├── .gitattributes
├── README.md
└── attention-based latm for aspect-level sentiment classification
├── .idea
├── attention-based latm for aspect-level sentiment classification.iml
├── inspectionProfiles
│ └── profiles_settings.xml
├── misc.xml
├── modules.xml
└── workspace.xml
├── ATAE-LSTM.py
├── ATAE_eval.py
├── __pycache__
└── utils.cpython-35.pyc
├── attention-based lstm for aspect-level sentiment classification.pdf
├── data
└── restaurant
│ ├── aspect_id.txt
│ ├── aspect_id_new.txt
│ ├── change.py
│ ├── rest_2014_dmn_test_new.txt
│ ├── rest_2014_dmn_train_new.txt
│ ├── rest_2014_lstm_test.txt
│ ├── rest_2014_lstm_test_new.txt
│ ├── rest_2014_lstm_test_new1.txt
│ ├── rest_2014_lstm_train.txt
│ ├── rest_2014_lstm_train_new.txt
│ ├── rest_2014_word_embedding.txt
│ ├── rest_2014_word_embedding_300.txt
│ ├── rest_2014_word_embedding_300_new.txt
│ ├── word_id.txt
│ └── word_id_new.txt
├── test.py
└── utils.py
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | 代码取自:https://github.com/scaufengyang/TD-LSTM
2 | 论文解读:https://zhuanlan.zhihu.com/p/42659009
3 |
4 | 注:这里实现的是aspect-term嵌入,而不是aspect嵌入。
5 | target是句子中直接存在的名词或实体,是aspect-term;aspect指的是名词或实体类别,即aspect-category。
6 | 例如:Staffs are not that fridedlly,but the taste covers all.
7 | 其中Staffs是target, 对应aspect-term,service是aspect,对应aspect-category.
8 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/.idea/attention-based latm for aspect-level sentiment classification.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
75 |
76 |
77 |
78 | load_w2v
79 | load_word_embedding
80 | load_aspect2id
81 | AE
82 | aspect_id
83 | get_batch_data
84 | sen_len
85 | target_words
86 | FLAGS.train_file_path
87 | load_inputs_twitter
88 | AT
89 | self.aspect_id
90 | range
91 | sxl
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 | true
109 | DEFINITION_ORDER
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 | project
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 | 1530503189480
463 |
464 |
465 | 1530503189480
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 |
556 |
557 |
558 |
559 |
560 |
561 |
562 |
563 |
564 |
565 |
566 |
567 |
568 |
569 |
570 |
571 |
572 |
573 |
574 |
575 |
576 |
577 |
578 |
579 |
580 |
581 |
582 |
583 |
584 |
585 |
586 |
587 |
588 |
589 |
590 |
591 |
592 |
593 |
594 |
595 |
596 |
597 |
598 |
599 |
600 |
601 |
602 |
603 |
604 |
605 |
606 |
607 |
608 |
609 |
610 |
611 |
612 |
613 |
614 |
615 |
616 |
617 |
618 |
619 |
620 |
621 |
622 |
623 |
624 |
625 |
626 |
627 |
628 |
629 |
630 |
631 |
632 |
633 |
634 |
635 |
636 |
637 |
638 |
639 |
640 |
641 |
642 |
643 |
644 |
645 |
646 |
647 |
648 |
649 |
650 |
651 |
652 |
653 |
654 |
655 |
656 |
657 |
658 |
659 |
660 |
661 |
662 |
663 |
664 |
665 |
666 |
667 |
668 |
669 |
670 |
671 |
672 |
673 |
674 |
675 |
676 |
677 |
678 |
679 |
680 |
681 |
682 |
683 |
684 |
685 |
686 |
687 |
688 |
689 |
690 |
691 |
692 |
693 |
694 |
695 |
696 |
697 |
698 |
699 |
700 |
701 |
702 |
703 |
704 |
705 |
706 |
707 |
708 |
709 |
710 |
711 |
712 |
713 |
714 |
715 |
716 |
717 |
718 |
719 |
720 |
721 |
722 |
723 |
724 |
725 |
726 |
727 |
728 |
729 |
730 |
731 |
732 |
733 |
734 |
735 |
736 |
737 |
738 |
739 |
740 |
741 |
742 |
743 |
744 |
745 |
746 |
747 |
748 |
749 |
750 |
751 |
752 |
753 |
754 |
755 |
756 |
757 |
758 |
759 |
760 |
761 |
762 |
763 |
764 |
765 |
766 |
767 |
768 |
769 |
770 |
771 |
772 |
773 |
774 |
775 |
776 |
777 |
778 |
779 |
780 |
781 |
782 |
783 |
784 |
785 |
786 |
787 |
788 |
789 |
790 |
791 |
792 |
793 |
794 |
795 |
796 |
797 |
798 |
799 |
800 |
801 |
802 |
803 |
804 |
805 |
806 |
807 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/ATAE-LSTM.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # encoding: utf-8
3 | # @author: newbie
4 | # email: zhengshiliang0@gmail.com
5 |
6 |
7 | import tensorflow as tf
8 | from utils import load_w2v, batch_index, load_word_embedding, load_aspect2id, load_inputs_twitter_at
9 | import numpy as np
10 | np.set_printoptions(threshold=np.inf)
11 |
12 |
13 | FLAGS = tf.app.flags.FLAGS
14 | tf.app.flags.DEFINE_integer('embedding_dim', 300, 'dimension of word embedding')
15 | tf.app.flags.DEFINE_integer('batch_size', 25, 'number of example per batch')
16 | tf.app.flags.DEFINE_integer('n_hidden', 300, 'number of hidden unit')
17 | tf.app.flags.DEFINE_float('learning_rate', 0.01, 'learning rate')
18 | tf.app.flags.DEFINE_integer('n_class', 3, 'number of distinct class')
19 | tf.app.flags.DEFINE_integer('max_sentence_len', 80, 'max number of tokens per sentence')
20 | tf.app.flags.DEFINE_float('l2_reg', 0.001, 'l2 regularization')
21 | tf.app.flags.DEFINE_integer('display_step', 4, 'number of test display step')
22 | tf.app.flags.DEFINE_integer('n_iter', 8, 'number of train iter')
23 | tf.app.flags.DEFINE_float('keep_prob1', 1.0, 'dropout keep prob')
24 | tf.app.flags.DEFINE_float('keep_prob2', 1.0, 'dropout keep prob')
25 |
26 |
27 | tf.app.flags.DEFINE_string('train_file_path', 'data/restaurant/rest_2014_lstm_train_new.txt', 'training file')
28 | tf.app.flags.DEFINE_string('validate_file_path', 'data/restaurant/rest_2014_lstm_test_new.txt', 'validating file')
29 | tf.app.flags.DEFINE_string('test_file_path', 'data/restaurant/rest_2014_lstm_test_new.txt', 'testing file')
30 | tf.app.flags.DEFINE_string('embedding_file_path', 'data/restaurant/rest_2014_word_embedding_300_new.txt', 'embedding file')
31 | tf.app.flags.DEFINE_string('word_id_file_path', 'data/restaurant/word_id_new.txt', 'word-id mapping file')
32 | tf.app.flags.DEFINE_string('aspect_id_file_path', 'data/restaurant/aspect_id_new.txt', 'word-id mapping file')
33 | tf.app.flags.DEFINE_string('method', 'AT', 'model type: AE, AT or AEAT')
34 | tf.app.flags.DEFINE_string('t', 'last', 'model type: ')
35 |
36 |
37 | class LSTM(object):
38 |
39 | def __init__(self, embedding_dim=100, batch_size=64, n_hidden=100, learning_rate=0.01,
40 | n_class=3, max_sentence_len=50, l2_reg=0., display_step=4, n_iter=100, type_=''):
41 | self.embedding_dim = embedding_dim #300
42 | self.batch_size = batch_size #25
43 | self.n_hidden = n_hidden #300
44 | self.learning_rate = learning_rate #0.01
45 | self.n_class = n_class #3
46 | self.max_sentence_len = max_sentence_len #80
47 | self.l2_reg = l2_reg #0.001
48 | self.display_step = display_step #4
49 | self.n_iter = n_iter #20
50 | self.type_ = type_ #AT
51 | self.word_id_mapping, self.w2v = load_word_embedding(FLAGS.word_id_file_path, FLAGS.embedding_file_path, self.embedding_dim)
52 | # dict(3909) 3910 * 300
53 | # self.word_embedding = tf.constant(self.w2v, dtype=tf.float32, name='word_embedding')
54 | self.word_embedding = tf.Variable(self.w2v, dtype=tf.float32, name='word_embedding')
55 | # self.word_id_mapping = load_word_id_mapping(FLAGS.word_id_file_path)
56 | # self.word_embedding = tf.Variable(
57 | # tf.random_uniform([len(self.word_id_mapping), self.embedding_dim], -0.1, 0.1), name='word_embedding')
58 | self.aspect_id_mapping, self.aspect_embed = load_aspect2id(FLAGS.aspect_id_file_path, self.word_id_mapping, self.w2v, self.embedding_dim)
59 | # dict(1219) 1220 * 300
60 | self.aspect_embedding = tf.Variable(self.aspect_embed, dtype=tf.float32, name='aspect_embedding')
61 |
62 | self.keep_prob1 = tf.placeholder(tf.float32, name="dropout_keep_prob1")
63 | self.keep_prob2 = tf.placeholder(tf.float32, name="dropout_keep_prob2")
64 | with tf.name_scope('inputs'):
65 | self.x = tf.placeholder(tf.int32, [None, self.max_sentence_len], name='x') #25 * 80
66 | #print (self.max_sentence_len) #80
67 | #print ('sxl================')
68 | self.y = tf.placeholder(tf.int32, [None, self.n_class], name='y') #25 * 3
69 | self.sen_len = tf.placeholder(tf.int32, None, name='sen_len') #list(25)
70 | self.aspect_id = tf.placeholder(tf.int32, None, name='aspect_id') #list(25)
71 |
72 | with tf.name_scope('weights'):
73 | self.weights = {
74 | 'softmax': tf.get_variable(
75 | name='softmax_w',
76 | shape=[self.n_hidden, self.n_class], #300 * 3
77 | initializer=tf.random_uniform_initializer(-0.01, 0.01),
78 | regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
79 | )
80 | }
81 |
82 | with tf.name_scope('biases'):
83 | self.biases = {
84 | 'softmax': tf.get_variable(
85 | name='softmax_b',
86 | shape=[self.n_class], # 3
87 | initializer=tf.random_uniform_initializer(-0.01, 0.01),
88 | regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
89 | )
90 | }
91 |
92 | self.W = tf.get_variable(
93 | name='W',
94 | shape=[self.n_hidden + self.embedding_dim, self.n_hidden + self.embedding_dim], #600 * 600
95 | initializer=tf.random_uniform_initializer(-0.01, 0.01),
96 | regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
97 | )
98 | self.w = tf.get_variable(
99 | name='w',
100 | shape=[self.n_hidden + self.embedding_dim, 1], #600 * 1
101 | initializer=tf.random_uniform_initializer(-0.01, 0.01),
102 | regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
103 | )
104 | self.Wp = tf.get_variable(
105 | name='Wp',
106 | shape=[self.n_hidden, self.n_hidden], #300 * 300
107 | initializer=tf.random_uniform_initializer(-0.01, 0.01),
108 | regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
109 | )
110 | self.Wx = tf.get_variable(
111 | name='Wx',
112 | shape=[self.n_hidden, self.n_hidden], #300 * 300
113 | initializer=tf.random_uniform_initializer(-0.01, 0.01),
114 | regularizer=tf.contrib.layers.l2_regularizer(self.l2_reg)
115 | )
116 |
117 | def dynamic_rnn(self, cell, inputs, length, max_len, scope_name, out_type='all'):
118 | #cell 25 * 80 * 600 [25] 80 'AT'
119 | outputs, state = tf.nn.dynamic_rnn(
120 | cell(self.n_hidden),
121 | inputs=inputs,
122 | sequence_length=length,
123 | dtype=tf.float32,
124 | scope=scope_name
125 | ) # outputs -> batch_size * max_len * n_hidden 25 * 80 * 300
126 | batch_size = tf.shape(outputs)[0] #25
127 | if out_type == 'last': #意思是取每个句子最后一个输出向量作为最后的输出
128 | index = tf.range(0, batch_size) * max_len + (length - 1)
129 | outputs = tf.gather(tf.reshape(outputs, [-1, self.n_hidden]), index) # batch_size * n_hidden ???
130 | print (outputs.shape)
131 | print ('sxlllllllllllllllllllllllll')
132 | elif out_type == 'all_avg':
133 | outputs = LSTM.reduce_mean(outputs, length)
134 | print (outputs.shape) # 25 * 300
135 | print('sxlssssssssssssssssssssssss')
136 | #print (outputs.shape)
137 | return outputs #25 * 80 * 300
138 |
139 | def bi_dynamic_rnn(self, cell, inputs, length, max_len, scope_name, out_type='all'):
140 | outputs, state = tf.nn.bidirectional_dynamic_rnn(
141 | cell_fw=cell(self.n_hidden),
142 | cell_bw=cell(self.n_hidden),
143 | inputs=inputs,
144 | sequence_length=length,
145 | dtype=tf.float32,
146 | scope=scope_name
147 | )
148 | if out_type == 'last':
149 | outputs_fw, outputs_bw = outputs
150 | outputs_bw = tf.reverse_sequence(outputs_bw, tf.cast(length, tf.int64), seq_dim=1)
151 | outputs = tf.concat([outputs_fw, outputs_bw], 2)
152 | else:
153 | outputs = tf.concat(outputs, 2) # batch_size * max_len * 2n_hidden
154 | batch_size = tf.shape(outputs)[0]
155 | if out_type == 'last':
156 | index = tf.range(0, batch_size) * max_len + (length - 1)
157 | outputs = tf.gather(tf.reshape(outputs, [-1, 2 * self.n_hidden]), index) # batch_size * 2n_hidden
158 | elif out_type == 'all_avg':
159 | outputs = LSTM.reduce_mean(outputs, length) # batch_size * 2n_hidden
160 | return outputs
161 |
162 | def AE(self, inputs, target, type_='last'): ##inputs 25 * 80 * 300 target 25 * 300 type = last
163 | """
164 | :params: self.x, self.seq_len, self.weights['softmax_lstm'], self.biases['sof
165 | :return: non-norm prediction values
166 | """
167 | print('I am AE.')
168 | batch_size = tf.shape(inputs)[0] #25
169 | target = tf.reshape(target, [-1, 1, self.embedding_dim]) #25 * 1 * 300
170 | target = tf.ones([batch_size, self.max_sentence_len, self.embedding_dim], dtype=tf.float32) * target
171 | inputs = tf.concat([inputs, target], 2) #25 * 80 * 600
172 | inputs = tf.nn.dropout(inputs, keep_prob=self.keep_prob1)
173 |
174 | cell = tf.nn.rnn_cell.LSTMCell
175 | outputs = self.dynamic_rnn(cell, inputs, self.sen_len, self.max_sentence_len, 'AE', FLAGS.t) # 25 * 300
176 |
177 | return LSTM.softmax_layer(outputs, self.weights['softmax'], self.biases['softmax'], self.keep_prob2)
178 |
179 | def AT(self, inputs, target, type_=''): #inputs 25 * 80 * 300 target 25 * 300 type = last
180 | print('I am AT.')
181 | batch_size = tf.shape(inputs)[0] #25
182 | target = tf.reshape(target, [-1, 1, self.embedding_dim]) #25 * 1 * 300
183 | target = tf.ones([batch_size, self.max_sentence_len, self.embedding_dim], dtype=tf.float32) * target
184 | #print (target.shape) #25 * 80 * 300 80个每个都是相同的,意思是一句话乘以同一个aspect向量
185 | in_t = tf.concat([inputs, target], 2) #25 * 80 * 600
186 | in_t = tf.nn.dropout(in_t, keep_prob=self.keep_prob1)
187 | cell = tf.nn.rnn_cell.LSTMCell
188 | hiddens = self.dynamic_rnn(cell, in_t, self.sen_len, self.max_sentence_len, 'AT', 'all') #25 * 80 * 300
189 |
190 | h_t = tf.reshape(tf.concat([hiddens, target], 2), [-1, self.n_hidden + self.embedding_dim]) #25 * 80 * 600->2000 * 600 ???
191 |
192 | M = tf.matmul(tf.tanh(tf.matmul(h_t, self.W)), self.w) #W 600 * 600 w 600 * 1
193 | # print (M.shape) #2000 * 1 25 * 80 * 1
194 |
195 | alpha = LSTM.softmax(tf.reshape(M, [-1, 1, self.max_sentence_len]), self.sen_len, self.max_sentence_len, name='sss')
196 | #print (alpha) #25 * 1 * 80
197 | self.alpha = tf.reshape(alpha, [-1, self.max_sentence_len]) #25 * 80
198 |
199 | r = tf.reshape(tf.matmul(alpha, hiddens), [-1, self.n_hidden]) #25 * 300
200 | index = tf.range(0, batch_size) * self.max_sentence_len + (self.sen_len - 1)
201 | hn = tf.gather(tf.reshape(hiddens, [-1, self.n_hidden]), index) # batch_size * n_hidden #25 * 300
202 |
203 | h = tf.tanh(tf.matmul(r, self.Wp) + tf.matmul(hn, self.Wx)) #Wp 300 * 300 Wx 300 * 300 h 25 * 300
204 |
205 | return LSTM.softmax_layer(h, self.weights['softmax'], self.biases['softmax'], self.keep_prob2),alpha #25 * 3
206 |
207 |
208 |
209 | @staticmethod
210 | def softmax_layer(inputs, weights, biases, keep_prob): #25 * 300 300 * 3 3
211 | with tf.name_scope('softmax'):
212 | outputs = tf.nn.dropout(inputs, keep_prob=keep_prob)
213 | predict = tf.matmul(outputs, weights) + biases
214 | predict = tf.nn.softmax(predict)
215 | return predict
216 |
217 | @staticmethod
218 | def reduce_mean(inputs, length): #25 * 80 * 300 list[25]
219 | """
220 | :param inputs: 3-D tensor
221 | :param length: the length of dim [1]
222 | :return: 2-D tensor
223 | """
224 | length = tf.cast(tf.reshape(length, [-1, 1]), tf.float32) + 1e-9
225 | inputs = tf.reduce_sum(inputs, 1, keep_dims=False) / length #25 * 300
226 | return inputs
227 |
228 | @staticmethod
229 | def softmax(inputs, length, max_length,name=''): # 25 * 1 * 80 [25] 80
230 | inputs = tf.cast(inputs, tf.float32)
231 | max_axis = tf.reduce_max(inputs, 2, keep_dims=True)
232 | #print (max_axis.shape) # 25 * 1 * 1
233 | #print ('re de yi pi==========')
234 | inputs = tf.exp(inputs - max_axis)
235 | length = tf.reshape(length, [-1])
236 | mask = tf.reshape(tf.cast(tf.sequence_mask(length, max_length), tf.float32), tf.shape(inputs))
237 | inputs *= mask
238 | _sum = tf.reduce_sum(inputs, reduction_indices=2, keep_dims=True) + 1e-9
239 | #print (inputs / _sum)
240 | #print ('come on!=================')
241 | return inputs / _sum
242 |
243 | def run(self):
244 | inputs = tf.nn.embedding_lookup(self.word_embedding, self.x) #25 * 80 * 300
245 | aspect = tf.nn.embedding_lookup(self.aspect_embedding, self.aspect_id) #25 * 300
246 | if FLAGS.method == 'AE':
247 | prob = self.AE(inputs, aspect, FLAGS.t) #last
248 | elif FLAGS.method == 'AT':
249 | prob,sxl = self.AT(inputs, aspect, FLAGS.t)
250 |
251 | with tf.name_scope('loss'):
252 | reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
253 | # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prob, self.y))
254 | cost = - tf.reduce_mean(tf.cast(self.y, tf.float32) * tf.log(prob)) + sum(reg_loss)
255 |
256 | with tf.name_scope('train'):
257 | global_step = tf.Variable(0, name="tr_global_step", trainable=False)
258 | optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(cost, global_step=global_step)
259 | # optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate).minimize(cost, global_step=global_step)
260 |
261 |
262 | with tf.name_scope('predict'):
263 | pre = tf.argmax(prob, 1, name="predictions")
264 | correct_pred = tf.equal(tf.argmax(prob, 1), tf.argmax(self.y, 1))
265 | true_y = tf.argmax(self.y, 1)
266 | pred_y = tf.argmax(prob, 1)
267 | accuracy = tf.reduce_sum(tf.cast(correct_pred, tf.int32))
268 | _acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
269 |
270 | with tf.Session() as sess:
271 | title = '-d1-{}d2-{}b-{}r-{}l2-{}sen-{}dim-{}h-{}c-{}'.format(
272 | FLAGS.keep_prob1,
273 | FLAGS.keep_prob2,
274 | FLAGS.batch_size,
275 | FLAGS.learning_rate,
276 | FLAGS.l2_reg,
277 | FLAGS.max_sentence_len,
278 | FLAGS.embedding_dim,
279 | FLAGS.n_hidden,
280 | FLAGS.n_class
281 | )
282 | summary_loss = tf.summary.scalar('loss' + title, cost)
283 | summary_acc = tf.summary.scalar('acc' + title, _acc)
284 | train_summary_op = tf.summary.merge([summary_loss, summary_acc])
285 | validate_summary_op = tf.summary.merge([summary_loss, summary_acc])
286 | test_summary_op = tf.summary.merge([summary_loss, summary_acc])
287 | import time
288 | timestamp = str(int(time.time()))
289 | _dir = 'logs/' + str(timestamp) + '_' + title
290 | train_summary_writer = tf.summary.FileWriter(_dir + '/train', sess.graph)
291 | test_summary_writer = tf.summary.FileWriter(_dir + '/test', sess.graph)
292 | validate_summary_writer = tf.summary.FileWriter(_dir + '/validate', sess.graph)
293 |
294 | saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)
295 |
296 | init = tf.global_variables_initializer()
297 | sess.run(init)
298 |
299 | # saver.restore(sess, 'models/logs/1481529975__r0.005_b2000_l0.05self.softmax/-1072')
300 |
301 | save_dir = 'models/' + _dir + '/'
302 | import os
303 | if not os.path.exists(save_dir):
304 | os.makedirs(save_dir)
305 |
306 | tr_x, tr_sen_len, tr_target_word, tr_y = load_inputs_twitter_at( #x, np.asarray(sen_len), np.asarray(aspect_words), np.asarray(y)
307 | FLAGS.train_file_path,
308 | self.word_id_mapping, #tr_x 3699 * 80
309 | self.aspect_id_mapping, #tr_y 3699 * 3
310 | self.max_sentence_len, #tr_sen_len [3699]
311 | self.type_ #tr_target_word [3699]
312 | )
313 | te_x, te_sen_len, te_target_word, te_y = load_inputs_twitter_at( #1134个测试集
314 | FLAGS.test_file_path,
315 | self.word_id_mapping,
316 | self.aspect_id_mapping,
317 | self.max_sentence_len,
318 | self.type_
319 | )
320 |
321 | max_acc = 0.
322 | max_alpha = None
323 | max_ty, max_py = None, None
324 | for i in range(self.n_iter): #20
325 | for train, _ in self.get_batch_data(tr_x, tr_sen_len, tr_y, tr_target_word, self.batch_size, FLAGS.keep_prob1, FLAGS.keep_prob2):
326 | alp,_, step, summary = sess.run([sxl,optimizer, global_step, train_summary_op], feed_dict=train)
327 | train_summary_writer.add_summary(summary, step)
328 |
329 |
330 |
331 | #进行了一个batch的训练
332 | # print(alp.shape)
333 | # print (alp)
334 | # print('wwwwwwwwwwwwwwwwwwwwwwwwwww')
335 | acc, loss, cnt = 0., 0., 0
336 | flag = True
337 | summary, step = None, None
338 | alpha = None
339 | ty, py = None, None
340 |
341 | for test, num in self.get_batch_data(te_x, te_sen_len, te_y, te_target_word, 2000, 1.0, 1.0, False):
342 | #print (te_y)
343 | _loss, _acc, _summary, _step, alpha, ty, py = sess.run([cost, accuracy, validate_summary_op, global_step, self.alpha, true_y, pred_y],
344 | feed_dict=test)
345 | # print ('num================')
346 | # print (num) #1134
347 |
348 |
349 |
350 | acc += _acc
351 | loss += _loss * num #???
