├── .gitignore
├── LICENSE
├── README.md
├── docs
├── babi-lstm.dia
├── babi-lstm.png
├── babi-memnn.dia
├── babi-memnn.png
├── babi-task1-format.dia
├── babi-task1-format.png
├── deploy.dia
├── deploy.png
├── dlqa-workshop-2016.pptx
├── flashcard-format.dia
├── flashcard-format.png
├── kaggle-format.dia
├── kaggle-format.png
├── qa-lstm-attn.dia
├── qa-lstm-attn.png
├── qa-lstm-cnn.dia
├── qa-lstm-cnn.png
├── qa-lstm-fem-attn-rex.png
├── qa-lstm-story.dia
├── qa-lstm-story.png
├── qa-lstm.dia
├── qa-lstm.png
├── qa-pipeline-1.dia
├── qa-pipeline-1.png
├── qa-pipeline.dia
├── qa-pipeline.png
├── storyfinder.dia
└── storyfinder.png
└── src
├── add-story.py
├── babi-dmn.py
├── babi-lstm.py
├── babi-memnn.py
├── babi.py
├── deploy-model.py
├── es-load-flashcards.py
├── flashcards-embedding.py
├── kaggle.py
├── predict-testfile.py
├── qa-blstm-attn.py
├── qa-blstm-fem-attn.py
├── qa-blstm-story.py
├── qa-blstm.py
├── qa-dense-autoencoder.py
├── qa-lstm-attn.py
├── qa-lstm-autoencoder.py
├── qa-lstm-cnn.py
├── qa-lstm-fem-attn.py
├── qa-lstm-fem.py
├── qa-lstm-story.py
└── qa-lstm.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | *.pyc
3 | data/*
4 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "{}"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright {yyyy} {name of copyright owner}
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # dl-models-for-qa
2 |
3 | ⚠ __WARNING:__ As pointed out recently by a colleague, the 75% accuracies achieved by the QA models described in this project could have been achieved by a classifier that learns to always return false (since 3 of 4 of the training set consists of false answers). He took the evaluation one step further and compared the softmax probabilities associated with each of the 4 possible answers against the correct answer, and achieved accuracies around 25%, once again indicative of a model that is only as good as random (1 in 4 answers are correct).
4 |
5 | ## Table of Contents
6 |
7 | * [Introduction](#introduction)
8 | * [Models](#models)
9 | * [Models using bAbI dataset](#models-using-babi-dataset)
10 | * [BABI-LSTM](#babi-lstm)
11 | * [BABI-MEMNN](#babi-memnn)
12 | * [Models using Kaggle dataset](#models-using-kaggle-dataset)
13 | * [QA-LSTM](#qa-lstm)
14 | * [QA-LSTM CNN](#qa-lstm-cnn)
15 | * [QA-LSTM with Attention](#qa-lstm-with-attention)
16 | * [Incorporating External Knowledge](#incorporating-external-knowledge)
17 | * [QA-LSTM with Attention and Custom Embedding](#qa-lstm-with-attention-and-custom-embedding)
18 | * [QA-LSTM with Story](#qa-lstm-with-story)
19 | * [Data](#data)
20 | * [Results](#results)
21 | * [Model deployment](#model-deployment)
22 |
23 | ## Introduction
24 |
25 | This repository contains Python code to train and deploy Deep Learning (DL) models for Question Answering (QA). The code accompanies a talk I gave at the Question Answering Workshop organized by the Elsevier Search Guild.
26 |
27 | You can find the [slides for this talk](http://www.slideshare.net/sujitpal/deep-learning-models-for-question-answering) on Slideshare.
28 |
29 | Code is in Python. All the models are built using the awesome [Keras](https://keras.io/) library. Supporting code also uses [gensim](https://radimrehurek.com/gensim/), [NLTK](http://www.nltk.org/) and [Spacy](https://spacy.io/).
30 |
31 | Objective of the code was to build DL model(s) to answer 8th grade multiple-choice science questions, provided as part of this [AllenAI competition on Kaggle](Thttps://www.kaggle.com/c/the-allen-ai-science-challenge).
32 |
33 | ## Models
34 |
35 | Much of the inspiration for the DL implementations in this project came from the [solution posted](https://github.com/tambetm/allenAI) by the 4th place winner of the competition, who used DL models along with traditional Information Retrieval (IR) models.
36 |
37 | ### Models using bAbI dataset
38 |
39 | In order to gain some intuition about how to use DL for QA, I looked at two examples from the Keras examples, that use the single supporting fact (task #1) from the [bAbI dataset](https://research.facebook.com/research/babi/) created by Facebook. These two models are described below:
40 |
41 | The bAbI dataset can be thought of as (story, question, answer) triples. In case of task #1, the answer is always a single word. Figure below illustrates the data format for task #1.
42 |
43 |
44 |
45 | Both models attempt to predict the answer as the most probable word from the entire vocabulary.
46 |
47 | ### BABI-LSTM
48 |
49 | Implementation based on paper [Towards AI-Complete Question Answering: A set of Prerequisite Toy Tasks](http://arxiv.org/abs/1502.05698) - Weston, et al. Adapted from similar example in Keras examples.
50 |
51 | Embedding is computed inline using story and patient. Observed accuracy (56%) is similar to that reported in paper (50%).
52 |
53 |
54 |
55 | ### BABI-MEMNN
56 |
57 | Implementation based on paper [End to End Memory Networks](http://arxiv.org/abs/1503.08895) - Sukhbaatar, Szlam, Weston and Fergus. Adapted from similar example in Keras examples.
58 |
59 | Accuracy achieved by implementation (on 1k triples) is around 42% compared to 99% reported in paper.
60 |
61 |
62 |
63 | ### Models using Kaggle dataset
64 |
65 | From this point on, all our models use the competition dataset. A training set record is composed of (question, answer\_A, answer\_B, answer\_C, answer\_D, correct\_answer) tuples. Objective is to predict the index of the correct answer.
66 |
67 |
68 |
69 | We can thus think of this as a classification problem, where we have 1 positive example and 3 negative examples for each training record.
70 |
71 | ### QA-LSTM
72 |
73 | Implementation based on paper [LSTM-based Deep Learning Models for Non-factoid Answer Selection](https://arxiv.org/abs/1511.04108) - Tan, dos Santos, Xiang and Zhou.
74 |
75 | Unlike bABi models, embedding uses pre-trained Google News Word2Vec model to convert story and question input vector (1 hot sparse representation) into dense representation of size (300,).
76 |
77 | Accuracy numbers from implementation are 56.93% with unidirectional LSTMs and 57% with bidirectional LSTMs.
78 |
79 |
80 |
81 | ### QA-LSTM CNN
82 |
83 | Same as qa-lstm, but with an additional 1D Convolution/MaxPool layer to further extract the meaning of the question and answer.
84 |
85 | Produces slightly worse accuracy numbers than QA-LSTM model - 55.7% with unidirectional LSTMs, did not try with bidirectional LSTMs.
86 |
87 |
88 |
89 | ### QA-LSTM with Attention
90 |
91 | Problem with RNNs in general is the vanishing gradient problem. While LSTMs address the problem, they still suffer from it because of the very long distances involved in QA contexts. The solution to this is attention, where the network is forced to look at certain parts of the context and ignore (in a relative sense) everything else.
92 |
93 |
94 |
95 | ### Incorporating External Knowledge
96 |
97 | Based on the competition message boards, there seems to be general consensus that external content is okay to use. Here are some mentioned:
98 |
99 | * [ConceptNet](http://conceptnet5.media.mit.edu/)
100 | * [CK-12 books](http://www.ck12.org/student/)
101 | * [Quizlets](https://quizlet.com/)
102 | * [Studystack Flashcards](http://www.studystack.com/)
103 |
104 | Most of the contents mentioned involve quite a lot of effort to scrape/crawl the sites and parse the crawled content. There was one content source (Flashcards from StudyStack) that was [available here](https://drive.google.com/file/d/0B0fFJSGDUPcgUFJpTVl3QXhnNTQ/view?usp=sharing) in pre-parsed form, so I used that. This gave me 400k flashcard records, questions followed by the correct answer. I thought of this as the "story" from the bAbI context.
105 |
106 |
107 |
108 | ### QA-LSTM with Attention and Custom Embedding
109 |
110 | My first attempt at incorporating the story was to replace the embedding from the pre-trained Word2Vec model with a Word2Vec model generated using the Flashcard data. This created a smaller, more compact embedding and gave me quite a good boost in accuracy.
111 |
112 | | Model | Default Embedding | Story Embedding |
113 | | -----------------------------------| ----------------- | --------------- |
114 | | QA-LSTM w/Attention | 62.93% | 76.27% |
115 | | QA-LSTM bidirectional w/Attention | 60.43% | 76.27% |
116 |
117 | The qa-lstm-fem-attn model(s) are identical to the qa-lstm-attn model(s) except for the embedding used - instead of the default embedding from Word2Vec, I am now using a custom embedding from the flashcard data.
118 |
119 | ### QA-LSTM with Story
120 |
121 | My second attempt at incorporating the story data was to try to create (story, question, answer) triples similar to the bAbI models. The first step is to load the flashcards into an Elasticsearch (ES) index, one flashcard per record. For each question, the nouns and verbs are filtered and an OR query constructed and sent to ES. The top 10 flashcards retrieved for each question become the story for that triple.
122 |
123 |
124 |
125 |
126 | Once I have the "story" associated with our (question, answer) pairs, I construct a network as shown below. This model did not perform as well as the QA-LSTM with Attention models, accuracy was 70.47% with unidirectional LSTMs and 61.77% with bidirectional LSTMs.
127 |
128 |
129 |
130 |
131 | ## Results
132 |
133 | Results from the various QA-LSTM variants against the Kaggle dataset is summarized below.
134 |
135 | | Model Specifications | Test Acc. (%) |
136 | | ---------------------------------------------------- | ------------- |
137 | | QA-LSTM (Baseline) | 56.93 |
138 | | QA-LSTM Bidirectional | 57.0 |
139 | | QA-LSTM + CNN | 55.7 |
140 | | QA-LSTM with Attention | 62.93 |
141 | | QA-LSTM Bidirectional with Attention | 60.43 |
142 | | QA-LSTM with Attention + Custom Embedding | 76.27 |
143 | | QA-LSTM Bidirectional w/Attention + Custom Embedding | 76.27 |
144 | | QA-LSTM + Attention + Story Facts | 70.47 |
145 | | QA-LSTM Bidirectional + Attention + Story Facts | 61.77 |
146 |
147 | ## Data
148 |
149 | Data is not included in this project. However, most of the data is available on the Internet, I have included links to the data where applicable. The code expects the following directory structure.
150 |
151 | PROJECT_HOME
152 | |
153 | +---- data
154 | | |
155 | | +---- babi_data
156 | | |
157 | | +---- comp_data
158 | | |
159 | | +---- models
160 |
161 |
162 | The bAbI dataset is available from [this URL]. Download it and expand the tarball under the babi\_data directory.
163 |
164 | My code uses the **original dataset** provided along with the competition, which is no longer available (and cannot be distributed). However, AllenAI provides an [alternative dataset](http://allenai.org/data.html) which can be used instead. These files need to be copied into the comp\_data subdirectory. Note that the format of the new data is slightly different, but fortunately well documented, so you will have to adapt the parsing logic in kaggle.py. Look for the following verbiage to find the correct dataset to download.
165 |
166 | > AI2 8th Grade Science Questions (No Diagrams)
167 | >
168 | > 641 questions February 2016 These question sets are derived from a variety of regional and state science exams.
169 | >
170 | > These science exam questions guide our research into multiple choice question answering at the elementary science level. This download contains 8th grade-level multiple choice questions that do not incorporate diagrams.
171 |
172 | The comp\_data directory should also contain the [GoogleNews Word2Vec model](https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing), which is needed to load the default word vectors. In addition, the [StudyStack Flashcards](https://drive.google.com/file/d/0B0fFJSGDUPcgUFJpTVl3QXhnNTQ/view?usp=sharing) should also be downloaded and exploded in the same directory.
173 |
174 | The models directory is used to hold the models that are written out by the different models when they run. The deploy code uses these models to make predictions. Models are not checked into github because of space considerations.
175 |
176 | ## Model deployment
177 |
178 | For deployment, we run each question + answer pair and consider the difference between the positive and negative outputs as the "score". The score is then normalized to sum to 1 and the one with the highest score selected as the winning choice.
