├── .github
└── workflows
│ └── spark-alchemy-workflow.yml
├── .gitignore
├── .sdkmanrc
├── DEVELOPMENT.md
├── LICENSE
├── NOTICE
├── README.md
├── VERSION
├── alchemy
└── src
│ ├── main
│ └── scala
│ │ ├── com
│ │ └── swoop
│ │ │ └── alchemy
│ │ │ ├── spark
│ │ │ └── expressions
│ │ │ │ ├── FunctionRegistration.scala
│ │ │ │ ├── NativeFunctionRegistration.scala
│ │ │ │ ├── WithHelper.scala
│ │ │ │ └── hll
│ │ │ │ ├── BoundHLL.scala
│ │ │ │ ├── CardinalityHashFunction.scala
│ │ │ │ ├── HLLFunctionRegistration.scala
│ │ │ │ ├── HLLFunctions.scala
│ │ │ │ ├── Implementation.scala
│ │ │ │ └── package.scala
│ │ │ └── utils
│ │ │ └── AnyExtensions.scala
│ │ └── org
│ │ └── apache
│ │ └── spark
│ │ └── sql
│ │ └── EncapsulationViolator.scala
│ └── test
│ ├── resources
│ └── log4j.properties
│ └── scala
│ ├── com
│ └── swoop
│ │ ├── alchemy
│ │ └── spark
│ │ │ └── expressions
│ │ │ └── hll
│ │ │ ├── CardinalityHashFunctionTest.scala
│ │ │ ├── HLLFunctionsTest.scala
│ │ │ └── PostgresInteropTest.scala
│ │ └── test_utils
│ │ └── SparkSessionSpec.scala
│ └── org
│ └── apache
│ └── spark
│ ├── DebugFilesystem.scala
│ ├── SparkFunSuite.scala
│ ├── SparkTestUtilsEncapsulationViolator.scala
│ └── sql
│ ├── catalyst
│ └── plans
│ │ └── PlanTest.scala
│ └── test
│ ├── SQLHelper.scala
│ ├── SQLTestData.scala
│ ├── SQLTestUtils.scala
│ ├── SharedSparkSessionBase.scala
│ └── TestSparkSession.scala
├── build.sbt
├── codeStyleSettings.xml
├── docker-compose.yml
├── docs
├── docs
│ ├── docs.md
│ └── index.md
└── src
│ └── main
│ └── resources
│ └── site
│ ├── images
│ ├── favicon.png
│ ├── navbar_brand.png
│ ├── navbar_brand2x.png
│ ├── sidebar_brand.png
│ ├── sidebar_brand2x.png
│ ├── swoop-icon_130x130.png
│ └── swoop-icon_80x80.png
│ ├── scripts
│ └── automenu.js
│ └── styles
│ └── overrides.css
└── project
├── build.properties
└── plugins.sbt
/.github/workflows/spark-alchemy-workflow.yml:
--------------------------------------------------------------------------------
1 | name: spark-alchemy workflow
2 |
3 | on:
4 | push:
5 | branches:
6 | - '*'
7 | - '!gh-pages'
8 |
9 | env:
10 | DOCKERIZE_VERSION: v0.6.1
11 | SASS_VERSION: "1.1.1"
12 |
13 | TERM: dumb
14 | AWS_REGION: us-east-1
15 | AWS_DEFAULT_REGION: us-east-1
16 | SWOOP_VERSION_FILE: VERSION
17 | JVM_OPTS: "-Xms2048m -Xmx2048m -Xss128m -XX:+CMSClassUnloadingEnabled -XX:MaxMetaspaceSize=1024m"
18 |
19 | jobs:
20 | test:
21 | name: Test
22 | runs-on: ubuntu-latest
23 | if: "!contains(github.event.head_commit.message, '[ci skip]')"
24 | services:
25 | postgres:
26 | image: swoopinc/postgres-hll:11
27 | ports:
28 | - 5432:5432
29 | steps:
30 | - uses: actions/checkout@v2
31 |
32 | - name: Install dockerize
33 | run: |
34 | cd ${{ runner.temp }}
35 | wget https://github.com/jwilder/dockerize/releases/download/$DOCKERIZE_VERSION/dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz
36 | sudo tar -C /usr/local/bin -xzvf dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz
37 | rm dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz
38 |
39 | - name: Wait for postgres
40 | run: dockerize -wait tcp://localhost:5432 -timeout 1m
41 |
42 | - name: Cache SBT ivy cache
43 | uses: actions/cache@v1
44 | with:
45 | path: ~/.ivy2/cache
46 | key: ${{ runner.os }}-sbt-ivy-cache-${{ hashFiles('**/build.sbt') }}
47 | - name: Cache SBT
48 | uses: actions/cache@v1
49 | with:
50 | path: ~/.sbt
51 | key: ${{ runner.os }}-sbt-${{ hashFiles('**/build.sbt') }}
52 | - name: Cache coursier
53 | uses: actions/cache@v1
54 | with:
55 | path: ~/.cache/coursier
56 | key: ${{ runner.os }}-coursier-${{ hashFiles('**/build.sbt') }}
57 |
58 | # "cat /dev/null |" prevents sbt from running in interactive mode. One of many amazing
59 | # hacks get sbt working in a sane manner.
60 | - name: sbt test
61 | run: cat /dev/null | sbt test
62 |
63 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.class
2 | *.log
3 |
4 | # sbt specific
5 | .cache
6 | .history
7 | .lib/
8 | dist/*
9 | target/
10 | lib_managed/
11 | src_managed/
12 | project/boot/
13 | project/plugins/project/
14 |
15 | # Scala-IDE specific
16 | .scala_dependencies
17 | .worksheet
18 |
19 | #Markdown editing
20 | .Ulysses-favorites.plist
21 |
22 | #IntelliJ
23 | .idea
24 |
25 | metastore_db/
26 | tmp/
27 | spark-warehouse/
28 |
29 | .DS_Store
30 |
--------------------------------------------------------------------------------
/.sdkmanrc:
--------------------------------------------------------------------------------
1 | # Enable auto-env through the sdkman_auto_env config
2 | # Add key=value pairs of SDKs to use below
3 | java=8.0.345-zulu
4 | sbt=1.6.2
5 | scala=2.12.17
6 |
--------------------------------------------------------------------------------
/DEVELOPMENT.md:
--------------------------------------------------------------------------------
1 | # Development
2 |
3 | ## Local tests
4 |
5 | To run the `PostgresInteropTest` you need to have a working Docker
6 | environment. On Mac, that means having Docker Desktop installed and
7 | running. Then run `docker-compose up` in the repository root to start a
8 | Postgres server.
9 |
10 | ## Release Process
11 |
12 | 1. Develop new code on feature branches.
13 |
14 | 1. After development, testing, and code review, merge changes into the `master` branch.
15 |
16 | 1. When ready to deploy a new release, merge and push changes from `master` to the `release` branch. Travis-CI will then:
17 |
18 | * Build the project
19 | * Run tests
20 | * Deploy artifacts to Maven
21 | * Publish the microsite to Github Pages
22 | * Create a new release on the [Github Project Release Page](https://github.com/swoop-inc/spark-alchemy/releases)
23 |
24 | ### Project Version Numbers
25 |
26 | * The `VERSION` file in the root of the project contains the version number that SBT will use for the `spark-alchemy` project.
27 | * The format should follow [Semantic Versioning](https://semver.org/) with the patch number matching the Travis CI build number when deploying new releases.
28 | * During deployment, Travis CI will read the MAJOR and MINOR version numbers from the `VERSION` file, but substitute the build number into the PATCH portion. In other words, if project developers wish to change the MAJOR or MINOR version numbers of the `spark-alchemy` project, they can simply change them in the `VERSION` file.
29 | * During local development and when checked into Git, the version number defined in the `VERSION` file should end with the `-SNAPSHOT` string.
30 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/NOTICE:
--------------------------------------------------------------------------------
1 | ------------------------------------------------------------------------------------
2 | This product bundles various third-party components under other open source licenses.
3 | This section summarizes those components and their licenses.
4 |
5 |
6 | Apache Software Foundation License 2.0
7 | --------------------------------------
8 | alchemy/src/test/scala/org/apache/spark/*
9 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # spark-alchemy
2 |
3 | Spark Alchemy is a collection of open-source Spark tools & frameworks that have made the data engineering and
4 | data science teams at [Swoop](https://www.swoop.com) highly productive in our demanding petabyte-scale environment
5 | with rich data (thousands of columns).
6 |
7 | ## Supported languages
8 |
9 | While `spark-alchemy`, like Spark itself, is written in Scala, much of its functionality, such as interoperable HyperLogLog functions, can be used from other Spark-supported languages such as SparkSQL and [Python](#for-python-developers).
10 |
11 | ## Installation
12 |
13 | Add the following to your `libraryDependencies` in SBT:
14 |
15 | ```scala
16 | libraryDependencies += "com.swoop" %% "spark-alchemy" % "1.0.1"
17 | ```
18 |
19 | You can find all released versions [here](https://repo1.maven.org/maven2/com/swoop/spark-alchemy_2.12/).
20 |
21 | Some use cases such as interoperability with PySpark may require the assembly of a fat JAR of `spark-alchemy`. To assemble, run `sbt assembly`. To skip tests during assembly, run `sbt 'set sbt.Keys.test in assembly := {}' assembly` instead.
22 |
23 | ## For Spark users
24 |
25 | - Native [HyperLogLog functions](../../wiki/Spark-HyperLogLog-Functions) that offer reaggregatable fast approximate distinct counting capabilities far beyond those in OSS Spark with interoperability to Postgres and even JavaScript. Just as Spark's own native functions, once the functions are registered with Spark, they can be used from SparkSQL, Python, etc.
26 |
27 | ## For Spark framework developers
28 |
29 | - Helpers for [native function registration](../../wiki/Spark-Native-Functions)
30 |
31 | - Look at [`SparkSessionSpec`](alchemy/src/test/scala/com/swoop/test_utils/SparkSessionSpec.scala) as an example of how to reuse advanced Spark testing functionality from OSS Spark.
32 |
33 | ## For Python developers
34 |
35 | - See [HyperLogLog functions](../../wiki/Spark-HyperLogLog-Functions) for an example of how `spark-alchemy` HLL functions can be registered for use through PySpark.
36 |
37 | ## What we hope to open source in the future, if we have the bandwidth
38 |
39 | - Configuration Addressable Production (CAP), Automatic Lifecycle Management (ALM) and Just-in-time Dependency Resolution
40 | (JDR) as outlined in our Spark+AI Summit talk [Unafraid of Change: Optimizing ETL, ML, and AI in Fast-Paced Environments](https://databricks.com/session/unafraid-of-change-optimizing-etl-ml-ai-in-fast-paced-environments).
41 |
42 | - Utilities that make [Delta Lake](https://delta.io) development substantially more productive.
43 |
44 | - Hundreds of productivity-enhancing extensions to the core user-level data types: `Column`, `Dataset`, `SparkSession`, etc.
45 |
46 | - Data discovery and cleansing tools we use to ingest and clean up large amounts of dirty data from third parties.
47 |
48 | - Cross-cluster named lock manager, which simplifies data production by removing the need for workflow servers much of the time.
49 |
50 | - `case class` code generation from Spark schema, with easy implementation customization.
51 |
52 | - Tools for deploying Spark ML pipelines to production.
53 |
54 | ## Development
55 |
56 | Build docs microsite
57 |
58 | ```sbt "project docs" makeMicrosite```
59 |
60 | Run docs microsite locally (run under `docs/target/site` folder)
61 |
62 | ```
63 | jekyll serve -b /spark-alchemy
64 | ```
65 |
66 | [More details](https://47degrees.github.io/sbt-microsites/)
67 |
68 | ## More from Swoop
69 |
70 | - [spark-records](https://github.com/swoop-inc/spark-records): bulletproof Spark jobs with fast root cause analysis in the case of failures
71 |
72 | ## Community & contributing
73 |
74 | Contributions and feedback of any kind are welcome. Please, create an issue and/or pull request.
75 |
76 | Spark Alchemy is maintained by the team at [Swoop](https://www.swoop.com). If you'd like to contribute to our open-source efforts, by joining our team or from your company, let us know at `spark-interest at swoop dot com`.
77 |
78 | ## License
79 |
80 | `spark-alchemy` is Copyright © 2018-2020 [Swoop, Inc.](https://www.swoop.com) It is free software, and may be redistributed under the terms of the LICENSE.
81 |
--------------------------------------------------------------------------------
/VERSION:
--------------------------------------------------------------------------------
1 | 1.2.1
2 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/FunctionRegistration.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions
2 |
3 | import org.apache.spark.sql.SparkSession
4 |
5 | trait FunctionRegistration {
6 | def registerFunctions(spark: SparkSession): Unit
7 | }
8 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/NativeFunctionRegistration.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions
2 |
3 | import org.apache.spark.sql.EncapsulationViolator.createAnalysisException
4 | import org.apache.spark.sql.SparkSession
5 | import org.apache.spark.sql.catalyst.FunctionIdentifier
6 | import org.apache.spark.sql.catalyst.analysis.FunctionRegistry
7 | import org.apache.spark.sql.catalyst.expressions.{Expression, ExpressionDescription, ExpressionInfo, RuntimeReplaceable}
8 |
9 | import scala.reflect.ClassTag
10 | import scala.util.{Failure, Success, Try}
11 |
12 | // based on Spark's FunctionRegistry @ossSpark
13 | trait NativeFunctionRegistration extends FunctionRegistration {
14 |
15 | type FunctionBuilder = Seq[Expression] => Expression
16 |
17 | def expressions: Map[String, (ExpressionInfo, FunctionBuilder)]
18 |
19 |
20 | def registerFunctions(fr: FunctionRegistry): Unit = {
21 | expressions.foreach { case (name, (info, builder)) => fr.registerFunction(FunctionIdentifier(name), info, builder) }
22 | }
23 |
24 | def registerFunctions(spark: SparkSession): Unit = {
25 | registerFunctions(spark.sessionState.functionRegistry)
26 | }
27 |
28 | /** See usage above. */
29 | protected def expression[T <: Expression](name: String)
30 | (implicit tag: ClassTag[T]): (String, (ExpressionInfo, FunctionBuilder)) = {
31 |
32 | // For `RuntimeReplaceable`, skip the constructor with most arguments, which is the main
33 | // constructor and contains non-parameter `child` and should not be used as function builder.
34 | val constructors = if (classOf[RuntimeReplaceable].isAssignableFrom(tag.runtimeClass)) {
35 | val all = tag.runtimeClass.getConstructors
36 | val maxNumArgs = all.map(_.getParameterCount).max
37 | all.filterNot(_.getParameterCount == maxNumArgs)
38 | } else {
39 | tag.runtimeClass.getConstructors
40 | }
41 | // See if we can find a constructor that accepts Seq[Expression]
42 | val varargCtor = constructors.find(_.getParameterTypes.toSeq == Seq(classOf[Seq[_]]))
43 | val builder = (expressions: Seq[Expression]) => {
44 | if (varargCtor.isDefined) {
45 | // If there is an apply method that accepts Seq[Expression], use that one.
46 | Try(varargCtor.get.newInstance(expressions).asInstanceOf[Expression]) match {
47 | case Success(e) => e
48 | case Failure(e) =>
49 | // the exception is an invocation exception. To get a meaningful message, we need the
50 | // cause.
51 | throw createAnalysisException(e.getCause.getMessage)
52 | }
53 | } else {
54 | // Otherwise, find a constructor method that matches the number of arguments, and use that.
55 | val params = Seq.fill(expressions.size)(classOf[Expression])
56 | val f = constructors.find(_.getParameterTypes.toSeq == params).getOrElse {
57 | throw createAnalysisException(s"Invalid number of arguments for function $name")
58 | }
59 | Try(f.newInstance(expressions: _*).asInstanceOf[Expression]) match {
60 | case Success(e) => e
61 | case Failure(e) =>
62 | // the exception is an invocation exception. To get a meaningful message, we need the
63 | // cause.
64 | throw createAnalysisException(e.getCause.getMessage)
65 | }
66 | }
67 | }
68 |
69 | (name, (expressionInfo[T](name), builder))
70 | }
71 |
72 | /**
73 | * Creates an [[ExpressionInfo]] for the function as defined by expression T using the given name.
74 | */
75 | protected def expressionInfo[T <: Expression : ClassTag](name: String): ExpressionInfo = {
76 | val clazz = scala.reflect.classTag[T].runtimeClass
77 | val df = clazz.getAnnotation(classOf[ExpressionDescription])
78 | if (df != null) {
79 | new ExpressionInfo(clazz.getCanonicalName, null, name, df.usage(), df.extended())
80 | } else {
81 | new ExpressionInfo(clazz.getCanonicalName, name)
82 | }
83 | }
84 |
85 | }
86 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/WithHelper.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions
2 |
3 | import org.apache.spark.sql.Column
4 | import org.apache.spark.sql.catalyst.expressions.Expression
5 | import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateFunction
6 |
7 | trait WithHelper {
8 | def withExpr(expr: Expression): Column = new Column(expr)
9 |
10 | def withAggregateFunction(
11 | func: AggregateFunction,
12 | isDistinct: Boolean = false): Column = {
13 | new Column(func.toAggregateExpression(isDistinct))
14 | }
15 | }
16 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/hll/BoundHLL.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import org.apache.spark.sql
4 | import org.apache.spark.sql.Column
5 |
6 |
7 | /** Convenience trait to use HyperLogLog functions with the same error consistently.
8 | * Spark's own [[sql.functions.approx_count_distinct()]] as well as the granular HLL
9 | * [[HLLFunctions.hll_init()]] and [[HLLFunctions.hll_init_collection()]] will be
10 | * automatically parameterized by [[BoundHLL.hllError]].
11 | */
12 | trait BoundHLL extends Serializable {
13 |
14 | def hllError: Double
15 |
16 | def functions: HLLFunctions
17 |
18 | def approx_count_distinct(col: Column): Column =
19 | sql.functions.approx_count_distinct(col, hllError)
20 |
21 | def approx_count_distinct(colName: String): Column =
22 | sql.functions.approx_count_distinct(colName, hllError)
23 |
24 | def hll_init(col: Column): Column =
25 | functions.hll_init(col, hllError)
26 |
27 | def hll_init(columnName: String): Column =
28 | functions.hll_init(columnName, hllError)
29 |
30 | def hll_init_collection(col: Column): Column =
31 | functions.hll_init_collection(col, hllError)
32 |
33 | def hll_init_collection(columnName: String): Column =
34 | functions.hll_init_collection(columnName, hllError)
35 |
36 | def hll_init_agg(col: Column): Column =
37 | functions.hll_init_agg(col, hllError)
38 |
39 | def hll_init_agg(columnName: String): Column =
40 | functions.hll_init_agg(columnName, hllError)
41 |
42 | def hll_init_collection_agg(col: Column): Column =
43 | functions.hll_init_collection_agg(col, hllError)
44 |
45 | def hll_init_collection_agg(columnName: String): Column =
46 | functions.hll_init_collection_agg(columnName, hllError)
47 | }
48 |
49 | object BoundHLL {
50 | /**
51 | * @param error maximum estimation error allowed
52 | * @param impl only affects the hll_* functions, not Spark's built-ins
53 | */
54 | def apply(error: Double)(implicit impl: Implementation = null): BoundHLL = new BoundHLL {
55 | def hllError: Double = error
56 |
57 | val functions = HLLFunctions.withImpl(impl)
58 | }
59 | }
60 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/hll/CardinalityHashFunction.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import org.apache.spark.sql.catalyst.InternalRow
4 | import org.apache.spark.sql.catalyst.expressions.{InterpretedHashFunction, XXH64}
5 | import org.apache.spark.sql.catalyst.util.{ArrayData, MapData}
6 | import org.apache.spark.sql.types._
7 | import org.apache.spark.unsafe.types.UTF8String
8 |
9 | /**
10 | * Hash function for Spark data values that is suitable for cardinality counting. Unlike Spark's built-in hashing,
11 | * it differentiates between different data types and accounts for nulls.
