_version='kimi', **kwargs):
33 |
34 | completion = self.client.chat.completions.create(
35 | model = self.model,
36 | messages = prompt_dict[prompt_version]+[{"role": "user", "content": user_question},],
37 | temperature = temperature,
38 | **kwargs
39 | )
40 | return completion.choices[0].message.content
41 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 | *.ckpt
6 | # C extensions
7 | *.so
8 | *.pt
9 |
10 | # Distribution / packaging
11 | .Python
12 | outputs/
13 | build/
14 | develop-eggs/
15 | dist/
16 | downloads/
17 | eggs/
18 | .eggs/
19 | lib/
20 | lib64/
21 | parts/
22 | sdist/
23 | var/
24 | wheels/
25 | share/python-wheels/
26 | *.egg-info/
27 | asset/*
28 | .installed.cfg
29 | *.egg
30 | MANIFEST
31 |
32 | # PyInstaller
33 | # Usually these files are written by a python script from a template
34 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
35 | *.manifest
36 | *.spec
37 |
38 | # Installer logs
39 | pip-log.txt
40 | pip-delete-this-directory.txt
41 |
42 | # Unit test / coverage reports
43 | htmlcov/
44 | .tox/
45 | .nox/
46 | .coverage
47 | .coverage.*
48 | .cache
49 | nosetests.xml
50 | coverage.xml
51 | *.cover
52 | *.py,cover
53 | .hypothesis/
54 | .pytest_cache/
55 | cover/
56 |
57 | # Translations
58 | *.mo
59 | *.pot
60 |
61 | # Django stuff:
62 | *.log
63 | local_settings.py
64 | db.sqlite3
65 | db.sqlite3-journal
66 |
67 | # Flask stuff:
68 | instance/
69 | .webassets-cache
70 |
71 | # Scrapy stuff:
72 | .scrapy
73 |
74 | # Sphinx documentation
75 | docs/_build/
76 |
77 | # PyBuilder
78 | .pybuilder/
79 | target/
80 |
81 | # Jupyter Notebook
82 | .ipynb_checkpoints
83 |
84 | # IPython
85 | profile_default/
86 | ipython_config.py
87 |
88 | # pyenv
89 | # For a library or package, you might want to ignore these files since the code is
90 | # intended to run in multiple environments; otherwise, check them in:
91 | # .python-version
92 |
93 | # pipenv
94 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
95 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
96 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
97 | # install all needed dependencies.
98 | #Pipfile.lock
99 |
100 | # poetry
101 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
102 | # This is especially recommended for binary packages to ensure reproducibility, and is more
103 | # commonly ignored for libraries.
104 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
105 | #poetry.lock
106 |
107 | # pdm
108 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
109 | #pdm.lock
110 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
111 | # in version control.
112 | # https://pdm.fming.dev/#use-with-ide
113 | .pdm.toml
114 |
115 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
116 | __pypackages__/
117 |
118 | # Celery stuff
119 | celerybeat-schedule
120 | celerybeat.pid
121 |
122 | # SageMath parsed files
123 | *.sage.py
124 |
125 | # Environments
126 | .env
127 | .venv
128 | env/
129 | venv/
130 | ENV/
131 | env.bak/
132 | venv.bak/
133 |
134 | # Spyder project settings
135 | .spyderproject
136 | .spyproject
137 |
138 | # Rope project settings
139 | .ropeproject
140 |
141 | # mkdocs documentation
142 | /site
143 |
144 | # mypy
145 | .mypy_cache/
146 | .dmypy.json
147 | dmypy.json
148 |
149 | # Pyre type checker
150 | .pyre/
151 |
152 | # pytype static type analyzer
153 | .pytype/
154 |
155 | # Cython debug symbols
156 | cython_debug/
157 |
158 | # PyCharm
159 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
160 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
161 | # and can be added to the global gitignore or merged into this file. For a more nuclear
162 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
163 | #.idea/
164 |
--------------------------------------------------------------------------------
/ChatTTS/utils/infer_utils.py:
--------------------------------------------------------------------------------
1 |
2 | import re
3 | import torch
4 | import torch.nn.functional as F
5 |
6 |
7 | class CustomRepetitionPenaltyLogitsProcessorRepeat():
8 |
9 | def __init__(self, penalty: float, max_input_ids, past_window):
10 | if not isinstance(penalty, float) or not (penalty > 0):
11 | raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
12 |
13 | self.penalty = penalty
14 | self.max_input_ids = max_input_ids
15 | self.past_window = past_window
16 |
17 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
18 |
19 | input_ids = input_ids[:, -self.past_window:]
20 | freq = F.one_hot(input_ids, scores.size(1)).sum(1)
21 | freq[self.max_input_ids:] = 0
22 | alpha = self.penalty**freq
23 | scores = torch.where(scores < 0, scores*alpha, scores/alpha)
24 |
25 | return scores
26 |
27 | class CustomRepetitionPenaltyLogitsProcessor():
28 |
29 | def __init__(self, penalty: float, max_input_ids, past_window):
30 | if not isinstance(penalty, float) or not (penalty > 0):
31 | raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
32 |
33 | self.penalty = penalty
34 | self.max_input_ids = max_input_ids
35 | self.past_window = past_window
36 |
37 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
38 |
39 | input_ids = input_ids[:, -self.past_window:]
40 | score = torch.gather(scores, 1, input_ids)
41 | _score = score.detach().clone()
42 | score = torch.where(score < 0, score * self.penalty, score / self.penalty)
43 | score[input_ids>=self.max_input_ids] = _score[input_ids>=self.max_input_ids]
44 | scores.scatter_(1, input_ids, score)
45 |
46 | return scores
47 |
48 | def count_invalid_characters(s):
49 |
50 | s = re.sub(r'\[uv_break\]|\[laugh\]|\[lbreak\]', '', s)
51 | pattern = re.compile(r'[^\u4e00-\u9fffA-Za-z,。、,\. ]')
52 | non_alphabetic_chinese_chars = pattern.findall(s)
53 | return set(non_alphabetic_chinese_chars)
54 |
55 | def detect_language(sentence):
56 |
57 | chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]')
58 | english_word_pattern = re.compile(r'\b[A-Za-z]+\b')
59 |
60 | chinese_chars = chinese_char_pattern.findall(sentence)
61 | english_words = english_word_pattern.findall(sentence)
62 |
63 | if len(chinese_chars) > len(english_words):
64 | return "zh"
65 | else:
66 | return "en"
67 |
68 |
69 | character_map = {
70 | ':': ',',
71 | ';': ',',
72 | '!': '。',
73 | '(': ',',
74 | ')': ',',
75 | '【': ',',
76 | '】': ',',
77 | '『': ',',
78 | '』': ',',
79 | '「': ',',
80 | '」': ',',
81 | '《': ',',
82 | '》': ',',
83 | '-': ',',
84 | '‘': '',
85 | '“': '',
86 | '’': '',
87 | '”': '',
88 | ':': ',',
89 | ';': ',',
90 | '!': '.',
91 | '(': ',',
92 | ')': ',',
93 | '[': ',',
94 | ']': ',',
95 | '>': ',',
96 | '<': ',',
97 | '-': ',',
98 | }
99 |
100 | halfwidth_2_fullwidth_map = {
101 | '!': '!',
102 | '"': '“',
103 | "'": '‘',
104 | '#': '#',
105 | '$': '$',
106 | '%': '%',
107 | '&': '&',
108 | '(': '(',
109 | ')': ')',
110 | ',': ',',
111 | '-': '-',
112 | '*': '*',
113 | '+': '+',
114 | '.': '。',
115 | '/': '/',
116 | ':': ':',
117 | ';': ';',
118 | '<': '<',
119 | '=': '=',
120 | '>': '>',
121 | '?': '?',
122 | '@': '@',
123 | # '[': '[',
124 | '\\': '\',
125 | # ']': ']',
126 | '^': '^',
127 | # '_': '_',
128 | '`': '`',
129 | '{': '{',
130 | '|': '|',
131 | '}': '}',
132 | '~': '~'
133 | }
134 |
135 | def apply_half2full_map(text):
136 | translation_table = str.maketrans(halfwidth_2_fullwidth_map)
137 | return text.translate(translation_table)
138 |
139 | def apply_character_map(text):
140 | translation_table = str.maketrans(character_map)
141 | return text.translate(translation_table)
--------------------------------------------------------------------------------
/webui.py:
--------------------------------------------------------------------------------