179 |
180 | As an example, the following image shows the actual predictions for a question and answer from our dataset. The chart shows the probability of each choice according to our strongest model.
181 |
182 |
183 |
184 |
--------------------------------------------------------------------------------
/docs/babi-lstm.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/babi-lstm.dia
--------------------------------------------------------------------------------
/docs/babi-lstm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/babi-lstm.png
--------------------------------------------------------------------------------
/docs/babi-memnn.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/babi-memnn.dia
--------------------------------------------------------------------------------
/docs/babi-memnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/babi-memnn.png
--------------------------------------------------------------------------------
/docs/babi-task1-format.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/babi-task1-format.dia
--------------------------------------------------------------------------------
/docs/babi-task1-format.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/babi-task1-format.png
--------------------------------------------------------------------------------
/docs/deploy.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/deploy.dia
--------------------------------------------------------------------------------
/docs/deploy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/deploy.png
--------------------------------------------------------------------------------
/docs/dlqa-workshop-2016.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/dlqa-workshop-2016.pptx
--------------------------------------------------------------------------------
/docs/flashcard-format.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/flashcard-format.dia
--------------------------------------------------------------------------------
/docs/flashcard-format.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/flashcard-format.png
--------------------------------------------------------------------------------
/docs/kaggle-format.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/kaggle-format.dia
--------------------------------------------------------------------------------
/docs/kaggle-format.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/kaggle-format.png
--------------------------------------------------------------------------------
/docs/qa-lstm-attn.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-attn.dia
--------------------------------------------------------------------------------
/docs/qa-lstm-attn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-attn.png
--------------------------------------------------------------------------------
/docs/qa-lstm-cnn.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-cnn.dia
--------------------------------------------------------------------------------
/docs/qa-lstm-cnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-cnn.png
--------------------------------------------------------------------------------
/docs/qa-lstm-fem-attn-rex.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-fem-attn-rex.png
--------------------------------------------------------------------------------
/docs/qa-lstm-story.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-story.dia
--------------------------------------------------------------------------------
/docs/qa-lstm-story.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm-story.png
--------------------------------------------------------------------------------
/docs/qa-lstm.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm.dia
--------------------------------------------------------------------------------
/docs/qa-lstm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-lstm.png
--------------------------------------------------------------------------------
/docs/qa-pipeline-1.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-pipeline-1.dia
--------------------------------------------------------------------------------
/docs/qa-pipeline-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-pipeline-1.png
--------------------------------------------------------------------------------
/docs/qa-pipeline.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-pipeline.dia
--------------------------------------------------------------------------------
/docs/qa-pipeline.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/qa-pipeline.png
--------------------------------------------------------------------------------
/docs/storyfinder.dia:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/storyfinder.dia
--------------------------------------------------------------------------------
/docs/storyfinder.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sujitpal/dl-models-for-qa/cc9ec2af44d3e261cc865988d9828de165ec47e4/docs/storyfinder.png
--------------------------------------------------------------------------------
/src/add-story.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | import elasticsearch
4 | import os
5 | import re
6 | import spacy.en
7 |
8 | DATA_DIR = "../data/comp_data"
9 | QA_TRAIN_INPUT = "8thGr-NDMC-Train.csv"
10 |
11 | ES_HOST = "localhost"
12 | ES_PORT = 9200
13 | ES_INDEXNAME = "flashcards-idx"
14 | ES_DOCTYPE = "stories"
15 |
16 | SQA_TRAIN_OUTPUT = "SQA-Train.csv"
17 |
18 | class StoryFinder(object):
19 |
20 | def __init__(self, host, port, index, doc_type):
21 | self.esconn = elasticsearch.Elasticsearch(hosts = [{
22 | "host": host, "port": str(port)
23 | }])
24 | self.nlp = spacy.en.English()
25 | self.posbag = {"NOUN", "PROPN", "VERB"}
26 | self.index = index
27 | self.doc_type = doc_type
28 |
29 | def find_stories_for_question(self, question, num_stories=10):
30 | # extract tokens from question to search with (NOUN, VERB, PROPN)
31 | question = re.sub(r"[^A-Za-z0-9 ]", "", question)
32 | tokens = self.nlp(unicode(question))
33 | qwords = []
34 | for token in tokens:
35 | if token.pos_ in self.posbag:
36 | qwords.append(token.string)
37 | # compose an OR query with all words and get num_stories results
38 | query_header = """
39 | {
40 | "query": {
41 | "bool": {
42 | "should": [
43 | """
44 | qbody = []
45 | for qword in qwords:
46 | qbody.append("""
47 | {
48 | "term": {
49 | "story": "%s"
50 | }
51 | }""" % (qword.strip().lower()))
52 | query_footer = """
53 | ]
54 | }
55 | }
56 | }
57 | """
58 | query = query_header + ",".join(qbody) + query_footer
59 | resp = self.esconn.search(index=self.index, doc_type=self.doc_type,
60 | body=query)
61 | hits = resp["hits"]["hits"]
62 | stories = []
63 | for hit in hits:
64 | stories.append(hit["_source"]["story"].encode("ascii", "ignore"))
65 |
66 | stories2 = []
67 | for story in stories:
68 | stories2.append(story.decode('utf-8','ignore'))
69 |
70 | return stories2
71 |
72 |
73 |
74 | ###### main ####
75 |
76 | storyfinder = StoryFinder(ES_HOST, ES_PORT, ES_INDEXNAME, ES_DOCTYPE)
77 |
78 | fqa = open(os.path.join(DATA_DIR, QA_TRAIN_INPUT), "rb")
79 | fsqa = open(os.path.join(DATA_DIR, SQA_TRAIN_OUTPUT), "wb")
80 |
81 | nbr_lines = 1
82 | for line in fqa:
83 | if line.startswith("#"):
84 | continue
85 | if nbr_lines % 100 == 0:
86 | print("Processed %d lines of input..." % (nbr_lines))
87 | line = line.strip()
88 | qid, question, correct_ans, ans_a, ans_b, ans_c, ans_d = \
89 | line.split("\t")
90 | story = " ".join(storyfinder.find_stories_for_question(question))
91 | correct_ans_idx = ord(correct_ans) - ord('A')
92 | answers = [ans_a, ans_b, ans_c, ans_d]
93 | for idx, answer in enumerate(answers):
94 | fsqa.write("%s\t%s\t%s\t%d\n" % (story, question, answer,
95 | 1 if idx == correct_ans_idx else 0))
96 | nbr_lines += 1
97 |
98 | print("Processed %d lines of input...complete" % (nbr_lines))
99 | fsqa.close()
100 | fqa.close()
101 |
--------------------------------------------------------------------------------
/src/babi-dmn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # Ask me Anything: Dynamic Memory Networks for Natural Language Processing
3 | # (http://arxiv.org/abs/1506.07285)
4 | from __future__ import division, print_function
5 |
6 | from keras.layers import Dense, Merge, Dropout, Permute, Activation
7 | from keras.layers.embeddings import Embedding
8 | from keras.layers.recurrent import LSTM
9 | from keras.models import Sequential
10 |
11 | import os
12 |
13 | import babi
14 |
15 | BABI_DIR = "../data/babi_data/tasks_1-20_v1-2/en"
16 | TASK_NBR = 1
17 | EMBED_HIDDEN_SIZE = 64
18 | LSTM_OUTPUT_SIZE = 32
19 | BATCH_SIZE = 32
20 | NBR_EPOCHS = 120
21 |
22 | train_file, test_file = babi.get_files_for_task(TASK_NBR, BABI_DIR)
23 |
24 | data_train = babi.get_stories(os.path.join(BABI_DIR, train_file))
25 | data_test = babi.get_stories(os.path.join(BABI_DIR, test_file))
26 |
27 | word2idx = babi.build_vocab([data_train, data_test])
28 | vocab_size = len(word2idx) + 1
29 | print("vocab_size=", vocab_size)
30 |
31 | story_maxlen, question_maxlen = babi.get_maxlens([data_train, data_test])
32 | print("story_maxlen=", story_maxlen, "question_maxlen=", question_maxlen)
33 |
34 | Xs_train, Xq_train, Y_train = babi.vectorize(data_train, word2idx,
35 | story_maxlen, question_maxlen)
36 | Xs_test, Xq_test, Y_test = babi.vectorize(data_test, word2idx,
37 | story_maxlen, question_maxlen)
38 | print(Xs_train.shape, Xq_train.shape, Y_train.shape)
39 | print(Xs_test.shape, Xq_test.shape, Y_test.shape)
40 |
41 | # story encoder. Output dim: (None, story_maxlen, EMBED_HIDDEN_SIZE)
42 | story_encoder = Sequential()
43 | story_encoder.add(Embedding(input_dim=vocab_size,
44 | output_dim=EMBED_HIDDEN_SIZE,
45 | input_length=story_maxlen))
46 | story_encoder.add(Dropout(0.3))
47 |
48 | # question encoder. Output dim: (None, question_maxlen, EMBED_HIDDEN_SIZE)
49 | question_encoder = Sequential()
50 | question_encoder.add(Embedding(input_dim=vocab_size,
51 | output_dim=EMBED_HIDDEN_SIZE,
52 | input_length=question_maxlen))
53 | question_encoder.add(Dropout(0.3))
54 |
55 | # episodic memory (facts): story * question
56 | # Output dim: (None, question_maxlen, story_maxlen)
57 | facts_encoder = Sequential()
58 | facts_encoder.add(Merge([story_encoder, question_encoder],
59 | mode="dot", dot_axes=[2, 2]))
60 | facts_encoder.add(Permute((2, 1)))
61 |
62 | ## combine response and question vectors and do logistic regression
63 | answer = Sequential()
64 | answer.add(Merge([facts_encoder, question_encoder],
65 | mode="concat", concat_axis=-1))
66 | answer.add(LSTM(LSTM_OUTPUT_SIZE))
67 | answer.add(Dropout(0.3))
68 | answer.add(Dense(vocab_size))
69 | answer.add(Activation("softmax"))
70 |
71 | answer.compile(optimizer="rmsprop", loss="categorical_crossentropy",
72 | metrics=["accuracy"])
73 |
74 | answer.fit([Xs_train, Xq_train], Y_train,
75 | batch_size=BATCH_SIZE, nb_epoch=NBR_EPOCHS,
76 | validation_data=([Xs_test, Xq_test], Y_test))
77 |
--------------------------------------------------------------------------------
/src/babi-lstm.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.layers import Dense, Merge, Dropout, RepeatVector
4 | from keras.layers.embeddings import Embedding
5 | from keras.layers.recurrent import LSTM
6 | from keras.models import Sequential
7 | import os
8 |
9 | import babi
10 |
11 | BABI_DIR = "../data/babi_data/tasks_1-20_v1-2/en"
12 | TASK_NBR = 1
13 | EMBED_HIDDEN_SIZE = 50
14 | BATCH_SIZE = 32
15 | NBR_EPOCHS = 40
16 |
17 | train_file, test_file = babi.get_files_for_task(TASK_NBR, BABI_DIR)
18 |
19 | data_train = babi.get_stories(os.path.join(BABI_DIR, train_file))
20 | data_test = babi.get_stories(os.path.join(BABI_DIR, test_file))
21 |
22 | word2idx = babi.build_vocab([data_train, data_test])
23 | vocab_size = len(word2idx) + 1
24 | print("vocab_size=", vocab_size)
25 |
26 | story_maxlen, question_maxlen = babi.get_maxlens([data_train, data_test])
27 | print("story_maxlen=", story_maxlen)
28 | print("question_maxlen=", question_maxlen)
29 |
30 | Xs_train, Xq_train, Y_train = babi.vectorize(data_train, word2idx,
31 | story_maxlen, question_maxlen)
32 | Xs_test, Xq_test, Y_test = babi.vectorize(data_test, word2idx,
33 | story_maxlen, question_maxlen)
34 | print(Xs_train.shape, Xq_train.shape, Y_train.shape)
35 | print(Xs_test.shape, Xq_test.shape, Y_test.shape)
36 |
37 | # define model
38 | # generate embeddings for stories
39 | story_rnn = Sequential()
40 | story_rnn.add(Embedding(vocab_size, EMBED_HIDDEN_SIZE,
41 | input_length=story_maxlen))
42 | story_rnn.add(Dropout(0.3))
43 |
44 | # generate embeddings for question and make adaptable to story
45 | question_rnn = Sequential()
46 | question_rnn.add(Embedding(vocab_size, EMBED_HIDDEN_SIZE,
47 | input_length=question_maxlen))
48 | question_rnn.add(Dropout(0.3))
49 | question_rnn.add(LSTM(EMBED_HIDDEN_SIZE, return_sequences=False))
50 | question_rnn.add(RepeatVector(story_maxlen))
51 |
52 | # merge the two
53 | model = Sequential()
54 | model.add(Merge([story_rnn, question_rnn], mode="sum"))
55 | model.add(LSTM(EMBED_HIDDEN_SIZE, return_sequences=False))
56 | model.add(Dropout(0.3))
57 | model.add(Dense(vocab_size, activation="softmax"))
58 |
59 | model.compile(optimizer="adam", loss="categorical_crossentropy",
60 | metrics=["accuracy"])
61 |
62 | print("Training...")
