├── results ├── images │ ├── Doge Univariate Mape Fig1.png │ ├── Doge Univariate Mape Fig2.png │ ├── Doge Univariate Rmse Fig1.png │ ├── Doge Univariate Rmse Fig2.png │ ├── Eth Univariate Mape Fig1.png │ ├── Eth Univariate Mape Fig2.png │ ├── Eth Univariate Rmse Fig1.png │ ├── Eth Univariate Rmse Fig2.png │ ├── Lite Univariate Mape Fig1.png │ ├── Lite Univariate Mape Fig2.png │ ├── Lite Univariate Rmse Fig1.png │ ├── Lite Univariate Rmse Fig2.png │ ├── Bitcoin Univariate Mape Fig1.png │ ├── Bitcoin Univariate Mape Fig2.png │ ├── Bitcoin Univariate Rmse Fig1.png │ ├── Bitcoin Univariate Rmse Fig2.png │ ├── Doge Multivariate Mape Fig1.png │ ├── Doge Multivariate Mape Fig2.png │ ├── Doge Multivariate Rmse Fig1.png │ ├── Doge Multivariate Rmse Fig2.png │ ├── Eth Multivariate Mape Fig1.png │ ├── Eth Multivariate Mape Fig2.png │ ├── Eth Multivariate Rmse Fig1.png │ ├── Eth Multivariate Rmse Fig2.png │ ├── Lite Multivariate Mape Fig1.png │ ├── Lite Multivariate Mape Fig2.png │ ├── Lite Multivariate Rmse Fig1.png │ ├── Lite Multivariate Rmse Fig2.png │ ├── Bitcoin Multivariate Mape Fig1.png │ ├── Bitcoin Multivariate Mape Fig2.png │ ├── Bitcoin Multivariate Rmse Fig1.png │ └── Bitcoin Multivariate Rmse Fig2.png ├── model ranking.csv ├── confidence_interval │ ├── Lite_Univariate_Mape_Confidence_Interval.csv │ ├── Lite_Univariate_Rmse_Confidence_Interval.csv │ ├── Bitcoin_Multivariate_Mape_Confidence_Interval.csv │ ├── Doge_Univariate_Rmse_Confidence_Interval.csv │ ├── Eth_Univariate_Rmse_Confidence_Interval.csv │ ├── Bitcoin_Multivariate_Rmse_Confidence_Interval.csv │ ├── Doge_Multivariate_Rmse_Confidence_Interval.csv │ ├── Eth_Multivariate_Rmse_Confidence_Interval.csv │ ├── Lite_Multivariate_Rmse_Confidence_Interval.csv │ ├── Eth_Univariate_Mape_Confidence_Interval.csv │ ├── Lite_Multivariate_Mape_Confidence_Interval.csv │ ├── Eth_Multivariate_Mape_Confidence_Interval.csv │ ├── Doge_Multivariate_Mape_Confidence_Interval.csv │ ├── Doge_Univariate_Mape_Confidence_Interval.csv │ ├── Bitcoin_Univariate_Mape_Confidence_Interval.csv │ └── Bitcoin_Univariate_Rmse_Confidence_Interval.csv ├── Bitcoin │ ├── Bitcoin_Univariate_Mape.csv │ └── Bitcoin_Multivariate_Mape.csv ├── Eth │ └── Eth_Univariate_Mape.csv └── Lite │ └── Lite_Univariate_Mape.csv ├── draw ├── actual.py ├── Volatility.py └── experiment2.py ├── README.md ├── confidence_draw.py └── main.py /results/images/Doge Univariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Univariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Doge Univariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Univariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Doge Univariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Univariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Doge Univariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Univariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Eth Univariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Univariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Eth Univariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Univariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Eth Univariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Univariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Eth Univariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Univariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Lite Univariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Univariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Lite Univariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Univariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Lite Univariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Univariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Lite Univariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Univariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Bitcoin Univariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Univariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Bitcoin Univariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Univariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Bitcoin Univariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Univariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Bitcoin Univariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Univariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Doge Multivariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Multivariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Doge Multivariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Multivariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Doge Multivariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Multivariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Doge Multivariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Doge Multivariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Eth Multivariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Multivariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Eth Multivariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Multivariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Eth Multivariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Multivariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Eth Multivariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Eth Multivariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Lite Multivariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Multivariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Lite Multivariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Multivariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Lite Multivariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Multivariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Lite Multivariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Lite Multivariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/images/Bitcoin Multivariate Mape Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Multivariate Mape Fig1.png -------------------------------------------------------------------------------- /results/images/Bitcoin Multivariate Mape Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Multivariate Mape Fig2.png -------------------------------------------------------------------------------- /results/images/Bitcoin Multivariate Rmse Fig1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Multivariate Rmse Fig1.png -------------------------------------------------------------------------------- /results/images/Bitcoin Multivariate Rmse Fig2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/sydney-machine-learning/deeplearning-crypto/HEAD/results/images/Bitcoin Multivariate Rmse Fig2.png -------------------------------------------------------------------------------- /results/model ranking.csv: -------------------------------------------------------------------------------- 1 | ranking,,lstm,ed,bd,cnn,conv,trans,,lstm,ed,bd,cnn,conv,trans 2 | btc_uni,rmse,4,3,1,5,2,6,mape,1,4,2,5,3,6 3 | ,,,,,,,,,,,,,, 4 | btc_multi,rmse,3,1,2,5,6,4,mape,3,2,1,5,6,4 5 | ,,,,,,,,,,,,,, 6 | eth_uni,rmse,1,3,2,5,6,4,mape,1,5,2,4,3,6 7 | ,,,,,,,,,,,,,, 8 | eth_multi,rmse,5,4,3,1,2,6,mape,2,4,5,6,1,3 9 | ,,,,,,,,,,,,,, 10 | doge_uni,rmse,4,3,1,6,2,5,mape,4,2,5,3,1,6 11 | ,,,,,,,,,,,,,, 12 | doge_multi,rmse,2,3,1,6,4,5,mape,2,3,1,6,5,4 13 | ,,,,,,,,,,,,,, 14 | ltc_uni,rmse,4,3,2,5,1,6,mape,2,3,1,5,4,6 15 | ,,,,,,,,,,,,,, 16 | ltc_multi,rmse,1,3,5,6,2,4,mape,1,3,2,6,4,5 17 | ,,,,,,,,,,,,,, 18 | ,,3,2.875,2.125,4.875,3.125,5,,2,3.25,2.375,5,3.375,5 19 | -------------------------------------------------------------------------------- /draw/actual.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import matplotlib.pyplot as plt 3 | import numpy as np 4 | 5 | df = pd.read_csv(r'./BTC-USD2019.csv', parse_dates=['Date'], index_col='Date') 6 | # 设置字体大小 7 | plt.rcParams.update({'font.size': 8}) 8 | 9 | fig, ax = plt.subplots(figsize=(10, 6)) # 创建图形和坐标轴对象,并设置图形大小 10 | 11 | # 绘制折线图 12 | ax.plot(df.index, df['Close'], color='blue', linestyle='-') 13 | 14 | # 添加标题和标签 15 | ax.set_xlabel('Time', fontsize=12) # 设置x轴标签 16 | ax.set_ylabel('Close Price (USD)', fontsize=12) # 设置y轴标签 17 | 18 | # 获取选中时间段的索引范围 19 | start_date = '2020-03-01' 20 | end_date = '2024-04-04' 21 | 22 | # 选中时间段并将整个图形区域标红并降低透明度 23 | ticks = ax.get_yticks() 24 | tick_interval = ticks[1] - ticks[0] 25 | new_max_tick = max(ticks) + tick_interval*3 26 | 27 | # 计算新的刻度间隔(假设间隔为原始间隔) 28 | new_tick_interval = tick_interval 29 | 30 | # 设置新的 y 轴刻度范围和刻度间隔 31 | ax.set_ylim(ticks[0], new_max_tick) 32 | ax.set_yticks(np.arange(ticks[0], new_max_tick, new_tick_interval)) 33 | # 再次获取新的刻度值 34 | ticks = ax.get_yticks() 35 | 36 | # 重新设置 y 轴刻度范围 37 | ax.set_ylim(ticks[0], ticks[-1]) 38 | 39 | # 计算选中时间段的纵向距离 40 | highlight_height = ticks[-1] - ticks[0] 41 | 42 | # 添加选中时间段的红色区域 43 | highlight_color = 'red' 44 | highlight_alpha = 0.3 45 | ax.axvspan(start_date, end_date, ymin=0, ymax=(ticks[-2]/ticks[-1]), color=highlight_color, alpha=highlight_alpha) 46 | 47 | # 显示图形 48 | plt.tight_layout() # 自动调整布局,防止标签重叠 49 | plt.show() 50 | -------------------------------------------------------------------------------- /results/confidence_interval/Lite_Univariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | step-1,"[13.2252, 27.7683]","[4.4873, 5.2382]","[17.8934, 33.7753]","[4.794, 5.6616]","[17.5361, 28.8595]","[4.3336, 4.8307]","[12.8514, 17.7608]","[6.6286, 7.0489]","[10.4021, 15.5289]","[4.6162, 4.928]","[27.3117, 45.3129]","[6.5266, 7.5988]" 3 | step-2,"[12.5773, 24.2291]","[6.3768, 6.8539]","[18.6744, 33.766]","[6.4536, 7.2143]","[15.9857, 42.7932]","[5.8462, 7.3888]","[13.7116, 17.879]","[7.744, 8.1085]","[12.205, 17.462]","[6.5295, 6.8353]","[28.3019, 43.9252]","[7.9655, 9.3103]" 4 | step-3,"[15.1026, 27.6001]","[7.9163, 8.3977]","[19.2602, 34.4425]","[8.0281, 8.6039]","[18.0918, 48.5299]","[7.2381, 9.0033]","[14.0959, 17.9182]","[9.0296, 9.4249]","[12.3718, 18.7225]","[8.1732, 8.5756]","[26.7158, 40.979]","[9.5196, 10.2879]" 5 | step-4,"[15.4124, 29.58]","[9.2907, 9.8374]","[19.5776, 34.3009]","[9.2694, 9.861]","[17.622, 45.8956]","[8.3518, 9.9242]","[14.1414, 18.1764]","[10.3415, 10.8124]","[12.9714, 19.3273]","[9.7873, 10.368]","[24.0405, 38.6942]","[10.7779, 11.7177]" 6 | step-5,"[18.0124, 31.1156]","[10.6317, 11.0417]","[20.3319, 34.9498]","[10.3392, 10.9439]","[20.458, 52.0723]","[9.5781, 11.3116]","[16.0877, 20.8065]","[11.4781, 12.0542]","[15.6516, 20.0469]","[11.0837, 11.7253]","[29.1814, 39.3745]","[11.7233, 12.692]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Lite_Univariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Covn-LSTM Train MINMAX RMSE,Covn-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.01, 0.0133]","[0.0362, 0.0401]","[0.0186, 0.0213]","[0.0342, 0.0397]","[0.0161, 0.0177]","[0.0298, 0.0337]","[0.0162, 0.0193]","[0.0382, 0.0398]","[0.0105, 0.0136]","[0.033, 0.0355]","[0.0261, 0.0302]","[0.0691, 0.0761]" 3 | step-2,"[0.0122, 0.0165]","[0.0455, 0.0503]","[0.0217, 0.0244]","[0.0462, 0.0512]","[0.0231, 0.0251]","[0.0382, 0.042]","[0.0165, 0.0184]","[0.0455, 0.0485]","[0.0134, 0.017]","[0.0451, 0.049]","[0.0238, 0.0293]","[0.0671, 0.0753]" 4 | step-3,"[0.014, 0.0182]","[0.0588, 0.065]","[0.0204, 0.0241]","[0.0595, 0.0666]","[0.0242, 0.0279]","[0.0479, 0.0536]","[0.0183, 0.0206]","[0.0594, 0.0661]","[0.0139, 0.0162]","[0.0583, 0.0648]","[0.0218, 0.026]","[0.07, 0.0792]" 5 | step-4,"[0.0156, 0.0201]","[0.073, 0.0806]","[0.0226, 0.0267]","[0.0698, 0.0814]","[0.0271, 0.0309]","[0.0549, 0.0627]","[0.0208, 0.0236]","[0.082, 0.1077]","[0.0152, 0.018]","[0.0778, 0.0856]","[0.0223, 0.025]","[0.0781, 0.0856]" 6 | step-5,"[0.0177, 0.0229]","[0.0824, 0.0899]","[0.0257, 0.0298]","[0.0771, 0.0904]","[0.0297, 0.0331]","[0.0665, 0.0733]","[0.0228, 0.0267]","[0.0961, 0.1302]","[0.0174, 0.0204]","[0.0876, 0.095]","[0.0263, 0.0286]","[0.0859, 0.0924]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Bitcoin_Multivariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Single Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | step-1,"[10.278, 15.833]","[4.8016, 5.5793]","[10.1073, 15.3695]","[4.4431, 5.1697]","[11.8545, 19.9838]","[3.7574, 4.6475]","[11.7458, 15.7381]","[9.4997, 10.6952]","[7.0251, 9.6154]","[11.7574, 14.2351]","[14.2277, 24.742]","[8.9512, 10.0217]" 3 | step-2,"[10.2299, 14.9598]","[5.9332, 6.8602]","[10.9479, 16.3239]","[5.5227, 6.1601]","[12.2502, 20.8327]","[4.9086, 5.7555]","[12.3209, 15.9513]","[10.3717, 11.5193]","[6.8778, 9.1808]","[10.6307, 12.2771]","[12.7715, 27.4906]","[9.8155, 11.5321]" 4 | step-3,"[10.8624, 15.8207]","[7.0131, 8.0646]","[11.4892, 16.6527]","[6.3722, 7.0218]","[13.7595, 21.1281]","[6.013, 6.6243]","[11.3814, 14.8702]","[11.6071, 12.8574]","[7.648, 9.7496]","[13.3983, 15.394]","[13.3365, 21.536]","[10.5762, 11.6469]" 5 | step-4,"[9.3756, 15.4245]","[7.7479, 8.7253]","[12.1632, 17.6116]","[7.098, 7.7688]","[14.3777, 21.127]","[6.8823, 7.5224]","[12.0493, 15.8533]","[12.1667, 13.4957]","[7.832, 9.9269]","[15.4514, 18.3678]","[16.1949, 23.2823]","[11.0379, 11.9061]" 6 | step-5,"[9.9233, 13.8697]","[8.2672, 9.2328]","[12.6784, 17.9691]","[7.6803, 8.3669]","[16.809, 26.0111]","[7.7761, 8.4948]","[13.1646, 16.906]","[12.7586, 14.2702]","[8.219, 9.9487]","[18.3475, 23.0561]","[14.9598, 28.2582]","[11.7128, 12.9811]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Doge_Univariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Conv-LSTM Train MINMAX RMSE,Conv-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.0205, 0.0229]","[0.137, 0.1614]","[0.0177, 0.0186]","[0.125, 0.1521]","[0.0178, 0.0225]","[0.0494, 0.0523]","[0.0334, 0.0361]","[0.1223, 0.2204]","[0.021, 0.0246]","[0.2023, 0.4849]","[0.115, 0.1374]","[0.1755, 0.2476]" 3 | step-2,"[0.0283, 0.0297]","[0.1389, 0.1657]","[0.0239, 0.0249]","[0.129, 0.1547]","[0.0237, 0.0276]","[0.0545, 0.0578]","[0.0394, 0.0431]","[0.179, 0.3451]","[0.0291, 0.0321]","[0.2042, 0.3889]","[0.1009, 0.1944]","[0.1712, 0.2745]" 4 | step-3,"[0.0338, 0.0351]","[0.1454, 0.1701]","[0.0288, 0.0296]","[0.1274, 0.1528]","[0.0296, 0.0333]","[0.0697, 0.0748]","[0.0422, 0.0455]","[0.173, 0.3842]","[0.0355, 0.0393]","[0.3391, 0.5299]","[0.1127, 0.1354]","[0.1834, 0.3036]" 5 | step-4,"[0.0371, 0.0382]","[0.151, 0.1764]","[0.0327, 0.0334]","[0.1301, 0.1544]","[0.032, 0.0351]","[0.0627, 0.0669]","[0.0444, 0.0479]","[0.3906, 0.5818]","[0.042, 0.0459]","[0.4394, 0.6291]","[0.1181, 0.1377]","[0.1716, 0.2722]" 6 | step-5,"[0.0409, 0.0422]","[0.1548, 0.1814]","[0.0357, 0.0364]","[0.131, 0.1546]","[0.0347, 0.0378]","[0.0625, 0.0665]","[0.0451, 0.0481]","[0.4203, 0.6139]","[0.0453, 0.0497]","[0.5963, 0.808]","[0.1149, 0.136]","[0.1727, 0.2649]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Eth_Univariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Conv-LSTM Train MINMAX RMSE,Conv-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.0123, 0.0155]","[0.0266, 0.0293]","[0.0144, 0.0187]","[0.0249, 0.0272]","[0.0161, 0.0178]","[0.0253, 0.0278]","[0.0279, 0.0302]","[0.0372, 0.0396]","[0.0108, 0.0141]","[0.0307, 0.0347]","[0.0195, 0.0282]","[0.0302, 0.0373]" 3 | step-2,"[0.0167, 0.0213]","[0.0329, 0.0354]","[0.0187, 0.0242]","[0.0354, 0.0393]","[0.0245, 0.0268]","[0.0333, 0.037]","[0.0271, 0.0306]","[0.0437, 0.047]","[0.0132, 0.0181]","[0.0389, 0.0431]","[0.024, 0.0348]","[0.0369, 0.0454]" 4 | step-3,"[0.0196, 0.0238]","[0.0361, 0.0383]","[0.0224, 0.0282]","[0.0388, 0.0423]","[0.0271, 0.0304]","[0.0381, 0.042]","[0.0274, 0.0313]","[0.0451, 0.0504]","[0.0157, 0.0209]","[0.0467, 0.0527]","[0.0244, 0.0343]","[0.041, 0.0488]" 5 | step-4,"[0.0225, 0.028]","[0.0425, 0.0458]","[0.0259, 0.0321]","[0.0442, 0.0469]","[0.0305, 0.0345]","[0.0402, 0.0445]","[0.0288, 0.033]","[0.0491, 0.0551]","[0.0182, 0.0238]","[0.0561, 0.0656]","[0.0259, 0.0361]","[0.049, 0.0553]" 6 | step-5,"[0.0254, 0.0319]","[0.0453, 0.0487]","[0.0288, 0.0351]","[0.0459, 0.0483]","[0.0358, 0.0402]","[0.0473, 0.0522]","[0.0334, 0.038]","[0.0551, 0.0621]","[0.021, 0.027]","[0.0688, 0.0814]","[0.0284, 0.0389]","[0.0499, 0.0571]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Bitcoin_Multivariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED LSTM Train MINMAX RMSE,ED LSTM Test MINMAX RMSE,BD LSTM Train MINMAX RMSE,BD LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Covn-LSTM Train MINMAX RMSE,Covn-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.0139, 0.018]","[0.0291, 0.0328]","[0.0154, 0.0193]","[0.0269, 0.0312]","[0.0156, 0.0168]","[0.0229, 0.0264]","[0.0198, 0.0233]","[0.0405, 0.0427]","[0.0107, 0.0138]","[0.0463, 0.0538]","[0.014, 0.0214]","[0.0356, 0.0408]" 3 | step-2,"[0.0176, 0.0232]","[0.0367, 0.0424]","[0.0195, 0.0242]","[0.0339, 0.0373]","[0.0223, 0.0233]","[0.0314, 0.0357]","[0.0225, 0.0267]","[0.0461, 0.0493]","[0.0127, 0.0178]","[0.0447, 0.0485]","[0.0158, 0.0237]","[0.0394, 0.0441]" 4 | step-3,"[0.0205, 0.0265]","[0.0413, 0.0485]","[0.0218, 0.0271]","[0.0369, 0.0398]","[0.0243, 0.0265]","[0.039, 0.0441]","[0.0211, 0.0251]","[0.0516, 0.0552]","[0.0156, 0.021]","[0.0584, 0.0773]","[0.0159, 0.0242]","[0.0438, 0.048]" 5 | step-4,"[0.0225, 0.0283]","[0.0427, 0.0489]","[0.0235, 0.0287]","[0.0391, 0.0418]","[0.0264, 0.0296]","[0.0436, 0.0488]","[0.0203, 0.0229]","[0.0555, 0.0594]","[0.016, 0.0213]","[0.0742, 0.1031]","[0.0162, 0.0243]","[0.0481, 0.0522]" 6 | step-5,"[0.023, 0.0289]","[0.0446, 0.0489]","[0.0254, 0.0306]","[0.0416, 0.0444]","[0.0279, 0.0321]","[0.0486, 0.0537]","[0.019, 0.0214]","[0.0586, 0.0627]","[0.0165, 0.0223]","[0.1061, 0.1593]","[0.0167, 0.025]","[0.0503, 0.0548]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Doge_Multivariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Conv-LSTM Train MINMAX RMSE,Conv-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.0247, 0.0268]","[0.1619, 0.1793]","[0.0246, 0.0281]","[0.1618, 0.2039]","[0.0218, 0.0245]","[0.0552, 0.0681]","[0.0472, 0.0534]","[0.7909, 0.8334]","[0.0212, 0.0253]","[0.051, 0.1482]","[0.0291, 0.0469]","[0.2272, 0.2671]" 3 | step-2,"[0.0321, 0.0332]","[0.1671, 0.182]","[0.0303, 0.0327]","[0.1618, 0.2027]","[0.0257, 0.0279]","[0.0553, 0.0654]","[0.0532, 0.0573]","[0.5572, 0.7156]","[0.0289, 0.034]","[0.7873, 0.9161]","[0.0348, 0.0535]","[0.2265, 0.2699]" 4 | step-3,"[0.0379, 0.0392]","[0.1746, 0.1911]","[0.0338, 0.0362]","[0.1615, 0.2016]","[0.0297, 0.0322]","[0.0581, 0.0658]","[0.0578, 0.0633]","[0.6026, 0.7424]","[0.0343, 0.0438]","[0.0958, 0.2607]","[0.0425, 0.0626]","[0.229, 0.2712]" 5 | step-4,"[0.0409, 0.0422]","[0.1727, 0.1893]","[0.037, 0.0392]","[0.1626, 0.2017]","[0.0326, 0.0348]","[0.0621, 0.0685]","[0.0635, 0.0689]","[0.5815, 0.7496]","[0.0398, 0.0502]","[0.0719, 0.1745]","[0.0427, 0.0635]","[0.213, 0.2559]" 6 | step-5,"[0.0444, 0.0458]","[0.173, 0.1919]","[0.0401, 0.0421]","[0.1631, 0.2015]","[0.0358, 0.0382]","[0.0678, 0.0762]","[0.0686, 0.0744]","[0.5101, 0.6842]","[0.0441, 0.0555]","[0.105, 0.2688]","[0.0421, 0.0633]","[0.2129, 0.2535]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Eth_Multivariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Conv-LSTM Train MINMAX RMSE,Conv-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.0171, 0.0212]","[0.1757, 0.2068]","[0.0194, 0.0228]","[0.1454, 0.2177]","[0.0188, 0.0197]","[0.0875, 0.1192]","[0.0161, 0.0182]","[0.0969, 0.1045]","[0.0128, 0.0155]","[0.2323, 0.4424]","[0.0115, 0.0167]","[0.2323, 0.2605]" 3 | step-2,"[0.0203, 0.0249]","[0.1678, 0.2058]","[0.0228, 0.0273]","[0.1532, 0.2379]","[0.0247, 0.0254]","[0.1435, 0.2142]","[0.0196, 0.0218]","[0.1124, 0.1646]","[0.0143, 0.0185]","[0.1726, 0.2755]","[0.012, 0.0176]","[0.2349, 0.2621]" 4 | step-3,"[0.0252, 0.0309]","[0.1816, 0.2171]","[0.027, 0.0325]","[0.1421, 0.2303]","[0.029, 0.0307]","[0.1485, 0.2112]","[0.0236, 0.0262]","[0.112, 0.2008]","[0.0163, 0.0215]","[0.4839, 0.6584]","[0.0123, 0.0185]","[0.244, 0.274]" 5 | step-4,"[0.0293, 0.0356]","[0.1707, 0.2068]","[0.0302, 0.0366]","[0.1422, 0.2339]","[0.0318, 0.0336]","[0.1456, 0.2025]","[0.0241, 0.0277]","[0.1113, 0.1182]","[0.0168, 0.0219]","[0.5818, 0.7315]","[0.0129, 0.0197]","[0.2361, 0.2654]" 6 | step-5,"[0.0338, 0.0402]","[0.1543, 0.1992]","[0.0338, 0.0404]","[0.1437, 0.2389]","[0.0349, 0.037]","[0.1658, 0.2263]","[0.0271, 0.0317]","[0.1253, 0.1299]","[0.0188, 0.0249]","[0.6715, 0.8068]","[0.0143, 0.0226]","[0.2316, 0.2623]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Lite_Multivariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED LSTM Train MINMAX RMSE,ED LSTM Test MINMAX RMSE,BD LSTM Train MINMAX RMSE,BD LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Covn-LSTM Train MINMAX RMSE,Covn-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[0.0094, 0.0134]","[0.0573, 0.0676]","[0.0128, 0.0168]","[0.081, 0.107]","[0.0138, 0.0164]","[0.0748, 0.097]","[0.0152, 0.0175]","[0.418, 0.5116]","[0.0079, 0.0101]","[0.0664, 0.0859]","[0.0096, 0.0143]","[0.1401, 0.1662]" 3 | step-2,"[0.0111, 0.0158]","[0.0718, 0.0857]","[0.0136, 0.0183]","[0.0996, 0.1246]","[0.0166, 0.0203]","[0.1252, 0.1788]","[0.0133, 0.0158]","[0.4109, 0.4996]","[0.0087, 0.0115]","[0.1177, 0.1768]","[0.0101, 0.0141]","[0.1516, 0.1732]" 4 | step-3,"[0.0121, 0.0177]","[0.0863, 0.0978]","[0.014, 0.0184]","[0.0916, 0.1149]","[0.0183, 0.022]","[0.2072, 0.2953]","[0.0144, 0.0168]","[0.4365, 0.5255]","[0.0096, 0.0124]","[0.1059, 0.1502]","[0.0103, 0.0144]","[0.164, 0.1807]" 5 | step-4,"[0.0134, 0.0188]","[0.0842, 0.0929]","[0.0146, 0.0194]","[0.0796, 0.0869]","[0.0205, 0.0236]","[0.2315, 0.3362]","[0.0157, 0.0185]","[0.4626, 0.5546]","[0.0102, 0.0133]","[0.1135, 0.1349]","[0.0113, 0.0164]","[0.1542, 0.18]" 6 | step-5,"[0.0146, 0.0201]","[0.0875, 0.0963]","[0.0162, 0.0216]","[0.0844, 0.0917]","[0.0233, 0.0265]","[0.2259, 0.3261]","[0.0173, 0.0207]","[0.4675, 0.566]","[0.0115, 0.0153]","[0.1431, 0.2076]","[0.0114, 0.0167]","[0.1522, 0.1778]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Eth_Univariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Conv-LSTM Train MAPE,Conv-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | step-1,"[34.018, 73.7928]","[4.7359, 6.754]","[59.4909, 118.0335]","[6.0891, 9.1841]","[44.2873, 99.8586]","[5.0159, 8.0773]","[52.5912, 74.1698]","[6.7743, 8.0204]","[23.8257, 36.1019]","[5.603, 6.1491]","[85.7631, 119.345]","[12.0157, 15.3822]" 3 | step-2,"[39.4515, 74.2738]","[6.2665, 8.0437]","[64.8373, 126.7742]","[7.4185, 10.4867]","[57.9771, 117.4073]","[6.5457, 9.9568]","[53.0131, 82.9733]","[8.0203, 9.2941]","[16.7953, 25.6309]","[7.3745, 7.9036]","[72.7794, 115.0949]","[13.0931, 16.3615]" 4 | step-3,"[35.6667, 70.7154]","[7.1994, 8.9646]","[66.8134, 127.3784]","[8.5469, 11.3823]","[65.2639, 114.6017]","[7.8924, 10.411]","[62.2032, 97.4528]","[8.9245, 10.0332]","[19.6762, 25.1944]","[8.4538, 9.094]","[77.0224, 113.7273]","[13.3951, 15.9749]" 5 | step-4,"[39.4385, 70.6251]","[8.1519, 9.555]","[64.5447, 124.7953]","[9.2971, 11.9589]","[59.9505, 100.6872]","[8.6097, 10.1516]","[62.5268, 97.604]","[10.0322, 11.2412]","[21.3332, 29.5412]","[9.7882, 10.5974]","[80.5854, 107.9963]","[13.8493, 16.8094]" 6 | step-5,"[41.8461, 72.5423]","[9.1909, 10.5222]","[65.9942, 126.152]","[10.1663, 12.7352]","[64.3044, 101.1619]","[9.6193, 10.9515]","[60.5436, 93.6412]","[10.8435, 11.9796]","[25.3446, 37.5532]","[11.3525, 12.4604]","[77.9395, 126.8938]","[14.3487, 17.871]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Lite_Multivariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Conv-LSTM Train MAPE,Conv-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | step-1,"[16.2358, 30.0958]","[11.0453, 18.3415]","[10.9568, 18.1643]","[17.0339, 24.562]","[16.444, 29.0128]","[11.7569, 14.7616]","[12.4456, 19.6094]","[57.5597, 83.7381]","[10.9614, 16.1999]","[28.2191, 37.4584]","[18.0624, 38.5935]","[35.9053, 42.3749]" 3 | step-2,"[14.557, 26.4325]","[12.7042, 20.254]","[12.4392, 19.8443]","[18.3523, 25.6317]","[14.5816, 28.9174]","[14.7721, 18.886]","[13.6298, 20.5017]","[61.1708, 87.2052]","[12.3809, 17.5326]","[67.5042, 96.5711]","[17.0828, 31.157]","[38.7299, 45.1997]" 4 | step-3,"[15.1047, 27.5177]","[13.9886, 20.9816]","[13.1758, 20.0884]","[18.8306, 26.034]","[19.4601, 35.1632]","[18.8798, 23.5365]","[14.3337, 19.9472]","[78.1534, 