1 | import os
2 | import random
3 | import argparse
4 |
5 | import torch
6 | import gradio as gr
7 | import numpy as np
8 |
9 | import ChatTTS
10 |
11 |
12 | def generate_seed():
13 | new_seed = random.randint(1, 100000000)
14 | return {
15 | "__type__": "update",
16 | "value": new_seed
17 | }
18 |
19 |
20 | def generate_audio(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag):
21 |
22 | torch.manual_seed(audio_seed_input)
23 | rand_spk = chat.sample_random_speaker()
24 | params_infer_code = {
25 | 'spk_emb': rand_spk,
26 | 'temperature': temperature,
27 | 'top_P': top_P,
28 | 'top_K': top_K,
29 | }
30 | params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
31 |
32 | torch.manual_seed(text_seed_input)
33 |
34 | if refine_text_flag:
35 | text = chat.infer(text,
36 | skip_refine_text=False,
37 | refine_text_only=True,
38 | params_refine_text=params_refine_text,
39 | params_infer_code=params_infer_code
40 | )
41 |
42 | wav = chat.infer(text,
43 | skip_refine_text=True,
44 | params_refine_text=params_refine_text,
45 | params_infer_code=params_infer_code
46 | )
47 |
48 | audio_data = np.array(wav[0]).flatten()
49 | sample_rate = 24000
50 | text_data = text[0] if isinstance(text, list) else text
51 |
52 | return [(sample_rate, audio_data), text_data]
53 |
54 |
55 | def main():
56 |
57 | with gr.Blocks() as demo:
58 | gr.Markdown("# ChatTTS Webui")
59 | gr.Markdown("ChatTTS Model: [2noise/ChatTTS](https://github.com/2noise/ChatTTS)")
60 |
61 | default_text = "四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。"
62 | text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)
63 |
64 | with gr.Row():
65 | refine_text_checkbox = gr.Checkbox(label="Refine text", value=True)
66 | temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
67 | top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
68 | top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")
69 |
70 | with gr.Row():
71 | audio_seed_input = gr.Number(value=2, label="Audio Seed")
72 | generate_audio_seed = gr.Button("\U0001F3B2")
73 | text_seed_input = gr.Number(value=42, label="Text Seed")
74 | generate_text_seed = gr.Button("\U0001F3B2")
75 |
76 | generate_button = gr.Button("Generate")
77 |
78 | text_output = gr.Textbox(label="Output Text", interactive=False)
79 | audio_output = gr.Audio(label="Output Audio")
80 |
81 | generate_audio_seed.click(generate_seed,
82 | inputs=[],
83 | outputs=audio_seed_input)
84 |
85 | generate_text_seed.click(generate_seed,
86 | inputs=[],
87 | outputs=text_seed_input)
88 |
89 | generate_button.click(generate_audio,
90 | inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox],
91 | outputs=[audio_output, text_output])
92 |
93 | parser = argparse.ArgumentParser(description='ChatTTS demo Launch')
94 | parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
95 | parser.add_argument('--server_port', type=int, default=8080, help='Server port')
96 | parser.add_argument('--local_path', type=str, default=None, help='the local_path if need')
97 | args = parser.parse_args()
98 |
99 | print("loading ChatTTS model...")
100 | global chat
101 | chat = ChatTTS.Chat()
102 |
103 | if args.local_path == None:
104 | chat.load_models()
105 | else:
106 | print('local model path:', args.local_path)
107 | chat.load_models('local', local_path=args.local_path)
108 |
109 | demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
110 |
111 |
112 | if __name__ == '__main__':
113 | main()
--------------------------------------------------------------------------------
/README_CN.md:
--------------------------------------------------------------------------------
1 | # ChatTTS
2 | [**English**](./README.md) | [**中文简体**](./README_CN.md)
3 |
4 | ChatTTS是专门为对话场景设计的文本转语音模型,例如LLM助手对话任务。它支持英文和中文两种语言。最大的模型使用了10万小时以上的中英文数据进行训练。在HuggingFace中开源的版本为4万小时训练且未SFT的版本.
5 |
6 | 如需就模型进行正式商业咨询,请发送邮件至 **open-source@2noise.com**。对于中文用户,您可以加入我们的QQ群:~~808364215 (已满)~~ 230696694 (二群) 进行讨论。同时欢迎在GitHub上提出问题。如果遇到无法使用 **[HuggingFace](https://huggingface.co/2Noise/ChatTTS)** 的情况,可以在 [modelscope](https://www.modelscope.cn/models/pzc163/chatTTS) 上进行下载.
7 |
8 | ---
9 | ## 亮点
10 | 1. **对话式 TTS**: ChatTTS针对对话式任务进行了优化,实现了自然流畅的语音合成,同时支持多说话人。
11 | 2. **细粒度控制**: 该模型能够预测和控制细粒度的韵律特征,包括笑声、停顿和插入词等。
12 | 3. **更好的韵律**: ChatTTS在韵律方面超越了大部分开源TTS模型。同时提供预训练模型,支持进一步的研究。
13 |
14 | 对于模型的具体介绍, 可以参考B站的 **[宣传视频](https://www.bilibili.com/video/BV1zn4y1o7iV)**
15 |
16 | ---
17 |
18 | ## 免责声明
19 | 本文件中的信息仅供学术交流使用。其目的是用于教育和研究,不得用于任何商业或法律目的。作者不保证信息的准确性、完整性或可靠性。本文件中使用的信息和数据,仅用于学术研究目的。这些数据来自公开可用的来源,作者不对数据的所有权或版权提出任何主张。
20 |
21 | ChatTTS是一个强大的文本转语音系统。然而,负责任地和符合伦理地利用这项技术是非常重要的。为了限制ChatTTS的使用,我们在4w小时模型的训练过程中添加了少量额外的高频噪音,并用mp3格式尽可能压低了音质,以防不法分子用于潜在的犯罪可能。同时我们在内部训练了检测模型,并计划在未来开放。
22 |
23 | ---
24 | ## 用法
25 |
26 |
基本用法
27 |
28 | ```python
29 | import ChatTTS
30 | from IPython.display import Audio
31 |
32 | chat = ChatTTS.Chat()
33 | chat.load_models(compile=False) # 设置为True以获得更快速度
34 |
35 | texts = ["在这里输入你的文本",]
36 |
37 | wavs = chat.infer(texts, use_decoder=True)
38 |
39 | torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)
40 | ```
41 |
42 | 进阶用法
43 |
44 | ```python
45 | ###################################
46 | # Sample a speaker from Gaussian.
47 |
48 | rand_spk = chat.sample_random_speaker()
49 |
50 | params_infer_code = {
51 | 'spk_emb': rand_spk, # add sampled speaker
52 | 'temperature': .3, # using custom temperature
53 | 'top_P': 0.7, # top P decode
54 | 'top_K': 20, # top K decode
55 | }
56 |
57 | ###################################
58 | # For sentence level manual control.
59 |
60 | # use oral_(0-9), laugh_(0-2), break_(0-7)
61 | # to generate special token in text to synthesize.
62 | params_refine_text = {
63 | 'prompt': '[oral_2][laugh_0][break_6]'
64 | }
65 |
66 | wav = chat.infer(texts, params_refine_text=params_refine_text, params_infer_code=params_infer_code)
67 |
68 | ###################################
69 | # For word level manual control.
70 | # use_decoder=False to infer faster with a bit worse quality
71 | text = 'What is [uv_break]your favorite english food?[laugh][lbreak]'
72 | wav = chat.infer(text, skip_refine_text=True, params_infer_code=params_infer_code, use_decoder=False)
73 |
74 | torchaudio.save("output2.wav", torch.from_numpy(wavs[0]), 24000)
75 | ```
76 |
77 |
78 | 自我介绍样例
79 |
80 | ```python
81 | inputs_cn = """
82 | chat T T S 是一款强大的对话式文本转语音模型。它有中英混读和多说话人的能力。
83 | chat T T S 不仅能够生成自然流畅的语音,还能控制[laugh]笑声啊[laugh],
84 | 停顿啊[uv_break]语气词啊等副语言现象[uv_break]。这个韵律超越了许多开源模型[uv_break]。
85 | 请注意,chat T T S 的使用应遵守法律和伦理准则,避免滥用的安全风险。[uv_break]'
86 | """.replace('\n', '')
87 |
88 | params_refine_text = {
89 | 'prompt': '[oral_2][laugh_0][break_4]'
90 | }
91 | audio_array_cn = chat.infer(inputs_cn, params_refine_text=params_refine_text)
92 | # audio_array_en = chat.infer(inputs_en, params_refine_text=params_refine_text)
93 |
94 | torchaudio.save("output3.wav", torch.from_numpy(audio_array_cn[0]), 24000)
95 | ```
96 | [男说话人](https://github.com/2noise/ChatTTS/assets/130631963/bbfa3b83-2b67-4bb6-9315-64c992b63788)
97 |
98 | [女说话人](https://github.com/2noise/ChatTTS/assets/130631963/e061f230-0e05-45e6-8e4e-0189f2d260c4)
99 |
100 |
101 |
102 | ---
103 | ## 计划路线
104 | - [x] 开源4w小时基础模型和spk_stats文件
105 | - [ ] 开源VQ encoder和Lora 训练代码
106 | - [ ] 在非refine text情况下, 流式生成音频*
107 | - [ ] 开源多情感可控的4w小时版本
108 | - [ ] ChatTTS.cpp maybe? (欢迎社区PR或独立的新repo)
109 |
110 | ---
111 | ## 常见问题
112 |
113 | ##### 连不上HuggingFace
114 | 请使用[modelscope](https://www.modelscope.cn/models/pzc163/chatTTS)的版本. 并设置cache的位置:
115 | ```python
116 | chat.load_models(source='local', local_path='你的下载位置')
117 | ```
118 |
119 | ##### 我要多少显存? Infer的速度是怎么样的?