63 | model.fit([Xs_train, Xq_train], Y_train,
64 | batch_size=BATCH_SIZE, nb_epoch=NBR_EPOCHS, validation_split=0.05)
65 | loss, acc = model.evaluate([Xs_test, Xq_test], Y_test, batch_size=BATCH_SIZE)
66 | print()
67 | print("Test loss/accuracy = {:.4f}, {:.4f}".format(loss, acc))
68 |
--------------------------------------------------------------------------------
/src/babi-memnn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # End-to-end Memory Networks (http://arxiv.org/abs/1503.08895)
3 | #
4 | from __future__ import division, print_function
5 | from keras.layers import Dense, Merge, Dropout, Permute, Activation
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.models import Sequential
9 |
10 | import os
11 |
12 | import babi
13 |
14 |
15 | BABI_DIR = "../data/babi_data/tasks_1-20_v1-2/en"
16 | TASK_NBR = 1
17 | EMBED_HIDDEN_SIZE = 64
18 | LSTM_OUTPUT_SIZE = 32
19 | BATCH_SIZE = 32
20 | NBR_EPOCHS = 120
21 |
22 | train_file, test_file = babi.get_files_for_task(TASK_NBR, BABI_DIR)
23 |
24 | data_train = babi.get_stories(os.path.join(BABI_DIR, train_file))
25 | data_test = babi.get_stories(os.path.join(BABI_DIR, test_file))
26 |
27 | word2idx = babi.build_vocab([data_train, data_test])
28 | vocab_size = len(word2idx) + 1
29 | print("vocab_size=", vocab_size)
30 |
31 | story_maxlen, question_maxlen = babi.get_maxlens([data_train, data_test])
32 | print("story_maxlen=", story_maxlen, "question_maxlen=", question_maxlen)
33 |
34 | Xs_train, Xq_train, Y_train = babi.vectorize(data_train, word2idx,
35 | story_maxlen, question_maxlen)
36 | Xs_test, Xq_test, Y_test = babi.vectorize(data_test, word2idx,
37 | story_maxlen, question_maxlen)
38 | print(Xs_train.shape, Xq_train.shape, Y_train.shape)
39 | print(Xs_test.shape, Xq_test.shape, Y_test.shape)
40 |
41 | # story encoder memory. Output dim: (None, story_maxlen, EMBED_HIDDEN_SIZE)
42 | story_encoder_m = Sequential()
43 | story_encoder_m.add(Embedding(input_dim=vocab_size,
44 | output_dim=EMBED_HIDDEN_SIZE,
45 | input_length=story_maxlen))
46 | story_encoder_m.add(Dropout(0.3))
47 |
48 | # question encoder. Output dim: (None, query_maxlen, EMBED_HIDDEN_SIZE)
49 | question_encoder = Sequential()
50 | question_encoder.add(Embedding(input_dim=vocab_size,
51 | output_dim=EMBED_HIDDEN_SIZE,
52 | input_length=question_maxlen))
53 | question_encoder.add(Dropout(0.3))
54 |
55 | # compute match between story and question.
56 | # Output dim: (None, story_maxlen, question_maxlen)
57 | match = Sequential()
58 | match.add(Merge([story_encoder_m, question_encoder],
59 | mode="dot", dot_axes=[2, 2]))
60 |
61 | # encode story into vector space of question
62 | # output dim: (None, story_maxlen, query_maxlen)
63 | story_encoder_c = Sequential()
64 | story_encoder_c.add(Embedding(input_dim=vocab_size,
65 | output_dim=question_maxlen,
66 | input_length=story_maxlen))
67 | story_encoder_c.add(Dropout(0.3))
68 |
69 | # combine match and story vectors.
70 | # Output dim: (None, query_maxlen, story_maxlen)
71 | response = Sequential()
72 | response.add(Merge([match, story_encoder_c], mode="sum"))
73 | response.add(Permute((2, 1)))
74 |
75 | ## combine response and question vectors and do logistic regression
76 | answer = Sequential()
77 | answer.add(Merge([response, question_encoder], mode="concat", concat_axis=-1))
78 | answer.add(LSTM(LSTM_OUTPUT_SIZE))
79 | answer.add(Dropout(0.3))
80 | answer.add(Dense(vocab_size))
81 | answer.add(Activation("softmax"))
82 |
83 | answer.compile(optimizer="rmsprop", loss="categorical_crossentropy",
84 | metrics=["accuracy"])
85 |
86 | answer.fit([Xs_train, Xq_train, Xs_train], Y_train,
87 | batch_size=BATCH_SIZE, nb_epoch=NBR_EPOCHS,
88 | validation_data=([Xs_test, Xq_test, Xs_test], Y_test))
89 |
90 |
--------------------------------------------------------------------------------
/src/babi.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.preprocessing.sequence import pad_sequences
4 | import collections
5 | import re
6 | import nltk
7 | import numpy as np
8 | import os
9 |
10 | def get_files_for_task(task_nbr, babi_dir):
11 | filenames = os.listdir(babi_dir)
12 | task_files = filter(lambda x: re.search("qa%d_" % (task_nbr), x), filenames)
13 | assert(len(task_files) == 2)
14 | train_file = filter(lambda x: re.search("_train.txt", x), task_files)[0]
15 | test_file = filter(lambda x: re.search("_test.txt", x), task_files)[0]
16 | return train_file, test_file
17 |
18 | def get_stories(taskfile, only_support=False):
19 | data = []
20 | story_sents = []
21 | ftask = open(taskfile, "rb")
22 | for line in ftask:
23 | line = line.strip()
24 | nid, line = line.split(" ", 1)
25 | if int(nid) == 1:
26 | # new story
27 | story_sents = []
28 | if "\t" in line:
29 | # capture question, answer and support
30 | q, a, support = line.split("\t")
31 | q = nltk.word_tokenize(q)
32 | if only_support:
33 | # only select supporting sentences
34 | support_idxs = [int(x)-1 for x in support.split(" ")]
35 | story_so_far = []
36 | for support_idx in support_idxs:
37 | story_so_far.append(story_sents[support_idx])
38 | else:
39 | story_so_far = [x for x in story_sents]
40 | story = reduce(lambda a, b: a + b, story_so_far)
41 | data.append((story, q, a))
42 | else:
43 | # only capture story
44 | story_sents.append(nltk.word_tokenize(line))
45 | ftask.close()
46 | return data
47 |
48 | def build_vocab(daten):
49 | counter = collections.Counter()
50 | for data in daten:
51 | for story, question, answer in data:
52 | for w in story:
53 | counter[w] += 1
54 | for w in question:
55 | counter[w] += 1
56 | for w in [answer]:
57 | counter[w] += 1
58 | # don't throw away anything because we don't have many words
59 | # in the synthetic dataset.
60 | # also we want to reserve 0 for pad character, so we offset the
61 | # indexes by 1.
62 | words = [wordcount[0] for wordcount in counter.most_common()]
63 | word2idx = {w: i+1 for i, w in enumerate(words)}
64 | return word2idx
65 |
66 | def get_maxlens(daten):
67 | """ Return the max number of words in story and question """
68 | data_comb = []
69 | for data in daten:
70 | data_comb.extend(data)
71 | story_maxlen = max([len(x) for x, _, _ in data_comb])
72 | question_maxlen = max([len(x) for _, x, _ in data_comb])
73 | return story_maxlen, question_maxlen
74 |
75 | def vectorize(data, word2idx, story_maxlen, question_maxlen):
76 | """ Create the story and question vectors and the label """
77 | Xs, Xq, Y = [], [], []
78 | for story, question, answer in data:
79 | xs = [word2idx[word] for word in story]
80 | xq = [word2idx[word] for word in question]
81 | y = np.zeros(len(word2idx) + 1)
82 | y[word2idx[answer]] = 1
83 | Xs.append(xs)
84 | Xq.append(xq)
85 | Y.append(y)
86 | return (pad_sequences(Xs, maxlen=story_maxlen),
87 | pad_sequences(Xq, maxlen=question_maxlen),
88 | np.array(Y))
89 |
90 |
--------------------------------------------------------------------------------
/src/deploy-model.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.models import model_from_json
4 | from keras.preprocessing.sequence import pad_sequences
5 | import matplotlib.pyplot as plt
6 | import nltk
7 | import numpy as np
8 | import os
9 |
10 | import kaggle
11 |
12 | MODEL_DIR = "../data/models"
13 | #MODEL_ARCH = "qa-lstm.json"
14 | #MODEL_WEIGHTS = "qa-lstm-model-best.hdf5"
15 | MODEL_ARCH = "qa-lstm-fem-attn.json"
16 | MODEL_WEIGHTS = "qa-lstm-fem-attn-final.h5"
17 |
18 | DATA_DIR = "../data/comp_data"
19 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
20 | QA_TEST_FILE = "8thGr-NDMC-Test.csv"
21 |
22 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
23 | WORD2VEC_EMBED_SIZE = 300
24 |
25 | LSTM_SEQLEN = 196 # from original model
26 | NUM_CHOICES = 4 # number of choices for multiple choice
27 |
28 | #### Load up the vectorizer
29 | qapairs = kaggle.get_question_answer_pairs(
30 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
31 | tqapairs = kaggle.get_question_answer_pairs(
32 | os.path.join(DATA_DIR, QA_TEST_FILE), is_test=True)
33 |
34 | word2idx = kaggle.build_vocab([], qapairs, tqapairs)
35 | vocab_size = len(word2idx) + 1 # include mask character 0
36 |
37 | #### Load up the model
38 | with open(os.path.join(MODEL_DIR, MODEL_ARCH), "rb") as fjson:
39 | json = fjson.read()
40 | model = model_from_json(json)
41 | model.load_weights(os.path.join(MODEL_DIR, MODEL_WEIGHTS))
42 |
43 | #### read in the data ####
44 | #### correct_answer = "B"
45 | question = "Which is a distinction between an epidemic and a pandemic?"