12 | */
13 | abstract class CardinalityHashFunction extends InterpretedHashFunction {
14 |
15 | override def hash(value: Any, dataType: DataType, seed: Long): Long = {
16 |
17 | def hashWithTag(typeTag: Long) =
18 | super.hash(value, dataType, hashLong(typeTag, seed))
19 |
20 | value match {
21 | // change null handling to differentiate between things like Array.empty and Array(null)
22 | case null => hashLong(seed, seed)
23 | // add type tags to differentiate between values on their own or in complex types
24 | case _: Array[Byte] => hashWithTag(-3698894927619418744L)
25 | case _: UTF8String => hashWithTag(-8468821688391060513L)
26 | case _: ArrayData => hashWithTag(-1666055126678331734L)
27 | case _: MapData => hashWithTag(5587693012926141532L)
28 | case _: InternalRow => hashWithTag(-891294170547231607L)
29 | // pass through everything else (simple types)
30 | case _ => super.hash(value, dataType, seed)
31 | }
32 | }
33 |
34 | }
35 |
36 |
37 | object CardinalityXxHash64Function extends CardinalityHashFunction {
38 |
39 | override protected def hashInt(i: Int, seed: Long): Long = XXH64.hashInt(i, seed)
40 |
41 | override protected def hashLong(l: Long, seed: Long): Long = XXH64.hashLong(l, seed)
42 |
43 | override protected def hashUnsafeBytes(base: AnyRef, offset: Long, len: Int, seed: Long): Long = {
44 | XXH64.hashUnsafeBytes(base, offset, len, seed)
45 | }
46 |
47 | }
48 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/hll/HLLFunctionRegistration.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import com.swoop.alchemy.spark.expressions.NativeFunctionRegistration
4 | import org.apache.spark.sql.catalyst.expressions.ExpressionInfo
5 |
6 | object HLLFunctionRegistration extends NativeFunctionRegistration {
7 |
8 | val expressions: Map[String, (ExpressionInfo, FunctionBuilder)] = Map(
9 | expression[HyperLogLogInitSimple]("hll_init"),
10 | expression[HyperLogLogInitCollection]("hll_init_collection"),
11 | expression[HyperLogLogInitSimpleAgg]("hll_init_agg"),
12 | expression[HyperLogLogInitCollectionAgg]("hll_init_collection_agg"),
13 | expression[HyperLogLogMerge]("hll_merge"),
14 | expression[HyperLogLogRowMerge]("hll_row_merge"),
15 | expression[HyperLogLogCardinality]("hll_cardinality"),
16 | expression[HyperLogLogIntersectionCardinality]("hll_intersect_cardinality"),
17 | expression[HyperLogLogConvert]("hll_convert")
18 | )
19 | }
20 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/hll/HLLFunctions.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import com.swoop.alchemy.spark.expressions.WithHelper
4 | import com.swoop.alchemy.spark.expressions.hll.HyperLogLogBase.{nameToImpl, resolveImplementation}
5 | import com.swoop.alchemy.spark.expressions.hll.Implementation.{AGGREGATE_KNOWLEDGE, AGKN, STREAM_LIB, STRM}
6 | import org.apache.spark.sql.EncapsulationViolator.createAnalysisException
7 | import org.apache.spark.sql.catalyst.InternalRow
8 | import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
9 | import org.apache.spark.sql.catalyst.expressions.aggregate.HyperLogLogPlusPlus.validateDoubleLiteral
10 | import org.apache.spark.sql.catalyst.expressions.aggregate.TypedImperativeAggregate
11 | import org.apache.spark.sql.catalyst.expressions.codegen.CodegenFallback
12 | import org.apache.spark.sql.catalyst.expressions.{BinaryExpression, ExpectsInputTypes, Expression, ExpressionDescription, Literal, UnaryExpression}
13 | import org.apache.spark.sql.catalyst.trees.UnaryLike
14 | import org.apache.spark.sql.catalyst.util.{ArrayData, MapData}
15 | import org.apache.spark.sql.functions.col
16 | import org.apache.spark.sql.types._
17 | import org.apache.spark.sql.{Column, SparkSession}
18 |
19 | trait HyperLogLogBase {
20 | def impl: Implementation
21 | }
22 |
23 | object HyperLogLogBase {
24 | def resolveImplementation(exp: Expression): Implementation = exp match {
25 | case null => resolveImplementation
26 | case _ => nameToImpl(exp, "last argument")
27 | }
28 |
29 | def resolveImplementation(exp: String): Implementation = exp match {
30 | case null => resolveImplementation
31 | case s => nameToImpl(s)
32 | }
33 |
34 | def resolveImplementation(implicit impl: Implementation = null): Implementation =
35 | if (impl != null)
36 | impl
37 | else
38 | SparkSession.getActiveSession
39 | .flatMap(_.conf.getOption(IMPLEMENTATION_CONFIG_KEY))
40 | .map(nameToImpl)
41 | .getOrElse(StreamLib)
42 |
43 | def nameToImpl(name: Expression, argName: String = "argument"): Implementation = name match {
44 | case Literal(s: Any, StringType) =>
45 | nameToImpl(s.toString)
46 | case _ =>
47 | throw createAnalysisException(
48 | s"The $argName must be a string argument (${Implementation.OPTIONS.mkString("/")}) designating one of the implementation options."
49 | )
50 | }
51 |
52 |
53 | def nameToImpl(name: String): Implementation = name match {
54 | case STRM => StreamLib
55 | case STREAM_LIB => StreamLib
56 | case AGKN => AgKn
57 | case AGGREGATE_KNOWLEDGE => AgKn
58 | case s => throw createAnalysisException(
59 | s"The HLL implementation choice '$s' is not one of the valid options: ${Implementation.OPTIONS.mkString(", ")}"
60 | )
61 | }
62 | }
63 |
64 | trait HyperLogLogInit extends Expression with UnaryLike[Expression] with HyperLogLogBase {
65 | def relativeSD: Double
66 |
67 | // This formula for `p` came from org.apache.spark.sql.catalyst.expressions.aggregate.HyperLogLogPlusPlus:93
68 | protected[this] val p: Int = Math.ceil(2.0d * Math.log(1.106d / relativeSD) / Math.log(2.0d)).toInt
69 |
70 | require(p >= 4, "HLL requires at least 4 bits for addressing. Use a lower error, at most 39%.")
71 |
72 | override def dataType: DataType = BinaryType
73 |
74 | def child: Expression
75 |
76 | def offer(value: Any, buffer: Instance): Instance
77 |
78 | def createHll: Instance = impl.createHll(p)
79 |
80 | def hash(value: Any, dataType: DataType, seed: Long): Long = CardinalityXxHash64Function.hash(value, dataType, seed)
81 |
82 | def hash(value: Any, dataType: DataType): Long = {
83 | // Using 0L as the seed results in a hash of 0L for empty arrays, which breaks our cardinality estimation tests due
84 | // to the improbably high number of leading zeros. Instead, use some other arbitrary "normal" long.
85 | hash(value, dataType, 6705405522910076594L)
86 | }
87 | }
88 |
89 | trait HyperLogLogSimple extends HyperLogLogInit {
90 | def offer(value: Any, buffer: Instance): Instance = {
91 | buffer.offer(hash(value, child.dataType))
92 | }
93 | }
94 |
95 | trait HyperLogLogCollection extends HyperLogLogInit {
96 |
97 | override def checkInputDataTypes(): TypeCheckResult =
98 | child.dataType match {
99 | case _: ArrayType | _: MapType | _: NullType => TypeCheckResult.TypeCheckSuccess
100 | case _ => TypeCheckResult.TypeCheckFailure(s"$prettyName only supports array and map input.")
101 | }
102 |
103 | def offer(value: Any, buffer: Instance): Instance = {
104 | value match {
105 | case arr: ArrayData =>
106 | child.dataType match {
107 | case ArrayType(et, _) => arr.foreach(et, (_, v) => {
108 | if (v != null) buffer.offer(hash(v, et))
109 | })
110 | case dt => throw new UnsupportedOperationException(s"Unknown DataType for ArrayData: $dt")
111 | }
112 | case map: MapData =>
113 | child.dataType match {
114 | case MapType(kt, vt, _) => map.foreach(kt, vt, (k, v) => {
115 | buffer.offer(hash(v, vt, hash(k, kt))) // chain key and value hash
116 | })
117 | case dt => throw new UnsupportedOperationException(s"Unknown DataType for MapData: $dt")
118 | }
119 | case _: NullType => // do nothing
120 | case _ => throw new UnsupportedOperationException(s"$prettyName only supports array and map input.")
121 | }
122 | buffer
123 | }
124 | }
125 |
126 | trait HyperLogLogInitSingle extends UnaryExpression with HyperLogLogInit with CodegenFallback {
127 | override def nullable: Boolean = child.nullable
128 |
129 | override def nullSafeEval(value: Any): Any =
130 | offer(value, createHll).serialize
131 | }
132 |
133 | trait HyperLogLogInitAgg extends NullableSketchAggregation with HyperLogLogInit {
134 |
135 | override def update(buffer: Option[Instance], inputRow: InternalRow): Option[Instance] = {
136 | val value = child.eval(inputRow)
137 | if (value != null) {
138 | Some(offer(value, buffer.getOrElse(createHll)))
139 | } else {
140 | buffer
141 | }
142 | }
143 | }
144 |
145 | trait NullableSketchAggregation extends TypedImperativeAggregate[Option[Instance]] with HyperLogLogBase with UnaryLike[Expression] {
146 |
147 | override def createAggregationBuffer(): Option[Instance] = None
148 |
149 | override def merge(buffer: Option[Instance], other: Option[Instance]): Option[Instance] =
150 | (buffer, other) match {
151 | case (Some(a), Some(b)) =>
152 | Some(a.merge(b))
153 | case (a, None) => a
154 | case (None, b) => b
155 | case _ => None
156 | }
157 |
158 | override def eval(buffer: Option[Instance]): Any =
159 | buffer.map(_.serialize).orNull
160 |
161 | def child: Expression
162 |
163 | override def nullable: Boolean = child.nullable
164 |
165 | override def serialize(hll: Option[Instance]): Array[Byte] =
166 | hll.map(_.serialize).orNull
167 |
168 | override def deserialize(bytes: Array[Byte]): Option[Instance] =
169 | if (bytes == null) None else Option(impl.deserialize(bytes))
170 | }
171 |
172 |
173 | /**
174 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
175 | *
176 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
177 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
178 | *
179 | * This function creates a composable "sketch" for each input row.
180 | * All expression values are treated as simple values.
181 | *
182 | * @param child to estimate the cardinality of.
183 | * @param relativeSD defines the maximum estimation error allowed
184 | * @param impl HLL implementation to use
185 | */
186 | @ExpressionDescription(
187 | usage =
188 | """
189 | _FUNC_(expr[, relativeSD[, implName]]) - Returns the composable "sketch" by HyperLogLog++.
190 | `relativeSD` defines the maximum estimation error allowed.
191 | """)
192 | case class HyperLogLogInitSimple(
193 | override val child: Expression,
194 | override val relativeSD: Double = 0.05,
195 | override val impl: Implementation = resolveImplementation)
196 | extends HyperLogLogInitSingle with HyperLogLogSimple {
197 |
198 | def this(child: Expression) = this(child, relativeSD = 0.05)
199 |
200 | def this(child: Expression, relativeSD: Expression) = {
201 | this(
202 | child = child,
203 | relativeSD = validateDoubleLiteral(relativeSD)
204 | )
205 | }
206 |
207 | def this(child: Expression, relativeSD: Expression, implName: Expression) = {
208 | this(
209 | child = child,
210 | relativeSD = validateDoubleLiteral(relativeSD),
211 | impl = resolveImplementation(implName)
212 | )
213 | }
214 |
215 | override def prettyName: String = "hll_init"
216 |
217 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
218 | }
219 |
220 |
221 | /**
222 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
223 | *
224 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
225 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
226 | *
227 | * This version combines all input in each aggregate group into a single "sketch".
228 | * All expression values treated as simple values.
229 | *
230 | * @param child to estimate the cardinality of
231 | * @param relativeSD defines the maximum estimation error allowed
232 | * @param impl HLL implementation to use
233 | */
234 | @ExpressionDescription(
235 | usage =
236 | """
237 | _FUNC_(expr[, relativeSD[, implName]]) - Returns the composable "sketch" by HyperLogLog++.
238 | `relativeSD` defines the maximum estimation error allowed.
239 | """)
240 | case class HyperLogLogInitSimpleAgg(
241 | override val child: Expression,
242 | override val relativeSD: Double = 0.05,
243 | override val impl: Implementation = resolveImplementation,
244 | override val mutableAggBufferOffset: Int = 0,
245 | override val inputAggBufferOffset: Int = 0)
246 | extends HyperLogLogInitAgg with HyperLogLogSimple {
247 |
248 | def this(child: Expression) = this(child, relativeSD = 0.05)
249 |
250 | def this(child: Expression, relativeSD: Expression) = {
251 | this(
252 | child = child,
253 | relativeSD = validateDoubleLiteral(relativeSD))
254 | }
255 |
256 | def this(child: Expression, relativeSD: Expression, implName: Expression) = {
257 | this(
258 | child = child,
259 | relativeSD = validateDoubleLiteral(relativeSD),
260 | impl = resolveImplementation(implName)
261 | )
262 | }
263 |
264 | override def withNewMutableAggBufferOffset(newOffset: Int): HyperLogLogInitSimpleAgg =
265 | copy(mutableAggBufferOffset = newOffset)
266 |
267 | override def withNewInputAggBufferOffset(newOffset: Int): HyperLogLogInitSimpleAgg =
268 | copy(inputAggBufferOffset = newOffset)
269 |
270 | override def prettyName: String = "hll_init_agg"
271 |
272 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
273 | }
274 |
275 | /**
276 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
277 | *
278 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
279 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
280 | *
281 | * This version creates a composable "sketch" for each input row.
282 | * Expression must be is a collection (Array, Map), and collection elements are treated as individual values.
283 | *
284 | * @param child to estimate the cardinality of.
285 | * @param relativeSD defines the maximum estimation error allowed
286 | * @param impl HLL implementation to use
287 | */
288 | @ExpressionDescription(
289 | usage =
290 | """
291 | _FUNC_(expr[, relativeSD[, implName]]) - Returns the composable "sketch" by HyperLogLog++.
292 | `relativeSD` defines the maximum estimation error allowed.
293 | """)
294 | case class HyperLogLogInitCollection(
295 | override val child: Expression,
296 | override val relativeSD: Double = 0.05,
297 | override val impl: Implementation = resolveImplementation)
298 | extends HyperLogLogInitSingle with HyperLogLogCollection {
299 |
300 | def this(child: Expression) = this(child, relativeSD = 0.05)
301 |
302 | def this(child: Expression, relativeSD: Expression) = {
303 | this(
304 | child = child,
305 | relativeSD = validateDoubleLiteral(relativeSD)
306 | )
307 | }
308 |
309 | def this(child: Expression, relativeSD: Expression, implName: Expression) = {
310 | this(
311 | child = child,
312 | relativeSD = validateDoubleLiteral(relativeSD),
313 | impl = resolveImplementation(implName)
314 | )
315 | }
316 |
317 |
318 | override def prettyName: String = "hll_init_collection"
319 |
320 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
321 | }
322 |
323 |
324 | /**
325 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
326 | *
327 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
328 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
329 | *
330 | * This version combines all input in each aggregate group into a a single "sketch".
331 | * If `expr` is a collection (Array, Map), collection elements are treated as individual values.
332 | *
333 | * @param child to estimate the cardinality of
334 | * @param relativeSD defines the maximum estimation error allowed
335 | * @param impl HLL implementation to use
336 | */
337 | @ExpressionDescription(
338 | usage =
339 | """
340 | _FUNC_(expr[, relativeSD[, implName]]) - Returns the composable "sketch" by HyperLogLog++.
341 | `relativeSD` defines the maximum estimation error allowed.
342 | """)
343 | case class HyperLogLogInitCollectionAgg(
344 | override val child: Expression,
345 | override val relativeSD: Double = 0.05,
346 | override val impl: Implementation = resolveImplementation,
347 | override val mutableAggBufferOffset: Int = 0,
348 | override val inputAggBufferOffset: Int = 0)
349 | extends HyperLogLogInitAgg with HyperLogLogCollection {
350 |
351 | def this(child: Expression) = this(child, relativeSD = 0.05)
352 |
353 | def this(child: Expression, relativeSD: Expression) = {
354 | this(
355 | child,
356 | validateDoubleLiteral(relativeSD)
357 | )
358 | }
359 |
360 | def this(child: Expression, relativeSD: Expression, implName: Expression) = {
361 | this(
362 | child,
363 | validateDoubleLiteral(relativeSD),
364 | resolveImplementation(implName)
365 | )
366 | }
367 |
368 | override def withNewMutableAggBufferOffset(newOffset: Int): HyperLogLogInitCollectionAgg =
369 | copy(mutableAggBufferOffset = newOffset)
370 |
371 | override def withNewInputAggBufferOffset(newOffset: Int): HyperLogLogInitCollectionAgg =
372 | copy(inputAggBufferOffset = newOffset)
373 |
374 | override def prettyName: String = "hll_init_collection_agg"
375 |
376 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
377 | }
378 |
379 |
380 | /**
381 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
382 | *
383 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
384 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
385 | *
386 | * This version aggregates the "sketches" into a single merged "sketch" that represents the union of the constituents.
387 | *
388 | * @param child "sketch" to merge
389 | * @param impl HLL implementation to use
390 | */
391 | @ExpressionDescription(
392 | usage =
393 | """
394 | _FUNC_(expr[, implName]) - Returns the merged HLL sketch.