120 | 对于30s的音频, 至少需要4G的显存. 对于4090, 1s生成约7个字所对应的音频. RTF约0.3.
121 |
122 | ##### 模型稳定性似乎不够好, 会出现其他说话人或音质很差的现象.
123 | 这是自回归模型通常都会出现的问题. 说话人可能会在中间变化, 可能会采样到音质非常差的结果, 这通常难以避免. 可以多采样几次来找到合适的结果.
124 |
125 | ##### 除了笑声还能控制什么吗? 还能控制其他情感吗?
126 | 在现在放出的模型版本中, 只有[laugh]和[uv_break], [lbreak]作为字级别的控制单元. 在未来的版本中我们可能会开源其他情感控制的版本.
127 |
128 | ---
129 | ## 致谢
130 | - [bark](https://github.com/suno-ai/bark),[XTTSv2](https://github.com/coqui-ai/TTS)和[valle](https://arxiv.org/abs/2301.02111)展示了自回归任务用于TTS任务的可能性.
131 | - [fish-speech](https://github.com/fishaudio/fish-speech)一个优秀的自回归TTS模型, 揭示了GVQ用于LLM任务的可能性.
132 | - [vocos](https://github.com/gemelo-ai/vocos)作为模型中的vocoder.
133 |
134 | ---
135 | ## 特别致谢
136 | - [wlu-audio lab](https://audio.westlake.edu.cn/)为我们提供了早期算法试验的支持.
137 |
--------------------------------------------------------------------------------
/ChatTTS/infer/api.py:
--------------------------------------------------------------------------------
1 |
2 | import torch
3 | import torch.nn.functional as F
4 | from transformers.generation import TopKLogitsWarper, TopPLogitsWarper
5 | from ..utils.infer_utils import CustomRepetitionPenaltyLogitsProcessorRepeat
6 |
7 | def infer_code(
8 | models,
9 | text,
10 | spk_emb = None,
11 | top_P = 0.7,
12 | top_K = 20,
13 | temperature = 0.3,
14 | repetition_penalty = 1.05,
15 | max_new_token = 2048,
16 | **kwargs
17 | ):
18 |
19 | device = next(models['gpt'].parameters()).device
20 |
21 | if not isinstance(text, list):
22 | text = [text]
23 |
24 | if not isinstance(temperature, list):
25 | temperature = [temperature] * models['gpt'].num_vq
26 |
27 | if spk_emb is not None:
28 | text = [f'[Stts][spk_emb]{i}[Ptts]' for i in text]
29 | else:
30 | text = [f'[Stts][empty_spk]{i}[Ptts]' for i in text]
31 |
32 | text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device)
33 | input_ids = text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq)
34 | text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device)
35 |
36 | inputs = {
37 | 'input_ids': input_ids,
38 | 'text_mask': text_mask,
39 | 'attention_mask': text_token['attention_mask'],
40 | }
41 |
42 | emb = models['gpt'].get_emb(**inputs)
43 | if spk_emb is not None:
44 | emb[inputs['input_ids'][..., 0] == models['tokenizer'].convert_tokens_to_ids('[spk_emb]')] = \
45 | F.normalize(spk_emb.to(device).to(emb.dtype)[None].expand(len(text), -1), p=2.0, dim=1, eps=1e-12)
46 |
47 | num_code = models['gpt'].emb_code[0].num_embeddings - 1
48 |
49 | LogitsWarpers = []
50 | if top_P is not None:
51 | LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
52 | if top_K is not None:
53 | LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))
54 |
55 | LogitsProcessors = []
56 | if repetition_penalty is not None and repetition_penalty != 1:
57 | LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(\
58 | repetition_penalty, num_code, 16))
59 |
60 | result = models['gpt'].generate(
61 | emb, inputs['input_ids'],
62 | temperature = torch.tensor(temperature, device=device),
63 | attention_mask = inputs['attention_mask'],
64 | LogitsWarpers = LogitsWarpers,
65 | LogitsProcessors = LogitsProcessors,
66 | eos_token = num_code,
67 | max_new_token = max_new_token,
68 | infer_text = False,
69 | **kwargs
70 | )
71 |
72 | return result
73 |
74 |
75 | def refine_text(
76 | models,
77 | text,
78 | top_P = 0.7,
79 | top_K = 20,
80 | temperature = 0.7,
81 | repetition_penalty = 1.0,
82 | max_new_token = 384,
83 | prompt = '',
84 | **kwargs
85 | ):
86 |
87 | device = next(models['gpt'].parameters()).device
88 |
89 | if not isinstance(text, list):
90 | text = [text]
91 |
92 | assert len(text), 'text should not be empty'
93 |
94 | text = [f"[Sbreak]{i}[Pbreak]{prompt}" for i in text]
95 | text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device)
96 | text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device)
97 |
98 | inputs = {
99 | 'input_ids': text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq),
100 | 'text_mask': text_mask,
101 | 'attention_mask': text_token['attention_mask'],
102 | }
103 |
104 | LogitsWarpers = []
105 | if top_P is not None:
106 | LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
107 | if top_K is not None:
108 | LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))
109 |
110 | LogitsProcessors = []
111 | if repetition_penalty is not None and repetition_penalty != 1:
112 | LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, len(models['tokenizer']), 16))
113 |
114 | result = models['gpt'].generate(
115 | models['gpt'].get_emb(**inputs), inputs['input_ids'],
116 | temperature = torch.tensor([temperature,], device=device),
117 | attention_mask = inputs['attention_mask'],
118 | LogitsWarpers = LogitsWarpers,
119 | LogitsProcessors = LogitsProcessors,
120 | eos_token = torch.tensor(models['tokenizer'].convert_tokens_to_ids('[Ebreak]'), device=device)[None],
121 | max_new_token = max_new_token,
122 | infer_text = True,
123 | **kwargs
124 | )
125 | return result
--------------------------------------------------------------------------------
/ChatTTS/model/dvae.py:
--------------------------------------------------------------------------------
1 | import math
2 | from einops import rearrange
3 | from vector_quantize_pytorch import GroupedResidualFSQ
4 |
5 | import torch
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 |
9 | class ConvNeXtBlock(nn.Module):
10 | def __init__(
11 | self,
12 | dim: int,
13 | intermediate_dim: int,
14 | kernel, dilation,
15 | layer_scale_init_value: float = 1e-6,
16 | ):
17 | # ConvNeXt Block copied from Vocos.