46 | answers = ["the symptoms of the disease",
47 | "the geographical area affected",
48 | "the species of organisms infected",
49 | "the season in which the disease spreads"]
50 | qwords = nltk.word_tokenize(question)
51 | awords_list = [nltk.word_tokenize(answer) for answer in answers]
52 | Xq, Xa = [], []
53 | for idx, awords in enumerate(awords_list):
54 | Xq.append([word2idx[qword] for qword in qwords])
55 | Xa.append([word2idx[aword] for aword in awords])
56 | Xq = pad_sequences(Xq, maxlen=LSTM_SEQLEN)
57 | Xa = pad_sequences(Xa, maxlen=LSTM_SEQLEN)
58 |
59 | #model.compile(optimizer="adam", loss="categorical_crossentropy",
60 | # metrics=["accuracy"])
61 | model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])
62 | Y = model.predict([Xq, Xa])
63 |
64 | # calculate the softmax
65 | probs = np.exp(1.0 - (Y[:, 1] - Y[:, 0]))
66 | probs = probs / np.sum(probs)
67 |
68 | print(probs)
69 |
70 | plt.bar(np.arange(len(probs)), probs)
71 | plt.xticks(np.arange(len(probs))+0.35, ["A", "B", "C", "D"])
72 | plt.xlabel("choice (x)")
73 | plt.ylabel("probability p(x)")
74 | plt.show()
75 |
76 |
--------------------------------------------------------------------------------
/src/es-load-flashcards.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | import elasticsearch
4 | import nltk
5 | import os
6 |
7 | DATA_DIR = "../data/comp_data"
8 | STORY_FILE = "studystack_qa_cleaner_no_qm.txt"
9 | STORY_INDEX = "flashcards-idx"
10 |
11 | es = elasticsearch.Elasticsearch(hosts=[{
12 | "host": "localhost",
13 | "port": "9200"
14 | }])
15 |
16 | if es.indices.exists(STORY_INDEX):
17 | print("deleting index: %s" % (STORY_INDEX))
18 | resp = es.indices.delete(index=STORY_INDEX)
19 | print(resp)
20 |
21 | body = {
22 | "settings": {
23 | "number_of_shards": 5,
24 | "number_of_replicas": 0
25 | }
26 | }
27 | print("creating index: %s" % (STORY_INDEX))
28 | resp = es.indices.create(index=STORY_INDEX, body=body)
29 | print(resp)
30 |
31 | fstory = open(os.path.join(DATA_DIR, STORY_FILE), "rb")
32 | lno = 1
33 | for line in fstory:
34 | if lno % 1000 == 0:
35 | print("# stories read: %d" % (lno))
36 | line = line.strip()
37 | line = line.decode("utf8").encode("ascii", "ignore")
38 | fcid, sent, ans = line.split("\t")
39 | story = " ".join(nltk.word_tokenize(" ".join([sent, ans])))
40 | doc = { "story": story }
41 | resp = es.index(index=STORY_INDEX, doc_type="stories", id=lno, body=doc)
42 | # print(resp["created"])
43 | lno += 1
44 | print("# stories read and indexed: %d" % (lno))
45 | fstory.close()
46 | es.indices.refresh(index=STORY_INDEX)
47 |
48 | query = """ { "query": { "match_all": {} } }"""
49 | resp = es.search(index=STORY_INDEX, doc_type="stories", body=query)
50 | print("# of records in index: %d" % (resp["hits"]["total"]))
--------------------------------------------------------------------------------
/src/flashcards-embedding.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models.word2vec import Word2Vec, LineSentence
4 | import logging
5 | import multiprocessing
6 | import nltk
7 | import os
8 |
9 | DATA_DIR = "../data/comp_data"
10 | FLASHCARD_SENTS = "studystack_qa_cleaner_no_qm.txt"
11 | FLASHCARD_MODEL = "studystack.bin"
12 | EMBED_SIZE = 300 # so we can reuse code using word2vec embeddings
13 |
14 | logger = logging.getLogger("flashcards-embedding")
15 | logging.basicConfig(format="%(asctime)s : %(levelname)s : %(message)s")
16 | logging.root.setLevel(level=logging.DEBUG)
17 |
18 | class FlashcardSentences(object):
19 | def __init__(self, filename):
20 | self.filename = filename
21 |
22 | def __iter__(self):
23 | for line in open(self.filename, "rb"):
24 | line = line.strip()
25 | line = line.decode("utf8").encode("ascii", "ignore")
26 | _, question, answer = line.split("\t")
27 | qwords = nltk.word_tokenize(question)
28 | awords = nltk.word_tokenize(answer)
29 | yield qwords + awords
30 |
31 | # build model from sentences (CBOW w/negative sampling)
32 | model = Word2Vec(size=EMBED_SIZE, window=5, min_count=5,
33 | workers=multiprocessing.cpu_count())
34 | sentences = FlashcardSentences(os.path.join(DATA_DIR, FLASHCARD_SENTS))
35 | model.build_vocab(sentences)
36 | sentences = FlashcardSentences(os.path.join(DATA_DIR, FLASHCARD_SENTS))
37 | model.train(sentences)
38 |
39 | model.init_sims(replace=True)
40 |
41 | model.save(os.path.join(DATA_DIR, FLASHCARD_MODEL))
42 |
43 | # test model
44 | model = Word2Vec.load(os.path.join(DATA_DIR, FLASHCARD_MODEL))
45 | print(model.similarity("man", "woman"), model.similarity("cat", "rock"))
46 | print(model.most_similar("exercise"))
--------------------------------------------------------------------------------
/src/kaggle.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.models import model_from_json
5 | from keras.preprocessing.sequence import pad_sequences
6 | import nltk
7 | import numpy as np
8 | import collections
9 | import os
10 |
11 | def get_stories(story_file, debug=False):
12 | stories = []
13 | lno = 0
14 | fin = open(story_file, "rb")
15 | for line in fin:
16 | if debug == True and lno % 100 == 0:
17 | print("# stories read: %d" % (lno))
18 | line = line.strip()
19 | line = line.decode("utf8").encode("ascii", "ignore")
20 | fcid, sent, ans = line.split("\t")
21 | stories.append(nltk.word_tokenize(" ".join([sent, ans])))
22 | lno += 1
23 | fin.close()
24 | return stories
25 |
26 | def get_question_answer_pairs(question_file, is_test=False):
27 | qapairs = []
28 | fqa = open(question_file, "rb")
29 | for line in fqa:
30 | if line.startswith("#"):
31 | continue
32 | line = line.strip().decode("utf8").encode("ascii", "ignore")
33 | cols = line.split("\t")
34 | question = cols[1]
35 | qwords = nltk.word_tokenize(question)
36 | if not is_test:
37 | correct_ans = cols[2]
38 | answers = cols[3:]
39 | # training file parsing
40 | correct_ans_idx = ord(correct_ans) - ord('A')
41 | for idx, answer in enumerate(answers):
42 | awords = nltk.word_tokenize(answer)
43 | qapairs.append((qwords, awords, idx == correct_ans_idx))
44 | else:
45 | # test file parsing (no correct answer)
46 | answers = cols[2:]
47 | for answer in answers:
48 | awords = nltk.word_tokenize(answer)
49 | qapairs.append((qwords, awords, None))
50 | fqa.close()
51 | return qapairs
52 |
53 | def get_story_question_answer_triples(sqa_file):
54 | sqatriples = []
55 | fsqa = open(sqa_file, "rb")
56 | for line in fsqa:
57 | line = line.strip().decode("utf8").encode("ascii", "ignore")
58 | if line.startswith("#"):
59 | continue
60 | story, question, answer, correct = line.split("\t")
61 | swords = []
62 | story_sents = nltk.sent_tokenize(story)
63 | for story_sent in story_sents:
64 | swords.extend(nltk.word_tokenize(story_sent))
65 | qwords = nltk.word_tokenize(question)
66 | awords = nltk.word_tokenize(answer)
67 | is_correct = int(correct) == 1
68 | sqatriples.append((swords, qwords, awords, is_correct))
69 | fsqa.close()
70 | return sqatriples
71 |
72 | def build_vocab(stories, qapairs, testqs):
73 | wordcounts = collections.Counter()
74 | for story in stories:
75 | for sword in story:
76 | wordcounts[sword] += 1
77 | for qapair in qapairs:
78 | for qword in qapair[0]:
79 | wordcounts[qword] += 1
80 | for aword in qapair[1]:
81 | wordcounts[aword] += 1
82 | for testq in testqs:
83 | for qword in testq[0]:
84 | wordcounts[qword] += 1
85 | for aword in testq[1]:
86 | wordcounts[aword] += 1
87 | words = [wordcount[0] for wordcount in wordcounts.most_common()]
88 | word2idx = {w: i+1 for i, w in enumerate(words)} # 0 = mask
89 | return word2idx
90 |
91 | def build_vocab_from_sqa_triples(sqatriples):
92 | wordcounts = collections.Counter()
93 | for sqatriple in sqatriples:
94 | for sword in sqatriple[0]:
95 | wordcounts[sword] += 1
96 | for qword in sqatriple[1]:
97 | wordcounts[qword] += 1
98 | for aword in sqatriple[2]:
99 | wordcounts[aword] += 1
100 | words = [wordcount[0] for wordcount in wordcounts.most_common()]
101 | word2idx = {w: i+1 for i, w in enumerate(words)} # 0 = mask
102 | return word2idx
103 |
104 | def vectorize_stories(stories, word2idx, story_maxlen):
105 | Xs = []
106 | for story in stories:
107 | Xs.append([word2idx[word] for word in story])
108 | return pad_sequences(Xs, maxlen=story_maxlen)
109 |
110 | def vectorize_qapairs(qapairs, word2idx, seq_maxlen):
111 | Xq, Xa, Y = [], [], []
112 | for qapair in qapairs:
113 | Xq.append([word2idx[qword] for qword in qapair[0]])
114 | Xa.append([word2idx[aword] for aword in qapair[1]])
115 | Y.append(np.array([1, 0]) if qapair[2] else np.array([0, 1]))
116 | return (pad_sequences(Xq, maxlen=seq_maxlen),
117 | pad_sequences(Xa, maxlen=seq_maxlen),
118 | np.array(Y))
119 |
120 | def vectorize_sqatriples(sqatriples, word2idx, story_maxlen,
121 | question_maxlen, answer_maxlen):
122 | Xs, Xq, Xa, Y = [], [], [], []
123 | for sqatriple in sqatriples:
124 | Xs.append([word2idx[sword] for sword in sqatriple[0]])
125 | Xq.append([word2idx[qword] for qword in sqatriple[1]])
126 | Xa.append([word2idx[aword] for aword in sqatriple[2]])
127 | Y.append(np.array([1, 0]) if sqatriple[3] else np.array([0, 1]))
128 | return (pad_sequences(Xs, maxlen=story_maxlen),
129 | pad_sequences(Xq, maxlen=question_maxlen),
130 | pad_sequences(Xa, maxlen=answer_maxlen),
131 | np.array(Y))
132 |
133 | def get_weights_word2vec(word2idx, w2vfile, w2v_embed_size=300,
134 | is_custom=False):
135 | word2vec = None
136 | if is_custom:
137 | word2vec = Word2Vec.load(w2vfile)
138 | else:
139 | word2vec = Word2Vec.load_word2vec_format(w2vfile, binary=True)
140 | vocab_size = len(word2idx) + 1
141 | embedding_weights = np.zeros((vocab_size, w2v_embed_size))
142 | for word, index in word2idx.items():
143 | try:
144 | embedding_weights[index, :] = word2vec[word.lower()]
145 | except KeyError:
146 | pass # keep as zero (not ideal, but what else can we do?)
147 | return embedding_weights
148 |
149 | def get_model_filename(caller, model_type):
150 | caller = os.path.basename(caller)
151 | caller = caller[0:caller.rindex(".")]
152 | if model_type == "json":
153 | return "%s.%s" % (caller, model_type)
154 | else:
155 | return "%s-%s.h5" % (caller, model_type)
156 |
157 | def save_model(model, json_filename, weights_filename):
158 | model.save_weights(weights_filename)
159 | with open(json_filename, "wb") as fjson:
160 | fjson.write(model.to_json())
161 |
162 | def load_model(json_filename, weights_filename):
163 | with open(json_filename, "rb") as fjson:
164 | model = model_from_json(fjson.read())
165 | model.load_weights(filepath=weights_filename)
166 | return model
167 |
168 |
169 | ##### main ####
170 | #
171 | #import os
172 | #
173 | #DATA_DIR = "../data/comp_data"
174 | #QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
175 | #STORY_FILE = "studystack_qa_cleaner_no_qm.txt"
176 | #
177 | #stories = get_stories(os.path.join(DATA_DIR, STORY_FILE))
178 | #story_maxlen = max([len(words) for words in stories])
179 | #print("story maxlen=", story_maxlen)
180 | #
181 | #qapairs = get_question_answer_pairs(os.path.join(DATA_DIR, QA_TRAIN_FILE))
182 | #question_maxlen = max([len(qapair[0]) for qapair in qapairs])
183 | #answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
184 | #print("q=", question_maxlen, "a=", answer_maxlen)
185 | #
186 | #word2idx = build_vocab(stories, qapairs)
187 | #w2v = get_weights_word2vec(word2idx,
188 | # os.path.join(DATA_DIR, "studystack.bin"),
189 | # is_custom=True)
190 | #print(w2v.shape)
191 | #
192 | #Xs = vectorize_stories(stories, word2idx, story_maxlen)
193 | #Xq, Xa = vectorize_qapairs(qapairs, word2idx, question_maxlen, answer_maxlen)
194 |
--------------------------------------------------------------------------------
/src/predict-testfile.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.preprocessing.sequence import pad_sequences
4 | import nltk
5 | import numpy as np
6 | import os
7 |
8 | import kaggle
9 |
10 | DATA_DIR = "../data/comp_data"
11 | TRAIN_FILE = "8thGr-NDMC-Train.csv"
12 | TEST_FILE = "8thGr-NDMC-Test.csv"
13 | SUBMIT_FILE = "submission.csv"
14 |
15 | MODEL_DIR = "../data/models"
16 | MODEL_JSON = "qa-lstm-fem-attn.json"
17 | MODEL_WEIGHTS = "qa-lstm-fem-attn-best.h5"
18 | LSTM_SEQLEN = 196 # seq_maxlen from original model
19 |
20 | print("Loading model..")