113.194]","[11.9925, 17.8767]","[32.0964, 52.299]","[18.28, 23.0865]","[43.9375, 49.7327]" 5 | step-4,"[15.6594, 26.2494]","[15.0496, 22.0879]","[13.7104, 20.5762]","[19.4283, 26.4425]","[19.6877, 33.433]","[21.8434, 32.0391]","[14.2556, 19.2461]","[98.2782, 146.5235]","[13.7961, 19.3367]","[37.9544, 51.5417]","[18.3409, 25.4977]","[45.9791, 51.7855]" 6 | step-5,"[17.293, 28.5917]","[15.6829, 22.5097]","[14.3665, 21.0669]","[19.9513, 26.8163]","[23.7479, 33.6312]","[24.2728, 40.0305]","[15.9983, 22.9196]","[107.2007, 156.8459]","[13.678, 19.3821]","[46.5053, 69.0927]","[16.9861, 30.2788]","[46.4281, 52.4348]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Eth_Multivariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Conv-LSTM Train MAPE,Conv-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | step-1,"[71.1495, 125.3609]","[13.7237, 17.759]","[87.354, 177.5595]","[23.5033, 42.9113]","[78.5877, 148.5062]","[12.1796, 23.7639]","[48.4968, 70.5129]","[43.1735, 48.3647]","[46.96, 77.2922]","[60.9274, 86.617]","[69.9909, 144.7148]","[26.5008, 29.1959]" 3 | step-2,"[73.5721, 137.3216]","[16.9075, 21.7916]","[87.4993, 176.2802]","[26.9328, 46.0661]","[77.1272, 135.9908]","[21.1178, 41.6849]","[53.4303, 78.5348]","[54.9595, 62.9072]","[45.2569, 68.5102]","[47.6378, 60.8835]","[75.4457, 158.719]","[28.1715, 30.9641]" 4 | step-3,"[77.3352, 150.5576]","[18.7994, 24.0048]","[87.3779, 178.0386]","[27.9435, 46.6445]","[103.8689, 171.8007]","[26.353, 47.8778]","[64.5482, 95.0648]","[36.92, 43.9397]","[43.6237, 67.6503]","[63.8801, 97.9861]","[57.403, 231.4084]","[28.2933, 30.7629]" 5 | step-4,"[90.0539, 168.0963]","[19.2434, 24.0964]","[85.9906, 177.4809]","[28.799, 47.1363]","[114.115, 197.0249]","[31.1495, 60.9349]","[80.6851, 118.4512]","[27.3546, 33.562]","[45.4848, 93.414]","[91.4803, 154.6812]","[62.3175, 284.136]","[29.2086, 31.8409]" 6 | step-5,"[92.0393, 167.0496]","[19.9392, 23.7325]","[86.9353, 178.533]","[29.4506, 47.5555]","[118.7917, 205.1261]","[37.5707, 79.5717]","[83.4045, 133.2062]","[28.2517, 34.3914]","[45.9016, 85.1696]","[109.1657, 183.372]","[74.9242, 199.9918]","[29.2451, 31.5631]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Doge_Multivariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Single Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | step-1,"[57.1348, 99.6284]","[15.1754, 18.5917]","[102.1068, 217.2275]","[18.8387, 28.9399]","[85.8646, 168.4389]","[14.8044, 21.3862]","[47.6138, 112.4541]","[250.4312, 302.2255]","[28.0424, 49.1752]","[159.6337, 249.4565]","[194.0347, 548.4058]","[62.1587, 94.3693]" 3 | step-2,"[69.4131, 141.7375]","[17.6979, 22.6364]","[97.6328, 243.0917]","[19.8217, 31.3657]","[74.6865, 136.156]","[12.8345, 18.203]","[50.2769, 109.18]","[360.2467, 445.2433]","[31.8869, 54.0421]","[179.3931, 309.5036]","[189.1148, 460.3465]","[64.0337, 85.9803]" 4 | step-3,"[60.5803, 111.7619]","[18.1209, 22.2434]","[100.0807, 233.6913]","[20.1297, 31.0244]","[105.4671, 202.6972]","[16.5506, 25.187]","[54.5645, 113.6293]","[471.1085, 559.7075]","[33.4486, 62.5211]","[117.0119, 170.2058]","[122.5499, 548.1783]","[62.1058, 100.9486]" 5 | step-4,"[62.5611, 138.447]","[19.2094, 25.1477]","[100.7784, 238.8682]","[20.7509, 31.7546]","[97.4945, 191.4296]","[15.5316, 22.9462]","[54.1435, 120.9027]","[601.9424, 729.5422]","[32.5252, 63.5324]","[170.1383, 261.3518]","[165.0763, 671.6946]","[63.3078, 109.6453]" 6 | step-5,"[53.5167, 105.7995]","[19.3634, 22.7371]","[101.0452, 237.9335]","[21.2034, 32.0737]","[93.4918, 198.3097]","[17.5019, 26.042]","[58.5001, 109.3722]","[694.8821, 847.4328]","[39.0932, 73.3885]","[233.5707, 359.2679]","[121.1663, 234.1998]","[54.6477, 68.6676]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Doge_Univariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Conv-LSTM Train MINMAX RMSE,Conv-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE 2 | step-1,"[104.0647, 211.0476]","[18.9866, 29.2839]","[84.1507, 260.2552]","[15.7199, 30.0434]","[135.9151, 329.5]","[15.2401, 32.9864]","[35.0298, 94.3313]","[16.2446, 22.1451]","[37.2939, 78.1556]","[18.945, 28.7007]","[284.3438, 400.0931]","[60.8248, 80.6615]" 3 | step-2,"[97.0872, 197.7535]","[19.4875, 28.8881]","[77.4164, 252.6325]","[15.4054, 32.7049]","[108.474, 238.656]","[13.9914, 25.3373]","[32.3377, 83.0166]","[18.5528, 24.4348]","[34.8265, 87.7834]","[19.0293, 24.2452]","[347.3526, 569.4939]","[67.1969, 91.1906]" 4 | step-3,"[82.8808, 181.5684]","[18.587, 28.4779]","[87.3385, 253.8771]","[16.4374, 32.069]","[95.4429, 471.0852]","[14.4761, 48.2766]","[38.5352, 91.8154]","[20.2452, 26.46]","[45.9528, 81.8778]","[22.3275, 27.0237]","[331.4292, 621.9211]","[64.5188, 91.2642]" 5 | step-4,"[83.9952, 197.2391]","[20.5467, 34.7237]","[85.578, 255.4261]","[16.8365, 32.8818]","[103.7546, 618.5924]","[15.2917, 61.6747]","[47.6348, 100.6356]","[26.7674, 33.3215]","[44.8815, 92.7072]","[26.4779, 34.7195]","[334.7289, 504.2663]","[59.7641, 84.8567]" 6 | step-5,"[72.7513, 215.2461]","[20.6952, 35.5612]","[88.0259, 255.8059]","[17.3898, 33.1098]","[155.8726, 604.599]","[20.4687, 60.2541]","[45.2144, 90.8708]","[27.5823, 33.7549]","[48.3681, 89.0562]","[34.7063, 40.8082]","[323.6628, 454.3492]","[57.2863, 75.0522]" 7 | -------------------------------------------------------------------------------- /draw/Volatility.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import matplotlib.pyplot as plt 3 | 4 | # 读取数据 5 | df = pd.read_csv(r'./DOGE 2015.9-2024.4 月度数据.csv', parse_dates=['Date'], index_col='Date') 6 | 7 | # 设置字体大小 8 | plt.rcParams.update({'font.size': 10}) 9 | 10 | # 将数据重新采样为每月第一个工作日的数据 11 | monthly_open = df['Open'].resample('MS').first() 12 | 13 | # 计算每个月相对于前一个月的收益率 14 | df['Monthly_Return'] = monthly_open.pct_change() 15 | 16 | # 移除可能存在的NaN值 17 | df.dropna(subset=['Monthly_Return'], inplace=True) 18 | 19 | # 计算平均月收益率 20 | mean_monthly_return = df['Monthly_Return'].mean() 21 | 22 | # 计算每月收益率的方差 23 | df['Monthly_Variance'] = (df['Monthly_Return'] - mean_monthly_return) ** 2 24 | 25 | # 根据年份和月份分组计算波动率 26 | monthly_volatility = df.groupby([df.index.year, df.index.month])['Monthly_Variance'].mean() ** 0.5 27 | 28 | # 将年份和月份转换为数值型数据 29 | monthly_volatility.index = monthly_volatility.index.map(lambda x: str(x[0]) + '-' + str(x[1]).zfill(2)) 30 | 31 | # 提取每年的1月和7月 32 | yearly_months = [month for month in monthly_volatility.index if month.endswith('-01') or month.endswith('-07')] 33 | 34 | 35 | fig,ax=plt.subplots() 36 | # 分别绘制每年的月波动率 37 | ax.bar(range(len(monthly_volatility)), monthly_volatility.values, color='blue') 38 | 39 | # 设置横坐标刻度和标签 40 | ax.set_xticks(monthly_volatility.index.get_indexer(yearly_months), yearly_months,rotation=45) # 每年的1月和7月标签 41 | 42 | 43 | # 添加标题和标签 44 | ax.set_xlabel('Month', fontsize=14) 45 | ax.set_ylabel('Monthly Volatility', fontsize=14) 46 | 47 | 48 | start_date = '2020-03' 49 | end_date = '2024-04' 50 | 51 | # 获取选中时间段的索引范围 52 | start_index = monthly_volatility.index.get_loc(start_date) 53 | end_index = monthly_volatility.index.get_loc(end_date) 54 | 55 | # 选中时间段并将整个图形区域标红并降低透明度 56 | highlight_color = 'red' 57 | highlight_alpha = 0.3 58 | 59 | # 获取纵坐标的最大值 60 | yticks=ax.get_yticks() 61 | print("yticks:\n",yticks) 62 | ax.set_ylim(yticks[0],yticks[-1]) 63 | 64 | plt.axvspan(start_index - 0.5, end_index + 0.5, ymin=0, ymax=(yticks[-2]/yticks[-1]), color=highlight_color, alpha=highlight_alpha) 65 | 66 | 67 | # 显示图形 68 | plt.tight_layout() # 自动调整布局,防止标签重叠 69 | plt.show() 70 | -------------------------------------------------------------------------------- /results/confidence_interval/Bitcoin_Univariate_Mape_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Single Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE,MLP Train MAPE,MLP Test MAPE,ARIMA Train MAPE,ARIMA Test MAPE 2 | step-1,"[13.238695, 25.516548]","[3.617236, 4.981981]","[12.602078, 25.636945]","[3.714728, 5.101282]","[11.413508, 24.85817]","[3.24761, 4.883067]","[10.897179, 15.153265]","[6.141971, 7.028447]","[8.49815, 11.732406]","[3.693344, 4.286357]","[22.699817, 37.242919]","[6.492651, 8.764805]","[19.838318, 30.021863]","[5.362938, 6.550718]","[3.90353, 3.90353]","[7.592411, 7.592411]" 3 | step-2,"[11.538384, 23.488889]","[4.506525, 5.755391]","[14.103565, 29.493064]","[4.846932, 6.430778]","[13.341153, 30.186537]","[4.400546, 6.36294]","[10.841076, 15.258112]","[6.807055, 7.766142]","[8.841202, 11.696862]","[4.847408, 5.398492]","[19.299015, 42.545332]","[7.027698, 10.251164]","[17.992766, 28.956238]","[6.779454, 8.296227]","[3.90353, 3.90353]","[8.250092, 8.250092]" 4 | step-3,"[12.904222, 25.937465]","[5.521125, 6.804163]","[14.272919, 28.896836]","[5.641714, 7.073812]","[14.733641, 27.766907]","[5.391986, 6.731055]","[11.088062, 15.65481]","[7.820548, 8.685423]","[9.628519, 11.750498]","[5.801157, 6.349789]","[23.104969, 43.231837]","[8.122454, 10.895576]","[18.880653, 27.005667]","[8.147447, 10.163469]","[3.90353, 3.90353]","[8.747638, 8.747638]" 5 | step-4,"[12.683348, 22.337364]","[6.270159, 7.051742]","[14.973145, 29.791986]","[6.343776, 7.703336]","[14.21106, 26.545765]","[6.028924, 7.191251]","[12.87235, 18.719047]","[8.548033, 9.362527]","[10.258181, 12.436758]","[6.556714, 7.116402]","[22.801863, 38.142083]","[8.691541, 10.818471]","[18.743519, 27.476688]","[9.277789, 11.90568]","[3.90353, 3.90353]","[9.254003, 9.254003]" 6 | step-5,"[13.509384, 21.677597]","[6.966606, 7.562766]","[15.348047, 29.983716]","[6.986345, 8.285912]","[16.457144, 28.775504]","[6.903203, 7.935909]","[11.841223, 16.214499]","[9.310236, 10.179307]","[10.26319, 12.964111]","[7.371506, 7.856795]","[21.994481, 36.444927]","[9.239508, 10.861968]","[17.315319, 27.231781]","[10.551215, 13.225789]","[3.90353, 3.90353]","[9.842423, 9.842423]" 7 | -------------------------------------------------------------------------------- /results/confidence_interval/Bitcoin_Univariate_Rmse_Confidence_Interval.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MINMAX RMSE,LSTM Test MINMAX RMSE,ED-LSTM Train MINMAX RMSE,ED-LSTM Test MINMAX RMSE,BD-LSTM Train MINMAX RMSE,BD-LSTM Test MINMAX RMSE,CNN Train MINMAX RMSE,CNN Test MINMAX RMSE,Covn-LSTM Train MINMAX RMSE,Covn-LSTM Test MINMAX RMSE,Transformer Train MINMAX RMSE,Transformer Test MINMAX RMSE,MLP Train MINMAX RMSE,MLP Test MINMAX RMSE,ARIMA Train MINMAX RMSE,ARIMA Test MINMAX RMSE 2 | step-1,"[0.013184, 0.015664]","[0.021057, 0.023604]","[0.015739, 0.017172]","[0.023596, 0.026325]","[0.013368, 0.014584]","[0.018731, 0.020379]","[0.02697, 0.029204]","[0.036516, 0.039578]","[0.012827, 0.015426]","[0.023158, 0.025612]","[0.017399, 0.02573]","[0.031958, 0.040108]","[0.0136, 0.014774]","[0.023383, 0.028236]","[0.012288, 0.012288]","[0.045789, 0.045789]" 3 | step-2,"[0.020679, 0.024878]","[0.031645, 0.035679]","[0.025098, 0.027897]","[0.033417, 0.03914]","[0.020552, 0.021996]","[0.025644, 0.028186]","[0.031934, 0.034486]","[0.04345, 0.046779]","[0.018383, 0.021254]","[0.029133, 0.031306]","[0.024333, 0.032074]","[0.039293, 0.046819]","[0.019848, 0.021056]","[0.031239, 0.040289]","[0.012288, 0.012288]","[0.049304, 0.049304]" 4 | step-3,"[0.027107, 0.030764]","[0.040048, 0.045046]","[0.0304, 0.033382]","[0.039082, 0.045064]","[0.025861, 0.027486]","[0.031899, 0.034751]","[0.034858, 0.037178]","[0.046261, 0.048858]","[0.023224, 0.02705]","[0.036626, 0.039655]","[0.030087, 0.03805]","[0.046387, 0.053643]","[0.024396, 0.026282]","[0.040117, 0.063202]","[0.012288, 0.012288]","[0.05214, 0.05214]" 5 | step-4,"[0.031064, 0.035365]","[0.04701, 0.052163]","[0.032749, 0.03562]","[0.042061, 0.047593]","[0.030585, 0.032155]","[0.037298, 0.039769]","[0.031816, 0.034949]","[0.052184, 0.055279]","[0.026479, 0.030243]","[0.041448, 0.045416]","[0.034727, 0.042392]","[0.052563, 0.060029]","[0.027484, 0.029937]","[0.047275, 0.087435]","[0.012288, 0.012288]","[0.054984, 0.054984]" 6 | step-5,"[0.031355, 0.034778]","[0.049391, 0.053694]","[0.034722, 0.037374]","[0.045206, 0.050215]","[0.032685, 0.03445]","[0.040849, 0.043908]","[0.031129, 0.03509]","[0.059486, 0.063691]","[0.028491, 0.033048]","[0.044535, 0.049083]","[0.038465, 0.04622]","[0.057726, 0.065584]","[0.030138, 0.031436]","[0.052305, 0.108967]","[0.012288, 0.012288]","[0.058066, 0.058066]" 7 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Time series model evaluation 2 | 3 | ## Train and Test 4 | 5 | ### Get Dataset 6 | 7 | we can use the `read_data` function to get the raw data, and then use `data_transform` function to normalize and de normalize the raw data 8 | 9 | **Example:** 10 | 11 | ```python 12 | # read raw data 13 | data, data_len = read_data(file_path, gold_path, dim_type, use_percentage) 14 | 15 | # split the dataset into train set and test set 16 | train_set, test_set = data[train_index], data[test_index] 17 | 18 | # normalize the dataset 19 | train_set, scalerstrain =data_trasform(train_set) 20 | ``` 21 | 22 | 23 | 24 | 25 | 26 | ### Create Model 27 | 28 | we can use the `create_model` to get the already defined model。 29 | 30 | `create_model(model_name, n_features, n_steps_in, n_steps_out)` 31 | 32 | * `model_name`:the already defined model name , such as LSTM, BD-LSTM, etc. 33 | * `n_features`:the model will used the number of the dataset features. Features include maximum price, minimum price, opening price, closing price, trading volume, and added gold price. 34 | * `n_steps_in`,`n_steps_out`:the model in and the model out size. 35 | 36 | **Example:** 37 | 38 | ```python 39 | model_name='LSTM' 40 | n_featues='Multi' 41 | n_steps_in = 5 42 | n_steps_out = 2 43 | 44 | myModel = create_model(model_name, n_features, n_steps_in, n_steps_out) 45 | ``` 46 | 47 | 48 | 49 | ### Train and Test 50 | 51 | we use the `train_and_forecast` function to train the model and predict the result. 52 | 53 | **Example:** 54 | 55 | ```python 56 | train_result, test_result = train_and_forecast(myModel, n_features, dim_type, train_set, test_set, n_steps_in,n_steps_out, epochs) 57 | ``` 58 | 59 | 60 | 61 | 62 | 63 | ### Evaluation 64 | 65 | We calculate RMSE and MAPE indicators based on the model prediction results to analyze the performance of the model. 66 | 67 | 68 | 69 | we use the `eval_result(result, n_steps_out, groud_truth, mode)` function to calc the RMSE and MAPE. 70 | 71 | * `result`:the model prediction results. 72 | * `n_steps_out`:the model output size 73 | * `ground_truth`:the ground truth 74 | * `mode`:choose the evaluation method, RMSE or MAPE. 75 | 76 | 77 | 78 | **Example:** 79 | 80 | * We can choose to calculate evaluation metrics for normalized data 81 | 82 | ```python 83 | train_minmax_rmse = eval_result(train_result, n_steps_out, train, 0) 84 | test_minmax_rmse = eval_result(test_result, n_steps_out, test, 0) 85 | ``` 86 | 87 | 88 | 89 | * Similarly, we can also choose to normalize the predicted results before calculating the relevant indicators. 90 | 91 | ## Results summary 92 | In this part, we will integrate the result data including the training and testing results during the 30 rounds experiments. 93 | We will calculate the RMSE and MAPE index from the above results data, and then plots Corresponding figures. 94 | 95 | 96 | The results data formate for input is excel.File Content main include RMSE or MAPE index about all models during training and testing. 97 | The summary and draw corresponding figures functioins are integrated into a `draw.py` python module,so we can import this module to gets the results quickly. 98 | 99 | 100 | Example: 101 | ```python 102 | from draw import Draw 103 | file_path=r'Bitcoin_Multivariate_Mape.xlsx' 104 | draw=Draw(file_path) 105 | draw.start() 106 | ``` 107 | 108 | ### Results Summary 109 | We provide the `Draw.start()` api to finish all the operations and get all results.Meanwhile, we also provide some 110 | extra apis for you to calculate intermediate results for analyse step by step. 111 | 112 | 113 | We provide `Draw.get_confidence_interval()` function for you to get the confidence interval from the origin input. 114 | 115 | 116 | Example: 117 | ```python 118 | from draw import Draw 119 | file_path=r'Bitcoin_Multivariate_Mape.xlsx' 120 | draw=Draw(file_path) 121 | draw.get_confidence_interval() 122 | ``` 123 | 124 | the calculated results will be saved in `csv` format by default. 125 | 126 | 127 | 128 | ### Draw 129 | In this part, we will visualize the confidence interval results by plotting corresponding figures. 130 | 131 | 132 | We provide an independent API(`draw1()` and `draw2()`)for you to draw corresponding images. 133 | 134 | ```python 135 | from draw import Draw 136 | file_path=r'Bitcoin_Multivariate_Mape.xlsx' 137 | draw=Draw(file_path) 138 | draw.draw1() 139 | 140 | draw.draw2() 141 | 142 | ``` 143 | In the `draw.py` module, we can set the bar_colors parameter to custom display color range. 144 | 145 | ### Select experiment 146 | We put the codes for experiments 1 and 2 into different python files. Experiments 1 and 2 used different datasets respectively. 147 | If you want to do experiment 1, please choose `main.py`, for experiment 2, please choose `Main2.py`. 148 | 149 | ### Publication 150 | 151 | * Wu, J., Zhang, X., Huang, F., Zhou, H., & Chandra, R. (2024). Review of deep learning models for crypto price prediction: implementation and evaluation. arXiv preprint arXiv:2405.11431: https://arxiv.org/abs/2405.11431 152 | 153 | #### Seminar 154 | * t~ai Seminar Series, [Review of deep learning models for crypto price prediction](https://youtu.be/KlkK6wnTqXQ) 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | -------------------------------------------------------------------------------- /confidence_draw.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import pandas as pd 3 | from ast import literal_eval 4 | from scipy import stats 5 | import matplotlib.pyplot as plt 6 | from pathlib import Path 7 | 8 | 9 | import matplotlib.pyplot as plt 10 | plt.rcParams['font.family'] = 'Times New Roman' 11 | plt.rcParams['font.size'] = 12 12 | bar_colors = ['#845EC2', '#4B4453', '#B0A8B9', '#C34A36', '#FF8066', '#4E8397','#926C00','#009EFA'] # 颜色 13 | 14 | class Draw: 15 | __file_path=None 16 | __save_name=None 17 | __save_name1=None 18 | __fig1_name=None 19 | __fig2_name=None 20 | __raw_data=None 21 | __column=None 22 | __steps=None 23 | __conf_data=None 24 | confidence = 0.95 # 置信区间 25 | 26 | def __init__(self, file_path): 27 | self.__file_path = Path(file_path) 28 | print("file path", self.__file_path) 29 | assert self.__check_path(), f'路径错误,或文件不存在' 30 | self.__get_names() 31 | self.__read_data() 32 | 33 | 34 | 35 | def __check_path(self): 36 | # 判断文件是否正常 37 | if not self.__file_path.exists(): 38 | print("文件不存在,路径错误1") 39 | return False 40 | else: 41 | return True 42 | 43 | def __get_names(self): 44 | self.__save_name = r'./results/'+self.__file_path.stem+"_Confidence_Interval.csv" 45 | self.__save_name1 = r'./results/' + self.__file_path.stem + "_Confidence_Interval_Mean_Error.csv" 46 | self.__fig1_name= r'./results/'+' '.join(self.__file_path.stem.split("_"))+" Fig1.png" 47 | self.__fig2_name= r'./results/'+' '.join(self.__file_path.stem.split("_"))+" Fig2.png" 48 | 49 | 50 | def __read_data(self): 51 | self.__raw_data=pd.read_excel(self.__file_path,index_col=0,header=0) 52 | 53 | # 读取excel后格式发生变化 54 | for column in self.__raw_data.columns.values: 55 | self.__raw_data[column] = self.__raw_data[column].apply(lambda x: np.array(literal_eval(x))) 56 | self.__columns = self.__raw_data.columns.values.tolist() 57 | self.__steps = self.__raw_data.values[0,0].size 58 | 59 | def __get_confidence_interval(self): 60 | ''' 61 | 计算置信区间并保存 62 | 保存实行(lower,upper) 63 | :return: 64 | ''' 65 | print("计算置信区间") 66 | index = [] 67 | for step in range(self.__steps): 68 | index.append("step-" + str(step + 1)) 69 | self.__conf_data = pd.DataFrame({}, columns=self.__columns, index=index) 70 | for column in self.__columns: 71 | model=self.__raw_data[column] 72 | # 将当前列转为二维矩阵形式 73 | matrix=np.empty([len(model.values), len(model.values[0])]) 74 | for row in range(len(model.values)): 75 | matrix[row]=model.values[row] 76 | cells=[] 77 | for step in range(self.__steps): 78 | mean=np.mean(matrix[:,step]) 79 | std=np.std(matrix[:,step]) 80 | # 计算置信区间 81 | z=stats.norm.ppf((1+self.confidence)/2) 82 | margin_of_error= z*(std/np.sqrt(len(model.values))) 83 | lower=round(mean-margin_of_error, 6) 84 | upper=round(mean+margin_of_error, 6) 85 | cells.append([lower, upper]) 86 | self.__conf_data[column]=cells 87 | # 保存置信区间结果 88 | self.__conf_data.to_csv(self.__save_name) 89 | 90 | def get_confidence_interval_mean_error(self): 91 | ''' 92 | 计算置信区间并保存 93 | 返回形式(mean,error) 94 | :return: 95 | ''' 96 | print("计算置信区间(mean,error)") 97 | index = [] 98 | for step in range(self.__steps): 99 | index.append("step-" + str(step + 1)) 100 | conf_data = pd.DataFrame({}, columns=self.__columns, index=index) 101 | for column in self.__columns: 102 | model=self.__raw_data[column] 103 | # 将当前列转为二维矩阵形式 104 | matrix=np.empty([len(model.values), len(model.values[0])]) 105 | for row in range(len(model.values)): 106 | matrix[row]=model.values[row] 107 | cells=[] 108 | for step in range(self.__steps): 109 | mean=np.mean(matrix[:,step]) 110 | std=np.std(matrix[:,step]) 111 | # 计算置信区间 112 | z=stats.norm.ppf((1+self.confidence)/2) 113 | margin_of_error= z*(std/np.sqrt(len(model.values))) 114 | cells.append([round(mean,6), round(margin_of_error,6)]) 115 | conf_data[column]=cells 116 | # 保存置信区间结果 117 | conf_data.to_csv(self.__save_name1) 118 | 119 | def __get_model_name(self, column): 120 | # 从列名中提取模型名 121 | if (" Train" in column): 122 | return column.split(" Train")[0] 123 | elif (" Test" in column): 124 | return column.split(" Test")[0] 125 | else: 126 | print("无法获取模型名,检查列名是否正确") 127 | 128 | def __draw1(self): 129 | ''' 130 | 绘制fig1 131 | :return: 132 | ''' 133 | print("绘制Fig1") 134 | boundary={} 135 | # 计算左右边界 136 | for idx, column in enumerate(self.__columns): 137 | model = self.__conf_data[column] 138 | matrix = np.empty([len(model.values), len(model.values[0])]) 139 | for row in range(len(model.values)): 140 | matrix[row] = model.values[row] 141 | # 计算数据 142 | boundary[column] = np.mean(matrix, axis=0) 143 | 144 | labels_train = [] 145 | labels_test = [] 146 | means_train = [] 147 | means_test = [] 148 | for key, value in boundary.items(): 149 | if "Train" in key: 150 | labels_train.append(key) 151 | means_train.append(round(np.mean(value), 6)) 152 | elif "Test" in key: 153 | labels_test.append(key) 154 | means_test.append(round(np.mean(value), 6)) 155 | model_num=len(labels_train) 156 | labels = labels_train + labels_test 157 | means = means_train + means_test 158 | 159 | yerr = [round(boundary[label][1] - means[idx], 6) for idx, label in enumerate(labels)] 160 | x = [i + 0.5 if i < model_num else i + 3.5 for i in range(len(means))] 161 | 162 | groups = 2 163 | fig, ax = plt.subplots(figsize=(8, 6)) 164 | ax.bar(x, means, width=1, color=bar_colors[0:int(len(labels) / groups)], label=labels) 165 | ax.errorbar(x, means, yerr, fmt='o', linewidth=1.5, capsize=3, ecolor="black") 166 | ax.set_xticks([np.mean([x[0 + model_num * i], x[model_num - 1 + model_num * i]]) for i in range(groups)], 167 | labels=["Train", "Test"]) 168 | ax.set_ylabel(self.__file_path.stem.split('_')[-1].upper()) 169 | labels = [self.__get_model_name(label) for label in labels] 170 | ax.legend(labels[0:int(len(labels) / groups)], loc='upper left') 171 | fig.savefig(self.__fig1_name, dpi=600, bbox_inches='tight') 172 | print("Fig1 Finished") 173 | 174 | def __draw2(self): 175 | # 绘制fig2 176 | print("绘制Fig2") 177 | 178 | # 进获取测试集数据 179 | columns = [column for column in self.__columns if "Test" in column] 180 | models_num=len(columns) 181 | x_ticks = ['step-'+str((step+1)) for step in range(self.__steps)] 182 | 183 | # 用于绘制每个step图形 184 | # 从筛选数据中获取labels,means,yerr数据 185 | means = [] 186 | errors = [] 187 | labels = columns * self.__steps 188 | 189 | for idx, label in enumerate(labels): 190 | step = idx//models_num 191 | cell=self.