18 | super().__init__()
19 | self.dwconv = nn.Conv1d(dim, dim,
20 | kernel_size=kernel, padding=dilation*(kernel//2),
21 | dilation=dilation, groups=dim
22 | ) # depthwise conv
23 |
24 | self.norm = nn.LayerNorm(dim, eps=1e-6)
25 | self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
26 | self.act = nn.GELU()
27 | self.pwconv2 = nn.Linear(intermediate_dim, dim)
28 | self.gamma = (
29 | nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
30 | if layer_scale_init_value > 0
31 | else None
32 | )
33 |
34 | def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor:
35 | residual = x
36 | x = self.dwconv(x)
37 | x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
38 | x = self.norm(x)
39 | x = self.pwconv1(x)
40 | x = self.act(x)
41 | x = self.pwconv2(x)
42 | if self.gamma is not None:
43 | x = self.gamma * x
44 | x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
45 |
46 | x = residual + x
47 | return x
48 |
49 |
50 |
51 | class GFSQ(nn.Module):
52 |
53 | def __init__(self,
54 | dim, levels, G, R, eps=1e-5, transpose = True
55 | ):
56 | super(GFSQ, self).__init__()
57 | self.quantizer = GroupedResidualFSQ(
58 | dim=dim,
59 | levels=levels,
60 | num_quantizers=R,
61 | groups=G,
62 | )
63 | self.n_ind = math.prod(levels)
64 | self.eps = eps
65 | self.transpose = transpose
66 | self.G = G
67 | self.R = R
68 |
69 | def _embed(self, x):
70 | if self.transpose:
71 | x = x.transpose(1,2)
72 | x = rearrange(
73 | x, "b t (g r) -> g b t r", g = self.G, r = self.R,
74 | )
75 | feat = self.quantizer.get_output_from_indices(x)
76 | return feat.transpose(1,2) if self.transpose else feat
77 |
78 | def forward(self, x,):
79 | if self.transpose:
80 | x = x.transpose(1,2)
81 | feat, ind = self.quantizer(x)
82 | ind = rearrange(
83 | ind, "g b t r ->b t (g r)",
84 | )
85 | embed_onehot = F.one_hot(ind.long(), self.n_ind).to(x.dtype)
86 | e_mean = torch.mean(embed_onehot, dim=[0,1])
87 | e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
88 | perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1))
89 |
90 | return (
91 | torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device),
92 | feat.transpose(1,2) if self.transpose else feat,
93 | perplexity,
94 | None,
95 | ind.transpose(1,2) if self.transpose else ind,
96 | )
97 |
98 | class DVAEDecoder(nn.Module):
99 | def __init__(self, idim, odim,
100 | n_layer = 12, bn_dim = 64, hidden = 256,
101 | kernel = 7, dilation = 2, up = False
102 | ):
103 | super().__init__()
104 | self.up = up
105 | self.conv_in = nn.Sequential(
106 | nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(),
107 | nn.Conv1d(bn_dim, hidden, 3, 1, 1)
108 | )
109 | self.decoder_block = nn.ModuleList([
110 | ConvNeXtBlock(hidden, hidden* 4, kernel, dilation,)
111 | for _ in range(n_layer)])
112 | self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)
113 |
114 | def forward(self, input, conditioning=None):
115 | # B, T, C
116 | x = input.transpose(1, 2)
117 | x = self.conv_in(x)
118 | for f in self.decoder_block:
119 | x = f(x, conditioning)
120 |
121 | x = self.conv_out(x)
122 | return x.transpose(1, 2)
123 |
124 |
125 | class DVAE(nn.Module):
126 | def __init__(
127 | self, decoder_config, vq_config, dim=512
128 | ):
129 | super().__init__()
130 | self.register_buffer('coef', torch.randn(1, 100, 1))
131 |
132 | self.decoder = DVAEDecoder(**decoder_config)
133 | self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False)
134 | if vq_config is not None:
135 | self.vq_layer = GFSQ(**vq_config)
136 | else:
137 | self.vq_layer = None
138 |
139 | def forward(self, inp):
140 |
141 | if self.vq_layer is not None:
142 | vq_feats = self.vq_layer._embed(inp)
143 | else:
144 | vq_feats = inp.detach().clone()
145 |
146 | temp = torch.chunk(vq_feats, 2, dim=1) # flatten trick :)
147 | temp = torch.stack(temp, -1)
148 | vq_feats = temp.reshape(*temp.shape[:2], -1)
149 |
150 | vq_feats = vq_feats.transpose(1, 2)
151 | dec_out = self.decoder(input=vq_feats)
152 | dec_out = self.out_conv(dec_out.transpose(1, 2))
153 | mel = dec_out * self.coef
154 |
155 | return mel
156 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ChatTTS
2 | [**English**](./README.md) | [**中文简体**](./README_CN.md)
3 |
4 | ChatTTS is a text-to-speech model designed specifically for dialogue scenario such as LLM assistant. It supports both English and Chinese languages. Our model is trained with 100,000+ hours composed of chinese and english. The open-source version on **[HuggingFace](https://huggingface.co/2Noise/ChatTTS)** is a 40,000 hours pre trained model without SFT.
5 |
6 | For formal inquiries about model and roadmap, please contact us at **open-source@2noise.com**. You could join our QQ group: ~~808364215 (Full)~~ 230696694 (Group 2) for discussion. Adding github issues is always welcomed.
7 |
8 | ---
9 | ## Highlights
10 | 1. **Conversational TTS**: ChatTTS is optimized for dialogue-based tasks, enabling natural and expressive speech synthesis. It supports multiple speakers, facilitating interactive conversations.
11 | 2. **Fine-grained Control**: The model could predict and control fine-grained prosodic features, including laughter, pauses, and interjections.
12 | 3. **Better Prosody**: ChatTTS surpasses most of open-source TTS models in terms of prosody. We provide pretrained models to support further research and development.
13 |
14 | For the detailed description of the model, you can refer to **[video on Bilibili](https://www.bilibili.com/video/BV1zn4y1o7iV)**
15 |
16 | ---
17 |
18 | ## Disclaimer
19 |
20 | This repo is for academic purposes only. It is intended for educational and research use, and should not be used for any commercial or legal purposes. The authors do not guarantee the accuracy, completeness, or reliability of the information. The information and data used in this repo, are for academic and research purposes only. The data obtained from publicly available sources, and the authors do not claim any ownership or copyright over the data.
21 |
22 | ChatTTS is a powerful text-to-speech system. However, it is very important to utilize this technology responsibly and ethically. To limit the use of ChatTTS, we added a small amount of high-frequency noise during the training of the 40,000-hour model, and compressed the audio quality as much as possible using MP3 format, to prevent malicious actors from potentially using it for criminal purposes. At the same time, we have internally trained a detection model and plan to open-source it in the future.
23 |
24 |
25 | ---
26 | ## Usage
27 |
28 | Basic usage
29 |
30 | ```python
31 | import ChatTTS
32 | from IPython.display import Audio
33 |
34 | chat = ChatTTS.Chat()
35 | chat.load_models(compile=False) # Set to True for better performance
36 |
37 | texts = ["PUT YOUR TEXT HERE",]
38 |
39 | wavs = chat.infer(texts, )
40 |
41 | torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)
42 | ```
43 |
44 | Advanced usage
45 |
46 | ```python
47 | ###################################
48 | # Sample a speaker from Gaussian.
49 |
50 | rand_spk = chat.sample_random_speaker()
51 |
52 | params_infer_code = {
53 | 'spk_emb': rand_spk, # add sampled speaker
54 | 'temperature': .3, # using custom temperature
55 | 'top_P': 0.7, # top P decode
56 | 'top_K': 20, # top K decode
57 | }
58 |
59 | ###################################
60 | # For sentence level manual control.
61 |
62 | # use oral_(0-9), laugh_(0-2), break_(0-7)
63 | # to generate special token in text to synthesize.
64 | params_refine_text = {
65 | 'prompt': '[oral_2][laugh_0][break_6]'
66 | }
67 |
68 | wav = chat.infer(texts, params_refine_text=params_refine_text, params_infer_code=params_infer_code)
69 |
70 | ###################################
71 | # For word level manual control.
72 | text = 'What is [uv_break]your favorite english food?[laugh][lbreak]'
73 | wav = chat.infer(text, skip_refine_text=True, params_refine_text=params_refine_text, params_infer_code=params_infer_code)
74 | torchaudio.save("output2.wav", torch.from_numpy(wavs[0]), 24000)
75 | ```
76 |
77 |
78 | Example: self introduction
79 |
80 | ```python
81 | inputs_en = """
82 | chat T T S is a text to speech model designed for dialogue applications.
83 | [uv_break]it supports mixed language input [uv_break]and offers multi speaker
84 | capabilities with precise control over prosodic elements [laugh]like like
85 | [uv_break]laughter[laugh], [uv_break]pauses, [uv_break]and intonation.
86 | [uv_break]it delivers natural and expressive speech,[uv_break]so please
87 | [uv_break] use the project responsibly at your own risk.[uv_break]
88 | """.replace('\n', '') # English is still experimental.
89 |
90 | params_refine_text = {
91 | 'prompt': '[oral_2][laugh_0][break_4]'
92 | }
93 | # audio_array_cn = chat.infer(inputs_cn, params_refine_text=params_refine_text)
94 | audio_array_en = chat.infer(inputs_en, params_refine_text=params_refine_text)
95 | torchaudio.save("output3.wav", torch.from_numpy(audio_array_en[0]), 24000)
96 | ```
97 | [male speaker](https://github.com/2noise/ChatTTS/assets/130631963/e0f51251-db7f-4d39-a0e9-3e095bb65de1)
98 |
99 | [female speaker](https://github.com/2noise/ChatTTS/assets/130631963/f5dcdd01-1091-47c5-8241-c4f6aaaa8bbd)
100 |
101 |
102 | ---
103 | ## Roadmap
104 | - [x] Open-source the 40k hour base model and spk_stats file
105 | - [ ] Open-source VQ encoder and Lora training code
106 | - [ ] Streaming audio generation without refining the text*
107 | - [ ] Open-source the 40k hour version with multi-emotion control
108 | - [ ] ChatTTS.cpp maybe? (PR or new repo are welcomed.)