21 | model = kaggle.load_model(os.path.join(MODEL_DIR, MODEL_JSON),
22 | os.path.join(MODEL_DIR, MODEL_WEIGHTS))
23 | model.compile(optimizer="adam", loss="categorical_crossentropy",
24 | metrics=["accuracy"])
25 |
26 | print("Loading vocabulary...")
27 | qapairs = kaggle.get_question_answer_pairs(os.path.join(DATA_DIR, TRAIN_FILE))
28 | tqapairs = kaggle.get_question_answer_pairs(os.path.join(DATA_DIR, TEST_FILE),
29 | is_test=True)
30 | word2idx = kaggle.build_vocab([], qapairs, tqapairs)
31 | vocab_size = len(word2idx) + 1 # include mask character 0
32 |
33 | ftest = open(os.path.join(DATA_DIR, TEST_FILE), "rb")
34 | fsub = open(os.path.join(DATA_DIR, SUBMIT_FILE), "wb")
35 | fsub.write("id,correctAnswer\n")
36 | line_nbr = 0
37 | for line in ftest:
38 | line = line.strip().decode("utf8").encode("ascii", "ignore")
39 | if line.startswith("#"):
40 | continue
41 | if line_nbr % 10 == 0:
42 | print("Processed %d questions..." % (line_nbr))
43 | cols = line.split("\t")
44 | qid = cols[0]
45 | question = cols[1]
46 | answers = cols[2:]
47 | # create batch of question
48 | qword_ids = [word2idx[qword] for qword in nltk.word_tokenize(question)]
49 | Xq, Xa = [], []
50 | for answer in answers:
51 | Xq.append(qword_ids)
52 | Xa.append([word2idx[aword] for aword in nltk.word_tokenize(answer)])
53 | Xq = pad_sequences(Xq, maxlen=LSTM_SEQLEN)
54 | Xa = pad_sequences(Xa, maxlen=LSTM_SEQLEN)
55 | Y = model.predict([Xq, Xa])
56 | probs = np.exp(1.0 - (Y[:, 1] - Y[:, 0]))
57 | correct_answer = chr(ord('A') + np.argmax(probs))
58 | fsub.write("%s,%s\n" % (qid, correct_answer))
59 | line_nbr += 1
60 | print("Processed %d questions..." % (line_nbr))
61 | fsub.close()
62 | ftest.close()
63 |
--------------------------------------------------------------------------------
/src/qa-blstm-attn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout, Reshape, Flatten
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.layers.wrappers import Bidirectional
9 | from keras.models import Sequential
10 | from sklearn.cross_validation import train_test_split
11 | import numpy as np
12 | import os
13 |
14 | import kaggle
15 |
16 | DATA_DIR = "../data/comp_data"
17 | MODEL_DIR = "../data/models"
18 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
19 | WORD2VEC_EMBED_SIZE = 300
20 |
21 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
22 |
23 | QA_EMBED_SIZE = 64
24 | BATCH_SIZE = 32
25 | NBR_EPOCHS = 20
26 |
27 | ## extract data
28 |
29 | print("Loading and formatting data...")
30 | qapairs = kaggle.get_question_answer_pairs(
31 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
32 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
33 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
34 | seq_maxlen = max([question_maxlen, answer_maxlen])
35 |
36 | word2idx = kaggle.build_vocab([], qapairs, [])
37 | vocab_size = len(word2idx) + 1 # include mask character 0
38 |
39 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
40 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
41 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
42 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
43 | Ytrain.shape, Ytest.shape)
44 |
45 | # get embeddings from word2vec
46 | # see https://github.com/fchollet/keras/issues/853
47 | print("Loading Word2Vec model and generating embedding matrix...")
48 | word2vec = Word2Vec.load_word2vec_format(
49 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
50 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
51 | for word, index in word2idx.items():
52 | try:
53 | embedding_weights[index, :] = word2vec[word.lower()]
54 | except KeyError:
55 | pass # keep as zero (not ideal, but what else can we do?)
56 |
57 | print("Building model...")
58 | qenc = Sequential()
59 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
60 | input_length=seq_maxlen,
61 | weights=[embedding_weights]))
62 | qenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, return_sequences=True),
63 | merge_mode="sum"))
64 | qenc.add(Dropout(0.3))
65 |
66 | aenc = Sequential()
67 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
68 | input_length=seq_maxlen,
69 | weights=[embedding_weights]))
70 | aenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, return_sequences=True),
71 | merge_mode="sum"))
72 | aenc.add(Dropout(0.3))
73 |
74 | # attention model
75 | attn = Sequential()
76 | attn.add(Merge([qenc, aenc], mode="dot", dot_axes=[1, 1]))
77 | attn.add(Flatten())
78 | attn.add(Dense((seq_maxlen * QA_EMBED_SIZE)))
79 | attn.add(Reshape((seq_maxlen, QA_EMBED_SIZE)))
80 |
81 | model = Sequential()
82 | model.add(Merge([qenc, attn], mode="sum"))
83 | model.add(Flatten())
84 | model.add(Dense(2, activation="softmax"))
85 |
86 | model.compile(optimizer="adam", loss="categorical_crossentropy",
87 | metrics=["accuracy"])
88 |
89 | print("Training...")
90 | checkpoint = ModelCheckpoint(
91 | filepath=os.path.join(MODEL_DIR, "qa-blstm-attn-best.hdf5"),
92 | verbose=1, save_best_only=True)
93 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
94 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
95 | callbacks=[checkpoint])
96 |
97 | print("Evaluation...")
98 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
99 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
100 |
101 | model.save_weights(os.path.join(MODEL_DIR, "qa-blstm-attn-final.hdf5"))
102 | with open(os.path.join(MODEL_DIR, "qa-blstm-attn.json"), "wb") as fjson:
103 | fjson.write(model.to_json())
104 |
105 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-blstm-attn-best.hdf5"))
106 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
107 | print("\nTest loss/accuracy best model = %.4f, %.4f" % (loss, acc))
108 |
--------------------------------------------------------------------------------
/src/qa-blstm-fem-attn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout, Reshape, Flatten
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.layers.wrappers import Bidirectional
9 | from keras.models import Sequential
10 | from sklearn.cross_validation import train_test_split
11 | import numpy as np
12 | import os
13 |
14 | import kaggle
15 |
16 | DATA_DIR = "../data/comp_data"
17 | MODEL_DIR = "../data/models"
18 | WORD2VEC_BIN = "studystack.bin"
19 | WORD2VEC_EMBED_SIZE = 300
20 |
21 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
22 |
23 | QA_EMBED_SIZE = 64
24 | BATCH_SIZE = 32
25 | NBR_EPOCHS = 20
26 |
27 | ## extract data
28 |
29 | print("Loading and formatting data...")
30 | qapairs = kaggle.get_question_answer_pairs(
31 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
32 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
33 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
34 | seq_maxlen = max([question_maxlen, answer_maxlen])
35 |
36 | word2idx = kaggle.build_vocab([], qapairs, [])
37 | vocab_size = len(word2idx) + 1 # include mask character 0
38 |
39 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
40 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
41 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
42 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
43 | Ytrain.shape, Ytest.shape)
44 |
45 | # get embeddings from word2vec
46 | # see https://github.com/fchollet/keras/issues/853
47 | print("Loading Word2Vec model and generating embedding matrix...")
48 | word2vec = Word2Vec.load(os.path.join(DATA_DIR, WORD2VEC_BIN))
49 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
50 | for word, index in word2idx.items():
51 | try:
52 | embedding_weights[index, :] = word2vec[word.lower()]
53 | except KeyError:
54 | pass # keep as zero (not ideal, but what else can we do?)
55 |
56 | print("Building model...")
57 | qenc = Sequential()
58 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
59 | input_length=seq_maxlen,
60 | weights=[embedding_weights]))
61 | qenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, return_sequences=True),
62 | merge_mode="sum"))
63 | qenc.add(Dropout(0.3))
64 |
65 | aenc = Sequential()
66 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
67 | input_length=seq_maxlen,
68 | weights=[embedding_weights]))
69 | aenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, return_sequences=True),
70 | merge_mode="sum"))
71 | aenc.add(Dropout(0.3))
72 |
73 | # attention model
74 | attn = Sequential()
75 | attn.add(Merge([qenc, aenc], mode="dot", dot_axes=[1, 1]))
76 | attn.add(Flatten())
77 | attn.add(Dense((seq_maxlen * QA_EMBED_SIZE)))
78 | attn.add(Reshape((seq_maxlen, QA_EMBED_SIZE)))
79 |
80 | model = Sequential()
81 | model.add(Merge([qenc, attn], mode="sum"))
82 | model.add(Flatten())
83 | model.add(Dense(2, activation="softmax"))
84 |
85 | model.compile(optimizer="adam", loss="categorical_crossentropy",
86 | metrics=["accuracy"])
87 |
88 | print("Training...")
89 | checkpoint = ModelCheckpoint(
90 | filepath=os.path.join(MODEL_DIR, "qa-blstm-fem-attn-best.hdf5"),
91 | verbose=1, save_best_only=True)
92 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
93 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
94 | callbacks=[checkpoint])
95 |
96 | print("Evaluation...")
97 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
98 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
99 |
100 | model.save_weights(os.path.join(MODEL_DIR, "qa-blstm-fem-attn-final.hdf5"))
101 | with open(os.path.join(MODEL_DIR, "qa-blstm-fem-attn.json"), "wb") as fjson:
102 | fjson.write(model.to_json())
103 |
104 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-blstm-fem-attn-best.hdf5"))
105 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
106 | print("\nTest loss/accuracy best model = %.4f, %.4f" % (loss, acc))
107 |
--------------------------------------------------------------------------------
/src/qa-blstm-story.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout, Flatten
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.layers.wrappers import Bidirectional
9 | from keras.models import Sequential
10 | from sklearn.cross_validation import train_test_split
11 | import numpy as np
12 | import os
13 |
14 | import kaggle
15 |
16 | DATA_DIR = "../data/comp_data"
17 | MODEL_DIR = "../data/models"
18 |
19 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
20 | WORD2VEC_EMBED_SIZE = 300
21 |
22 | SQA_TRAIN_FILE = "SQA-Train.csv"
23 |
24 | QA_EMBED_SIZE = 64
25 | BATCH_SIZE = 32
26 | NBR_EPOCHS = 20
27 |
28 | ## extract data
29 |
30 | print("Loading and formatting data...")
31 | sqatriples = kaggle.get_story_question_answer_triples(
32 | os.path.join(DATA_DIR, SQA_TRAIN_FILE))
33 | story_maxlen = max([len(sqatriple[0]) for sqatriple in sqatriples])
34 | question_maxlen = max([len(sqatriple[1]) for sqatriple in sqatriples])
35 | answer_maxlen = max([len(sqatriple[2]) for sqatriple in sqatriples])
36 |
37 | word2idx = kaggle.build_vocab_from_sqa_triples(sqatriples)
38 | vocab_size = len(word2idx) + 1 # include mask character 0
39 |
40 | Xs, Xq, Xa, Y = kaggle.vectorize_sqatriples(sqatriples, word2idx, story_maxlen,
41 | question_maxlen, answer_maxlen)
42 | Xstrain, Xstest, Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
43 | train_test_split(Xs, Xq, Xa, Y, test_size=0.3, random_state=42)
44 | print(Xstrain.shape, Xstest.shape, Xqtrain.shape, Xqtest.shape,
45 | Xatrain.shape, Xatest.shape, Ytrain.shape, Ytest.shape)
46 |
47 | # get embeddings from word2vec
48 | # see https://github.com/fchollet/keras/issues/853
49 | print("Loading Word2Vec model and generating embedding matrix...")
50 | word2vec = Word2Vec.load_word2vec_format(
51 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
52 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
53 | for word, index in word2idx.items():
54 | try:
55 | embedding_weights[index, :] = word2vec[word.lower()]
56 | except KeyError:
57 | pass # keep as zero (not ideal, but what else can we do?)
58 |
59 | print("Building model...")
60 |
61 | # story encoder.