395 | """)
396 | case class HyperLogLogMerge(
397 | child: Expression,
398 | override val impl: Implementation = resolveImplementation,
399 | override val mutableAggBufferOffset: Int = 0,
400 | override val inputAggBufferOffset: Int = 0)
401 | extends NullableSketchAggregation {
402 |
403 | def this(child: Expression) = this(child, resolveImplementation)
404 |
405 | def this(child: Expression, implName: Expression) = this(child, resolveImplementation(implName))
406 |
407 | override def update(buffer: Option[Instance], inputRow: InternalRow): Option[Instance] = {
408 | val value = child.eval(inputRow)
409 | if (value != null) {
410 | val hll = value match {
411 | case b: Array[Byte] => impl.deserialize(b)
412 | case _ => throw new IllegalStateException(s"$prettyName only supports Array[Byte]")
413 | }
414 | buffer.map(_.merge(hll))
415 | .orElse(Option(hll))
416 | } else {
417 | buffer
418 | }
419 | }
420 |
421 | override def checkInputDataTypes(): TypeCheckResult = {
422 | child.dataType match {
423 | case BinaryType => TypeCheckResult.TypeCheckSuccess
424 | case _ => TypeCheckResult.TypeCheckFailure(s"$prettyName only supports binary input")
425 | }
426 | }
427 |
428 | override def dataType: DataType = BinaryType
429 |
430 | override def withNewMutableAggBufferOffset(newOffset: Int): HyperLogLogMerge =
431 | copy(mutableAggBufferOffset = newOffset)
432 |
433 | override def withNewInputAggBufferOffset(newOffset: Int): HyperLogLogMerge =
434 | copy(inputAggBufferOffset = newOffset)
435 |
436 | override def prettyName: String = "hll_merge"
437 |
438 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
439 | }
440 |
441 | /**
442 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
443 | *
444 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
445 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
446 | *
447 | * This version merges multiple "sketches" in one row into a single field.
448 | *
449 | * @see [[HyperLogLogMerge]]
450 | * @param children "sketch" row fields to merge
451 | * @param impl HLL implementation to use
452 | */
453 | @ExpressionDescription(
454 | usage =
455 | """
456 | _FUNC_(expr[, implName]) - Returns the merged HLL sketch.
457 | """)
458 | case class HyperLogLogRowMerge(
459 | override val children: Seq[Expression],
460 | override val impl: Implementation = resolveImplementation)
461 | extends Expression with ExpectsInputTypes with CodegenFallback with HyperLogLogBase {
462 |
463 | def this(children: Seq[Expression]) = this({
464 | assert(children.nonEmpty, s"function requires at least one argument")
465 | children
466 | }.last match {
467 | case Literal(_: Any, StringType) => children.init
468 | case _ => children
469 | },
470 | children.last match {
471 | case Literal(s: Any, StringType) => resolveImplementation(s.toString)
472 | case _ => resolveImplementation
473 | }
474 | )
475 |
476 | require(children.nonEmpty, s"$prettyName requires at least one argument.")
477 |
478 | override def inputTypes: Seq[DataType] = Seq.fill(children.size)(BinaryType)
479 |
480 | override def dataType: DataType = BinaryType
481 |
482 | override def nullable: Boolean = children.forall(_.nullable)
483 |
484 | override def foldable: Boolean = children.forall(_.foldable)
485 |
486 | override def eval(input: InternalRow): Any = {
487 | val flatInputs = children.flatMap(_.eval(input) match {
488 | case null => None
489 | case b: Array[Byte] => Some(impl.deserialize(b))
490 | case _ => throw new IllegalStateException(s"$prettyName only supports Array[Byte]")
491 | })
492 |
493 | if (flatInputs.isEmpty) null
494 | else {
495 | val acc = flatInputs.head
496 | flatInputs.tail.foreach(acc.merge)
497 | acc.serialize
498 | }
499 | }
500 |
501 | override def prettyName: String = "hll_row_merge"
502 |
503 | override protected def withNewChildrenInternal(newChildren: IndexedSeq[Expression]): Expression =
504 | copy(children = newChildren)
505 | }
506 |
507 | /**
508 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
509 | *
510 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
511 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
512 | *
513 | * Returns the estimated cardinality of an HLL "sketch"
514 | *
515 | * @param child HLL "sketch"
516 | * @param impl HLL implementation to use
517 | */
518 | @ExpressionDescription(
519 | usage =
520 | """
521 | _FUNC_(sketch[, implName]) - Returns the estimated cardinality of the binary representation produced by HyperLogLog++.
522 | """)
523 | case class HyperLogLogCardinality(
524 | override val child: Expression,
525 | override val impl: Implementation = resolveImplementation
526 | ) extends UnaryExpression with ExpectsInputTypes with CodegenFallback with HyperLogLogBase {
527 |
528 | def this(child: Expression) = this(child, resolveImplementation)
529 |
530 | def this(child: Expression, implName: Expression) = this(child, resolveImplementation(implName))
531 |
532 | override def inputTypes: Seq[DataType] = Seq(BinaryType)
533 |
534 | override def dataType: DataType = LongType
535 |
536 | override def nullSafeEval(input: Any): Long = {
537 | val data = input.asInstanceOf[Array[Byte]]
538 | impl.deserialize(data).cardinality
539 | }
540 |
541 | override def prettyName: String = "hll_cardinality"
542 |
543 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
544 | }
545 |
546 | /**
547 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
548 | *
549 | * The underlying [[Implementation]] can be changed by setting a [[IMPLEMENTATION_CONFIG_KEY configuration value]]
550 | * in the [[SparkSession]] to the implementation name, or passing it as an argument.
551 | *
552 | * Computes a merged (unioned) sketch and uses the fact that |A intersect B| = (|A| + |B|) - |A union B| to estimate
553 | * the intersection cardinality of two HLL "sketches".
554 | *
555 | * @note Error in the cardinality of the intersection is determined by the cardinality of the constituent sketches, not
556 | * the cardinality of the intersection itself (i.e. it may be much larger than naively expected) -
557 | * https://research.neustar.biz/2012/12/17/hll-intersections-2/
558 | *
559 | * @see HyperLogLogRowMerge
560 | * @see HyperLogLogCardinality
561 | * @param left HLL "sketch"
562 | * @param right HLL "sketch"
563 | * @param impl HLL implementation to use
564 | * @return the estimated intersection cardinality (0 if one sketch is null, but null if both are)
565 | */
566 | @ExpressionDescription(
567 | usage =
568 | """
569 | _FUNC_(sketchL, sketchR[, implName]) - Returns the estimated intersection cardinality of the binary representations produced by
570 | HyperLogLog. Computes a merged (unioned) sketch and uses the fact that |A intersect B| = (|A| + |B|) - |A union B|.
571 | Returns null if both sketches are null, but 0 if only one is
572 | """)
573 | case class HyperLogLogIntersectionCardinality(
574 | override val left: Expression,
575 | override val right: Expression,
576 | override val impl: Implementation = resolveImplementation
577 | ) extends BinaryExpression with ExpectsInputTypes with CodegenFallback with HyperLogLogBase {
578 |
579 | def this(left: Expression, right: Expression) = this(left, right, resolveImplementation)
580 |
581 | def this(left: Expression, right: Expression, implName: Expression) =
582 | this(left, right, resolveImplementation(implName))
583 |
584 | override def inputTypes: Seq[DataType] = Seq(BinaryType, BinaryType)
585 |
586 | override def dataType: DataType = LongType
587 |
588 | override def nullable: Boolean = left.nullable && right.nullable
589 |
590 | override def eval(input: InternalRow): Any = {
591 | val leftValue = left.eval(input)
592 | val rightValue = right.eval(input)
593 |
594 | if (leftValue != null && rightValue != null) {
595 | val leftHLL = impl.deserialize(leftValue.asInstanceOf[Array[Byte]])
596 | val rightHLL = impl.deserialize(rightValue.asInstanceOf[Array[Byte]])
597 |
598 | val leftCount = leftHLL.cardinality
599 | val rightCount = rightHLL.cardinality
600 | leftHLL.merge(rightHLL)
601 | val unionCount = leftHLL.cardinality
602 |
603 | // guarantee a non-negative result despite the approximate nature of the counts
604 | math.max((leftCount + rightCount) - unionCount, 0L)
605 | } else {
606 | if (leftValue != null || rightValue != null) {
607 | 0L
608 | } else {
609 | null
610 | }
611 | }
612 | }
613 |
614 | override def prettyName: String = "hll_intersect_cardinality"
615 |
616 | override protected def withNewChildrenInternal(newLeft: Expression, newRight: Expression): Expression =
617 | copy(left = newLeft, right = newRight)
618 | }
619 |
620 |
621 | /**
622 | * HyperLogLog (HLL) is a state of the art cardinality estimation algorithm with multiple implementations available.
623 | *
624 | * This function converts between implementations. Currently the only conversion supported is from the StreamLib
625 | * implementation (`"STRM"` or `"STREAM_LIB"`) to the Aggregate Knowledge implementation (`"AGKN"` or
626 | * `"AGGREGATE_KNOWLEDGE"`).
627 | *
628 | * @note Converted values CANNOT be merged with unconverted ("native") values of type that they've been converted to.
629 | * This is because the different implementations use different parts of the hashed valued to construct the HLL
630 | * (effectively equivalent to using different hash functions).
631 | * @param child HLL "sketch"
632 | * @param from string name of implementation type of the given sketch
633 | * @param to string name of implementation type to convert the given sketch to
634 | */
635 |
636 | @ExpressionDescription(
637 | usage =
638 | """
639 | _FUNC_(sketch, implNameFrom, implNameTo) - Converts between implementations.
640 | """)
641 | case class HyperLogLogConvert(
642 | override val child: Expression,
643 | from: Implementation,
644 | to: Implementation
645 | ) extends UnaryExpression with CodegenFallback with ExpectsInputTypes {
646 |
647 | def this(hll: Expression, fromName: Expression, toName: Expression) = {
648 | this(hll, nameToImpl(fromName, "second argument"), nameToImpl(toName, "third argument"))
649 | }
650 |
651 |
652 | def this(hll: Expression, fromName: String, toName: String) = {
653 | this(hll, nameToImpl(fromName), nameToImpl(toName))
654 | }
655 |
656 | override def dataType: DataType = BinaryType
657 |
658 | override def inputTypes: Seq[DataType] = Seq(BinaryType)
659 |
660 | override def nullSafeEval(hll: Any): Any = (from, to) match {
661 | case (StreamLib, AgKn) => strmToAgkn(hll.asInstanceOf[Array[Byte]])
662 | case _ => throw new IllegalArgumentException(
663 | "HLL conversion is currently only supported from STREAM_LIB to AGGREGATE_KNOWLEDGE"
664 | )
665 | }
666 |
667 | override def prettyName: String = "hll_convert"
668 |
669 | override protected def withNewChildInternal(newChild: Expression): Expression = copy(child = newChild)
670 | }
671 |
672 | object functions extends HLLFunctions {
673 | val impl: Implementation = null
674 | }
675 |
676 | trait HLLFunctions extends WithHelper {
677 |
678 | implicit def impl: Implementation
679 |
680 | def hll_init(e: Column, relativeSD: Double, implName: String = null): Column = withExpr {
681 | HyperLogLogInitSimple(e.expr, relativeSD, resolveImplementation(implName))
682 | }
683 |
684 | def hll_init(columnName: String, relativeSD: Double): Column =
685 | hll_init(col(columnName), relativeSD)
686 |
687 | def hll_init(columnName: String, relativeSD: Double, implName: String): Column =
688 | hll_init(col(columnName), relativeSD, implName)
689 |
690 | def hll_init(e: Column): Column = withExpr {
691 | HyperLogLogInitSimple(e.expr, impl = resolveImplementation)
692 | }
693 |
694 | def hll_init(columnName: String): Column =
695 | hll_init(col(columnName))
696 |
697 | def hll_init_collection(e: Column, relativeSD: Double, implName: String = null): Column = withExpr {
698 | HyperLogLogInitCollection(e.expr, relativeSD, resolveImplementation(implName))
699 | }
700 |
701 | def hll_init_collection(columnName: String, relativeSD: Double): Column =
702 | hll_init_collection(col(columnName), relativeSD)
703 |
704 | def hll_init_collection(columnName: String, relativeSD: Double, implName: String): Column =
705 | hll_init_collection(col(columnName), relativeSD, implName)
706 |
707 | def hll_init_collection(e: Column): Column = withExpr {
708 | HyperLogLogInitCollection(e.expr, impl = resolveImplementation)
709 | }
710 |
711 | def hll_init_collection(columnName: String): Column =
712 | hll_init_collection(col(columnName))
713 |
714 | def hll_init_agg(e: Column, relativeSD: Double, implName: String = null): Column = withAggregateFunction {
715 | HyperLogLogInitSimpleAgg(e.expr, relativeSD, resolveImplementation(implName))
716 | }
717 |
718 | def hll_init_agg(columnName: String, relativeSD: Double): Column =
719 | hll_init_agg(col(columnName), relativeSD)
720 |
721 | def hll_init_agg(columnName: String, relativeSD: Double, implName: String): Column =
722 | hll_init_agg(col(columnName), relativeSD, implName)
723 |
724 | def hll_init_agg(e: Column): Column = withAggregateFunction {
725 | HyperLogLogInitSimpleAgg(e.expr, impl = resolveImplementation)
726 | }
727 |
728 | def hll_init_agg(columnName: String): Column =
729 | hll_init_agg(col(columnName))
730 |
731 | def hll_init_collection_agg(e: Column, relativeSD: Double, implName: String = null): Column = withAggregateFunction {
732 | HyperLogLogInitCollectionAgg(e.expr, relativeSD, resolveImplementation(implName))
733 | }
734 |
735 | def hll_init_collection_agg(columnName: String, relativeSD: Double): Column =
736 | hll_init_collection_agg(col(columnName), relativeSD)
737 |
738 | def hll_init_collection_agg(columnName: String, relativeSD: Double, implName: String): Column =
739 | hll_init_collection_agg(col(columnName), relativeSD, implName)
740 |
741 | def hll_init_collection_agg(e: Column): Column = withAggregateFunction {
742 | HyperLogLogInitCollectionAgg(e.expr, impl = resolveImplementation)
743 | }
744 |
745 | def hll_init_collection_agg(columnName: String): Column =
746 | hll_init_collection_agg(col(columnName))
747 |
748 | def hll_merge(e: Column, implName: String = null): Column = withAggregateFunction {
749 | HyperLogLogMerge(e.expr, resolveImplementation(implName))
750 | }
751 |
752 | def hll_merge(columnName: String): Column =
753 | hll_merge(col(columnName))
754 |
755 | def hll_merge(columnName: String, implName: String): Column =
756 | hll_merge(col(columnName), implName)
757 |
758 | def hll_row_merge(es: Column*): Column = withExpr {
759 | HyperLogLogRowMerge(es.map(_.expr), resolveImplementation)
760 | }
761 |
762 | def hll_row_merge(implName: String, es: Column*): Column = withExpr {
763 | HyperLogLogRowMerge(es.map(_.expr), resolveImplementation(implName))
764 | }
765 |
766 | def hll_cardinality(e: Column, implName: String = null): Column = withExpr {
767 | HyperLogLogCardinality(e.expr, resolveImplementation(implName))
768 | }
769 |
770 | def hll_cardinality(columnName: String): Column =
771 | hll_cardinality(col(columnName))
772 |
773 | def hll_cardinality(columnName: String, implName: String): Column =
774 | hll_cardinality(col(columnName), implName)
775 |
776 | def hll_intersect_cardinality(l: Column, r: Column, implName: String = null): Column = withExpr {
777 | HyperLogLogIntersectionCardinality(l.expr, r.expr, resolveImplementation(implName))
778 | }
779 |
780 | def hll_intersect_cardinality(leftColumnName: String, rightColumnName: String): Column =
781 | hll_intersect_cardinality(col(leftColumnName), col(rightColumnName))
782 |
783 | def hll_intersect_cardinality(leftColumnName: String, rightColumnName: String, implName: String): Column =
784 | hll_intersect_cardinality(col(leftColumnName), col(rightColumnName), implName)
785 |
786 | def hll_convert(hll: Column, from: String, to: String): Column = withExpr {
787 | HyperLogLogConvert(hll.expr, nameToImpl(from), nameToImpl(to))
788 | }
789 |
790 | def hll_convert(columnName: String, from: String, to: String): Column =
791 | hll_convert(col(columnName), from, to)
792 | }
793 |
794 | object HLLFunctions {
795 | def withImpl(hllImpl: Implementation): HLLFunctions = new HLLFunctions {
796 | override implicit def impl: Implementation = hllImpl
797 | }
798 | }
799 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/hll/Implementation.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import com.clearspring.analytics.stream
4 | import com.clearspring.analytics.stream.cardinality.{HyperLogLogPlus, RegisterSet}
5 | import net.agkn.hll.HLL
6 | import net.agkn.hll.util.BitVector
7 |
8 | /**
9 | * Wrapper for instances of different HLL implementations
10 | *
11 | * @note `offer`` and `merge`` may just mutate and return the same underlying HLL instance
12 | */
13 | sealed trait Instance {
14 | def offer(hashedValue: Long): Instance
15 |
16 | def merge(other: Instance): Instance
17 |
18 | def serialize: Array[Byte]
19 |
20 | def cardinality: Long
21 | }
22 |
23 | class AgKnInstance(val hll: net.agkn.hll.HLL) extends Instance {
24 | override def offer(hashedValue: Long): Instance = {
25 | hll.addRaw(hashedValue)
26 | this
27 | }
28 |
29 | override def merge(other: Instance): Instance = {
30 | if (other.isInstanceOf[AgKnInstance]) {
31 | hll.union(other.asInstanceOf[AgKnInstance].hll)
32 | this
33 | } else
34 | throw new IllegalArgumentException(s"Type of HLL to merge does not match this HLL (${hll.getClass.getName})")
35 | }
36 |
37 | override def serialize: Array[Byte] = hll.toBytes
38 |
39 | def cardinality: Long = hll.cardinality()
40 | }
41 |
42 | class StreamLibInstance(val hll: stream.cardinality.HyperLogLogPlus) extends Instance {
43 | override def offer(hashedValue: Long): Instance = {
44 | hll.offerHashed(hashedValue)
45 | this
46 | }
47 |
48 | override def merge(other: Instance): Instance = {
49 | if (other.isInstanceOf[StreamLibInstance]) {
50 | hll.addAll(other.asInstanceOf[StreamLibInstance].hll)
51 | this
52 | } else
53 | throw new IllegalArgumentException(s"Type of HLL to merge does not match this HLL (${hll.getClass.getName})")
54 | }
55 |
56 | override def serialize: Array[Byte] = hll.getBytes
57 |
58 | def cardinality: Long = hll.cardinality()
59 | }
60 |
61 | /**
62 | * Option for the underlying HLL implementation used by all functions
63 | */
64 | trait Implementation {
65 | def createHll(p: Int): Instance
66 |
67 | def deserialize(bytes: Array[Byte]): Instance
68 | }
69 |
70 | object Implementation {
71 | val AGKN = "AGKN"
72 | val STRM = "STRM"
73 | val AGGREGATE_KNOWLEDGE = "AGGREGATE_KNOWLEDGE"
74 | val STREAM_LIB = "STREAM_LIB"
75 | val OPTIONS = Seq(AGKN, STRM, AGGREGATE_KNOWLEDGE, STREAM_LIB)
76 |
77 |
78 | // TODO @peter debugging tools, remove:
79 | def registerSetToSeq(r: RegisterSet): Seq[Int] =
80 | for (i <- 0 until r.count) yield r.get(i)
81 |
82 | def bitVectorToSeq(b: BitVector): Seq[Long] = {
83 | val i = b.registerIterator()
84 | new Iterator[Long] {
85 | def hasNext = i.hasNext
86 |
87 | def next = i.next()
88 | }.toArray
89 | }
90 | }
91 |
92 | case object AgKn extends Implementation {
93 | override def createHll(p: Int) = new AgKnInstance(new HLL(p, 5))
94 |
95 | override def deserialize(bytes: Array[Byte]) = new AgKnInstance(HLL.fromBytes(bytes))
96 | }
97 |
98 | case object StreamLib extends Implementation {
99 | override def createHll(p: Int) = new StreamLibInstance(new HyperLogLogPlus(p, 0))
100 |
101 | override def deserialize(bytes: Array[Byte]) = new StreamLibInstance(HyperLogLogPlus.Builder.build(bytes))
102 | }
103 |
104 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/spark/expressions/hll/package.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions
2 |
3 | import java.io.{ByteArrayInputStream, DataInputStream}
4 |
5 | import com.clearspring.analytics.stream
6 | import com.clearspring.analytics.stream.cardinality.RegisterSet
7 | import com.clearspring.analytics.util.{Bits, Varint}
8 | import net.agkn.hll.HLL
9 | import net.agkn.hll.serialization.{HLLMetadata, SchemaVersionOne}
10 | import net.agkn.hll.util.BitVector
11 |
12 | package object hll {
13 | val IMPLEMENTATION_CONFIG_KEY = "com.swoop.alchemy.hll.implementation"
14 |
15 | def strmToAgkn(from: stream.cardinality.HyperLogLogPlus): net.agkn.hll.HLL = {
16 | HLL.fromBytes(strmToAgkn(from.getBytes))
17 | }
18 |
19 | def strmToAgkn(from: Array[Byte]): Array[Byte] = {
20 | var bais = new ByteArrayInputStream(from)
21 | var oi = new DataInputStream(bais)
22 | val version = oi.readInt
23 | // the new encoding scheme includes a version field
24 | // that is always negative.