109 |
110 | ----
111 | ## FAQ
112 |
113 | ##### How much VRAM do I need? How about infer speed?
114 | For a 30-second audio clip, at least 4GB of GPU memory is required. For the 4090 GPU, it can generate audio corresponding to approximately 7 semantic tokens per second. The Real-Time Factor (RTF) is around 0.3.
115 |
116 | ##### model stability is not good enough, with issues such as multi speakers or poor audio quality.
117 |
118 | This is a problem that typically occurs with autoregressive models(for bark and valle). It's generally difficult to avoid. One can try multiple samples to find a suitable result.
119 |
120 | ##### Besides laughter, can we control anything else? Can we control other emotions?
121 |
122 | In the current released model, the only token-level control units are [laugh], [uv_break], and [lbreak]. In future versions, we may open-source models with additional emotional control capabilities.
123 |
124 | ---
125 | ## Acknowledgements
126 | - [bark](https://github.com/suno-ai/bark), [XTTSv2](https://github.com/coqui-ai/TTS) and [valle](https://arxiv.org/abs/2301.02111) demostrate a remarkable TTS result by a autoregressive-style system.
127 | - [fish-speech](https://github.com/fishaudio/fish-speech) reveals capability of GVQ as audio tokenizer for LLM modeling.
128 | - [vocos](https://github.com/gemelo-ai/vocos) which is used as a pretrained vocoder.
129 |
130 | ---
131 | ## Special Appreciation
132 | - [wlu-audio lab](https://audio.westlake.edu.cn/) for early algorithm experiments.
133 |
--------------------------------------------------------------------------------
/ChatTTS/core.py:
--------------------------------------------------------------------------------
1 |
2 | import os
3 | import logging
4 | from functools import partial
5 | from omegaconf import OmegaConf
6 |
7 | import torch
8 | from vocos import Vocos
9 | from .model.dvae import DVAE
10 | from .model.gpt import GPT_warpper
11 | from .utils.gpu_utils import select_device
12 | from .utils.infer_utils import count_invalid_characters, detect_language, apply_character_map, apply_half2full_map
13 | from .utils.io_utils import get_latest_modified_file
14 | from .infer.api import refine_text, infer_code
15 |
16 | from huggingface_hub import snapshot_download
17 |
18 | logging.basicConfig(level = logging.INFO)
19 |
20 |
21 | class Chat:
22 | def __init__(self, ):
23 | self.pretrain_models = {}
24 | self.normalizer = {}
25 | self.logger = logging.getLogger(__name__)
26 |
27 | def check_model(self, level = logging.INFO, use_decoder = False):
28 | not_finish = False
29 | check_list = ['vocos', 'gpt', 'tokenizer']
30 |
31 | if use_decoder:
32 | check_list.append('decoder')
33 | else:
34 | check_list.append('dvae')
35 |
36 | for module in check_list:
37 | if module not in self.pretrain_models:
38 | self.logger.log(logging.WARNING, f'{module} not initialized.')
39 | not_finish = True
40 |
41 | if not not_finish:
42 | self.logger.log(level, f'All initialized.')
43 |
44 | return not not_finish
45 |
46 | def load_models(self, source='huggingface', force_redownload=False, local_path='', **kwargs):
47 | if source == 'huggingface':
48 | hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface"))
49 | try:
50 | download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots'))
51 | except:
52 | download_path = None
53 | if download_path is None or force_redownload:
54 | self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS')
55 | download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"])
56 | else:
57 | self.logger.log(logging.INFO, f'Load from cache: {download_path}')
58 | elif source == 'local':
59 | self.logger.log(logging.INFO, f'Load from local: {local_path}')
60 | download_path = local_path
61 |
62 | self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()}, **kwargs)
63 |
64 | def _load(
65 | self,
66 | vocos_config_path: str = None,
67 | vocos_ckpt_path: str = None,
68 | dvae_config_path: str = None,
69 | dvae_ckpt_path: str = None,
70 | gpt_config_path: str = None,
71 | gpt_ckpt_path: str = None,
72 | decoder_config_path: str = None,
73 | decoder_ckpt_path: str = None,
74 | tokenizer_path: str = None,
75 | device: str = None,
76 | compile: bool = True,
77 | ):
78 | if not device:
79 | device = select_device(4096)
80 | self.logger.log(logging.INFO, f'use {device}')
81 |
82 | if vocos_config_path:
83 | vocos = Vocos.from_hparams(vocos_config_path).to(device).eval()
84 | assert vocos_ckpt_path, 'vocos_ckpt_path should not be None'
85 | vocos.load_state_dict(torch.load(vocos_ckpt_path))
86 | self.pretrain_models['vocos'] = vocos
87 | self.logger.log(logging.INFO, 'vocos loaded.')
88 |
89 | if dvae_config_path:
90 | cfg = OmegaConf.load(dvae_config_path)
91 | dvae = DVAE(**cfg).to(device).eval()
92 | assert dvae_ckpt_path, 'dvae_ckpt_path should not be None'
93 | dvae.load_state_dict(torch.load(dvae_ckpt_path, map_location='cpu'))
94 | self.pretrain_models['dvae'] = dvae
95 | self.logger.log(logging.INFO, 'dvae loaded.')
96 |
97 | if gpt_config_path:
98 | cfg = OmegaConf.load(gpt_config_path)
99 | gpt = GPT_warpper(**cfg).to(device).eval()
100 | assert gpt_ckpt_path, 'gpt_ckpt_path should not be None'
101 | gpt.load_state_dict(torch.load(gpt_ckpt_path, map_location='cpu'))
102 | if compile and 'cuda' in str(device):
103 | gpt.gpt.forward = torch.compile(gpt.gpt.forward, backend='inductor', dynamic=True)
104 | self.pretrain_models['gpt'] = gpt
105 | spk_stat_path = os.path.join(os.path.dirname(gpt_ckpt_path), 'spk_stat.pt')
106 | assert os.path.exists(spk_stat_path), f'Missing spk_stat.pt: {spk_stat_path}'
107 | self.pretrain_models['spk_stat'] = torch.load(spk_stat_path).to(device)
108 | self.logger.log(logging.INFO, 'gpt loaded.')
109 |
110 | if decoder_config_path:
111 | cfg = OmegaConf.load(decoder_config_path)
112 | decoder = DVAE(**cfg).to(device).eval()
113 | assert decoder_ckpt_path, 'decoder_ckpt_path should not be None'
114 | decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu'))
115 | self.pretrain_models['decoder'] = decoder
116 | self.logger.log(logging.INFO, 'decoder loaded.')
117 |
118 | if tokenizer_path:
119 | tokenizer = torch.load(tokenizer_path, map_location='cpu')
120 | tokenizer.padding_side = 'left'
121 | self.pretrain_models['tokenizer'] = tokenizer
122 | self.logger.log(logging.INFO, 'tokenizer loaded.')