62 | # output shape: (None, story_maxlen, QA_EMBED_SIZE)
63 | senc = Sequential()
64 | senc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
65 | input_length=story_maxlen,
66 | weights=[embedding_weights], mask_zero=True))
67 | senc.add(Bidirectional(LSTM(QA_EMBED_SIZE, return_sequences=True),
68 | merge_mode="sum"))
69 | senc.add(Dropout(0.3))
70 |
71 | # question encoder
72 | # output shape: (None, question_maxlen, QA_EMBED_SIZE)
73 | qenc = Sequential()
74 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
75 | input_length=question_maxlen,
76 | weights=[embedding_weights], mask_zero=True))
77 | qenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, return_sequences=True),
78 | merge_mode="sum"))
79 | qenc.add(Dropout(0.3))
80 |
81 | # answer encoder
82 | # output shape: (None, answer_maxlen, QA_EMBED_SIZE)
83 | aenc = Sequential()
84 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
85 | input_length=answer_maxlen,
86 | weights=[embedding_weights], mask_zero=True))
87 | aenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
88 | aenc.add(Dropout(0.3))
89 |
90 | # merge story and question => facts
91 | # output shape: (None, story_maxlen, question_maxlen)
92 | facts = Sequential()
93 | facts.add(Merge([senc, qenc], mode="dot", dot_axes=[2, 2]))
94 |
95 | # merge question and answer => attention
96 | # output shape: (None, answer_maxlen, question_maxlen)
97 | attn = Sequential()
98 | attn.add(Merge([aenc, qenc], mode="dot", dot_axes=[2, 2]))
99 |
100 | # merge facts and attention => model
101 | # output shape: (None, story+answer_maxlen, question_maxlen)
102 | model = Sequential()
103 | model.add(Merge([facts, attn], mode="concat", concat_axis=1))
104 | model.add(Flatten())
105 | model.add(Dense(2, activation="softmax"))
106 |
107 | model.compile(optimizer="adam", loss="categorical_crossentropy",
108 | metrics=["accuracy"])
109 |
110 | print("Training...")
111 | checkpoint = ModelCheckpoint(
112 | filepath=os.path.join(MODEL_DIR, "qa-blstm-story-best.hdf5"),
113 | verbose=1, save_best_only=True)
114 | model.fit([Xstrain, Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
115 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
116 | callbacks=[checkpoint])
117 |
118 | print("Evaluation")
119 | loss, acc = model.evaluate([Xstest, Xqtest, Xatest], Ytest,
120 | batch_size=BATCH_SIZE)
121 | print("Test loss/accuracy final model: %.4f, %.4f" % (loss, acc))
122 |
123 | model.save_weights(os.path.join(MODEL_DIR, "qa-blstm-story-final.hdf5"))
124 | with open(os.path.join(MODEL_DIR, "qa-blstm-story.json"), "wb") as fjson:
125 | fjson.write(model.to_json())
126 |
127 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-blstm-story-best.hdf5"))
128 | loss, acc = model.evaluate([Xstest, Xqtest, Xatest], Ytest,
129 | batch_size=BATCH_SIZE)
130 | print("Test loss/accuracy best model: %.4f, %.4f" % (loss, acc))
131 |
132 |
--------------------------------------------------------------------------------
/src/qa-blstm.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.layers.wrappers import Bidirectional
9 | from keras.models import Sequential
10 | from sklearn.cross_validation import train_test_split
11 | import numpy as np
12 | import os
13 |
14 | import kaggle
15 |
16 | DATA_DIR = "../data/comp_data"
17 | MODEL_DIR = "../data/models"
18 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
19 | WORD2VEC_EMBED_SIZE = 300
20 |
21 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
22 |
23 | QA_EMBED_SIZE = 64
24 | BATCH_SIZE = 32
25 | NBR_EPOCHS = 20
26 |
27 | ## extract data
28 |
29 | print("Loading and formatting data...")
30 | qapairs = kaggle.get_question_answer_pairs(
31 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
32 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
33 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
34 | seq_maxlen = max([question_maxlen, answer_maxlen])
35 |
36 | word2idx = kaggle.build_vocab([], qapairs, [])
37 | vocab_size = len(word2idx) + 1 # include mask character 0
38 |
39 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
40 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
41 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
42 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
43 | Ytrain.shape, Ytest.shape)
44 |
45 | # get embeddings from word2vec
46 | print("Loading Word2Vec model and generating embedding matrix...")
47 | word2vec = Word2Vec.load_word2vec_format(
48 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
49 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
50 | for word, index in word2idx.items():
51 | try:
52 | embedding_weights[index, :] = word2vec[word.lower()]
53 | except KeyError:
54 | pass # keep as zero (not ideal, but what else can we do?)
55 |
56 | print("Building model...")
57 | qenc = Sequential()
58 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
59 | weights=[embedding_weights], mask_zero=True))
60 | qenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, input_length=seq_maxlen,
61 | return_sequences=False), merge_mode="sum"))
62 | qenc.add(Dropout(0.3))
63 |
64 | aenc = Sequential()
65 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
66 | weights=[embedding_weights], mask_zero=True))
67 | aenc.add(Bidirectional(LSTM(QA_EMBED_SIZE, input_length=seq_maxlen,
68 | return_sequences=False), merge_mode="sum"))
69 | aenc.add(Dropout(0.3))
70 |
71 | model = Sequential()
72 | model.add(Merge([qenc, aenc], mode="sum"))
73 | model.add(Dense(2, activation="softmax"))
74 |
75 | model.compile(optimizer="adam", loss="categorical_crossentropy",
76 | metrics=["accuracy"])
77 |
78 | print("Training...")
79 | checkpoint = ModelCheckpoint(
80 | filepath=os.path.join(MODEL_DIR, "qa-blstm-best.hdf5"),
81 | verbose=1, save_best_only=True)
82 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
83 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
84 | callbacks=[checkpoint])
85 |
86 | print("Evaluation...")
87 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
88 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
89 |
90 | model.save_weights(os.path.join(MODEL_DIR, "qa-blstm-final.hdf5"))
91 | with open(os.path.join(MODEL_DIR, "qa-blstm-model.json"), "wb") as fjson:
92 | fjson.write(model.to_json())
93 |
94 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-blstm-best.hdf5"))
95 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
96 | print("Test loss/accuracy best model = %.4f, %.4f" % (loss, acc))
97 |
--------------------------------------------------------------------------------
/src/qa-dense-autoencoder.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.layers import Input, Dense
4 | from keras.models import Model
5 | from sklearn.cross_validation import train_test_split
6 | import numpy as np
7 | import os
8 |
9 | import kaggle
10 |
11 | DATA_DIR = "../data/comp_data"
12 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
13 | STORY_FILE = "studystack_qa_cleaner_no_qm.txt"
14 | STORY_WEIGHTS = "dense-story-weights.txt"
15 | STORY_BIAS = "dense-story-bias.txt"
16 |
17 | EMBED_SIZE = 64
18 | BATCH_SIZE = 256
19 | NBR_EPOCHS = 20
20 |
21 | stories = kaggle.get_stories(os.path.join(DATA_DIR, STORY_FILE))
22 | story_maxlen = max([len(words) for words in stories])
23 |
24 | # this part is only required to get the maximum sequence length
25 | qapairs = kaggle.get_question_answer_pairs(
26 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
27 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
28 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
29 | seq_maxlen = max([story_maxlen, question_maxlen, answer_maxlen])
30 |
31 | word2idx = kaggle.build_vocab(stories, qapairs, [])
32 | vocab_size = len(word2idx)
33 |
34 | Xs = kaggle.vectorize_stories(stories, word2idx, seq_maxlen)
35 | Xstrain, Xstest = train_test_split(Xs, test_size=0.3, random_state=42)
36 | print(Xstrain.shape, Xstest.shape)
37 |
38 | signal = Input(shape=(seq_maxlen,))
39 | encoded = Dense(EMBED_SIZE, init="glorot_uniform", activation="relu")(signal)
40 | decoded = Dense(seq_maxlen, init="glorot_uniform", activation="sigmoid")(encoded)
41 | autoencoder = Model(input=signal, output=decoded)
42 |
43 | autoencoder.compile("adadelta", loss="binary_crossentropy")
44 |
45 | autoencoder.fit(Xstrain, Xstrain, nb_epoch=NBR_EPOCHS, batch_size=BATCH_SIZE,
46 | shuffle=True, validation_data=(Xstest, Xstest))
47 |
48 | # save weight matrix for embedding (transforms from seq_maxlen to EMBED_SIZE)
49 | weight_matrix, bias_vector = autoencoder.layers[1].get_weights()
50 | np.savetxt(os.path.join(DATA_DIR, STORY_WEIGHTS), weight_matrix)
51 | np.savetxt(os.path.join(DATA_DIR, STORY_BIAS), bias_vector)
52 |
--------------------------------------------------------------------------------
/src/qa-lstm-attn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout, Reshape, Flatten
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.models import Sequential
9 | from sklearn.cross_validation import train_test_split
10 | import numpy as np
11 | import os
12 |
13 | import kaggle
14 |
15 | DATA_DIR = "../data/comp_data"
16 | MODEL_DIR = "../data/models"
17 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
18 | WORD2VEC_EMBED_SIZE = 300
19 |
20 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
21 |
22 | QA_EMBED_SIZE = 64
23 | BATCH_SIZE = 32
24 | NBR_EPOCHS = 20
25 |
26 | ## extract data
27 |
28 | print("Loading and formatting data...")
29 | qapairs = kaggle.get_question_answer_pairs(
30 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
31 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
32 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
33 | seq_maxlen = max([question_maxlen, answer_maxlen])
34 |
35 | word2idx = kaggle.build_vocab([], qapairs, [])
36 | vocab_size = len(word2idx) + 1 # include mask character 0
37 |
38 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
39 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
40 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
41 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
42 | Ytrain.shape, Ytest.shape)
43 |
44 | # get embeddings from word2vec
45 | # see https://github.com/fchollet/keras/issues/853
46 | print("Loading Word2Vec model and generating embedding matrix...")
47 | word2vec = Word2Vec.load_word2vec_format(
48 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
49 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
50 | for word, index in word2idx.items():
51 | try:
52 | embedding_weights[index, :] = word2vec[word.lower()]
53 | except KeyError:
54 | pass # keep as zero (not ideal, but what else can we do?)
55 |
56 | print("Building model...")
57 | qenc = Sequential()
58 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
59 | input_length=seq_maxlen,
60 | weights=[embedding_weights]))
61 | qenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
62 | qenc.add(Dropout(0.3))
63 |
64 | aenc = Sequential()
65 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
66 | input_length=seq_maxlen,
67 | weights=[embedding_weights]))
68 | aenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
69 | aenc.add(Dropout(0.3))
70 |
71 | # attention model
72 | attn = Sequential()
73 | attn.add(Merge([qenc, aenc], mode="dot", dot_axes=[1, 1]))
74 | attn.add(Flatten())
75 | attn.add(Dense((seq_maxlen * QA_EMBED_SIZE)))
76 | attn.add(Reshape((seq_maxlen, QA_EMBED_SIZE)))
77 |
78 | model = Sequential()
79 | model.add(Merge([qenc, attn], mode="sum"))
80 | model.add(Flatten())
81 | model.add(Dense(2, activation="softmax"))
82 |
83 | model.compile(optimizer="adam", loss="categorical_crossentropy",
84 | metrics=["accuracy"])
85 |
86 | print("Training...")
87 | checkpoint = ModelCheckpoint(
88 | filepath=os.path.join(MODEL_DIR, "qa-lstm-attn-best.hdf5"),
89 | verbose=1, save_best_only=True)
90 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
91 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
92 | callbacks=[checkpoint])
93 |
94 | print("Evaluation...")