__conf_data[label].iloc[step] 192 | mean=round(np.mean(cell),6) 193 | error=round((cell[1]-mean),6) 194 | means.append(mean) 195 | errors.append(error) 196 | 197 | # 绘图 198 | x = [i + 0.5 + (i // models_num) * 3 for i in range(len(labels))] 199 | 200 | fig, ax = plt.subplots(figsize=(10, 8)) 201 | ax.bar(x, means, width=1, color=bar_colors[0:models_num], label=labels) 202 | ax.errorbar(x, means, errors, fmt='o', linewidth=1.5, capsize=3, ecolor="black") 203 | groups = int(len(x) / models_num) 204 | x_tixks_loc = [np.mean([x[0 + models_num * i], x[models_num - 1 + models_num * i]]) for i in range(groups)] 205 | ax.set_xticks(x_tixks_loc, labels=x_ticks) 206 | ax.set_ylabel(self.__file_path.stem.split('_')[-1].upper()) 207 | labels = [self.__get_model_name(label) for label in labels] 208 | ax.legend(labels[0:int(len(labels) / 5)], loc='upper left') 209 | # ax.set_title(name) 210 | fig.savefig(self.__fig2_name, dpi=600, bbox_inches='tight') 211 | print("Fig2 finished") 212 | 213 | def start(self): 214 | self.__get_confidence_interval() 215 | self.__draw1() 216 | self.__draw2() 217 | 218 | 219 | if __name__ == '__main__': 220 | file_path=r'./Bitcoin_Multivariate_Mape.xlsx' 221 | draw=Draw(file_path) 222 | draw.start() 223 | draw.get_confidence_interval_mean_error() 224 | 225 | 226 | 227 | 228 | -------------------------------------------------------------------------------- /draw/experiment2.py: -------------------------------------------------------------------------------- 1 | import keras 2 | import numpy as np 3 | import pandas as pd 4 | import tensorflow as tf 5 | import matplotlib 6 | import matplotlib.pyplot as plt 7 | from pathlib import Path 8 | from scipy import stats 9 | 10 | from sklearn.preprocessing import MinMaxScaler 11 | from tensorflow.keras.models import Sequential, Model 12 | from tensorflow.keras.layers import LSTM, Bidirectional, Dense, Conv1D, Flatten, MaxPooling1D, RepeatVector, \ 13 | TimeDistributed, LayerNormalization, Dropout, MultiHeadAttention, Input 14 | from tensorflow.keras.optimizers import Adam 15 | 16 | matplotlib.rcParams['font.family'] = 'Times New Roman' 17 | pd.set_option('mode.chained_assignment', None) 18 | 19 | 20 | def read_data(path, features): 21 | data = pd.read_csv(path) 22 | data["Date"] = pd.to_datetime(data["Date"], format='%Y-%m-%d').dt.date 23 | data.set_index('Date', inplace=True) 24 | data.sort_index(ascending=True, inplace=True) # 时间升序排列,旧日期在前面 25 | data = data[features] 26 | return data 27 | 28 | 29 | def get_model(model_name, n_steps_in, n_steps_out): 30 | model = Sequential() 31 | adam_optimizer = Adam(learning_rate=0.001) 32 | if model_name == 'BD LSTM': 33 | # mymodel.add(keras.Input(shape=(n_steps_in,50))) 34 | model.add(Bidirectional(LSTM(50, activation='sigmoid'), input_shape=(n_steps_in, 1))) 35 | model.add(Dense(n_steps_out)) 36 | elif model_name == 'ED LSTM': 37 | # Encoder-Decoder LSTM 38 | # Encoder 39 | print("here") 40 | model.add(LSTM(100, activation='sigmoid', input_shape=(n_steps_in, 1))) 41 | # Connector 42 | model.add(RepeatVector(n_steps_out)) 43 | # Decoder 44 | model.add(LSTM(100, activation='sigmoid', return_sequences=True)) 45 | model.add(TimeDistributed(Dense(1))) 46 | else: 47 | raise Exception("未找到模型") 48 | model.compile(optimizer=adam_optimizer, 49 | loss='mse', 50 | metrics=[ 51 | keras.metrics.RootMeanSquaredError(), 52 | keras.metrics.MeanAbsolutePercentageError() 53 | ]) 54 | return model 55 | 56 | 57 | def data_trasform(data, anti=False, scaler=None): 58 | # data为numpy数据 59 | if not anti: 60 | scaler = MinMaxScaler() 61 | data_norm = scaler.fit_transform(data) 62 | return data_norm, scaler 63 | else: 64 | return scaler.inverse_transform(data) 65 | 66 | 67 | def draw(data, save_name, step, confidence): 68 | # 选择与第一步骤相关的列 69 | pred_columns = [col for col in data.columns if col.endswith(f'_step{step}')] 70 | data_pred = data[pred_columns] 71 | 72 | # n 73 | n = data_pred.shape[1] 74 | # mean 75 | pred_mean = data_pred.mean(axis=1) 76 | # std 77 | pred_std = data_pred.std(axis=1) 78 | 79 | # 计算high、low 80 | t_critical = stats.t.ppf(1 - (1 - confidence) / 2, df=n - 1) 81 | high = pred_mean + (t_critical * pred_std / np.sqrt(n)) 82 | low = pred_mean - (t_critical * pred_std / np.sqrt(n)) 83 | 84 | data['Prediction_step' + str(step)] = pred_mean 85 | data['High_step' + str(step)] = high 86 | data['Low_step' + str(step)] = low 87 | 88 | # 绘图 89 | fig, ax = plt.subplots(figsize=(8, 6)) 90 | ax.plot(data.index, data['Actual'], color='orange') 91 | ax.plot(data.index, data['Prediction_step' + str(step)], color='blue') 92 | ax.fill_between(data.index, data['Low_step' + str(step)], data['High_step' + str(step)], color='gray', alpha=0.5) 93 | ax.legend(['Actual', f'Prediction Step {step}', 'Uncertainty']) 94 | ax.tick_params(axis='x', labelrotation=45) 95 | ax.tick_params(axis='both', labelsize=10) 96 | ax.set_xlabel("Date", fontsize=14) 97 | ax.set_ylabel("Close Price (USD)", fontsize=14) 98 | plt.tight_layout() 99 | plt.savefig(save_name, dpi=600) 100 | plt.show() 101 | return data 102 | 103 | 104 | # 计算每个步骤的置信区间 105 | def calculate_stepwise_confidence_intervals(df, n_steps_out, confidence=0.95): 106 | intervals_df = pd.DataFrame() 107 | for step in range(1, n_steps_out + 1): 108 | for metric in ['Train_RMSE', 'Test_RMSE', 'Train_MAPE', 'Test_MAPE']: 109 | values = df[f'{metric}_Step{step}'] 110 | mean = np.mean(values) 111 | std = np.std(values, ddof=1) 112 | n = len(values) 113 | t_critical = stats.t.ppf(1 - (1 - confidence) / 2, df=n - 1) 114 | margin_of_error = t_critical * std / np.sqrt(n) 115 | intervals_df.loc[f'{metric}_Step{step}', 'Lower_Bound'] = mean - margin_of_error 116 | intervals_df.loc[f'{metric}_Step{step}', 'Upper_Bound'] = mean + margin_of_error 117 | return intervals_df 118 | 119 | 120 | def eval_result(result, n_steps_out, target, mode): 121 | ''' 122 | evaluate the modl resule 123 | :param result:the model result 124 | :param n_steps_out:the days you predict 125 | :param target:the ground-true 126 | :param mode:the type of evaluation(you can choose 0:rmse,1:mape) 127 | :return:the evaluation result 128 | ''' 129 | if mode == 0: 130 | # return rmse result 131 | # 归一化 132 | result, _ = data_trasform(result) 133 | target, _ = data_trasform(target) 134 | # 下面需要修改 135 | rmse = [] 136 | for i in range(n_steps_out): 137 | rmse.append(np.sqrt(np.mean((result[:, i] - target[:, i]) ** 2))) 138 | return rmse 139 | 140 | elif mode == 1: 141 | # return MAPE result 142 | result = result + 0.0000001 143 | target = target + 0.0000001 144 | mape = [] 145 | for i in range(n_steps_out): 146 | mape.append(np.mean(np.abs((target[:, i] - result[:, i]) / target[:, i])) * 100) 147 | return mape 148 | else: 149 | return None 150 | 151 | 152 | def main(): 153 | print("start") 154 | # 初始化参数 155 | n_steps_in = 3 156 | n_features = 1 157 | n_steps_out = 1 158 | batch_size = 32 159 | epochs = 100 # epoch大小 160 | shuffle = True # 是否shuffle 161 | rounds = 30 # 实验次数 162 | verbose = 0 163 | 164 | # 获取模型 165 | model_name = 'BD LSTM' 166 | model = get_model(model_name, n_steps_in, n_steps_out) 167 | 168 | model_path = Path("model_hub") 169 | if not model_path.exists(): 170 | model_path.mkdir() 171 | 172 | # 读取数据 173 | file_path = r"./BTC-USD2019.csv" 174 | features = ['Close'] 175 | data = read_data(file_path, features) 176 | 177 | # 归一化 178 | norm_values, scaler = data_trasform(data.values) 179 | data_norm = pd.DataFrame(data=norm_values, index=data.index, columns=data.columns, copy=True) 180 | 181 | # 划分数据集 182 | ratio = 0.7 183 | data_len = data_norm.shape[0] 184 | train_set, test_set = data_norm.iloc[0:int(data_len * ratio), ], data_norm.iloc[int(data_len * ratio):, ] 185 | 186 | y_train = keras.utils.timeseries_dataset_from_array(train_set.values[n_steps_in:], 187 | targets=None, 188 | sequence_length=n_steps_out, 189 | batch_size=None) 190 | 191 | x_train = keras.utils.timeseries_dataset_from_array(train_set.values[:-n_steps_out], 192 | targets=None, 193 | sequence_length=n_steps_in, 194 | batch_size=None) 195 | 196 | y_test = keras.utils.timeseries_dataset_from_array(test_set.values[n_steps_in:], 197 | targets=None, 198 | sequence_length=n_steps_out, 199 | batch_size=None) 200 | 201 | x_test = keras.utils.timeseries_dataset_from_array(test_set.values[:-n_steps_out], 202 | targets=None, 203 | sequence_length=n_steps_in, 204 | batch_size=None) 205 | 206 | x_train = np.array(list(x_train.as_numpy_iterator())) 207 | y_train = np.array(list(y_train.as_numpy_iterator())) 208 | x_test = np.array(list(x_test.as_numpy_iterator())) 209 | y_test = np.array(list(y_test.as_numpy_iterator())) 210 | 211 | # 训练 212 | result = test_set.iloc[n_steps_in + n_steps_out - 1:] 213 | result.rename(columns={'Close': "Actual"}, inplace=True) 214 | # 反归一化 215 | result['Actual'] = data_trasform(result['Actual'].values.reshape(-1, 1), anti=True, scaler=scaler) 216 | 217 | train_history = None 218 | exp_result = pd.DataFrame({}, columns=['Train MINMAX RMSE', 'Test MINMAX RMSE', 'Train MAPE', 'Test MAPE']) 219 | # 收集评估指标 220 | columns = ['Round'] 221 | for step in range(1, n_steps_out + 1): 222 | columns.extend( 223 | [f'Train_RMSE_Step{step}', f'Test_RMSE_Step{step}', f'Train_MAPE_Step{step}', f'Test_MAPE_Step{step}']) 224 | metrics_df = pd.DataFrame(columns=columns) 225 | for round in range(rounds): 226 | print(f"Training: {round}/{rounds}") 227 | column_name = 'round' + str(round) 228 | 229 | # 保存模型 230 | model_save_name = Path(model_path, (model_name + str(round) + ".keras")) 231 | 232 | # 训练模型 233 | train_history = model.fit(x_train, y_train, batch_size=batch_size, shuffle=shuffle, epochs=epochs, 234 | verbose=verbose) 235 | x_train_pred = model.predict(x_train, batch_size=batch_size, verbose=verbose) 236 | x_test_pred = model.predict(x_test, batch_size=batch_size, verbose=verbose) 237 | 238 | model.save(model_save_name) 239 | # 保存预测结果 240 | for i in range(n_steps_out): 241 | column_name = f'round{round}_step{i + 1}' 242 | result[column_name] = data_trasform(x_test_pred[:, i].reshape(-1, 1), anti=True, scaler=scaler) 243 | result.to_excel(model_name + " result.xlsx") 244 | 245 | # 反归一化预测结果和实际数据 246 | x_train_pred_unnorm = data_trasform(x_train_pred.reshape(-1, n_steps_out), anti=True, scaler=scaler) 247 | y_train_unnorm = data_trasform(y_train.reshape(-1, n_steps_out), anti=True, scaler=scaler) 248 | x_test_pred_unnorm = data_trasform(x_test_pred.reshape(-1, n_steps_out), anti=True, scaler=scaler) 249 | y_test_unnorm = data_trasform(y_test.reshape(-1, n_steps_out), anti=True, scaler=scaler) 250 | 251 | # 计算并收集指标 252 | metrics_row = [round] 253 | train_rmse = eval_result(x_train_pred_unnorm, n_steps_out, y_train_unnorm, 0) 254 | test_rmse = eval_result(x_test_pred_unnorm, n_steps_out, y_test_unnorm, 0) 255 | train_mape = eval_result(x_train_pred_unnorm, n_steps_out, y_train_unnorm, 1) 256 | test_mape = eval_result(x_test_pred_unnorm, n_steps_out, y_test_unnorm, 1) 257 | for step in range(n_steps_out): 258 | metrics_row.extend([train_rmse[step], test_rmse[step], train_mape[step], test_mape[step]]) 259 | metrics_df.loc[len(metrics_df)] = metrics_row 260 | 261 | # 保存评估结果 262 | exp_result.loc[len(exp_result.index)] = [train_rmse, 263 | test_rmse, 264 | train_mape, 265 | test_mape] 266 | exp_result.to_excel(model_name + 'RMSEMAPE.xlsx') 267 | 268 | # 保存训练历史 269 | history = pd.DataFrame(train_history.history) 270 | model_history_path = model_name + " train history.xlsx" 271 | history.to_excel(model_history_path) 272 | 273 | # 绘图,专注于第一步 274 | fig_save_name = model_name + ' Prediction.png' 275 | data_draw = draw(result, fig_save_name, step=1, confidence=0.9) 276 | data_draw.to_excel(model_name + " draw data.xlsx") 277 | 278 | confidence_intervals_df = calculate_stepwise_confidence_intervals(metrics_df, n_steps_out, confidence=0.95) 279 | confidence_intervals_df.to_excel(model_name + '_ConfidenceIntervals.xlsx') 280 | 281 | 282 | if __name__ == '__main__': 283 | main() 284 | 285 | 286 | -------------------------------------------------------------------------------- /main.py: -------------------------------------------------------------------------------- 1 | # 读取数据 2 | import os 3 | import sys 4 | import pandas as pd 5 | import numpy as np 6 | from sklearn.preprocessing import MinMaxScaler 7 | from sklearn.model_selection import TimeSeriesSplit 8 | from tensorflow.keras.models import Sequential, Model 9 | from tensorflow.keras.layers import LSTM, Bidirectional, Dense, Conv1D, Flatten, MaxPooling1D, RepeatVector, \ 10 | TimeDistributed, LayerNormalization, Dropout, MultiHeadAttention, Input 11 | from tensorflow.keras.optimizers import Adam 12 | import statsmodels.api as sm 13 | from pmdarima import auto_arima 14 | from scipy import stats 15 | from statsmodels.tsa.arima.model import ARIMA 16 | import matplotlib.pyplot as plt 17 | 18 | def read_data(path, dim_type, gold_path=None, use_percentage=1): 19 | ''' 20 | 读取数据(详细说明) 21 | ''' 22 | df = pd.read_csv(path) 23 | data_len = df.shape[0] 24 | data = None 25 | if dim_type!='Multi': 26 | data = df[dim_type].values.reshape((data_len, 1)) 27 | else: 28 | # Multi 29 | df["Date"]=pd.to_datetime(df["Date"], format='%Y-%m-%d %H:%M:%S').dt.strftime('%Y-%m-%d') 30 | open_data = df["Open"].values.reshape((data_len, 1)) 31 | high_data = df["High"].values.reshape((data_len, 1)) 32 | low_data = df["Low"].values.reshape((data_len, 1)) 33 | close_data = df["Close"].values.reshape((data_len, 1)) 34 | if gold_path is not None: 35 | gold=pd.read_excel(gold_path) # 读取金价 36 | gold['Date']=gold['Date'].dt.strftime('%Y-%m-%d') 37 | df['Gold']=df['Date'] 38 | 39 | # calc the gold series 40 | df['Gold'] = df['Gold'].apply(lambda x: gold['Price'][x==gold['Date']].values[0] if x in gold['Date'].values else np.nan) 41 | # fillna using interpolating 42 | df['Gold'] = df['Gold'].interpolate(limit_direction="both") 43 | 44 | gold_data=df["Gold"].values.reshape((data_len, 1)) 45 | data = np.hstack((close_data, open_data, high_data, low_data, gold_data)) 46 | else: 47 | data = np.hstack((close_data, open_data, high_data, low_data)) 48 | return data[0:int(np.floor(data_len * use_percentage))], np.floor(data_len * use_percentage) 49 | 50 | def split_sequence(sequence, dim_type, n_steps_in, n_steps_out): 51 | X, y = list(), list() 52 | for i in range(len(sequence)): 53 | # find the end of the input pattern 54 | end_ix = i + n_steps_in 55 | # find the end of the output pattern 56 | out_end_ix = end_ix + n_steps_out 57 | # check if we are beyond the dataset 58 | if out_end_ix > len(sequence): 59 | break 60 | if dim_type == 'Multi': 61 | # gather input and output parts of the pattern 62 | seq_x = sequence[i:end_ix, 1:] 63 | seq_y = sequence[end_ix:out_end_ix, 0] 64 | else: 65 | seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix] 66 | X.append(seq_x) 67 | y.append(seq_y) 68 | return np.array(X), np.array(y) 69 | 70 | def data_trasform(data, anti=False, scaler=None): 71 | ''' 72 | 说明以及例子 73 | MinMax data and anti MinMax data 74 | :param data: the data source 75 | :param model: MinMax and anti MinMax 76 | :param scaler: anti MinMax scaler 77 | :return: the transformed data 78 | 79 | ''' 80 | if not anti: 81 | # 归一化 82 | # 创建一个空字典来存储每一列的 scaler 83 | scalers = {} 84 | # 归一化数据的容器 85 | normalized_data = np.zeros_like(data) 86 | # 循环每一列 87 | for i in range(data.shape[1]): # data.shape[1] 是列的数量 88 | # 为每一列创建一个新的 MinMaxScaler 89 | scaler = MinMaxScaler() 90 | # 将列数据调整为正确的形状,即(-1, 1) 91 | column_data = data[:, i].reshape(-1, 1) 92 | # 拟合并转换数据 93 | normalized_column = scaler.fit_transform(column_data) 94 | # 将归一化的数据存回容器中 95 | normalized_data[:, i] = normalized_column.ravel() 96 | # 存储scaler以便后续使用 97 | scalers[i] = scaler 98 | # 现在 normalized_data 是完全归一化的数据 99 | # scalers 字典包含每一列的 MinMaxScaler 实例 100 | return normalized_data, scalers 101 | else: 102 | # 反归一化 103 | # 如果data是三维数组,去除最后一个维度 104 | if data.ndim == 3 and data.shape[2] == 1: 105 | data = data.squeeze(axis=2) 106 | 107 | restored_data = np.zeros_like(data) 108 | for i in range(data.shape[1]): # 遍历所有列 109 | column_data = data[:, i].reshape(-1, 1) 110 | restored_data[:, i] = scaler.inverse_transform(column_data).ravel() 111 | return restored_data 112 | 113 | def create_transformer_model(input_seq_length, output_seq_length, num_features, d_model, num_heads, ff_dim, 114 | num_transformer_blocks, dropout_rate=0.1): 115 | inputs = Input(shape=(input_seq_length, num_features)) 116 | 117 | x = Dense(d_model)(inputs) 118 | 119 | for _ in range(num_transformer_blocks): 120 | attn_output = MultiHeadAttention(num_heads=num_heads, key_dim=d_model)(x, x) 121 | attn_output = Dropout(dropout_rate)(attn_output) # Dropout after attention 122 | x = LayerNormalization(epsilon=1e-6)(x + attn_output) 123 | 124 | ff_output = Dense(ff_dim, activation="relu")(x) 125 | ff_output = Dropout(dropout_rate)(ff_output) # Dropout after first dense layer 126 | ff_output = Dense(d_model)(ff_output) 127 | 128 | x = LayerNormalization(epsilon=1e-6)(x + ff_output) 129 | 130 | outputs = Dense(output_seq_length)(x[:, -1, :]) # We take the last step's output for forecasting 131 | model = Model(inputs, outputs) 132 | return model 133 | 134 | def create_model(model_type, n_features, n_steps_in, n_steps_out): 135 | ''' 136 | create model 137 | :param model_type: LSTM,BD LSTM(bidirectional LSTM),ED LSTM(Encoder-Decoder LSTM),CNN 138 | :param n_features: 139 | :param n_steps_in: 140 | :param n_steps_out: 141 | :return: the created model 142 | ''' 143 | model = Sequential() 144 | adam_optimizer = Adam(learning_rate=0.001) 145 | if model_type == 'LSTM': 146 | # LSTM 147 | model.add(LSTM(100, activation='sigmoid', return_sequences=True, input_shape=(n_steps_in, n_features))) 148 | model.add(LSTM(100, activation='sigmoid')) 149 | model.add(Dense(n_steps_out)) 150 | 151 | elif model_type == 'BD LSTM': 152 | # bidirectional LSTM 153 | model.add(Bidirectional(LSTM(50, activation='sigmoid'), input_shape=(n_steps_in, n_features))) 154 | model.add(Dense(n_steps_out)) 155 | 156 | elif model_type == 'ED LSTM': 157 | # Encoder-Decoder LSTM 158 | # Encoder 159 | model.add(LSTM(100, activation='sigmoid', input_shape=(n_steps_in, n_features))) 160 | # Connector 161 | model.add(RepeatVector(n_steps_out)) 162 | # Decoder 163 | model.add(LSTM(100, activation='sigmoid', return_sequences=True)) 164 | model.add(TimeDistributed(Dense(1))) 165 | 166 | elif model_type == 'CNN': 167 | # CNN 168 | model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps_in, n_features))) 169 | model.add(MaxPooling1D(pool_size=2)) 170 | model.add(Flatten()) 171 | model.add(Dense(20, activation='relu')) 172 | model.add(Dense(n_steps_out)) 173 | 174 | elif model_type == 'Convolutional LSTM': 175 | # Convolutional LSTM 176 | model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps_in, n_features))) 177 | model.add(LSTM(20, activation='relu', return_sequences=False)) 178 | model.add(Dense(20, activation='relu')) 179 | model.add(Dense(n_steps_out)) 180 | 181 | elif model_type == 'Transformer': 182 | model = create_transformer_model(n_steps_in, n_steps_out, n_features, d_model=64, 183 | num_heads=12, ff_dim=64, num_transformer_blocks=3) 184 | 185 | elif model_type == 'MLP': 186 | # 多层感知机 (MLP) 187 | model.add(Dense(20, activation='relu', input_shape=(n_steps_in, n_features))) 188 | model.add(Flatten()) 189 | model.add(Dense(20, activation='relu')) 190 | model.add(Dense(n_steps_out)) 191 | 192 | elif model_type == 'ARIMA': 193 | if n_features != 1: 194 | print("ARIMA model only supports univariate time series data") 195 | print("ARIMA model has no parameter n_steps_in") 196 | return None 197 | model = 'ARIMA' 198 | return model 199 | 200 | else: 201 | print("no model") 202 | model.compile(optimizer=adam_optimizer, loss='mse') 203 | return model 204 | 205 | 206 | def train_and_forecast(model, n_features, dim_type, data_X, data_Y, n_steps_in, n_steps_out, ech): 207 | # 训练模型 208 | # 隐藏输出 209 | sys.stdout = open(os.devnull, 'w') 210 | sys.stderr = open(os.devnull, 'w') 211 | 212 | X, y = split_sequence(data_X, dim_type, n_steps_in, n_steps_out) 213 | # 对于多维数据,调整最后一个维度为特征数 214 | X = X.reshape((X.shape[0], X.shape[1], n_features)) 215 | 216 | ####################################################################################### 217 | if model == 'ARIMA': 218 | # 检查数据是否平稳 219 | fig = plt.figure(figsize=(12, 8)) 220 | ax1 = fig.add_subplot(211) 221 | fig = sm.graphics.tsa.plot_acf(data_X.squeeze(), lags=40, ax=ax1) 222 | ax2 = fig.add_subplot(212) 223 | fig = sm.graphics.tsa.plot_pacf(data_X, lags=40, ax=ax2) 224 | 225 | # # 自动确定 ARIMA 模型的参数 226 | # auto_model = auto_arima(data_X, seasonal=False, trace=True, error_action='ignore', suppress_warnings=True) 227 | # # 输出最佳 ARIMA 模型的参数 228 | # print(auto_model.summary()) 229 | 230 | # 使用最佳参数拟合 ARIMA 模型 231 | # ARIMA 模型只接受单变量时间序列,这里假设 data_X 和 data_Y 是一维数组 232 | # order = auto_model.order 233 | order = (6,1,6) 234 | arma_model = ARIMA(data_X, order=order) 235 | model_fit = arma_model.fit() 236 | # 拟合结果 237 | fit_result = model_fit.fittedvalues 238 | # 使用模型进行滚动预测 239 | history = list(data_X) 240 | test_result = [] 241 | for t in range(len(data_Y)): 242 | model = ARIMA(history, order=order) 243 | model_fit = model.fit() 244 | output = model_fit.forecast(n_steps_out) 245 | test_result.append(output) 246 | history.append(data_Y[t]) # 更新历史数据 247 | test_result = np.array(test_result) 248 | fit_result = fit_result.reshape(len(fit_result), 1) 249 | return fit_result, test_result 250 | ####################################################################################### 251 | 252 | # 训练模型 253 | model.fit(X, y, epochs=ech, batch_size=32, verbose=1) 254 | 255 | # 拟合结果 256 | fit_result = [] 257 | for index, ele in enumerate(X): 258 | print(f'Fitting {index}th data') 259 | pred = model.predict(ele.reshape((1, n_steps_in, n_features))) 260 | fit_result.append(pred) 261 | fr = np.array(fit_result) 262 | fit_result = fr.reshape(len(fit_result), n_steps_out) 263 | # 测试结果 264 | test_x, test_y = split_sequence(data_Y, dim_type, n_steps_in, n_steps_out) 265 | test_x = test_x.reshape((test_x.shape[0], test_x.shape[1], n_features)) 266 | test_result = [] 267 | for index, ele in enumerate(test_x): 268 | print(f'Predicting {index}th data') 269 | pred = model.predict(ele.reshape((1, n_steps_in, n_features))) 270 | test_result.append(pred) 271 | tr = np.array(test_result) 272 | test_result = tr.reshape(len(test_result), n_steps_out) 273 | 274 | # 恢复输出 275 | sys.stdout = sys.__stdout__ 276 | sys.stderr = sys.