25 | if (version >= 0) {
26 | throw new UnsupportedOperationException("conversion is only supported for the new style encoding scheme")
27 | }
28 |
29 | val p = Varint.readUnsignedVarInt(oi)
30 | val sp = Varint.readUnsignedVarInt(oi)
31 | val formatType = Varint.readUnsignedVarInt(oi)
32 | if (formatType != 0) {
33 | throw new UnsupportedOperationException("conversion is only supported for non-sparse representation")
34 | }
35 |
36 | val size = Varint.readUnsignedVarInt(oi)
37 | val longArrayBytes = new Array[Byte](size)
38 | oi.readFully(longArrayBytes)
39 | val registerSet = new RegisterSet(Math.pow(2, p).toInt, Bits.getBits(longArrayBytes))
40 | val bitVector = new BitVector(RegisterSet.REGISTER_SIZE, registerSet.count)
41 |
42 | for (i <- 0 until registerSet.count) bitVector.setRegister(i, registerSet.get(i))
43 | val schemaVersion = new SchemaVersionOne
44 | val serializer =
45 | schemaVersion.getSerializer(net.agkn.hll.HLLType.FULL, RegisterSet.REGISTER_SIZE, registerSet.count)
46 | bitVector.getRegisterContents(serializer)
47 | var outBytes = serializer.getBytes
48 |
49 | val metadata = new HLLMetadata(
50 | schemaVersion.schemaVersionNumber(),
51 | net.agkn.hll.HLLType.FULL,
52 | p,
53 | RegisterSet.REGISTER_SIZE,
54 | 0,
55 | true,
56 | false,
57 | false
58 | )
59 | schemaVersion.writeMetadata(outBytes, metadata)
60 | outBytes
61 | }
62 | }
63 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/com/swoop/alchemy/utils/AnyExtensions.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.utils
2 |
3 | /**
4 | * Convenience methods for all types
5 | */
6 | object AnyExtensions {
7 |
8 | /** Sugar for applying functions in a method chain. */
9 | implicit class TransformOps[A](val underlying: A) extends AnyVal {
10 |
11 | /** Applies a transformer function in a method chain.
12 | *
13 | * @param f function to apply
14 | * @tparam B the return type
15 | * @return the result of applying `f` on `underlying`.
16 | */
17 | @inline def transform[B](f: A => B): B =
18 | f(underlying)
19 |
20 | /** Conditionally applies a transformer function in a method chain.
21 | * Use this instead of [[transformWhen()]] when the predicate requires the value of `underlying`.
22 | *
23 | * @param predicate predicate to evaluate to determine if the function should be applied
24 | * @tparam B the return type of the function
25 | * @return `underlying` if the predicate evaluates to `false` or the result of function application.
26 | */
27 | @inline def transformIf[B <: A](predicate: A => Boolean)(f: A => B): A =
28 | if (predicate(underlying))
29 | f(underlying)
30 | else underlying
31 |
32 | /** Conditionally applies a transformer function in a method chain.
33 | * Use this instead of [[transformIf()]] when the condition does not require the value of `underlying`.
34 | *
35 | * @param condition condition to evaluate to determine if the function should be applied
36 | * @tparam B the return type of the function
37 | * @return `underlying` if the expression evaluates to `false` or the result of function application.
38 | */
39 | @inline def transformWhen[B <: A](condition: => Boolean)(f: A => B): A =
40 | if (condition)
41 | f(underlying)
42 | else underlying
43 |
44 | }
45 |
46 | /** Sugar for creating side-effects in method chains. */
47 | implicit class TapOps[A](val underlying: A) extends AnyVal {
48 |
49 | /** Applies a function for its side-effect as part of a method chain.
50 | * Inspired by Ruby's `Object#tap`.
51 | *
52 | * @param f side-effect function to call
53 | * @tparam B the return type of the function; ignored
54 | * @return `this`
55 | */
56 | @inline def tap[B](f: A => B): A = {
57 | f(underlying)
58 | underlying
59 | }
60 |
61 | /** Conditionally applies a function for its side-effect as part of a method chain.
62 | * Use this instead of [[tapWhen()]] when the predicate requires the value of `underlying`.
63 | *
64 | * @param predicate predicate to evaluate to determine if the side-effect should be invoked
65 | * @param f side-effect function to call
66 | * @tparam B the return type of the function; ignored
67 | * @return `this`
68 | */
69 | @inline def tapIf[B](predicate: A => Boolean)(f: A => B): A = {
70 | if (predicate(underlying))
71 | f(underlying)
72 | underlying
73 | }
74 |
75 | /** Conditionally applies a function for its side-effect as part of a method chain.
76 | * Use this instead of [[tapIf()]] when the condition does not require the value of `underlying`.
77 | *
78 | * @param condition condition to evaluate to determine if the side-effect should be invoked
79 | * @param f side-effect function to call
80 | * @tparam B the return type of the function; ignored
81 | * @return `this`
82 | */
83 | @inline def tapWhen[B](condition: => Boolean)(f: A => B): A = {
84 | if (condition)
85 | f(underlying)
86 | underlying
87 | }
88 | }
89 |
90 | /** Sugar for simple debugging/reporting by printing in a method chain. */
91 | implicit class PrintOps[A](val underlying: A) extends AnyVal {
92 |
93 | /** Taps and prints the object in a method chain.
94 | * Shorthand for `.tap(println)`.
95 | *
96 | * @return `underlying`
97 | */
98 | def tapp: A =
99 | underlying.tap(println)
100 |
101 | /** Prints a value as a side effect.
102 | *
103 | * @param v the value to print
104 | * @return `underlying`
105 | */
106 | def print[B](v: B): A =
107 | underlying.tap((_: A) => println(v))
108 |
109 | /** Conditionally taps and prints the object in a method chain.
110 | * Use this instead of [[printWhen()]] when the predicate requires the value of `underlying`.
111 | *
112 | * @param predicate predicate to evaluate to determine if the underlying value should be printed
113 | * @return `this`
114 | */
115 | def printIf(predicate: A => Boolean): A =
116 | underlying.tapIf(predicate)(println)
117 |
118 | /** Conditionally prints a value as a side effect.
119 | * Use this instead of [[printWhen()]] when the predicate requires the value of `underlying`.
120 | *
121 | * @param predicate predicate to evaluate to determine if the value should be printed
122 | * @param v side-effect function to call
123 | * @tparam B the value type; ignored
124 | * @return `this`
125 | */
126 | def printIf[B](predicate: A => Boolean, v: B): A =
127 | underlying.tapIf(predicate)((_: A) => println(v))
128 |
129 | /** Conditionally taps and prints the object in a method chain.
130 | * Use this instead of [[printIf()]] when the condition does not require the value of `underlying`.
131 | *
132 | * @param condition condition to evaluate to determine if the underlying value should be printed
133 | * @return `underlying`
134 | */
135 | def printWhen(condition: => Boolean): A =
136 | underlying.tapWhen(condition)(println)
137 |
138 | /** Conditionally prints a value as a side effect.
139 | * Use this instead of [[printIf()]] when the condition does not require the value of `underlying`.
140 | *
141 | * @param condition condition to evaluate to determine if the value should be printed
142 | * @tparam B the value type; ignored
143 | * @return `underlying`
144 | */
145 | def printWhen[B](condition: => Boolean, v: B): A =
146 | underlying.tapWhen(condition)((_: A) => println(v))
147 |
148 | }
149 |
150 | /** Sugar for conditionally raising exceptions as part of a method chain. */
151 | implicit class ThrowOps[A](val underlying: A) extends AnyVal {
152 |
153 | /** Raises an exception if a predicate is satisfied.
154 | * Use this instead of [[throwWhen()]] when the predicate requires the value of `underlying`.
155 | *
156 | * @param predicate predicate to evaluate to determine if the exception should be thrown
157 | * @param e expression that will return an exception
158 | * @tparam B the exception type
159 | * @return `underlying` if the predicate evaluates to `false`.
160 | * @throws B
161 | */
162 | def throwIf[B <: Throwable](predicate: A => Boolean)(e: => B): A = {
163 | if (predicate(underlying))
164 | throw e
165 | underlying
166 | }
167 |
168 | /** Raises an exception if a condition is satisfied.
169 | * Use this instead of [[throwIf()]] when the condition does not require the value of `underlying`.
170 | *
171 | * @param condition condition to evaluate to determine if the exception should be thrown
172 | * @param e expression that will return an exception
173 | * @tparam B the exception type
174 | * @return `underlying` if the predicate evaluates to `false`.
175 | * @throws B
176 | */
177 | def throwWhen[B <: Throwable](condition: => Boolean, e: => B): A = {
178 | if (condition)
179 | throw e
180 | underlying
181 | }
182 |
183 | }
184 |
185 | }
186 |
--------------------------------------------------------------------------------
/alchemy/src/main/scala/org/apache/spark/sql/EncapsulationViolator.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql
2 |
3 | import org.apache.spark.sql.catalyst.expressions.{GenericRow, NamedExpression}
4 | import org.apache.spark.sql.internal.SessionState
5 | import org.apache.spark.sql.types.{DataType, Metadata, StructType}
6 | import org.json4s.JsonAST.JValue
7 |
8 | object EncapsulationViolator {
9 |
10 | def createAnalysisException(message: String): AnalysisException =
11 | new AnalysisException(message)
12 |
13 | def parseDataType(jv: JValue): DataType =
14 | DataType.parseDataType(jv)
15 |
16 | object implicits {
17 |
18 | implicit class EncapsulationViolationSparkSessionOps(val underlying: SparkSession) extends AnyVal {
19 | def evSessionState: SessionState = underlying.sessionState
20 | }
21 |
22 | implicit class EncapsulationViolationRowOps(val underlying: GenericRow) extends AnyVal {
23 | def evValues: Array[Any] = underlying.values
24 | }
25 |
26 | implicit class EncapsulationViolationColumnOps(val underlying: Column) extends AnyVal {
27 | def evNamed: NamedExpression = underlying.named
28 |
29 | def metadata: Metadata = underlying.expr match {
30 | case ne: NamedExpression => ne.metadata
31 | case other => Metadata.empty
32 | }
33 | }
34 |
35 | implicit class EncapsulationViolationDataTypeOps(val underlying: DataType) extends AnyVal {
36 | def isSameType(other: DataType): Boolean = underlying.sameType(other)
37 |
38 | def jValue: JValue = underlying.jsonValue
39 |
40 | def toNullable: DataType = underlying.asNullable
41 | }
42 |
43 | implicit class EncapsulationViolationStructTypeOps(val underlying: StructType) extends AnyVal {
44 | def evMerge(that: StructType): StructType = underlying.merge(that)
45 | }
46 |
47 | }
48 |
49 | }
50 |
--------------------------------------------------------------------------------
/alchemy/src/test/resources/log4j.properties:
--------------------------------------------------------------------------------
1 | # Set everything to be logged to the console
2 | log4j.rootCategory=ERROR, console
3 | log4j.appender.console=org.apache.log4j.ConsoleAppender
4 | log4j.appender.console.target=System.err
5 | log4j.appender.console.layout=org.apache.log4j.PatternLayout
6 | log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
7 |
8 | # Settings to quiet third party logs that are too verbose
9 | log4j.logger.org.eclipse.jetty=WARN
10 | log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
11 | log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
12 | log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
13 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/com/swoop/alchemy/spark/expressions/hll/CardinalityHashFunctionTest.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import org.apache.spark.sql.catalyst.InternalRow
4 | import org.apache.spark.sql.catalyst.util.{ArrayBasedMapData, ArrayData}
5 | import org.apache.spark.sql.types._
6 | import org.apache.spark.unsafe.types.UTF8String
7 | import org.scalatest.matchers.should.Matchers
8 | import org.scalatest.wordspec.AnyWordSpec
9 |
10 |
11 | class CardinalityHashFunctionTest extends AnyWordSpec with Matchers {
12 |
13 | "Cardinality hash functions" should {
14 | "account for nulls" in {
15 | val a = UTF8String.fromString("a")
16 |
17 | allDistinct(Seq(
18 | null,
19 | Array.empty[Byte],
20 | Array.apply(1.toByte)
21 | ), BinaryType)
22 |
23 | allDistinct(Seq(
24 | null,
25 | UTF8String.fromString(""),
26 | a
27 | ), StringType)
28 |
29 | allDistinct(Seq(
30 | null,
31 | ArrayData.toArrayData(Array.empty),
32 | ArrayData.toArrayData(Array(null)),
33 | ArrayData.toArrayData(Array(null, null)),
34 | ArrayData.toArrayData(Array(a, null)),
35 | ArrayData.toArrayData(Array(null, a))
36 | ), ArrayType(StringType))
37 |
38 |
39 | allDistinct(Seq(
40 | null,
41 | ArrayBasedMapData(Map.empty),
42 | ArrayBasedMapData(Map(null.asInstanceOf[String] -> null))
43 | ), MapType(StringType, StringType))
44 |
45 | allDistinct(Seq(
46 | null,
47 | InternalRow(null),
48 | InternalRow(a)
49 | ), new StructType().add("foo", StringType))
50 |
51 | allDistinct(Seq(
52 | InternalRow(null, a),
53 | InternalRow(a, null)
54 | ), new StructType().add("foo", StringType).add("bar", StringType))
55 | }
56 | }
57 |
58 | def allDistinct(values: Seq[Any], dataType: DataType): Unit = {
59 | val hashed = values.map(x => CardinalityXxHash64Function.hash(x, dataType, 0))
60 | hashed.distinct.length should be(hashed.length)
61 | }
62 |
63 | }
64 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/com/swoop/alchemy/spark/expressions/hll/HLLFunctionsTest.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import com.clearspring.analytics.stream.cardinality.HyperLogLogPlus
4 | import com.swoop.alchemy.spark.expressions.hll.Implementation.{AGKN, STRM}
5 | import com.swoop.alchemy.spark.expressions.hll.functions.{hll_init_collection, hll_init_collection_agg, _}
6 | import com.swoop.test_utils.SparkSessionSpec
7 | import net.agkn.hll.HLL
8 | import net.agkn.hll.HLLType.FULL
9 | import org.apache.spark.sql.DataFrame
10 | import org.apache.spark.sql.catalyst.expressions.XXH64
11 | import org.apache.spark.sql.functions.{array, col, lit, map}
12 | import org.apache.spark.sql.types._
13 | import org.scalatest.matchers.should.Matchers
14 | import org.scalatest.wordspec.AnyWordSpec
15 |
16 |
17 | object HLLFunctionsTest {
18 |
19 | System.setSecurityManager(null)
20 |
21 | case class Data(c1: Int, c2: String, c3: Array[Int], c4: Map[String, String], c5: Array[String])
22 |
23 | object Data {
24 | def apply(c1: Int, c2: String): Data = Data(c1, c2, null, null, null)
25 | }
26 |
27 | case class Data2(c1: Array[String], c2: Map[String, String])
28 |
29 | case class Data3(c1: String, c2: String, c3: String)
30 |
31 | }
32 |
33 | class HLLFunctionsTest extends AnyWordSpec with Matchers with SparkSessionSpec {
34 |
35 | import HLLFunctionsTest._
36 | import testImplicits._
37 |
38 | "HyperLogLog functions" when {
39 | "config key unset" should {
40 | behave like hllImplementation(StreamLib, spark.conf.unset(IMPLEMENTATION_CONFIG_KEY))
41 | }
42 | "config key AGKN" should {
43 | behave like hllImplementation(AgKn, spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "AGKN"))
44 | }
45 | "config key STRM" should {
46 | behave like hllImplementation(StreamLib, spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "STRM"))
47 | }
48 | }
49 |
50 | private def hllImplementation(impl: Implementation, setup: => Unit): Unit = {
51 | "use right implementation" in {
52 | setup
53 | hll_init(lit(null), 0.39).expr.asInstanceOf[HyperLogLogInitSimple].impl should be(impl)
54 | }
55 | "not allow relativeSD > 39%" in {
56 | setup
57 | val err = "requirement failed: HLL requires at least 4 bits for addressing. Use a lower error, at most 39%."