352 | cnt += num
353 | if flag:
354 | summary = _summary
355 | step = _step
356 | flag = False
357 | alpha = alpha
358 | ty = ty
359 | py = py
360 | print(ty[:10])
361 | print (py[:10])
362 | print('all samples={}, correct prediction={}'.format(cnt, acc))
363 | test_summary_writer.add_summary(summary, step)
364 | saver.save(sess, save_dir, global_step=step)
365 | print('Iter {}: mini-batch loss={:.6f}, test acc={:.6f}'.format(i, loss / cnt, acc / cnt))
366 | if acc / cnt > max_acc:
367 | max_acc = acc / cnt
368 | max_alpha = alpha
369 | max_ty = ty
370 | max_py = py
371 | with open('alpha.txt','w') as f:
372 | f.write(str(max_alpha))
373 |
374 | print('Optimization Finished! Max acc={}'.format(max_acc))
375 | fp = open('weight.txt', 'w')
376 | for y1, y2, ws in zip(max_ty, max_py, max_alpha):
377 | fp.write(str(y1) + ' ' + str(y2) + ' ' + ' '.join([str(w) for w in ws]) + '\n')
378 |
379 | print('Learning_rate={}, iter_num={}, batch_size={}, hidden_num={}, l2={}'.format(
380 | self.learning_rate,
381 | self.n_iter,
382 | self.batch_size,
383 | self.n_hidden,
384 | self.l2_reg
385 | ))
386 |
387 | def get_batch_data(self, x, sen_len, y, target_words, batch_size, keep_prob1, keep_prob2, is_shuffle=True):
388 | for index in batch_index(len(y), batch_size, 1, is_shuffle):
389 |
390 | #print ('第一个batch训练集下标',index)
391 |
392 | feed_dict = {
393 | self.x: x[index],
394 | self.y: y[index],
395 | self.sen_len: sen_len[index],
396 | self.aspect_id: target_words[index],
397 | self.keep_prob1: keep_prob1,
398 | self.keep_prob2: keep_prob2,
399 | }
400 | yield feed_dict, len(index)
401 |
402 |
403 | def main(_):
404 | lstm = LSTM(
405 | embedding_dim=FLAGS.embedding_dim,
406 | batch_size=FLAGS.batch_size,
407 | n_hidden=FLAGS.n_hidden,
408 | learning_rate=FLAGS.learning_rate,
409 | n_class=FLAGS.n_class,
410 | max_sentence_len=FLAGS.max_sentence_len,
411 | l2_reg=FLAGS.l2_reg,
412 | display_step=FLAGS.display_step,
413 | n_iter=FLAGS.n_iter,
414 | type_=FLAGS.method
415 | )
416 | lstm.run()
417 |
418 |
419 | if __name__ == '__main__':
420 | tf.app.run()
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/ATAE_eval.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 | from utils import load_w2v, batch_index, load_word_embedding, load_aspect2id, load_inputs_twitter_at
4 |
5 |
6 | x_raw = ["$T$ is always fresh and hot - ready to eat !", "food"]
7 | y_test = [1]
8 |
9 | word_id_mapping, w2v = load_word_embedding('data/restaurant/word_id_new.txt', 'data/restaurant/rest_2014_word_embedding_300_new.txt', 300)
10 | # dict(3909) 3910 * 300
11 | aspect_id_mapping, aspect_embed = load_aspect2id('data/restaurant/aspect_id_new.txt', word_id_mapping, w2v, 300)
12 | # dict(1219) 1220 * 300
13 | # print (aspect_id_mapping['food'])
14 | # print ('sxlllllllllll')
15 |
16 |
17 | def change_y_to_onehot(y):
18 |
19 | class_set = set([1,-1,0])
20 | n_class = 3
21 | y_onehot_mapping = {0: 0, 1: 1, -1: 2}
22 | #print (y_onehot_mapping)
23 | onehot = []
24 | for label in y:
25 | tmp = [0] * n_class
26 | tmp[y_onehot_mapping[label]] = 1
27 | onehot.append(tmp)
28 | return np.asarray(onehot, dtype=np.int32)
29 |
30 | def load_inputs_twitter_at(input_file, word_id_file, aspect_id_file,sentence_len):
31 | word_to_id = word_id_file
32 | print ('load word-to-id done!')
33 | aspect_to_id = aspect_id_file
34 | print ('load aspect-to-id done!')
35 |
36 | x= []
37 |
38 | aspect_words = []
39 | lines = input_file
40 | aspect_word = ' '.join(lines[1].lower().split())
41 | aspect_words.append(aspect_to_id.get(aspect_word, 0))
42 | sxl = change_y_to_onehot(y_test)
43 | words = lines[0].lower().split()
44 | ids = []
45 | for word in words:
46 | if word in word_to_id:
47 | ids.append(word_to_id[word])
48 | # ids = list(map(lambda word: word_to_id.get(word, 0), words))
49 | #print (len(sen_len))
50 | x.append(ids + [0] * (sentence_len - len(ids)))
51 | x = np.asarray(x, dtype=np.int32)
52 | print (sxl)
53 | return x, np.asarray(aspect_words)
54 |
55 | a, b = load_inputs_twitter_at(x_raw, word_id_mapping, aspect_id_mapping,80)
56 | print ('input:', a)
57 | print ('aspect:', b)
58 |
59 | #=================================================
60 | checkpoint_file = tf.train.latest_checkpoint('E:/caffe/AI/deep learning/tensorflow/attention-based latm for aspect-level sentiment classification\models/logs/1531470805_-d1-1.0d2-1.0b-25r-0.01l2-0.001sen-80dim-300h-300c-3')
61 | #checkpoint_file = tf.train.latest_checkpoint('')
62 | graph = tf.Graph()
63 | with graph.as_default():
64 | session_conf = tf.ConfigProto(
65 | allow_soft_placement=True,
66 | log_device_placement=False)
67 | sess = tf.Session(config=session_conf)
68 | with sess.as_default():
69 | saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
70 | saver.restore(sess, checkpoint_file)
71 |
72 | input_x = graph.get_operation_by_name("inputs/x").outputs[0]
73 | print (input_x)
74 | aspect = graph.get_operation_by_name("inputs/aspect_id").outputs[0]
75 | print (aspect)
76 | sen_len = graph.get_operation_by_name("inputs/sen_len").outputs[0]
77 | keep_prob1_sxl = graph.get_operation_by_name("dropout_keep_prob1").outputs[0]
78 | keep_prob2_sxl = graph.get_operation_by_name("dropout_keep_prob2").outputs[0]
79 |
80 | #alpha = graph.get_operation_by_name("alphaa").outputs[0]
81 | losss = graph.get_operation_by_name("predict/predictions").outputs[0]
82 |
83 | result = sess.run(losss ,{input_x: a, aspect: b,sen_len:[11], keep_prob1_sxl:1.0, keep_prob2_sxl : 1.0})
84 |
85 | print (result)
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/__pycache__/utils.cpython-35.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sxlprince/attention-based-lstm-for-aspect-level-sentiment-classification/afd580de1a1ea98681d31cdffa0a469359c87e58/attention-based latm for aspect-level sentiment classification/__pycache__/utils.cpython-35.pyc
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/attention-based lstm for aspect-level sentiment classification.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/sxlprince/attention-based-lstm-for-aspect-level-sentiment-classification/afd580de1a1ea98681d31cdffa0a469359c87e58/attention-based latm for aspect-level sentiment classification/attention-based lstm for aspect-level sentiment classification.pdf
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/data/restaurant/aspect_id.txt:
--------------------------------------------------------------------------------
1 | rasamalai 1
2 | thin crusted pizza 2
3 | sicilian 3
4 | all you can eat deal 4
5 | deliveries 5
6 | staff member 6
7 | panang duck 7
8 | manager 8
9 | selection 9
10 | measures of liquers 10
11 | exotic food 11
12 | dish 12
13 | spicy fried clam rolls 13
14 | captain 14
15 | quality value 15
16 | pad thai 16
17 | roast duck 17
18 | front doors 18
19 | eggs benedict 19
20 | cannoli 20
21 | glass of leaping lizard 21
22 | technique 22
23 | turkey burger 23
24 | sesame chicken 24
25 | dumpling 25
26 | sashimi 26
27 | environment 27
28 | pickels and slaw 28
29 | garlic knots 29
30 | banana tower 30
31 | rice to fish ration 31
32 | congee 32
33 | ambience 33
34 | maitre 34
35 | dim sum combo 35
36 | waiters 36
37 | sushi chef 37
38 | dessert 38
39 | fat 39
40 | choice 40
41 | tanks 41
42 | roasted tomato soup with chevre 42
43 | cook 43
44 | patio 44
45 | chicken parm 45
46 | lava cake dessert 46
47 | special 47
48 | look 48
49 | casual dinner 49
50 | cooks 50
51 | hummus platter 51
52 | staples 52
53 | prix fixe pricing 53
54 | desserts 54
55 | icing on the cake 55
56 | hosting staff 56
57 | steak frites 57
58 | specials 58
59 | half price sushi deal 59
60 | beverage selections 60
61 | back patio 61
62 | chilaquiles 62
63 | guy 63
64 | chocolate mud cake ( warmed ) 64
65 | main courses 65
66 | after dinner drink 66
67 | pork 67
68 | neighborhood 68
69 | fried dumpling 69
70 | refleshment 70
71 | bacon 71
72 | steaks 72
73 | chef 73
74 | burger 74
75 | spider rolls 75
76 | design 76
77 | chicken tikka-masala 77
78 | fast food 78
79 | gigondas 79
80 | dulce de leche gelato 80
81 | wintermelon 81
82 | fluke sashimi 82
83 | beer selection 83
84 | drinks 84
85 | change mojito 85
86 | ceviche mix ( special ) 86
87 | in sandwiches 87
88 | peter 's favourite pizza with prosciutto and baby arugula 88
89 | soup 89
90 | dim sum 90
91 | comfort food 91
92 | meals 92
93 | cooking 93
94 | sangria 94
95 | snack foods 95
96 | tuna sandwich 96
97 | waiting 97
98 | indian 98
99 | attitudes 99
100 | dimsum 100
101 | pakistani food 101
102 | scallops 102
103 | tips 103
104 | raw vegatables 104
105 | glass front 105
106 | counters 106
107 | scenery 107
108 | mussel selection 108
109 | gulab jamun ( dessert ) 109
110 | taiwanese food 110
111 | mussels 111
112 | dining area 112
113 | water 113
114 | prix fixe meal 114
115 | pub 115
116 | stauff 116
117 | chocolate souffle with rasberry mint sorbet 117
118 | open faced cheese sandwich 118
119 | ordering a la carte 119
120 | house champagne 120
121 | mozzarella 121
122 | wait 122
123 | live entertainment 123
124 | hollondaise sauce 124
125 | personal herb garden 125
126 | back garden sitting area 126
127 | employees 127
128 | potato pancakes 128
129 | host 129
130 | dumpling menu 130
131 | msg cooking 131
132 | styles of pizza 132
133 | soup for the udon 133
134 | menu selections 134
135 | crispy duck 135
136 | puff pastry goat cheese 136
137 | chai tea 137
138 | duck breast special 138
139 | grapes 139
140 | fried chicken 140
141 | indian dining experience 141
142 | lamb vindaloo 142
143 | malai tikka wrap 143
144 | margarite pizza with cold prosciutto and baby arugula on top 144
145 | meats 145
146 | roast chicken 146
147 | shell crab 147
148 | pistachio ice cream 148
149 | lime 149
150 | chicken tikka 150
151 | kababs 151
152 | lox spread 152
153 | mediterranean salad 153
154 | sake 154
155 | lime juice concoction 155
156 | kosher dills 156
157 | seved 157
158 | lentil dish 158
159 | music 159
160 | care 160
161 | cheescake 161
162 | fried shrimp 162
163 | squid 163
164 | door 164
165 | beers on tap 165
166 | lawns 166
167 | omelletes 167
168 | italian decor 168
169 | chocolate 169
170 | fried tofu 170
171 | spicy ethnic foods 171
172 | onglet 172
173 | beers 173
174 | box wine 174
175 | tempura dis 175
176 | homemade pasta 176
177 | thai flavors 177
178 | starter 178
179 | foie gras terrine with figs 179
180 | cream cheeses 180
181 | bartender 181
182 | room 182
183 | salad 183
184 | nori-wrapped tuna 184
185 | water and wine glasses 185
186 | fish and chips 186
187 | black cod with yuzu sauce 187
188 | glasses of wine 188
189 | wine selection 189
190 | pastrami or corned beef 190
191 | servants 191
192 | shredded squid family style 192
193 | bruschettas 193
194 | dining experience 194
195 | corned beef 195
196 | chicken casserole 196
197 | sushi bar 197
198 | lamb glazed with balsamic vinegar 198
199 | potato chips 199
200 | lamb sausages 200
201 | foods 201
202 | tandoori salmon 202
203 | bar scene 203
204 | cantonese 204
205 | indian restaurant food 205
206 | interior decoration 206
207 | meat patties in steamed buns 207
208 | onions 208
209 | parmesean porcini souffle 209
210 | glasses of water 210
211 | pasta dish 211
212 | lamb 212
213 | glasses of champagne 213
214 | french indian fusion 214
215 | variety of fish 215
216 | price tag 216
217 | vibe 217
218 | spreads 218
219 | perks 219
220 | located 220
221 | sushi fix 221
222 | special menu 222
223 | gourmet food 223
224 | grilled chicken special with edamame puree 224
225 | godmother pizza ( a sort of traditional flat pizza with an olive oil-brushed crust and less tomato sauce than usual ) 225
226 | establishment 226
227 | thai noodles with shrimp and chicken and coconut juice 227
228 | pizza 228
229 | entree 229
230 | waitstaff 230
231 | nebbiolo 231
232 | assortment of fresh mushrooms and vegetables 232
233 | takeout menu 233
234 | pastas 234
235 | drumsticks over rice 235
236 | french food 236
237 | glass of prosecco 237
238 | vegetarian entree 238
239 | fresh tomatoes 239
240 | goat cheese 240
241 | man 241
242 | japanese comfort food 242
243 | buttery and tender langostine entree 243
244 | mix of greens 244
245 | gin and tonic 245
246 | curry 246
247 | tapas 247
248 | counter 248
249 | lines 249
250 | eats 250
251 | dinners 251
252 | reputation 252
253 | chopsticks 253
254 | halibut 254
255 | lay out 255
256 | godmother pizza 256
257 | breads 257
258 | oysters 258
259 | order 259
260 | scents 260
261 | wine 261
262 | snapple 262
263 | serving 263
264 | ethnic food 264
265 | secret back room 265
266 | noise level 266
267 | lobster ravioli 267
268 | frites 268
269 | filling pasta mains 269
270 | attitude 270
271 | pig feet ginger simmered in black vinegar 271
272 | crabmeat lasagna 272
273 | terrace 273
274 | frying 274
275 | spicy food 275
276 | neapolitan pizza 276
277 | bombay style chaat 277
278 | salmon dish 278
279 | fromager 279
280 | pad penang 280
281 | bagels 281
282 | appetizers 282
283 | buns 283
284 | crew 284
285 | paratha bread 285
286 | lamb chop 286
287 | tuna roll 287
288 | filets 288
289 | selection of wine 289
290 | brioche and lollies 290
291 | private room 291
292 | beans on toast 292
293 | wine flight 293
294 | food options 294
295 | indian appetizers 295
296 | sauce 296
297 | 2-person table 297
298 | grilled cheese 298
299 | tonic 299
300 | shredded cheese 300
301 | lobster bisque 301
302 | food 302
303 | flour 303
304 | lunch specials 304
305 | swordfish 305
306 | dinner menu to sit 306
307 | hand-crafted beers 307
308 | lunch 308
309 | walls 309
310 | course 310
311 | soupy dumplings 311
312 | night scene 312
313 | bread 313
314 | beef carpaachio 314
315 | meat 315
316 | kebabs 316
317 | price category 317
318 | food-quality 318
319 | bar service 319
320 | courses 320
321 | pepper powder 321
322 | panini 322
323 | lamb dishes 323
324 | dessert menu 324
325 | selection of wines 325
326 | interior deco 326
327 | bills 327
328 | japanese tapas 328
329 | meal 329
330 | food quality 330
331 | cost 331
332 | upstairs 332
333 | semi-private boths 333
334 | fish 334
335 | tom kha soup 335
336 | ambiance 336
337 | getting a table 337
338 | apppetizers 338
339 | choices per course 339
340 | sandwich 340
341 | variety 341
342 | dining hall 342
343 | dessert wine 343
344 | apetizers 344
345 | large whole shrimp 345
346 | salads 346
347 | ice cream 347
348 | new york bagel 348
349 | olive cream cheese 349
350 | pre-theater prix-fixe 350
351 | space 351
352 | green curry with vegetables 352
353 | selecion of wines 353
354 | spider roll 354
355 | tiramisu 355
356 | fried rice 356
357 | yellowtail 357
358 | mashed potatoes 358
359 | fish dishes 359
360 | round of drinks 360
361 | shows 361
362 | wine list selection 362
363 | thai ice tea 363
364 | plain cheese slice 364
365 | fresh mozz cheese 365
366 | wines 366
367 | spot 367
368 | new england chowder 368
369 | extra virgnin olive oil 369
370 | lobster sandwich 370
371 | wasabe potatoes 371
372 | filet mignon with garlic mash 372
373 | bottles of wine 373
374 | shrimp 374
375 | baked ziti with meatsauce 375
376 | mexican food 376
377 | spices 377
378 | chicken with chili and lemon grass 378
379 | fried clams 379
380 | aisle 380
381 | owners 381
382 | samosa chaats 382
383 | waiter 383
384 | corriander 384
385 | delicate butternut squash ravioli in a delicious truffle sauce 385
386 | sushimi cucumber roll 386
387 | basmati rice dish 387
388 | fish tanks 388
389 | lunch special 389
390 | sashimi plate 390
391 | entree range 391
392 | place 392
393 | singapore mai fun 393
394 | saul 394
395 | waitress 395
396 | cheese 396
397 | dine 397
398 | noodle and rices dishes 398
399 | feel 399
400 | apps 400
401 | scene 401
402 | lunch buffet 402
403 | lettuce 403
404 | variety of dishes 404
405 | owner 405
406 | smoked salmon and roe appetizer 406
407 | jewish deli food 407
408 | halibut special 408
409 | quality 409
410 | iced tea 410
411 | management 411
412 | quasi-thai 412
413 | crab cakes 413
414 | service 414
415 | privacy 415
416 | sake menu 416
417 | seasoning 417
418 | vietnamese classics 418
419 | shuizhu fish 419
420 | white bean brushetta 420
421 | crab croquette apt 421
422 | tuna tartare 422
423 | gulab jamun 423
424 | ceiling 424
425 | tramezzinis 425
426 | cigar bar 426
427 | pinot noir 427
428 | raddichio 428
429 | sweet lassi 429
430 | serve 430
431 | dinner reservations 431
432 | sesame crusted salmon 432
433 | menu prices 433
434 | front door 434
435 | crispy chicken 435
436 | thai 436
437 | seat 437
438 | pudding dessert 438
439 | crackling calamari salad 439
440 | cocktails 440
441 | take ou 441
442 | regular menu-fare 442
443 | iceberg 443
444 | egg custards 444
445 | people with carts of food 445
446 | bacos 446
447 | crowded 447
448 | seltzer with lime 448
449 | seated 449
450 | abby 's treasure 450
451 | price rang 451
452 | dinner special 452
453 | filet mignon 453
454 | apples 454
455 | popcorn topping 455
456 | dosa batter 456
457 | turnip soup with pureed basil 457
458 | parathas 458
459 | assorted sashimi 459
460 | shrimp appetizer 460
461 | deep fried skewers 461
462 | wait time 462
463 | rice dishes 463
464 | lunch specia 464
465 | pastrami sandwiches 465
466 | garlic naan 466
467 | orrechiete with sausage and chicken 467
468 | caprese salad 468
469 | spicy tuna hand rolls 469
470 | pork belly 470
471 | values for your money 471
472 | tandoori 472
473 | homemade lasagna 473
474 | dishes 474
475 | seating in the garden 475
476 | turnip cake 476
477 | pre-theatre or after-theatre drinks 477
478 | jelly fish 478
479 | noodle dishes 479
480 | bagel 480
481 | dining 481
482 | spinach ravioli in a light oil and garlic sauce 482
483 | sandwiches 483
484 | doors 484
485 | cold udon 485
486 | interior 486
487 | spinach and corn dumplings 487
488 | curry flavor 488
489 | zucchini 489
490 | obv caviar 490
491 | steak au poivre 491
492 | cheesecake 492
493 | price 493
494 | salmon 494
495 | buffet 495
496 | glass of wine 496
497 | indian food 497
498 | snacking 498
499 | actors 499
500 | corner booth table 500
501 | outdoor atmosphere 501
502 | lunch food 502
503 | fried dumplings 503
504 | soups 504
505 | seafood 505
506 | main entree 506
507 | atmoshpere 507
508 | martini 508
509 | fresh mozzarella 509
510 | bartenders 510
511 | scallion pancakes 511
512 | eggplant parmesan 512
513 | entertaining 513
514 | salt 514
515 | cole slaw 515
516 | quantity 516
517 | massamman curry 517
518 | atmosphere 518
519 | chicken dish 519
520 | crust 520
521 | porcini mushroom pasta special 521
522 | bhelpuri 522
523 | seaweed 523
524 | table service 524
525 | crab cocktail 525
526 | chicken 526
527 | calamari 527
528 | garlic shrimp 528
529 | staff 529
530 | toast 530
531 | little dishes 531
532 | green curry 532
533 | after dinner drinks 533
534 | drunken chicken 534
535 | menu 535
536 | capex 536
537 | lad nar 537
538 | cheeseburger 538
539 | fountain drinks 539
540 | texture 540
541 | sugar 541
542 | french cuisine 542
543 | eat family style 543
544 | jazz brunch 544
545 | menu description 545
546 | okra ( bindi ) 546
547 | congee ( rice porridge ) 547
548 | barbecued codfish 548
549 | wine by the glass 549
550 | rice 550
551 | takeout 551
552 | plate 552
553 | pot-stickers 553
554 | pad se-ew 554
555 | tamarind duck 555
556 | pastrami 556
557 | plain slice 557
558 | fish fillet in spicy source 558
559 | appetizer 559
560 | candle-light 560
561 | prix fix 561
562 | bagles 562
563 | delivery service 563
564 | banana tempura 564
565 | chips 565
566 | thin-crust pizza 566
567 | value ofr money 567
568 | bar 568
569 | crab dumplings 569
570 | plate of dumplings 570
571 | ` gourmet ' indian cuisine 571
572 | grilled branzino 572
573 | crabmeat 573
574 | primi 574
575 | tuna tartar appetizer 575
576 | whitefish 576
577 | stuff 577
578 | coconut rice 578
579 | architecture 579
580 | dough 580
581 | pesto pizza 581
582 | steak 582
583 | spice rub 583
584 | view 584
585 | table by the window 585
586 | guizhou chicken 586
587 | back garden 587
588 | taiwanese 588
589 | french fries 589
590 | corned beef sandwich 590
591 | chinese food 591
592 | mussels in spicy tomato sauce 592
593 | currys ( masaman , green , red ) 593
594 | noodles 594
595 | comfort 595
596 | packed 596
597 | thali 597
598 | glass of water 598
599 | pork chop 599
600 | meatballs 600
601 | sichuan food 601
602 | italian chees 602
603 | chu chu curry 603
604 | food runners 604
605 | champagne 605
606 | broth with noodles 606
607 | mezzanine 607
608 | sushi place 608
609 | spinach mushroom calzone 609
610 | hot bagel 610
611 | japanese food 611
612 | jazz bands 612
613 | bottle of wine 613
614 | beverages 614
615 | korma 615
616 | american chinese food 616
617 | lamb chops 617
618 | diners 618
619 | french fare 619
620 | canned vegetables 620
621 | main cours 621
622 | main course 622
623 | kitchen 623
624 | lasagnette appetizer 624
625 | apple tarte tatin 625
626 | chocolate bread pudding 626
627 | food 's presentation 627
628 | spaghetti with scallops and shrimp 628
629 | white sauce 629
630 | paneer roll 630
631 | half-price saturday night option 631
632 | bagel with lox spread 632
633 | herb mix 633
634 | cod 634
635 | eggplant 635
636 | pita 636
637 | dosas 637
638 | back waiters 638
639 | whitefish salad 639
640 | portion sizes 640
641 | wait-staff 641
642 | pad thai chicken 642
643 | japanese cuisin 643
644 | eggs 644
645 | red curry 645
646 | italian food 646
647 | atmorphere 647
648 | cart attendant 648
649 | chicken on rice with ginger 649
650 | nigiri 650
651 | bbq salmon 651
652 | chicken tikka masala 652
653 | coat check girls 653
654 | bathroom 654
655 | reservation sigh 655