123 |
124 | self.check_model()
125 |
126 | def infer(
127 | self,
128 | text,
129 | skip_refine_text=False,
130 | refine_text_only=False,
131 | params_refine_text={},
132 | params_infer_code={'prompt':'[speed_5]'},
133 | use_decoder=True,
134 | do_text_normalization=True,
135 | lang=None,
136 | ):
137 |
138 | assert self.check_model(use_decoder=use_decoder)
139 |
140 | if not isinstance(text, list):
141 | text = [text]
142 |
143 | if do_text_normalization:
144 | for i, t in enumerate(text):
145 | _lang = detect_language(t) if lang is None else lang
146 | self.init_normalizer(_lang)
147 | text[i] = self.normalizer[_lang](t)
148 | if _lang == 'zh':
149 | text[i] = apply_half2full_map(text[i])
150 |
151 | for i, t in enumerate(text):
152 | invalid_characters = count_invalid_characters(t)
153 | if len(invalid_characters):
154 | self.logger.log(logging.WARNING, f'Invalid characters found! : {invalid_characters}')
155 | text[i] = apply_character_map(t)
156 |
157 | if not skip_refine_text:
158 | text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids']
159 | text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
160 | text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
161 | if refine_text_only:
162 | return text
163 |
164 | text = [params_infer_code.get('prompt', '') + i for i in text]
165 | params_infer_code.pop('prompt', '')
166 | result = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder)
167 |
168 | if use_decoder:
169 | mel_spec = [self.pretrain_models['decoder'](i[None].permute(0,2,1)) for i in result['hiddens']]
170 | else:
171 | mel_spec = [self.pretrain_models['dvae'](i[None].permute(0,2,1)) for i in result['ids']]
172 |
173 | wav = [self.pretrain_models['vocos'].decode(i).cpu().numpy() for i in mel_spec]
174 |
175 | return wav
176 |
177 | def sample_random_speaker(self, ):
178 |
179 | dim = self.pretrain_models['gpt'].gpt.layers[0].mlp.gate_proj.in_features
180 | std, mean = self.pretrain_models['spk_stat'].chunk(2)
181 | return torch.randn(dim, device=std.device) * std + mean
182 |
183 | def init_normalizer(self, lang):
184 |
185 | if lang not in self.normalizer:
186 | if lang == 'zh':
187 | try:
188 | from tn.chinese.normalizer import Normalizer
189 | except:
190 | self.logger.log(logging.WARNING, f'Package WeTextProcessing not found! \
191 | Run: conda install -c conda-forge pynini=2.1.5 && pip install WeTextProcessing')
192 | self.normalizer[lang] = Normalizer().normalize
193 | else:
194 | try:
195 | from nemo_text_processing.text_normalization.normalize import Normalizer
196 | except:
197 | self.logger.log(logging.WARNING, f'Package nemo_text_processing not found! \
198 | Run: conda install -c conda-forge pynini=2.1.5 && pip install nemo_text_processing')
199 | self.normalizer[lang] = partial(Normalizer(input_case='cased', lang=lang).normalize, verbose=False, punct_post_process=True)
200 |
201 |
--------------------------------------------------------------------------------
/ChatTTS/model/gpt.py:
--------------------------------------------------------------------------------
1 | import os
2 | os.environ["TOKENIZERS_PARALLELISM"] = "false"
3 |
4 | import logging
5 | from tqdm import tqdm
6 | from einops import rearrange
7 | from transformers.cache_utils import Cache
8 |
9 | import torch
10 | import torch.nn as nn
11 | import torch.nn.functional as F
12 | import torch.nn.utils.parametrize as P
13 | from torch.nn.utils.parametrizations import weight_norm
14 | from transformers import LlamaModel, LlamaConfig
15 |
16 |
17 | class LlamaMLP(nn.Module):
18 | def __init__(self, hidden_size, intermediate_size):
19 | super().__init__()
20 | self.hidden_size = hidden_size
21 | self.intermediate_size = intermediate_size
22 | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
23 | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
24 | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
25 | self.act_fn = F.silu
26 |
27 | def forward(self, x):
28 | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
29 | return down_proj
30 |
31 |
32 | class GPT_warpper(nn.Module):
33 | def __init__(
34 | self,
35 | gpt_config,
36 | num_audio_tokens,
37 | num_text_tokens,
38 | num_vq=4,
39 | **kwargs,
40 | ):
41 | super().__init__()
42 |
43 | self.logger = logging.getLogger(__name__)
44 | self.gpt = self.build_model(gpt_config)
45 | self.model_dim = self.gpt.config.hidden_size
46 |
47 | self.num_vq = num_vq
48 | self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)])
49 | self.emb_text = nn.Embedding(num_text_tokens, self.model_dim)
50 | self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight')
51 | self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)])
52 |
53 | def build_model(self, config):
54 |
55 | configuration = LlamaConfig(**config)
56 | model = LlamaModel(configuration)
57 | del model.embed_tokens
58 |
59 | return model
60 |
61 | def get_emb(self, input_ids, text_mask, **kwargs):
62 |
63 | emb_text = self.emb_text(input_ids[text_mask][:, 0])
64 |
65 | emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)]
66 | emb_code = torch.stack(emb_code, 2).sum(2)
67 |
68 | emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype)
69 | emb[text_mask] = emb_text
70 | emb[~text_mask] = emb_code.to(emb.dtype)
71 |
72 | return emb
73 |
74 | def prepare_inputs_for_generation(
75 | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
76 | ):
77 | # With static cache, the `past_key_values` is None
78 | # TODO joao: standardize interface for the different Cache classes and remove of this if
79 | has_static_cache = False
80 | if past_key_values is None:
81 | past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None)
82 | has_static_cache = past_key_values is not None
83 |
84 | past_length = 0
85 | if past_key_values is not None:
86 | if isinstance(past_key_values, Cache):
87 | past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
88 | max_cache_length = (
89 | torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
90 | if past_key_values.get_max_length() is not None
91 | else None
92 | )
93 | cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
94 | # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
95 | else:
96 | cache_length = past_length = past_key_values[0][0].shape[2]
97 | max_cache_length = None
98 |
99 | # Keep only the unprocessed tokens:
100 | # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
101 | # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
102 | # input)
103 | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
104 | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
105 | # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
106 | # input_ids based on the past_length.
107 | elif past_length < input_ids.shape[1]:
108 | input_ids = input_ids[:, past_length:]
109 | # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
110 |
111 | # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
112 | if (
113 | max_cache_length is not None
114 | and attention_mask is not None
115 | and cache_length + input_ids.shape[1] > max_cache_length
116 | ):
117 | attention_mask = attention_mask[:, -max_cache_length:]
118 |
119 | position_ids = kwargs.get("position_ids", None)
120 | if attention_mask is not None and position_ids is None:
121 | # create position_ids on the fly for batch generation
122 | position_ids = attention_mask.long().cumsum(-1) - 1
123 | position_ids.masked_fill_(attention_mask == 0, 1)
124 | if past_key_values:
125 | position_ids = position_ids[:, -input_ids.shape[1] :]
126 |
127 | # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
128 | if inputs_embeds is not None and past_key_values is None:
129 | model_inputs = {"inputs_embeds": inputs_embeds}
130 | else:
131 | # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
132 | # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
133 | # TODO: use `next_tokens` directly instead.
134 | model_inputs = {"input_ids": input_ids.contiguous()}
135 |
136 | input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
137 | if cache_position is None:
138 | cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
139 | else:
140 | cache_position = cache_position[-input_length:]
141 |
142 | if has_static_cache:
143 | past_key_values = None
144 |
145 | model_inputs.update(
146 | {
147 | "position_ids": position_ids,
148 | "cache_position": cache_position,
149 | "past_key_values": past_key_values,
150 | "use_cache": kwargs.get("use_cache"),
151 | "attention_mask": attention_mask,
152 | }
153 | )
154 | return model_inputs
155 |
156 | def generate(
157 | self,
158 | emb,
159 | inputs_ids,
160 | temperature,
161 | eos_token,
162 | attention_mask = None,
163 | max_new_token = 2048,
164 | min_new_token = 0,
165 | LogitsWarpers = [],
166 | LogitsProcessors = [],
167 | infer_text=False,
168 | return_attn=False,
169 | return_hidden=False,
170 | ):
171 |
172 | with torch.no_grad():
173 |
174 | attentions = []
175 | hiddens = []
176 |
177 | start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long)
178 | finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool()
179 |
180 | temperature = temperature[None].expand(inputs_ids.shape[0], -1)
181 | temperature = rearrange(temperature, "b n -> (b n) 1")
182 |
183 | attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device)
184 | if attention_mask is not None:
185 | attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask
186 |
187 | for i in tqdm(range(max_new_token)):
188 |
189 | model_input = self.prepare_inputs_for_generation(inputs_ids,
190 | outputs.past_key_values if i!=0 else None,
191 | attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True)
192 |
193 | if i == 0:
194 | model_input['inputs_embeds'] = emb
195 | else:
196 | if infer_text:
197 | model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0])
198 | else:
199 | code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)]
200 | model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3)
201 |
202 | model_input['input_ids'] = None
203 | outputs = self.gpt.forward(**model_input, output_attentions=return_attn)
204 | attentions.append(outputs.attentions)
205 | hidden_states = outputs[0] # 🐻
206 | if return_hidden:
207 | hiddens.append(hidden_states[:, -1])
208 |
209 | with P.cached():
210 | if infer_text:
211 | logits = self.head_text(hidden_states)
212 | else:
213 | logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3)
214 |
215 | logits = logits[:, -1].float()
216 |
217 | if not infer_text:
218 | logits = rearrange(logits, "b c n -> (b n) c")
219 | logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c")
220 | else:
221 | logits_token = inputs_ids[:, start_idx:, 0]
222 |
223 | logits = logits / temperature
224 |
225 | for logitsProcessors in LogitsProcessors:
226 | logits = logitsProcessors(logits_token, logits)
227 |
228 | for logitsWarpers in LogitsWarpers:
229 | logits = logitsWarpers(logits_token, logits)
230 |
231 | if i < min_new_token:
232 | logits[:, eos_token] = -torch.inf
233 |
234 | scores = F.softmax(logits, dim=-1)
235 |
236 | idx_next = torch.multinomial(scores, num_samples=1)
237 |
238 | if not infer_text:
239 | idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
240 | finish = finish | (idx_next == eos_token).any(1)
241 | inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1)
242 | else:
243 | finish = finish | (idx_next == eos_token).any(1)
244 | inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1)
245 |
246 | end_idx = end_idx + (~finish).int()
247 |
248 | if finish.all():
249 | break
250 |
251 | inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())]
252 | inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids
253 |
254 | if return_hidden:
255 | hiddens = torch.stack(hiddens, 1)
256 | hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())]
257 |
258 | if not finish.all():
259 | self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}')
260 |
261 | return {
262 | 'ids': inputs_ids,
263 | 'attentions': attentions,
264 | 'hiddens':hiddens,
265 | }
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Attribution-NonCommercial 4.0 International
2 |
3 | =======================================================================
4 |
5 | Creative Commons Corporation ("Creative Commons") is not a law firm and
6 | does not provide legal services or legal advice. Distribution of
7 | Creative Commons public licenses does not create a lawyer-client or
8 | other relationship. Creative Commons makes its licenses and related
9 | information available on an "as-is" basis. Creative Commons gives no
10 | warranties regarding its licenses, any material licensed under their
11 | terms and conditions, or any related information. Creative Commons
12 | disclaims all liability for damages resulting from their use to the
13 | fullest extent possible.