58 | val c = lit(null)
59 |
60 | noException should be thrownBy hll_init(c, 0.39)
61 |
62 | the[IllegalArgumentException] thrownBy {
63 | hll_init(c, 0.40)
64 | } should have message err
65 |
66 | noException should be thrownBy hll_init_collection(c, 0.39)
67 |
68 | the[IllegalArgumentException] thrownBy {
69 | hll_init_collection(c, 0.40)
70 | } should have message err
71 | }
72 | "register native org.apache.spark.sql.ext.functions" in {
73 | setup
74 | HLLFunctionRegistration.registerFunctions(spark)
75 |
76 | noException should be thrownBy spark.sql(
77 | """select
78 | | hll_cardinality(hll_merge(hll_init(1))),
79 | | hll_cardinality(hll_merge(hll_init_collection(array(1,2,3)))),
80 | | hll_cardinality(hll_init_agg(1)),
81 | | hll_cardinality(hll_init_collection_agg(array(1,2,3))),
82 | | hll_cardinality(hll_merge(hll_init(1, 0.05))),
83 | | hll_cardinality(hll_merge(hll_init_collection(array(1,2,3), 0.05))),
84 | | hll_cardinality(hll_init_agg(1, 0.05)),
85 | | hll_cardinality(hll_init_collection_agg(array(1,2,3), 0.05)),
86 | | hll_cardinality(hll_row_merge(hll_init(1),hll_init(1))),
87 | | hll_intersect_cardinality(hll_init(1), hll_init(1)),
88 | | hll_cardinality(hll_convert(hll_init(1),"STRM","AGKN"))
89 | """.stripMargin // last line will error if evaluated, but is valid under statical analysis
90 | )
91 | }
92 | "estimate cardinality of simple types and collections" in {
93 | setup
94 |
95 | val a123 = array(lit(1), lit(2), lit(3))
96 |
97 | val simpleValues = Seq(
98 | lit(null).cast(IntegerType),
99 | lit(""),
100 | a123
101 | ).map(hll_init)
102 |
103 | val collections = Seq(
104 | lit(null).cast(ArrayType(IntegerType)),
105 | array(),
106 | map(),
107 | a123
108 | ).map(hll_init_collection)
109 |
110 | val results = cardinalities(spark.range(1).select(simpleValues ++ collections: _*))
111 |
112 | results should be(Seq(
113 | /* simple types */ 0, 1, 1,
114 | /* collections */ 0, 0, 0, 3
115 | ))
116 | }
117 | // @todo merge tests with grouping
118 | "estimate cardinality correctly" in {
119 | setup
120 |
121 | val df = spark.createDataset[Data](Seq[Data](
122 | Data(1, "a", Array(1, 2, 3), Map("a" -> "A"), Array.empty),
123 | Data(2, "b", Array(2, 3, 1), Map("b" -> "B"), Array(null)),
124 | Data(2, "b", Array(2, 3, 1), Map("b" -> "B"), Array(null, null)),
125 | Data(3, "c", Array(3, 1, 2), Map("a" -> "A", "b" -> "B"), null),
126 | Data(2, "b", Array(1, 1, 1), Map("b" -> "B", "c" -> "C"), null),
127 | Data(3, "c", Array(2, 2, 2), Map("c" -> "C", "a" -> null), null),
128 | Data(4, "d", null, null, null),
129 | Data(4, "d", null, null, null),
130 | Data(5, "e", Array.empty, Map.empty, null),
131 | Data(5, "e", Array.empty, Map.empty, null)
132 | ))
133 |
134 | val results = cardinalities(merge(df.select(
135 | hll_init('c1),
136 | hll_init('c2),
137 | hll_init('c3),
138 | hll_init('c4),
139 | hll_init('c5),
140 | hll_init_collection('c3),
141 | hll_init_collection('c4),
142 | hll_init_collection('c5)
143 | )))
144 |
145 | results should be(Seq(
146 | 5, // 5 unique simple values
147 | 5, // 5 unique simple values
148 | 6, // 6 unique arrays (treated as simple types, nulls not counted)
149 | 6, // 6 unique maps (treated as simple types, nulls not counted)
150 | 3, // 3 unique arrays
151 | 3, // 3 unique values across all arrays
152 | 4, // 4 unique (k, v) pairs across all maps
153 | 0 // 0 unique values across all arrays, nulls not counted
154 | ))
155 | }
156 | "estimate multiples correctly" in {
157 | setup
158 |
159 | val createSampleData =
160 | spark.createDataset(Seq(
161 | Data(1, "a"),
162 | Data(2, "b"),
163 | Data(2, "b"),
164 | Data(3, "c"),
165 | Data(4, "d")
166 | )).select(hll_init('c1), hll_init('c2))
167 |
168 | val results = cardinalities(merge(createSampleData union createSampleData))
169 |
170 | results should be(Seq(4, 4))
171 | }
172 | }
173 |
174 | "HyperLogLog aggregate functions" when {
175 | "config key unset" should {
176 | behave like aggregateFunctions(spark.conf.unset(IMPLEMENTATION_CONFIG_KEY))
177 | }
178 |
179 | "config key AGKN" should {
180 | behave like aggregateFunctions(spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "AGKN"))
181 |
182 | }
183 |
184 | "config key STRM" should {
185 | behave like aggregateFunctions(spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "STRM"))
186 | }
187 | }
188 |
189 | private def aggregateFunctions(setup: => Unit): Unit = {
190 | // @todo merge tests with grouping
191 | "estimate cardinality correctly" in {
192 | setup
193 |
194 | val df = spark.createDataset[Data](Seq[Data](
195 | Data(1, "a", Array(1, 2, 3), Map("a" -> "A"), Array.empty),
196 | Data(2, "b", Array(2, 3, 1), Map("b" -> "B"), Array(null)),
197 | Data(2, "b", Array(2, 3, 1), Map("b" -> "B"), Array(null, null)),
198 | Data(3, "c", Array(3, 1, 2), Map("a" -> "A", "b" -> "B"), null),
199 | Data(2, "b", Array(1, 1, 1), Map("b" -> "B", "c" -> "C"), null),
200 | Data(3, "c", Array(2, 2, 2), Map("c" -> "C", "a" -> null), null),
201 | Data(4, "d", null, null, null),
202 | Data(4, "d", null, null, null),
203 | Data(5, "e", Array.empty, Map.empty, null),
204 | Data(5, "e", Array.empty, Map.empty, null)
205 | ))
206 |
207 | val results = cardinalities(df.select(
208 | hll_init_agg('c1),
209 | hll_init_agg('c2),
210 | hll_init_agg('c3),
211 | hll_init_agg('c4),
212 | hll_init_agg('c5),
213 | hll_init_collection_agg('c3),
214 | hll_init_collection_agg('c4),
215 | hll_init_collection_agg('c5)
216 | ))
217 |
218 | results should be(Seq(
219 | 5, // 5 unique simple values
220 | 5, // 5 unique simple values
221 | 6, // 6 unique arrays (treated as simple types, nulls not counted)
222 | 6, // 6 unique maps (treated as simple types, nulls not counted)
223 | 3, // 3 unique arrays
224 | 3, // 3 unique values across all arrays
225 | 4, // 4 unique (k, v) pairs across all maps
226 | 0 // 0 unique values across all arrays, nulls not counted
227 | ))
228 | }
229 | "estimate multiples correctly" in {
230 | setup
231 |
232 | val createSampleData =
233 | spark.createDataset(Seq(
234 | Data(1, "a"),
235 | Data(2, "b"),
236 | Data(2, "b"),
237 | Data(3, "c"),
238 | Data(4, "d")
239 | )).select(hll_init_agg('c1), hll_init_agg('c2))
240 |
241 | val results = cardinalities(createSampleData union createSampleData)
242 |
243 | results should be(Seq(4, 4))
244 | }
245 | }
246 |
247 | def merge(df: DataFrame): DataFrame =
248 | df.select(
249 | df.columns.zipWithIndex.map { case (name, idx) =>
250 | hll_merge(col(name)).as(s"c$idx")
251 | }: _*
252 | )
253 |
254 | def cardinalities(df: DataFrame): Seq[Long] =
255 | df.select(
256 | df.columns.zipWithIndex.map { case (name, idx) =>
257 | hll_cardinality(col(name)).as(s"c$idx")
258 | }: _*
259 | ).head.toSeq.map(_.asInstanceOf[Long])
260 |
261 | "HyperLogLog row merge function" should {
262 | // @todo merge tests with grouping
263 | "estimate cardinality correctly, with nulls" in {
264 | val df = spark.createDataset[Data3](Seq[Data3](
265 | Data3("a", "a", "a"),
266 | Data3("a", "b", "c"),
267 | Data3("a", "b", null),
268 | Data3("a", null, null),
269 | Data3(null, null, null)
270 | ))
271 |
272 | val results = df
273 | .select(hll_init('c1).as('c1), hll_init('c2).as('c2), hll_init('c3).as('c3))
274 | .select(hll_cardinality(hll_row_merge('c1, 'c2, 'c3)))
275 | .na.fill(-1L)
276 | .as[Long]
277 | .head(5)
278 | .toSeq
279 |
280 | results should be(Seq(1, 3, 2, 1, -1)) // nulls skipped
281 | }
282 | }
283 |
284 | "HyperLogLog intersection function" when {
285 | "config key unset" should {
286 | behave like intersectionFunction(spark.conf.unset(IMPLEMENTATION_CONFIG_KEY))
287 | }
288 | "config key AGKN" should {
289 | behave like intersectionFunction(spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "AGKN"))
290 | }
291 | "config key STRM" should {
292 | behave like intersectionFunction(spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "STRM"))
293 | }
294 | }
295 |
296 | def intersectionFunction(setup: => Unit): Unit = {
297 | // @todo merge tests with grouping
298 | "estimate cardinality correctly" in {
299 | setup
300 |
301 | val df = spark.createDataset[Data3](Seq[Data3](
302 | Data3("a", "e", "f"),
303 | Data3("b", "d", "g"),
304 | Data3("c", "c", "h"),
305 | Data3("d", "b", "i"),
306 | Data3("e", "a", "j")
307 | ))
308 |
309 | val results = df
310 | .select(hll_init_agg('c1).as('c1), hll_init_agg('c2).as('c2), hll_init_agg('c3).as('c3))
311 | .select(hll_intersect_cardinality('c1, 'c2), hll_intersect_cardinality('c2, 'c3))
312 | .as[(Long, Long)]
313 | .head()
314 |
315 | results should be((5, 0))
316 | }
317 | "handle nulls correctly" in {
318 | setup
319 |
320 | val df = spark.createDataset[Data3](Seq[Data3](
321 | Data3("a", null, null),
322 | Data3("b", null, null),
323 | Data3("c", null, null),
324 | Data3("d", null, null),
325 | Data3("e", null, null)
326 | ))
327 |
328 | val results = df
329 | .select(hll_init_agg('c1).as('c1), hll_init_agg('c2).as('c2), hll_init_agg('c3).as('c3))
330 | .select(hll_intersect_cardinality('c1, 'c2), hll_intersect_cardinality('c2, 'c3))
331 | .na.fill(-1L)
332 | .as[(Long, Long)]
333 | .head()
334 |
335 | println(results)
336 | results should be((0, -1))
337 | }
338 | }
339 |
340 | "Spark SQL functions" should {
341 | "accept HLL implementation by name in signature" in {
342 | HLLFunctionRegistration.registerFunctions(spark)
343 | noException should be thrownBy spark.sql(
344 | """select
345 | | hll_cardinality(hll_merge(hll_init(1, 0.05, "AGKN"), "AGKN"), "AGKN"),
346 | | hll_cardinality(hll_merge(hll_init_collection(array(1,2,3), 0.05, "STRM"), "STRM"), "STRM"),
347 | | hll_cardinality(hll_init_agg(1, 0.05, "AGKN"), "AGKN"),
348 | | hll_cardinality(hll_init_collection_agg(array(1,2,3), 0.05, "STRM"), "STRM"),
349 | | hll_cardinality(hll_row_merge(hll_init(1, 0.05, "AGKN"),hll_init(1, 0.05, "AGKN"), "AGKN"), "AGKN"),
350 | | hll_intersect_cardinality(hll_init(1, 0.05, "STRM"), hll_init(1, 0.05, "STRM"), "STRM")
351 | """.stripMargin
352 | )
353 | }
354 | }
355 |
356 | "Conversion function" should {
357 | "estimate similar as original" in {
358 |
359 | def randomize(callable: Long => Unit, n: Int): Unit = {
360 | val rand = new scala.util.Random(42)
361 | for (_ <- 0 until n) {
362 | callable(XXH64.hashInt(rand.nextInt(n), 0))
363 | }
364 | }
365 |
366 | val p = 20
367 | val strm = new HyperLogLogPlus(p, 0)
368 | val agkn = new HLL(p, 5, 0, false, FULL)
369 |
370 | val n = 10000
371 | randomize(strm.offerHashed(_: Long), n)
372 | randomize(agkn.addRaw, n)
373 |
374 | val converted = strmToAgkn(strm)
375 |
376 | converted.cardinality() should be(agkn.cardinality() +- 1)
377 | }
378 | }
379 |
380 | "error on unsupported conversion" in {
381 | the[IllegalArgumentException] thrownBy {
382 | spark.range(1)
383 | .withColumn("foo", hll_convert(hll_init(lit(1)), AGKN, STRM))
384 | .collect()
385 | } should have message "HLL conversion is currently only supported from STREAM_LIB to AGGREGATE_KNOWLEDGE"
386 | }
387 |
388 | }
389 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/com/swoop/alchemy/spark/expressions/hll/PostgresInteropTest.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.alchemy.spark.expressions.hll
2 |
3 | import java.sql.{DriverManager, ResultSet, Statement}
4 |
5 | import com.swoop.alchemy.spark.expressions.hll.functions._
6 | import com.swoop.test_utils.SparkSessionSpec
7 | import org.apache.spark.sql.{DataFrame, SparkSession}
8 | import org.scalatest.matchers.should.Matchers
9 | import org.scalatest.wordspec.AnyWordSpec
10 |
11 |
12 | case class Postgres(user: String, database: String, port: Int) {
13 | val con_str = s"jdbc:postgresql://localhost:$port/$database?user=$user"
14 |
15 | def execute[T](query: String, handler: ResultSet => T): T =
16 | execute(stm => handler(stm.executeQuery(query)))
17 |
18 | def update(query: String): Unit =
19 | execute(_.executeUpdate(query))
20 |
21 | def sparkRead(schema: String, table: String)(implicit spark: SparkSession): DataFrame =
22 | spark.read
23 | .format("jdbc")
24 | .option("url", s"jdbc:postgresql:${database}")
25 | .option("dbtable", s"${schema}.${table}")
26 | .option("user", user)
27 | .load()
28 |
29 | def sparkWrite(schema: String, table: String)(df: DataFrame): Unit =
30 | df.write
31 | .format("jdbc")
32 | .option("url", s"jdbc:postgresql:${database}")
33 | .option("dbtable", s"${schema}.${table}")
34 | .option("user", user)
35 | .save()
36 |
37 | private def execute[T](fn: Statement => T): T = {
38 | val conn = DriverManager.getConnection(con_str)
39 | try {
40 | val stm = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)
41 | fn(stm)
42 | } finally {
43 | conn.close()
44 | }
45 | }
46 | }
47 |
48 |
49 | class PostgresInteropTest extends AnyWordSpec with Matchers with SparkSessionSpec {
50 |
51 | import testImplicits._
52 |
53 | lazy val pg = Postgres("postgres", "postgres", 5432)
54 |
55 | "Postgres interop" should {
56 | "calculate same results" in {
57 | // use Aggregate Knowledge (Postgres-compatible) HLL implementation
58 | spark.conf.set(IMPLEMENTATION_CONFIG_KEY, "AGKN")
59 |
60 | // init Postgres extension for database
61 | pg.update("CREATE EXTENSION IF NOT EXISTS hll;")
62 |
63 | // create some random not-entirely distinct rows
64 | val rand = new scala.util.Random(42)
65 | val n = 100000
66 | val randomDF = sc.parallelize(
67 | Seq.fill(n) {
68 | (rand.nextInt(24), rand.nextInt(n))
69 | }
70 | ).toDF("hour", "id").cache
71 |
72 | // create hll aggregates (by hour)
73 | val byHourDF = randomDF.groupBy("hour").agg(hll_init_agg("id", .39).as("hll_id")).cache
74 |
75 | // send hlls to postgres
76 | pg.update("DROP TABLE IF EXISTS spark_hlls CASCADE;")
77 | pg.sparkWrite("public", "spark_hlls")(byHourDF)
78 |
79 | // convert hll column from `bytea` to `hll` type
80 | pg.update(
81 | """
82 | |ALTER TABLE spark_hlls
83 | |ALTER COLUMN hll_id TYPE hll USING CAST (hll_id AS hll);
84 | |""".stripMargin
85 | )
86 |
87 | // re-aggregate all hours in Spark
88 | val distinctSpark = byHourDF.select(hll_cardinality(hll_merge(byHourDF("hll_id")))).as[Long].first()
89 | // re-aggregate all hours in Postgres
90 | val distinctPostgres = pg.execute(
91 | "SELECT CAST (hll_cardinality(hll_union_agg(hll_id)) as Integer) AS approx FROM spark_hlls",
92 | (rs) => {
93 | rs.next;
94 | rs.getInt("approx")
95 | }
96 | )
97 |
98 | distinctSpark should be(distinctPostgres)
99 | }
100 | }
101 |
102 | }
103 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/com/swoop/test_utils/SparkSessionSpec.scala:
--------------------------------------------------------------------------------
1 | package com.swoop.test_utils
2 |
3 | import org.apache.spark.sql.SQLContext
4 | import org.apache.spark.sql.test.{SharedSparkSessionBase, TestSparkSession}
5 | import org.apache.spark.{SparkConf, SparkContext}
6 | import org.scalatest.TestSuite
7 |
8 |
9 | trait SparkSessionSpec extends SharedSparkSessionBase {
10 | this: TestSuite =>
11 |
12 | override protected def createSparkSession: TestSparkSession = {
13 | val spark = super.createSparkSession
14 | spark
15 | }
16 |
17 | def sparkSession = spark
18 |
19 | def sqlc: SQLContext = sparkSession.sqlContext
20 |
21 | def sc: SparkContext = sparkSession.sparkContext
22 |
23 | override protected def sparkConf: SparkConf =
24 | super.sparkConf
25 | .set("spark.driver.bindAddress", "127.0.0.1")
26 |
27 | }
28 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/DebugFilesystem.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark
2 |
3 | import java.io.{FileDescriptor, InputStream}
4 | import java.lang
5 | import java.nio.ByteBuffer
6 |
7 | import scala.collection.JavaConverters._
8 | import scala.collection.mutable
9 |
10 | import org.apache.hadoop.fs._
11 |
12 | import org.apache.spark.internal.Logging
13 |
14 | object DebugFilesystem extends Logging {
15 | // Stores the set of active streams and their creation sites.
16 | private val openStreams = mutable.Map.empty[FSDataInputStream, Throwable]
17 |
18 | def addOpenStream(stream: FSDataInputStream): Unit = openStreams.synchronized {
19 | openStreams.put(stream, new Throwable())
20 | }
21 |
22 | def clearOpenStreams(): Unit = openStreams.synchronized {
23 | openStreams.clear()
24 | }
25 |
26 | def removeOpenStream(stream: FSDataInputStream): Unit = openStreams.synchronized {
27 | openStreams.remove(stream)
28 | }
29 |
30 | def assertNoOpenStreams(): Unit = openStreams.synchronized {
31 | val numOpen = openStreams.values.size
32 | if (numOpen > 0) {
33 | for (exc <- openStreams.values) {
34 | logWarning("Leaked filesystem connection created at:")
35 | exc.printStackTrace()
36 | }
37 | throw new IllegalStateException(s"There are $numOpen possibly leaked file streams.",
38 | openStreams.values.head)
39 | }
40 | }
41 | }
42 |
43 | /**
44 | * DebugFilesystem wraps file open calls to track all open connections. This can be used in tests
45 | * to check that connections are not leaked.