95 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
96 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
97 |
98 | model.save_weights(os.path.join(MODEL_DIR, "qa-lstm-attn-final.hdf5"))
99 | with open(os.path.join(MODEL_DIR, "qa-lstm-attn.json"), "wb") as fjson:
100 | fjson.write(model.to_json())
101 |
102 | model.load_weights(filepath=os.path.join(MODEL_DIR,
103 | "qa-lstm-attn-best.hdf5"))
104 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
105 | print("Test loss/accuracy best model = %.4f, %.4f" % (loss, acc))
106 |
107 |
--------------------------------------------------------------------------------
/src/qa-lstm-autoencoder.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.layers import Input, RepeatVector
4 | from keras.models import Model
5 | from keras.layers.recurrent import LSTM
6 | from sklearn.cross_validation import train_test_split
7 | import numpy as np
8 | import os
9 |
10 | import kaggle
11 |
12 | DATA_DIR = "../data/comp_data"
13 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
14 | STORY_FILE = "studystack_qa_cleaner_no_qm.txt"
15 | STORY_WEIGHTS = "lstm-story-weights.txt"
16 | STORY_BIAS = "lstm-story-bias.txt"
17 |
18 | EMBED_SIZE = 64
19 | BATCH_SIZE = 256
20 | NBR_EPOCHS = 20
21 |
22 | stories = kaggle.get_stories(os.path.join(DATA_DIR, STORY_FILE))
23 | story_maxlen = max([len(words) for words in stories])
24 |
25 | # this part is only required to get the maximum sequence length
26 | qapairs = kaggle.get_question_answer_pairs(
27 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
28 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
29 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
30 | seq_maxlen = max([story_maxlen, question_maxlen, answer_maxlen])
31 |
32 | word2idx = kaggle.build_vocab(stories, qapairs, [])
33 | vocab_size = len(word2idx)
34 |
35 | Xs = kaggle.vectorize_stories(stories, word2idx, seq_maxlen)
36 | Xstrain, Xstest = train_test_split(Xs, test_size=0.3, random_state=42)
37 | print(Xstrain.shape, Xstest.shape)
38 |
39 | inputs = Input(shape=(seq_maxlen, vocab_size))
40 | encoded = LSTM(EMBED_SIZE)(inputs)
41 | decoded = RepeatVector(seq_maxlen)(encoded)
42 | decoded = LSTM(vocab_size, return_sequences=True)(decoded)
43 | autoencoder = Model(inputs, decoded)
44 |
45 | autoencoder.compile("adadelta", loss="binary_crossentropy")
46 |
47 | autoencoder.fit(Xstrain, Xstrain, nb_epoch=NBR_EPOCHS, batch_size=BATCH_SIZE,
48 | shuffle=True, validation_data=(Xstest, Xstest))
49 |
50 | # save weight matrix for embedding (transforms from seq_maxlen to EMBED_SIZE)
51 | weight_matrix, bias_vector = autoencoder.layers[1].get_weights()
52 | np.savetxt(os.path.join(DATA_DIR, STORY_WEIGHTS), weight_matrix)
53 | np.savetxt(os.path.join(DATA_DIR, STORY_BIAS), bias_vector)
54 |
--------------------------------------------------------------------------------
/src/qa-lstm-cnn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout, Flatten
6 | from keras.layers.convolutional import Convolution1D, MaxPooling1D
7 | from keras.layers.embeddings import Embedding
8 | from keras.layers.recurrent import LSTM
9 | from keras.models import Sequential
10 | from sklearn.cross_validation import train_test_split
11 | import numpy as np
12 | import os
13 |
14 | import kaggle
15 |
16 | DATA_DIR = "../data/comp_data"
17 | MODEL_DIR = "../data/models"
18 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
19 | WORD2VEC_EMBED_SIZE = 300
20 |
21 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
22 | STORY_FILE = "studystack_qa_cleaner_no_qm.txt"
23 |
24 | QA_EMBED_SIZE = 64
25 | BATCH_SIZE = 32
26 | NBR_EPOCHS = 20
27 |
28 | ## extract data
29 |
30 | print("Loading and formatting data...")
31 | qapairs = kaggle.get_question_answer_pairs(
32 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
33 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
34 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
35 | seq_maxlen = max([question_maxlen, answer_maxlen])
36 |
37 | word2idx = kaggle.build_vocab([], qapairs, [])
38 | vocab_size = len(word2idx) + 1 # include mask character 0
39 |
40 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
41 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
42 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
43 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
44 | Ytrain.shape, Ytest.shape)
45 |
46 | # get embeddings from word2vec
47 | # see https://github.com/fchollet/keras/issues/853
48 | print("Loading Word2Vec model and generating embedding matrix...")
49 | word2vec = Word2Vec.load_word2vec_format(
50 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
51 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
52 | for word, index in word2idx.items():
53 | try:
54 | embedding_weights[index, :] = word2vec[word.lower()]
55 | except KeyError:
56 | pass # keep as zero (not ideal, but what else can we do?)
57 |
58 | print("Building model...")
59 | qenc = Sequential()
60 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
61 | input_length=seq_maxlen,
62 | weights=[embedding_weights]))
63 | qenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
64 | qenc.add(Dropout(0.3))
65 | qenc.add(Convolution1D(QA_EMBED_SIZE // 2, 5, border_mode="valid"))
66 | qenc.add(MaxPooling1D(pool_length=2, border_mode="valid"))
67 | qenc.add(Dropout(0.3))
68 | qenc.add(Flatten())
69 |
70 | aenc = Sequential()
71 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
72 | input_length=seq_maxlen,
73 | weights=[embedding_weights]))
74 | aenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
75 | aenc.add(Dropout(0.3))
76 | aenc.add(Convolution1D(QA_EMBED_SIZE // 2, 3, border_mode="valid"))
77 | aenc.add(MaxPooling1D(pool_length=2, border_mode="valid"))
78 | aenc.add(Dropout(0.3))
79 | aenc.add(Flatten())
80 |
81 | model = Sequential()
82 | model.add(Merge([qenc, aenc], mode="concat", concat_axis=-1))
83 | model.add(Dense(2, activation="softmax"))
84 |
85 | model.compile(optimizer="adam", loss="categorical_crossentropy",
86 | metrics=["accuracy"])
87 |
88 | print("Training...")
89 | checkpoint = ModelCheckpoint(
90 | filepath=os.path.join(MODEL_DIR, "qa-lstm-cnn-best.hdf5"),
91 | verbose=1, save_best_only=True)
92 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
93 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
94 | callbacks=[checkpoint])
95 |
96 | print("Evaluation...")
97 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
98 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
99 |
100 | model.save_weights(os.path.join(MODEL_DIR, "qa-lstm-cnn-final.hdf5"))
101 | with open(os.path.join(MODEL_DIR, "qa-lstm-cnn.json"), "wb") as fjson:
102 | fjson.write(model.to_json())
103 |
104 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-lstm-cnn-best.hdf5"))
105 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
106 | print("Test loss/accuracy best model = %.4f, %.4f" % (loss, acc))
107 |
--------------------------------------------------------------------------------
/src/qa-lstm-fem-attn.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from keras.callbacks import ModelCheckpoint
4 | from keras.layers import Input, Dense, Dropout, Reshape, Flatten, merge
5 | from keras.layers.embeddings import Embedding
6 | from keras.layers.recurrent import LSTM
7 | from keras.models import Model
8 | from sklearn.cross_validation import train_test_split
9 | import os
10 | import sys
11 |
12 | import kaggle
13 |
14 | DATA_DIR = "../data/comp_data"
15 | MODEL_DIR = "../data/models"
16 | WORD2VEC_BIN = "studystack.bin"
17 | WORD2VEC_EMBED_SIZE = 300
18 |
19 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
20 | QA_TEST_FILE = "8thGr-NDMC-Test.csv"
21 |
22 | QA_EMBED_SIZE = 64
23 | BATCH_SIZE = 128
24 | NBR_EPOCHS = 20
25 |
26 | ## extract data
27 | print("Loading and formatting data...")
28 | qapairs = kaggle.get_question_answer_pairs(
29 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
30 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
31 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
32 |
33 | # Even though we don't use the test set for classification, we still need
34 | # to consider any additional vocabulary words from it for when we use the
35 | # model for prediction (against the test set).
36 | tqapairs = kaggle.get_question_answer_pairs(
37 | os.path.join(DATA_DIR, QA_TEST_FILE), is_test=True)
38 | tq_maxlen = max([len(qapair[0]) for qapair in tqapairs])
39 | ta_maxlen = max([len(qapair[1]) for qapair in tqapairs])
40 |
41 | seq_maxlen = max([question_maxlen, answer_maxlen, tq_maxlen, ta_maxlen])
42 |
43 | word2idx = kaggle.build_vocab([], qapairs, tqapairs)
44 | vocab_size = len(word2idx) + 1 # include mask character 0
45 |
46 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
47 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
48 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
49 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
50 | Ytrain.shape, Ytest.shape)
51 |
52 | # get embeddings from word2vec
53 | print("Loading Word2Vec model and generating embedding matrix...")
54 | embedding_weights = kaggle.get_weights_word2vec(word2idx,
55 | os.path.join(DATA_DIR, WORD2VEC_BIN), is_custom=True)
56 |
57 | print("Building model...")
58 |
59 | # output: (None, QA_EMBED_SIZE, seq_maxlen)
60 | qin = Input(shape=(seq_maxlen,), dtype="int32")
61 | qenc = Embedding(input_dim=vocab_size,
62 | output_dim=WORD2VEC_EMBED_SIZE,
63 | input_length=seq_maxlen,
64 | weights=[embedding_weights])(qin)
65 | qenc = LSTM(QA_EMBED_SIZE, return_sequences=True)(qenc)
66 | qenc = Dropout(0.3)(qenc)
67 |
68 | # output: (None, QA_EMBED_SIZE, seq_maxlen)
69 | ain = Input(shape=(seq_maxlen,), dtype="int32")
70 | aenc = Embedding(input_dim=vocab_size,
71 | output_dim=WORD2VEC_EMBED_SIZE,
72 | input_length=seq_maxlen,
73 | weights=[embedding_weights])(ain)
74 | aenc = LSTM(QA_EMBED_SIZE, return_sequences=True)(aenc)
75 | aenc = Dropout(0.3)(aenc)
76 |
77 | # attention model
78 | attn = merge([qenc, aenc], mode="dot", dot_axes=[1, 1])
79 | attn = Flatten()(attn)
80 | attn = Dense(seq_maxlen * QA_EMBED_SIZE)(attn)
81 | attn = Reshape((seq_maxlen, QA_EMBED_SIZE))(attn)
82 |
83 | qenc_attn = merge([qenc, attn], mode="sum")
84 | qenc_attn = Flatten()(qenc_attn)
85 |
86 | output = Dense(2, activation="softmax")(qenc_attn)
87 |
88 | model = Model(input=[qin, ain], output=[output])
89 |
90 | print("Compiling model...")
91 | model.compile(optimizer="adam", loss="categorical_crossentropy",
92 | metrics=["accuracy"])
93 |
94 | print("Training...")
95 | best_model_filename = os.path.join(MODEL_DIR,
96 | kaggle.get_model_filename(sys.argv[0], "best"))
97 | checkpoint = ModelCheckpoint(filepath=best_model_filename,
98 | verbose=1, save_best_only=True)
99 | model.fit([Xqtrain, Xatrain], [Ytrain], batch_size=BATCH_SIZE,
100 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
101 | callbacks=[checkpoint])
102 |
103 | print("Evaluation...")
104 | loss, acc = model.evaluate([Xqtest, Xatest], [Ytest], batch_size=BATCH_SIZE)
105 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
106 |
107 | final_model_filename = os.path.join(MODEL_DIR,
108 | kaggle.get_model_filename(sys.argv[0], "final"))
109 | json_model_filename = os.path.join(MODEL_DIR,
110 | kaggle.get_model_filename(sys.argv[0], "json"))
111 | kaggle.save_model(model, json_model_filename, final_model_filename)
112 |
113 | best_model = kaggle.load_model(json_model_filename, best_model_filename)
114 | best_model.compile(optimizer="adam", loss="categorical_crossentropy",
115 | metrics=["accuracy"])
116 | loss, acc = best_model.evaluate([Xqtest, Xatest], [Ytest], batch_size=BATCH_SIZE)
117 | print("Test loss/accuracy best model = %.4f, %.4f" % (loss, acc))
118 |
119 |
--------------------------------------------------------------------------------
/src/qa-lstm-fem.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.models import Sequential
9 | from sklearn.cross_validation import train_test_split
10 | import numpy as np
11 | import os
12 |
13 | import kaggle
14 |
15 | DATA_DIR = "../data/comp_data"
16 | MODEL_DIR = "../data/models"
17 | WORD2VEC_MODEL = "studystack.bin"
18 | WORD2VEC_EMBED_SIZE = 300
19 |
20 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
21 |
22 | QA_EMBED_SIZE = 64
23 | BATCH_SIZE = 32
24 | NBR_EPOCHS = 20
25 |
26 | ## extract data
27 |
28 | print("Loading and formatting data...")