656 | beef 656
657 | chicken with portobello mushrooms 657
658 | blond wood decor 658
659 | duck confit 659
660 | bombay beer 660
661 | proprietor 661
662 | sommelier 662
663 | pub atmosphere 663
664 | basil 664
665 | sushi rolls 665
666 | wine-by-the-glass 666
667 | ravioli 667
668 | containers 668
669 | pre-theatre 3-course dinner 669
670 | sichuan spicy soft shell crab 670
671 | shabu-shabu dinner 671
672 | personal pans 672
673 | lambchops 673
674 | fresh mozzerella slices 674
675 | live jazz 675
676 | octopus salad 676
677 | scallion pancake 677
678 | priced 678
679 | live jazz band 679
680 | prices 680
681 | brunch 681
682 | teapot 682
683 | noodle soup dishes 683
684 | bruschetta 684
685 | prix fixe lunch 685
686 | people serving 686
687 | green curry dish 687
688 | salad with a delicious dressing 688
689 | hostess 689
690 | crowds 690
691 | bill 691
692 | tastes 692
693 | value 693
694 | choices 694
695 | mayonaisse 695
696 | sea urchin 696
697 | tea room 697
698 | hot sauce 698
699 | wait staff 699
700 | stuffing 700
701 | aesthetics 701
702 | dumplings 702
703 | cakebread cabernet 703
704 | main dishes 704
705 | sushi 705
706 | pita bread 706
707 | coffee 707
708 | downstairs lounge 708
709 | sake martini 709
710 | good 710
711 | atomosphere 711
712 | seasonal beer 712
713 | ambient 713
714 | pre-theater menu 714
715 | menu choices 715
716 | pre-fixe menu 716
717 | yellowfun tuna 717
718 | anti-pasta 718
719 | cuisine 719
720 | decor 720
721 | vegetable samosa 721
722 | mushroom pizza 722
723 | sommlier 723
724 | toaster 724
725 | waitresses 725
726 | amount 726
727 | dress codes 727
728 | spicy wontons 728
729 | striped bass 729
730 | corridor 730
731 | noodles with ground beef 731
732 | plates 732
733 | vegetable juice 733
734 | plain pizza 734
735 | tomatoes 735
736 | chicken tikka marsala 736
737 | oil 737
738 | pho 738
739 | beef cubes 739
740 | fresh tomato sauce 740
741 | makhani 741
742 | drink 742
743 | kinds of beer 743
744 | dinner meeting 744
745 | rock shrimp tempura 745
746 | garlic 746
747 | characters 747
748 | group dinner 748
749 | tuna 749
750 | food suggestions 750
751 | mushroom ravioli 751
752 | lobby 752
753 | lobster cobb salad 753
754 | appetizer platter 754
755 | butter 755
756 | spicy tuna roll 756
757 | entrees 757
758 | at moshphere 758
759 | salad with perfectly marinated cucumbers and tomatoes with lots of shrimp and basil 759
760 | onion soup 760
761 | chocolate sampler 761
762 | antipasti 762
763 | wait building 763
764 | round tables 764
765 | hot dogs 765
766 | chicken vindaloo 766
767 | office lunch 767
768 | white chocolate bread pudding with gelato and hot chocolate 768
769 | pad see ew 769
770 | wines by the glass 770
771 | valentines day dinner 771
772 | money 772
773 | dosa 773
774 | sardines with biscuits 774
775 | dim sum servings 775
776 | seats 776
777 | chicken with cashew nuts 777
778 | dance floor 778
779 | flavor 779
780 | mixed drinks 780
781 | tables 781
782 | specials menus 782
783 | food art 783
784 | pumkin tortelini 784
785 | insde table 785
786 | containers for condiments 786
787 | pasta dishes 787
788 | workers 788
789 | secondi 789
790 | pam 's special fried fish 790
791 | knish 791
792 | tomato sauce 792
793 | location 793
794 | delivery time 794
795 | moules 795
796 | counter service 796
797 | thai popcorn 797
798 | customers 798
799 | shabu-shabu 799
800 | bottle minimun 800
801 | mayo 801
802 | food portions 802
803 | guacamole + shrimp appetizer 803
804 | chicken teriyaki dish 804
805 | miso soup 805
806 | roti rolls 806
807 | outdoor seating 807
808 | glass of sangria 808
809 | desserts with frog jelly 809
810 | jalapeno-lime olive oil 810
811 | quail 811
812 | lamb chettinad 812
813 | club soda , filled with ice , no lime 813
814 | margheritta 814
815 | house wine 815
816 | sichuan chef 816
817 | baby pizzas 817
818 | whole grilled fish 818
819 | kamikaze 819
820 | serves 820
821 | server 821
822 | traffic noise 822
823 | eel 823
824 | panchetta 824
825 | hosts 825
826 | sushi places 826
827 | served 827
828 | seafood tagliatelle 828
829 | creme brulee 829
830 | prix fixe 830
831 | zucchini blossoms 831
832 | vegtables 832
833 | lobby area 833
834 | seating 834
835 | dim sum atmosphere 835
836 | live music 836
837 | crowd 837
838 | people 838
839 | plastic forks 839
840 | freshness 840
841 | naan 841
842 | price range 842
843 | roti 843
844 | dining room 844
845 | escargot 845
846 | stir fry blue crab 846
847 | table 847
848 | chilean sea bass 848
849 | pickles 849
850 | classical furniture 850
851 | sauces 851
852 | asian appetizers 852
853 | slice 853
854 | atmoshere 854
855 | jalapeno 855
856 | cheese fondue 856
857 | cokes 857
858 | bistro fare 858
859 | wine list 859
860 | mussaman curry 860
861 | lunch menu 861
862 | house salad 862
863 | thai spiced curry noodles with shrimp 863
864 | lemon salad 864
865 | scallop roll 865
866 | three course meal 866
867 | sevpuri 867
868 | trout 868
869 | flavors 869
870 | pepper 870
871 | noise 871
872 | eating 872
873 | roofdeck 873
874 | chefs 874
875 | jazz nights 875
876 | gnochi 876
877 | salt pepper shrimps 877
878 | white wine 878
879 | portioins 879
880 | shrimp appetizers 880
881 | nightcap 881
882 | beef version 882
883 | black white shakes 883
884 | pasta 884
885 | quality of food 885
886 | clams oreganta 886
887 | take-out pizza 887
888 | donut like deep fried dough they call ow ley soh 888
889 | cheff 889
890 | roast pork buns 890
891 | spicy scallop roll 891
892 | fillings 892
893 | diner 893
894 | fruit of the oil 894
895 | beef noodle soup 895
896 | paninis 896
897 | pieces of sushi 897
898 | oatmeal 898
899 | side 899
900 | dinner 900
901 | blue point oysters 901
902 | toppings 902
903 | french bistro fare 903
904 | thai cuisine 904
905 | pasta entre'es 905
906 | pastries 906
907 | lunch meetings 907
908 | clubhouse 908
909 | ladies 909
910 | managers 910
911 | italian dishes 911
912 | fondue appetizer 912
913 | dining experiences 913
914 | rye bread 914
915 | vegetarian-friendly choices 915
916 | servers 916
917 | mushrooms 917
918 | hanger steak 918
919 | kielbasa 919
920 | brassiere food 920
921 | rolls 921
922 | cold appetizer dishes 922
923 | bar food 923
924 | area 924
925 | the chicken pot pie 925
926 | vegetables 926
927 | shrimp scampi 927
928 | caviar 928
929 | beer 929
930 | desert 930
931 | braised lamb shank in red wine 931
932 | chef app 932
933 | mushroom consomme 933
934 | selection of meats and seafoods 934
935 | lox 935
936 | main dining room 936
937 | house varities 937
938 | busboy 938
939 | filet 939
940 | signs 940
941 | santa fe chopped salad 941
942 | chicken pad tai 942
943 | sea bass 943
944 | delivery 944
945 | nori 945
946 | bun 946
947 | seafood dishes 947
948 | omelet 948
949 | fried mini buns with the condensed milk and the assorted fruits on beancurd 949
950 | steak tartare 950
951 | eat 951
952 | spice 952
953 | portions 953
954 | places 954
955 | fries 955
956 | indian cuisine 956
957 | portion size 957
958 | servings 958
959 | special effects 959
960 | beginning appetizers 960
961 | cheese plate 961
962 | meat dishes 962
963 | amuse bouche 963
964 | mesclun 964
965 | ac 965
966 | expresso 966
967 | tuna melt 967
968 | taste 968
969 | reservations 969
970 | root vegetables 970
971 | pie 971
972 | svc 972
973 | wild mushroom ( third generation-fornini ) pizza 973
974 | calzones 974
975 | crawfish boiled 975
976 | appetizing 976
977 | dal bukhara 977
978 | fish with hot bean source 978
979 | bistro-type vibe 979
980 | check 980
981 | menu items 981
982 | fusion of french and indian cooking 982
983 | presentaion 983
984 | lemon 984
985 | crunchy tuna 985
986 | ingredients 986
987 | hot pot with seafood 987
988 | in-house lady dj 988
989 | tip 989
990 | garden terrace 990
991 | case of snapple 991
992 | setting 992
993 | lotus leaf wrapped rice 993
994 | dinner location 994
995 | beverage manager 995
996 | cream cheese 996
997 | truffle oil 997
998 | mayonnaise 998
999 | roll 999
1000 | general tao chicken 1000
1001 | trays of dim sum 1001
1002 | cod with paella 1002
1003 | delivered 1003
1004 | prix fixe menu 1004
1005 | bruscetta 1005
1006 | herbs 1006
1007 | chow fun and chow see 1007
1008 | dals 1008
1009 | reservation 1009
1010 | pizzas 1010
1011 | sides 1011
1012 | indian fast food 1012
1013 | outdoor seatin 1013
1014 | potato 1014
1015 | sour spicy soup 1015
1016 | entertainment 1016
1017 | pastrami sandwich 1017
1018 | spicy tuna 1018
1019 | soy sauce 1019
1020 | cooked 1020
1021 | portion 1021
1022 | thai food 1022
1023 | sauce on the pizza 1023
1024 | barebecued salmon 1024
1025 | hanger steak au poivre 1025
1026 | platter 1026
1027 | open kitchen 1027
1028 | kalbi 1028
1029 | songs 1029
1030 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/data/restaurant/aspect_id_new.txt:
--------------------------------------------------------------------------------
1 | rasamalai 1
2 | thin crusted pizza 2
3 | sicilian 3
4 | surrounding 4
5 | all you can eat deal 5
6 | purple haze 6
7 | deliveries 7
8 | staff member 8
9 | panang duck 9
10 | manager 10
11 | selection 11
12 | measures of liquers 12
13 | martinis 13
14 | assortment of fish 14
15 | exotic food 15
16 | dish 16
17 | spicy fried clam rolls 17
18 | captain 18
19 | quality value 19
20 | pad thai 20
21 | roast duck 21
22 | front doors 22
23 | eggs benedict 23
24 | cannoli 24
25 | glass of leaping lizard 25
26 | technique 26
27 | turkey burger 27
28 | sesame chicken 28
29 | dumpling 29
30 | sashimi 30
31 | environment 31
32 | pickels and slaw 32
33 | vegetarian dishes 33
34 | garlic knots 34
35 | banana tower 35
36 | rice to fish ration 36
37 | congee 37
38 | ambience 38
39 | maitre 39
40 | dim sum combo 40
41 | presentation 41
42 | waiters 42
43 | sushi chef 43
44 | garden 44
45 | veal in carozza chicken saltimbocca 45
46 | deli 46
47 | dessert 47
48 | maine lobster 48
49 | fat 49
50 | choice 50
51 | go go hamburgers 51
52 | tanks 52
53 | roasted tomato soup with chevre 53
54 | cook 54
55 | patio 55
56 | chicken parm 56
57 | lava cake dessert 57
58 | special 58
59 | look 59
60 | casual dinner 60
61 | cooks 61
62 | staffs 62
63 | hummus platter 63
64 | staples 64
65 | prix fixe pricing 65
66 | desserts 66
67 | margarita 67
68 | icing on the cake 68
69 | tofu plates 69
70 | hosting staff 70
71 | steak frites 71
72 | specials 72
73 | shanghai low mein 73
74 | taxan 74
75 | bottle of sake 75
76 | half price sushi deal 76
77 | beverage selections 77
78 | back patio 78
79 | chilaquiles 79
80 | guy 80
81 | sweet basil fried tofu 81
82 | chocolate mud cake ( warmed ) 82
83 | main courses 83
84 | after dinner drink 84
85 | pork 85
86 | neighborhood 86
87 | wine menu 87
88 | fried dumpling 88
89 | shrimp fritters 89
90 | refleshment 90
91 | bacon 91
92 | steaks 92
93 | chef 93
94 | burger 94
95 | dinner menu 95
96 | spider rolls 96
97 | design 97
98 | chicken tikka-masala 98
99 | fast food 99
100 | gigondas 100
101 | dulce de leche gelato 101
102 | wintermelon 102
103 | fluke sashimi 103
104 | beer selection 104
105 | drinks 105
106 | change mojito 106
107 | ceviche mix ( special ) 107
108 | in sandwiches 108
109 | peter 's favourite pizza with prosciutto and baby arugula 109
110 | soup 110
111 | dim sum 111
112 | comfort food 112
113 | meals 113
114 | cooking 114
115 | sangria 115
116 | snack foods 116
117 | tuna sandwich 117
118 | waiting 118
119 | indian 119
120 | attitudes 120
121 | dimsum 121
122 | wasabi 122
123 | sea salt 123
124 | pakistani food 124
125 | scallops 125
126 | tips 126
127 | raw vegatables 127
128 | glass front 128
129 | counters 129
130 | scenery 130
131 | mussel selection 131
132 | gulab jamun ( dessert ) 132
133 | taiwanese food 133
134 | mussels 134
135 | half-price saturday night special 135
136 | dining area 136
137 | gnocchi 137
138 | mimosas 138
139 | water 139
140 | prix fixe meal 140
141 | pub 141
142 | decore 142
143 | stauff 143
144 | chocolate souffle with rasberry mint sorbet 144
145 | open faced cheese sandwich 145
146 | ordering a la carte 146
147 | walnuts 147
148 | house champagne 148
149 | mozzarella 149
150 | wait 150
151 | tamarind margaritas 151
152 | live entertainment 152
153 | hollondaise sauce 153
154 | discount 154
155 | personal herb garden 155
156 | back garden sitting area 156
157 | employees 157
158 | potato pancakes 158
159 | host 159
160 | dumpling menu 160
161 | msg cooking 161
162 | styles of pizza 162
163 | soup for the udon 163
164 | tuscan cuisine 164
165 | menu selections 165
166 | crispy duck 166
167 | puff pastry goat cheese 167
168 | chai tea 168
169 | duck breast special 169
170 | ingrediants 170
171 | outdoor chairs 171
172 | grapes 172
173 | fried chicken 173
174 | qualities 174
175 | indian dining experience 175
176 | lamb vindaloo 176
177 | christmas dinner 177
178 | malai tikka wrap 178
179 | margarite pizza with cold prosciutto and baby arugula on top 179
180 | meats 180
181 | roast chicken 181
182 | shell crab 182
183 | pistachio ice cream 183
184 | boton shrimp 184
185 | lime 185
186 | chicken tikka 186
187 | kababs 187
188 | lox spread 188
189 | mediterranean salad 189
190 | sake 190
191 | lime juice concoction 191
192 | kosher dills 192
193 | seved 193
194 | lentil dish 194
195 | music 195
196 | pelligrino 196
197 | care 197
198 | cheescake 198
199 | fried shrimp 199
200 | squid 200
201 | door 201
202 | beers on tap 202
203 | lawns 203
204 | oyster 204
205 | omelletes 205
206 | italian decor 206
207 | pre-theatre menu 207
208 | chocolate 208
209 | fried tofu 209
210 | spicy ethnic foods 210
211 | onglet 211
212 | beers 212
213 | box wine 213
214 | tempura dis 214
215 | bombay cosmopolitan 215
216 | homemade pasta 216
217 | drink refills 217
218 | thai flavors 218
219 | starter 219
220 | foie gras terrine with figs 220
221 | cream cheeses 221
222 | bartender 222
223 | room 223
224 | salad 224
225 | nori-wrapped tuna 225
226 | water and wine glasses 226
227 | espresso cup filled with chocolate mousse 227
228 | fish and chips 228
229 | black cod with yuzu sauce 229
230 | glasses of wine 230
231 | wine selection 231
232 | pastrami or corned beef 232
233 | servants 233
234 | shredded squid family style 234
235 | dhosas 235
236 | bruschettas 236
237 | dining experience 237
238 | corned beef 238
239 | red wine 239
240 | chicken casserole 240
241 | sushi bar 241
242 | lamb glazed with balsamic vinegar 242
243 | potato chips 243
244 | lamb sausages 244
245 | wallet 245
246 | sushi plat 246
247 | foods 247
248 | tandoori salmon 248
249 | bar scene 249
250 | cantonese 250
251 | indian restaurant food 251
252 | interior decoration 252
253 | meat patties in steamed buns 253
254 | onions 254
255 | parmesean porcini souffle 255
256 | glasses of water 256
257 | pasta dish 257
258 | lamb 258
259 | glasses of champagne 259
260 | lazy susans 260
261 | french indian fusion 261
262 | variety of fish 262
263 | surroundings 263
264 | price tag 264
265 | vibe 265
266 | spreads 266
267 | lamb meat 267
268 | perks 268
269 | hunan chicken 269
270 | located 270
271 | sushi fix 271
272 | special menu 272
273 | lobster teriyaki 273
274 | dress cod 274
275 | gourmet food 275
276 | grilled chicken special with edamame puree 276
277 | godmother pizza ( a sort of traditional flat pizza with an olive oil-brushed crust and less tomato sauce than usual ) 277
278 | establishment 278
279 | thai noodles with shrimp and chicken and coconut juice 279
280 | pizza 280
281 | entree 281
282 | waitstaff 282
283 | nebbiolo 283
284 | assortment of fresh mushrooms and vegetables 284
285 | takeout menu 285
286 | pastas 286
287 | drumsticks over rice 287
288 | french food 288
289 | glass of prosecco 289
290 | vegetarian entree 290
291 | wait service 291
292 | fresh tomatoes 292
293 | goat cheese 293
294 | man 294
295 | japanese comfort food 295
296 | buttery and tender langostine entree 296
297 | mix of greens 297
298 | gin and tonic 298
299 | lamb sandwhich 299
300 | curry 300
301 | tapas 301
302 | counter 302
303 | lines 303
304 | eats 304
305 | dinners 305
306 | reputation 306
307 | chopsticks 307
308 | halibut 308
309 | lay out 309
310 | godmother pizza 310
311 | breads 311
312 | oysters 312
313 | order 313
314 | scents 314
315 | wine 315
316 | snapple 316
317 | serving 317
318 | ethnic food 318
319 | secret back room 319
320 | noise level 320
321 | chole 321
322 | lobster ravioli 322
323 | frites 323
324 | filling pasta mains 324
325 | attitude 325
326 | pig feet ginger simmered in black vinegar 326
327 | crabmeat lasagna 327
328 | terrace 328
329 | glass of beer 329
330 | frying 330
331 | spicy food 331
332 | neapolitan pizza 332
333 | bombay style chaat 333
334 | salmon dish 334
335 | fromager 335
336 | malai kofta 336
337 | pad penang 337
338 | bagels 338
339 | appetizers 339
340 | avocado 340
341 | buns 341
342 | crew 342
343 | paratha bread 343
344 | lamb chop 344
345 | tuna roll 345
346 | filets 346
347 | selection of wine 347
348 | brioche and lollies 348
349 | private room 349
350 | beans on toast 350
351 | wine flight 351
352 | waterbugs 352
353 | food options 353
354 | indian appetizers 354
355 | sauce 355
356 | jukebox 356
357 | 2-person table 357
358 | steak dish 358
359 | grilled cheese 359
360 | tonic 360
361 | shredded cheese 361
362 | chutneys 362
363 | lobster bisque 363
364 | food 364
365 | flour 365
366 | lunch specials 366
367 | dining rooms 367
368 | swordfish 368
369 | dinner menu to sit 369
370 | hand-crafted beers 370
371 | chongqing hotpot 371
372 | lunch 372
373 | walls 373
374 | garlic mashed potatoes 374
375 | course 375
376 | vanilla gelato ( with espresso ) 376
377 | soupy dumplings 377
378 | night scene 378
379 | bread 379
380 | beef carpaachio 380
381 | fatty yellow tail 381
382 | meat 382
383 | kebabs 383
384 | price category 384
385 | food-quality 385
386 | bar service 386
387 | courses 387
388 | pepper powder 388
389 | panini 389
390 | lamb dishes 390
391 | dessert menu 391
392 | selection of wines 392
393 | interior deco 393
394 | bills 394
395 | japanese tapas 395
396 | meal 396
397 | kamasutra 397
398 | food quality 398
399 | cost 399
400 | upstairs 400
401 | semi-private boths 401
402 | unda ( egg ) rolls 402
403 | fish 403
404 | tom kha soup 404
405 | ambiance 405
406 | getting a table 406
407 | apppetizers 407
408 | sichuan cooking 408
409 | choices per course 409
410 | sandwich 410
411 | variety 411
412 | dining hall 412
413 | dessert wine 413
414 | apetizers 414
415 | large whole shrimp 415
416 | salads 416
417 | ice cream 417
418 | new york bagel 418
419 | olive cream cheese 419
420 | pre-theater prix-fixe 420
421 | space 421
422 | green curry with vegetables 422
423 | selecion of wines 423
424 | spider roll 424
425 | tiramisu 425
426 | fried rice 426
427 | yellowtail 427
428 | mashed potatoes 428
429 | fish dishes 429
430 | round of drinks 430
431 | shows 431
432 | wine list selection 432
433 | thai ice tea 433
434 | plain cheese slice 434
435 | fresh mozz cheese 435
436 | wines 436
437 | spot 437
438 | new england chowder 438
439 | mascarpone with chocolate chip 439
440 | extra virgnin olive oil 440
441 | lobster sandwich 441
442 | wasabe potatoes 442
443 | filet mignon with garlic mash 443
444 | bottles of wine 444
445 | shrimp 445
446 | baked ziti with meatsauce 446
447 | mexican food 447
448 | spices 448
449 | chicken with chili and lemon grass 449
450 | air conditioning 450
451 | take-out pies 451
452 | fried clams 452
453 | aisle 453
454 | owners 454
455 | samosa chaats 455
456 | waiter 456
457 | corriander 457
458 | delicate butternut squash ravioli in a delicious truffle sauce 458
459 | sushimi cucumber roll 459
460 | basmati rice dish 460
461 | sandwhiches 461
462 | fish tanks 462
463 | lunch special 463
464 | sashimi plate 464
465 | entree range 465
466 | place 466
467 | date spot 467
468 | singapore mai fun 468
469 | tom yum soup 469
470 | saul 470
471 | dim sum dish 471
472 | waitress 472
473 | cheese 473
474 | dine 474
475 | noodle and rices dishes 475
476 | feel 476
477 | apps 477
478 | scene 478
479 | lunch buffet 479
480 | lettuce 480
481 | variety of dishes 481
482 | jazz 482
483 | reuben sandwich 483
484 | owner 484
485 | smoked salmon and roe appetizer 485
486 | jewish deli food 486
487 | halibut special 487
488 | quality 488
489 | iced tea 489
490 | management 490
491 | quasi-thai 491
492 | crab cakes 492
493 | service 493
494 | privacy 494
495 | sake menu 495
496 | cold lobster salad 496
497 | seasoning 497
498 | vietnamese classics 498
499 | shuizhu fish 499
500 | white bean brushetta 500
501 | crab croquette apt 501
502 | tuna tartare 502
503 | gulab jamun 503
504 | ceiling 504
505 | tramezzinis 505
506 | cigar bar 506
507 | pinot noir 507
508 | raddichio 508
509 | sweet lassi 509
510 | serve 510
511 | dinner reservations 511
512 | sesame crusted salmon 512
513 | menu prices 513
514 | wine choices 514
515 | front door 515
516 | southern indian cuisine 516
517 | crispy chicken 517
518 | thai 518
519 | seat 519
520 | pudding dessert 520
521 | crackling calamari salad 521
522 | cocktails 522
523 | take ou 523
524 | regular menu-fare 524
525 | iceberg 525
526 | egg custards 526
527 | people with carts of food 527
528 | bacos 528
529 | palak paneer 529
530 | crowded 530
531 | seltzer with lime 531
532 | seated 532
533 | abby 's treasure 533
534 | price rang 534
535 | dinner special 535
536 | filet mignon 536
537 | apples 537
538 | popcorn topping 538
539 | dosa batter 539
540 | turnip soup with pureed basil 540
541 | parathas 541
542 | assorted sashimi 542
543 | shrimp appetizer 543
544 | deep fried skewers 544
545 | wait time 545
546 | portraits 546
547 | rice dishes 547