46 | */
47 | // TODO(ekl) we should consider always interposing this to expose num open conns as a metric
48 | class DebugFilesystem extends LocalFileSystem {
49 | import DebugFilesystem._
50 |
51 | override def open(f: Path, bufferSize: Int): FSDataInputStream = {
52 | val wrapped: FSDataInputStream = super.open(f, bufferSize)
53 | addOpenStream(wrapped)
54 | new FSDataInputStream(wrapped.getWrappedStream) {
55 | override def setDropBehind(dropBehind: lang.Boolean): Unit = wrapped.setDropBehind(dropBehind)
56 |
57 | override def getWrappedStream: InputStream = wrapped.getWrappedStream
58 |
59 | override def getFileDescriptor: FileDescriptor = wrapped.getFileDescriptor
60 |
61 | override def getPos: Long = wrapped.getPos
62 |
63 | override def seekToNewSource(targetPos: Long): Boolean = wrapped.seekToNewSource(targetPos)
64 |
65 | override def seek(desired: Long): Unit = wrapped.seek(desired)
66 |
67 | override def setReadahead(readahead: lang.Long): Unit = wrapped.setReadahead(readahead)
68 |
69 | override def read(position: Long, buffer: Array[Byte], offset: Int, length: Int): Int =
70 | wrapped.read(position, buffer, offset, length)
71 |
72 | override def read(buf: ByteBuffer): Int = wrapped.read(buf)
73 |
74 | override def readFully(position: Long, buffer: Array[Byte], offset: Int, length: Int): Unit =
75 | wrapped.readFully(position, buffer, offset, length)
76 |
77 | override def readFully(position: Long, buffer: Array[Byte]): Unit =
78 | wrapped.readFully(position, buffer)
79 |
80 | override def available(): Int = wrapped.available()
81 |
82 | override def mark(readlimit: Int): Unit = wrapped.mark(readlimit)
83 |
84 | override def skip(n: Long): Long = wrapped.skip(n)
85 |
86 | override def markSupported(): Boolean = wrapped.markSupported()
87 |
88 | override def close(): Unit = {
89 | try {
90 | wrapped.close()
91 | } finally {
92 | removeOpenStream(wrapped)
93 | }
94 | }
95 |
96 | override def read(): Int = wrapped.read()
97 |
98 | override def reset(): Unit = wrapped.reset()
99 |
100 | override def toString: String = wrapped.toString
101 |
102 | override def equals(obj: scala.Any): Boolean = wrapped.equals(obj)
103 |
104 | override def hashCode(): Int = wrapped.hashCode()
105 | }
106 | }
107 | }
108 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/SparkFunSuite.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark
2 |
3 | // scalastyle:off
4 | import java.io.File
5 |
6 | import scala.annotation.tailrec
7 | import org.apache.log4j.{Appender, Level, Logger}
8 | import org.scalatest.{BeforeAndAfter, BeforeAndAfterAll, BeforeAndAfterEach, Outcome, Suite}
9 | import org.apache.spark.internal.Logging
10 | import org.apache.spark.internal.config.Tests.IS_TESTING
11 | import org.apache.spark.util.{AccumulatorContext, Utils}
12 | import org.scalatest.funsuite.AnyFunSuite
13 |
14 | /**
15 | * Base abstract class for all unit tests in Spark for handling common functionality.
16 | *
17 | * Thread audit happens normally here automatically when a new test suite created.
18 | * The only prerequisite for that is that the test class must extend [[SparkFunSuite]].
19 | *
20 | * It is possible to override the default thread audit behavior by setting enableAutoThreadAudit
21 | * to false and manually calling the audit methods, if desired. For example:
22 | *
23 | * class MyTestSuite extends SparkFunSuite {
24 | *
25 | * override val enableAutoThreadAudit = false
26 | *
27 | * protected override def beforeAll(): Unit = {
28 | * doThreadPreAudit()
29 | * super.beforeAll()
30 | * }
31 | *
32 | * protected override def afterAll(): Unit = {
33 | * super.afterAll()
34 | * doThreadPostAudit()
35 | * }
36 | * }
37 | */
38 | abstract class SparkFunSuite
39 | extends AnyFunSuite
40 | with SparkSuiteBase {
41 | // scalastyle:on
42 |
43 | /**
44 | * Note: this method doesn't support `BeforeAndAfter`. You must use `BeforeAndAfterEach` to
45 | * set up and tear down resources.
46 | */
47 | def testRetry(s: String, n: Int = 2)(body: => Unit): Unit = {
48 | test(s) {
49 | retry(n) {
50 | body
51 | }
52 | }
53 | }
54 |
55 | /**
56 | * Log the suite name and the test name before and after each test.
57 | *
58 | * Subclasses should never override this method. If they wish to run
59 | * custom code before and after each test, they should mix in the
60 | * {{org.scalatest.BeforeAndAfter}} trait instead.
61 | */
62 | final protected override def withFixture(test: NoArgTest): Outcome = {
63 | val testName = test.text
64 | val suiteName = this.getClass.getName
65 | val shortSuiteName = suiteName.replaceAll("org.apache.spark", "o.a.s")
66 | try {
67 | logInfo(s"\n\n===== TEST OUTPUT FOR $shortSuiteName: '$testName' =====\n")
68 | test()
69 | } finally {
70 | logInfo(s"\n\n===== FINISHED $shortSuiteName: '$testName' =====\n")
71 | }
72 | }
73 |
74 | }
75 |
76 |
77 | trait SparkSuiteBase
78 | extends BeforeAndAfterAll
79 | with BeforeAndAfterEach
80 | with Logging {
81 | // scalastyle:on
82 | this: Suite =>
83 |
84 | protected override def beforeAll(): Unit = {
85 | System.setProperty(IS_TESTING.key, "true")
86 | super.beforeAll()
87 | }
88 |
89 | protected override def afterAll(): Unit = {
90 | try {
91 | // Avoid leaking map entries in tests that use accumulators without SparkContext
92 | AccumulatorContext.clear()
93 | } finally {
94 | super.afterAll()
95 | }
96 | }
97 |
98 | // helper function
99 | protected final def getTestResourceFile(file: String): File = {
100 | new File(getClass.getClassLoader.getResource(file).getFile)
101 | }
102 |
103 | protected final def getTestResourcePath(file: String): String = {
104 | getTestResourceFile(file).getCanonicalPath
105 | }
106 |
107 | /**
108 | * Note: this method doesn't support `BeforeAndAfter`. You must use `BeforeAndAfterEach` to
109 | * set up and tear down resources.
110 | */
111 | def retry[T](n: Int)(body: => T): T = {
112 | if (this.isInstanceOf[BeforeAndAfter]) {
113 | throw new UnsupportedOperationException(
114 | s"testRetry/retry cannot be used with ${classOf[BeforeAndAfter]}. " +
115 | s"Please use ${classOf[BeforeAndAfterEach]} instead.")
116 | }
117 | retry0(n, n)(body)
118 | }
119 |
120 | @tailrec private final def retry0[T](n: Int, n0: Int)(body: => T): T = {
121 | try body
122 | catch { case e: Throwable =>
123 | if (n > 0) {
124 | logWarning(e.getMessage, e)
125 | logInfo(s"\n\n===== RETRY #${n0 - n + 1} =====\n")
126 | // Reset state before re-attempting in order so that tests which use patterns like
127 | // LocalSparkContext to clean up state can work correctly when retried.
128 | afterEach()
129 | beforeEach()
130 | retry0(n-1, n0)(body)
131 | }
132 | else throw e
133 | }
134 | }
135 |
136 | /**
137 | * Creates a temporary directory, which is then passed to `f` and will be deleted after `f`
138 | * returns.
139 | */
140 | protected def withTempDir(f: File => Unit): Unit = {
141 | val dir = Utils.createTempDir()
142 | try f(dir) finally {
143 | Utils.deleteRecursively(dir)
144 | }
145 | }
146 |
147 | /**
148 | * Adds a log appender and optionally sets a log level to the root logger or the logger with
149 | * the specified name, then executes the specified function, and in the end removes the log
150 | * appender and restores the log level if necessary.
151 | */
152 | protected def withLogAppender(
153 | appender: Appender,
154 | loggerName: Option[String] = None,
155 | level: Option[Level] = None)(
156 | f: => Unit): Unit = {
157 | val logger = loggerName.map(Logger.getLogger).getOrElse(Logger.getRootLogger)
158 | val restoreLevel = logger.getLevel
159 | logger.addAppender(appender)
160 | if (level.isDefined) {
161 | logger.setLevel(level.get)
162 | }
163 | try f finally {
164 | logger.removeAppender(appender)
165 | if (level.isDefined) {
166 | logger.setLevel(restoreLevel)
167 | }
168 | }
169 | }
170 | }
171 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/SparkTestUtilsEncapsulationViolator.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark
2 |
3 | import org.apache.spark.sql.SparkSession
4 |
5 |
6 | object SparkTestUtilsEncapsulationViolator {
7 |
8 | def builderWithSparkContext(builder: SparkSession.Builder, sc: SparkContext): SparkSession.Builder =
9 | builder.sparkContext(sc)
10 |
11 | def cleanupAnyExistingSession(): Unit =
12 | SparkSession.cleanupAnyExistingSession()
13 |
14 | def utils = org.apache.spark.util.Utils
15 |
16 | }
17 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/sql/catalyst/plans/PlanTest.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql.catalyst.plans
2 |
3 |
4 | import org.apache.spark.SparkFunSuite
5 | import org.apache.spark.sql.catalyst.analysis.SimpleAnalyzer
6 | import org.apache.spark.sql.catalyst.expressions._
7 | import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
8 | import org.apache.spark.sql.catalyst.plans.logical._
9 | import org.apache.spark.sql.catalyst.util._
10 | import org.apache.spark.sql.internal.SQLConf
11 | import org.apache.spark.sql.test.SQLHelper
12 | import org.scalatest.Suite
13 |
14 | /**
15 | * Provides helper methods for comparing plans.
16 | */
17 | trait PlanTest extends SparkFunSuite with PlanTestBase
18 |
19 | /**
20 | * Provides helper methods for comparing plans, but without the overhead of
21 | * mandating a FunSuite.
22 | */
23 | trait PlanTestBase extends PredicateHelper with SQLHelper {
24 | self: Suite =>
25 |
26 | // TODO(gatorsmile): remove this from PlanTest and all the analyzer rules
27 | protected def conf = SQLConf.get
28 |
29 | /**
30 | * Since attribute references are given globally unique ids during analysis,
31 | * we must normalize them to check if two different queries are identical.
32 | */
33 | protected def normalizeExprIds(plan: LogicalPlan) = {
34 | plan transformAllExpressions {
35 | case s: ScalarSubquery =>
36 | s.copy(exprId = ExprId(0))
37 | case e: Exists =>
38 | e.copy(exprId = ExprId(0))
39 | case l: ListQuery =>
40 | l.copy(exprId = ExprId(0))
41 | case a: AttributeReference =>
42 | AttributeReference(a.name, a.dataType, a.nullable)(exprId = ExprId(0))
43 | case a: Alias =>
44 | Alias(a.child, a.name)(exprId = ExprId(0))
45 | case ae: AggregateExpression =>
46 | ae.copy(resultId = ExprId(0))
47 | case lv: NamedLambdaVariable =>
48 | lv.copy(exprId = ExprId(0), value = null)
49 | case udf: PythonUDF =>
50 | udf.copy(resultId = ExprId(0))
51 | }
52 | }
53 |
54 | private def rewriteNameFromAttrNullability(plan: LogicalPlan): LogicalPlan = {
55 | plan.transformAllExpressions {
56 | case a@AttributeReference(name, _, false, _) =>
57 | a.copy(name = s"*$name")(exprId = a.exprId, qualifier = a.qualifier)
58 | }
59 | }
60 |
61 | /**
62 | * Normalizes plans:
63 | * - Filter the filter conditions that appear in a plan. For instance,
64 | * ((expr 1 && expr 2) && expr 3), (expr 1 && expr 2 && expr 3), (expr 3 && (expr 1 && expr 2)
65 | * etc., will all now be equivalent.
66 | * - Sample the seed will replaced by 0L.
67 | * - Join conditions will be resorted by hashCode.
68 | */
69 | protected def normalizePlan(plan: LogicalPlan): LogicalPlan = {
70 | plan transform {
71 | case Filter(condition: Expression, child: LogicalPlan) =>
72 | Filter(splitConjunctivePredicates(condition).map(rewriteEqual).sortBy(_.hashCode())
73 | .reduce(And), child)
74 | case sample: Sample =>
75 | sample.copy(seed = 0L)
76 | case Join(left, right, joinType, condition, hint) if condition.isDefined =>
77 | val newCondition =
78 | splitConjunctivePredicates(condition.get).map(rewriteEqual).sortBy(_.hashCode())
79 | .reduce(And)
80 | Join(left, right, joinType, Some(newCondition), hint)
81 | }
82 | }
83 |
84 | /**
85 | * Rewrite [[EqualTo]] and [[EqualNullSafe]] operator to keep order. The following cases will be
86 | * equivalent:
87 | * 1. (a = b), (b = a);
88 | * 2. (a <=> b), (b <=> a).
89 | */
90 | private def rewriteEqual(condition: Expression): Expression = condition match {
91 | case eq@EqualTo(l: Expression, r: Expression) =>
92 | Seq(l, r).sortBy(_.hashCode()).reduce(EqualTo)
93 | case eq@EqualNullSafe(l: Expression, r: Expression) =>
94 | Seq(l, r).sortBy(_.hashCode()).reduce(EqualNullSafe)
95 | case _ => condition // Don't reorder.
96 | }
97 |
98 | /** Fails the test if the two plans do not match */
99 | protected def comparePlans(
100 | plan1: LogicalPlan,
101 | plan2: LogicalPlan,
102 | checkAnalysis: Boolean = true): Unit = {
103 | if (checkAnalysis) {
104 | // Make sure both plan pass checkAnalysis.
105 | SimpleAnalyzer.checkAnalysis(plan1)
106 | SimpleAnalyzer.checkAnalysis(plan2)
107 | }
108 |
109 | val normalized1 = normalizePlan(normalizeExprIds(plan1))
110 | val normalized2 = normalizePlan(normalizeExprIds(plan2))
111 | if (normalized1 != normalized2) {
112 | fail(
113 | s"""
114 | |== FAIL: Plans do not match ===
115 | |${
116 | sideBySide(
117 | rewriteNameFromAttrNullability(normalized1).treeString,
118 | rewriteNameFromAttrNullability(normalized2).treeString).mkString("\n")
119 | }
120 | """.stripMargin)
121 | }
122 | }
123 |
124 | /** Fails the test if the two expressions do not match */
125 | protected def compareExpressions(e1: Expression, e2: Expression): Unit = {
126 | comparePlans(Filter(e1, OneRowRelation()), Filter(e2, OneRowRelation()), checkAnalysis = false)
127 | }
128 |
129 | /** Fails the test if the join order in the two plans do not match */
130 | protected def compareJoinOrder(plan1: LogicalPlan, plan2: LogicalPlan) {
131 | val normalized1 = normalizePlan(normalizeExprIds(plan1))
132 | val normalized2 = normalizePlan(normalizeExprIds(plan2))
133 | if (!sameJoinPlan(normalized1, normalized2)) {
134 | fail(
135 | s"""
136 | |== FAIL: Plans do not match ===
137 | |${
138 | sideBySide(
139 | rewriteNameFromAttrNullability(normalized1).treeString,
140 | rewriteNameFromAttrNullability(normalized2).treeString).mkString("\n")
141 | }
142 | """.stripMargin)
143 | }
144 | }
145 |
146 | /** Consider symmetry for joins when comparing plans. */
147 | private def sameJoinPlan(plan1: LogicalPlan, plan2: LogicalPlan): Boolean = {
148 | (plan1, plan2) match {
149 | case (j1: Join, j2: Join) =>
150 | (sameJoinPlan(j1.left, j2.left) && sameJoinPlan(j1.right, j2.right)) ||
151 | (sameJoinPlan(j1.left, j2.right) && sameJoinPlan(j1.right, j2.left))
152 | case (p1: Project, p2: Project) =>
153 | p1.projectList == p2.projectList && sameJoinPlan(p1.child, p2.child)
154 | case _ =>
155 | plan1 == plan2
156 | }
157 | }
158 | }
159 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/sql/test/SQLHelper.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql.test
2 |
3 | import java.io.File
4 |
5 | import org.apache.spark.sql.AnalysisException
6 | import org.apache.spark.sql.internal.SQLConf
7 | import org.apache.spark.util.Utils
8 |
9 | trait SQLHelper {
10 |
11 | /**
12 | * Sets all SQL configurations specified in `pairs`, calls `f`, and then restores all SQL
13 | * configurations.
14 | */
15 | protected def withSQLConf(pairs: (String, String)*)(f: => Unit): Unit = {
16 | val conf = SQLConf.get
17 | val (keys, values) = pairs.unzip
18 | val currentValues = keys.map { key =>
19 | if (conf.contains(key)) {
20 | Some(conf.getConfString(key))
21 | } else {
22 | None
23 | }
24 | }
25 | (keys, values).zipped.foreach { (k, v) =>
26 | if (SQLConf.isStaticConfigKey(k)) {
27 | throw new AnalysisException(s"Cannot modify the value of a static config: $k")
28 | }
29 | conf.setConfString(k, v)
30 | }
31 | try f finally {
32 | keys.zip(currentValues).foreach {
33 | case (key, Some(value)) => conf.setConfString(key, value)
34 | case (key, None) => conf.unsetConf(key)
35 | }
36 | }
37 | }
38 |
39 | /**
40 | * Generates a temporary path without creating the actual file/directory, then pass it to `f`. If
41 | * a file/directory is created there by `f`, it will be delete after `f` returns.
42 | */
43 | protected def withTempPath(f: File => Unit): Unit = {
44 | val path = Utils.createTempDir()
45 | path.delete()
46 | try f(path) finally Utils.deleteRecursively(path)
47 | }
48 | }
49 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/sql/test/SQLTestData.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql.test
2 |
3 | import java.nio.charset.StandardCharsets
4 |
5 | import org.apache.spark.rdd.RDD
6 | import org.apache.spark.sql.{DataFrame, SQLContext, SQLImplicits, SparkSession}
7 |
8 | /**
9 | * A collection of sample data used in SQL tests.
10 | */
11 | private[sql] trait SQLTestData { self =>
12 | protected def spark: SparkSession
13 |
14 | // Helper object to import SQL implicits without a concrete SQLContext
15 | private object internalImplicits extends SQLImplicits {
16 | protected override def _sqlContext: SQLContext = self.spark.sqlContext
17 | }
18 |
19 | import SQLTestData._
20 | import internalImplicits._
21 |
22 | // Note: all test data should be lazy because the SQLContext is not set up yet.