14 |
15 | Using Creative Commons Public Licenses
16 |
17 | Creative Commons public licenses provide a standard set of terms and
18 | conditions that creators and other rights holders may use to share
19 | original works of authorship and other material subject to copyright
20 | and certain other rights specified in the public license below. The
21 | following considerations are for informational purposes only, are not
22 | exhaustive, and do not form part of our licenses.
23 |
24 | Considerations for licensors: Our public licenses are
25 | intended for use by those authorized to give the public
26 | permission to use material in ways otherwise restricted by
27 | copyright and certain other rights. Our licenses are
28 | irrevocable. Licensors should read and understand the terms
29 | and conditions of the license they choose before applying it.
30 | Licensors should also secure all rights necessary before
31 | applying our licenses so that the public can reuse the
32 | material as expected. Licensors should clearly mark any
33 | material not subject to the license. This includes other CC-
34 | licensed material, or material used under an exception or
35 | limitation to copyright. More considerations for licensors:
36 | wiki.creativecommons.org/Considerations_for_licensors
37 |
38 | Considerations for the public: By using one of our public
39 | licenses, a licensor grants the public permission to use the
40 | licensed material under specified terms and conditions. If
41 | the licensor's permission is not necessary for any reason--for
42 | example, because of any applicable exception or limitation to
43 | copyright--then that use is not regulated by the license. Our
44 | licenses grant only permissions under copyright and certain
45 | other rights that a licensor has authority to grant. Use of
46 | the licensed material may still be restricted for other
47 | reasons, including because others have copyright or other
48 | rights in the material. A licensor may make special requests,
49 | such as asking that all changes be marked or described.
50 | Although not required by our licenses, you are encouraged to
51 | respect those requests where reasonable. More considerations
52 | for the public:
53 | wiki.creativecommons.org/Considerations_for_licensees
54 |
55 | =======================================================================
56 |
57 | Creative Commons Attribution-NonCommercial 4.0 International Public
58 | License
59 |
60 | By exercising the Licensed Rights (defined below), You accept and agree
61 | to be bound by the terms and conditions of this Creative Commons
62 | Attribution-NonCommercial 4.0 International Public License ("Public
63 | License"). To the extent this Public License may be interpreted as a
64 | contract, You are granted the Licensed Rights in consideration of Your
65 | acceptance of these terms and conditions, and the Licensor grants You
66 | such rights in consideration of benefits the Licensor receives from
67 | making the Licensed Material available under these terms and
68 | conditions.
69 |
70 |
71 | Section 1 -- Definitions.
72 |
73 | a. Adapted Material means material subject to Copyright and Similar
74 | Rights that is derived from or based upon the Licensed Material
75 | and in which the Licensed Material is translated, altered,
76 | arranged, transformed, or otherwise modified in a manner requiring
77 | permission under the Copyright and Similar Rights held by the
78 | Licensor. For purposes of this Public License, where the Licensed
79 | Material is a musical work, performance, or sound recording,
80 | Adapted Material is always produced where the Licensed Material is
81 | synched in timed relation with a moving image.
82 |
83 | b. Adapter's License means the license You apply to Your Copyright
84 | and Similar Rights in Your contributions to Adapted Material in
85 | accordance with the terms and conditions of this Public License.
86 |
87 | c. Copyright and Similar Rights means copyright and/or similar rights
88 | closely related to copyright including, without limitation,
89 | performance, broadcast, sound recording, and Sui Generis Database
90 | Rights, without regard to how the rights are labeled or
91 | categorized. For purposes of this Public License, the rights
92 | specified in Section 2(b)(1)-(2) are not Copyright and Similar
93 | Rights.
94 | d. Effective Technological Measures means those measures that, in the
95 | absence of proper authority, may not be circumvented under laws
96 | fulfilling obligations under Article 11 of the WIPO Copyright
97 | Treaty adopted on December 20, 1996, and/or similar international
98 | agreements.
99 |
100 | e. Exceptions and Limitations means fair use, fair dealing, and/or
101 | any other exception or limitation to Copyright and Similar Rights
102 | that applies to Your use of the Licensed Material.
103 |
104 | f. Licensed Material means the artistic or literary work, database,
105 | or other material to which the Licensor applied this Public
106 | License.
107 |
108 | g. Licensed Rights means the rights granted to You subject to the
109 | terms and conditions of this Public License, which are limited to
110 | all Copyright and Similar Rights that apply to Your use of the
111 | Licensed Material and that the Licensor has authority to license.
112 |
113 | h. Licensor means the individual(s) or entity(ies) granting rights
114 | under this Public License.
115 |
116 | i. NonCommercial means not primarily intended for or directed towards
117 | commercial advantage or monetary compensation. For purposes of
118 | this Public License, the exchange of the Licensed Material for
119 | other material subject to Copyright and Similar Rights by digital
120 | file-sharing or similar means is NonCommercial provided there is
121 | no payment of monetary compensation in connection with the
122 | exchange.
123 |
124 | j. Share means to provide material to the public by any means or
125 | process that requires permission under the Licensed Rights, such
126 | as reproduction, public display, public performance, distribution,
127 | dissemination, communication, or importation, and to make material
128 | available to the public including in ways that members of the
129 | public may access the material from a place and at a time
130 | individually chosen by them.
131 |
132 | k. Sui Generis Database Rights means rights other than copyright
133 | resulting from Directive 96/9/EC of the European Parliament and of
134 | the Council of 11 March 1996 on the legal protection of databases,
135 | as amended and/or succeeded, as well as other essentially
136 | equivalent rights anywhere in the world.
137 |
138 | l. You means the individual or entity exercising the Licensed Rights
139 | under this Public License. Your has a corresponding meaning.
140 |
141 |
142 | Section 2 -- Scope.
143 |
144 | a. License grant.
145 |
146 | 1. Subject to the terms and conditions of this Public License,
147 | the Licensor hereby grants You a worldwide, royalty-free,
148 | non-sublicensable, non-exclusive, irrevocable license to
149 | exercise the Licensed Rights in the Licensed Material to:
150 |
151 | a. reproduce and Share the Licensed Material, in whole or
152 | in part, for NonCommercial purposes only; and
153 |
154 | b. produce, reproduce, and Share Adapted Material for
155 | NonCommercial purposes only.
156 |
157 | 2. Exceptions and Limitations. For the avoidance of doubt, where
158 | Exceptions and Limitations apply to Your use, this Public
159 | License does not apply, and You do not need to comply with
160 | its terms and conditions.
161 |
162 | 3. Term. The term of this Public License is specified in Section
163 | 6(a).
164 |
165 | 4. Media and formats; technical modifications allowed. The
166 | Licensor authorizes You to exercise the Licensed Rights in
167 | all media and formats whether now known or hereafter created,
168 | and to make technical modifications necessary to do so. The
169 | Licensor waives and/or agrees not to assert any right or
170 | authority to forbid You from making technical modifications
171 | necessary to exercise the Licensed Rights, including
172 | technical modifications necessary to circumvent Effective
173 | Technological Measures. For purposes of this Public License,
174 | simply making modifications authorized by this Section 2(a)
175 | (4) never produces Adapted Material.