__stderr__ 277 | return fit_result, test_result 278 | 279 | def eval_result(result, n_steps_out, target, mode): 280 | ''' 281 | evaluate the modl resule 282 | :param result:the model result 283 | :param n_steps_out:the days you predict 284 | :param target:the ground-true 285 | :param mode:the type of evaluation(you can choose 0:rmse,1:mape) 286 | :return:the evaluation result 287 | ''' 288 | if mode==0: 289 | # return rmse result 290 | # 归一化 291 | result, _ = data_trasform(result) 292 | target, _ = data_trasform(target) 293 | # 下面需要修改 294 | rmse = [] 295 | for i in range(n_steps_out): 296 | rmse.append(np.sqrt(np.mean((result[:, i] - target[:, i]) ** 2))) 297 | return rmse 298 | 299 | elif mode==1: 300 | # return MAPE result 301 | result = result + 0.0000001 302 | target = target + 0.0000001 303 | mape = [] 304 | for i in range(n_steps_out): 305 | mape.append(np.mean(np.abs((target[:, i] - result[:, i]) / target[:, i])) * 100) 306 | return mape 307 | else: 308 | return None 309 | 310 | 311 | def main(): 312 | print("start") 313 | # -----------------parameters----------------- 314 | model_hub = ['LSTM', 'BD LSTM', 'ED LSTM', 'CNN', 'Convolutional LSTM', 'Transformer', 'MLP', 'ARIMA'] 315 | file_path = r"./coin_Bitcoin.csv" 316 | dim_type = 'Close' # 'Multi' or 'Open', 'High', 'Low', 'Close', 'Marketcap' (选取数据的维度或类型) 317 | gold_path = r"./GoldPrice.xlsx" 318 | use_percentage = 1 # 使用的数据百分比(=1就是全部数据) 319 | 320 | n_steps_in = 6 # 输入步长 321 | n_steps_out = 5 # 输出步长 322 | 323 | percentage = 0.7 # 训练集百分比 324 | epochs = 100 # 迭代次数 325 | rounds = 30 # Number of exp 326 | 327 | # ---------------get data--------------- 328 | 329 | data, data_len = read_data(file_path, dim_type, gold_path, use_percentage) 330 | # data, scalers = MinMaxdata(data) # 归一化数据 331 | data, scalers = data_trasform(data) 332 | # split into train and test 333 | train_set = data[0:int(np.floor(data_len * percentage))] # 训练集 334 | test_set = data[int(np.floor(data_len * percentage)):] # 测试集 335 | 336 | # ----------保存、重新读取数据集 337 | 338 | # ------------------------- 339 | 340 | # define the used features 341 | # used gold price or no used 342 | n_features = len(train_set[0]) - 1 if len(train_set[0]) > 1 else 1 343 | 344 | # ------------------create model and prediction--------------- 345 | model_type = 'Convolutional LSTM' # Encoder-Decoder 346 | 347 | 348 | exp_result=pd.DataFrame({},columns=['Train MINMAX RMSE', 'Test MINMAX RMSE', 'Train MAPE', 'Test MAPE']) 349 | 350 | 351 | for round in range(rounds): 352 | print(f"the {round}-th exp, total:{rounds} rounds") 353 | Model = create_model(model_type, n_features, n_steps_in, n_steps_out) 354 | 355 | train_result, test_result = train_and_forecast(Model, n_features, dim_type, train_set, test_set, n_steps_in, 356 | n_steps_out, epochs) 357 | 358 | # ----------------------evaluation-------------------- 359 | train_result = data_trasform(train_result, True, scalers[0]) # 反归一化 360 | test_result = data_trasform(test_result, True, scalers[0]) # 反归一化 361 | 362 | _, train = split_sequence(train_set, dim_type, n_steps_in, n_steps_out) 363 | train = data_trasform(train, True, scalers[0]) # 反归一化 364 | _, test = split_sequence(test_set, dim_type, n_steps_in, n_steps_out) 365 | test = data_trasform(test, True, scalers[0]) # 反归一化 366 | 367 | # calc the rmse 368 | per_n_steps_out = n_steps_out 369 | if Model == 'ARIMA': 370 | train = train_set 371 | train = data_trasform(train, True, scalers[0]) 372 | test_result = test_result[0:len(test), :] 373 | n_steps_out = 1 374 | 375 | train_minmax_rmse = eval_result(train_result, n_steps_out, train, 0) 376 | if Model == 'ARIMA': 377 | n_steps_out = per_n_steps_out 378 | test_minmax_rmse = eval_result(test_result, n_steps_out, test, 0) 379 | 380 | print('Train MINMAX RMSE:', train_minmax_rmse) 381 | print('Test MINMAX RMSE:', test_minmax_rmse) 382 | 383 | # calc the MAPE 384 | if Model == 'ARIMA': 385 | n_steps_out = 1 386 | train_MAPE = eval_result(train_result, n_steps_out, train, 1) 387 | if Model == 'ARIMA': 388 | n_steps_out = per_n_steps_out 389 | test_MAPE = eval_result(test_result, n_steps_out, test, 1) 390 | print('Train MAPE:', train_MAPE) 391 | print('Test MAPE:', test_MAPE) 392 | 393 | # save result 394 | exp_result.loc[len(exp_result.index)] = [train_minmax_rmse, 395 | test_minmax_rmse, 396 | train_MAPE, 397 | test_MAPE] 398 | exp_result.to_excel("results.xlsx") 399 | 400 | 401 | # 绘图 402 | if n_steps_out == 1: 403 | # 拟合结果 404 | plt.figure(figsize=(15, 6)) 405 | plt.plot(train_result, label='Train') 406 | plt.plot(train, label='Actual') 407 | plt.title(f'{model_type} Train Results') 408 | plt.xlabel('Time Steps') 409 | plt.ylabel('Close Price') 410 | plt.legend() 411 | plt.show() 412 | 413 | # 测试结果 414 | plt.figure(figsize=(15, 6)) 415 | plt.plot(test_result, label='Predicted') 416 | plt.plot(test, label='Actual') 417 | plt.title(f'{model_type} Test Results') 418 | plt.xlabel('Time Steps') 419 | plt.ylabel('Close Price') 420 | plt.legend() 421 | plt.show() 422 | 423 | 424 | if __name__ == '__main__': 425 | main() 426 | 427 | -------------------------------------------------------------------------------- /results/Bitcoin/Bitcoin_Univariate_Mape.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Single Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | 0,"[4.441173341900095, 11.60983228265957, 22.013156312141298, 8.041771359589502, 14.859012906705143]","[3.546446140252893, 5.0262209637499335, 6.407589206981197, 5.986162293000028, 6.674583822431419]","[49.43766178256095, 78.05427777218445, 76.09685072820824, 77.78901191676539, 77.63233513522388]","[8.215134694870205, 11.550826175422278, 11.71824360778361, 12.168818606048672, 12.372191351546034]","[62.252391530718555, 87.60117105729354, 47.71613714835936, 13.466762737267251, 8.370610374933603]","[9.50320551987431, 13.206022518379495, 8.79276519016334, 6.497598455382576, 6.657035196000141]","[11.239141693288314, 9.1741525675241, 9.960672534734687, 12.680575176654877, 12.330117618785948]","[5.119884353849787, 5.648075261968899, 6.286088230929758, 7.055433212017327, 8.179003253649103]","[10.795923673439212, 12.063303300967538, 9.722144895421641, 10.307343190964211, 11.594225079537617]","[3.2090307820752133, 4.509814859157571, 5.279954762739511, 6.0689035555546935, 6.769725042871189]","[14.903406436099816, 23.868182425514195, 66.1780634217065, 69.99777740064593, 28.348578923554847]","[11.700105054999776, 12.955341633488493, 16.056696037678766, 17.154165503072285, 12.168901358001362]" 3 | 1,"[52.62453188266147, 53.695963692814075, 57.861871676994014, 27.05856780663242, 34.55219006464091]","[7.422004317601546, 7.949829093875653, 9.042884138501167, 6.649909837901759, 7.7573059611891235]","[78.66524021054687, 91.81356932039859, 86.06809665148086, 83.91325007921684, 85.02086262484033]","[11.468221752728034, 13.505482872708988, 13.623757979342631, 13.804934181400725, 14.42528319656893]","[93.14197546005136, 111.49026391626438, 90.5273485030644, 86.33475995415992, 82.67993641872926]","[13.628610025098267, 16.40013978770685, 13.958023369691725, 13.76908756075538, 13.35885734620571]","[13.082414762329094, 20.626636719607326, 13.05684381886539, 28.358756197546963, 12.637282588234411]","[5.020110826825953, 5.837442778929751, 6.669565581396182, 7.846715047114106, 8.284924934230762]","[14.81773251429368, 13.232450226485545, 14.150023811204344, 14.268283329654489, 14.498892766261573]","[4.408386245891119, 5.022708475341813, 6.259344430396782, 6.359258464224853, 7.2780319452688955]","[103.14532519164341, 67.63016978733003, 94.75428481551407, 80.42350775884746, 96.3212327466952]","[16.27785351544591, 13.051468812359953, 17.34147864234049, 15.637738516126465, 15.316204341049989]" 4 | 2,"[13.31487640608314, 16.038808218642806, 31.515347570186968, 37.14830974257727, 31.33041685114112]","[3.282917257995251, 4.618379618535494, 6.791154286894802, 7.538424822556706, 7.797058128144557]","[26.54196625449049, 21.35847935174228, 24.23241587459784, 28.10662980967489, 27.11606374616573]","[4.628477866141216, 5.1622313531874395, 5.971490996942926, 6.785686698618074, 7.204252580606848]","[8.520367505177985, 32.899731458867564, 52.38451576320594, 6.798627651556838, 10.240815419737782]","[2.9929842465543253, 6.426950683576339, 9.106166256524386, 5.72137325145801, 6.612394959250918]","[16.84834048159216, 22.817043495261096, 29.714604458521084, 39.54506905025003, 21.0541397359888]","[5.0187906058870455, 5.857959130710149, 7.202329260657299, 8.176064076857807, 8.567576991940328]","[12.481532253164541, 15.99923825039808, 12.267416420124398, 17.239146790742648, 25.08864871291923]","[3.9640244744314415, 5.196856038364908, 6.461589459061644, 6.790394390809083, 8.490224930640379]","[37.723041826869, 30.92354147849813, 27.020376900931392, 29.86821887864245, 21.10131818544848]","[6.083689407883906, 6.501195970045849, 11.907163811865757, 8.606946494589208, 10.193914832993158]" 5 | 3,"[26.345752998951188, 5.402808319157944, 6.366108674145424, 10.168980974695938, 15.816528674782257]","[5.1780419186224655, 3.968055785132887, 4.98146815138615, 5.670727263628842, 6.601116432327227]","[37.973840146381505, 45.86917481254953, 43.103293790526195, 47.23378705148237, 46.026398202771816]","[5.66917269762792, 7.315106003363871, 7.559008444256032, 8.259019874076401, 8.524517581739183]","[33.40520407333996, 19.82576833299095, 15.362955557799635, 7.469650480455699, 15.957772612389471]","[5.440892970150569, 4.9041626414581, 5.365839012972075, 5.676975910303855, 6.92279081720286]","[10.604568178977711, 6.809721197143906, 7.041202336395076, 8.377516719426541, 10.111498205299077]","[5.094445719360423, 5.837163455432966, 6.3634067902858815, 6.99997868943625, 8.154769561626244]","[9.103801303772228, 7.451384789595253, 9.167914405964531, 12.22689968175987, 12.25272139002497]","[3.441738293606073, 4.7344704002098315, 5.736713542345566, 6.384453492957403, 7.249033208171657]","[30.991029637269847, 27.146897535997184, 27.884848560334575, 26.3907114673979, 29.860896270322918]","[5.409373409557616, 6.237915375250487, 6.672561087712879, 7.905907935285465, 8.696697782335736]" 6 | 4,"[89.7402293424235, 89.02468496941263, 95.00842608586908, 69.34384097034403, 60.15222991687399]","[12.582927824642127, 13.297830695476689, 14.472021324601577, 11.247890919082671, 10.50696504399063]","[13.159244791868712, 10.378126117233244, 14.613126367197141, 10.728170067110723, 12.589398380271701]","[4.337668835124154, 4.898563065415718, 5.768130468929362, 6.260470937090545, 7.062452761754151]","[17.543258890246, 28.138981589424468, 16.049838750592784, 17.853008686513785, 32.31137943076792]","[3.841505669297037, 5.430722078973319, 5.360274828002704, 6.138707051729174, 8.05885859061927]","[23.74126208189311, 29.77296137700848, 27.583005867985367, 30.737339335159643, 19.029055635263234]","[7.918634538230855, 9.527300337495987, 9.10181557063629, 9.568897226235256, 10.426734446492008]","[10.41593881333991, 10.960512522960437, 9.790462959636693, 12.19066349416625, 11.39836046403382]","[3.6083131504524997, 4.954076699549933, 6.386549152074301, 6.618090745543419, 7.515584879519478]","[19.94042811078149, 16.45836861265379, 16.642092133618302, 26.143435284813933, 21.362571308530953]","[7.371306696434633, 7.023326877358857, 7.932733893582309, 8.315857933292731, 9.337055964751565]" 7 | 5,"[23.945394824746273, 15.768366461229533, 31.80132072349257, 29.912913333346737, 24.525106455974807]","[6.33975998359644, 6.085359049134024, 7.600315206987503, 8.044397782224493, 8.04926393863892]","[59.35941826389768, 62.35937174071662, 59.69835030803693, 64.29187278489027, 62.78240228230471]","[7.408988561255117, 8.049938834326905, 8.66587719057918, 9.332288855753097, 9.521725500681203]","[9.163190460211542, 23.037365943871496, 19.779223966511267, 28.980127440282853, 29.022423579148963]","[3.011236358417384, 5.408422155226489, 5.6888520550533395, 7.124693452405544, 7.559355044705425]","[20.707323490181047, 15.53480960942681, 16.65482486578405, 16.566683902169547, 14.28038873728362]","[8.641578973425126, 9.293849244816446, 9.703096817964033, 10.429116156184522, 11.100086620707037]","[9.375131592009952, 11.696994998651348, 13.764997178710686, 9.68281737972175, 12.628583357321189]","[4.599138844202396, 6.096147662249061, 6.70713433338801, 7.020310962195604, 7.687063901036918]","[31.933791259743206, 41.15200960625429, 40.72944255428689, 17.705381235354356, 32.40846569730943]","[6.691681071423278, 7.77246113258931, 8.360741186737394, 7.340306922536061, 8.887357502449804]" 8 | 6,"[23.894508832707746, 14.75597872289039, 7.473053729748992, 7.970056341257635, 13.05430058369706]","[3.7791223805810645, 4.917030112112422, 6.362764233868394, 7.175703902945988, 7.026125856486831]","[4.749977679218952, 10.550678788904957, 6.883943531879007, 11.452886135033365, 10.504495237450135]","[3.1979789055279255, 4.016191767777327, 4.8616061297314666, 5.6379435043995025, 6.344577878390561]","[4.664139500668771, 12.94491208091156, 5.4180811013354, 6.2297695619903966, 7.237523907021476]","[2.7117904463909817, 4.223782342082793, 4.849248377178877, 5.660901906385101, 6.547136728972477]","[14.94531497793013, 13.19433175001519, 8.88386837678015, 8.58126003491262, 14.8074781341627]","[5.639424932691839, 6.022742041956364, 6.757370701371979, 7.6562871835935145, 8.370827761607538]","[5.672571821495185, 10.239711600957957, 8.006363855895376, 7.005160641693468, 11.791012023251591]","[3.7806972740909375, 4.792885972251756, 5.470986365482291, 6.553924255743447, 7.101328136756549]","[11.310098975492048, 10.047288007776736, 9.065982332264646, 19.82428823020726, 12.115819132118895]","[5.442021919364889, 6.27795925707059, 5.930529786135688, 6.702000419485743, 7.2155748917451925]" 9 | 7,"[24.94550397788667, 26.72307604246256, 10.498679253492151, 8.265443101106454, 12.244363375159905]","[4.22910813109808, 5.241266521366691, 5.015752269615673, 5.725088754730497, 6.737240827438475]","[9.064665005646122, 12.090508299073369, 11.53558119620512, 8.838770029293151, 10.6283435921817]","[3.297644361430004, 4.731864401754437, 5.196517711155255, 5.775999009505842, 6.5651331691424115]","[3.1880933062950025, 6.5370962407523905, 27.092259060346656, 19.730301769420734, 42.0522851524291]","[2.8651616497429067, 4.1212789504528216, 6.746104608183128, 6.563631926673828, 9.07834097391738]","[17.777268085655347, 13.747434729275062, 15.769166143590352, 20.662492053377857, 18.52070696814783]","[7.927195852012934, 7.9389590608340335, 9.298588312584311, 9.625316931051124, 9.953339624960064]","[7.5030231947030295, 11.140223809205404, 12.199687758760033, 8.992889007936983, 12.972250566279062]","[3.2840831632348717, 4.392620301886226, 5.373439088051176, 5.954880859500591, 6.9370066881144234]","[28.97992543146149, 15.335216554959969, 21.46536619014564, 15.403711074582867, 23.76565731682329]","[4.936135390798203, 5.69236495282451, 6.54682416442501, 7.305885690307921, 7.669100391679192]" 10 | 8,"[5.31933305768278, 10.247731851408732, 11.49798233060235, 20.637324650923304, 12.676306903120208]","[3.3026938258115077, 4.961950619373557, 5.652656547858319, 6.978413472386509, 7.016181510111203]","[24.028964873730743, 25.994020653466382, 24.015729714223973, 27.258262950055972, 26.254832760420516]","[3.4774919118767755, 4.4396203916604025, 5.318123944745564, 6.113366757895116, 6.674304091421229]","[8.228589079546698, 30.624440271972354, 28.087781671896867, 26.68250685913635, 19.57828332561659]","[3.14111550272837, 6.3550846233024245, 6.653934619531389, 7.011728052770934, 7.04216470289509]","[8.160532804281651, 6.644165138720935, 8.849676784594578, 9.423356434594538, 10.656252217417586]","[5.648593878235529, 6.753482092218864, 8.139817410324442, 8.871850025679386, 9.283568620293217]","[17.38361758535038, 17.75387348752193, 19.23332343877797, 17.077697309190526, 17.459618174288543]","[5.133700382582273, 5.488666117713042, 6.031948218433765, 6.609214731964995, 7.429256882376559]","[18.96051265200005, 9.801900388313122, 23.58386225539295, 12.368040225152994, 19.74971669196767]","[5.10729029790815, 5.239697690624014, 7.813984057835986, 7.915181248282647, 8.881813020136024]" 11 | 9,"[8.661264078382782, 11.062250033419685, 12.902120690954646, 11.18205041203814, 16.15448116580919]","[2.978086515884238, 4.172464200696992, 5.093816493798648, 5.808396576250476, 6.549515696841818]","[3.16583357870084, 8.600474756462479, 6.547229762718701, 8.901279757600976, 8.85492534708364]","[2.854159110082299, 3.9762800006692753, 4.858401394629089, 5.643637222697398, 6.362895747629871]","[19.673728946724786, 20.66047513708978, 16.554507719957698, 40.20412268932392, 43.09843597293608]","[3.3392934983465334, 4.337353272482389, 5.0684031827455716, 7.287080139637609, 8.338319372918823]","[9.094165545713254, 8.412916397628974, 8.703765515959118, 7.225811472594078, 10.310573717487339]","[6.635950790971494, 7.389605100798937, 8.59150101675544, 9.090186284582494, 9.649371175032988]","[8.193850997518869, 7.908155999390363, 10.970626460733566, 12.839448788194385, 10.260102283544391]","[3.510783600927848, 4.711180983538746, 5.614341751676104, 6.456178805290329, 7.326177617180594]","[26.786850807921425, 25.523259342950038, 32.94386052069347, 27.79344192667149, 38.367748762598424]","[11.492250580614034, 11.99475340317591, 12.557248177372484, 11.596913818053189, 12.72392771302269]" 12 | 10,"[40.10355949895706, 38.53619758266683, 30.703895199776817, 37.933881683876, 36.8753467630861]","[6.723956813640491, 7.220230710754076, 7.140127159054104, 8.351740900828446, 9.119581523494684]","[9.00546052708678, 13.545925767197545, 14.01824014615309, 13.335581983218697, 14.115542045020923]","[4.047793106062363, 5.7980744592377, 6.1889366256140725, 6.823377657935241, 7.55430767202169]","[11.037604062960519, 13.803262376533363, 10.538307304999499, 25.65028089966183, 18.756443493333787]","[3.571219857061595, 4.698113307821907, 5.200119215641145, 6.989636841739127, 6.96159250159179]","[20.85882011018319, 10.63526154114258, 8.281518747533006, 16.95241496930976, 12.283279459992064]","[6.133480982844507, 6.053455307527212, 7.061641980807362, 7.729858892409476, 8.559463481894186]","[8.07980890737177, 7.7142132638927885, 12.229842219147448, 13.0613640187088, 14.611207135735418]","[3.8629484996841517, 4.823546727198962, 5.9420535719661185, 6.501114888425436, 7.631474672492369]","[10.108583550227845, 16.468798152102956, 10.869483387558798, 23.931064617186667, 14.799348068396023]","[4.5868441739263295, 6.251793684916447, 6.456063551713344, 7.842532008453332, 8.026373259601838]" 13 | 11,"[21.83250347070175, 14.323460754870867, 22.078348789282266, 22.074435518981105, 24.57311506300289]","[3.7753566067733253, 4.285127221207594, 5.550690197835097, 6.258341103420061, 6.977913666071872]","[23.066584273861586, 24.501954521749987, 24.620235021601236, 24.513168562825808, 24.887622624127946]","[5.812192049738176, 7.273518521574861, 7.620989062595676, 8.239641432003513, 8.861294748256135]","[20.942108594407486, 19.72143281371116, 7.269415902490748, 16.497837197984836, 14.765715011457244]","[4.394984017738201, 5.116505709098186, 4.941390535739122, 6.1666605757410595, 6.718428606237453]","[9.565685853073127, 14.925049225194694, 15.878367346863055, 13.738413250058434, 8.833071851157333]","[5.66301405061486, 6.313801491599334, 7.225789815057137, 7.84356956546224, 8.805012541057017]","[12.95115642101335, 9.815589146477075, 9.849361248697413, 12.132765121669555, 9.791900590095528]","[3.4751667198245273, 5.134438199913494, 6.09178715659333, 7.155426135567161, 8.136155570345602]","[53.9549623198743, 70.45628382945762, 60.816674403611025, 49.0953020308536, 44.04102800619372]","[10.566142822506059, 12.497677553475937, 11.44474704462879, 10.557169712652637, 10.501720974475468]" 14 | 12,"[4.077612328187112, 4.645825225468447, 6.716859545823303, 6.274868682712796, 10.329760156534709]","[3.162509117656296, 4.156739682658796, 5.1971371876725545, 5.905587135613007, 6.647224090865225]","[10.557497169702227, 9.740994136746922, 9.471911253489054, 9.976400425946121, 10.427352182604753]","[4.262391662407089, 5.634964622855486, 6.130159413891877, 6.833187900773671, 7.5168035750734035]","[10.9667687443346, 29.505811206914316, 33.37260339755688, 34.80640453930138, 46.66826019483229]","[2.9975481874379506, 5.4273685835410435, 6.4074345181531145, 7.140580283826719, 8.917051465041384]","[17.75872904889542, 10.648290931064723, 13.879081952276175, 13.756324102186479, 12.80438999972924]","[5.779554458365185, 6.169865422535372, 7.373516883687057, 7.965351610312865, 8.656156812522335]","[18.720087332645196, 10.30459671884036, 6.9836621856352945, 15.847958888718845, 13.101564607146098]","[3.806931536542143, 4.576203697627794, 5.302734703341506, 6.895246998545207, 7.229216893337992]","[9.246331505541885, 8.50761655692722, 6.983994463385552, 8.025046999255963, 8.27344535515012]","[4.643837728221023, 5.318344729493271, 5.976011604893853, 6.630417951563758, 7.406478067204465]" 15 | 13,"[24.49718154868934, 21.024481866889747, 34.58381118974548, 24.06007357619981, 20.598359859055073]","[4.103209058095894, 4.752295115809449, 6.467263088057981, 6.375561411877087, 6.810413517460626]","[42.02369498831133, 39.64429286404697, 39.5664808527177, 39.85276045494041, 40.066250405570024]","[7.481640632502935, 8.60564127150916, 9.033537058340169, 9.635743554994228, 10.208288641127385]","[37.642737401919746, 44.03284828293217, 39.636835292012755, 40.46217586324303, 34.92129497339689]","[6.840485991332653, 8.14542096709301, 8.124979766504108, 8.758372227628069, 8.474502345190201]","[14.66437432227224, 24.82586742319875, 21.23024271961719, 22.854379500392277, 18.780440540257178]","[8.955805793113502, 10.600380856931844, 10.459906129370108, 10.995394589954929, 12.357824092609032]","[18.27334854280352, 14.368128074801023, 11.888606439379835, 14.813481073566706, 18.106243169710886]","[3.997168016573073, 5.020528216667429, 5.633571004399252, 6.792604270618605, 7.537466039770216]","[20.6756063365417, 26.001846522007277, 34.21801605046753, 29.46686541307198, 30.68096680894093]","[5.774874719013303, 6.161286069711121, 6.857330764191808, 7.315567546719339, 7.826997685397869]" 16 | 14,"[20.718342016608915, 17.06917117408036, 28.548415721053587, 29.5185855964127, 26.818493054059463]","[4.789746463496512, 5.156683672710377, 7.289184372514206, 7.8973053460423746, 8.39480998783891]","[4.684453717966159, 6.840044927504595, 7.993541554641448, 8.677206746551269, 9.301975816551318]","[2.886589667302891, 4.163144575474246, 5.06973546662263, 5.8191934705526425, 6.524086808310583]","[9.53548157426848, 6.398296104374398, 7.085510816044412, 8.66291798077754, 13.826489719580282]","[2.912575293724142, 3.970883298749107, 5.117834250379923, 5.613836050753557, 6.502730931229579]","[9.568855023916125, 9.342565270783847, 7.5500002096980365, 9.300972125229674, 9.447216338397416]","[8.666368803585584, 9.532756827112776, 10.55565442911755, 11.267190900896393, 12.009099569469468]","[3.792984463448432, 5.022016692056827, 9.74766623252993, 10.001805908281458, 8.977433457087171]","[3.6673488529719087, 5.2619959983840054, 6.483935271312105, 7.119385424385709, 7.981361485995466]","[18.46635106096635, 16.06860937933877, 13.076256698953706, 12.62814670813492, 12.864825489066492]","[5.544875866443382, 5.601954348211712, 6.075711743599886, 6.564476298278804, 7.178949099208122]" 17 | 15,"[15.875197641240824, 6.699141461348318, 5.230063918803642, 11.183959548862017, 10.70950774921773]","[3.8411589504785457, 4.070253376114428, 4.988785518724103, 5.958920449854603, 6.597285109832115]","[9.570037719804656, 8.73266849895237, 8.756874769491201, 9.391329250945468, 9.947919362138627]","[3.1582852876601244, 4.201668285525221, 5.12583917546331, 5.867942506822709, 6.584226518737724]","[5.636916188581209, 7.230475390366436, 15.177524229937129, 18.410180152285424, 18.268641920914238]","[3.3323830865636457, 4.541144704700831, 5.836826807165588, 6.5909130071866775, 7.104343292031566]","[5.946728691468428, 5.831509012242216, 6.633027804795335, 8.123209945633025, 7.979343731862489]","[5.697513506081819, 6.566547670000439, 7.695056010764382, 8.671845617872847, 9.54114487634997]","[17.572661347836398, 16.050372098135455, 13.6401909811481, 11.755051154691563, 11.165501512993725]","[4.807187027875799, 5.138568824606722, 5.676031954665148, 6.284251058223968, 7.023960013173045]","[78.10000343123595, 180.95087893288166, 140.71994768316526, 76.27259750307988, 85.09805074917394]","[14.146005883841855, 27.316072336193248, 22.72559122472779, 14.659911359359493, 15.399053703675323]" 18 | 16,"[15.17886665477876, 8.617000626751329, 6.683512535714777, 10.770929665874698, 16.837916122242813]","[3.3375120773386087, 4.075208876400955, 5.082121149253241, 6.1006854407313025, 7.141296027831457]","[17.93634302131869, 17.070562386868062, 16.962936604049606, 17.406380369524076, 17.737842641986585]","[4.502509544897454, 5.5305509310299, 6.222596521211372, 6.918870855596072, 7.625922851106439]","[16.62503884075812, 12.017246386764908, 18.127979144858898, 19.36755481521576, 19.604882152535783]","[3.204497897584236, 3.9744912523173053, 5.14030552747922, 5.894556596211816, 6.644611400726356]","[18.58829916339911, 23.001667410793594, 20.56801947084824, 21.648507536420723, 16.572512673461635]","[6.745199305019733, 7.6072027602639025, 8.957311984870271, 10.211424884242774, 10.530875540088182]","[5.554369226371282, 5.539714318744844, 5.869635130280618, 6.360884354333692, 7.661398341016936]","[3.2513119225015576, 4.449310781875094, 5.388203192291467, 6.154343990543919, 7.004311631010553]","[24.001800280607135, 12.527623883674458, 17.024243065649205, 16.271945533170634, 25.353437065980362]","[7.227255248991645, 5.84625742637788, 7.303560402923582, 8.573006693908932, 9.675882664378872]" 19 | 17,"[4.954432155326088, 12.660539254766064, 9.5115408877722, 10.172613816330683, 7.797105133194802]","[3.311390680816918, 5.018471849371621, 5.477540782800618, 6.193324663851666, 6.840084822179906]","[26.185213851124512, 28.551413964676918, 29.29326216714903, 29.553845019630533, 29.79903329512258]","[5.195439334804184, 5.943165611703557, 6.650447450617046, 7.154970845039371, 7.6414840642965]","[3.036803585696611, 4.84250448692312, 15.63270336642207, 22.910970783175156, 29.74067711592357]","[2.741472964210055, 3.8136070054585636, 5.1445610639048915, 6.286588973606946, 7.434903351500022]","[4.75716779068268, 8.189808411402435, 6.631178235307522, 7.073432885236334, 7.714206091902271]","[4.840733916767729, 5.6500480666970265, 6.842623248312332, 