29 | qapairs = kaggle.get_question_answer_pairs(
30 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
31 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
32 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
33 | seq_maxlen = max([question_maxlen, answer_maxlen])
34 |
35 | word2idx = kaggle.build_vocab([], qapairs, [])
36 | vocab_size = len(word2idx) + 1 # include mask character 0
37 |
38 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
39 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
40 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
41 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
42 | Ytrain.shape, Ytest.shape)
43 |
44 | print("Loading flashcard Word2Vec model and generating embedding matrix...")
45 | word2vec = Word2Vec.load(os.path.join(DATA_DIR, WORD2VEC_MODEL))
46 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
47 | for word, index in word2idx.items():
48 | try:
49 | embedding_weights[index, :] = word2vec[word.lower()]
50 | except KeyError:
51 | pass # keep as zero (not ideal, but what else can we do?)
52 |
53 | print("Building model...")
54 | qenc = Sequential()
55 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
56 | weights=[embedding_weights], mask_zero=True))
57 | qenc.add(LSTM(QA_EMBED_SIZE, input_length=seq_maxlen, return_sequences=False))
58 | qenc.add(Dropout(0.3))
59 |
60 | aenc = Sequential()
61 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
62 | weights=[embedding_weights], mask_zero=True))
63 | aenc.add(LSTM(QA_EMBED_SIZE, input_length=seq_maxlen, return_sequences=False))
64 | aenc.add(Dropout(0.3))
65 |
66 | model = Sequential()
67 | model.add(Merge([qenc, aenc], mode="sum"))
68 | model.add(Dense(2, activation="softmax"))
69 |
70 | model.compile(optimizer="adam", loss="categorical_crossentropy",
71 | metrics=["accuracy"])
72 |
73 | print("Training...")
74 | checkpoint = ModelCheckpoint(
75 | filepath=os.path.join(MODEL_DIR, "qa-lstm-fem-best.hdf5"),
76 | verbose=1, save_best_only=True)
77 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
78 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
79 | callbacks=[checkpoint])
80 |
81 | print("Evaluation...")
82 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
83 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
84 |
85 | model.save_weights(os.path.join(MODEL_DIR, "qa-lstm-fem-final.hdf5"))
86 | with open(os.path.join(MODEL_DIR, "qa-lstm-fem.json"), "wb") as fjson:
87 | fjson.write(model.to_json())
88 |
89 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-lstm-fem-best.hdf5"))
90 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
91 | print("Test loss/accuracy best model = %.4f, %.4f" % (loss, acc))
92 |
--------------------------------------------------------------------------------
/src/qa-lstm-story.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout, Flatten
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.models import Sequential
9 | from sklearn.cross_validation import train_test_split
10 | import numpy as np
11 | import os
12 |
13 | import kaggle
14 |
15 | DATA_DIR = "../data/comp_data"
16 | MODEL_DIR = "../data/models"
17 |
18 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
19 | WORD2VEC_EMBED_SIZE = 300
20 |
21 | SQA_TRAIN_FILE = "SQA-Train.csv"
22 |
23 | QA_EMBED_SIZE = 64
24 | BATCH_SIZE = 32
25 | NBR_EPOCHS = 20
26 |
27 | ## extract data
28 |
29 | print("Loading and formatting data...")
30 | sqatriples = kaggle.get_story_question_answer_triples(
31 | os.path.join(DATA_DIR, SQA_TRAIN_FILE))
32 | story_maxlen = max([len(sqatriple[0]) for sqatriple in sqatriples])
33 | question_maxlen = max([len(sqatriple[1]) for sqatriple in sqatriples])
34 | answer_maxlen = max([len(sqatriple[2]) for sqatriple in sqatriples])
35 |
36 | word2idx = kaggle.build_vocab_from_sqa_triples(sqatriples)
37 | vocab_size = len(word2idx) + 1 # include mask character 0
38 |
39 | Xs, Xq, Xa, Y = kaggle.vectorize_sqatriples(sqatriples, word2idx, story_maxlen,
40 | question_maxlen, answer_maxlen)
41 | Xstrain, Xstest, Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
42 | train_test_split(Xs, Xq, Xa, Y, test_size=0.3, random_state=42)
43 | print(Xstrain.shape, Xstest.shape, Xqtrain.shape, Xqtest.shape,
44 | Xatrain.shape, Xatest.shape, Ytrain.shape, Ytest.shape)
45 |
46 | # get embeddings from word2vec
47 | # see https://github.com/fchollet/keras/issues/853
48 | print("Loading Word2Vec model and generating embedding matrix...")
49 | word2vec = Word2Vec.load_word2vec_format(
50 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
51 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
52 | for word, index in word2idx.items():
53 | try:
54 | embedding_weights[index, :] = word2vec[word.lower()]
55 | except KeyError:
56 | pass # keep as zero (not ideal, but what else can we do?)
57 |
58 | print("Building model...")
59 |
60 | # story encoder.
61 | # output shape: (None, story_maxlen, QA_EMBED_SIZE)
62 | senc = Sequential()
63 | senc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
64 | input_length=story_maxlen,
65 | weights=[embedding_weights], mask_zero=True))
66 | senc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
67 | senc.add(Dropout(0.3))
68 |
69 | # question encoder
70 | # output shape: (None, question_maxlen, QA_EMBED_SIZE)
71 | qenc = Sequential()
72 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
73 | input_length=question_maxlen,
74 | weights=[embedding_weights], mask_zero=True))
75 | qenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
76 | qenc.add(Dropout(0.3))
77 |
78 | # answer encoder
79 | # output shape: (None, answer_maxlen, QA_EMBED_SIZE)
80 | aenc = Sequential()
81 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
82 | input_length=answer_maxlen,
83 | weights=[embedding_weights], mask_zero=True))
84 | aenc.add(LSTM(QA_EMBED_SIZE, return_sequences=True))
85 | aenc.add(Dropout(0.3))
86 |
87 | # merge story and question => facts
88 | # output shape: (None, story_maxlen, question_maxlen)
89 | facts = Sequential()
90 | facts.add(Merge([senc, qenc], mode="dot", dot_axes=[2, 2]))
91 |
92 | # merge question and answer => attention
93 | # output shape: (None, answer_maxlen, question_maxlen)
94 | attn = Sequential()
95 | attn.add(Merge([aenc, qenc], mode="dot", dot_axes=[2, 2]))
96 |
97 | # merge facts and attention => model
98 | # output shape: (None, story+answer_maxlen, question_maxlen)
99 | model = Sequential()
100 | model.add(Merge([facts, attn], mode="concat", concat_axis=1))
101 | model.add(Flatten())
102 | model.add(Dense(2, activation="softmax"))
103 |
104 | model.compile(optimizer="adam", loss="categorical_crossentropy",
105 | metrics=["accuracy"])
106 |
107 | print("Training...")
108 | checkpoint = ModelCheckpoint(
109 | filepath=os.path.join(MODEL_DIR, "qa-lstm-story-best.hdf5"),
110 | verbose=1, save_best_only=True)
111 | model.fit([Xstrain, Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
112 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
113 | callbacks=[checkpoint])
114 |
115 | print("Evaluation")
116 | loss, acc = model.evaluate([Xstest, Xqtest, Xatest], Ytest,
117 | batch_size=BATCH_SIZE)
118 | print("Test loss/accuracy final model: %.4f, %.4f" % (loss, acc))
119 |
120 | model.save_weights(os.path.join(MODEL_DIR, "qa-lstm-story-final.hdf5"))
121 | with open(os.path.join(MODEL_DIR, "qa-lstm-story.json"), "wb") as fjson:
122 | fjson.write(model.to_json())
123 |
124 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-lstm-story-best.hdf5"))
125 | loss, acc = model.evaluate([Xstest, Xqtest, Xatest], Ytest,
126 | batch_size=BATCH_SIZE)
127 | print("Test loss/accuracy best model: %.4f, %.4f" % (loss, acc))
128 |
--------------------------------------------------------------------------------
/src/qa-lstm.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division, print_function
3 | from gensim.models import Word2Vec
4 | from keras.callbacks import ModelCheckpoint
5 | from keras.layers import Dense, Merge, Dropout
6 | from keras.layers.embeddings import Embedding
7 | from keras.layers.recurrent import LSTM
8 | from keras.models import Sequential
9 | from sklearn.cross_validation import train_test_split
10 | import numpy as np
11 | import os
12 |
13 | import kaggle
14 |
15 | DATA_DIR = "../data/comp_data"
16 | MODEL_DIR = "../data/models"
17 | WORD2VEC_BIN = "GoogleNews-vectors-negative300.bin.gz"
18 | WORD2VEC_EMBED_SIZE = 300
19 |
20 | QA_TRAIN_FILE = "8thGr-NDMC-Train.csv"
21 |
22 | QA_EMBED_SIZE = 64
23 | BATCH_SIZE = 32
24 | NBR_EPOCHS = 20
25 |
26 | ## extract data
27 |
28 | print("Loading and formatting data...")
29 | qapairs = kaggle.get_question_answer_pairs(
30 | os.path.join(DATA_DIR, QA_TRAIN_FILE))
31 | question_maxlen = max([len(qapair[0]) for qapair in qapairs])
32 | answer_maxlen = max([len(qapair[1]) for qapair in qapairs])
33 | seq_maxlen = max([question_maxlen, answer_maxlen])
34 |
35 | word2idx = kaggle.build_vocab([], qapairs, [])
36 | vocab_size = len(word2idx) + 1 # include mask character 0
37 |
38 | Xq, Xa, Y = kaggle.vectorize_qapairs(qapairs, word2idx, seq_maxlen)
39 | Xqtrain, Xqtest, Xatrain, Xatest, Ytrain, Ytest = \
40 | train_test_split(Xq, Xa, Y, test_size=0.3, random_state=42)
41 | print(Xqtrain.shape, Xqtest.shape, Xatrain.shape, Xatest.shape,
42 | Ytrain.shape, Ytest.shape)
43 |
44 | # get embeddings from word2vec
45 | # see https://github.com/fchollet/keras/issues/853
46 | print("Loading Word2Vec model and generating embedding matrix...")
47 | word2vec = Word2Vec.load_word2vec_format(
48 | os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)
49 | embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))
50 | for word, index in word2idx.items():
51 | try:
52 | embedding_weights[index, :] = word2vec[word.lower()]
53 | except KeyError:
54 | pass # keep as zero (not ideal, but what else can we do?)
55 |
56 | del word2vec
57 | del word2idx
58 |
59 | print("Building model...")
60 | qenc = Sequential()
61 | qenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
62 | weights=[embedding_weights], mask_zero=True))
63 | qenc.add(LSTM(QA_EMBED_SIZE, input_length=seq_maxlen, return_sequences=False))
64 | qenc.add(Dropout(0.3))
65 |
66 | aenc = Sequential()
67 | aenc.add(Embedding(output_dim=WORD2VEC_EMBED_SIZE, input_dim=vocab_size,
68 | weights=[embedding_weights], mask_zero=True))
69 | aenc.add(LSTM(QA_EMBED_SIZE, input_length=seq_maxlen, return_sequences=False))
70 | aenc.add(Dropout(0.3))
71 |
72 | model = Sequential()
73 | model.add(Merge([qenc, aenc], mode="sum"))
74 | model.add(Dense(2, activation="softmax"))
75 |
76 | model.compile(optimizer="adam", loss="categorical_crossentropy",
77 | metrics=["accuracy"])
78 |
79 | print("Training...")
80 | checkpoint = ModelCheckpoint(
81 | filepath=os.path.join(MODEL_DIR, "qa-lstm-best.hdf5"),
82 | verbose=1, save_best_only=True)
83 | model.fit([Xqtrain, Xatrain], Ytrain, batch_size=BATCH_SIZE,
84 | nb_epoch=NBR_EPOCHS, validation_split=0.1,
85 | callbacks=[checkpoint])
86 |
87 | print("Evaluation...")
88 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
89 | print("Test loss/accuracy final model = %.4f, %.4f" % (loss, acc))
90 |
91 | model.save_weights(os.path.join(MODEL_DIR, "qa-lstm-final.hdf5"))
92 | with open(os.path.join(MODEL_DIR, "qa-lstm.json"), "wb") as fjson:
93 | fjson.write(model.to_json())
94 |
95 | model.load_weights(filepath=os.path.join(MODEL_DIR, "qa-lstm-best.hdf5"))
96 | loss, acc = model.evaluate([Xqtest, Xatest], Ytest, batch_size=BATCH_SIZE)
97 | print("Test loss/accuracy best model = %.4f, %.4f" % (loss, acc))
98 |
--------------------------------------------------------------------------------