548 | lunch specia 548
549 | pastrami sandwiches 549
550 | glass noodles 550
551 | pastrami on challah sandwich 551
552 | garlic naan 552
553 | orrechiete with sausage and chicken 553
554 | caprese salad 554
555 | spicy tuna hand rolls 555
556 | pork belly 556
557 | values for your money 557
558 | tandoori 558
559 | homemade lasagna 559
560 | ginger lemonade with vodka 560
561 | egg noodles in the beef broth with shrimp dumplings and slices of bbq roast pork 561
562 | dishes 562
563 | seating in the garden 563
564 | turnip cake 564
565 | pre-theatre or after-theatre drinks 565
566 | jelly fish 566
567 | noodle dishes 567
568 | bagel 568
569 | dining 569
570 | spinach ravioli in a light oil and garlic sauce 570
571 | sandwiches 571
572 | doors 572
573 | cold udon 573
574 | interior 574
575 | spinach and corn dumplings 575
576 | curry flavor 576
577 | zucchini 577
578 | obv caviar 578
579 | topping 579
580 | pot of boiling water 580
581 | bottle 581
582 | steak au poivre 582
583 | zen feel 583
584 | cheesecake 584
585 | price 585
586 | salmon 586
587 | buffet 587
588 | glass of wine 588
589 | indian food 589
590 | snacking 590
591 | actors 591
592 | corner booth table 592
593 | outdoor atmosphere 593
594 | lunch food 594
595 | fried dumplings 595
596 | spinach 596
597 | ala carte 597
598 | soups 598
599 | seafood 599
600 | main entree 600
601 | atmoshpere 601
602 | neapolitan fare 602
603 | martini 603
604 | table grilling 604
605 | fresh mozzarella 605
606 | bartenders 606
607 | caprese salad appetizer 607
608 | scallion pancakes 608
609 | eggplant parmesan 609
610 | entertaining 610
611 | salt 611
612 | cole slaw 612
613 | quantity 613
614 | massamman curry 614
615 | lemon grass chicken 615
616 | atmosphere 616
617 | chicken dish 617
618 | cheese sticks 618
619 | crust 619
620 | indoor 620
621 | porcini mushroom pasta special 621
622 | bhelpuri 622
623 | seaweed 623
624 | table service 624
625 | crab cocktail 625
626 | chicken 626
627 | calamari 627
628 | garlic shrimp 628
629 | cheeseburgers 629
630 | staff 630
631 | toast 631
632 | little dishes 632
633 | green curry 633
634 | after dinner drinks 634
635 | beef cube on rice 635
636 | drunken chicken 636
637 | menu 637
638 | capex 638
639 | lad nar 639
640 | cheeseburger 640
641 | fountain drinks 641
642 | texture 642
643 | sugar 643
644 | french cuisine 644
645 | eat family style 645
646 | jazz brunch 646
647 | menu description 647
648 | okra ( bindi ) 648
649 | congee ( rice porridge ) 649
650 | barbecued codfish 650
651 | waiter traffic 651
652 | wine by the glass 652
653 | rice 653
654 | takeout 654
655 | hall 655
656 | plate 656
657 | pot-stickers 657
658 | pad se-ew 658
659 | tamarind duck 659
660 | pastrami 660
661 | rose special roll 661
662 | plain slice 662
663 | fish fillet in spicy source 663
664 | appetizer 664
665 | candle-light 665
666 | prix fix 666
667 | edamames 667
668 | bagles 668
669 | delivery service 669
670 | chicken with garlic sauce 670
671 | banana tempura 671
672 | candles 672
673 | chips 673
674 | thin-crust pizza 674
675 | value ofr money 675
676 | cod with pineapple tempura 676
677 | bar 677
678 | crab dumplings 678
679 | plate of dumplings 679
680 | ` gourmet ' indian cuisine 680
681 | grilled branzino 681
682 | crabmeat 682
683 | primi 683
684 | tuna tartar appetizer 684
685 | whitefish 685
686 | crab-cake eggs benedict 686
687 | stuff 687
688 | coconut rice 688
689 | architecture 689
690 | dough 690
691 | pesto pizza 691
692 | steak 692
693 | spice rub 693
694 | delivery guys 694
695 | view 695
696 | table by the window 696
697 | bars 697
698 | guizhou chicken 698
699 | back garden 699
700 | taiwanese 700
701 | french fries 701
702 | corned beef sandwich 702
703 | non-veg selections 703
704 | chinese food 704
705 | stomach 705
706 | mussels in spicy tomato sauce 706
707 | currys ( masaman , green , red ) 707
708 | noodles 708
709 | comfort 709
710 | packed 710
711 | duck noodles 711
712 | thali 712
713 | tea with tapioca pearls ( hot ) 713
714 | glass of water 714
715 | pork chop 715
716 | pictures 716
717 | meatballs 717
718 | mango chicken 718
719 | tiramisu chocolate cake 719
720 | sichuan food 720
721 | outside 721
722 | italian chees 722
723 | chu chu curry 723
724 | food runners 724
725 | champagne 725
726 | broth with noodles 726
727 | mezzanine 727
728 | sushi place 728
729 | spinach mushroom calzone 729
730 | hot bagel 730
731 | japanese food 731
732 | jazz bands 732
733 | bottle of wine 733
734 | customer service 734
735 | beverages 735
736 | korma 736
737 | dinosaur rolls 737
738 | american chinese food 738
739 | lamb chops 739
740 | diners 740
741 | french fare 741
742 | canned vegetables 742
743 | chocolate cake 743
744 | main cours 744
745 | main course 745
746 | kitchen 746
747 | lasagnette appetizer 747
748 | apple tarte tatin 748
749 | chocolate bread pudding 749
750 | food 's presentation 750
751 | spaghetti with scallops and shrimp 751
752 | white sauce 752
753 | service staff 753
754 | sake collection 754
755 | paneer roll 755
756 | half-price saturday night option 756
757 | bagel with lox spread 757
758 | herb mix 758
759 | cod 759
760 | eggplant 760
761 | pita 761
762 | nosh ( pastrami sandwich ) 762
763 | maitre d' 763
764 | dosas 764
765 | back waiters 765
766 | whitefish salad 766
767 | portion sizes 767
768 | wait-staff 768
769 | pad thai chicken 769
770 | japanese cuisin 770
771 | eggs 771
772 | thia food 772
773 | red curry 773
774 | italian food 774
775 | atmorphere 775
776 | cart attendant 776
777 | chicken on rice with ginger 777
778 | nigiri 778
779 | bbq salmon 779
780 | chicken tikka masala 780
781 | coat check girls 781
782 | bathroom 782
783 | reservation sigh 783
784 | beef 784
785 | angry lobster 785
786 | chicken with portobello mushrooms 786
787 | blond wood decor 787
788 | duck confit 788
789 | bombay beer 789
790 | proprietor 790
791 | sommelier 791
792 | pub atmosphere 792
793 | basil 793
794 | sushi rolls 794
795 | appitizers 795
796 | wine-by-the-glass 796
797 | ravioli 797
798 | containers 798
799 | pre-theatre 3-course dinner 799
800 | sichuan spicy soft shell crab 800
801 | spring rolls 801
802 | chai 802
803 | shabu-shabu dinner 803
804 | personal pans 804
805 | lambchops 805
806 | fresh mozzerella slices 806
807 | live jazz 807
808 | octopus salad 808
809 | scallion pancake 809
810 | priced 810
811 | backyard dining area 811
812 | live jazz band 812
813 | business dinner 813
814 | prices 814
815 | brunch 815
816 | toasting 816
817 | teapot 817
818 | noodle soup dishes 818
819 | bruschetta 819
820 | prix fixe lunch 820
821 | people serving 821
822 | green curry dish 822
823 | salad with a delicious dressing 823
824 | hostess 824
825 | crowds 825
826 | bill 826
827 | tastes 827
828 | value 828
829 | choices 829
830 | argentinian pizza 830
831 | mayonaisse 831
832 | rice congee soup 832
833 | sea urchin 833
834 | tea room 834
835 | hot sauce 835
836 | wait staff 836
837 | stuffing 837
838 | aesthetics 838
839 | bathrooms 839
840 | peanut sauce 840
841 | dumplings 841
842 | cakebread cabernet 842
843 | main dishes 843
844 | sushi 844
845 | pita bread 845
846 | coffee 846
847 | downstairs lounge 847
848 | sake martini 848
849 | good 849
850 | atomosphere 850
851 | seasonal beer 851
852 | ambient 852
853 | pre-theater menu 853
854 | menu choices 854
855 | pre-fixe menu 855
856 | yellowfun tuna 856
857 | anti-pasta 857
858 | cuisine 858
859 | decor 859
860 | vegetable samosa 860
861 | pork loin 861
862 | mushroom pizza 862
863 | sommlier 863
864 | toaster 864
865 | waitresses 865
866 | amount 866
867 | dress codes 867
868 | spicy wontons 868
869 | striped bass 869
870 | corridor 870
871 | noodles with ground beef 871
872 | chicken in curry sauc 872
873 | plates 873
874 | vegetable juice 874
875 | traditional french decour 875
876 | plain pizza 876
877 | tomatoes 877
878 | chicken tikka marsala 878
879 | oil 879
880 | pho 880
881 | pork buns 881
882 | beef cubes 882
883 | fresh tomato sauce 883
884 | makhani 884
885 | drink 885
886 | sea eel 886
887 | kinds of beer 887
888 | dinner meeting 888
889 | rock shrimp tempura 889
890 | garlic 890
891 | characters 891
892 | group dinner 892
893 | tuna 893
894 | food suggestions 894
895 | mushroom ravioli 895
896 | lobby 896
897 | lobster cobb salad 897
898 | appetizer platter 898
899 | butter 899
900 | spicy tuna roll 900
901 | entrees 901
902 | summer rolls 902
903 | at moshphere 903
904 | salad with perfectly marinated cucumbers and tomatoes with lots of shrimp and basil 904
905 | dinner plates 905
906 | onion soup 906
907 | chocolate sampler 907
908 | antipasti 908
909 | lobster tails 909
910 | wait building 910
911 | burgers 911
912 | round tables 912
913 | hot dogs 913
914 | chicken vindaloo 914
915 | office lunch 915
916 | white chocolate bread pudding with gelato and hot chocolate 916
917 | blue fin torro ( fatty tuna ) 917
918 | pad see ew 918
919 | wines by the glass 919
920 | valentines day dinner 920
921 | money 921
922 | dosa 922
923 | sardines with biscuits 923
924 | somosas 924
925 | dim sum servings 925
926 | exotic salad 926
927 | filet mignon dish 927
928 | seats 928
929 | chicken with cashew nuts 929
930 | dance floor 930
931 | flavor 931
932 | mixed drinks 932
933 | tables 933
934 | specials menus 934
935 | food art 935
936 | pumkin tortelini 936
937 | insde table 937
938 | containers for condiments 938
939 | pasta dishes 939
940 | waiting area 940
941 | workers 941
942 | secondi 942
943 | pam 's special fried fish 943
944 | dhal 944
945 | knish 945
946 | tomato sauce 946
947 | location 947
948 | delivery time 948
949 | moules 949
950 | counter service 950
951 | thai popcorn 951
952 | hot tea 952
953 | customers 953
954 | dim sum orders 954
955 | shabu-shabu 955
956 | bottle minimun 956
957 | mayo 957
958 | food portions 958
959 | guacamole + shrimp appetizer 959
960 | chicken teriyaki dish 960
961 | miso soup 961
962 | roti rolls 962
963 | outdoor seating 963
964 | glass of sangria 964
965 | nanbu bijin 965
966 | desserts with frog jelly 966
967 | jalapeno-lime olive oil 967
968 | quail 968
969 | lamb chettinad 969
970 | club soda , filled with ice , no lime 970
971 | mahi mahi ( on saffron risotto 971
972 | margheritta 972
973 | house wine 973
974 | japanese classic cuisine 974
975 | sichuan chef 975
976 | baby pizzas 976
977 | whole grilled fish 977
978 | kamikaze 978
979 | serves 979
980 | server 980
981 | traffic noise 981
982 | eel 982
983 | panchetta 983
984 | hosts 984
985 | sushi places 985
986 | served 986
987 | seafood tagliatelle 987
988 | creme brulee 988
989 | prix fixe 989
990 | zucchini blossoms 990
991 | vegtables 991
992 | lobby area 992
993 | seating 993
994 | dim sum atmosphere 994
995 | live music 995
996 | crowd 996
997 | people 997
998 | plastic forks 998
999 | freshness 999
1000 | naan 1000
1001 | price range 1001
1002 | roti 1002
1003 | dining room 1003
1004 | escargot 1004
1005 | stir fry blue crab 1005
1006 | table 1006
1007 | chilean sea bass 1007
1008 | green salad 1008
1009 | pickles 1009
1010 | classical furniture 1010
1011 | sauces 1011
1012 | asian appetizers 1012
1013 | slice 1013
1014 | atmoshere 1014
1015 | jalapeno 1015
1016 | cheese fondue 1016
1017 | cokes 1017
1018 | bistro fare 1018
1019 | fondue 1019
1020 | salmon caserole 1020
1021 | edamame pureed 1021
1022 | wine list 1022
1023 | mussaman curry 1023
1024 | veal parmigana 1024
1025 | lunch menu 1025
1026 | house salad 1026
1027 | thai spiced curry noodles with shrimp 1027
1028 | lemon salad 1028
1029 | scallop roll 1029
1030 | three course meal 1030
1031 | sevpuri 1031
1032 | trout 1032
1033 | flavors 1033
1034 | pepper 1034
1035 | noise 1035
1036 | eating 1036
1037 | roofdeck 1037
1038 | gentleman 1038
1039 | chefs 1039
1040 | jazz nights 1040
1041 | gnochi 1041
1042 | mixed drink special 1042
1043 | salt pepper shrimps 1043
1044 | bannan fritter 1044
1045 | white wine 1045
1046 | portioins 1046
1047 | shrimp appetizers 1047
1048 | nightcap 1048
1049 | times square cocktail 1049
1050 | beef version 1050
1051 | black white shakes 1051
1052 | pasta 1052
1053 | quality of food 1053
1054 | clams oreganta 1054
1055 | take-out pizza 1055
1056 | donut like deep fried dough they call ow ley soh 1056
1057 | cheff 1057
1058 | roast pork buns 1058
1059 | spicy scallop roll 1059
1060 | fillings 1060
1061 | diner 1061
1062 | fruit of the oil 1062
1063 | beef noodle soup 1063
1064 | paninis 1064
1065 | cafe 1065
1066 | pieces of sushi 1066
1067 | oatmeal 1067
1068 | side 1068
1069 | dinner 1069
1070 | blue point oysters 1070
1071 | toppings 1071
1072 | bbq ribs 1072
1073 | sake list 1073
1074 | french bistro fare 1074
1075 | thai cuisine 1075
1076 | pasta entre'es 1076
1077 | pastries 1077
1078 | lunch meetings 1078
1079 | clubhouse 1079
1080 | ladies 1080
1081 | managers 1081
1082 | italian dishes 1082
1083 | fondue appetizer 1083
1084 | dining experiences 1084
1085 | rye bread 1085
1086 | vegetarian-friendly choices 1086
1087 | servers 1087
1088 | mushrooms 1088
1089 | hanger steak 1089
1090 | kielbasa 1090
1091 | brassiere food 1091
1092 | hong-kong styled milk 1092
1093 | rolls 1093
1094 | cold appetizer dishes 1094
1095 | lassi 1095
1096 | bar food 1096
1097 | area 1097
1098 | the chicken pot pie 1098
1099 | vegetables 1099
1100 | shrimp scampi 1100
1101 | caviar 1101
1102 | beer 1102
1103 | desert 1103
1104 | blue cheese 1104
1105 | basic dishes 1105
1106 | pork chops 1106
1107 | braised lamb shank in red wine 1107
1108 | chef app 1108
1109 | mushroom consomme 1109
1110 | selection of meats and seafoods 1110
1111 | lox 1111
1112 | main dining room 1112
1113 | house varities 1113
1114 | busboy 1114
1115 | strawberry daiquiries 1115
1116 | filet 1116
1117 | signs 1117
1118 | santa fe chopped salad 1118
1119 | chicken pad tai 1119
1120 | sea bass 1120
1121 | delivery 1121
1122 | nori 1122
1123 | bun 1123
1124 | seafood dishes 1124
1125 | omelet 1125
1126 | fried mini buns with the condensed milk and the assorted fruits on beancurd 1126
1127 | line 1127
1128 | steak tartare 1128
1129 | eat 1129
1130 | horedevous 1130
1131 | spice 1131
1132 | rush 1132
1133 | portions 1133
1134 | places 1134
1135 | food spot 1135
1136 | dinner specials 1136
1137 | fries 1137
1138 | indian cuisine 1138
1139 | portion size 1139
1140 | servings 1140
1141 | special effects 1141
1142 | beginning appetizers 1142
1143 | cheese plate 1143
1144 | meat dishes 1144
1145 | amuse bouche 1145
1146 | mesclun 1146
1147 | ac 1147
1148 | expresso 1148
1149 | tuna melt 1149
1150 | taste 1150
1151 | reservations 1151
1152 | root vegetables 1152
1153 | pie 1153
1154 | svc 1154
1155 | wild mushroom ( third generation-fornini ) pizza 1155
1156 | calzones 1156
1157 | crawfish boiled 1157
1158 | appetizing 1158
1159 | botle of wine 1159
1160 | dal bukhara 1160
1161 | fish with hot bean source 1161
1162 | bistro-type vibe 1162
1163 | check 1163
1164 | menu items 1164
1165 | fusion of french and indian cooking 1165
1166 | presentaion 1166
1167 | lemon 1167
1168 | crunchy tuna 1168
1169 | ingredients 1169
1170 | hot pot with seafood 1170
1171 | in-house lady dj 1171
1172 | tip 1172
1173 | steak with portobello mushrooms 1173
1174 | garden terrace 1174
1175 | case of snapple 1175
1176 | setting 1176
1177 | lotus leaf wrapped rice 1177
1178 | dinner location 1178
1179 | beverage manager 1179
1180 | cream cheese 1180
1181 | truffle oil 1181
1182 | mayonnaise 1182
1183 | roll 1183
1184 | general tao chicken 1184
1185 | trays of dim sum 1185
1186 | cod with paella 1186
1187 | white tuna sashimi 1187
1188 | delivered 1188
1189 | prix fixe menu 1189
1190 | bruscetta 1190
1191 | herbs 1191
1192 | chow fun and chow see 1192
1193 | cater 1193
1194 | dals 1194
1195 | spot lights 1195
1196 | reservation 1196
1197 | knishes 1197
1198 | pizzas 1198
1199 | sides 1199
1200 | indian fast food 1200
1201 | outdoor seatin 1201
1202 | curry sauce 1202
1203 | potato 1203
1204 | sour spicy soup 1204
1205 | entertainment 1205
1206 | pastrami sandwich 1206
1207 | spicy tuna 1207
1208 | soy sauce 1208
1209 | cooked 1209
1210 | portion 1210
1211 | thai food 1211
1212 | sauce on the pizza 1212
1213 | barebecued salmon 1213
1214 | chicken with black bean sauce 1214
1215 | hanger steak au poivre 1215
1216 | platter 1216
1217 | open kitchen 1217
1218 | kalbi 1218
1219 | songs 1219
1220 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/data/restaurant/change.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # encoding: utf-8
3 | # @author: newbie
4 | # email: zhengshiliang0@gmail.com
5 |
6 |
7 | import sys
8 |
9 | lines = open(sys.argv[1]).readlines()
10 | fp = open(sys.argv[2], 'w')
11 | for i in xrange(0, len(lines), 3):
12 | sentence, aspect, polarity = lines[i].strip(), lines[i + 1].strip(), lines[i + 2].strip()
13 | if polarity == '0':
14 | polarity = 'neutral'
15 | elif polarity == '1':
16 | polarity = 'positive'
17 | else:
18 | polarity = 'negative'
19 |
20 | words = sentence.split()
21 | print words
22 | ind = words.index('$T$')
23 | tmp = []
24 | for i, word in enumerate(words[:ind], 0):
25 | tmp.append(word + '/' + str(ind - i))
26 | for i, word in enumerate(words[ind + 1:], 1):
27 | tmp.append(word + '/' + str(i))
28 | sentence = ' '.join(tmp)
29 | fp.write(aspect + '||' + polarity + '||' + sentence + '\n')
30 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/data/restaurant/rest_2014_lstm_test_new1.txt:
--------------------------------------------------------------------------------
1 | The $T$ is top notch as well .
2 | bread
3 | 1
4 | I have to say they have one of the fastest $T$ in the city .
5 | delivery times
6 | 1
7 | $T$ is always fresh and hot - ready to eat !
8 | Food
9 | 1
10 | Did I mention that the $T$ is OUTSTANDING ?
11 | coffee
12 | 1
13 | Certainly not the best $T$ in New York , however , it is always fresh , and the place is very clean , sterile .
14 | sushi
15 | -1
16 | Certainly not the best sushi in New York , however , it is always fresh , and the $T$ is very clean , sterile .
17 | place
18 | 1
19 | I trust the $T$ at Go Sushi , it never disappoints .
20 | people
21 | 1
22 | Straight-forward , no surprises , very decent $T$ .
23 | Japanese food
24 | 1
25 | BEST spicy tuna roll , great $T$ .
26 | asian salad
27 | 1
28 | BEST $T$ , great asian salad .
29 | spicy tuna roll
30 | 1
31 | Try the $T$ ( not on menu ) .
32 | rose roll
33 | 1
34 | Try the rose roll ( not on $T$ ) .
35 | menu
36 | 0
37 | I love the $T$ , esp lychee martini , and the food is also VERY good .
38 | drinks
39 | 1
40 | I love the drinks , esp $T$ , and the food is also VERY good .
41 | lychee martini
42 | 1
43 | I love the drinks , esp lychee martini , and the $T$ is also VERY good .
44 | food
45 | 1
46 | In fact , this was not a $T$ and was barely eatable .
47 | Nicoise salad
48 | -1
49 | While there 's a decent $T$ , it should n't take ten minutes to get your drinks and 45 for a dessert pizza .
50 | menu
51 | 1
52 | While there 's a decent menu , it should n't take ten minutes to get your $T$ and 45 for a dessert pizza .
53 | drinks
54 | 0
55 | While there 's a decent menu , it should n't take ten minutes to get your drinks and 45 for a $T$ .
56 | dessert pizza
57 | 0
58 | Once we sailed , the top-notch $T$ and live entertainment sold us on a unforgettable evening .
59 | food
60 | 1
61 | Once we sailed , the top-notch food and $T$ sold us on a unforgettable evening .
62 | live entertainment
63 | 1
64 | Our $T$ was horrible ; so rude and disinterested .
65 | waiter
66 | -1
67 | The $T$ 's - watered down .
68 | sangria
69 | -1
70 | $T$ - uneventful , small .
71 | menu
72 | -1
73 | Anytime and everytime I find myself in the neighborhood I will go to Sushi Rose for fresh $T$ and great portions all at a reasonable price .
74 | sushi
75 | 1
76 | Anytime and everytime I find myself in the neighborhood I will go to Sushi Rose for fresh sushi and great $T$ all at a reasonable price .
77 | portions
78 | 1
79 | Anytime and everytime I find myself in the neighborhood I will go to Sushi Rose for fresh sushi and great portions all at a reasonable $T$ .
80 | price
81 | 1
82 | Great $T$ but the service was dreadful !
83 | food
84 | 1
85 | Great food but the $T$ was dreadful !
86 | service
87 | -1
88 | The $T$ that came out were mediocre .
89 | portions of the food
90 | 0
91 | the two $T$ looked like they had been sucking on lemons .
92 | waitress 's
93 | -1
94 | From the beginning , we were met by friendly $T$ , and the convienent parking at Chelsea Piers made it easy for us to get to the boat .
95 | staff memebers
96 | 1
97 | From the beginning , we were met by friendly staff memebers , and the convienent $T$ at Chelsea Piers made it easy for us to get to the boat .
98 | parking
99 | 1
100 | We enjoyed ourselves thoroughly and will be going back for the $T$ ...
101 | desserts
102 | 1
103 | $T$ are almost incredible : my personal favorite is their Tart of the Day .
104 | Desserts
105 | 1
106 | Desserts are almost incredible : my personal favorite is their $T$ .
107 | Tart of the Day
108 | 1
109 | The $T$ was extremely tasty , creatively presented and the wine excellent .
110 | food
111 | 1
112 | The food was extremely tasty , creatively presented and the $T$ excellent .
113 | wine
114 | 1
115 | THE $T$ WAS PROBABLY THE BEST I HAVE TASTED .
116 | LASAGNA
117 | 1
118 | Harumi Sushi has the freshest and most delicious $T$ in NYC .
119 | array of sushi
120 | 1
121 | I highly recommend it for not just its superb $T$ , but also for its friendly owners and staff .
122 | cuisine
123 | 1
124 | I highly recommend it for not just its superb cuisine , but also for its friendly $T$ and staff .