7.742614711069544, 8.66359693490309]","[4.604230370158991, 4.596445454263456, 6.995664103116477, 7.89300866266776, 7.5832707593304445]","[3.10702831605556, 4.4358363035171475, 5.986139227429524, 6.795795230035273, 7.543697745755779]","[32.23536983117011, 22.197953466199742, 27.457066932459362, 61.15392830295823, 37.651134475155]","[5.913155034870222, 8.290376339956653, 9.802209669530972, 12.828879545999058, 8.77789221265078]" 20 | 18,"[4.093267433678889, 15.81996327335653, 19.56247299618819, 13.403689144521499, 8.915545379932325]","[3.145647122366572, 5.188156448038089, 5.897370240725997, 6.2564330762766645, 6.755181698176667]","[7.672239309653777, 7.811710277391998, 8.066479473734708, 8.687353452103046, 9.241153753919514]","[3.3179462471754793, 4.421057753819486, 5.302285682279534, 6.037023244570153, 6.779876403423563]","[3.4335157407215844, 17.141669688823203, 13.8908702091727, 15.820765529667238, 23.597065305870203]","[2.695365424091436, 4.385435711350241, 5.107047264430934, 5.911339689705364, 7.095388445660032]","[11.305848740196717, 14.418227530748668, 15.29570070778333, 15.953639687704094, 14.986314193178918]","[6.817829346783865, 7.683578878344266, 8.815258075702086, 9.603981849284017, 10.591328553750797]","[5.107381371792622, 4.888970165968049, 8.388201512711428, 8.226927292071855, 12.773315703200247]","[3.263764604001103, 4.8526398536868305, 6.408459254624427, 7.045322173802673, 8.039021882468122]","[48.42180876526753, 55.62433586151862, 47.29901540007291, 30.86360559559875, 15.089084308746267]","[14.906677899162075, 16.248315313422733, 14.166185761785991, 13.576089975699816, 12.677908311636097]" 21 | 19,"[16.731831778621356, 22.74070812146713, 14.349564831422374, 7.305042976426737, 8.767226335374996]","[3.4092375594932953, 4.826961104569972, 5.2463322350965615, 5.969559523768315, 6.812543277240978]","[7.042098685721015, 7.040209999813377, 7.4088653691374144, 8.053233300394732, 8.662861313177249]","[3.156898074434723, 4.279930752739593, 5.200152477350029, 5.930764920424317, 6.629102533126894]","[18.22859351516497, 17.627003122681405, 28.305032777107304, 15.842277343276187, 12.574044625293562]","[3.340959879027995, 4.189533578080078, 5.729708612644084, 5.75848673697865, 6.426660774690106]","[11.593989355612415, 9.369781611730064, 12.633823071024572, 16.507321006915028, 9.491451227795029]","[5.561967920890975, 6.1249069682047494, 7.515202458276214, 8.678113885457599, 8.980931707606143]","[10.016531462414509, 9.086718042639326, 8.637518163505788, 9.181164490512034, 10.430989196072634]","[6.328714627296807, 6.704687961980301, 7.160467542360971, 8.103049068156686, 8.660349822886305]","[30.832843715939255, 27.35116048674608, 28.717153072737528, 27.963323827821206, 28.989783453248858]","[8.192583207145486, 9.840612805039248, 10.831157242944519, 11.587770584500236, 12.124855091212952]" 22 | 20,"[30.871038573318938, 18.094277870689883, 24.359212684610892, 29.04078990309425, 27.441290295930127]","[5.556528745981992, 5.056096063743897, 6.180046320440563, 7.119922958765752, 7.791927131474212]","[4.650910884322497, 5.586172354579035, 6.603916557822275, 7.349055465149711, 8.035469795231991]","[2.9838245063650364, 4.235309801229302, 5.1488122790723745, 5.858357579374956, 6.499896368540431]","[7.010496259028446, 5.781038271370327, 5.718441411342006, 8.640671014159341, 8.112551116034789]","[2.8209886993314837, 3.9243897245166046, 4.8610811401555125, 5.639162427843523, 6.41374988470864]","[18.096440285492875, 17.864098032362595, 19.351728548561585, 13.601372069211742, 11.409002051941487]","[5.995090873581674, 6.4894547868280705, 7.40202996379825, 7.835824197151174, 8.45499351147871]","[7.890417119783821, 7.622380710370787, 11.151223180342223, 12.779009962208132, 8.037158903917849]","[3.3816454424808335, 4.772997294893468, 5.734597693918343, 6.634696078085753, 7.521920741457351]","[16.242549759306822, 10.837541089969193, 14.157233062087288, 28.854008331550478, 27.27630858911889]","[4.600829999030149, 5.4219802111779725, 6.207231032866097, 9.265971413570698, 9.243330905371817]" 23 | 21,"[9.630939062742248, 5.3386949926314715, 7.76689221456502, 14.389029605394288, 9.043080256182616]","[3.1401550522343156, 4.270434552125843, 5.290753522651896, 6.517322512200886, 6.945653165594846]","[4.684524954173942, 5.217932926152895, 6.256692531762359, 7.038031804317506, 7.746043455256067]","[3.031272346475965, 4.303590699341307, 5.2333173683850935, 5.938084236979665, 6.577765509837627]","[8.452817313709048, 4.887736708988187, 5.236702212914566, 10.888206085232582, 19.722313194831678]","[3.0389198139940223, 3.8171851379045734, 4.8414345596668245, 5.846572777764142, 7.0848474357742734]","[24.10038224068713, 16.99559997590712, 25.151143579331396, 27.254764500351357, 25.97256055537836]","[7.664549422591829, 7.727755785665007, 9.011538427811358, 9.146848409868383, 10.309574657743124]","[8.686467949013672, 5.403414741585918, 5.940456581538165, 6.644007324351748, 7.701413954637723]","[3.500864541784339, 4.736535608654942, 5.753601732180166, 6.667683385435508, 7.496220226108792]","[7.553192716282976, 7.799303493035546, 16.837204146239475, 10.413157737278615, 23.551155048644425]","[5.881654351660099, 6.5756048318382, 7.897640276240176, 9.4693343136125, 11.174032003093775]" 24 | 22,"[12.261290862561609, 9.319912081125453, 7.016602792703807, 9.260485603860293, 8.93159236043061]","[3.503672587402983, 4.513175893063852, 5.404669237432196, 6.39324199537668, 7.022341909390279]","[20.32301995668575, 20.761527889546915, 21.633388938529176, 22.0927708832182, 22.47750067586198]","[4.2405016859841, 5.431031479252194, 6.206157315974884, 6.766891704011939, 7.329199408044003]","[9.813590967032551, 8.895366070350272, 14.863737770184585, 6.037724099076298, 7.795040237351504]","[2.986418932007629, 3.9426517756523403, 5.231776561399487, 5.64495803857162, 6.485607078600392]","[5.058441469366548, 8.385364674443945, 9.938794174441306, 9.893453902423643, 7.742677524845444]","[6.935957930356958, 7.229896574986043, 8.136359081253076, 9.038945932238644, 9.723929647688792]","[17.823095167839078, 11.31276497499994, 14.86488955557575, 11.71236698246344, 11.96475818356128]","[4.225186585248565, 4.666001229265746, 5.823696553717722, 6.380562937523826, 7.143901089077674]","[17.753275685537613, 15.720403482093486, 19.64422604036522, 23.1000903451511, 15.60302308689526]","[5.948204952765942, 6.613645989499625, 7.786472405404951, 7.714629455162853, 9.027200700286912]" 25 | 23,"[22.134005350631774, 17.73481480274626, 14.969035354574192, 20.707445595047318, 13.581996711445138]","[3.876648855439936, 4.522822735592069, 5.4764602018783055, 6.636660861156747, 7.0409424360754285]","[4.087021514279337, 6.0181411903743, 6.411159736331334, 7.0131727806942195, 7.6617444377646375]","[3.181325036897072, 4.563783948206926, 5.442105565832167, 6.126660040492166, 6.728836742910002]","[17.462873322738062, 13.448293093983013, 6.37791992117773, 10.968189509597506, 11.882021924944116]","[3.480055858949091, 4.147344295130321, 4.939832546746364, 5.739122784667969, 6.544398714373938]","[11.34108566028242, 13.469463293789538, 14.329444154095103, 17.51194385798706, 23.194573661444235]","[8.403379357194556, 8.81388884003653, 9.69072603202367, 10.481091159427367, 11.778186989936266]","[8.11506879706259, 5.917109974722049, 10.236121955989002, 13.604343649096437, 9.96241849207571]","[3.5736176475071444, 4.912135241902777, 6.01410704801581, 7.1009595326594805, 7.966638491351687]","[15.100932880173248, 22.894747223969986, 10.372353447547814, 29.2849457209837, 10.109480701763095]","[6.004177945827975, 6.5779706593460325, 7.257156564600822, 7.952120557638269, 9.099008537787402]" 26 | 24,"[9.046637529688596, 4.8997070026467, 7.543598490831757, 6.197032935488971, 6.9067229242368615]","[3.1303485758186915, 4.1347145834632615, 5.263662109831703, 6.144475088495072, 6.897705568035682]","[32.03847999650784, 32.735852085138, 33.66225555132617, 34.19056979934621, 34.5765705610246]","[4.269853182359479, 5.469060778525694, 6.289275464358384, 6.921226595312325, 7.515326062418984]","[25.89214639812156, 8.724974796879398, 10.15452393968847, 8.92890200096588, 9.21560447920545]","[4.930029600574951, 4.126154225223324, 5.330949625098984, 5.789535142213062, 6.592081904839461]","[9.099073723214495, 7.60314144820833, 6.751508152259232, 7.181251383981084, 12.45229071608065]","[5.842418723792043, 6.535175017364739, 7.672406569486272, 8.702842488321634, 9.373380991169885]","[15.03075625907418, 10.562374631055048, 7.860051405989143, 14.32433079541601, 9.538024748496358]","[3.823670265710378, 4.8159292465695245, 5.6698191171100625, 6.827774718430471, 7.366873147180934]","[30.177931336541903, 34.19860940632595, 45.71544500321178, 11.409346306064128, 18.698033994642806]","[6.735823775920744, 7.946111412447672, 9.480282710581987, 9.935474299847618, 10.437480090358852]" 27 | 25,"[10.057512477017804, 15.84425508637668, 15.360425705913045, 8.418661706374351, 12.879725549421849]","[3.262697443344907, 4.574454920791853, 5.637142169246429, 6.210227445737867, 7.056693496555341]","[4.969149206805748, 7.409527890559072, 7.482470441321413, 7.836073543089585, 8.276406412060615]","[2.894478523983558, 4.17130707023428, 5.124748570429541, 5.870743370170429, 6.552116690601741]","[13.96732793658004, 4.431987632240931, 5.82319740384189, 7.679880560234068, 13.503494348802372]","[3.2363305373158804, 3.9275718943388465, 5.063953348503467, 5.821326977395122, 6.82932115787112]","[7.69290049583312, 6.5620531030797, 7.195460638864912, 7.934313393883169, 9.551097046884074]","[6.916457985031508, 7.818149714355567, 8.906183876881002, 9.375440149468373, 10.431428051297562]","[4.340101215962483, 8.524820395358335, 13.405904445095842, 9.159364918259296, 7.221494540473008]","[5.485409887870264, 6.735259647409686, 7.740250601872665, 8.015927528374057, 8.475774477636548]","[29.991478440197273, 23.229663870731486, 35.500588848626215, 20.632024385678697, 16.645219141880517]","[6.37666353666317, 6.693594608776385, 8.39544463588613, 7.88200601163528, 8.446552858370746]" 28 | 26,"[7.365332694338525, 8.154620242785333, 11.916080403880445, 7.093275959517434, 9.926164540418576]","[3.1118062988323527, 4.378577018378242, 5.575419010803715, 6.0001852772406785, 6.906011079430124]","[19.19068086779143, 18.561204128784855, 19.75107602211429, 20.5482397173897, 21.218972009974326]","[3.4985800394148487, 4.837110016410264, 5.730138997287222, 6.388984326132635, 6.995095612582211]","[34.985761713350286, 38.60856151010347, 42.575148069882, 57.873550787687954, 57.96023734025979]","[5.606120191905501, 6.501656336809461, 7.689093889291689, 9.742641476974544, 10.314476253918748]","[5.4810727974080455, 6.102369372776453, 14.935595392218811, 27.70155435184611, 35.63931254577791]","[8.400060681803255, 9.125342575111606, 10.10494158852708, 10.325326456653, 11.829995704503684]","[11.363667897153944, 19.887358763107073, 11.045938558637786, 12.426362083681129, 13.4504238862975]","[4.146122771880887, 5.614348895367281, 5.679820907107616, 6.521681278207614, 7.208466333380584]","[24.79352464358936, 22.542461946526345, 13.346793361305224, 14.570373160027842, 24.859592124081445]","[8.376334737629483, 8.779271359735596, 8.678255155058565, 10.428175783349687, 11.618948643728348]" 29 | 27,"[15.186352286050871, 12.484965441826082, 10.264258752297858, 10.22124402879922, 13.596029750977106]","[4.008332574047372, 4.714919269909848, 5.418455419965014, 6.2420376488725084, 7.143727760326124]","[6.337980005037871, 9.061350450368021, 8.939487945665233, 9.126350148276984, 9.402667976399833]","[3.1948863135632126, 4.184435379747636, 5.134382514577821, 5.900826311769448, 6.610449649274204]","[9.758459600663013, 5.008500310788937, 7.934172268556522, 7.247340476874056, 7.1904211827281515]","[3.1488305577151503, 3.898437017525779, 4.9948169243324365, 5.7467311258480365, 6.535178247070451]","[8.336352811018536, 14.015375901791948, 13.960231282702063, 13.960648935331307, 12.589946309047445]","[7.625057342425244, 8.4237130605394, 9.471987476931986, 10.241500906726417, 10.866014566985516]","[4.383467630871988, 6.728470808773111, 10.382776735622848, 9.192275019978354, 7.787603995035177]","[3.3313512130985155, 4.373398700040919, 5.574677914801504, 6.382647666292095, 7.0566095347603035]","[48.65616370783347, 57.29691245730284, 58.32012933241133, 82.36713151230305, 68.90442248345211]","[10.408054739671481, 12.508572672102694, 12.809511050701392, 15.884639221279725, 14.244900487608378]" 30 | 28,"[20.29321434761435, 12.807272282496132, 12.35819954573056, 11.449729603037513, 8.906759997823393]","[4.079780431122147, 4.389911789401898, 5.351999440442529, 6.101822584622569, 6.895268416125545]","[8.698213327834594, 11.097954396748134, 10.867805084626918, 10.97776838499443, 11.171332456222622]","[3.6148686811166626, 4.367133381069391, 5.248051425704405, 6.005793367688417, 6.700228112782691]","[3.492249912061216, 4.995609896703296, 9.765326924491314, 13.148887313438001, 12.313999742193932]","[2.77733326621661, 3.923630061053303, 5.053025894148017, 5.9708128104156195, 6.6832275167628215]","[5.757308661903006, 6.728132446449204, 6.216741894301177, 7.478914502468472, 9.585357354755091]","[5.8443077468449705, 6.697723984332738, 7.876042023308766, 8.2221579540269, 9.116510951758876]","[6.935322576339129, 10.37909344212317, 7.790180470265913, 6.072008973111067, 6.443923166995198]","[3.550229952968563, 4.931470427180009, 5.8776976394871605, 6.6890367258145345, 7.368310764014694]","[43.30590246036215, 21.686289964124605, 25.65640507096079, 8.757704083559789, 24.02870250640598]","[7.655199884068669, 6.311427800834844, 7.488511819883215, 7.258919360695941, 8.953129348888055]" 31 | 29,"[3.1869456436792003, 4.264597105389066, 6.16445596928502, 6.105639126099724, 9.004030330793759]","[3.077460910174102, 4.385129142376965, 5.523738315389807, 6.3700451507835005, 7.428616039545025]","[4.714923539869541, 6.9513202260212585, 6.984619915196329, 7.343747903598463, 7.812118751929052]","[2.953937300277624, 4.105065952141184, 5.090072159745821, 5.886238912656369, 6.592215517469384]","[16.37293847316797, 12.052521374480824, 21.049621275125137, 7.758025141924947, 7.521064974236133]","[3.427828584996926, 4.166845977354693, 5.49982633746386, 5.7990106802321755, 6.648318386876919]","[24.98478022641167, 15.840021645451552, 8.513841513685142, 13.285263161803048, 10.069299000466806]","[6.4029123638263465, 7.3277380709178175, 8.70181900754092, 9.259226584329989, 9.793497565325453]","[8.474281161730353, 15.90055411521745, 14.504400313625796, 13.405248877697046, 12.155057156955857]","[6.169956220263702, 7.833247520149082, 9.000543664564143, 10.213618646166807, 10.24934394842021]","[14.848017283721527, 7.417336779365023, 8.051679664198916, 23.180062970973836, 20.672072586550808]","[4.8609376409248375, 5.635581228422066, 6.511405458238344, 8.242182559855532, 8.590891343440218]" 32 | -------------------------------------------------------------------------------- /results/Eth/Eth_Univariate_Mape.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Conv-LSTM Train MAPE,Conv-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | 0,"[48.34427862104775, 111.92456375243687, 52.44319985444702, 112.50980447260179, 17.717514415700013]","[6.094056259600509, 10.53125921547402, 8.056406284295308, 9.754814746957916, 8.588198707811816]","[134.515682942747, 274.65474276538686, 263.1976096745922, 262.95472265005816, 264.2492510590852]","[10.073967955214062, 18.309829535547557, 17.98655818172083, 18.31498185536811, 18.787793249930377]","[165.59636981628782, 129.61328490827398, 194.9196954520867, 83.17168144206151, 136.5095052669496]","[11.220745366347096, 9.863603211887614, 14.216074517115421, 9.10742425873446, 12.845259313309967]","[95.37914190338023, 67.29814167790047, 103.73075927644912, 150.72508128792524, 87.37693798294521]","[7.583995618386838, 7.587404112276061, 8.10045150444376, 11.843573949709013, 11.046540094251402]","[48.792219337125935, 37.88714743538175, 38.58238796461567, 60.74924391349757, 37.90521622729529]","[5.04315867017781, 5.859511785260133, 9.289818594591539, 7.92401889641674, 9.879177683857018]","[109.94860209124555, 243.08656191486796, 130.76788506453542, 72.827026248809, 218.93359237975415]","[9.46434069029653, 9.869732413989201, 10.59237843730922, 12.557147889691123, 24.269958948529894]" 3 | 1,"[11.134353626512542, 41.75448451557961, 26.687945314628614, 44.43388744159813, 62.848063891430904]","[3.9946613505459916, 7.606483353954796, 6.552438037612148, 7.515139944593219, 10.434017537002207]","[40.30425556028596, 53.972282278607274, 62.46024271973481, 49.752594453868376, 55.45609160885899]","[4.871618791280918, 5.829233362594706, 7.077904179217039, 7.633937016260171, 8.650804393208654]","[371.68088256557076, 491.7711813461564, 364.43692127323675, 112.59084176790782, 117.77988647179285]","[24.589825330208356, 32.352536807085905, 24.85256841764304, 11.274709564848276, 12.106832415481785]","[125.85261803578416, 145.29866538447735, 142.907809479879, 146.5260752681703, 133.53372501562413]","[8.667533610317777, 12.579372740833803, 8.464735465375647, 11.277068600805242, 12.85854240902466]","[20.821409798712654, 16.947655543022364, 23.64800366720955, 27.984987912900888, 22.76376727020284]","[4.792775456254993, 6.940898097466699, 7.5693426115489775, 9.098923103506328, 9.929272296456555]","[156.8573769855076, 71.78750014972455, 111.87239956286368, 114.3830053843725, 45.51853284289024]","[16.871883609304945, 14.786935378834059, 16.1077150818247, 9.612248408975306, 14.917783665413184]" 4 | 2,"[13.516019120118328, 27.944975310840235, 64.28057209910018, 36.518281998193174, 65.33737300029951]","[3.7165486146022353, 6.103644693582446, 8.767405820669445, 7.408564800388323, 8.761924314713001]","[332.25660476319786, 299.10883695486746, 289.1270353037372, 263.5160086082465, 271.174659902938]","[21.497367828102302, 20.43736217127862, 20.653202326886166, 20.010743930649376, 21.010877338017163]","[206.88269783171785, 140.31347222179346, 53.52808468455883, 18.372031075180715, 52.20341792681715]","[13.24168391195981, 10.074262475327163, 7.163344605571988, 7.462901248952381, 9.069681845555651]","[68.89291798332493, 177.3939378780838, 124.33040513537246, 124.70029123984925, 116.24107096818418]","[6.881653581294694, 13.175372568129998, 9.843822461495657, 10.959288391757358, 11.54665455045027]","[30.984376384500145, 18.27034598071407, 31.801502211052977, 31.830304683336664, 79.50704216003864]","[5.594648276783206, 7.086695664546042, 7.534489483750213, 9.316510759026961, 11.37395061264364]","[93.25997590376399, 33.09861113345908, 148.12623754078015, 131.3748859106582, 37.48107695542205]","[8.251183184930207, 13.968539109737293, 9.176981714574406, 21.668689790076144, 15.857529044603288]" 5 | 3,"[116.55145365040039, 121.03880628339634, 140.56163491645384, 70.94141888776282, 91.34608157749355]","[10.056675581590282, 11.609523650844844, 13.374150154888653, 10.193728410526433, 12.214374039352224]","[22.713761643279557, 38.87826572775428, 49.24150899591487, 15.369368661209268, 25.882341671002294]","[4.429383838607503, 6.518495535112027, 7.756069181517564, 7.685678799144943, 8.906515175872281]","[192.8959458791705, 94.0252884947269, 156.3695557517252, 20.231257109441025, 31.51430588342522]","[13.586495655108196, 8.89870305569281, 13.083563645720478, 7.561083428994314, 8.924588864555039]","[78.16819275132009, 30.90326224620038, 124.76190841388008, 131.5778658356522, 149.44119742060965]","[7.5396426275314425, 7.2351614445849215, 9.998065714726014, 11.660748277790765, 13.291466916356132]","[30.358077253231237, 44.32444168502384, 19.47631990727108, 16.78154299352865, 19.836106381407383]","[5.6578186947341536, 6.674302786774736, 7.309952317753781, 8.292556857029314, 9.783653918296672]","[225.45855503049995, 105.35267194883404, 308.53140814173685, 145.38560112988245, 187.48154449512987]","[8.091832359193974, 10.528886917423335, 11.351658725048436, 10.51792269370781, 10.331911065516987]" 6 | 4,"[54.74807362321869, 60.340858042461775, 65.87026042804195, 18.69487351193173, 49.733771471199056]","[5.80979761058473, 6.922280143311737, 8.252975490108831, 7.362577460851447, 8.746899207442322]","[110.0837100013853, 119.61124369038099, 131.67403549164388, 103.11380738231759, 106.69463093066749]","[9.267960970487717, 10.95758094060091, 12.047791704919264, 11.447061108937518, 12.402269424697929]","[21.079274703070652, 78.40347564061162, 193.21635660038166, 216.0285336352837, 185.29875669683585]","[3.7801000125752555, 6.80928737946052, 13.308535974467114, 15.01802679561885, 13.972612427172129]","[58.97132782313497, 59.85442577060914, 28.528483279204004, 81.76248988278986, 127.45971677972163]","[6.993274631310212, 7.920880422854988, 10.051722029832638, 10.875585550741828, 12.6093338533512]","[39.88080748057963, 26.03956980163501, 17.969658215114194, 41.259108614386165, 26.3646878699518]","[5.238084492639462, 8.646611461207055, 8.287630471314504, 10.116330653697574, 10.88859750851952]","[218.52417774096722, 109.44615962504298, 161.92183582612546, 45.87494064902041, 35.44465693146221]","[19.990109068979677, 16.20331535217213, 19.693698656746086, 12.244465121491393, 14.623779134532539]" 7 | 5,"[44.02929915734086, 86.30177522265305, 15.88841693269879, 43.41496105912725, 84.06418036298648]","[4.40901633313384, 7.472238471412123, 6.509194213671831, 7.604931090835314, 9.325404529054897]","[171.48681987652793, 206.04699038948726, 203.11334666606365, 216.42751433730015, 216.4742621317321]","[11.455703796594083, 13.797469196943513, 14.217361118468963, 15.141914674468998, 15.567173641390339]","[22.722395924324555, 39.019252775769885, 87.35529357760008, 153.4134730814582, 80.88793936217982]","[3.791732033784993, 6.293287674754028, 8.113186184521862, 11.624705124463581, 9.498388254711966]","[91.10362869784842, 100.78412096995153, 161.11243983343851, 146.90732813511596, 125.77418836848014]","[7.951052394932036, 8.768172732501322, 12.237246978200723, 13.158220849151064, 13.576519773002252]","[60.568024639790565, 13.2540940971356, 22.528866527124233, 53.77977197658231, 13.308159097787062]","[7.91269126607321, 8.383053276556875, 8.795358391021294, 8.854905148496718, 10.003399212058966]","[70.50052981404228, 88.21369789383016, 36.035138681865945, 69.56780657425362, 80.10979087594556]","[19.62071258229857, 21.069485363122727, 18.310934734908045, 15.134678032573415, 14.929227280359274]" 8 | 6,"[107.87232430354628, 122.25243969985222, 55.67185785321755, 47.91114640664734, 40.83793242195345]","[6.65407510502959, 8.358970112726139, 6.902085211687117, 7.6220160231549805, 8.518843382695726]","[40.85897672240012, 29.318808843417976, 29.097802205185268, 22.41369129524569, 23.154640982249553]","[4.773477996260557, 5.665383523128284, 6.779040745691839, 7.467574174077852, 8.464162857117595]","[89.76018125980633, 65.99675064204943, 51.22490021776458, 10.265204335124729, 31.855710143038536]","[7.8384796746744385, 7.378822575274947, 7.6406045462103815, 7.40238708453656, 8.538007627689058]","[53.20750693399917, 78.98460253910277, 161.31626716105632, 72.00159035156909, 14.342257630542996]","[6.236867331558214, 7.817075067036283, 9.85243842523474, 9.198512439763807, 9.818518738498156]","[59.13730877157869, 32.28047848803043, 23.251316242226657, 22.368180139951242, 27.80771921809598]","[5.878199145736563, 7.354734814156803, 7.746070598644514, 9.379813145446654, 10.735618065354833]","[52.53386780959913, 42.00663531838951, 46.06961511083856, 40.660239742157586, 113.97764963037767]","[14.206099590058793, 15.099316401339797, 14.616568414905482, 15.688000182286496, 13.20953213932881]" 9 | 7,"[6.992733267757477, 58.809416043519256, 85.42527159243227, 110.62414594268549, 91.75872319684952]","[4.374507960708912, 7.721490432532033, 10.156446730168248, 12.013238503531849, 11.933665796326979]","[286.65531233152984, 290.05517082742153, 293.2914765105251, 298.26494234106724, 299.5398664767639]","[16.964131295714317, 17.428464117982088, 18.258430182308075, 18.77258818865594, 19.288639801099205]","[119.9709461951675, 122.82971153737863, 60.22315108116789, 16.927022049184522, 11.30166762516476]","[7.888607662594943, 9.279851886946568, 7.408243720602457, 7.581241364531327, 8.492386237417294]","[58.20226514416361, 86.41263099011512, 69.67330743935288, 108.32055541961097, 49.374009418162885]","[6.384269226949654, 8.3352417783388, 8.143403148166676, 11.383648756793766, 