23 |
24 | protected lazy val emptyTestData: DataFrame = {
25 | val df = spark.sparkContext.parallelize(
26 | Seq.empty[Int].map(i => TestData1(i, i.toString))).toDF()
27 | df.createOrReplaceTempView("emptyTestData")
28 | df
29 | }
30 |
31 | protected lazy val testData1: DataFrame = {
32 | val df = spark.sparkContext.parallelize(
33 | (1 to 100).map(i => TestData1(i, i.toString))).toDF()
34 | df.createOrReplaceTempView("testData")
35 | df
36 | }
37 |
38 | protected lazy val testData2: DataFrame = {
39 | val df = spark.sparkContext.parallelize(
40 | TestData2(1, 1) ::
41 | TestData2(1, 2) ::
42 | TestData2(2, 1) ::
43 | TestData2(2, 2) ::
44 | TestData2(3, 1) ::
45 | TestData2(3, 2) :: Nil, 2).toDF()
46 | df.createOrReplaceTempView("testData2")
47 | df
48 | }
49 |
50 | protected lazy val testData3: DataFrame = {
51 | val df = spark.sparkContext.parallelize(
52 | TestData3(1, None) ::
53 | TestData3(2, Some(2)) :: Nil).toDF()
54 | df.createOrReplaceTempView("testData3")
55 | df
56 | }
57 |
58 | protected lazy val negativeData: DataFrame = {
59 | val df = spark.sparkContext.parallelize(
60 | (1 to 100).map(i => TestData1(-i, (-i).toString))).toDF()
61 | df.createOrReplaceTempView("negativeData")
62 | df
63 | }
64 |
65 | protected lazy val largeAndSmallInts: DataFrame = {
66 | val df = spark.sparkContext.parallelize(
67 | LargeAndSmallInts(2147483644, 1) ::
68 | LargeAndSmallInts(1, 2) ::
69 | LargeAndSmallInts(2147483645, 1) ::
70 | LargeAndSmallInts(2, 2) ::
71 | LargeAndSmallInts(2147483646, 1) ::
72 | LargeAndSmallInts(3, 2) :: Nil).toDF()
73 | df.createOrReplaceTempView("largeAndSmallInts")
74 | df
75 | }
76 |
77 | protected lazy val decimalData: DataFrame = {
78 | val df = spark.sparkContext.parallelize(
79 | DecimalData(1, 1) ::
80 | DecimalData(1, 2) ::
81 | DecimalData(2, 1) ::
82 | DecimalData(2, 2) ::
83 | DecimalData(3, 1) ::
84 | DecimalData(3, 2) :: Nil).toDF()
85 | df.createOrReplaceTempView("decimalData")
86 | df
87 | }
88 |
89 | protected lazy val binaryData: DataFrame = {
90 | val df = spark.sparkContext.parallelize(
91 | BinaryData("12".getBytes(StandardCharsets.UTF_8), 1) ::
92 | BinaryData("22".getBytes(StandardCharsets.UTF_8), 5) ::
93 | BinaryData("122".getBytes(StandardCharsets.UTF_8), 3) ::
94 | BinaryData("121".getBytes(StandardCharsets.UTF_8), 2) ::
95 | BinaryData("123".getBytes(StandardCharsets.UTF_8), 4) :: Nil).toDF()
96 | df.createOrReplaceTempView("binaryData")
97 | df
98 | }
99 |
100 | protected lazy val upperCaseData: DataFrame = {
101 | val df = spark.sparkContext.parallelize(
102 | UpperCaseData(1, "A") ::
103 | UpperCaseData(2, "B") ::
104 | UpperCaseData(3, "C") ::
105 | UpperCaseData(4, "D") ::
106 | UpperCaseData(5, "E") ::
107 | UpperCaseData(6, "F") :: Nil).toDF()
108 | df.createOrReplaceTempView("upperCaseData")
109 | df
110 | }
111 |
112 | protected lazy val lowerCaseData: DataFrame = {
113 | val df = spark.sparkContext.parallelize(
114 | LowerCaseData(1, "a") ::
115 | LowerCaseData(2, "b") ::
116 | LowerCaseData(3, "c") ::
117 | LowerCaseData(4, "d") :: Nil).toDF()
118 | df.createOrReplaceTempView("lowerCaseData")
119 | df
120 | }
121 |
122 | protected lazy val lowerCaseDataWithDuplicates: DataFrame = {
123 | val df = spark.sparkContext.parallelize(
124 | LowerCaseData(1, "a") ::
125 | LowerCaseData(2, "b") ::
126 | LowerCaseData(2, "b") ::
127 | LowerCaseData(3, "c") ::
128 | LowerCaseData(3, "c") ::
129 | LowerCaseData(3, "c") ::
130 | LowerCaseData(4, "d") :: Nil).toDF()
131 | df.createOrReplaceTempView("lowerCaseData")
132 | df
133 | }
134 |
135 | protected lazy val arrayData: RDD[ArrayData] = {
136 | val rdd = spark.sparkContext.parallelize(
137 | ArrayData(Seq(1, 2, 3), Seq(Seq(1, 2, 3))) ::
138 | ArrayData(Seq(2, 3, 4), Seq(Seq(2, 3, 4))) :: Nil)
139 | rdd.toDF().createOrReplaceTempView("arrayData")
140 | rdd
141 | }
142 |
143 | protected lazy val mapData: RDD[MapData] = {
144 | val rdd = spark.sparkContext.parallelize(
145 | MapData(Map(1 -> "a1", 2 -> "b1", 3 -> "c1", 4 -> "d1", 5 -> "e1")) ::
146 | MapData(Map(1 -> "a2", 2 -> "b2", 3 -> "c2", 4 -> "d2")) ::
147 | MapData(Map(1 -> "a3", 2 -> "b3", 3 -> "c3")) ::
148 | MapData(Map(1 -> "a4", 2 -> "b4")) ::
149 | MapData(Map(1 -> "a5")) :: Nil)
150 | rdd.toDF().createOrReplaceTempView("mapData")
151 | rdd
152 | }
153 |
154 | protected lazy val repeatedData: RDD[StringData] = {
155 | val rdd = spark.sparkContext.parallelize(List.fill(2)(StringData("test")))
156 | rdd.toDF().createOrReplaceTempView("repeatedData")
157 | rdd
158 | }
159 |
160 | protected lazy val nullableRepeatedData: RDD[StringData] = {
161 | val rdd = spark.sparkContext.parallelize(
162 | List.fill(2)(StringData(null)) ++
163 | List.fill(2)(StringData("test")))
164 | rdd.toDF().createOrReplaceTempView("nullableRepeatedData")
165 | rdd
166 | }
167 |
168 | protected lazy val nullInts: DataFrame = {
169 | val df = spark.sparkContext.parallelize(
170 | NullInts(1) ::
171 | NullInts(2) ::
172 | NullInts(3) ::
173 | NullInts(null) :: Nil).toDF()
174 | df.createOrReplaceTempView("nullInts")
175 | df
176 | }
177 |
178 | protected lazy val allNulls: DataFrame = {
179 | val df = spark.sparkContext.parallelize(
180 | NullInts(null) ::
181 | NullInts(null) ::
182 | NullInts(null) ::
183 | NullInts(null) :: Nil).toDF()
184 | df.createOrReplaceTempView("allNulls")
185 | df
186 | }
187 |
188 | protected lazy val nullStrings: DataFrame = {
189 | val df = spark.sparkContext.parallelize(
190 | NullStrings(1, "abc") ::
191 | NullStrings(2, "ABC") ::
192 | NullStrings(3, null) :: Nil).toDF()
193 | df.createOrReplaceTempView("nullStrings")
194 | df
195 | }
196 |
197 | protected lazy val tableName: DataFrame = {
198 | val df = spark.sparkContext.parallelize(TableName("test") :: Nil).toDF()
199 | df.createOrReplaceTempView("tableName")
200 | df
201 | }
202 |
203 | protected lazy val unparsedStrings: RDD[String] = {
204 | spark.sparkContext.parallelize(
205 | "1, A1, true, null" ::
206 | "2, B2, false, null" ::
207 | "3, C3, true, null" ::
208 | "4, D4, true, 2147483644" :: Nil)
209 | }
210 |
211 | // An RDD with 4 elements and 8 partitions
212 | protected lazy val withEmptyParts: RDD[IntField] = {
213 | val rdd = spark.sparkContext.parallelize((1 to 4).map(IntField), 8)
214 | rdd.toDF().createOrReplaceTempView("withEmptyParts")
215 | rdd
216 | }
217 |
218 | protected lazy val person: DataFrame = {
219 | val df = spark.sparkContext.parallelize(
220 | Person(0, "mike", 30) ::
221 | Person(1, "jim", 20) :: Nil).toDF()
222 | df.createOrReplaceTempView("person")
223 | df
224 | }
225 |
226 | protected lazy val salary: DataFrame = {
227 | val df = spark.sparkContext.parallelize(
228 | Salary(0, 2000.0) ::
229 | Salary(1, 1000.0) :: Nil).toDF()
230 | df.createOrReplaceTempView("salary")
231 | df
232 | }
233 |
234 | protected lazy val complexData: DataFrame = {
235 | val df = spark.sparkContext.parallelize(
236 | ComplexData(Map("1" -> 1), TestData1(1, "1"), Seq(1, 1, 1), true) ::
237 | ComplexData(Map("2" -> 2), TestData1(2, "2"), Seq(2, 2, 2), false) ::
238 | Nil).toDF()
239 | df.createOrReplaceTempView("complexData")
240 | df
241 | }
242 |
243 | protected lazy val courseSales: DataFrame = {
244 | val df = spark.sparkContext.parallelize(
245 | CourseSales("dotNET", 2012, 10000) ::
246 | CourseSales("Java", 2012, 20000) ::
247 | CourseSales("dotNET", 2012, 5000) ::
248 | CourseSales("dotNET", 2013, 48000) ::
249 | CourseSales("Java", 2013, 30000) :: Nil).toDF()
250 | df.createOrReplaceTempView("courseSales")
251 | df
252 | }
253 |
254 | protected lazy val trainingSales: DataFrame = {
255 | val df = spark.sparkContext.parallelize(
256 | TrainingSales("Experts", CourseSales("dotNET", 2012, 10000)) ::
257 | TrainingSales("Experts", CourseSales("JAVA", 2012, 20000)) ::
258 | TrainingSales("Dummies", CourseSales("dotNet", 2012, 5000)) ::
259 | TrainingSales("Experts", CourseSales("dotNET", 2013, 48000)) ::
260 | TrainingSales("Dummies", CourseSales("Java", 2013, 30000)) :: Nil).toDF()
261 | df.createOrReplaceTempView("trainingSales")
262 | df
263 | }
264 |
265 | /**
266 | * Initialize all test data such that all temp tables are properly registered.
267 | */
268 | def loadTestData(): Unit = {
269 | assert(spark != null, "attempted to initialize test data before SparkSession.")
270 | emptyTestData
271 | testData1
272 | testData2
273 | testData3
274 | negativeData
275 | largeAndSmallInts
276 | decimalData
277 | binaryData
278 | upperCaseData
279 | lowerCaseData
280 | arrayData
281 | mapData
282 | repeatedData
283 | nullableRepeatedData
284 | nullInts
285 | allNulls
286 | nullStrings
287 | tableName
288 | unparsedStrings
289 | withEmptyParts
290 | person
291 | salary
292 | complexData
293 | courseSales
294 | }
295 | }
296 |
297 | /**
298 | * Case classes used in test data.
299 | */
300 | private[sql] object SQLTestData {
301 | case class TestData1(key: Int, value: String)
302 | case class TestData2(a: Int, b: Int)
303 | case class TestData3(a: Int, b: Option[Int])
304 | case class LargeAndSmallInts(a: Int, b: Int)
305 | case class DecimalData(a: BigDecimal, b: BigDecimal)
306 | case class BinaryData(a: Array[Byte], b: Int)
307 | case class UpperCaseData(N: Int, L: String)
308 | case class LowerCaseData(n: Int, l: String)
309 | case class ArrayData(data: Seq[Int], nestedData: Seq[Seq[Int]])
310 | case class MapData(data: scala.collection.Map[Int, String])
311 | case class StringData(s: String)
312 | case class IntField(i: Int)
313 | case class NullInts(a: Integer)
314 | case class NullStrings(n: Int, s: String)
315 | case class TableName(tableName: String)
316 | case class Person(id: Int, name: String, age: Int)
317 | case class Salary(personId: Int, salary: Double)
318 | case class ComplexData(m: Map[String, Int], s: TestData1, a: Seq[Int], b: Boolean)
319 | case class CourseSales(course: String, year: Int, earnings: Double)
320 | case class TrainingSales(training: String, sales: CourseSales)
321 | }
322 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/sql/test/SQLTestUtils.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql.test
2 |
3 | import java.io.File
4 | import java.net.URI
5 | import java.nio.file.Files
6 | import java.util.{Locale, UUID}
7 |
8 | import org.apache.hadoop.fs.Path
9 | import org.apache.spark.{SparkFunSuite, SparkSuiteBase}
10 | import org.apache.spark.sql._
11 | import org.apache.spark.sql.catalyst.FunctionIdentifier
12 | import org.apache.spark.sql.catalyst.analysis.NoSuchTableException
13 | import org.apache.spark.sql.catalyst.catalog.SessionCatalog.DEFAULT_DATABASE
14 | import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
15 | import org.apache.spark.sql.catalyst.plans.{PlanTest, PlanTestBase}
16 | import org.apache.spark.sql.catalyst.util._
17 | import org.apache.spark.sql.execution.FilterExec
18 | import org.apache.spark.sql.internal.SQLConf
19 | import org.apache.spark.util.Utils
20 | import org.scalatest.concurrent.Eventually
21 | import org.scalatest.{BeforeAndAfterAll, Suite}
22 |
23 | import scala.concurrent.duration._
24 | import scala.language.implicitConversions
25 |
26 | /**
27 | * Helper trait that should be extended by all SQL test suites within the Spark
28 | * code base.
29 | *
30 | * This allows subclasses to plugin a custom `SQLContext`. It comes with test data
31 | * prepared in advance as well as all implicit conversions used extensively by dataframes.
32 | * To use implicit methods, import `testImplicits._` instead of through the `SQLContext`.
33 | *
34 | * Subclasses should *not* create `SQLContext`s in the test suite constructor, which is
35 | * prone to leaving multiple overlapping [[org.apache.spark.SparkContext]]s in the same JVM.
36 | */
37 | trait SQLTestUtils extends SparkSuiteBase with SQLTestUtilsBase with PlanTestBase {
38 | this: Suite =>
39 |
40 | // Whether to materialize all test data before the first test is run
41 | private var loadTestDataBeforeTests = false
42 |
43 | protected override def beforeAll(): Unit = {
44 | super.beforeAll()
45 | if (loadTestDataBeforeTests) {
46 | loadTestData()
47 | }
48 | }
49 |
50 | /**
51 | * Creates a temporary directory, which is then passed to `f` and will be deleted after `f`
52 | * returns.
53 | */
54 | protected override def withTempDir(f: File => Unit): Unit = {
55 | super.withTempDir { dir =>
56 | f(dir)
57 | waitForTasksToFinish()
58 | }
59 | }
60 |
61 | /**
62 | * Materialize the test data immediately after the `SQLContext` is set up.
63 | * This is necessary if the data is accessed by name but not through direct reference.
64 | */
65 | protected def setupTestData(): Unit = {
66 | loadTestDataBeforeTests = true
67 | }
68 |
69 | /**
70 | * Copy file in jar's resource to a temp file, then pass it to `f`.
71 | * This function is used to make `f` can use the path of temp file(e.g. file:/), instead of
72 | * path of jar's resource which starts with 'jar:file:/'
73 | */
74 | protected def withResourceTempPath(resourcePath: String)(f: File => Unit): Unit = {
75 | val inputStream =
76 | Thread.currentThread().getContextClassLoader.getResourceAsStream(resourcePath)
77 | withTempDir { dir =>
78 | val tmpFile = new File(dir, "tmp")
79 | Files.copy(inputStream, tmpFile.toPath)
80 | f(tmpFile)
81 | }
82 | }
83 |
84 | /**
85 | * Waits for all tasks on all executors to be finished.
86 | */
87 | protected def waitForTasksToFinish(): Unit = {
88 | eventually(timeout(30.seconds)) {
89 | assert(spark.sparkContext.statusTracker
90 | .getExecutorInfos.map(_.numRunningTasks()).sum == 0)
91 | }
92 | }
93 |
94 | /**
95 | * Creates the specified number of temporary directories, which is then passed to `f` and will be
96 | * deleted after `f` returns.
97 | */
98 | protected def withTempPaths(numPaths: Int)(f: Seq[File] => Unit): Unit = {
99 | val files = Array.fill[File](numPaths)(Utils.createTempDir().getCanonicalFile)
100 | try f(files) finally {
101 | // wait for all tasks to finish before deleting files
102 | waitForTasksToFinish()
103 | files.foreach(Utils.deleteRecursively)
104 | }
105 | }
106 | }
107 |
108 | /**
109 | * Helper trait that can be extended by all external SQL test suites.
110 | *
111 | * This allows subclasses to plugin a custom `SQLContext`.
112 | * To use implicit methods, import `testImplicits._` instead of through the `SQLContext`.
113 | *
114 | * Subclasses should *not* create `SQLContext`s in the test suite constructor, which is
115 | * prone to leaving multiple overlapping [[org.apache.spark.SparkContext]]s in the same JVM.
116 | */
117 | trait SQLTestUtilsBase
118 | extends Eventually
119 | with BeforeAndAfterAll
120 | with SQLTestData
121 | with PlanTestBase {
122 | self: Suite =>
123 |
124 | protected def sparkContext = spark.sparkContext
125 |
126 | // Shorthand for running a query using our SQLContext
127 | protected lazy val sql = spark.sql _
128 |
129 | /**
130 | * A helper object for importing SQL implicits.
131 | *
132 | * Note that the alternative of importing `spark.implicits._` is not possible here.
133 | * This is because we create the `SQLContext` immediately before the first test is run,
134 | * but the implicits import is needed in the constructor.
135 | */
136 | protected object testImplicits extends SQLImplicits {
137 | protected override def _sqlContext: SQLContext = self.spark.sqlContext
138 | }
139 |
140 | protected override def withSQLConf(pairs: (String, String)*)(f: => Unit): Unit = {
141 | SparkSession.setActiveSession(spark)
142 | super.withSQLConf(pairs: _*)(f)
143 | }
144 |
145 | /**
146 | * Drops functions after calling `f`. A function is represented by (functionName, isTemporary).
147 | */
148 | protected def withUserDefinedFunction(functions: (String, Boolean)*)(f: => Unit): Unit = {
149 | try {
150 | f
151 | } catch {
152 | case cause: Throwable => throw cause
153 | } finally {
154 | // If the test failed part way, we don't want to mask the failure by failing to remove
155 | // temp tables that never got created.
156 | functions.foreach { case (functionName, isTemporary) =>
157 | val withTemporary = if (isTemporary) "TEMPORARY" else ""
158 | spark.sql(s"DROP $withTemporary FUNCTION IF EXISTS $functionName")
159 | assert(
160 | !spark.sessionState.catalog.functionExists(FunctionIdentifier(functionName)),
161 | s"Function $functionName should have been dropped. But, it still exists.")
162 | }
163 | }
164 | }
165 |
166 | /**
167 | * Drops temporary view `viewNames` after calling `f`.
168 | */
169 | protected def withTempView(viewNames: String*)(f: => Unit): Unit = {
170 | Utils.tryWithSafeFinally(f) {
171 | viewNames.foreach { viewName =>
172 | try spark.catalog.dropTempView(viewName) catch {
173 | // If the test failed part way, we don't want to mask the failure by failing to remove
174 | // temp views that never got created.
175 | case _: NoSuchTableException =>
176 | }
177 | }
178 | }
179 | }
180 |
181 | /**
182 | * Drops global temporary view `viewNames` after calling `f`.