125 | owners
126 | 1
127 | I highly recommend it for not just its superb cuisine , but also for its friendly owners and $T$ .
128 | staff
129 | 1
130 | If you 're craving some serious $T$ and desire a cozy ambiance , this is quite and exquisite choice .
131 | indian food
132 | 1
133 | If you 're craving some serious indian food and desire a cozy $T$ , this is quite and exquisite choice .
134 | ambiance
135 | 1
136 | I definitely enjoyed the $T$ as well .
137 | food
138 | 1
139 | It was pleasantly uncrowded , the $T$ was delightful , the garden adorable , the food ( from appetizers to entrees ) was delectable .
140 | service
141 | 1
142 | It was pleasantly uncrowded , the service was delightful , the $T$ adorable , the food ( from appetizers to entrees ) was delectable .
143 | garden
144 | 1
145 | It was pleasantly uncrowded , the service was delightful , the garden adorable , the $T$ ( from appetizers to entrees ) was delectable .
146 | food
147 | 1
148 | It was pleasantly uncrowded , the service was delightful , the garden adorable , the food ( from $T$ to entrees ) was delectable .
149 | appetizers
150 | 1
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/data/restaurant/word_id.txt:
--------------------------------------------------------------------------------
1 | rasamalai 1
2 | limited 2
3 | legacies 3
4 | surrounding 4
5 | hats 5
6 | saves 6
7 | sleek 7
8 | four 8
9 | asian 9
10 | hanging 10
11 | famished 11
12 | gabriella 12
13 | captain 13
14 | hate 14
15 | greens 15
16 | forget 16
17 | increase 17
18 | paris 18
19 | 161 19
20 | prix-fixe 20
21 | whatsoever 21
22 | under 22
23 | fromager 23
24 | sorry 24
25 | pride 25
26 | worth 26
27 | @ 27
28 | chennai 28
29 | deli 29
30 | every 30
31 | figs 31
32 | messy 32
33 | low-key 33
34 | bringing 34
35 | sichuan 35
36 | school 36
37 | wooden 37
38 | clientele 38
39 | wednesday 39
40 | frozen 40
41 | flashy 41
42 | enhance 42
43 | ups 43
44 | 9pm 44
45 | enjoy 45
46 | expanded 46
47 | tired 47
48 | refleshment 48
49 | consistent 49
50 | bacon 50
51 | japanese 51
52 | sabbath 52
53 | chef 53
54 | raucus 54
55 | second 55
56 | street 56
57 | 49 57
58 | wintermelon 58
59 | even 59
60 | admire 60
61 | saved 61
62 | + 62
63 | cooking 63
64 | liberty 64
65 | wouldnt 65
66 | above 66
67 | new 67
68 | tips 68
69 | poorly 69
70 | ever 70
71 | disney 71
72 | counters 72
73 | deemed 73
74 | pancakes 74
75 | herb 75
76 | never 76
77 | shuizhu 77
78 | here 78
79 | hundreds 79
80 | refinement 80
81 | kicker 81
82 | 100 82
83 | previews 83
84 | mozzarella 84
85 | celebration 85
86 | dry 86
87 | kids 87
88 | items 88
89 | employees 89
90 | changed 90
91 | unfriendly 91
92 | california 92
93 | spotty 93
94 | changes 94
95 | pairings 95
96 | fantastic 96
97 | sad-looking 97
98 | slices 98
99 | godmother 99
100 | explained 100
101 | charred 101
102 | highly 102
103 | brought 103
104 | pound 104
105 | meats 105
106 | total 106
107 | would 107
108 | hungry 108
109 | quibbles 109
110 | seved 110
111 | symphony 111
112 | music 112
113 | calm 113
114 | recommend 114
115 | strike 115
116 | type 116
117 | until 117
118 | speaking 118
119 | massamman 119
120 | posting 120
121 | holy 121
122 | relax 122
123 | brings 123
124 | congee 124
125 | award 125
126 | hurt 126
127 | warn 127
128 | glass 128
129 | warm 129
130 | overcooking 130
131 | excellent 131
132 | 90 132
133 | hole 133
134 | recommand 134
135 | authentically 135
136 | must 136
137 | me 137
138 | decoration 138
139 | word 139
140 | room 140
141 | baluchi 141
142 | work 142
143 | daft 143
144 | existant 144
145 | temperatures 145
146 | stauff 146
147 | elegantly 147
148 | my 148
149 | example 149
150 | anticipating 150
151 | fresher 151
152 | give 152
153 | calories 153
154 | foods 154
155 | overheard 155
156 | not-so-fresh 156
157 | want 157
158 | cantonese 158
159 | boths 159
160 | keep 160
161 | attract 161
162 | end 162
163 | turn 163
164 | complaining 164
165 | customers 165
166 | nuts 166
167 | frites 167
168 | confit 168
169 | how 169
170 | hot 170
171 | hop 171
172 | harkens 172
173 | disappoint 173
174 | ordinary 174
175 | kebabs 175
176 | charging 176
177 | pizza 177
178 | badly 178
179 | description 179
180 | beauty 180
181 | funny 181
182 | mess 182
183 | after 183
184 | amanzing 184
185 | wrong 185
186 | mesh 186
187 | fat 187
188 | balthazar 188
189 | types 189
190 | bucks 190
191 | purchase 191
192 | chilled 192
193 | third 193
194 | occasions 194
195 | recieved 195
196 | attracts 196
197 | appreciate 197
198 | greet 198
199 | portobello 199
200 | green 200
201 | south 201
202 | suggest 202
203 | fan 203
204 | oysters 204
205 | order 205
206 | wind 206
207 | wine 207
208 | deco 208
209 | office 209
210 | enter 210
211 | over 211
212 | satisfied 212
213 | murray 213
214 | outshine 214
215 | london 215
216 | oven 216
217 | innovative 217
218 | japan 218
219 | before 219
220 | personal 220
221 | fix 221
222 | , 222
223 | crew 223
224 | better 224
225 | production 225
226 | understated 226
227 | differently 227
228 | receipies 228
229 | weeks 229
230 | pleasurable 230
231 | versus 231
232 | then 232
233 | them 233
234 | affected 234
235 | tourist 235
236 | combination 236
237 | similar 237
238 | break 238
239 | band 239
240 | bang 240
241 | effects 241
242 | they 242
243 | glazed 243
244 | one 244
245 | bank 245
246 | bread 246
247 | meat 247
248 | potatoes 248
249 | reasonably 249
250 | crunchy 250
251 | l 251
252 | toasted 252
253 | filling 253
254 | panini 254
255 | reasonable 255
256 | each 256
257 | went 257
258 | jay-z 258
259 | meal 259
260 | bone 260
261 | mean 261
262 | lifted 262
263 | hanger 263
264 | roxy 264
265 | told 265
266 | spider 266
267 | fornino 267
268 | strips 268
269 | turnip 269
270 | forgot 270
271 | apetizers 271
272 | saturday 272
273 | whip 273
274 | hand-painted 274
275 | god 275
276 | laid 276
277 | remorse 277
278 | volare 278
279 | nite 279
280 | reader 280
281 | heavenly 281
282 | surprise 282
283 | sliding 283
284 | grease 284
285 | whiff 285
286 | given 286
287 | free 287
288 | standard 288
289 | grapes 289
290 | delightfully 290
291 | fixe 291
292 | wanted 292
293 | certified 293
294 | aisle 294
295 | enormous 295
296 | ate 296
297 | dahkin 297
298 | inexpensive 298
299 | scruff 299
300 | takeout 300
301 | lousy 301
302 | licked 302
303 | speedy 303
304 | soda 304
305 | cucumber 305
306 | unappreciative 306
307 | loud 307
308 | chopped 308
309 | not-so-frequent 309
310 | nha 310
311 | features 311
312 | wash 312
313 | ofr 313
314 | delicious 314
315 | tamarind 315
316 | plastic 316
317 | service 317
318 | similarly 318
319 | top 319
320 | girls 320
321 | approximately 321
322 | plentiful 322
323 | needed 323
324 | ton 324
325 | too 325
326 | blossoms 326
327 | tom 327
328 | bitter 328
329 | ranging 329
330 | listen 330
331 | ceiling 331
332 | hangout 332
333 | canned 333
334 | touristy 334
335 | serve 335
336 | took 336
337 | atmoshpere 337
338 | repeatable 338
339 | somewhat 339
340 | shortly 340
341 | outisde 341
342 | paella 342
343 | brulee 343
344 | frankly 344
345 | bacos 345
346 | hike 346
347 | bindi 347
348 | likely 348
349 | seated 349
350 | preparation 350
351 | matter 351
352 | idle 352
353 | fabulous 353
354 | mermaid 354
355 | feeling 355
356 | mini 356
357 | vegatables 357
358 | ran 358
359 | rao 359
360 | modern 360
361 | mind 361
362 | mine 362
363 | ginger 363
364 | drip 364
365 | raw 365
366 | further 366
367 | seltzer 367
368 | seen 368
369 | seem 369
370 | picks 370
371 | leafy 371
372 | ray 372
373 | tho 373
374 | strength 374
375 | genuine 375
376 | thoroughly 376
377 | soaked 377
378 | - 378
379 | situated 379
380 | recommended 380
381 | hearty 381
382 | luxury 382
383 | doors 383
384 | laughed 384
385 | downstairs 385
386 | realtively 386
387 | blue 387
388 | though 388
389 | courtesey 389
390 | mashed 390
391 | welll 391
392 | regular 392
393 | mouth 393
394 | plenty 394
395 | imported 395
396 | inconsistency 396
397 | opted 397
398 | late-night 398
399 | soups 399
400 | m 400
401 | newcomers 401
402 | lyle 402
403 | definitely 403
404 | manydifferent 404
405 | entertaining 405
406 | yankees 406
407 | faired 407
408 | scream 408
409 | came 409
410 | reserve 410
411 | decidedly 411
412 | saying 412
413 | beaten 413
414 | overpriced 414
415 | d' 415
416 | meetings 416
417 | prix 417
418 | supplied 418
419 | cakebread 419
420 | earth 420
421 | rang 421
422 | enjoyed 422
423 | toast 423
424 | finally 424
425 | asbolute 425
426 | quaint 426
427 | menu 427
428 | weekends 428
429 | sugar 429
430 | touched 430
431 | rich 431
432 | folks 432
433 | attitudes 433
434 | adequate 434
435 | rice 435
436 | personality 436
437 | lady 437
438 | do 438
439 | dj 439
440 | colorful 440
441 | $t$tony 441
442 | df 442
443 | air 443
444 | de 444
445 | stop 445
446 | overpraised 446
447 | appetizer 447
448 | candle-light 448
449 | 12 449
450 | tiled 450
451 | despite 451
452 | frying 452
453 | basmati 453
454 | overbearing 454
455 | bar 455
456 | flour 456
457 | covering 457
458 | nicely 458
459 | sligtly 459
460 | lexington 460
461 | whitefish 461
462 | twice 462
463 | bad 463
464 | architecture 464
465 | after-theatre 465
466 | grilled 466
467 | aesthetic 467
468 | steak 468
469 | explanations 469
470 | lad 470
471 | saul 471
472 | disaster 472
473 | fair 473
474 | hand-crafted 474
475 | pinot 475
476 | decided 476
477 | reviewer 477
478 | miserable 478
479 | terrine 479
480 | noodles 480
481 | alternative 481
482 | best 482
483 | said 483
484 | 48th 484
485 | michelin 485
486 | pressured 486
487 | coats 487
488 | lots 488
489 | away 489
490 | rushing 490
491 | oil-brushed 491
492 | mud 492
493 | unable 493
494 | antique-seeming 494
495 | hopefully 495
496 | drawn 496
497 | ess-a-bagel 497
498 | skimpy 498
499 | we 499
500 | men 500
501 | triples 501
502 | wo 502
503 | smelled 503
504 | fruits 504
505 | packaged 505
506 | however 506
507 | wu 507
508 | blasted 508
509 | kitchen 509
510 | suggested 510
511 | received 511
512 | pits 512
513 | o.k. 513
514 | jelly 514
515 | against 515
516 | hummus 516
517 | cod 517
518 | hated 518
519 | pita 519
520 | uni 520
521 | requests 521
522 | freshest 522
523 | asked 523
524 | 30th 524
525 | appeared 525
526 | character 526
527 | wait-staff 527
528 | 2nd 528
529 | tons 529
530 | non 530
531 | tony 531
532 | loaded 532
533 | speak 533
534 | bathroom 534
535 | ease 535
536 | proceeded 536
537 | particulary 537
538 | beef 538
539 | frist 539
540 | fri 540
541 | remained 541
542 | three 542
543 | been 543
544 | . 544
545 | commission 545
546 | beer 546
547 | much 547
548 | sommelier 548
549 | basic 549
550 | expected 550
551 | entered 551
552 | lovely 552
553 | incompetent 553
554 | containers 554
555 | threw 555
556 | website 556
557 | life 557
558 | families 558
559 | recomend 559
560 | relaxing 560
561 | americanized 561
562 | catering 562
563 | chill 563
564 | hoist 564
565 | child 565
566 | catch 566
567 | worked 567
568 | 160 568
569 | teapot 569
570 | currys 570
571 | gracious 571
572 | exception 572
573 | save 573
574 | hole-in-the-wall 574
575 | heartland 575
576 | say 576
577 | remaining 577
578 | voluminous 578
579 | lizard 579
580 | melted 580
581 | suppose 581
582 | virgnin 582
583 | balance 583
584 | inspired 584
585 | skiline 585
586 | entre'es 586
587 | jamun 587
588 | tikka-masala 588
589 | nori-wrapped 589
590 | played 590
591 | dumplings 591
592 | is 592
593 | sushi 593
594 | it 594
595 | shame 595
596 | upscale 596
597 | cans 597
598 | in 598
599 | seattle 599
600 | ie 600
601 | if 601
602 | anti-pasta 602
603 | memorial 603
604 | bottles 604
605 | descent 605
606 | non-busy 606
607 | things 607
608 | make 608
609 | toaster 609
610 | airport 610
611 | greengrass 611
612 | drawback 612
613 | patient 613
614 | split 614
615 | bands 615
616 | vegetable 616
617 | plates 617
618 | several 618
619 | mayo 619
620 | unforgetable 620
621 | european 621
622 | fairly 622
623 | tiffin 623
624 | boiled 624
625 | hang 625
626 | evil 626
627 | greeted 627
628 | delight 628
629 | fridays 629
630 | garlic 630
631 | characters 631
632 | groundbreaking 632
633 | tuna 633
634 | butter 634
635 | sushimi 635
636 | kept 636
637 | condiments 637
638 | jekyll 638
639 | parathas 639
640 | humble 640
641 | thr 641
642 | berate 642
643 | udon 643
644 | client 644
645 | greatest 645
646 | thh 646
647 | claims 647
648 | the 648
649 | smoked 649
650 | yours 650
651 | left 651
652 | seasonal 652
653 | just 653
654 | bargain 654
655 | gods 655
656 | somethings 656
657 | lassi 657
658 | yes 658
659 | yet 659
660 | previous 660
661 | terrific 661
662 | brassiere 662
663 | legion 663
664 | burnt 664
665 | old-fashioned 665
666 | boot 666
667 | had 667
668 | emphasis 668
669 | shout 669
670 | spread 670
671 | board 671
672 | belly 672
673 | menu-fare 673
674 | east 674
675 | gave 675
676 | scatty 676
677 | tatin 677
678 | boxed 678
679 | specia 679
680 | shabu-shabu 680
681 | manhathan 681
682 | yuzu 682
683 | possible 683
684 | ballato 684
685 | creatively 685
686 | fusion 686
687 | discreet 687
688 | 3pm 688
689 | background 689
690 | consisted 690
691 | judge 691
692 | unique 692
693 | 6:00 693
694 | sliced 694
695 | flavoring 695
696 | gift 696
697 | croquette 697
698 | 50 698
699 | remind 699
700 | sparse 700
701 | night 701
702 | notorious 702
703 | revisiting 703
704 | guests 704
705 | right 705
706 | old 706
707 | deal 707
708 | people 708
709 | easy 709
710 | proudly 710
711 | somehow 711
712 | usher 712
713 | ideal 713
714 | varietys 714
715 | jeffery 715
716 | short-term 716
717 | okra 717
718 | for 718
719 | informative 719
720 | carts 720
721 | phenomenal 721
722 | ice 722
723 | creative 723
724 | everything 724
725 | icy 725
726 | asking 726
727 | maitre 727
728 | hollondaise 728
729 | lahore 729
730 | slurry 730
731 | carte 731
732 | bisque 732
733 | shakes 733
734 | tartar 734
735 | overhauled 735
736 | corn 736
737 | waitressing 737
738 | buffet 738
739 | memorable 739
740 | peep 740
741 | super 741
742 | chilean 742
743 | benches 743
744 | inedible 744
745 | dollars 745
746 | months 746
747 | barebecued 747
748 | dinner 748
749 | dined 749
750 | plus 750
751 | afternoon 751
752 | emilio 752
753 | obv 753
754 | lacked 754
755 | curry 755
756 | watering 756
757 | managers 757
758 | tastier 758
759 | wasting 759
760 | soh 760
761 | hustled 761
762 | delighted 762
763 | puke 763
764 | down 764
765 | lies 765
766 | back-to-back 766
767 | soy 767
768 | refined 768
769 | orsay 769
770 | wan 770
771 | crowd 771
772 | pre-sliced 772
773 | amazingly 773
774 | support 774
775 | constantly 775
776 | knowing 776
777 | bukhara 777
778 | gig 778
779 | absolutely 779
780 | way 780
781 | gin 781
782 | innovators 782
783 | was 783
784 | happy 784
785 | head 785
786 | offering 786
787 | offer 787
788 | magnificent 788
789 | gorgeous 789
790 | eater 790
791 | heat 791
792 | uncle 792
793 | justify 793
794 | true 794
795 | eastsider 795
796 | nov. 796
797 | portions 797
798 | happen 798
799 | pretension 799
800 | inside 800
801 | blantently 801
802 | attached 802
803 | maximum 803
804 | tell 804
805 | nicest 805
806 | lays 806
807 | sapphire 807
808 | servings 808
809 | unusually 809
810 | seafood 810
811 | mesclun 811
812 | adorn 812
813 | expresso 813
814 | classic 814
815 | frederick 815
816 | sticky 816
817 | calzones 817
818 | not-so-little 818
819 | sometime 819
820 | promised 820
821 | tea 821
822 | yuck 822
823 | mediocre 823
824 | annoying 824
825 | check 825
826 | marinated 826
827 | nj 827
828 | tradional 828
829 | floor 829
830 | accomodating 830
831 | tip 831
832 | topped 832
833 | whem 833
834 | ny 834
835 | setting 835
836 | holding 836
837 | test 837
838 | smell 838
839 | roll 839
840 | realize 840
841 | reconsider 841
842 | felt 842
843 | uniformly 843
844 | polite 844
845 | transported 845
846 | experience.the 846
847 | 'd 847
848 | fedeli 848
849 | scores 849
850 | 'm 850
851 | pizzas 851
852 | weekend 852
853 | dulce 853
854 | happening 854
855 | apology 855
856 | phone 856
857 | bottom 857
858 | together 858
859 | time 859
860 | push 860
861 | serious 861
862 | someplace 862
863 | stacks 863
864 | overdue 864
865 | precise 865
866 | concept 866
867 | managed 867
868 | :) 868
869 | chain 869
870 | whoever 870
871 | dance 871
872 | skip 872
873 | roe 873
874 | deliveries 874
875 | leads 875
876 | mild 876
877 | qualms 877
878 | comments 878
879 | understandable 879
880 | chair 880
881 | milk 881
882 | certainly 882
883 | uneven 883
884 | yummy 884
885 | itsuperb 885
886 | technique 886
887 | father 887
888 | busboy 888
889 | environment 889
890 | 0 890
891 | charge 891
892 | compensate 892
893 | e. 893
894 | marks 894
895 | icing 895
896 | 3am 896
897 | lanterna 897
898 | thawed 898
899 | choice 899
900 | pleasnt 900
901 | tanks 901
902 | cook 902
903 | bartender 903
904 | trouble 904
905 | margarite 905
906 | caprese 906
907 | minute 907
908 | cool 908
909 | dim 909
910 | cooks 910
911 | staples 911
912 | level 912
913 | did 913
914 | die 914
915 | standards 915
916 | specials 916
917 | item 917
918 | excellence 918
919 | section 919
920 | quick 920
921 | sidewalk 921
922 | dip 922
923 | round 923
924 | dis 924
925 | porridge 925
926 | pork 926
927 | unexpected 927
928 | says 928
929 | regret 929
930 | seasoning 930
931 | sigh 931
932 | discover 932
933 | steaks 933
934 | snapple 934
935 | cost 935
936 | comforting 936
937 | utter 937
938 | gigondas 938
939 | eating 939
940 | chicken 940
941 | drinks 941
942 | tartare 942
943 | stands 943
944 | unheralded 944
945 | melt 945
946 | current 946
947 | remembered 947
948 | deficiencies 948
949 | dimsum 949
950 | shared 950
951 | ground 951
952 | filled 952
953 | satisfy 953
954 | crispier 954
955 | basketful 955
956 | mussels 956
957 | 1oz 957
958 | french 958
959 | water 959
960 | fluke 960
961 | entertain 961
962 | groups 962
963 | alone 963
964 | noir 964
965 | along 965
966 | appears 966
967 | change 967
968 | wait 968
969 | box 969
970 | buck 970
971 | incoming 971
972 | accomplishes 972
973 | healthy 973
974 | root 974
975 | overflowing 975
976 | atomosphere 976
977 | crumbled 977
978 | suggestion 978
979 | usually 979
980 | conveniently 980
981 | entrees 981
982 | taipei 982
983 | underdeserving 983
984 | gorgeously 984
985 | love 985
986 | extra 986
987 | 14.95 987
988 | pony 988
989 | marvelous 989
990 | 1st 990
991 | prompt 991
992 | rarely 992
993 | flavors 993
994 | handled 994
995 | pere 995
996 | sake 996
997 | positive 997
998 | visit 998
999 | abroad 999
1000 | parties 1000
1001 | live 1001
1002 | wood 1002
1003 | wonderfully 1003
1004 | msg 1004
1005 | cheescake 1005
1006 | scopa 1006
1007 | today 1007
1008 | loving 1008
1009 | son 1009
1010 | sharing 1010
1011 | lawns 1011
1012 | club 1012
1013 | share 1013
1014 | acceptable 1014
1015 | chocolate 1015
1016 | downtown 1016
1017 | ceviche 1017
1018 | olive 1018
1019 | effort 1019
1020 | malai 1020
1021 | diner 1021
1022 | pumkin 1022
1023 | 8pm 1023
1024 | tokyo 1024
1025 | boarderline 1025
1026 | trang 1026
1027 | flagship 1027
1028 | soup 1028
1029 | vegetarian-friendly 1029
1030 | sour 1030
1031 | values 1031
1032 | can 1032
1033 | co-workers 1033
1034 | growing 1034
1035 | making 1035
1036 | crazy 1036
1037 | valentines 1037
1038 | awesome 1038
1039 | confused 1039
1040 | sample 1040
1041 | heard 1041
1042 | critic 1042
1043 | chin 1043
1044 | incredible 1044
1045 | allowed 1045