10.66765064732663]","[29.317731363176197, 9.121941787256988, 15.948608367290696, 19.578361655253993, 19.71452386059565]","[4.890083908083994, 7.793031757862388, 7.573163298023454, 9.474043559081755, 10.838775388377876]","[150.75136938815547, 69.11512095832997, 86.46635491274843, 121.21192685221808, 161.26309361417685]","[7.349332565911014, 10.08262614233966, 9.667719350697855, 10.17084263596748, 11.405133209889769]" 10 | 8,"[17.88133917965869, 25.558324137088796, 15.79122709893237, 30.088249234219127, 47.47151631651518]","[3.718707553172923, 5.56814685976519, 6.498800259395219, 7.511553764439323, 8.769644243553998]","[220.18615831309734, 212.14257336287173, 215.3982382681968, 212.739030031256, 211.1295213084011]","[14.14110876295592, 14.699242831747709, 15.392898239789856, 15.862425768806263, 16.44098199660979]","[117.28678320662567, 90.71723235526039, 51.28359757364297, 216.08514194773468, 198.06194047839853]","[8.227146000665577, 7.9867049494416085, 7.473164904734037, 15.636220066713925, 15.198034638883437]","[13.870087242773188, 48.01675218895392, 83.32333499839986, 15.957250137316706, 24.588078950718852]","[5.304617587799178, 6.752371013223233, 8.010442979737096, 8.84177068960123, 10.193880213561023]","[21.108267107598145, 17.601626606041577, 28.635027115834323, 23.667538576678368, 49.98249458196885]","[5.122995663717836, 7.660445563990358, 7.769522355907766, 9.621473209801819, 12.731837708269994]","[68.12497218901335, 52.20621625239641, 75.88535523930099, 55.704310154464274, 32.228177091174146]","[19.386606201464097, 15.689370920671001, 14.486298333342482, 16.2784476049272, 19.050652422206017]" 11 | 9,"[29.508117374416248, 49.12331626216654, 63.099712207836454, 63.192325523902205, 64.63378040290698]","[4.460266778545868, 6.47548860021668, 8.328687720830086, 9.337685078126542, 10.309155998787723]","[17.241331009879993, 13.461339776654665, 10.653819581640823, 10.600417380642526, 10.940053088208165]","[3.8043444316957524, 5.266531866991485, 6.474276859915346, 7.446786827975453, 8.439121117197237]","[9.78085657100145, 34.1684212457455, 95.45792581500831, 92.52590118424257, 49.47332978579852]","[3.829702288165067, 5.556070857713906, 8.755560671366768, 9.042293439520686, 8.896011707551677]","[22.525602085397008, 18.594740898080904, 67.67816689720622, 30.418905360930104, 24.864157462779282]","[6.22007288129199, 7.208207003566774, 8.21792363119314, 8.868439818867275, 9.785827735966281]","[38.74428179115761, 51.601701502365096, 34.37605539138614, 13.642604999730686, 31.51237939024861]","[5.78465268075672, 7.348722059174268, 8.057069831347736, 9.351961170570739, 11.303115378569464]","[89.37557819139238, 104.59097884190281, 87.3527318045783, 95.28320787236248, 87.79553051429605]","[8.60780408413551, 9.617938589479479, 11.124793727663834, 12.75863055296465, 13.670801102471295]" 12 | 10,"[61.32024078066497, 41.69594491839602, 67.29614014942534, 69.45595541544901, 81.44603390259952]","[5.485994207422133, 5.9542649244928265, 7.568951888374313, 8.418025311896754, 9.843374328410608]","[210.6855984994704, 219.10462175351392, 223.9436604864827, 225.28825176275808, 225.73635517727203]","[13.648962946482568, 14.260339210763764, 15.144761768830534, 15.664056308904687, 16.09620792384174]","[17.84141767109917, 35.95913954287931, 93.34743655609482, 114.35104702810837, 154.3236431059456]","[3.767943540839428, 5.810239796150471, 8.878361300082188, 10.393572243340122, 12.960562446132364]","[20.500648514766777, 40.83796898925249, 18.462885373561075, 25.486986215131402, 49.51822251460451]","[7.434327560835925, 8.105825575313377, 8.48498717748226, 9.320289287091192, 10.633064793439843]","[32.1442610653817, 9.801000962911447, 16.290861292480038, 42.26119226329662, 31.53749868632535]","[6.0506689820362, 6.815204381438404, 7.782462774914169, 9.134974784980178, 10.709300380163594]","[71.54891614710263, 61.485056925438855, 72.57301208097, 55.113957835341495, 62.02325303186703]","[11.829530788748235, 12.239390816508562, 12.21224186467022, 14.21077817685868, 14.52027950413296]" 13 | 11,"[278.03953032495076, 267.59790566274194, 270.3949647641054, 231.28812708830665, 249.11431113037864]","[18.355631120886372, 18.316990662899904, 19.30473437813714, 17.78540881569284, 18.636090952951097]","[97.60730530153042, 104.25092334193897, 109.15701538855367, 112.1412772481677, 113.9772829453749]","[7.425714241910768, 8.45944229979668, 9.555248685046518, 10.304631059243675, 10.994847142714939]","[57.106931624251715, 59.34001947748837, 77.75591165562655, 49.18570945030639, 104.94759160131663]","[4.852617154933466, 6.271885839474585, 8.063054403701358, 7.85506600978751, 10.521079688084539]","[30.844120253381558, 23.1478193533882, 25.400858495990146, 22.196609897826125, 66.95953454298169]","[5.4817586352081165, 6.691592292805729, 7.797365180944059, 8.872449835907272, 10.620411873446693]","[26.16562886000853, 28.29671868646104, 11.63466124584605, 14.849825087156216, 69.17426538884408]","[5.724992120136426, 8.289661516634423, 9.549283470606113, 11.683624898330454, 15.35564188903262]","[56.708253813783784, 35.8423692102009, 50.61330590391915, 87.14972034417687, 84.47857976839927]","[22.950598669353674, 21.36861327465089, 19.230197318626825, 16.957896865160947, 17.954266649898827]" 14 | 12,"[20.768018209729412, 31.96132808718849, 17.32794413382991, 35.935982310343235, 39.5017015378893]","[3.7946705634973448, 5.384532298285724, 6.554838578938544, 7.60004760955921, 8.715598236506517]","[69.54256538397368, 71.07443467055397, 78.12327333335334, 81.24868799249579, 83.31691428343558]","[5.676860811605522, 6.83535899355498, 8.038885078196913, 8.865066169052097, 9.657554383120688]","[9.12016862574156, 19.928341647450587, 47.28867524062629, 80.46170536428744, 45.89105761097215]","[3.9507458534758393, 5.39326340101988, 7.410129176927486, 9.625304616313707, 9.176115056041821]","[39.644581535339896, 21.121138452004082, 22.42584749616798, 21.28930634928817, 23.44029254850572]","[9.489118963022326, 8.483697278876548, 8.944710332032136, 9.55119711226029, 10.302049610365703]","[24.7400469356148, 14.093780937597295, 38.96606210062528, 17.43516963865193, 42.97258772642632]","[5.546446947477529, 8.390036451984564, 8.528734524349622, 11.161410501097032, 13.81216609719119]","[50.531626646407645, 71.06725391228734, 68.78006579164882, 77.4698868565983, 86.70453622853704]","[10.713347753067035, 10.591355980163737, 11.844996523006897, 12.800680739962496, 13.271332933118948]" 15 | 13,"[71.97604673178094, 41.195792906902625, 47.13393590910782, 31.289792831727105, 17.991235864067008]","[5.145879209928591, 5.64102124900949, 6.948998728322497, 7.657270056899209, 8.876734784595577]","[46.8903985898085, 49.58736570440172, 44.482343508490644, 42.73746863896946, 41.61559780540449]","[5.565983710583498, 6.617684871517975, 7.438276705611056, 8.334704874619623, 9.1808538366473]","[131.8788539614825, 82.2368600048176, 110.78199512163376, 125.64103855023252, 167.8562625795755]","[8.151383636293723, 6.916754229082303, 9.117477599989392, 10.412754864466429, 13.114637936012189]","[99.39721125932371, 148.74627440370324, 176.03208320834818, 143.0495540960442, 112.83337860666178]","[6.030688335457586, 9.990082724044056, 12.442322933466572, 12.624914678508592, 11.980807736688192]","[21.796539039875988, 36.305729478815394, 30.266903607378264, 26.155387561063797, 33.121381204867376]","[6.208044123366725, 8.683190655735551, 9.412624753371825, 10.891215076261753, 11.660973862671508]","[93.1535130634908, 64.99005636666017, 72.4079519194788, 92.18211601986026, 56.45239864474575]","[9.88550980164596, 12.004509960000796, 12.822201151185114, 13.365953870058696, 15.696125997947577]" 16 | 14,"[19.270354530249406, 34.438566415362274, 68.02088095531205, 34.95615617800167, 30.328304671298145]","[4.65594958292334, 6.0997628004418, 8.454370888921325, 8.370607423661127, 8.965956473244947]","[61.8924382227927, 63.630795468987614, 58.890231260578204, 56.20594016491472, 54.14793709049099]","[6.418849258647754, 7.229343155405897, 8.040241538871946, 8.86384866661453, 9.641092661336964]","[65.20728349934835, 81.76463171647622, 109.66174034581493, 93.39953824928592, 54.92847897280523]","[5.014974485818638, 6.908956050038545, 9.107938793016363, 9.076465457230373, 8.8981114903159]","[44.65741975671518, 42.07448254894627, 47.678174500538425, 44.36444887686885, 45.97025216362435]","[12.834896570382739, 11.53014136737916, 11.051221344729136, 11.261077010396361, 11.714851300891512]","[19.380132541037746, 16.063346115394776, 23.579599653134213, 35.22484495307951, 45.15777356417893]","[5.57080477060191, 8.137429663430002, 9.25970631587471, 11.688168800318838, 13.0864503799134]","[63.485498880863354, 76.77449606471713, 85.92548140659116, 89.15366144335127, 88.13333894563084]","[10.415326234038618, 11.045541988093694, 12.143057456363678, 13.413916480915875, 14.628070516713018]" 17 | 15,"[176.3071417795853, 82.36906154433788, 88.36359628742186, 120.86958582599738, 69.87280964736622]","[10.705446728006283, 7.222586167527078, 8.464048273923638, 10.393148674041678, 9.667852220455739]","[38.200669922120944, 44.6260076548246, 51.03180500765401, 55.850642440896706, 59.463869013103675]","[4.14226324205356, 5.880493624423388, 7.107286333880417, 8.064840662615987, 9.03960091486546]","[11.68365779733682, 49.84877894700369, 73.0328489639245, 86.48214667004216, 89.34714045414624]","[3.8442225872320455, 6.925953574254956, 7.568687733141717, 8.805359266347953, 9.817454108267835]","[67.3916068310924, 47.32191386238258, 20.31333550536617, 39.838508488706346, 31.898584859191164]","[6.034126800937406, 6.954330714104326, 8.145896642397494, 9.014504974539921, 9.903553270186773]","[36.7849598105738, 38.147721076149224, 23.803133271515893, 18.892502507845016, 25.47282365114503]","[6.242224294697171, 7.476042044187284, 8.407474048107229, 9.25796221090013, 10.422798800090941]","[128.58846885439138, 182.97119363518692, 163.1616401428861, 166.06071371731048, 216.01378087594944]","[13.779911031951567, 13.439683089050513, 14.9217547487026, 16.336945150450067, 16.152585964343213]" 18 | 16,"[34.913751729677905, 57.94868823559462, 34.7498832023256, 41.548662660437316, 15.2682092635307]","[5.656864413663646, 7.191549105966937, 7.344464321468363, 8.62600189097301, 8.774471366514403]","[153.7813285460384, 168.07019408826463, 162.8713330931688, 159.68000621826027, 157.40210821949347]","[11.56327208626644, 12.233976458511998, 12.807086082768388, 13.33705777380452, 13.98002749859375]","[5.472647221385988, 20.834847243333307, 24.717150883605875, 24.643138641767873, 42.9328768995883]","[4.22749041755235, 5.8745784726911605, 7.013898701461571, 7.850233495385731, 8.674828207050535]","[48.867836451883264, 37.4762636437916, 67.0824079997713, 74.97313653594114, 81.65028449159959]","[6.0376778390590236, 6.972787730693901, 8.329935893346677, 9.918416946103248, 11.061132000237494]","[11.014341090189964, 9.805466416270809, 13.824103386636613, 24.655515865905837, 24.17221094978588]","[5.685945080533671, 8.023101484861728, 9.125077162440553, 11.17109195932746, 11.714795982285606]","[97.04009373749308, 109.88228347780276, 115.89671199812427, 127.42515340492872, 138.50326970788709]","[10.972795342305721, 11.497582462697698, 12.123711444842456, 12.680125497757894, 13.202014824198127]" 19 | 17,"[15.029164842909202, 26.36653818744385, 17.341753786580703, 53.44224310253697, 34.15533201852723]","[3.9547443597608396, 5.446172009296232, 6.702088626953085, 8.20725313458739, 8.985685564187055]","[69.74210384629262, 67.38461431003326, 74.53242672840261, 78.62753537952453, 81.47764457133779]","[5.355145499230859, 6.897520748670434, 8.137054779915928, 8.941216960496018, 9.81215256464712]","[9.744891079537133, 86.36440283417002, 89.37097440897396, 13.331118057992766, 62.91489229895247]","[3.953478233930386, 8.902098531794088, 9.753161301007571, 7.49835320147033, 10.009171897996785]","[78.40894571211702, 51.69284769680614, 57.23479187050291, 57.0449603934773, 54.411572067807526]","[6.066771171691556, 7.1136948395671, 8.540542163483176, 10.057982111423975, 11.001452550359192]","[10.857285324447215, 9.14766793656069, 23.794378186360213, 13.475841679557131, 11.98337133754239]","[5.76596757342017, 7.192017320825871, 8.33249418591673, 9.47019933432767, 10.846145436457155]","[67.61499370879137, 45.486593586416184, 75.60286930782829, 92.76833599503539, 108.94137056827896]","[22.491006052604515, 19.536767310676403, 17.306607055887323, 16.496409861855415, 16.118634472905207]" 20 | 18,"[45.11152762494717, 32.92222484411643, 28.17208924195119, 103.06517345070783, 85.34864530457178]","[4.605020173924943, 5.877154273525723, 7.0741210410419235, 10.052697575532255, 10.663536296706095]","[6.868837334950421, 6.75264766607121, 11.119710199097554, 15.568067987641813, 18.952890856089006]","[3.8117990418184653, 5.315212266902412, 6.562535821558144, 7.492197623798003, 8.459305307373072]","[25.650804043486524, 79.99332521594104, 51.50664456689948, 25.14945800497761, 26.38236048842056]","[4.6209954654048, 8.350065169691037, 7.788545256310591, 7.662869298555079, 8.498730787260945]","[47.53272253166895, 67.14146004368882, 37.12945577019212, 62.40640294246551, 80.65158934793632]","[8.809749401333523, 9.32977768404807, 8.690443235755271, 10.06188788034809, 11.203820157792967]","[7.67641021535308, 9.87293484661759, 15.746308224202817, 18.037315810346616, 23.451403634926006]","[5.858878724482035, 7.773361081648682, 8.855084344885347, 10.04811283037872, 12.275225503883123]","[98.42636918623371, 82.53857308686001, 93.62610364894412, 85.8913453431889, 67.6458446138138]","[10.074668816236853, 11.596283251001283, 11.719237715800192, 12.796166942245216, 14.251362872814921]" 21 | 19,"[88.20234802048569, 70.72117242300044, 61.34217459050657, 54.20276986409238, 68.6866780197504]","[6.75826419655568, 7.1376000922147655, 7.808570360975503, 8.44590501819733, 9.784237251477446]","[30.33823060535003, 26.34914127207652, 33.72705235393059, 38.63346008700255, 42.35766463705475]","[4.002229606677395, 5.409640822828564, 6.801765578482118, 7.733396260160445, 8.762405896253377]","[54.477716864612766, 58.227280456758436, 16.43026528541816, 69.62298295411958, 134.68231900536338]","[5.992962421734038, 7.178747300508927, 6.617310208005561, 8.379800345699065, 11.689475393511644]","[22.087191023647478, 13.007348546662737, 42.96101334040108, 50.73085403256938, 60.40035294230035]","[6.144525580785249, 6.990441424376223, 8.535337834482974, 9.654862024198788, 10.56926659517815]","[29.667600340866763, 16.616654838000866, 8.77999678850795, 30.528459197102205, 26.85057627087406]","[7.330438844033131, 8.287227865244727, 9.297984806124154, 11.068360288523111, 12.285728311911715]","[97.00591502251719, 85.01676094707763, 73.39210269005333, 79.37624877635491, 89.04562857388055]","[13.427490571748892, 15.046044519542958, 16.48859076879796, 16.85609252304786, 17.10887932399935]" 22 | 20,"[8.605831982263407, 29.08929763227387, 35.192279164873916, 51.554831881584974, 71.85020928317022]","[4.749348739014271, 6.651115804352235, 7.740195327313945, 9.286964524679696, 10.66343935418996]","[101.24217540302467, 106.07506602435936, 101.56715437237654, 98.1925156893983, 95.15122715423351]","[8.737614336289411, 9.727916613263977, 10.462867212963308, 10.982391884677305, 11.559678009590156]","[39.39261439954968, 49.340526503479246, 33.455293644167575, 79.04822783493113, 54.989759134204064]","[4.111964462690327, 5.708974846218407, 6.568752828121366, 8.699061992466413, 8.928818780221869]","[56.0368533348955, 118.89215658702099, 162.85708527480955, 150.89478759104443, 146.30240884880251]","[5.5602553462132995, 9.346742540600587, 12.472019022849336, 13.124324455574508, 13.903170083648483]","[54.08167054798445, 9.338472549497133, 13.583964847969487, 11.388914071002668, 13.64232030941451]","[5.5619074503372845, 6.610300703534534, 8.029724711038842, 8.872595984509633, 10.170396493711584]","[72.45498940472329, 68.56660783994502, 92.341516073116, 88.86899665547901, 81.77313478506568]","[15.047677839176062, 15.692315937559446, 14.694760665424287, 15.524651996767002, 16.614829566525458]" 23 | 21,"[33.056248057595404, 37.498472918916, 38.85657344061659, 40.58455044383136, 22.585411867442772]","[5.06011096418937, 6.535628151538909, 7.478788223517641, 8.476558686336448, 9.111027928566076]","[74.79728126145044, 74.47484405039724, 73.08841981119332, 71.96625457788375, 70.73527815259374]","[7.349219577563034, 8.100099285701287, 9.192499668514474, 9.937090973334715, 10.710362069507374]","[43.25762564329128, 47.88169861969356, 92.46051868183059, 103.27337270848535, 99.85416815522993]","[4.317945520951518, 5.729146323693447, 8.40877510936806, 9.754183268217847, 10.387079563858194]","[97.74752938519097, 111.82386823485757, 90.42665480068145, 101.87134470350875, 91.67528678905839]","[11.178315877432254, 11.850279890896243, 11.492416569238282, 12.159492691423592, 12.179101702277487]","[15.273537134012805, 8.30780505384834, 12.642707151829335, 20.45394441475611, 14.027212139797154]","[5.343375995899035, 7.072732822056384, 8.379560516479186, 9.865144889616397, 10.856265576984528]","[61.622527670988894, 67.8671433610144, 64.59658568890626, 59.058707989382576, 73.23673451880983]","[16.28683685932322, 16.152067139178072, 16.659242348194773, 17.537409255205255, 17.05647998240686]" 24 | 22,"[46.44277597933735, 36.47948559893841, 22.737697892665757, 23.68444204301306, 16.917715588330022]","[4.833359607025142, 5.945054200032727, 6.9120895382191305, 8.191758793399535, 9.006178756772403]","[84.11762901590724, 82.166835465441, 81.23893881237848, 81.11647233464296, 80.88489030760962]","[8.37181751306937, 8.98215376454092, 10.08249245541138, 10.876984175200233, 11.630668353914423]","[27.70886687486016, 90.34484426056963, 82.05738710599462, 119.05163356449637, 81.39299126228086]","[4.483614990008014, 8.678719544493347, 9.032181687490203, 11.26648324394382, 10.442980682391452]","[107.66980696380593, 82.36067258692917, 77.75094669336174, 62.24404157329806, 38.19171205691956]","[6.890511574281491, 7.887014737675973, 8.659752035969271, 9.263545148810639, 9.803326548273343]","[30.507654330473517, 15.282545400464548, 21.276111088107257, 15.772585356968285, 26.281450930286553]","[4.9677738994662395, 7.883024763936042, 9.723890329348794, 11.204012824942941, 13.503455824302456]","[69.57729057103361, 64.5301971550176, 75.94516845400292, 69.55847435876046, 89.34196327281391]","[17.026331763632225, 17.675473886089353, 17.22127958017858, 18.09851938390499, 17.081060918078297]" 25 | 23,"[21.529128095671222, 18.723762970349956, 60.10743774880106, 28.651473175405982, 65.6149182659162]","[4.845744584653514, 5.668301843877735, 7.492635200651182, 7.946085218595653, 9.70049923214308]","[98.30434547506314, 94.9197181020091, 93.99551146672552, 94.24235578024175, 94.43820826205176]","[9.403566294594057, 9.864027389812286, 10.867104668949388, 11.688837747321868, 12.535184618439798]","[23.510396278155568, 93.19026051081313, 109.58698977241458, 44.461923508958215, 22.307552431724872]","[3.8430756182422, 7.7920780289365315, 9.292912270610785, 7.75131051739037, 8.451996770590757]","[42.99968172755496, 30.28787667222143, 17.813784038688205, 21.194601220102196, 33.09835531961946]","[6.1390321246748485, 7.917163943999624, 8.34647425406986, 9.116814735829466, 10.299517844987319]","[26.880889511219163, 38.77265931703137, 29.283752108395944, 20.16230700534221, 63.60956860476904]","[5.305997344241155, 9.50670563814292, 10.50749193026868, 11.749343731301133, 15.265757394344446]","[105.92638655071624, 89.6301715789058, 69.1342713945462, 83.84170135247628, 56.53084557520738]","[17.227061297636624, 18.741597926001273, 20.885456655157743, 20.182049616272536, 22.595061593110977]" 26 | 24,"[10.907471199858902, 35.63903597766465, 41.35719581453527, 44.55064867877644, 46.37280138623849]","[4.538959363142368, 6.655623550658395, 7.736968597218118, 8.862382708510053, 9.566703336419634]","[29.555011724459675, 39.72550722505319, 41.78116165131754, 42.69418475790073, 43.32981634948865]","[3.951832518633415, 5.4781266968758136, 6.898878452708333, 7.894166268080902, 8.809055765415195]","[66.44684578313844, 89.74048119958977, 127.07788465346476, 115.20535059084771, 63.33341351482987]","[5.3686752745013795, 7.485941090258723, 9.961732955004065, 10.061948010171431, 9.108577085141544]","[78.6713277394282, 83.0160014599411, 58.87476433721711, 31.94128935107669, 14.761400402977618]","[7.193944114244111, 8.938367893701818, 8.713448857521689, 9.283721447589473, 9.871742564672033]","[26.279862004359128, 21.698218803497056, 26.80399104112678, 15.837267447390454, 55.58325593224506]","[6.949290239905495, 7.0921362846390155, 9.678387904363486, 10.557505312700197, 13.013372052197452]","[37.011959672726746, 60.074991482393, 45.40160286280708, 78.00726815279445, 83.90214235320185]","[19.771137258959374, 21.463678142558802, 19.127863172784842, 17.218509031464173, 17.356285689665988]" 27 | 25,"[38.237531695488826, 10.343097828054313, 12.315070393438292, 38.85912684639863, 60.11740312909718]","[5.068381598716027, 5.816891291832999, 6.905374985818358, 8.382997703329064, 9.794634906218235]","[10.408487323624309, 7.603350912429166, 8.738477713494554, 9.931868962799689, 10.948228415985815]","[4.684656429625212, 5.6143727921566695, 6.98480521492524, 7.979029299566366, 8.945655649611318]","[80.57552936774857, 37.845688701092975, 15.362990153402261, 33.38701644755166, 18.25670041363431]","[6.9600601340920125, 5.750344041514467, 6.4203986857698485, 7.509623036150461, 8.445836650359292]","[104.39320602783113, 78.69123778930562, 95.77375099008685, 109.94834026262468, 99.99818340603542]","[7.352872925269679, 8.34645178599131, 9.625417277735023, 10.947820696371915, 11.525874625440716]","[8.869830831375056, 14.680924029176579, 19.76862017871381, 30.678087089552434, 12.198672255910942]","[5.989467770520826, 7.166556529151244, 9.146323774564614, 10.91878849906947, 11.529409582678237]","[189.43185417919085, 213.88490266018349, 107.69235026454844, 219.1437556649109, 359.16213089486166]","[11.544993060699076, 29.250986366759484, 22.56300426013659, 31.105992123014186, 36.86487856640012]" 28 | 26,"[49.38880619994437, 38.65436516239368, 22.433222091004488, 16.73652635811332, 52.61812169576476]","[6.168521795399544, 6.446799135192369, 7.131017621244598, 8.148852366204778, 9.75041676969313]","[32.20962692691714, 38.320031894641346, 40.204183645662944, 40.997628849793415, 41.56508316860413]","[4.119657496974429, 5.7994486106650145, 7.138075393884338, 8.114276426037275, 8.964706563037954]","[72.14760927246284, 169.73720200449563, 131.24181009462706, 174.16546231893895, 136.7400712044281]","[6.133661113706952, 12.142041079259739, 10.813360710734932, 13.02927918648636, 12.0637441982956]","[38.037351656876325, 25.28255309664369, 18.584990103607502, 22.419138576575374, 28.842934494489857]","[6.946750237898447, 7.677283724927414, 9.017064353047473, 9.59134252068542, 10.046324097231217]","[7.73709263534717, 8.93252260305961, 14.326000039734138, 25.233380937864275, 33.76688686753136]","[5.689078661500245, 7.838025602607688, 9.375190043751946, 12.01816249391947, 14.098159786969052]","[107.68837803294133, 34.03988194388246, 60.84195439898754, 147.0084212849525, 77.04095087117129]","[9.41972861495705, 11.175915551834402, 13.023288438917557, 15.667335961003753, 14.353825060594138]" 29 | 27,"[19.327240946027974, 10.746076323243718, 15.698658559945777, 9.892683950315632, 30.600146449100524]","[4.383892674923872, 5.749615766948127, 7.145703495242274, 8.010326023199676, 9.20941516261513]","[19.932055310361605, 16.651807428403657, 16.53518601864543, 17.345098041648217, 18.10548070977542]","[5.0881358529182386, 5.735936472197967, 7.049777982395683, 8.03221612106919, 9.022475925765102]","[21.679711603376887, 40.84682473732731, 47.69899360284775, 38.901578597657824, 68.09549422493886]","[4.43880891444, 5.5773078163505145, 7.009136518412896, 7.7935084617368044, 9.475202964603174]","[99.37963387339383, 99.66762340922189, 128.70974445319231, 180.74884395965188, 190.25613733896984]","[10.816950660316333, 11.619049725116943, 13.286715566561885, 16.39718849955687, 17.231577716910753]","[39.76830293187962, 12.490863478576394, 20.009085383769012, 18.824030112541713, 24.644325585678835]","[7.700674218242182, 7.567034768970263, 9.488465490998314, 10.32931203068206, 12.402376076513432]","[120.75375850480377, 274.585997918347, 53.26313983687163, 95.36040440702062, 148.6017363897235]","[8.52918820890336, 10.032647811412227, 12.132697026064893, 17.92669902589192, 10.437870386619615]" 30 | 28,"[66.39161092917217, 45.298993128246295, 41.37112449264308, 29.68625712072328, 22.70362525805298]","[5.319819211494915, 6.196346045437459, 7.290984613850895, 8.243537415589667, 9.167349041207503]","[38.085774671259955, 40.65108880576294, 42.713187416102976, 43.503421458579986, 44.01704733901079]","[4.016302621778397, 5.736387956287357, 7.098453689444163, 8.067616055910038, 8.926655378467364]","[44.10917017548092, 108.44110285523752, 23.291152806093287, 10.056408595102964, 34.39577736510807]","[5.517893562328104, 9.539984130575146, 6.748384819528902, 7.443517709769437, 8.776767758026741]","[24.25783732548027, 18.69474256339851, 44.34952211742337, 55.76309210363498, 86.32865161131467]","[7.951946958812628, 7.451156043129399, 8.033254154119774, 9.171167509938051, 10.681221573810248]","[80.54750548343469, 37.59720247873777, 22.195285929120182, 27.727077890447294, 19.26384527997308]","[6.529274507232497, 7.37500580938958, 9.566847970468748, 11.768845597489735, 13.021542717160294]","[106.08640804168594, 74.65081801984161, 102.86601373957569, 49.09708985263695, 34.67467876507284]","[19.403507680461924, 17.400575472944357, 18.773411517029174, 14.546255723306137, 15.586695720371138]" 31 | 29,"[61.760119774632706, 51.140651058600994, 19.800238214563677, 12.370911183679361, 18.98251863396571]","[4.972885948725154, 6.3453868292487945, 7.002383892747918, 8.173704697708372, 9.211296155774173]","[12.361048874543949, 15.502916470875897, 17.880139213086856, 18.976568808264457, 19.873731232293913]","[4.485948347703526, 5.491254679923639, 6.887350776642459, 7.8827468638328835, 8.836354948585228]","[37.51927616592768, 42.04135186022429, 33.84180970776373, 70.1359825415056, 123.53599045448304]","[4.85150003805724, 6.107298862960272, 6.9609966408877, 8.839953430280941, 11.57875748907631]","[86.71570085314403, 84.9708646721308, 117.61462258290192, 114.65864303519508, 122.58789450927317]","[7.763229917591355, 9.140924718457681, 10.835483526745698, 11.639900053201275, 12.419530372759905]","[9.027422153101906, 13.811277016183322, 30.265720112438515, 23.88053911834442, 17.852983682867517]","[6.34412703835535, 8.246189853213203, 10.836750120102456, 11.493760922091337, 13.69621041866409]","[146.6292336784413, 135.32502189182182, 124.15375538246158, 93.91780079302524, 70.05921053979225]","[8.332057040602292, 8.951146390355248, 9.528430059415525, 9.526465332499892, 10.17898996070435]" 32 | -------------------------------------------------------------------------------- /results/Bitcoin/Bitcoin_Multivariate_Mape.