183 | */
184 | protected def withGlobalTempView(viewNames: String*)(f: => Unit): Unit = {
185 | Utils.tryWithSafeFinally(f) {
186 | viewNames.foreach { viewName =>
187 | try spark.catalog.dropGlobalTempView(viewName) catch {
188 | // If the test failed part way, we don't want to mask the failure by failing to remove
189 | // global temp views that never got created.
190 | case _: NoSuchTableException =>
191 | }
192 | }
193 | }
194 | }
195 |
196 | /**
197 | * Drops table `tableName` after calling `f`.
198 | */
199 | protected def withTable(tableNames: String*)(f: => Unit): Unit = {
200 | Utils.tryWithSafeFinally(f) {
201 | tableNames.foreach { name =>
202 | spark.sql(s"DROP TABLE IF EXISTS $name")
203 | }
204 | }
205 | }
206 |
207 | /**
208 | * Drops view `viewName` after calling `f`.
209 | */
210 | protected def withView(viewNames: String*)(f: => Unit): Unit = {
211 | Utils.tryWithSafeFinally(f)(
212 | viewNames.foreach { name =>
213 | spark.sql(s"DROP VIEW IF EXISTS $name")
214 | }
215 | )
216 | }
217 |
218 | /**
219 | * Drops cache `cacheName` after calling `f`.
220 | */
221 | protected def withCache(cacheNames: String*)(f: => Unit): Unit = {
222 | Utils.tryWithSafeFinally(f) {
223 | cacheNames.foreach { cacheName =>
224 | try uncacheTable(cacheName) catch {
225 | case _: AnalysisException =>
226 | }
227 | }
228 | }
229 | }
230 |
231 | // Blocking uncache table for tests
232 | protected def uncacheTable(tableName: String): Unit = {
233 | val tableIdent = spark.sessionState.sqlParser.parseTableIdentifier(tableName)
234 | val cascade = !spark.sessionState.catalog.isTempView(tableIdent)
235 | spark.sharedState.cacheManager.uncacheQuery(
236 | spark,
237 | spark.table(tableName).logicalPlan,
238 | cascade = cascade,
239 | blocking = true)
240 | }
241 |
242 | /**
243 | * Creates a temporary database and switches current database to it before executing `f`. This
244 | * database is dropped after `f` returns.
245 | *
246 | * Note that this method doesn't switch current database before executing `f`.
247 | */
248 | protected def withTempDatabase(f: String => Unit): Unit = {
249 | val dbName = s"db_${UUID.randomUUID().toString.replace('-', '_')}"
250 |
251 | try {
252 | spark.sql(s"CREATE DATABASE $dbName")
253 | } catch {
254 | case cause: Throwable =>
255 | fail("Failed to create temporary database", cause)
256 | }
257 |
258 | try f(dbName) finally {
259 | if (spark.catalog.currentDatabase == dbName) {
260 | spark.sql(s"USE $DEFAULT_DATABASE")
261 | }
262 | spark.sql(s"DROP DATABASE $dbName CASCADE")
263 | }
264 | }
265 |
266 | /**
267 | * Drops database `dbName` after calling `f`.
268 | */
269 | protected def withDatabase(dbNames: String*)(f: => Unit): Unit = {
270 | Utils.tryWithSafeFinally(f) {
271 | dbNames.foreach { name =>
272 | spark.sql(s"DROP DATABASE IF EXISTS $name CASCADE")
273 | }
274 | spark.sql(s"USE $DEFAULT_DATABASE")
275 | }
276 | }
277 |
278 | /**
279 | * Enables Locale `language` before executing `f`, then switches back to the default locale of JVM
280 | * after `f` returns.
281 | */
282 | protected def withLocale(language: String)(f: => Unit): Unit = {
283 | val originalLocale = Locale.getDefault
284 | try {
285 | // Add Locale setting
286 | Locale.setDefault(new Locale(language))
287 | f
288 | } finally {
289 | Locale.setDefault(originalLocale)
290 | }
291 | }
292 |
293 | /**
294 | * Activates database `db` before executing `f`, then switches back to `default` database after
295 | * `f` returns.
296 | */
297 | protected def activateDatabase(db: String)(f: => Unit): Unit = {
298 | spark.sessionState.catalog.setCurrentDatabase(db)
299 | Utils.tryWithSafeFinally(f)(spark.sessionState.catalog.setCurrentDatabase("default"))
300 | }
301 |
302 | /**
303 | * Strip Spark-side filtering in order to check if a datasource filters rows correctly.
304 | */
305 | protected def stripSparkFilter(df: DataFrame): DataFrame = {
306 | val schema = df.schema
307 | val withoutFilters = df.queryExecution.executedPlan.transform {
308 | case FilterExec(_, child) => child
309 | }
310 |
311 | spark.internalCreateDataFrame(withoutFilters.execute(), schema)
312 | }
313 |
314 | /**
315 | * Turn a logical plan into a `DataFrame`. This should be removed once we have an easier
316 | * way to construct `DataFrame` directly out of local data without relying on implicits.
317 | */
318 | protected implicit def logicalPlanToSparkQuery(plan: LogicalPlan): DataFrame = {
319 | Dataset.ofRows(spark, plan)
320 | }
321 |
322 |
323 | /**
324 | * This method is used to make the given path qualified, when a path
325 | * does not contain a scheme, this path will not be changed after the default
326 | * FileSystem is changed.
327 | */
328 | def makeQualifiedPath(path: String): URI = {
329 | val hadoopPath = new Path(path)
330 | val fs = hadoopPath.getFileSystem(spark.sessionState.newHadoopConf())
331 | fs.makeQualified(hadoopPath).toUri
332 | }
333 |
334 | /**
335 | * Returns full path to the given file in the resource folder
336 | */
337 | protected def testFile(fileName: String): String = {
338 | Thread.currentThread().getContextClassLoader.getResource(fileName).toString
339 | }
340 |
341 | }
342 |
343 | object SQLTestUtils {
344 |
345 | def compareAnswers(
346 | sparkAnswer: Seq[Row],
347 | expectedAnswer: Seq[Row],
348 | sort: Boolean): Option[String] = {
349 | def prepareAnswer(answer: Seq[Row]): Seq[Row] = {
350 | // Converts data to types that we can do equality comparison using Scala collections.
351 | // For BigDecimal type, the Scala type has a better definition of equality test (similar to
352 | // Java's java.math.BigDecimal.compareTo).
353 | // For binary arrays, we convert it to Seq to avoid of calling java.util.Arrays.equals for
354 | // equality test.
355 | // This function is copied from Catalyst's QueryTest
356 | val converted: Seq[Row] = answer.map { s =>
357 | Row.fromSeq(s.toSeq.map {
358 | case d: java.math.BigDecimal => BigDecimal(d)
359 | case b: Array[Byte] => b.toSeq
360 | case o => o
361 | })
362 | }
363 | if (sort) {
364 | converted.sortBy(_.toString())
365 | } else {
366 | converted
367 | }
368 | }
369 |
370 | if (prepareAnswer(expectedAnswer) != prepareAnswer(sparkAnswer)) {
371 | val errorMessage =
372 | s"""
373 | | == Results ==
374 | | ${
375 | sideBySide(
376 | s"== Expected Answer - ${expectedAnswer.size} ==" +:
377 | prepareAnswer(expectedAnswer).map(_.toString()),
378 | s"== Actual Answer - ${sparkAnswer.size} ==" +:
379 | prepareAnswer(sparkAnswer).map(_.toString())).mkString("\n")
380 | }
381 | """.stripMargin
382 | Some(errorMessage)
383 | } else {
384 | None
385 | }
386 | }
387 | }
388 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/sql/test/SharedSparkSessionBase.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql.test
2 |
3 | import org.apache.spark.sql.internal.StaticSQLConf
4 | import org.apache.spark.sql.{SQLContext, SparkSession}
5 | import org.apache.spark.{DebugFilesystem, SparkConf}
6 | import org.scalatest.Suite
7 | import org.scalatest.concurrent.Eventually
8 |
9 | import scala.concurrent.duration._
10 |
11 |
12 | /**
13 | * Helper trait for SQL test suites where all tests share a single [[TestSparkSession]].
14 | */
15 | trait SharedSparkSessionBase
16 | extends SQLTestUtils
17 | with Eventually {
18 | self: Suite =>
19 |
20 | protected def sparkConf = {
21 | val conf = new SparkConf()
22 | conf
23 | .set(StaticSQLConf.WAREHOUSE_PATH, conf.get(StaticSQLConf.WAREHOUSE_PATH) + "/" + getClass.getCanonicalName)
24 | .set("spark.hadoop.fs.file.impl", classOf[DebugFilesystem].getName)
25 | }
26 |
27 | /**
28 | * The [[TestSparkSession]] to use for all tests in this suite.
29 | *
30 | * By default, the underlying [[org.apache.spark.SparkContext]] will be run in local
31 | * mode with the default test configurations.
32 | */
33 | private var _spark: TestSparkSession = _
34 |
35 | /**
36 | * The [[TestSparkSession]] to use for all tests in this suite.
37 | */
38 | protected implicit def spark: SparkSession = _spark
39 |
40 | /**
41 | * The [[TestSQLContext]] to use for all tests in this suite.
42 | */
43 | protected implicit def sqlContext: SQLContext = _spark.sqlContext
44 |
45 | protected def createSparkSession: TestSparkSession = {
46 | SparkSession.cleanupAnyExistingSession()
47 | new TestSparkSession(sparkConf)
48 | }
49 |
50 | /**
51 | * Initialize the [[TestSparkSession]]. Generally, this is just called from
52 | * beforeAll; however, in test using styles other than FunSuite, there is
53 | * often code that relies on the session between test group constructs and
54 | * the actual tests, which may need this session. It is purely a semantic
55 | * difference, but semantically, it makes more sense to call
56 | * 'initializeSession' between a 'describe' and an 'it' call than it does to
57 | * call 'beforeAll'.
58 | */
59 | protected def initializeSession(): Unit = {
60 | if (_spark == null) {
61 | _spark = createSparkSession
62 | }
63 | }
64 |
65 | /**
66 | * Make sure the [[TestSparkSession]] is initialized before any tests are run.
67 | */
68 | protected override def beforeAll(): Unit = {
69 | initializeSession()
70 |
71 | // Ensure we have initialized the context before calling parent code
72 | super.beforeAll()
73 | }
74 |
75 | /**
76 | * Stop the underlying [[org.apache.spark.SparkContext]], if any.
77 | */
78 | protected override def afterAll(): Unit = {
79 | try {
80 | super.afterAll()
81 | } finally {
82 | try {
83 | if (_spark != null) {
84 | try {
85 | _spark.sessionState.catalog.reset()
86 | } finally {
87 | try {
88 | waitForTasksToFinish()
89 | } finally {
90 | _spark.stop()
91 | _spark = null
92 | }
93 | }
94 | }
95 | } finally {
96 | SparkSession.clearActiveSession()
97 | SparkSession.clearDefaultSession()
98 | }
99 | }
100 | }
101 |
102 | protected override def beforeEach(): Unit = {
103 | super.beforeEach()
104 | DebugFilesystem.clearOpenStreams()
105 | }
106 |
107 | protected override def afterEach(): Unit = {
108 | super.afterEach()
109 | // Clear all persistent datasets after each test
110 | spark.sharedState.cacheManager.clearCache()
111 | // files can be closed from other threads, so wait a bit
112 | // normally this doesn't take more than 1s
113 | eventually(timeout(30.seconds), interval(2.seconds)) {
114 | DebugFilesystem.assertNoOpenStreams()
115 | }
116 | }
117 | }
118 |
--------------------------------------------------------------------------------
/alchemy/src/test/scala/org/apache/spark/sql/test/TestSparkSession.scala:
--------------------------------------------------------------------------------
1 | package org.apache.spark.sql.test
2 |
3 | import org.apache.spark.sql.{SparkSession, SparkSessionExtensions}
4 | import org.apache.spark.sql.internal.{SQLConf, SessionState, SessionStateBuilder, WithTestConf}
5 | import org.apache.spark.{SparkConf, SparkContext}
6 |
7 | /**
8 | * A special `SparkSession` prepared for testing.
9 | */
10 | class TestSparkSession(sc: SparkContext) extends SparkSession(sc) { self =>
11 | def this(sparkConf: SparkConf) {
12 | this(new SparkContext("local[2]", "test-sql-context",
13 | sparkConf.set("spark.sql.testkey", "true")))
14 | }
15 |
16 | def this() {
17 | this(new SparkConf)
18 | }
19 |
20 | SparkSession.setDefaultSession(this)
21 | SparkSession.setActiveSession(this)
22 |
23 | @transient
24 | override lazy val sessionState: SessionState = {
25 | new TestSQLSessionStateBuilder(this, None).build()
26 | }
27 |
28 | // Needed for extension loading
29 | def injectExtension(extension: SparkSessionExtensions => Unit): Unit =
30 | extension(extensions)
31 |
32 | // Needed for Java tests
33 | def loadTestData(): Unit = {
34 | testData.loadTestData()
35 | }
36 |
37 | private object testData extends SQLTestData {
38 | protected override def spark: SparkSession = self
39 | }
40 | }
41 |
42 |
43 | object TestSQLContext {
44 |
45 | /**
46 | * A map used to store all confs that need to be overridden in sql/core unit tests.
47 | */
48 | val overrideConfs: Map[String, String] =
49 | Map(
50 | // Fewer shuffle partitions to speed up testing.
51 | SQLConf.SHUFFLE_PARTITIONS.key -> "3"
52 | )
53 | }
54 |
55 | private[sql] class TestSQLSessionStateBuilder(
56 | session: SparkSession,
57 | state: Option[SessionState])
58 | extends SessionStateBuilder(session, state) with WithTestConf {
59 | override def overrideConfs: Map[String, String] = TestSQLContext.overrideConfs
60 | override def newBuilder: NewBuilder = new TestSQLSessionStateBuilder(_, _)
61 | }
62 |
--------------------------------------------------------------------------------
/build.sbt:
--------------------------------------------------------------------------------
1 | ThisBuild / organization := "com.swoop"
2 | ThisBuild / version := scala.io.Source.fromFile("VERSION").mkString.stripLineEnd
3 |
4 | ThisBuild / scalaVersion := "2.12.11"
5 | ThisBuild / crossScalaVersions := Seq("2.12.11")
6 |
7 | ThisBuild / javacOptions ++= Seq("-source", "1.8", "-target", "1.8")
8 |
9 | val sparkVersion = "3.2.0"
10 |
11 | lazy val scalaSettings = Seq(
12 | scalaVersion := "2.12.11",
13 | crossScalaVersions := Seq("2.12.11"),
14 | scalacOptions in(Compile, doc) ++= Seq("-doc-root-content", baseDirectory.value + "/docs/root-doc.txt"),
15 | scalacOptions in(Compile, doc) ++= Seq("-groups", "-implicits"),
16 | javacOptions in(Compile, doc) ++= Seq("-notimestamp", "-linksource"),
17 | javacOptions ++= Seq("-source", "1.8", "-target", "1.8")
18 | )
19 |
20 | lazy val alchemy = (project in file("."))
21 | .settings(
22 | name := "spark-alchemy",
23 | scalaSource in Compile := baseDirectory.value / "alchemy/src/main/scala",
24 | scalaSource in Test := baseDirectory.value / "alchemy/src/test/scala",
25 | resourceDirectory in Compile := baseDirectory.value / "alchemy/src/main/resources",
26 | resourceDirectory in Test := baseDirectory.value / "alchemy/src/test/resources",
27 | libraryDependencies ++= Seq(
28 | "org.scalatest" %% "scalatest" % "3.2.2" % Test,
29 | "net.agkn" % "hll" % "1.6.0",
30 | "org.postgresql" % "postgresql" % "42.2.8" % Test,
31 | "org.apache.spark" %% "spark-sql" % sparkVersion % "provided"
32 | ),
33 | fork in Test := true, // required for Spark
34 | scalaSettings
35 | )
36 | .enablePlugins(SiteScaladocPlugin)
37 | .enablePlugins(BuildInfoPlugin)
38 | .enablePlugins(GitVersioning, GitBranchPrompt)
39 |
40 | lazy val docs = project
41 | .in(file("docs"))
42 | .settings(
43 | moduleName := "spark-alchemy-docs",
44 | name := moduleName.value,
45 | scalaSettings,
46 | micrositeSettings
47 | )
48 | .dependsOn(alchemy)
49 | .enablePlugins(MicrositesPlugin)
50 |
51 | lazy val micrositeSettings = Seq(
52 | micrositeName := "Spark Alchemy",
53 | micrositeDescription := "Useful extensions to Apache Spark",
54 | micrositeAuthor := "Swoop",
55 | micrositeHomepage := "https://www.swoop.com",
56 | micrositeBaseUrl := "/spark-alchemy",
57 | micrositeDocumentationUrl := "/spark-alchemy/docs.html",
58 | micrositeGithubOwner := "swoop-inc",
59 | micrositeGithubRepo := "spark-alchemy",
60 | micrositeHighlightTheme := "tomorrow",
61 | micrositeTheme := "pattern",
62 | micrositePushSiteWith := GitHub4s,
63 | micrositeGithubToken := sys.env.get("GITHUB_TOKEN"),
64 | micrositeImgDirectory := (Compile / resourceDirectory).value / "site" / "images",
65 | micrositeCssDirectory := (Compile / resourceDirectory).value / "site" / "styles",
66 | micrositeJsDirectory := (Compile / resourceDirectory).value / "site" / "scripts"
67 | )
68 |
69 |
70 | // Speed up dependency resolution (experimental)
71 | // @see https://www.scala-sbt.org/1.0/docs/Cached-Resolution.html
72 | ThisBuild / updateOptions := updateOptions.value.withCachedResolution(true)
73 |
74 | // @see https://wiki.scala-lang.org/display/SW/Configuring+SBT+to+Generate+a+Scaladoc+Root+Page
75 | autoAPIMappings := true
76 |
77 | buildInfoPackage := "com.swoop.alchemy"
78 |
79 | // SBT header settings
80 | ThisBuild / organizationName := "Swoop, Inc"
81 | ThisBuild / startYear := Some(2018)
82 | ThisBuild / licenses += ("Apache-2.0", new URL("https://www.apache.org/licenses/LICENSE-2.0.txt"))
83 |
84 | ThisBuild / credentials += Credentials(Path.userHome / ".sbt" / "sonatype_credentials")
85 | ThisBuild / homepage := Some(url("https://swoop-inc.github.io/spark-alchemy/"))
86 | ThisBuild / developers ++= List(
87 | Developer("ssimeonov", "Simeon Simeonov", "@ssimeonov", url("https://github.com/ssimeonov"))
88 | )
89 | ThisBuild / scmInfo := Some(ScmInfo(url("https://github.com/swoop-inc/spark-alchemy"), "git@github.com:swoop-inc/spark-alchemy.git"))
90 | ThisBuild / updateOptions := updateOptions.value.withLatestSnapshots(false)
91 | ThisBuild / publishMavenStyle := true
92 | ThisBuild / publishTo := sonatypePublishToBundle.value
93 | Global / useGpgPinentry := true
94 |
--------------------------------------------------------------------------------
/codeStyleSettings.xml:
--------------------------------------------------------------------------------
1 |
2 |