1046 | chic 1046
1047 | pink 1047
1048 | winter 1048
1049 | piled 1049
1050 | spreads 1050
1051 | ping 1051
1052 | nyu 1052
1053 | 1 1053
1054 | till 1054
1055 | sunday 1055
1056 | nyc 1056
1057 | speaks 1057
1058 | cocktail 1058
1059 | may 1059
1060 | max 1060
1061 | spot 1061
1062 | unobtrusive 1062
1063 | lucky 1063
1064 | secluded 1064
1065 | birthday 1065
1066 | mad 1066
1067 | date 1067
1068 | such 1068
1069 | guys 1069
1070 | grow 1070
1071 | man 1071
1072 | muggy 1072
1073 | prooudly 1073
1074 | classics 1074
1075 | varieties 1075
1076 | agreable 1076
1077 | whenever 1077
1078 | maybe 1078
1079 | tapas 1079
1080 | st 1080
1081 | ducasse 1081
1082 | so 1082
1083 | deposit 1083
1084 | pulled 1084
1085 | talk 1085
1086 | typical 1086
1087 | drunken 1087
1088 | cute 1088
1089 | approx 1089
1090 | serving 1090
1091 | exclaimed 1091
1092 | indeed 1092
1093 | differences 1093
1094 | displayed 1094
1095 | years 1095
1096 | course 1096
1097 | thinner 1097
1098 | terrace 1098
1099 | shake 1099
1100 | prosecco 1100
1101 | still 1101
1102 | group 1102
1103 | thank 1103
1104 | sripraphai 1104
1105 | perrrrrrrrrfect 1105
1106 | interesting 1106
1107 | bagels 1107
1108 | appetizers 1108
1109 | amazing 1109
1110 | faves 1110
1111 | attraction 1111
1112 | window 1112
1113 | offers 1113
1114 | celebrate 1114
1115 | ours 1115
1116 | main 1116
1117 | unaccommodating 1117
1118 | instantly 1118
1119 | tonic 1119
1120 | chalk 1120
1121 | matches 1121
1122 | hinting 1122
1123 | omakase 1123
1124 | uws 1124
1125 | thalia 1125
1126 | lunch 1126
1127 | scalina 1127
1128 | half 1128
1129 | not 1129
1130 | feature 1130
1131 | bgel 1131
1132 | now 1132
1133 | hall 1133
1134 | considerably 1134
1135 | moist 1135
1136 | name 1136
1137 | slurp 1137
1138 | january 1138
1139 | food-quality 1139
1140 | outrageously 1140
1141 | zabars 1141
1142 | stalling 1142
1143 | square 1143
1144 | yeah 1144
1145 | wrap 1145
1146 | fires 1146
1147 | catching 1147
1148 | entering 1148
1149 | ew 1149
1150 | requesting 1150
1151 | salads 1151
1152 | waitstaff 1152
1153 | 3rd 1153
1154 | space 1154
1155 | looking 1155
1156 | explain 1156
1157 | seriously 1157
1158 | cobb 1158
1159 | internet 1159
1160 | pizzeria 1160
1161 | correct 1161
1162 | shows 1162
1163 | earlier 1163
1164 | octopus 1164
1165 | tempura 1165
1166 | ocasionally 1166
1167 | cart 1167
1168 | quite 1168
1169 | oasis 1169
1170 | complicated 1170
1171 | besides 1171
1172 | 3.25 1172
1173 | marine 1173
1174 | card 1174
1175 | care 1175
1176 | advance 1176
1177 | selections 1177
1178 | waiter 1178
1179 | punk 1179
1180 | thing 1180
1181 | funky 1181
1182 | place 1182
1183 | un-tasty 1183
1184 | think 1184
1185 | waited 1185
1186 | first 1186
1187 | exotic 1187
1188 | cheese 1188
1189 | saving 1189
1190 | revenue 1190
1191 | yourself 1191
1192 | clumsy 1192
1193 | tamari 1193
1194 | mignon 1194
1195 | fast 1195
1196 | carry 1196
1197 | impossible 1197
1198 | sounds 1198
1199 | open 1199
1200 | 'em 1200
1201 | size 1201
1202 | city 1202
1203 | little 1203
1204 | checked 1204
1205 | bts 1205
1206 | stuck 1206
1207 | fl 1207
1208 | bite 1208
1209 | t 1209
1210 | anyone 1210
1211 | 2 1211
1212 | stuffed 1212
1213 | masala 1213
1214 | white 1214
1215 | inovated 1215
1216 | friend 1216
1217 | gives 1217
1218 | eyes 1218
1219 | impresses 1219
1220 | mostly 1220
1221 | that 1221
1222 | appreciates 1222
1223 | 40times 1223
1224 | ridiculous 1224
1225 | simmered 1225
1226 | fooled 1226
1227 | thai 1227
1228 | inludes 1228
1229 | undoubtedly 1229
1230 | sake-friendly 1230
1231 | boyfriend 1231
1232 | 11 1232
1233 | 10 1233
1234 | 13 1234
1235 | bored 1235
1236 | 15 1236
1237 | unfortunately 1237
1238 | 16 1238
1239 | scrumptious 1239
1240 | so-so 1240
1241 | midtown 1241
1242 | r 1242
1243 | apples 1243
1244 | venture 1244
1245 | were 1245
1246 | gigantic 1246
1247 | sublime 1247
1248 | and 1248
1249 | alot 1249
1250 | coconut 1250
1251 | tasted 1251
1252 | angel 1252
1253 | sal 1253
1254 | slaw 1254
1255 | turned 1255
1256 | ant 1256
1257 | tarte 1257
1258 | tastes 1258
1259 | pastry 1259
1260 | offerng 1260
1261 | lurking 1261
1262 | saw 1262
1263 | any 1263
1264 | sat 1264
1265 | lumpy 1265
1266 | efficient 1266
1267 | aside 1267
1268 | hotspot 1268
1269 | note 1269
1270 | dining 1270
1271 | mr. 1271
1272 | potential 1272
1273 | take 1273
1274 | interior 1274
1275 | performance 1275
1276 | concern 1276
1277 | 200 1277
1278 | begin 1278
1279 | sure 1279
1280 | amiable 1280
1281 | opposite 1281
1282 | track 1282
1283 | cheesecake 1283
1284 | price 1284
1285 | knew 1285
1286 | paid 1286
1287 | importantly 1287
1288 | pair 1288
1289 | america 1289
1290 | rivals 1290
1291 | forever 1291
1292 | especially 1292
1293 | surprising 1293
1294 | izakaya 1294
1295 | considered 1295
1296 | average 1296
1297 | later 1297
1298 | drive 1298
1299 | soho 1299
1300 | shut-down 1300
1301 | hear 1301
1302 | salt 1302
1303 | quantity 1303
1304 | slope 1304
1305 | rating 1305
1306 | walking 1306
1307 | show 1307
1308 | lotus 1308
1309 | mains 1309
1310 | cheap 1310
1311 | corned 1311
1312 | discovered 1312
1313 | bright 1313
1314 | inconsistent 1314
1315 | corner 1315
1316 | molars 1316
1317 | superb 1317
1318 | calamari 1318
1319 | maine 1319
1320 | crackling 1320
1321 | slow 1321
1322 | ratio 1322
1323 | selecion 1323
1324 | title 1324
1325 | 40pp 1325
1326 | treasure 1326
1327 | cheeseburger 1327
1328 | 3 1328
1329 | texture 1329
1330 | only 1330
1331 | going 1331
1332 | black 1332
1333 | watching 1333
1334 | bridge 1334
1335 | pot-stickers 1335
1336 | pastrami 1336
1337 | get 1337
1338 | devine 1338
1339 | jazz 1339
1340 | truly 1340
1341 | leon 1341
1342 | bagles 1342
1343 | nearly 1343
1344 | melt-in-your-mouth 1344
1345 | mulino 1345
1346 | flavour 1346
1347 | gem 1347
1348 | prime 1348
1349 | lollies 1349
1350 | pinnacle 1350
1351 | girl 1351
1352 | seldom 1352
1353 | primi 1353
1354 | isnt 1354
1355 | absurdly 1355
1356 | morning 1356
1357 | seatin 1357
1358 | dough 1358
1359 | finishing 1359
1360 | unappealing 1360
1361 | where 1361
1362 | husband 1362
1363 | ignored 1363
1364 | imposing 1364
1365 | seat 1365
1366 | cocktails 1366
1367 | anyways 1367
1368 | replied 1368
1369 | broadway 1369
1370 | custards 1370
1371 | ruined 1371
1372 | wonder 1372
1373 | palette 1373
1374 | satisfying 1374
1375 | ways 1375
1376 | crawfish 1376
1377 | review 1377
1378 | definite 1378
1379 | outside 1379
1380 | chewy 1380
1381 | between 1381
1382 | welcomes 1382
1383 | across 1383
1384 | edamame 1384
1385 | affordable 1385
1386 | 5:30 1386
1387 | notice 1387
1388 | tuk 1388
1389 | spare 1389
1390 | diners 1390
1391 | chaats 1391
1392 | come 1392
1393 | dates 1393
1394 | poivre 1394
1395 | many 1395
1396 | gimmicks 1396
1397 | quiet 1397
1398 | contract 1398
1399 | blasts 1399
1400 | s 1400
1401 | patrons 1401
1402 | disappointment 1402
1403 | pureed 1403
1404 | comes 1404
1405 | nearby 1405
1406 | among 1406
1407 | flavorless 1407
1408 | effective 1408
1409 | pot 1409
1410 | jeans 1410
1411 | venues 1411
1412 | expectations 1412
1413 | 60 1413
1414 | well-prepared 1414
1415 | kruno 1415
1416 | leche 1416
1417 | moreover 1417
1418 | writing 1418
1419 | cokes 1419
1420 | logic 1420
1421 | considering 1421
1422 | mare 1422
1423 | awsome 1423
1424 | companionship 1424
1425 | capable 1425
1426 | west 1426
1427 | skew 1427
1428 | blend 1428
1429 | mark 1429
1430 | cared 1430
1431 | featuring 1431
1432 | ravioli 1432
1433 | engine 1433
1434 | tasteless 1434
1435 | offered 1435
1436 | squash 1436
1437 | photos 1437
1438 | figured 1438
1439 | wake 1439
1440 | eaters 1440
1441 | foggy 1441
1442 | undercooked 1442
1443 | attentive 1443
1444 | offeres 1444
1445 | those 1445
1446 | super-trendy 1446
1447 | myself 1447
1448 | these 1448
1449 | might 1449
1450 | worried 1450
1451 | chinatown 1451
1452 | cash 1452
1453 | resturant 1453
1454 | n't 1454
1455 | diverse 1455
1456 | editorial 1456
1457 | promising 1457
1458 | squeezed 1458
1459 | shops 1459
1460 | sq. 1460
1461 | ive 1461
1462 | appetizing 1462
1463 | coffee 1463
1464 | middle 1464
1465 | someone 1465
1466 | kha 1466
1467 | experiance 1467
1468 | obnoxious 1468
1469 | paratha 1469
1470 | floating 1470
1471 | snobby 1471
1472 | thin-crust 1472
1473 | pastas 1473
1474 | erroneously 1474
1475 | disloyal 1475
1476 | il 1476
1477 | pay 1477
1478 | granted 1478
1479 | reminded 1479
1480 | sketchy 1480
1481 | same 1481
1482 | trip 1482
1483 | ya 1483
1484 | pad 1484
1485 | uncourteous 1485
1486 | frequented 1486
1487 | pam 1487
1488 | week 1488
1489 | finish 1489
1490 | tipsy 1490
1491 | singapore 1491
1492 | companion 1492
1493 | devoid 1493
1494 | running 1494
1495 | fruit 1495
1496 | casserole 1496
1497 | deff 1497
1498 | statue 1498
1499 | disapointing 1499
1500 | healthy-looking 1500
1501 | % 1501
1502 | totally 1502
1503 | complained 1503
1504 | theater 1504
1505 | no 1505
1506 | breezy 1506
1507 | without 1507
1508 | puree 1508
1509 | oreganta 1509
1510 | amazed 1510
1511 | charged 1511
1512 | summer 1512
1513 | outdoor 1513
1514 | steamed 1514
1515 | being 1515
1516 | money 1516
1517 | guided 1517
1518 | rest 1518
1519 | kill 1519
1520 | braised 1520
1521 | touch 1521
1522 | flavor 1522
1523 | reality 1523
1524 | barbecued 1524
1525 | afterwards 1525
1526 | refills 1526
1527 | death 1527
1528 | clueless 1528
1529 | thinking 1529
1530 | rose 1530
1531 | seems 1531
1532 | except 1532
1533 | complain 1533
1534 | lets 1534
1535 | interested 1535
1536 | 4 1536
1537 | sampler 1537
1538 | moules 1538
1539 | extensive 1539
1540 | styles 1540
1541 | starving 1541
1542 | around 1542
1543 | spectacular 1543
1544 | playfull 1544
1545 | read 1545
1546 | dark 1546
1547 | traffic 1547
1548 | preference 1548
1549 | listening 1549
1550 | styled 1550
1551 | world 1551
1552 | execution 1552
1553 | disappointed 1553
1554 | dare 1554
1555 | furniture 1555
1556 | commend 1556
1557 | clam 1557
1558 | margheritta 1558
1559 | greeting 1559
1560 | serves 1560
1561 | 've 1561
1562 | facing 1562
1563 | panchetta 1563
1564 | either 1564
1565 | fully 1565
1566 | served 1566
1567 | tower 1567
1568 | vegtables 1568
1569 | seating 1569
1570 | maximize 1570
1571 | naan 1571
1572 | lobster 1572
1573 | atmorphere 1573
1574 | 's 1574
1575 | pickles 1575
1576 | redeeming 1576
1577 | excelent 1577
1578 | provided 1578
1579 | slice 1579
1580 | atmoshere 1580
1581 | drenched 1581
1582 | patroon 1582
1583 | fondue 1583
1584 | overly 1584
1585 | reallocating 1585
1586 | favourite 1586
1587 | nigiri 1587
1588 | happened 1588
1589 | forks 1589
1590 | moderate 1590
1591 | thali 1591
1592 | turkey 1592
1593 | wheat 1593
1594 | roast 1594
1595 | business 1595
1596 | intimate 1596
1597 | sixth 1597
1598 | chefs 1598
1599 | ration 1599
1600 | broken 1600
1601 | secondi 1601
1602 | wong 1602
1603 | nightcap 1603
1604 | thailand 1604
1605 | exciting 1605
1606 | throw 1606
1607 | cheff 1607
1608 | comparison 1608
1609 | ok 1609
1610 | unattentive 1610
1611 | oh 1611
1612 | of 1612
1613 | industry 1613
1614 | paninis 1614
1615 | favorite 1615
1616 | side 1616
1617 | chop 1617
1618 | pistachio 1618
1619 | snack 1619
1620 | stand 1620
1621 | neighbor 1621
1622 | chow 1622
1623 | ow 1623
1624 | ou 1624
1625 | luck 1625
1626 | or 1626
1627 | road 1627
1628 | advanatage 1628
1629 | wontons 1629
1630 | quietly 1630
1631 | burning 1631
1632 | gari 1632
1633 | cuisin 1633
1634 | charts 1634
1635 | non-intrusive 1635
1636 | clams 1636
1637 | lively 1637
1638 | heated 1638
1639 | england 1639
1640 | your 1640
1641 | upstairs 1641
1642 | buds 1642
1643 | her 1643
1644 | area 1644
1645 | removing 1645
1646 | there 1646
1647 | desert 1647
1648 | sampling 1648
1649 | start 1649
1650 | poured 1650
1651 | mondays 1651
1652 | low 1652
1653 | liang 1653
1654 | jalapeno-lime 1654
1655 | lox 1655
1656 | energy 1656
1657 | inobtrusive 1657
1658 | spicy 1658
1659 | complete 1659
1660 | enough 1660
1661 | vindaloo 1661
1662 | alain 1662
1663 | delayed 1663
1664 | curiously 1664
1665 | omelet 1665
1666 | e 1666
1667 | trying 1667
1668 | with 1668
1669 | buying 1669
1670 | spice 1670
1671 | rush 1671
1672 | raga 1672
1673 | romantic 1673
1674 | potato 1674
1675 | $t$ 1675
1676 | l.a. 1676
1677 | grass 1677
1678 | agree 1678
1679 | detailed 1679
1680 | gone 1680
1681 | ac 1681
1682 | palate 1682
1683 | taste 1683
1684 | certain 1684
1685 | am 1685
1686 | mike 1686
1687 | deep 1687
1688 | an 1688
1689 | imagination 1689
1690 | as 1690
1691 | burn-outs 1691
1692 | tasty 1692
1693 | at 1693
1694 | girlfriend 1694
1695 | lifetime 1695
1696 | sommlier 1696
1697 | tasts 1697
1698 | fill 1698
1699 | again 1699
1700 | stumbled 1700
1701 | edibility 1701
1702 | 2003 1702
1703 | deserve 1703
1704 | floored 1704
1705 | drafty 1705
1706 | rubber 1706
1707 | tight 1707
1708 | 6.25 1708
1709 | 5 1709
1710 | lafayette 1710
1711 | you 1711
1712 | tagliatelle 1712
1713 | poor 1713
1714 | branzino 1714
1715 | students 1715
1716 | makhani 1716
1717 | forgettable 1717
1718 | reccommend 1718
1719 | unsurpassed 1719
1720 | includes 1720
1721 | herbs 1721
1722 | near-by 1722
1723 | peak 1723
1724 | unattractive 1724
1725 | fresh 1725
1726 | included 1726
1727 | alcohol 1727
1728 | building 1728
1729 | wife 1729
1730 | 3-6 1730
1731 | mash 1731
1732 | u 1732
1733 | stringy 1733
1734 | directory 1734
1735 | songs 1735
1736 | teriyaki 1736
1737 | all 1737
1738 | sicilian 1738
1739 | consider 1739
1740 | chinese 1740
1741 | mozzerella 1741
1742 | lack 1742
1743 | dollar 1743
1744 | month 1744
1745 | parmesan 1745
1746 | dish 1746
1747 | kick-ass 1747
1748 | porcini 1748
1749 | hardcore 1749
1750 | reluctant 1750
1751 | dreadful 1751
1752 | careful 1752
1753 | everywhere 1753
1754 | regulars 1754
1755 | dumpling 1755
1756 | sashimi 1756
1757 | to 1757
1758 | dinnertime 1758
1759 | graciously 1759
1760 | dressing 1760
1761 | smile 1761
1762 | nori 1762
1763 | enjoying 1763
1764 | presentation 1764
1765 | case 1765
1766 | woman 1766
1767 | premium 1767
1768 | worse 1768
1769 | sitting 1769
1770 | very 1770
1771 | bistro-type 1771
1772 | overdone 1772
1773 | focus 1773
1774 | worst 1774
1775 | got 1775
1776 | awful 1776
1777 | ` 1777
1778 | heaven 1778
1779 | ranting 1779
1780 | sans 1780
1781 | kati 1781
1782 | -- 1782
1783 | list 1783
1784 | manager 1784
1785 | grandfather 1785
1786 | large 1786
1787 | prosciutto 1787
1788 | -1 1788
1789 | small 1789
1790 | chilaquiles 1790
1791 | neighborhood 1791
1792 | gnochi 1792
1793 | attended 1793
1794 | onglet 1794
1795 | nearing 1795
1796 | past 1796
1797 | burger 1797
1798 | rate 1798
1799 | design 1799
1800 | pass 1800
1801 | vomit-inducing 1801
1802 | casual 1802
1803 | ribbon 1803
1804 | creatures 1804
1805 | cheeses 1805
1806 | what 1806
1807 | overly-ambitious 1807
1808 | stood 1808
1809 | risen 1809
1810 | sun 1810
1811 | sum 1811
1812 | crust 1812
1813 | quasi-thai 1813
1814 | 18 1814
1815 | tanya 1815
1816 | version 1816
1817 | apologized 1817
1818 | scallops 1818
1819 | contrast 1819
1820 | condensed 1820
1821 | full 1821
1822 | dissappointed 1822
1823 | unprofessional 1823
1824 | leaping 1824
1825 | chili 1825
1826 | hours 1826
1827 | tracks 1827
1828 | sardines 1828
1829 | strong 1829
1830 | respect 1830
1831 | personable 1831
1832 | search 1832
1833 | ahead 1833
1834 | extraordinary 1834
1835 | vegetarian 1835
1836 | thursday 1836
1837 | reason 1837
1838 | experience 1838
1839 | amount 1839
1840 | lasagna 1840
1841 | arent 1841
1842 | pick 1842
1843 | action 1843
1844 | narrow 1844
1845 | sweetness 1845
1846 | options 1846
1847 | outragous 1847
1848 | guacamole 1848
1849 | family 1849
1850 | put 1850
1851 | apprised 1851
1852 | aesthetics 1852
1853 | trained 1853
1854 | eye 1854
1855 | takes 1855
1856 | ridding 1856
1857 | occassion 1857
1858 | two 1858
1859 | resident 1859
1860 | 6 1860
1861 | taken 1861
1862 | chettinad 1862
1863 | more 1863
1864 | tikka 1864
1865 | diamond 1865
1866 | door 1866
1867 | knows 1867
1868 | kerosene 1868
1869 | omelletes 1869
1870 | tofu 1870
1871 | surprisingly 1871
1872 | excuse 1872
1873 | mill 1873
1874 | dinnerbroker 1874
1875 | stick 1875
1876 | 10:15 1876
1877 | particular 1877
1878 | known 1878
1879 | unbeliavably 1879
1880 | hurry 1880
1881 | town 1881
1882 | grill 1882
1883 | none 1883
1884 | pleasing 1884
1885 | hour 1885
1886 | blah 1886
1887 | nina 1887
1888 | del 1888
1889 | pinnacles 1889
1890 | bruschettas 1890
1891 | def 1891
1892 | beautiful 1892
1893 | compare 1893
1894 | korma 1894
1895 | atrocious 1895
1896 | stated 1896
1897 | joints 1897
1898 | ambient 1898
1899 | suggestions 1899
1900 | minimun 1900
1901 | pushed 1901
1902 | minimum 1902
1903 | salty 1903
1904 | imitation 1904
1905 | sense 1905
1906 | asian-air 1906
1907 | dress 1907
1908 | reputation 1908
1909 | ! 1909
1910 | huge 1910
1911 | needs 1911
1912 | cours 1912
1913 | rather 1913
1914 | chops 1914
1915 | rye 1915
1916 | mcds 1916
1917 | menus 1917
1918 | occasionally 1918
1919 | worry 1919
1920 | freshly 1920
1921 | dills 1921
1922 | stir 1922
1923 | goat 1923
1924 | pongsri 1924
1925 | sandwich 1925
1926 | okay 1926
1927 | tried 1927
1928 | rude 1928
1929 | nebbiolo 1929
1930 | advice 1930
1931 | different 1931
1932 | sophistication 1932
1933 | tries 1933
1934 | fe 1934
1935 | coming 1935
1936 | authentic 1936
1937 | a 1937
1938 | short 1938
1939 | crowded 1939
1940 | coat 1940
1941 | mezz 1941
1942 | eats 1942
1943 | buns 1943
1944 | perhaps 1944
1945 | chopsticks 1945
1946 | halibut 1946
1947 | overcooked 1947
1948 | ??? 1948
1949 | breads 1949
1950 | egg 1950
1951 | playing 1951
1952 | patio 1952
1953 | turnover 1953
1954 | pans 1954
1955 | miso 1955
1956 | bhelpuri 1956
1957 | mexican 1957
1958 | help 1958
1959 | essence 1959
1960 | sooo 1960
1961 | soon 1961
1962 | attitude 1962
1963 | paper 1963
1964 | through 1964
1965 | lava 1965
1966 | signs 1966
1967 | vittorio 1967
1968 | avenue 1968
1969 | its 1969
1970 | arrogant 1970
1971 | seeming 1971
1972 | 24 1972
1973 | 25 1973
1974 | style 1974
1975 | 20 1975
1976 | call 1976
1977 | pray 1977
1978 | greatly 1978
1979 | 28 1979
1980 | actually 1980
1981 | late 1981
1982 | 6.00 1982
1983 | bummer 1983
1984 | friendliest 1984
1985 | pesto 1985
1986 | sauce 1986
1987 | colleague 1987
1988 | wasabe 1988
1989 | snobs 1989
1990 | good 1990
1991 | return 1991
1992 | generously 1992
1993 | than 1993
1994 | consisent 1994
1995 | food 1995
1996 | cannoli 1996
1997 | ye 1997
1998 | walls 1998
1999 | adventurous 1999
2000 | impressive 2000
2001 | easily 2001
2002 | gets 2002
2003 | lettuce 2003
2004 | always 2004
2005 | presented 2005
2006 | courses 2006
2007 | piping 2007
2008 | stopped 2008
2009 | turns 2009
2010 | found 2010
2011 | biscuits 2011
2012 | downside 2012
2013 | heavy 2013
2014 | sterling 2014
2015 | everyone 2015
2016 | knowledgeable 2016
2017 | another 2017
2018 | meaningless 2018
2019 | house 2019
2020 | fish 2020
2021 | hard 2021
2022 | idea 2022
2023 | oil 2023
2024 | expect 2024
2025 | haru 2025
2026 | beyond 2026
2027 | really 2027
2028 | leave 2028
2029 | it-especially 2029
2030 | lovers 2030
2031 | missed 2031
2032 | wondered 2032
2033 | mayonaisse 2033
2034 | scoops 2034
2035 | since 2035
2036 | tiramisu 2036
2037 | fountain 2037
2038 | longtime 2038
2039 | 7 2039
2040 | bistro 2040
2041 | liquers 2041
2042 | sevpuri 2042
2043 | boldness 2043
2044 | bass 2044
2045 | pathetic 2045
2046 | squished 2046