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Single Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE 2 | 0,"[7.5132025436086405, 28.89435577767715, 35.68587430680797, 35.921594715932756, 15.744120978892203]","[3.6358754452183804, 5.289124452057477, 6.752683255538269, 7.513433324975825, 6.787365974838991]","[24.317303179252157, 24.686167860547695, 24.579951544225064, 25.500745757421186, 25.49605422125315]","[4.403110954912007, 5.126774191952302, 5.815475671975293, 6.465109341423352, 7.026184357979368]","[17.173220661070083, 21.91103948655195, 13.397374808220993, 11.435149607405638, 14.5378206310023]","[3.7178719259460613, 5.076599683023411, 5.480095952520476, 6.328847525716987, 7.061604582608708]","[9.163010923731447, 11.225575007262481, 11.715739635450117, 17.230489477587216, 13.242589458408242]","[6.051238178091397, 6.673604615653003, 8.214005380874575, 7.731587243588434, 8.069622277373636]","[10.813701457323413, 11.574340922116598, 11.680603000903467, 12.257018260385188, 13.087030466380323]","[6.780978550611596, 9.501652202801411, 7.9505807757982465, 7.907160317797215, 8.665372834682493]","[20.66201658561875, 29.774249354517305, 25.83528925456769, 22.100989516696774, 47.99937855660718]","[11.995078534081365, 10.063683648106316, 11.36380522581611, 11.238950974340192, 10.80176552793541]" 3 | 1,"[12.667936400034776, 5.587814572436357, 16.677946395491304, 7.133608174900006, 12.517684145387795]","[3.31399352353177, 4.331875027129616, 5.339801986719824, 5.863991493839941, 6.51536110890421]","[22.169653010594814, 21.33862982142947, 18.406479322777898, 18.34970071376751, 18.314359665427553]","[4.243172647270253, 5.2230508746781075, 5.809179307986834, 6.541376096277643, 7.182207206093551]","[30.492970347341036, 22.93372007676617, 6.431438518542963, 12.288715146144149, 23.283933305181854]","[5.596737474525035, 5.930744168420246, 5.436839615613061, 6.04306882206251, 7.94428989146842]","[19.944105576591088, 19.134595270709507, 10.361908515589501, 16.66838502385292, 21.28790704637526]","[6.455606967035296, 7.270997914409401, 7.818270931805367, 7.635112081547016, 8.269101916079743]","[7.709239667556303, 6.925932181719875, 8.340418104314855, 8.373392330990987, 9.697100669232098]","[6.429629901240329, 8.634278757388214, 8.45400366350936, 9.699047690973943, 10.500114904373504]","[18.211676847192635, 24.68381567439275, 20.987311658439793, 25.033901008908238, 25.64275344410533]","[13.538287132236862, 16.54492911697192, 15.69539110613444, 14.66903155176015, 19.337466015964882]" 4 | 2,"[16.37951549825523, 13.103574445270732, 20.686090236897993, 18.76310299931086, 11.344894224783264]","[5.414214827344096, 6.033053579348327, 7.425289217402413, 7.54323302378406, 7.426622269426463]","[28.309264976429134, 32.62181765887211, 31.05277152178213, 34.82624198035662, 34.6160515111118]","[4.44842150272947, 5.6513001280499005, 6.222246315228704, 6.970510978302364, 7.462060494819754]","[9.592588138621526, 5.197851475278776, 12.709996357946762, 9.82004851739325, 15.069834591954567]","[3.4798579743133837, 4.278897410543102, 5.310747844301556, 6.098965244547337, 6.994261826616675]","[7.968329450620597, 10.767250917978458, 9.245734807269312, 10.367183579512199, 12.422856026914983]","[6.818321300228507, 7.97288144568874, 8.797096704197168, 9.441919097985949, 9.945433779135422]","[6.937660534945262, 7.5454485539087885, 9.873498649131264, 8.053567485439562, 9.801377760932214]","[6.830201631837229, 8.30071872326334, 8.904960174076, 8.691355637127094, 10.82237238954454]","[11.616098174313667, 29.7398764415535, 17.39824830305349, 38.6776828881759, 20.676381483419284]","[11.772553487825803, 15.051751757058177, 14.510255527473378, 12.945079083296203, 14.062395522532995]" 5 | 3,"[24.653938150788292, 24.152431865341338, 15.46197512009416, 16.028856842061685, 16.695709373064176]","[3.8729324366075306, 4.7660093189139, 5.868311250816398, 6.361436781326506, 6.934124529784555]","[5.666961497172007, 21.907786698778906, 23.09912437811009, 24.531042238898518, 25.470342718783424]","[3.5332186562444634, 5.262301263395101, 5.975098957475056, 6.660228637846751, 7.250413009154729]","[14.722691359683532, 19.145787260479636, 17.064537065356507, 20.072189582493895, 18.79717134143832]","[3.6973662806958676, 4.87721964973334, 5.903008105219672, 6.84908290911718, 7.679437330734018]","[11.793928784565104, 9.756357649279277, 10.583469102550634, 10.60861777770486, 11.323716979341025]","[7.955682413767329, 8.346038417675004, 9.241672694183773, 10.247760736922327, 10.58196482842742]","[7.167382115065152, 6.636364475217898, 11.351794514952571, 7.981471467825653, 10.828867423786825]","[7.463936881292802, 9.149047600513763, 11.255722581467788, 11.232314402100853, 14.061211507831983]","[31.374801375146887, 19.238950708669496, 13.112030974977085, 14.962319272970381, 13.535051938429563]","[7.82355850281614, 8.902931088300273, 9.846369879135688, 10.451525374093253, 10.350337055723042]" 6 | 4,"[19.66224881301178, 14.469407858491087, 13.90700076432292, 13.67223999145956, 9.846222596488582]","[3.9644546973283097, 4.741776427817742, 5.448394180704618, 6.3134141226188225, 6.638737827648039]","[24.254461307731106, 27.947485962657716, 27.712352453945215, 32.10140543887809, 31.139445546624735]","[4.240543168519748, 5.174303795122538, 6.139237816194551, 6.860531073590424, 7.322645040477814]","[23.80303975653763, 5.794689314060719, 5.8720670025753945, 7.758425935793928, 8.214522971652679]","[4.9431937321164385, 4.354813760807023, 5.146064020194085, 6.0234880105685775, 6.687603570089375]","[14.515837914761082, 19.42987004841653, 23.707680178282086, 15.337192937285717, 23.776454078769053]","[9.589490951508328, 10.275609061207309, 11.948124672551762, 12.49688121233464, 12.478279515144902]","[7.582273858139223, 9.053289229934974, 7.926450327916792, 17.252504711066425, 8.224589875411278]","[6.530470002041389, 7.384125301307602, 13.253200126007178, 15.440864126872123, 17.177586666986556]","[12.143150834791495, 20.12643067169905, 23.167175748353202, 17.293838927121683, 14.14905851230414]","[8.633291650121928, 9.601892402458194, 10.637163556179782, 10.816323384275208, 11.346727802706516]" 7 | 5,"[30.396044876761074, 31.24183219943857, 29.18452374895483, 44.26652354370743, 31.405103642562505]","[4.82024786845517, 5.339038389807574, 6.020758746662128, 7.60507192452103, 7.427443386557305]","[17.04824364887685, 17.841865881479688, 19.732607914063138, 16.63632104371829, 18.090363123862055]","[4.48212755761548, 5.564897932267437, 6.0567821259489385, 6.626387897312136, 7.353907804584662]","[4.360019008984183, 7.0016282368068605, 6.382480611553533, 25.746660837118547, 44.86592415629319]","[3.0430968091984685, 4.336549672221654, 5.506576892517027, 7.616823867295702, 9.744525389493363]","[15.541660743938943, 8.327317824324757, 10.239645218337762, 12.482961926922833, 14.695636696255843]","[9.698360494153482, 10.015850007225332, 11.308043826286172, 12.162731068961982, 12.365211910923653]","[8.809905437088416, 5.384624748509929, 6.686907198934748, 11.457914860070245, 12.17499089617314]","[8.923029037212924, 7.397850521715251, 11.19655199557661, 13.627665188618899, 16.924628125598094]","[13.29070482300001, 10.203273272372511, 15.329219799378363, 21.06209240238457, 15.769132546141169]","[8.313337032075623, 8.874363656045634, 9.907757328506191, 10.809515382037734, 11.848619161304752]" 8 | 6,"[22.915168842948454, 12.430950823707827, 17.99734356885644, 7.8904583959515024, 11.814399938912047]","[5.486009794815152, 5.361840932389123, 5.953718492700914, 5.962452113672524, 6.797369080908442]","[5.771698747402044, 7.129289390900828, 6.999797380423196, 9.30282647814725, 9.34381749489002]","[3.3807073596691253, 4.280242785225674, 5.1725656551461645, 5.858367932445089, 6.47009733521421]","[20.26581388275233, 10.308205214501722, 21.78818407427556, 30.987721267751052, 18.951770181436068]","[3.7949859755582667, 4.4489649478085616, 7.027115081720507, 8.469175955538939, 7.886888030193457]","[12.566357309404863, 11.52466672092775, 12.786687036506713, 16.903330167669512, 13.546019821564917]","[10.023425386115429, 10.856267168819208, 11.856263250665986, 13.460235627293955, 12.667986986266886]","[18.456479853201515, 12.33767058222725, 6.881749208029773, 8.412777363293355, 14.652651727271612]","[9.095153394159333, 7.534343906580723, 11.786920820774546, 14.3527573200392, 18.596798159518578]","[16.524275088565428, 17.382372304649866, 12.843710455883087, 14.547565687790499, 23.23720755663194]","[9.232469451264834, 11.114585598882751, 10.68302641472834, 10.746908358189437, 11.385661205355659]" 9 | 7,"[6.06797820915265, 15.714642083968542, 16.584506369102424, 11.375560143495319, 21.154498170064855]","[3.7673796786153124, 5.3788530530554945, 6.156000646671299, 6.930550971534105, 8.013369873519133]","[17.13596672099168, 13.36065761086516, 13.664799840846767, 15.480625953924937, 15.650605332004764]","[3.4620913489656466, 4.437021819105883, 5.22243743657544, 5.906040780331521, 6.5022028834869365]","[4.950977949315784, 6.602713180553879, 15.932139554203175, 13.939343493920262, 13.342538842977556]","[3.238106543795084, 4.533881302552254, 5.488179597492065, 6.279056891887609, 7.180599978002378]","[8.035658814985519, 11.859906734905747, 8.86487105468526, 10.666752136261405, 11.170022087777706]","[8.65942202628224, 9.899475018746676, 10.852210727650954, 11.909071156771912, 11.732899095923848]","[13.019304447835514, 5.722647551312725, 7.7831808701822265, 11.902981482290809, 7.739349335779042]","[10.214630895670354, 8.97120036464021, 13.731295396240325, 16.684867280141983, 21.110069989675353]","[24.827818463255426, 33.211471493570855, 27.863195973502503, 22.867411975284146, 17.543025832313205]","[8.746220660120821, 9.742102373749098, 10.357104490619568, 10.74682299632518, 11.229747474388024]" 10 | 8,"[27.301070592445996, 13.38045020692309, 12.416043887927803, 10.518713799445687, 10.267282525624633]","[6.374151048551909, 5.938459414150986, 6.60603342262121, 7.372947060412736, 8.069274914364302]","[6.927101125083094, 10.276775381725418, 10.543478121327098, 11.575284942195777, 12.037342235665829]","[3.5124656036159037, 4.4268736007116, 5.147100283764995, 5.817627471815426, 6.404452119953969]","[11.931227534546974, 10.075336554018552, 21.628635005742137, 13.80008083039236, 16.74294757711096]","[3.6212035883222145, 4.794876201745081, 6.752114026188442, 6.926054253637743, 7.802658404199052]","[19.20180476425498, 14.375247233083513, 11.404574279757657, 11.339426151747126, 10.644041201223867]","[8.206593455664152, 9.472105429400381, 10.907159181110439, 12.21906251838108, 12.56677162266314]","[5.872763388496078, 6.885436231756673, 9.552331291577028, 7.555425838669421, 7.988990776202358]","[11.354816699688982, 9.826281188899026, 13.260823996849473, 15.870035727874992, 20.534389800931805]","[8.007792866650645, 8.052695245654538, 8.825667275307662, 16.16345407958184, 14.70872668569264]","[8.611725512404513, 9.42275667707096, 10.322763019838813, 11.069542243482251, 12.228764684364691]" 11 | 9,"[15.748098398112875, 13.275206510359652, 7.640084758695685, 8.918623959353523, 9.368924460439148]","[4.67113528583637, 5.809476838392533, 6.635669121367332, 7.433866596979276, 8.330615832499491]","[13.114285844764051, 8.02781692600197, 8.919297775301553, 9.480061400008713, 10.097224102960773]","[4.173339097574487, 4.7784747121468705, 5.594827385000793, 6.2273898409122435, 6.780953810022377]","[16.683460812432322, 6.018261523100588, 15.066790174867808, 7.914207535939351, 8.647395768544671]","[3.6127388895506694, 4.945185330168003, 6.974276315702429, 7.163289528084124, 7.741657864192529]","[9.527095477440884, 16.224658500964086, 8.925326024296051, 9.88735117527667, 12.63328207661738]","[8.406959107113561, 10.217978403987276, 11.210430336365487, 11.914656698693173, 11.905638469058799]","[6.755522984508606, 10.42412717628958, 11.406336472064472, 12.738048275818903, 10.571547866300739]","[12.410542410116644, 9.878893493776697, 12.70667547282544, 17.031689538707244, 21.352700364159645]","[14.058854044444843, 8.826230748076162, 15.093470852095153, 17.97605475418518, 21.365733813277664]","[9.07299455678872, 9.98653332549406, 10.917862429815791, 11.61437252935951, 12.596637372714428]" 12 | 10,"[33.436663255410224, 24.156361213755574, 27.097813857413232, 24.224119895467727, 26.30585981935521]","[6.559187379094082, 7.014268825321864, 8.475200791816196, 9.202777018625467, 10.001901658371045]","[5.561732681301997, 7.694778545541481, 8.08244003052355, 8.694369037248805, 9.232181986871337]","[4.031974388628652, 5.315540687279176, 6.025540183625282, 6.728223610402346, 7.325628249004169]","[9.910804872786688, 7.861679188197254, 6.601065980182548, 14.716105326565085, 16.07369939903169]","[3.3793558859529247, 4.288156529741329, 5.815974351795848, 7.408449445429617, 8.152935753514477]","[15.640870131733694, 19.604489404127104, 12.883097017544392, 11.149555976905852, 12.703966673259043]","[10.174535921099473, 11.758137851401301, 12.520184184331306, 13.104825954757734, 13.545026048903052]","[5.71021521401484, 5.2726140255410785, 9.618224769512866, 11.91858502298501, 9.014733547565239]","[16.19405147394452, 13.034665528662273, 12.893146898400776, 16.429607930734548, 21.314485710042977]","[24.087063166535064, 21.138114360263422, 19.376066117707637, 13.902449403471598, 14.258185889453406]","[10.46043271620212, 11.166351651106423, 12.069060039602714, 13.154978732694417, 13.738944286611929]" 13 | 11,"[7.285566650379895, 14.136712605702806, 7.428125981120338, 11.482624477911429, 7.987728626818279]","[3.729181109757915, 5.456175935672087, 6.737201272477725, 7.905361387251414, 9.006369184328326]","[27.166475613281406, 25.17058518101602, 26.048203624970046, 26.427662135873348, 26.763804973926337]","[5.45273896933727, 6.729958771274429, 7.504880347400503, 8.237107735957828, 8.846004214308614]","[8.184253388402682, 5.318691042365951, 21.020143695855715, 8.60014861925996, 8.582822299282993]","[3.2977650777412637, 4.578098971786947, 5.927872834994225, 6.758292683626927, 7.599752861364251]","[7.911191758357908, 8.651584893159606, 10.096048237380506, 10.040453417347624, 13.218687163407264]","[9.788196001524268, 10.677018257278132, 12.160316045739325, 12.764813609003403, 13.62336750861094]","[13.39512667236423, 9.310098988739586, 8.531142574654591, 8.2643194841782, 7.648829775496988]","[16.547001274951228, 12.469218058917528, 14.463721616828689, 18.27442907043621, 25.765542107450486]","[23.627459563623425, 15.412049382149748, 10.127304503299774, 10.525825043291324, 10.33627894041779]","[11.222181203409935, 12.079007210840878, 12.845232173721282, 13.822274106316296, 14.560035990891516]" 14 | 12,"[10.040052744963077, 17.296977272745384, 14.872380685613626, 13.107231894082316, 11.514496723451408]","[4.605861078842315, 6.447985282948919, 7.767199699434337, 8.911386431515647, 9.600822139264151]","[12.385134121386193, 10.506040498966215, 11.425795144602692, 11.897532932221369, 12.320496715469341]","[4.534775840122922, 5.450879896997255, 6.384325290768015, 7.138094581162988, 7.79232887217076]","[6.909629239373419, 5.298008802102928, 6.314227427519836, 13.305951398784607, 16.65436478937064]","[3.1905099163130126, 4.565456873631858, 5.943599963881256, 6.949256929625816, 7.906962125996701]","[17.482352864021447, 18.087471206269097, 12.1657890501553, 13.916192284572345, 11.963607263800407]","[10.5151533212564, 11.430813943354327, 12.42148651477379, 13.070380145386363, 14.077731284907918]","[7.513630516559807, 6.324817031989767, 11.202154900099885, 8.632057704584122, 7.269536676260308]","[17.625621118100977, 11.595379837682698, 19.172073095352324, 24.31743499034389, 35.31982403253403]","[7.543600605646028, 9.729601870890136, 7.904130462732255, 8.936375363457874, 9.72151601985273]","[9.707146543433478, 10.757490534294638, 11.470529750908701, 12.086419281132974, 12.948750373891842]" 15 | 13,"[18.77144021670852, 14.625680076883828, 9.267154539123913, 7.931949272867989, 8.287391067340497]","[4.656169050491397, 5.5263858124263034, 6.539921250334111, 7.533667583699809, 8.240222625841588]","[6.079148227031127, 7.385803133298344, 7.733819294708115, 8.410633294808028, 9.003552826780703]","[4.084508660497361, 5.819429221012617, 6.9516228970659215, 7.843176761943346, 8.549326956716042]","[40.08061411362841, 35.039021634304746, 35.280877441338944, 38.54813983554728, 25.048835005552032]","[6.648313452071253, 6.164126046478347, 7.3716795000619975, 7.8359795780032995, 8.148077248736794]","[8.85235386431045, 9.434476112175947, 11.9783059849983, 13.678147792117414, 16.738780821160425]","[10.478885245231627, 11.132718999679595, 12.75199361200466, 13.015380821649947, 14.303308032975922]","[12.280005433097857, 9.634545097862546, 9.3917313240215, 10.658415225018738, 11.327317888097316]","[17.331865777698077, 11.780864230400724, 15.902412777313184, 22.253902766879296, 32.28139678818972]","[7.59185137028891, 7.88363406664276, 11.102448410861207, 20.44973677992879, 15.888898689748132]","[8.33298071070346, 9.24253903116426, 10.122894049326007, 11.127207798434416, 12.343369070961993]" 16 | 14,"[7.195500066699033, 6.288361909061968, 9.303042318904563, 7.851266083978888, 9.519374762527153]","[3.95285946664845, 5.247473029630044, 6.902403934518846, 8.129253114844165, 8.693334195171092]","[9.084846056925455, 9.43101629919451, 10.32975745023943, 10.735995990225977, 11.15089012845599]","[5.085244803675876, 6.750451778553038, 8.375499677030705, 9.463160720157545, 10.326498131542118]","[4.763133231142932, 17.086422927787755, 16.80640350691047, 15.004857957896423, 16.879000041013605]","[3.297481404402485, 4.934022230926573, 6.547452215352596, 7.441567365535947, 8.061027400765045]","[14.793507219393746, 13.28400776407051, 11.763520024922908, 13.24550160974175, 11.321083770789238]","[11.092511857381538, 12.334710148371562, 13.179551108025194, 13.37074061546645, 14.188511672485781]","[10.390164922551612, 4.785146128422162, 6.3054832172390105, 6.250895125191648, 7.735859118230194]","[14.963129756425117, 10.812801735809083, 18.882704738543577, 23.847697575850237, 34.03807942518135]","[10.059921806572461, 9.881906913503057, 9.171651951402083, 9.48865342029223, 11.526491016565009]","[9.430089282800894, 10.224492638912036, 10.97889872867525, 12.042634039421829, 12.771176154457764]" 17 | 15,"[8.74572741568472, 9.434023481542745, 8.281940046370238, 7.641976903806393, 7.989751760339174]","[4.252353570218437, 5.469865473631595, 6.558502555633227, 7.622738078090503, 8.167356796174618]","[22.54354452065907, 22.43584734645887, 23.07693727175959, 23.313014558381056, 23.55588195854949]","[5.972578271600158, 6.547620791403254, 7.785502943865252, 8.666538911317327, 9.432533336544498]","[15.432457959524454, 6.1551152064915, 6.498676745568643, 9.038860663355655, 9.818564168402629]","[3.8297987972546563, 5.162551464861497, 6.301607250548061, 7.953401010941184, 8.401399111864922]","[14.156925855110764, 16.926665148018454, 14.644047674326366, 14.025417190775864, 13.077634605756888]","[12.038511377980235, 13.208163423819228, 14.555355724197291, 15.164099217316295, 16.253173817397943]","[5.095263015789128, 7.174210580214346, 5.92468608823275, 5.982327341082686, 6.8210297414154075]","[15.793692527746453, 10.963777156237969, 16.429565995533252, 21.468482478339435, 29.49886962521334]","[14.269335362187624, 20.061734874216157, 15.99811192511051, 21.23420524804108, 20.000042955670967]","[8.849456215079863, 9.769857903926884, 11.00220631116677, 11.900414565222555, 12.921830280477629]" 18 | 16,"[12.144216628963697, 10.113165055295845, 6.850302650937165, 7.079196765395871, 12.488231388693356]","[4.826465355026719, 5.8789739321619185, 6.8417751591818305, 7.809692621385123, 8.612181740578187]","[22.840161393331734, 22.922954784989347, 23.429982481823483, 23.684396161171342, 23.936252916080935]","[5.106809481321896, 6.146111132091214, 7.607435564543696, 8.690324603574123, 9.590799884687689]","[14.162470168198283, 19.350007465984394, 22.561897262627458, 17.674859671699743, 22.44355337491956]","[3.832715674186989, 4.988011926951314, 6.761485794789365, 7.123781688653406, 8.209946652606757]","[9.667479317667848, 10.874766064559902, 10.203442866412258, 9.688995282243845, 11.54656057742289]","[10.934747963588233, 12.211265454395951, 13.84599616070188, 13.350130519591158, 14.396384168012572]","[14.847251455525331, 13.19883616795413, 16.89693254077946, 15.469847847723656, 13.73191573518007]","[16.809905626725165, 12.11345220095567, 17.506068997385178, 21.731201483203417, 28.77634381844829]","[12.856431635349857, 9.038316209260437, 10.308152417061898, 12.651284235390625, 10.762392335141671]","[9.943555688376478, 10.58869943531051, 11.591423264151477, 12.58796150252722, 13.709186772548085]" 19 | 17,"[7.221935148062032, 7.138710930871199, 7.748003971728551, 7.6337192214059195, 8.480901277872057]","[3.999696119337188, 5.087675175996404, 6.324992179752295, 7.2797797211702555, 7.734792772503764]","[10.493117730905317, 11.420923092962276, 11.939317401733831, 12.540402362552461, 13.07663637594132]","[3.9289070979928247, 5.397507027530254, 6.6612551644652225, 7.7074982939686665, 8.491627919907836]","[4.58186460603002, 22.898976948604595, 25.428205245008524, 23.730069669085037, 22.145912792705673]","[3.705199980006156, 7.207268797407361, 8.069873465758445, 9.96186306688886, 10.015353725040582]","[20.7400994071921, 23.96395856272072, 23.04036853642979, 29.13404601171004, 25.14585217833032]","[10.639589060278741, 11.54957007078863, 13.167169090076566, 13.355649134006448, 14.054196556784937]","[4.444518728332469, 5.387466134634238, 5.60762333755035, 7.712983888562016, 7.888927475924036]","[15.158165749854769, 11.646690440883187, 15.988827469171646, 21.179604549772318, 