176 |
177 | 5. Downstream recipients.
178 |
179 | a. Offer from the Licensor -- Licensed Material. Every
180 | recipient of the Licensed Material automatically
181 | receives an offer from the Licensor to exercise the
182 | Licensed Rights under the terms and conditions of this
183 | Public License.
184 |
185 | b. No downstream restrictions. You may not offer or impose
186 | any additional or different terms or conditions on, or
187 | apply any Effective Technological Measures to, the
188 | Licensed Material if doing so restricts exercise of the
189 | Licensed Rights by any recipient of the Licensed
190 | Material.
191 |
192 | 6. No endorsement. Nothing in this Public License constitutes or
193 | may be construed as permission to assert or imply that You
194 | are, or that Your use of the Licensed Material is, connected
195 | with, or sponsored, endorsed, or granted official status by,
196 | the Licensor or others designated to receive attribution as
197 | provided in Section 3(a)(1)(A)(i).
198 |
199 | b. Other rights.
200 |
201 | 1. Moral rights, such as the right of integrity, are not
202 | licensed under this Public License, nor are publicity,
203 | privacy, and/or other similar personality rights; however, to
204 | the extent possible, the Licensor waives and/or agrees not to
205 | assert any such rights held by the Licensor to the limited
206 | extent necessary to allow You to exercise the Licensed
207 | Rights, but not otherwise.
208 |
209 | 2. Patent and trademark rights are not licensed under this
210 | Public License.
211 |
212 | 3. To the extent possible, the Licensor waives any right to
213 | collect royalties from You for the exercise of the Licensed
214 | Rights, whether directly or through a collecting society
215 | under any voluntary or waivable statutory or compulsory
216 | licensing scheme. In all other cases the Licensor expressly
217 | reserves any right to collect such royalties, including when
218 | the Licensed Material is used other than for NonCommercial
219 | purposes.
220 |
221 |
222 | Section 3 -- License Conditions.
223 |
224 | Your exercise of the Licensed Rights is expressly made subject to the
225 | following conditions.
226 |
227 | a. Attribution.
228 |
229 | 1. If You Share the Licensed Material (including in modified
230 | form), You must:
231 |
232 | a. retain the following if it is supplied by the Licensor
233 | with the Licensed Material:
234 |
235 | i. identification of the creator(s) of the Licensed
236 | Material and any others designated to receive
237 | attribution, in any reasonable manner requested by
238 | the Licensor (including by pseudonym if
239 | designated);
240 |
241 | ii. a copyright notice;
242 |
243 | iii. a notice that refers to this Public License;
244 |
245 | iv. a notice that refers to the disclaimer of
246 | warranties;
247 |
248 | v. a URI or hyperlink to the Licensed Material to the
249 | extent reasonably practicable;
250 |
251 | b. indicate if You modified the Licensed Material and
252 | retain an indication of any previous modifications; and
253 |
254 | c. indicate the Licensed Material is licensed under this
255 | Public License, and include the text of, or the URI or
256 | hyperlink to, this Public License.
257 |
258 | 2. You may satisfy the conditions in Section 3(a)(1) in any
259 | reasonable manner based on the medium, means, and context in
260 | which You Share the Licensed Material. For example, it may be
261 | reasonable to satisfy the conditions by providing a URI or
262 | hyperlink to a resource that includes the required
263 | information.
264 |
265 | 3. If requested by the Licensor, You must remove any of the
266 | information required by Section 3(a)(1)(A) to the extent
267 | reasonably practicable.
268 |
269 | 4. If You Share Adapted Material You produce, the Adapter's
270 | License You apply must not prevent recipients of the Adapted
271 | Material from complying with this Public License.
272 |
273 |
274 | Section 4 -- Sui Generis Database Rights.
275 |
276 | Where the Licensed Rights include Sui Generis Database Rights that
277 | apply to Your use of the Licensed Material:
278 |
279 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right
280 | to extract, reuse, reproduce, and Share all or a substantial
281 | portion of the contents of the database for NonCommercial purposes
282 | only;
283 |
284 | b. if You include all or a substantial portion of the database
285 | contents in a database in which You have Sui Generis Database
286 | Rights, then the database in which You have Sui Generis Database
287 | Rights (but not its individual contents) is Adapted Material; and
288 |
289 | c. You must comply with the conditions in Section 3(a) if You Share
290 | all or a substantial portion of the contents of the database.
291 |
292 | For the avoidance of doubt, this Section 4 supplements and does not
293 | replace Your obligations under this Public License where the Licensed
294 | Rights include other Copyright and Similar Rights.
295 |
296 |
297 | Section 5 -- Disclaimer of Warranties and Limitation of Liability.
298 |
299 | a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
300 | EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
301 | AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
302 | ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
303 | IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
304 | WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
305 | PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
306 | ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
307 | KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
308 | ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
309 |
310 | b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
311 | TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
312 | NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
313 | INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
314 | COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
315 | USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
316 | ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
317 | DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
318 | IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
319 |
320 | c. The disclaimer of warranties and limitation of liability provided
321 | above shall be interpreted in a manner that, to the extent
322 | possible, most closely approximates an absolute disclaimer and
323 | waiver of all liability.
324 |
325 |
326 | Section 6 -- Term and Termination.
327 |
328 | a. This Public License applies for the term of the Copyright and
329 | Similar Rights licensed here. However, if You fail to comply with
330 | this Public License, then Your rights under this Public License
331 | terminate automatically.
332 |
333 | b. Where Your right to use the Licensed Material has terminated under
334 | Section 6(a), it reinstates:
335 |
336 | 1. automatically as of the date the violation is cured, provided
337 | it is cured within 30 days of Your discovery of the
338 | violation; or
339 |
340 | 2. upon express reinstatement by the Licensor.
341 |
342 | For the avoidance of doubt, this Section 6(b) does not affect any
343 | right the Licensor may have to seek remedies for Your violations
344 | of this Public License.
345 |
346 | c. For the avoidance of doubt, the Licensor may also offer the
347 | Licensed Material under separate terms or conditions or stop
348 | distributing the Licensed Material at any time; however, doing so
349 | will not terminate this Public License.
350 |
351 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
352 | License.
353 |
354 |
355 | Section 7 -- Other Terms and Conditions.
356 |
357 | a. The Licensor shall not be bound by any additional or different
358 | terms or conditions communicated by You unless expressly agreed.
359 |
360 | b. Any arrangements, understandings, or agreements regarding the
361 | Licensed Material not stated herein are separate from and
362 | independent of the terms and conditions of this Public License.
363 |
364 |
365 | Section 8 -- Interpretation.
366 |
367 | a. For the avoidance of doubt, this Public License does not, and
368 | shall not be interpreted to, reduce, limit, restrict, or impose
369 | conditions on any use of the Licensed Material that could lawfully
370 | be made without permission under this Public License.
371 |
372 | b. To the extent possible, if any provision of this Public License is
373 | deemed unenforceable, it shall be automatically reformed to the
374 | minimum extent necessary to make it enforceable. If the provision
375 | cannot be reformed, it shall be severed from this Public License
376 | without affecting the enforceability of the remaining terms and
377 | conditions.
378 |
379 | c. No term or condition of this Public License will be waived and no
380 | failure to comply consented to unless expressly agreed to by the
381 | Licensor.
382 |
383 | d. Nothing in this Public License constitutes or may be interpreted
384 | as a limitation upon, or waiver of, any privileges and immunities
385 | that apply to the Licensor or You, including from the legal
386 | processes of any jurisdiction or authority.
387 |
388 | =======================================================================
389 |
390 | Creative Commons is not a party to its public
391 | licenses. Notwithstanding, Creative Commons may elect to apply one of
392 | its public licenses to material it publishes and in those instances
393 | will be considered the “Licensor.” The text of the Creative Commons
394 | public licenses is dedicated to the public domain under the CC0 Public
395 | Domain Dedication. Except for the limited purpose of indicating that
396 | material is shared under a Creative Commons public license or as
397 | otherwise permitted by the Creative Commons policies published at
398 | creativecommons.org/policies, Creative Commons does not authorize the
399 | use of the trademark "Creative Commons" or any other trademark or logo
400 | of Creative Commons without its prior written consent including,
401 | without limitation, in connection with any unauthorized modifications
402 | to any of its public licenses or any other arrangements,
403 | understandings, or agreements concerning use of licensed material. For
404 | the avoidance of doubt, this paragraph does not form part of the
405 | public licenses.
406 |
407 | Creative Commons may be contacted at creativecommons.org.
408 |
--------------------------------------------------------------------------------