2047 | calzone 2047
2048 | friday 2048
2049 | pub 2049
2050 | pleasant 2050
2051 | difficulty 2051
2052 | experimenting 2052
2053 | imagine 2053
2054 | ask 2054
2055 | attendant 2055
2056 | beginning 2056
2057 | guy 2057
2058 | lag 2058
2059 | bumped 2059
2060 | owners 2060
2061 | premisis 2061
2062 | whim 2062
2063 | persons 2063
2064 | corriander 2064
2065 | spinach 2065
2066 | terrible 2066
2067 | noted 2067
2068 | gourmet 2068
2069 | american 2069
2070 | expecting 2070
2071 | sensations 2071
2072 | neglected 2072
2073 | st. 2073
2074 | delicate 2074
2075 | knots 2075
2076 | dine 2076
2077 | dont 2077
2078 | slipped 2078
2079 | upper 2079
2080 | feel 2080
2081 | knocking 2081
2082 | number 2082
2083 | fancy 2083
2084 | feet 2084
2085 | done 2085
2086 | bland 2086
2087 | miss 2087
2088 | villa 2088
2089 | story 2089
2090 | heads 2090
2091 | guest 2091
2092 | benedict 2092
2093 | twenty 2093
2094 | 5th 2094
2095 | moderately 2095
2096 | least 2096
2097 | scallion 2097
2098 | wonderful 2098
2099 | passed 2099
2100 | hundred 2100
2101 | banana 2101
2102 | jem 2102
2103 | tramezzinis 2103
2104 | warmly 2104
2105 | option 2105
2106 | behind 2106
2107 | parm 2107
2108 | park 2108
2109 | hesititate 2109
2110 | appreciation 2110
2111 | luckily 2111
2112 | part 2112
2113 | typhoon 2113
2114 | bouche 2114
2115 | believe 2115
2116 | grace 2116
2117 | gret 2117
2118 | king 2118
2119 | kind 2119
2120 | b 2120
2121 | mahal 2121
2122 | gotten 2122
2123 | dogs 2123
2124 | i 2124
2125 | 10-piece 2125
2126 | dank 2126
2127 | supposed 2127
2128 | stale 2128
2129 | toward 2129
2130 | entranceway 2130
2131 | remembers 2131
2132 | delectable 2132
2133 | outta 2133
2134 | basically 2134
2135 | outstanding 2135
2136 | wasnt 2136
2137 | antipasti 2137
2138 | w'burg 2138
2139 | juicy 2139
2140 | juice 2140
2141 | substantial 2141
2142 | blond 2142
2143 | qpr 2143
2144 | tandoori 2144
2145 | orders 2145
2146 | sensual 2146
2147 | sell 2147
2148 | lie 2148
2149 | nights 2149
2150 | zero 2150
2151 | superior 2151
2152 | spaghetti 2152
2153 | self 2153
2154 | lit 2154
2155 | also 2155
2156 | costs 2156
2157 | lip 2157
2158 | sandwiches 2158
2159 | finding 2159
2160 | langostine 2160
2161 | zucchini 2161
2162 | unremarkable 2162
2163 | experienced 2163
2164 | bottle 2164
2165 | eggs 2165
2166 | measures 2166
2167 | salmon 2167
2168 | chart 2168
2169 | most 2169
2170 | brooklyn 2170
2171 | charm 2171
2172 | plan 2172
2173 | eaten 2173
2174 | 70 2174
2175 | nothing 2175
2176 | adds 2176
2177 | extremely 2177
2178 | appear 2178
2179 | understands 2179
2180 | windows 2180
2181 | clear 2181
2182 | sometimes 2182
2183 | traditional 2183
2184 | cramped 2184
2185 | clean 2185
2186 | notch 2186
2187 | beancurd 2187
2188 | chowder 2188
2189 | walk-up 2189
2190 | afortune 2190
2191 | lay 2191
2192 | mussaman 2192
2193 | fillet 2193
2194 | frisco 2194
2195 | 2-person 2195
2196 | fine 2196
2197 | find 2197
2198 | faces 2198
2199 | northern 2199
2200 | evoked 2200
2201 | failed 2201
2202 | fellow 2202
2203 | pretty 2203
2204 | factor 2204
2205 | 8 2205
2206 | hip 2206
2207 | palets 2207
2208 | his 2208
2209 | hit 2209
2210 | gratis 2210
2211 | meanwhile 2211
2212 | grocery 2212
2213 | famous 2213
2214 | grew 2214
2215 | batter 2215
2216 | fastest 2216
2217 | closely 2217
2218 | competing 2218
2219 | combinations 2219
2220 | during 2220
2221 | him 2221
2222 | inside-out 2222
2223 | crabmeat 2223
2224 | common 2224
2225 | double 2225
2226 | river 2226
2227 | courteous 2227
2228 | restaurants 2228
2229 | cole 2229
2230 | set 2230
2231 | art 2231
2232 | bart 2232
2233 | overwhelm 2233
2234 | raddichio 2234
2235 | arrives 2235
2236 | doneness 2236
2237 | toons 2237
2238 | professional 2238
2239 | are 2239
2240 | sea 2240
2241 | tender 2241
2242 | close 2242
2243 | comfort 2243
2244 | breast 2244
2245 | chose 2245
2246 | drumsticks 2246
2247 | patties 2247
2248 | expert 2248
2249 | visiting 2249
2250 | wow 2250
2251 | 3-course 2251
2252 | please 2252
2253 | fans 2253
2254 | creme 2254
2255 | various 2255
2256 | multiples 2256
2257 | tortelini 2257
2258 | probably 2258
2259 | burned 2259
2260 | champagne 2260
2261 | perfectly 2261
2262 | compliment 2262
2263 | wide 2263
2264 | available 2264
2265 | artery-clogging 2265
2266 | recently 2266
2267 | sparsely 2267
2268 | complementary 2268
2269 | attention 2269
2270 | competent 2270
2271 | pre-theater 2271
2272 | both 2272
2273 | cubes 2273
2274 | last 2274
2275 | showcase 2275
2276 | hesitant 2276
2277 | restaurant 2277
2278 | fiance 2278
2279 | treated 2279
2280 | 19.95 2280
2281 | mcdonald 2281
2282 | became 2282
2283 | eggplant 2283
2284 | forgotten 2284
2285 | vault 2285
2286 | pour-your-own 2286
2287 | whole 2287
2288 | load 2288
2289 | subpar 2289
2290 | liked 2290
2291 | point 2291
2292 | simple 2292
2293 | sweet 2293
2294 | acted 2294
2295 | northeastern 2295
2296 | community 2296
2297 | scallop 2297
2298 | simply 2298
2299 | village 2299
2300 | rave 2300
2301 | crispy 2301
2302 | expensive 2302
2303 | belt 2303
2304 | souffle 2304
2305 | described 2305
2306 | jsut 2306
2307 | mind-blowing 2307
2308 | overlook 2308
2309 | due 2309
2310 | whom 2310
2311 | proprietor 2311
2312 | megadeth 2312
2313 | brick 2313
2314 | extreme 2314
2315 | meeting 2315
2316 | po 2316
2317 | empty 2317
2318 | pm 2318
2319 | lived 2319
2320 | flight 2320
2321 | assorted 2321
2322 | flavorful 2322
2323 | grating 2323
2324 | else 2324
2325 | pricey 2325
2326 | understand 2326
2327 | specifically 2327
2328 | overcompensate 2328
2329 | prices 2329
2330 | standout 2330
2331 | unnecessarily 2331
2332 | bruschetta 2332
2333 | look 2333
2334 | hostess 2334
2335 | solid 2335
2336 | accomodate 2336
2337 | reliable 2337
2338 | bill 2338
2339 | budget 2339
2340 | sesame 2340
2341 | while 2341
2342 | replaced 2342
2343 | match 2343
2344 | fun 2344
2345 | pack 2345
2346 | real 2346
2347 | larger 2347
2348 | hoping 2348
2349 | overlooked 2349
2350 | drawbacks 2350
2351 | encountered 2351
2352 | disappointing 2352
2353 | itself 2353
2354 | frantic 2354
2355 | beautifully 2355
2356 | ready 2356
2357 | quail 2357
2358 | cuisine 2358
2359 | decor 2359
2360 | barney 2360
2361 | italy 2361
2362 | twice-1 2362
2363 | 8:00 2363
2364 | mint 2364
2365 | shorter 2365
2366 | corridor 2366
2367 | grand 2367
2368 | 9 2368
2369 | relatively 2369
2370 | higher 2370
2371 | used 2371
2372 | fatty 2372
2373 | flooded 2373
2374 | gallery 2374
2375 | cigar 2375
2376 | tupperware 2376
2377 | ziti 2377
2378 | unpretensious 2378
2379 | moment 2379
2380 | arrived 2380
2381 | mussel 2381
2382 | infused 2382
2383 | assortment 2383
2384 | weird 2384
2385 | recent 2385
2386 | early 2386
2387 | overated 2387
2388 | noodle 2388
2389 | spent 2389
2390 | obviously 2390
2391 | person 2391
2392 | chees 2392
2393 | everythig 2393
2394 | convenient 2394
2395 | calcutta 2395
2396 | genuinely 2396
2397 | spend 2397
2398 | know 2398
2399 | alluring 2399
2400 | mom 2400
2401 | quarters 2401
2402 | questions 2402
2403 | roasted 2403
2404 | regardless 2404
2405 | taiwan 2405
2406 | cabaret 2406
2407 | tables 2407
2408 | drizzled 2408
2409 | chaat 2409
2410 | $ 2410
2411 | cup 2411
2412 | surprises 2412
2413 | workers 2413
2414 | percent 2414
2415 | likeable 2415
2416 | innovations 2416
2417 | source 2417
2418 | snappy 2418
2419 | pizzaria 2419
2420 | shoestring 2420
2421 | excited 2421
2422 | surprised 2422
2423 | build 2423
2424 | ridiculously 2424
2425 | ... 2425
2426 | complaint 2426
2427 | march 2427
2428 | complains 2428
2429 | lacking 2429
2430 | big 2430
2431 | couple 2431
2432 | unlimited 2432
2433 | private 2433
2434 | ave. 2434
2435 | bit 2435
2436 | translucent 2436
2437 | helpful 2437
2438 | inviting 2438
2439 | admittedly 2439
2440 | ignore 2440
2441 | eel 2441
2442 | individuals 2442
2443 | popular 2443
2444 | stylish 2444
2445 | improves 2445
2446 | flat 2446
2447 | stagnating 2447
2448 | often 2448
2449 | queens 2449
2450 | consomme 2450
2451 | trendi 2451
2452 | obliged 2452
2453 | sorbet 2453
2454 | some 2454
2455 | back 2455
2456 | understood 2456
2457 | added 2457
2458 | escargot 2458
2459 | pricing 2459
2460 | trendy 2460
2461 | candle 2461
2462 | server 2462
2463 | ourselves 2463
2464 | sauces 2464
2465 | godfather 2465
2466 | delivered 2466
2467 | per 2467
2468 | pen 2468
2469 | sneakers 2469
2470 | kai 2470
2471 | nose 2471
2472 | amazin 2472
2473 | be 2473
2474 | run 2474
2475 | rub 2475
2476 | bo 2476
2477 | lover 2477
2478 | santa 2478
2479 | rearely 2479
2480 | orrechiete 2480
2481 | crap 2481
2482 | major 2482
2483 | by 2483
2484 | working 2484
2485 | anything 2485
2486 | raucous 2486
2487 | leftover 2487
2488 | unconventional 2488
2489 | oatmeal 2489
2490 | deserves 2490
2491 | range 2491
2492 | beans 2492
2493 | experiences 2493
2494 | complimentary 2494
2495 | go-to 2495
2496 | block 2496
2497 | clubhouse 2497
2498 | significant 2498
2499 | into 2499
2500 | integral 2500
2501 | nonsense 2501
2502 | servers 2502
2503 | appropriate 2503
2504 | moshphere 2504
2505 | selected 2505
2506 | steven 2506
2507 | kielbasa 2507
2508 | carpaachio 2508
2509 | rolls 2509
2510 | impressed 2510
2511 | lonk 2511
2512 | tasting 2512
2513 | spending 2513
2514 | long 2514
2515 | eventhough 2515
2516 | homemade 2516
2517 | heritage 2517
2518 | forward 2518
2519 | kamikaze 2519
2520 | : 2520
2521 | cheeky 2521
2522 | metrazur 2522
2523 | himself 2523
2524 | elsewhere 2524
2525 | filet 2525
2526 | jewish 2526
2527 | skewers 2527
2528 | relaxed 2528
2529 | buttery 2529
2530 | paneer 2530
2531 | girlfriends 2531
2532 | hoped 2532
2533 | soupy 2533
2534 | montparnasse 2534
2535 | line 2535
2536 | dull 2536
2537 | info 2537
2538 | faan 2538
2539 | magnificant 2539
2540 | fries 2540
2541 | up 2541
2542 | us 2542
2543 | par 2543
2544 | planet 2544
2545 | paired 2545
2546 | 're 2546
2547 | accustomed 2547
2548 | highlight 2548
2549 | fried 2549
2550 | etc. 2550
2551 | called 2551
2552 | popularity 2552
2553 | ordered 2553
2554 | elegant 2554
2555 | inexpertly 2555
2556 | chai 2556
2557 | nazi-like 2557
2558 | associates 2558
2559 | evening 2559
2560 | home 2560
2561 | rally 2561
2562 | no-class 2562
2563 | cafe 2563
2564 | rainy 2564
2565 | codes 2565
2566 | lemon 2566
2567 | grp 2567
2568 | amounts 2568
2569 | nar 2569
2570 | points 2570
2571 | semi-private 2571
2572 | swirl 2572
2573 | mayonnaise 2573
2574 | manhattan 2574
2575 | nice 2575
2576 | smiles 2576
2577 | draw 2577
2578 | varities 2578
2579 | gf 2579
2580 | gulab 2580
2581 | problems 2581
2582 | prepared 2582
2583 | helping 2583
2584 | cater 2584
2585 | allowing 2585
2586 | dals 2586
2587 | brushetta 2587
2588 | mott 2588
2589 | reservation 2589
2590 | sides 2590
2591 | ago 2591
2592 | happier 2592
2593 | overlooking 2593
2594 | practically 2594
2595 | asthetically 2595
2596 | outing 2596
2597 | vow 2597
2598 | svc 2598
2599 | walked 2599
2600 | sty-town 2600
2601 | cooked 2601
2602 | beverage 2602
2603 | 2006 2603
2604 | far 2604
2605 | beers 2605
2606 | having 2606
2607 | once 2607
2608 | northside 2608
2609 | katz 2609
2610 | teodora 2610
2611 | jason 2611
2612 | ashamed 2612
2613 | melts 2613
2614 | scratch 2614
2615 | enjoyable 2615
2616 | desserts 2616
2617 | dainty 2617
2618 | go 2618
2619 | particularly 2619
2620 | seemed 2620
2621 | compact 2621
2622 | terms 2622
2623 | vietnamese 2623
2624 | concerned 2624
2625 | shanghai 2625
2626 | young 2626
2627 | kababs 2627
2628 | culinary 2628
2629 | germain 2629
2630 | starter 2630
2631 | visitor 2631
2632 | ambience 2632
2633 | include 2633
2634 | cornelia 2634
2635 | friendly 2635
2636 | waiters 2636
2637 | stocked 2637
2638 | wished 2638
2639 | garden 2639
2640 | dessert 2640
2641 | listed 2641
2642 | !!! 2642
2643 | screwed 2643
2644 | bbq-ed 2644
2645 | putting 2645
2646 | telling 2646
2647 | sastifying 2647
2648 | drinking 2648
2649 | unimposing 2649
2650 | continued 2650
2651 | wipe 2651
2652 | edible 2652
2653 | timely 2653
2654 | entire 2654
2655 | magic 2655
2656 | murrays 2656
2657 | varys 2657
2658 | try 2658
2659 | tunnel 2659
2660 | skipped 2660
2661 | busier 2661
2662 | rasberry 2662
2663 | dealt 2663
2664 | lasagnette 2664
2665 | ride 2665
2666 | top-notch 2666
2667 | app 2667
2668 | smaller 2668
2669 | xcept 2669
2670 | favorites 2670
2671 | mediterranean 2671
2672 | ripped 2672
2673 | shrimps 2673
2674 | jump 2674
2675 | redone 2675
2676 | blowing 2676
2677 | hyde 2677
2678 | booth 2678
2679 | uncomfortable 2679
2680 | ummm 2680
2681 | odd 2681
2682 | ues 2682
2683 | roofdeck 2683
2684 | reviews 2684
2685 | sausage 2685
2686 | unavailable 2686
2687 | wallet 2687
2688 | delicous 2688
2689 | sangria 2689
2690 | overwhelmed 2690
2691 | cell 2691
2692 | consistently 2692
2693 | waiting 2693
2694 | indian 2694
2695 | obvious 2695
2696 | piped 2696
2697 | scenery 2697
2698 | downright 2698
2699 | seine 2699
2700 | cozy 2700
2701 | consistant 2701
2702 | urchin 2702
2703 | gathered 2703
2704 | desired 2704
2705 | busy 2705
2706 | let 2706
2707 | pancake 2707
2708 | ley 2708
2709 | wine-by-the-glass 2709
2710 | vinegar 2710
2711 | great 2711
2712 | 30 2712
2713 | spiced 2713
2714 | portioins 2714
2715 | 35 2715
2716 | leaving 2716
2717 | weekday 2717
2718 | popcorn 2718
2719 | opinion 2719
2720 | residents 2720
2721 | spices 2721
2722 | makes 2722
2723 | capex 2723
2724 | thats 2724
2725 | fake 2725
2726 | apple 2726
2727 | yellowfun 2727
2728 | apt 2728
2729 | crosby 2729
2730 | names 2730
2731 | duck 2731
2732 | reserved 2732
2733 | getup 2733
2734 | lime 2734
2735 | standing 2735
2736 | use 2736
2737 | from 2737
2738 | quick-cooked 2738
2739 | iced 2739
2740 | remains 2740
2741 | masaman 2741
2742 | hudson 2742
2743 | murky 2743
2744 | frog 2744
2745 | next 2745
2746 | few 2746
2747 | doubt 2747
2748 | chu 2748
2749 | crab 2749
2750 | eye-pleasing 2750
2751 | means 2751
2752 | intend 2752
2753 | oily 2753
2754 | sort 2754
2755 | on 2755
2756 | started 2756
2757 | lounge 2757
2758 | impress 2758
2759 | charming 2759
2760 | carrying 2760
2761 | whisks 2761
2762 | 14.00 2762
2763 | baby 2763
2764 | fillings 2764
2765 | pieces 2765
2766 | broth 2766
2767 | customer 2767
2768 | codfish 2768
2769 | salad 2769
2770 | f 2770
2771 | this 2771
2772 | challenge 2772
2773 | clients 2773
2774 | highlighting 2774
2775 | pour 2775
2776 | donut 2776
2777 | anywhere 2777
2778 | crossed 2778
2779 | thin 2779
2780 | servants 2780
2781 | meet 2781
2782 | seafoods 2782
2783 | tap 2783
2784 | plate 2784
2785 | off-set 2785
2786 | high 2786
2787 | tag 2787
2788 | something 2788
2789 | tal 2789
2790 | tan 2790
2791 | shrimp 2791
2792 | onions 2792
2793 | tai 2793
2794 | taj 2794
2795 | lamb 2795
2796 | hesitate 2796
2797 | tao 2797
2798 | varied 2798
2799 | friendlier 2799
2800 | sit 2800
2801 | vibe 2801
2802 | wandered 2802
2803 | flaky 2803
2804 | located 2804
2805 | cabbies 2805
2806 | 55.00 2806
2807 | instead 2807
2808 | establishment 2808
2809 | oz 2809
2810 | fare 2810
2811 | entree 2811
2812 | blocks 2812
2813 | attend 2813
2814 | tiem 2814
2815 | watch 2815
2816 | waters 2816
2817 | act 2817
2818 | mixed 2818
2819 | incompetency 2819
2820 | ethnic 2820
2821 | efficiently 2821
2822 | 12-14 2822
2823 | ot 2823
2824 | poached 2824
2825 | light 2825
2826 | counter 2826
2827 | lines 2827
2828 | interrupted 2828
2829 | dinners 2829
2830 | bakery 2830
2831 | allow 2831
2832 | classy 2832
2833 | fallback 2833
2834 | lined 2834
2835 | counted 2835
2836 | bartenders 2836
2837 | preparing 2837
2838 | soggy 2838
2839 | ever-changing 2839
2840 | in-house 2840
2841 | rices 2841
2842 | encouraged 2842
2843 | ladies 2843
2844 | citysearch 2844
2845 | charmingly 2845
2846 | mojito 2846
2847 | celebrations 2847
2848 | including 2848
2849 | looks 2849
2850 | mentioned 2850
2851 | recomendations 2851
2852 | butternut 2852
2853 | bunch 2853
2854 | perfect 2854
2855 | write 2855
2856 | brioche 2856
2857 | le 2857
2858 | la 2858
2859 | chosen 2859
2860 | willing 2860
2861 | choose 2861
2862 | pre-theatre 2862
2863 | crowds 2863
2864 | rip-off 2864
2865 | artisanal 2865
2866 | dal 2866
2867 | dam 2867
2868 | swordfish 2868
2869 | mention 2869
2870 | hands 2870
2871 | front 2871
2872 | seaweed 2872
2873 | day 2873
2874 | minimalist 2874
2875 | personally 2875
2876 | panang 2876
2877 | warned 2877
2878 | freshness 2878
2879 | yasuda 2879
2880 | delightful 2880
2881 | princesses 2881
2882 | accompanied 2882
2883 | bills 2883
2884 | glasses 2884
2885 | watery 2885
2886 | doing 2886
2887 | deegan 2887
2888 | over-bearing 2888
2889 | ambiance 2889
2890 | apppetizers 2890
2891 | exceeded 2891
2892 | our 2892
2893 | 80 2893
2894 | wander 2894
2895 | special 2895
2896 | out 2896
2897 | category 2897
2898 | ' 2898
2899 | nothingon 2899
2900 | casualness 2900
2901 | yellowtail 2901
2902 | red 2902
2903 | scampi 2903
2904 | bubbly 2904
2905 | approached 2905
2906 | wines 2906
2907 | thius 2907
2908 | promptly 2908
2909 | guizhou 2909
2910 | completely 2910
2911 | 2.50 2911
2912 | surely 2912
2913 | york 2913
2914 | usual 2914
2915 | excpetiona 2915
2916 | cooked-to-perfection 2916
2917 | craving 2917
2918 | freshwater 2918
2919 | prepare 2919
2920 | g 2920
2921 | napoli 2921
2922 | steal 2922
2923 | could 2923
2924 | times 2924
2925 | marcelo 2925
2926 | conversation 2926
2927 | produce 2927
2928 | pudding 2928
2929 | curtious 2929
2930 | stickler 2930
2931 | meals 2931
2932 | marsala 2932
2933 | waitress 2933
2934 | rudely 2934
2935 | apps 2935
2936 | scene 2936
2937 | reaches 2937
2938 | soothing 2938
2939 | mai 2939
2940 | glorified 2940
2941 | steamy 2941
2942 | owner 2942
2943 | reached 2943
2944 | blows 2944
2945 | precisely 2945
2946 | quality 2946
2947 | prixe 2947
2948 | indistinguished 2948
2949 | has 2949
2950 | management 2950
2951 | sadly 2951
2952 | decrease 2952
2953 | privacy 2953
2954 | ordering 2954
2955 | accent 2955
2956 | system 2956
2957 | shockingly 2957
2958 | herky 2958
2959 | their 2959
2960 | intermediate 2960
2961 | impecible 2961
2962 | wrapped 2962
2963 | pakistani 2963
2964 | roomier 2964
2965 | tomato 2965
2966 | gummy 2966
2967 | shell 2967
2968 | stomach 2968
2969 | lot 2969
2970 | exactly 2970
2971 | biggest 2971
2972 | accompaniment 2972
2973 | anyones 2973
2974 | runners 2974
2975 | completes 2975
2976 | remember 2976
2977 | loved 2977
2978 | parched 2978
2979 | boring 2979
2980 | see 2980
2981 | rarity 2981
2982 | cucumbers 2982
2983 | appealing 2983
2984 | loves 2984
2985 | 6th 2985
2986 | neapolitan 2986
2987 | visited 2987
2988 | negatively 2988
2989 | amuse 2989
2990 | bet 2990
2991 | dowtown 2991
2992 | lightly 2992
2993 | horrendous 2993
2994 | comfortable 2994
2995 | stike 2995
2996 | have 2996
2997 | need 2997
2998 | dosas 2998
2999 | apparently 2999
3000 | clearly 3000
3001 | energeic 3001
3002 | unbearable 3002
3003 | dishes 3003
3004 | allergies 3004
3005 | oozing 3005
3006 | able 3006
3007 | impecable 3007
3008 | bagel 3008
3009 | mix 3009
3010 | sprinkled 3010
3011 | which 3011
3012 | unbearably 3012
3013 | unless 3013
3014 | who 3014
3015 | mortal 3015
3016 | filets 3016
3017 | snacking 3017
3018 | digestive 3018
3019 | lectured 3019
3020 | why 3020
3021 | freindly 3021
3022 | refreshing 3022
3023 | reminds 3023
3024 | enthusiastic 3024
3025 | request 3025
3026 | hh 3026
3027 | martini 3027
3028 | looked 3028
3029 | scents 3029
3030 | se-ew 3030
3031 | occasion 3031
3032 | generation-fornini 3032
3033 | fact 3033
3034 | tear 3034
3035 | atmosphere 3035
3036 | selection 3036
3037 | burner 3037
3038 | agreed 3038
3039 | sent 3039
3040 | doughy 3040
3041 | anyway 3041
3042 | bring 3042
3043 | planning 3043
3044 | parked 3044
3045 | chevre 3045
3046 | rough 3046
3047 | longer 3047
3048 | feat 3048
3049 | pleased 3049
3050 | samosa 3050
3051 | staff 3051
3052 | costco 3052
3053 | based 3053
3054 | knowledge 3054
3055 | ( 3055
3056 | should 3056
3057 | terminal 3057
3058 | beautification 3058
3059 | 23.95 3059
3060 | combo 3060
3061 | myriad 3061
3062 | minnow 3062
3063 | hope 3063
3064 | slighly 3064
3065 | regularly 3065
3066 | keeps 3066
3067 | skimp 3067
3068 | aanother 3068
3069 | exceptional 3069
3070 | beat 3070
3071 | overall 3071
3072 | take-out 3072
3073 | specjal 3073
3074 | joint 3074
3075 | bean 3075
3076 | ones 3076
3077 | waterbug 3077
3078 | perfection 3078
3079 | words 3079
3080 | striped 3080
3081 | knowledgable 3081
3082 | chips 3082
3083 | abby 3083
3084 | ghetto 3084
3085 | following 3085
3086 | amid 3086
3087 | places 3087
3088 | ended 3088
3089 | h 3089
3090 | gras 3090
3091 | summer-eat 3091
3092 | pre-fixe 3092
3093 | stuff 3093
3094 | she 3094
3095 | grab 3095
3096 | meatsauce 3096
3097 | view 3097
3098 | concoction 3098
3099 | inventive 3099
3100 | exists 3100
3101 | pinard 3101
3102 | taiwanese 3102
3103 | yorkie 3103
3104 | !!!! 3104
3105 | powder 3105
3106 | gaskin 3106
3107 | cold 3107
3108 | packed 3108
3109 | noticicing 3109
3110 | closer 3110
3111 | nolita 3111
3112 | nightmare 3112
3113 | horribly 3113
3114 | meatballs 3114
3115 | tend 3115
3116 | favor 3116
3117 | written 3117
3118 | ess-a 3118
3119 | closed 3119
3120 | horrible 3120
3121 | progress 3121
3122 | neither 3122
3123 | joya 3123
3124 | bought 3124
3125 | nudged 3125
3126 | comparable 3126
3127 | nosiy 3127
3128 | hipster-wannabe 3128
3129 | opening 3129
3130 | importance 3130
3131 | weak 3131
3132 | beverages 3132
3133 | deliver 3133
3134 | job 3134
3135 | joe 3135
3136 | key 3136
3137 | commenting 3137
3138 | above-average 3138
3139 | buttah 3139
3140 | taking 3140
3141 | kosher 3141
3142 | weehawken 3142
3143 | puff 3143
3144 | passing 3144
3145 | fry 3145
3146 | kinds 3146
3147 | jersey 3147
3148 | otherwise 3148
3149 | comment 3149
3150 | hold 3150
3151 | wall 3151
3152 | ca 3152
3153 | walk 3153
3154 | arugula 3154
3155 | company 3155
3156 | table 3156
3157 | trays 3157
3158 | intitally 3158
3159 | insde 3159
3160 | i.e. 3160
3161 | addition 3161
3162 | decent 3162
3163 | balsamic 3163
3164 | sara 3164
3165 | dazzling 3165
3166 | drank 3166
3167 | penang 3167
3168 | treat 3168
3169 | recognize 3169
3170 | curtain 3170
3171 | waste 3171
3172 | naples 3172
3173 | bbq 3173
3174 | ls 3174
3175 | faced 3175
3176 | shoulders 3176
3177 | general 3177
3178 | moved 3178
3179 | lambchops 3179
3180 | bruscetta 3180
3181 | crappy 3181
3182 | parmesean 3182
3183 | finished 3183
3184 | ensuring 3184
3185 | sausages 3185
3186 | improved 3186
3187 | brunch 3187
3188 | ins 3188
3189 | present 3189
3190 | unlike 3190
3191 | plain 3191
3192 | value 3192
3193 | choices 3193
3194 | will 3194
3195 | ar 3195
3196 | owns 3196
3197 | wild 3197
3198 | au 3198
3199 | ultra 3199
3200 | frustrating 3200
3201 | ~ 3201
3202 | mamoun 3202
3203 | stuffing 3203
3204 | barely 3204
3205 | almost 3205
3206 | squid 3206
3207 | thus 3207
3208 | site 3208
3209 | helped 3209
3210 | vs 3210
3211 | vt 3211
3212 | claimed 3212
3213 | ave 3213
3214 | ) 3214
3215 | began 3215
3216 | waitresses 3216
3217 | member 3217
3218 | when 3218
3219 | strange 3219
3220 | flower 3220
3221 | largest 3221
3222 | eclectic 3222
3223 | party 3223
3224 | cream 3224
3225 | tomatoes 3225
3226 | difficult 3226
3227 | succulent 3227
3228 | pho 3228
3229 | slightly 3229
3230 | caters 3230
3231 | drink 3231
3232 | upon 3232
3233 | all-business 3233
3234 | overcrowded 3234
3235 | overpack 3235
3236 | frequently 3236
3237 | impeccable 3237
3238 | lobby 3238
3239 | off 3239
3240 | reflection 3240
3241 | nevertheless 3241
3242 | variety 3242
3243 | well 3243
3244 | delictable 3244
3245 | thought 3245
3246 | english 3246
3247 | limp 3247
3248 | raving 3248
3249 | caramelized 3249
3250 | restuarant 3250
3251 | cashew 3251
3252 | routinely 3252
3253 | less 3253
3254 | claiming 3254
3255 | accurate 3255
3256 | well-executed 3256
3257 | cakes 3257
3258 | freshmess 3258
3259 | seats 3259
3260 | iceberg 3260
3261 | topping 3261
3262 | web 3262
3263 | generous 3263
3264 | nicky 3264
3265 | diner-ish 3265
3266 | sky 3266
3267 | bench 3267
3268 | knish 3268
3269 | add 3269
3270 | attractive 3270
3271 | possibly 3271
3272 | half-price 3272
3273 | warrant 3273
3274 | kick 3274
3275 | checking 3275
3276 | crushed 3276
3277 | fats 3277
3278 | royalty 3278
3279 | five 3279
3280 | whatever 3280
3281 | desk 3281
3282 | immediately 3282
3283 | presentaion 3283
3284 | exellent 3284
3285 | necessary 3285
3286 | like 3286
3287 | onion 3287
3288 | sizes 3288
3289 | neighboors 3289
3290 | vibrant 3290
3291 | roti 3291
3292 | roth 3292
3293 | hosts 3293
3294 | become 3294
3295 | actors 3295
3296 | works 3296
3297 | soft 3297
3298 | italian 3298
3299 | accessible 3299
3300 | warmed 3300
3301 | because 3301
3302 | classical 3302
3303 | alive 3303
3304 | warmer 3304
3305 | recommendation 3305
3306 | proper 3306
3307 | thier 3307
3308 | peter 3308
3309 | stuffy 3309
3310 | recognition 3310
3311 | happens 3311
3312 | leaf 3312
3313 | jalapeno 3313
3314 | esp 3314
3315 | literally 3315
3316 | avoid 3316
3317 | lean 3317
3318 | she's-way-cuter-than-me-that-b@#$* 3318
3319 | favors 3319
3320 | does 3320
3321 | passion 3321
3322 | bustling 3322
3323 | forgiven 3323
3324 | truffle 3324
3325 | ? 3325
3326 | trout 3326
3327 | pepper 3327
3328 | noise 3328
3329 | 2-for 3329
3330 | rock 3330
3331 | host 3331
3332 | although 3332
3333 | hospitable 3333
3334 | pasta 3334
3335 | generic 3335
3336 | vs. 3336
3337 | noisy 3337
3338 | about 3338
3339 | rare 3339
3340 | asks 3340
3341 | getting 3341
3342 | 8.95 3342
3343 | location 3343
3344 | perks 3344
3345 | important 3345
3346 | toppings 3346
3347 | crusted 3347
3348 | pastries 3348
3349 | !! 3349
3350 | own 3350
3351 | narone 3351
3352 | mushrooms 3352
3353 | weather 3353
3354 | promise 3354
3355 | tiny 3355
3356 | female 3356
3357 | quickly 3357
3358 | bombay 3358
3359 | foie 3359
3360 | yorkers 3360
3361 | additional 3361
3362 | rushed 3362
3363 | cabernet 3363
3364 | vegetables 3364
3365 | * 3365
3366 | caviar 3366
3367 | secret 3367
3368 | spots 3368
3369 | noticed 3369
3370 | mozz 3370
3371 | maze 3371
3372 | yrs 3372
3373 | dosa 3373
3374 | resembled 3374
3375 | buy 3375
3376 | aunthentic 3376
3377 | shank 3377
3378 | undercooked-the 3378
3379 | but 3379
3380 | delivery 3380
3381 | basil 3381
3382 | repeated 3382
3383 | bun 3383
3384 | eat 3384
3385 | he 3385
3386 | mezzanine 3386
3387 | mizu 3387
3388 | made 3388
3389 | evident 3389
3390 | noon 3390
3391 | whether 3391
3392 | wish 3392
3393 | breweries 3393
3394 | smooth 3394
3395 | hosting 3395
3396 | distract 3396
3397 | record 3397
3398 | below 3398
3399 | hand 3399
3400 | cake 3400
3401 | problem 3401
3402 | piece 3402
3403 | minutes 3403
3404 | display 3404
3405 | cordial 3405
3406 | abrupt 3406
3407 | horrific 3407
3408 | intimidating 3408
3409 | reservations 3409
3410 | penny 3410
3411 | pie 3411
3412 | pig 3412
3413 | inn 3413
3414 | ino 3414
3415 | goodness 3415
3416 | arrival 3416
3417 | partly 3417
3418 | lentil 3418
3419 | suan 3419
3420 | compared 3420
3421 | 'll 3421
3422 | mushroom 3422
3423 | ingredients 3423
3424 | dressed 3424
3425 | photobook 3425
3426 | 45 3426
3427 | offensive 3427
3428 | 40 3428
3429 | other 3429
3430 | details 3430
3431 | incredibly 3431
3432 | pickels 3432
3433 | conclusion 3433
3434 | star 3434
3435 | monday 3435
3436 | shredded 3436
3437 | class 3437
3438 | embracing 3438
3439 | stay 3439
3440 | chance 3440
3441 | kinda 3441
3442 | priced 3442
3443 | friends 3443
3444 | opened 3444
3445 | platter 3445
3446 | using 3446
3447 | gelato 3447
3448 | entertainment 3448
3449 | rule 3449
3450 | portion 3450
3451 | 15-20 3451
3452 | baked 3452
3453 | kalbi 3453
3454 |
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/test.py:
--------------------------------------------------------------------------------
1 | #
2 | # import matplotlib.pyplot as plt
3 | #
4 | # num_list = [0.0929933 , 0.08506372 ,0.14606655, 0.24464758, 0.06144161, 0.25290242,
5 | # 0.06328169 ,0.05360315 ]
6 | #
7 | # name_list = ['Our','waiter', 'was', 'horrible', 'so', 'rude', 'and' ,'.']
8 | # plt.bar(range(len(num_list)), num_list,tick_label=name_list)
9 | # plt.show()
10 |
11 |
12 | import numpy as np
13 | import tensorflow as tf
14 | # a = [[1,2],
15 | # [3,4]]
16 | #
17 | # c = np.sum(a,axis = 0)
18 | # print (c)
19 |
20 | # for i in range(0,10,2):
21 | # print (i)
22 |
23 | # index = tf.range(0, 5) * 2
24 | # with tf.Session() as sess:
25 | # sess.run(index)
26 | #
27 | # print (index)
28 |
29 | # a = np.array([[[1,2,3]],
30 | # [[4,5,6]]])
31 | # b = np.array([[[2,2,2],
32 | # [2,2,2]],
33 | # [[2,2,2],
34 | # [2,2,2]]])
35 | #
36 | # print (a.shape)
37 | # print (b.shape)
38 | #
39 | # c = a * b
40 | # print (c)
41 |
42 | # a = np.array([[[2,2,2,7,8],
43 | # [2,2,2,4,5],
44 | # [1,2,3,4,5]],
45 | # [[2,2,2,3,8],
46 | # [2,2,2,7,9],
47 | # [3,4,5,6,7]]])
48 | # print (a.shape)
49 | # b = np.array([2 ,1])
50 | # sxl = tf.reduce_max(a, 2,keep_dims=True)
51 | # with tf.Session() as sess:
52 | # print (sess.run(sxl))
53 |
54 | # a = 1 if 6 % 2 else 0
55 | # print (a)
56 | # class_set = set([-1,1,1,0])
57 | # sxl = dict(zip(class_set, range(3)))
58 | # # a = [3,4,5]
59 | # # np.random.shuffle(a)
60 | # print (sxl)
61 | def change_y_to_onehot(y):
62 | from collections import Counter
63 | print (Counter(y))
64 | class_set = set(y)
65 | n_class = 3
66 | y_onehot_mapping = dict(zip(class_set, range(n_class))) #{0: 0, 1: 1, -1: 2}
67 | onehot = []
68 | for label in y:
69 | tmp = [0] * n_class
70 | tmp[y_onehot_mapping[label]] = 1
71 | onehot.append(tmp)
72 | return np.asarray(onehot, dtype=np.int32)
73 |
74 | print (change_y_to_onehot([-1,-1,-1,-1,-1,1,-1,0]))
--------------------------------------------------------------------------------
/attention-based latm for aspect-level sentiment classification/utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # encoding: utf-8
3 | # @author: newbie
4 | # email: zhengshiliang0@gmail.com
5 |
6 |
7 | import numpy as np
8 |
9 |
10 | def batch_index(length, batch_size, n_iter=100, is_shuffle=True): #返回下标
11 | index = list(range(length)) #[0,1,2,...,3698]
12 | for j in range(n_iter):
13 | if is_shuffle:
14 | np.random.shuffle(index)
15 | for i in range(int(length / batch_size) + (1 if length % batch_size else 0)):
16 | yield index[i * batch_size:(i + 1) * batch_size]
17 |
18 |
19 | def load_word_id_mapping(word_id_file, encoding='utf8'): #word_id_new.txt
20 | """
21 | :param word_id_file: word-id mapping file path
22 | :param encoding: file's encoding, for changing to unicode
23 | :return: word-id mapping, like hello=5
24 | """
25 | word_to_id = dict()
26 | for line in open(word_id_file):
27 | # print (type(line))
28 | # print (line)
29 | line = line.lower().split()
30 | word_to_id[line[0]] = int(line[1])
31 | print ('\nload word-id mapping done!\n')
32 | # print (word_to_id['the'])
33 | #
34 | # print (word_to_id['our'])
35 | # print(word_to_id['waiter'])
36 | # print(word_to_id['was'])
37 | # print(word_to_id['horrible'])
38 | # #print(word_to_id[';'])
39 | # print(word_to_id['so'])
40 | # print(word_to_id['rude'])
41 | # print(word_to_id['and'])
42 | # #print(word_to_id['disinterested'])
43 | # print(word_to_id['.'])
44 |
45 | return word_to_id #dict
46 |
47 |
48 | def load_w2v(w2v_file, embedding_dim, is_skip=False): #rest_2014_word_embedding_300_new.txt
49 | fp = open(w2v_file)
50 | if is_skip:
51 | fp.readline()
52 | w2v = []
53 | word_dict = dict()
54 | # [0,0,...,0] represent absent words
55 | w2v.append([0.] * embedding_dim)
56 | #print (type(w2v))
57 | #print (w2v)
58 | #print (len(w2v[0]))
59 | cnt = 0
60 | for line in fp:
61 | cnt += 1
62 | line = line.split()
63 | if len(line) != embedding_dim + 1:
64 | print ('a bad word embedding: {}'.format(line[0]))
65 | continue
66 | w2v.append([float(v) for v in line[1:]])
67 | word_dict[line[0]] = cnt
68 | #print (cnt) #3772个句子
69 | w2v = np.asarray(w2v, dtype=np.float32)
70 | w2v = np.row_stack((w2v, np.sum(w2v, axis=0) / cnt))
71 | #print (np.shape(w2v)) #3774 * 300
72 | word_dict['$t$'] = (cnt + 1)
73 | #print('逗号的索引为',word_dict[','])
74 | # w2v -= np.mean(w2v, axis=0)
75 | # w2v /= np.std(w2v, axis=0)
76 | #print (len(word_dict), len(w2v)) #3773,3774
77 | return word_dict, w2v #dict 3774 * 300
78 |
79 |
80 | def load_word_embedding(word_id_file, w2v_file, embedding_dim, is_skip=False): #生成以单词为key的字典及其对应的词向量
81 | word_to_id = load_word_id_mapping(word_id_file) #dict(3909)
82 | #print (word_to_id['$t$']) #1880
83 | #print (len(word_to_id))
84 | #print ('sxl-------------')
85 | word_dict, w2v = load_w2v(w2v_file, embedding_dim, is_skip) #dict(3773) 3774 * 300
86 | #print (len(word_dict))
87 | #print (word_dict['$t$'])
88 | #print (w2v.shape)
89 | #print ('sxl=============')
90 | cnt = len(w2v) #3774
91 | for k in word_to_id.keys():
92 | if k not in word_dict:
93 | word_dict[k] = cnt
94 | w2v = np.row_stack((w2v, np.random.uniform(-0.01, 0.01, (embedding_dim,))))
95 | cnt += 1
96 | #print (len(word_dict), len(w2v))
97 | return word_dict, w2v #dict(3909) 3910 * 300
98 |
99 |
100 | def load_aspect2id(input_file, word_id_mapping, w2v, embedding_dim): #aspect_id_new.txt
101 | aspect2id = dict()
102 | a2v = list()
103 | a2v.append([0.] * embedding_dim)
104 | cnt = 0
105 | for line in open(input_file):
106 | line = line.lower().split()
107 | cnt += 1
108 | aspect2id[' '.join(line[:-1])] = cnt
109 | tmp = []
110 | for word in line:
111 | if word in word_id_mapping:
112 | tmp.append(w2v[word_id_mapping[word]])
113 | if tmp:
114 | a2v.append(np.sum(tmp, axis=0) / len(tmp))
115 | else:
116 | a2v.append(np.random.uniform(-0.01, 0.01, (embedding_dim,)))
117 | #print (cnt)
118 | #print (len(aspect2id), len(a2v)) #1219,1220
119 | #print (aspect2id)
120 | #print (np.asarray(a2v, dtype=np.float32).shape)
121 | return aspect2id, np.asarray(a2v, dtype=np.float32) #dict(1219) 1220 * 300
122 |
123 |
124 | def change_y_to_onehot(y):
125 | from collections import Counter
126 | print (Counter(y))
127 | class_set = set(y)
128 | n_class = 3
129 | y_onehot_mapping = {'0': 0, '1': 1, '-1': 2}
130 | onehot = []
131 | for label in y:
132 | tmp = [0] * n_class
133 | tmp[y_onehot_mapping[label]] = 1
134 | onehot.append(tmp)
135 | return np.asarray(onehot, dtype=np.int32)
136 |
137 |
138 | # def load_inputs_twitter(input_file, word_id_file, sentence_len, type_='', encoding='utf8'):
139 | # if type(word_id_file) is str:
140 | # word_to_id = load_word_id_mapping(word_id_file)
141 | # else:
142 | # word_to_id = word_id_file
143 | # print ('load word-to-id done!')
144 | #
145 | # x, y, sen_len = [], [], []
146 | # x_r, sen_len_r = [], []
147 | # target_words = []
148 | # lines = open(input_file).readlines()
149 | # for i in list(range(0, len(lines), 3)):
150 | # target_word = lines[i + 1].decode(encoding).lower().split()
151 | # target_word = map(lambda w: word_to_id.get(w, 0), target_word)
152 | # target_words.append([target_word[0]])
153 | #
154 | # y.append(lines[i + 2].strip().split()[0])
155 | #
156 | # words = lines[i].decode(encoding).lower().split()
157 | # words_l, words_r = [], []
158 | # flag = True
159 | # for word in words:
160 | # if word == '$t$':
161 | # flag = False
162 | # continue
163 | # if flag:
164 | # if word in word_to_id:
165 | # words_l.append(word_to_id[word])
166 | # else:
167 | # if word in word_to_id:
168 | # words_r.append(word_to_id[word])
169 | # if type_ == 'TD' or type_ == 'TC':
170 | # words_l.extend(target_word)
171 | # sen_len.append(len(words_l))
172 | # x.append(words_l + [0] * (sentence_len - len(words_l)))
173 | # tmp = target_word + words_r
174 | # tmp.reverse()
175 | # sen_len_r.append(len(tmp))
176 | # x_r.append(tmp + [0] * (sentence_len - len(tmp)))
177 | # else:
178 | # words = words_l + target_word + words_r
179 | # sen_len.append(len(words))
180 | # x.append(words + [0] * (sentence_len - len(words)))
181 | #
182 | # y = change_y_to_onehot(y)
183 | # if type_ == 'TD':
184 | # return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), \
185 | # np.asarray(sen_len_r), np.asarray(y)
186 | # elif type_ == 'TC':
187 | # return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), \
188 | # np.asarray(sen_len_r), np.asarray(y), np.asarray(target_words)
189 | # else:
190 | # return np.asarray(x), np.asarray(sen_len), np.asarray(y)
191 |
192 |
193 | # def extract_aspect_to_id(input_file, aspect2id_file):
194 | # dest_fp = open(aspect2id_file, 'w')
195 | # lines = open(input_file).readlines()
196 | # targets = set()
197 | # for i in list(range(0, len(lines), 3)):
198 | # target = lines[i + 1].lower().split()
199 | # targets.add(' '.join(target))
200 | # aspect2id = list(zip(targets, range(1, len(lines) + 1)))
201 | # for k, v in aspect2id:
202 | # dest_fp.write(k + ' ' + str(v) + '\n')
203 |
204 | #rest_2014_lstm_train_new.txt dict(3909) dict(1219) 80
205 | def load_inputs_twitter_at(input_file, word_id_file, aspect_id_file, sentence_len, type_='', encoding='utf8'):
206 | if type(word_id_file) is str:
207 | word_to_id = load_word_id_mapping(word_id_file)
208 | else:
209 | word_to_id = word_id_file
210 | print ('load word-to-id done!')
211 | if type(aspect_id_file) is str:
212 | aspect_to_id = load_aspect2id(aspect_id_file)
213 | else:
214 | aspect_to_id = aspect_id_file
215 | print ('load aspect-to-id done!')
216 |
217 | x, y, sen_len = [], [], []
218 | aspect_words = []
219 | lines = open(input_file).readlines()
220 | #print (lines)
221 | #print (len(lines))
222 | for i in range(0, len(lines), 3): #11097 / 3 = 3699 个训练集
223 | aspect_word = ' '.join(lines[i + 1].lower().split())
224 | # print (aspect_word)
225 | # print (type(aspect_word)) #str
226 | aspect_words.append(aspect_to_id.get(aspect_word, 0))
227 | # print (aspect_words) #list[3699]
228 | y.append(lines[i + 2].split()[0])
229 | #print (y) #list[3699]
230 | words = lines[i].lower().split()
231 | ids = []
232 | for word in words:
233 | if word in word_to_id:
234 | ids.append(word_to_id[word])
235 | # ids = list(map(lambda word: word_to_id.get(word, 0), words))
236 | if len(ids) != 0:
237 | sen_len.append(len(ids)) #list[3699]
238 | #print (len(sen_len))
239 | x.append(ids + [0] * (sentence_len - len(ids)))
240 | #print (x)
241 | #print(sen_len) #说明不存在没有一个单词在word_id_mapping中的句子,似乎所有句子的所有单词都出现在word_id_mapping中
242 | cnt = 0
243 | for item in aspect_words:
244 | if item > 0:
245 | cnt += 1
246 | print ('cnt=', cnt)
247 | y = change_y_to_onehot(y)
248 | for item in x:
249 | if len(item) != sentence_len:
250 | print ('aaaaa=', len(item))
251 | x = np.asarray(x, dtype=np.int32)
252 | #print (x.shape) #3699 * 80
253 | #print (np.asarray(sen_len).shape) #3699
254 | #print (np.asarray(aspect_words).shape) #3699
255 | #print (np.asarray(y).shape) #3699 * 3
256 | return x, np.asarray(sen_len), np.asarray(aspect_words), np.asarray(y)
257 |
--------------------------------------------------------------------------------