25.37119114952325]","[12.394437924425777, 8.335055143722652, 9.309090578708583, 9.385271466125486, 9.166977517007412]","[9.483780297847664, 10.445121707373014, 11.611227808661885, 12.446976535414786, 13.320821768767019]" 20 | 18,"[13.390731045034485, 10.155283088385366, 15.725229198366883, 11.130150263507128, 8.173229185565704]","[5.778081088413804, 6.702214710044496, 8.280131909203007, 8.723902631101224, 8.874917696697466]","[6.169856887754302, 6.5546917506731, 7.208586695274355, 7.794252296552247, 8.311258090330055]","[4.071943128768445, 5.391279445888544, 6.623895856619128, 7.692979241908844, 8.4565966673664]","[29.07212927328485, 16.33445995895211, 8.185483418928078, 8.16861583179773, 9.036077850008601]","[5.882751445552776, 6.102103717627042, 6.3065526798013165, 7.50529280137905, 8.563988237469143]","[10.281103901172967, 11.007814296098713, 10.856302120117324, 9.740447283503824, 10.189693785242511]","[12.51376698440174, 12.551185711319974, 14.325611954712288, 14.234657506078188, 14.697440342866397]","[6.62828519852257, 4.553087930064326, 7.825622941779871, 5.669692685848164, 13.345967437822818]","[14.42715742008549, 11.248537940143507, 16.082340668615533, 20.7348261024944, 24.961211849504753]","[28.64851283642941, 23.108605130105403, 16.696556805586685, 22.459243153476415, 22.636181596184937]","[9.069918354699034, 9.787502117159452, 10.73585035567883, 11.573279389871773, 12.738200867695927]" 21 | 19,"[13.327974152030983, 11.040048065746033, 11.963189155667562, 8.783184934705218, 8.74381071658175]","[5.101465493625763, 6.10342561865267, 7.021948275758973, 7.81998218595758, 9.27360128699241]","[6.98144063395654, 7.8548253070682446, 8.511752350489887, 9.14900447069215, 9.742631238669787]","[4.040877831452915, 5.506555361705414, 6.548305027812685, 7.531570289400828, 8.238865578041011]","[4.27150299381941, 6.348527303421648, 7.195945578749059, 9.773421319254263, 16.708232470056537]","[3.4515940077773135, 4.927216028427359, 6.165187513401752, 7.3968243645140594, 8.325209852425711]","[22.40859295225328, 18.654754336726615, 15.821934880900907, 17.830141201538105, 18.00949997104326]","[10.089131575012143, 11.302456414230573, 12.423346766133253, 13.008988344113497, 13.790645604944546]","[7.880173964544279, 10.98893497348529, 14.118506018278746, 5.678604459485889, 6.442668122663138]","[13.923268515148676, 11.511364009149192, 16.47312124615316, 19.99597250357093, 23.697757072906835]","[17.717501694524913, 18.874263818353036, 17.856664013137888, 18.270491674194254, 19.400990334832873]","[8.35388229688632, 9.14764369123245, 9.799606466598778, 10.30127019198521, 10.795690125973358]" 22 | 20,"[8.27151910442431, 7.233896722355909, 11.71531366922217, 15.717230923716066, 14.245431382218523]","[5.944246493837485, 7.316501119075422, 8.145731660160761, 8.417544275457898, 9.031878029744963]","[5.835027122994596, 6.419854504953055, 7.097474262880292, 7.739446556354984, 8.357526324210719]","[4.399697191267203, 5.514014071054115, 6.441809315166271, 7.255568871335026, 7.879334624718126]","[4.825833653303359, 14.203259285494898, 7.215396393342771, 10.184231971236276, 12.595636533847223]","[3.728281717177516, 5.6760324742508415, 6.063660492973643, 7.198219019907093, 8.251595305807568]","[14.531654768824383, 11.877969250952495, 11.959141746682397, 10.838276244219726, 11.576456548437749]","[11.572637307001186, 11.937260571430034, 13.513674396468847, 13.902754373199583, 14.664977520774647]","[6.570588031229753, 6.024056054809184, 6.881053021706462, 6.520035965874111, 7.448540884609682]","[14.400679750561595, 12.691521559002794, 17.34935439136161, 19.401527970539075, 22.40687406692969]","[11.198217188921081, 11.618411312041431, 8.899968422924989, 10.594866451138063, 16.158719028442412]","[8.318383359528905, 9.14446805536375, 10.276151092597335, 10.607954736322462, 11.297504143590746]" 23 | 21,"[5.76814091250986, 6.638284889417109, 8.401545295014698, 7.455666594060552, 8.329125272160086]","[6.64303018553983, 8.342821017984045, 9.745344523463636, 9.527797167762339, 10.318164941704014]","[15.288074806173485, 15.683659383967466, 15.772765062731503, 15.956196674362468, 16.12847145215073]","[5.235991125182744, 6.337605899757998, 7.200989821183709, 7.94221368214184, 8.419959771373273]","[10.988878664420668, 15.644719703762986, 37.3759146304706, 34.10293832981145, 25.562976944522646]","[4.105484909270751, 4.824031737688646, 6.896681057968074, 7.400989194663486, 7.478051744467937]","[8.2856462312028, 9.642990309042277, 10.06433239423878, 11.67980308620568, 12.312438971143429]","[11.145702023619044, 12.20302077979819, 13.787077680939744, 14.312328703496968, 15.029943158694708]","[6.580491174357767, 5.07256246357506, 5.599259053117883, 5.774270073961183, 8.491164349915191]","[15.45966847358898, 13.90941112244347, 17.08174842011089, 19.40604001627771, 22.45140733905345]","[8.407013208776528, 8.881369769164683, 9.974933225548522, 11.319251933110793, 8.621788109024985]","[9.758240939771799, 10.716125099656226, 11.97753324185707, 12.76596922308077, 13.685164255817947]" 24 | 22,"[14.408824631841192, 10.690499182425677, 10.467456764712766, 12.578894104362117, 12.027557646732665]","[6.584841645938676, 8.542883761618159, 9.652819678387786, 10.369762842057483, 11.155962389094661]","[6.301237427142387, 6.642255163110884, 7.338422126609832, 7.977377230200133, 8.61518784573482]","[5.176528080502737, 5.88765262560759, 6.652955549282953, 7.195582596653276, 7.670493559590683]","[47.27886544139721, 48.03007595068042, 34.79889995089074, 7.503151238752437, 41.04764195895784]","[7.598480053801253, 7.958333636744816, 7.056612248778153, 5.974756114155975, 8.79638194880537]","[10.539333842251263, 9.842340438887302, 8.590939432735267, 11.642177547267266, 12.74993342573153]","[10.658398133844281, 11.771583234664861, 13.140822949817155, 14.051671538240058, 14.505950338022652]","[5.3052860128792725, 10.34549862313712, 8.104068359976946, 9.134813562469441, 7.873654813994676]","[14.74704862199498, 13.761997421412683, 15.506879991152752, 17.010588116023296, 19.598788978724137]","[79.83314901023057, 122.24058612103788, 68.80801837656061, 46.60056027390267, 38.80795869668578]","[12.389064219136547, 19.459469990703397, 11.954529091497598, 10.458550197681978, 10.10659936211589]" 25 | 23,"[7.0515197429547944, 6.847008007620128, 11.770691588462222, 7.632136135915987, 9.517985721926173]","[6.5702056587519975, 8.253284776615624, 10.221365661893413, 10.330184705407138, 10.765300973428328]","[7.477988638859724, 7.92981932322098, 8.89418288697836, 9.777273126965575, 10.592948946073511]","[5.149647176276006, 6.003236438082705, 6.835291726791865, 7.458710262004624, 7.91472165384473]","[16.955089010984086, 32.597507247878085, 26.908528064000002, 20.515758889366513, 56.3283066339697]","[3.6871860376582912, 5.836177072268376, 6.102078743544838, 6.549703954796095, 10.619101252916845]","[22.91100534049043, 27.21982714285543, 28.101832467097804, 30.887823795764614, 32.05998133825096]","[11.443816230843954, 12.832227183809131, 14.381421797128176, 15.753408632378488, 16.80940740126324]","[4.414239895597521, 4.460738968622917, 12.012061358388507, 6.024029342419605, 6.490974003600623]","[15.015994071488178, 13.817393923305, 14.274438482951417, 15.281401533890019, 18.1557089716099]","[57.370239779192346, 35.96817837132947, 35.20451210321175, 50.428936416834546, 110.8413682241001]","[8.821876851333203, 9.918499695087068, 10.79776852236082, 10.18675261309802, 12.700832837047086]" 26 | 24,"[5.79408776577548, 5.999546498163999, 7.855768034586097, 9.400306091883708, 7.661475356254618]","[6.638065840650954, 9.256879266331211, 11.012381818258723, 11.479424823221974, 11.274403011605436]","[10.984338350122657, 11.205941970617049, 12.264425945536434, 13.172204560298281, 13.973660783682767]","[5.624133306386873, 6.390718524056717, 7.10018119483819, 7.730250555723507, 8.208954053473764]","[12.00739570832131, 13.00495256934679, 15.350345342789801, 38.21596784105646, 55.350602179060125]","[4.005188047806148, 5.026894111774817, 5.721705443093398, 8.458711118940123, 10.547095081746034]","[7.83512374937978, 8.887423050021608, 11.54818954404407, 9.256316218530419, 15.368860641636164]","[9.987378488822959, 11.030107798455703, 12.513101366838752, 13.232898936896417, 13.913553329306785]","[3.928453428098818, 4.629332045861744, 5.199065286423114, 7.096644502191871, 8.468075113015958]","[15.285195605891586, 14.181658142062107, 14.635526567961676, 14.778937640031616, 17.056614139020652]","[18.96310440038911, 17.286452098151063, 14.832052593305228, 15.139726785827733, 12.394116245564023]","[10.271146187589723, 11.93364887315473, 12.179311193056188, 12.158025262804712, 12.464789674105873]" 27 | 25,"[6.218832151631128, 11.016095207664305, 13.519389144330981, 7.209992443352493, 7.495666944392905]","[5.736272636036076, 7.562744012435806, 8.711273256989193, 9.446650540213724, 9.96086843709561]","[12.754159366704338, 13.084552774628094, 14.168068003071749, 15.048895214251134, 15.81027734235965]","[5.812856279770595, 6.723413571083293, 7.413619486419833, 8.051158326170338, 8.508512202685656]","[24.743759803986826, 30.421133093204034, 6.6842665036199, 14.54617137202032, 14.884587209245206]","[4.112032390267422, 5.3823576995468425, 5.100183007139696, 6.382012437199726, 6.9669825635982505]","[14.65305353856993, 18.016867622929617, 22.304190481198315, 18.436375191085755, 20.81143307764817]","[11.206803321388108, 12.18323524827055, 13.593064612086748, 14.455748570331533, 15.01541714460479]","[6.0779534176752765, 5.326429219072894, 5.486926421214642, 6.3666855195259355, 6.03170693649519]","[14.549049169430855, 14.325089614146567, 15.032257416638744, 14.919773898322298, 15.834692391126252]","[18.856094741971834, 21.31616884229322, 24.381405585496285, 23.80668273531863, 20.73990679844459]","[10.874895768625434, 11.59916532724792, 13.035025042044007, 12.02696257966208, 12.377725977488014]" 28 | 26,"[7.204865792846271, 7.294068746767316, 7.0620359163646365, 7.860713883243732, 9.101640895664106]","[6.0764186463852665, 7.859078482543011, 9.340930629308716, 10.250974435329315, 10.666511444558887]","[10.55233371008406, 10.712835703056681, 11.536272425711745, 12.204922339476557, 12.836012745853543]","[5.75808981517295, 6.678570997731241, 7.327825771878935, 7.985053476581121, 8.401472049416471]","[14.355427409691307, 7.805852715372999, 25.77064967250004, 23.090280854174157, 37.456510790204604]","[4.138837745313308, 4.49169148782228, 6.606648206607077, 7.150483250258147, 8.752525112174757]","[21.765820708994728, 21.790588482617352, 17.06240457522825, 21.10147860450067, 21.97357911967798]","[10.997119854584831, 11.381413051485813, 13.22141941170329, 13.888347623585245, 15.45269915987345]","[15.046905170108266, 14.572783107222707, 13.465286500058097, 8.343442813659578, 11.450396835146888]","[15.04365821232088, 14.804190192585502, 16.024438239705255, 16.503563411575698, 16.347996021436153]","[14.714921977311151, 12.835019501913575, 12.40826625047462, 17.72619067546985, 13.484100336280463]","[9.124480419688608, 9.54339420592752, 9.051163493842566, 9.344927412410742, 10.198335997952697]" 29 | 27,"[5.378415625467083, 5.880761473170656, 8.468025452979557, 7.492509957926603, 7.439702541146732]","[5.818649025330093, 7.155338203826535, 8.650791197216968, 8.685511055834208, 9.38814586567941]","[5.456938459423198, 6.002288713891034, 6.650588252325465, 7.27490022147247, 7.866268025106541]","[7.408581131016382, 7.879794824122064, 8.33858891134235, 8.823376920569828, 9.175553882400624]","[6.249818309020759, 22.264583666918043, 36.255509268576944, 34.22027518661544, 9.820701153707578]","[3.462747481342501, 6.03521788984782, 8.0564559731724, 8.378893891938016, 6.873364981365084]","[27.926636636322293, 16.67475675767236, 14.167900571251296, 12.917401389946018, 15.91593016717928]","[11.58137735233407, 11.474632882184203, 12.857536712702883, 13.607241841707223, 15.117406767692396]","[4.978001119419352, 6.091811874287084, 6.592151218297312, 8.188037077493826, 7.29722228415417]","[13.405930574769187, 13.889415204155314, 15.018735146373308, 16.371074998676026, 15.892049306513709]","[16.795936344735168, 8.29270935251409, 13.678347305328654, 27.46868498959996, 29.72234301591386]","[7.574950086972631, 7.945906130168343, 8.921862141999435, 10.174390645078693, 10.966735727187997]" 30 | 28,"[7.560880072299775, 11.767583014870855, 7.055058291971903, 7.876754864829692, 8.519573974661892]","[6.496307468557482, 7.976426143560936, 8.143770375628574, 9.177088564255358, 9.215880560273176]","[6.340621513932591, 7.089738041007637, 7.57877157463961, 8.123828168611588, 8.66151212835883]","[6.859996627757331, 7.446003712443241, 7.994941591827591, 8.488766223763601, 8.957390801976919]","[39.78680540655333, 48.52115728477522, 32.492334929490156, 25.072450541585457, 25.881112241651643]","[7.929137037526542, 9.740384609714276, 8.248309134474624, 8.161355382842393, 8.565711504550686]","[6.82991404038244, 8.836635707409279, 9.613382952512117, 8.118934574744733, 8.940991181651038]","[11.847433334885768, 12.157886385565464, 13.339517754111474, 13.93533869033949, 15.310247200346872]","[5.157226037221356, 8.329992490404491, 5.666970038896558, 10.94723035921943, 6.306994934451781]","[13.440922735837688, 13.782579754280992, 15.149210157799564, 16.185648520106792, 15.558294641940265]","[12.406289247032621, 8.966134692188316, 12.54300675298882, 14.657462261481202, 20.783397077401116]","[7.811885739038396, 9.271297471783203, 9.477687764689941, 10.173665475622531, 10.885681596714633]" 31 | 29,"[9.142856799991582, 7.8411306035317345, 9.152662401240972, 7.422229404114213, 12.90740955189135]","[6.422994552972399, 7.710967182803769, 8.886165893382064, 9.575232665751745, 9.576775892985259]","[7.13990107852548, 7.790327255363707, 8.331293717029938, 8.916439185435381, 9.520349519029555]","[6.57692620157226, 7.400398697491008, 7.980459896187772, 8.439452678756533, 8.766237974843273]","[9.038380037816628, 7.069876160870617, 8.296236398984036, 12.795267603155851, 17.52907750702239]","[4.0453519774447155, 4.495828207403852, 5.4700376993997, 6.2821085025133785, 7.104332222846386]","[6.788087548492565, 8.178709185037109, 9.072974043590202, 9.71981158580934, 10.691744881023125]","[12.352101766869131, 12.235767865322824, 13.115382472806733, 14.138139165738226, 16.099087698843913]","[10.239176526605881, 16.906571732835374, 5.050687343775983, 5.764895954010439, 6.6634538837602815]","[13.732433877527454, 14.698605609377912, 15.5179371744118, 16.658660738928713, 16.981899579560192]","[16.48773792018738, 11.824585616704477, 14.051091440357624, 16.4267969775488, 18.391479514388624]","[7.055922195140122, 8.16860770645775, 9.206548895308742, 10.110691695048269, 10.688720593751212]" 32 | -------------------------------------------------------------------------------- /results/Lite/Lite_Univariate_Mape.csv: -------------------------------------------------------------------------------- 1 | ,LSTM Train MAPE,LSTM Test MAPE,ED-LSTM Train MAPE,ED-LSTM Test MAPE,BD-LSTM Train MAPE,BD-LSTM Test MAPE,CNN Train MAPE,CNN Test MAPE,Covn-LSTM Train MAPE,Covn-LSTM Test MAPE,Transformer Train MAPE,Transformer Test MAPE,, 2 | 0,"[77.62995984035277, 46.19366880964837, 43.23374978000471, 44.02471455198862, 62.0490978857753]","[7.628029438391078, 6.771621812202399, 7.180275521697707, 7.8744085383234435, 9.261580361649854]","[22.663209625112, 22.44793465573448, 15.387482704041973, 14.738280679684044, 15.908556475971643]","[4.827510923975171, 6.041850531227072, 7.078207537108466, 8.143336898272448, 9.076415550493664]","[45.24954816379312, 35.12010055918318, 28.522897781120975, 45.7944148534913, 56.120695460629754]","[4.930433200336382, 6.514289606663135, 6.795144179527103, 7.881306865208806, 9.291662348545675]","[18.08530978765425, 17.3298107720854, 19.562115023563912, 20.70379071457377, 22.80257787907628]","[7.139267851655062, 8.033091993785268, 9.10216598853058, 10.13062374910535, 11.747786519276923]","[19.300757495754112, 21.840530286899387, 17.510174105720424, 21.905456589879822, 17.474125308267347]","[4.166193016576143, 5.931061343490052, 7.472001272864361, 8.753848859105691, 9.845033248141613]","[24.101659205733547, 61.98037037725071, 78.78877690847325, 47.34842388531905, 23.588356777446347]","[7.844249319054773, 7.102002204491607, 8.581939177281859, 9.628191301491466, 11.679229301210256]",, 3 | 1,"[64.13815966708724, 66.96276973973121, 87.08313658548673, 111.94187438900722, 92.15477047761875]","[8.381764455104598, 9.395399437644176, 10.377028802065201, 12.323717588863706, 12.001210757283259]","[9.505329161254524, 24.30105539177513, 18.982766413877787, 15.7489071778129, 16.915812273223302]","[3.8438159732166133, 5.424386243428662, 6.774096383725167, 7.735049839960023, 8.780742352900788]","[28.68551675778291, 5.860927170264498, 11.547138492892998, 13.835207812728889, 16.96113616235488]","[5.367489606843821, 6.044064803959195, 7.930094535983981, 8.771214425917458, 10.607191035065934]","[12.60111139195605, 14.976229661321327, 20.677066132364363, 14.87715987385821, 25.17702733030301]","[6.159522380478823, 7.462002824419069, 8.858193482503843, 9.999445264692506, 11.133090195033853]","[16.682008397354455, 17.396841328235265, 16.79688736087782, 16.799994027498656, 20.85977299224705]","[4.569131885971241, 6.426527502215452, 7.926909458276163, 9.261975265715252, 10.629993937863718]","[54.89670311282037, 71.6643252479793, 21.125220311963137, 22.756641977353574, 63.895090069225226]","[7.371974664799246, 8.401162211727344, 10.479579673618518, 12.531838832386862, 15.602037394609772]",, 4 | 2,"[39.76107136189594, 12.588665692861378, 47.21009020767145, 35.15108861511161, 24.217866603638267]","[4.583459006759448, 7.117150811224807, 10.335210283645077, 11.054742374562025, 11.570406798111438]","[104.06417256059177, 101.3797321393403, 101.47711341378948, 100.38039568806043, 100.87527096428985]","[8.842745149254894, 9.901079151904941, 10.088560471747744, 10.942899779438314, 11.768989454537117]","[10.246859668204253, 5.435379484358957, 13.930923284937624, 14.970902964796364, 44.276678468447614]","[3.831320135371009, 5.391187287789312, 7.183228410162059, 8.198679526386078, 11.13819240247807]","[22.470851785401813, 20.920773280036176, 23.79974788068627, 22.81446801983069, 25.0142777212428]","[7.977328647623248, 8.55979136027661, 9.653659611008747, 10.227100033216267, 10.9944288697213]","[20.451012810335616, 15.58010396105926, 14.462118065752625, 13.27723130372701, 14.874279084596528]","[4.221919879667786, 6.673434700084761, 8.121090704958574, 9.188679208618513, 10.571486882370703]","[64.57886939075625, 67.68783975133871, 16.67026942061512, 28.290395508206593, 60.823674370686035]","[12.719632439497868, 15.40231127730897, 12.720774401756627, 14.51019557416983, 11.992363563493983]",, 5 | 3,"[12.834234100636488, 18.345371524430266, 40.921901456297185, 55.813927574149645, 65.76406318821148]","[4.168223055870375, 6.226314647874547, 8.060694099984651, 9.55592286586083, 11.297442514683079]","[35.11584736307685, 34.1627875740922, 33.348894769584284, 36.37775965785407, 36.33280216655027]","[4.384041881479748, 6.192903249940533, 7.340918394633615, 8.36255810356216, 9.304989038077254]","[11.087839511838972, 24.29981625476008, 14.667779585718268, 12.49505552906829, 23.38641535368497]","[4.253329241114853, 6.141893578414087, 7.0119021815176525, 7.963958731995274, 9.26563281401354]","[28.885173141799292, 26.694511149532936, 20.475138937173693, 20.526832040580363, 22.669005468343506]","[5.942568391567674, 7.13841676107598, 8.43241473910813, 9.468518551099638, 10.490223337166123]","[14.589696391156581, 16.59349507691876, 17.6386548203705, 16.844549310385045, 15.238454224346413]","[4.7099143372798045, 6.4666813789639646, 8.010074450113084, 9.570620735072602, 11.181675606266712]","[72.38918625659946, 18.365337781672277, 25.866310199018315, 19.35573184850244, 33.78398610220927]","[7.186671713584477, 11.890819474747396, 11.920647570833145, 13.31574830632035, 15.062411281329949]",, 6 | 4,"[72.68418513188332, 63.24999394945636, 40.69234292905491, 34.864118692397625, 34.315142083882215]","[7.210553724039599, 7.7234962395041515, 8.279261902973474, 9.304694684566511, 10.544097778077013]","[7.30531390035285, 8.612406890358702, 10.965431685242494, 9.479256801237588, 10.313226558105075]","[6.693729434878211, 8.223023035566184, 8.69372172263145, 9.596970232904194, 10.494341948339752]","[66.63144235462529, 68.57014087000174, 53.477923851041595, 52.63934529878712, 84.90938901977671]","[6.247533607663033, 6.812206528645666, 7.20050697813962, 8.15180207674362, 9.725045879467126]","[20.692801233242687, 23.42332486266836, 25.136330138093804, 32.331085166686336, 29.501822657553028]","[7.630491482917972, 8.814009619372232, 9.862351700589752, 11.309864153458845, 11.663626313074907]","[13.418453204756734, 12.275806958184035, 14.388159669155526, 11.406771818162008, 16.62635503456215]","[4.1598423994026055, 6.179591325901428, 7.995093205311993, 9.059854632663981, 10.495967059750928]","[15.469193481451757, 18.790085976714934, 27.262278562464882, 20.863376706948326, 56.24452598191807]","[8.31207251246015, 8.16303198306791, 9.20872649412007, 10.230813198716406, 13.835803262336247]",, 7 | 5,"[5.218658772396391, 5.485317663479915, 13.695346034274491, 22.70153064235001, 20.746524484797835]","[4.125688765092399, 6.130723904464261, 7.505328519479883, 8.799315647173794, 9.994552585941886]","[29.51614986005511, 32.20266873081478, 31.224174166574564, 33.27104309619181, 33.936939885091135]","[4.703328211714393, 6.585281664422658, 7.8635665074806615, 8.978760010003858, 9.87477450183237]","[7.506321056611344, 5.577700519807678, 21.973096685388725, 15.458137219254938, 11.176995110407553]","[3.9095882820895143, 5.465494647289377, 6.918999164157653, 8.030272651036281, 9.467679072819767]","[18.92304519256596, 18.956660407564684, 19.531851624072427, 20.114143019867196, 22.462060516680214]","[6.856234034756516, 7.552502559414133, 8.793798257723646, 9.83619144912115, 11.050184498595165]","[23.05964133329898, 30.96329370462452, 50.03925498760938, 52.336154431783285, 34.43301923767055]","[5.523918846972693, 7.0778195425576795, 9.204697897800585, 10.97554670694343, 11.327297462609712]","[19.15670251393462, 31.52818520561264, 18.03069998844954, 27.556856096685806, 40.819359828241616]","[7.191514763775866, 8.418444826034317, 9.834485633020295, 11.215113881266465, 12.913612450820747]",, 8 | 6,"[49.24513665391034, 42.91110489871632, 46.05392780642159, 26.934314364688966, 29.32734435236693]","[5.399223459207787, 6.193204429549319, 7.667785825793211, 8.834335619939372, 10.124030430481294]","[39.6856732488393, 34.3852544076679, 36.54102415257237, 34.320971873572695, 33.541992493781706]","[7.509465277462192, 9.37851162229122, 10.038346653516315, 10.923330558090738, 11.618563177150046]","[55.10511566031393, 50.49953121726586, 88.25886314647302, 52.986557717428575, 47.15590066447371]","[6.038975439301294, 6.635446391417219, 8.918978191380708, 8.3313629737796, 9.390515056722258]","[7.5330001969448075, 9.195149506053555, 16.079036836625715, 12.54574597275149, 13.279429881171978]","[6.741655873383008, 7.9974630957518915, 9.813977908911426, 10.422511681847853, 11.104987695906846]","[10.329322684084778, 14.62943389975492, 8.559229846230984, 21.878066156511533, 24.38386487533743]","[4.327101204138406, 6.110414601066876, 7.784207201425505, 9.199121910649454, 10.608516980459552]","[22.041167822172522, 30.891621406234844, 24.07686202377249, 24.67608717629704, 28.78964420427757]","[7.827928084831005, 8.558884450981854, 9.68543678785789, 11.023875577354382, 12.006199503541957]",, 9 | 7,"[38.551759572925704, 35.76495955195176, 35.62680555011228, 13.342654367602544, 28.09109935496664]","[5.5756448824251015, 6.774340761294029, 7.9903480778546445, 8.95351816895845, 10.443525720764764]","[22.14222051131175, 25.571560081809324, 27.50903546627532, 30.82164800578217, 32.9101462972029]","[5.421576630550829, 8.050953682710714, 8.925656835706256, 9.767234006629884, 10.452234144274106]","[21.475620962469012, 6.053222237066266, 10.626017063103376, 32.077308424126194, 26.949344194650553]","[4.203342397712795, 5.80197354442211, 7.34154613303411, 8.2367442401269, 9.369374841293784]","[9.546559581558268, 10.659481160153938, 16.95064106037649, 20.323515472460343, 16.469563501935184]","[7.2104393163929155, 9.511216336900558, 10.982178647567688, 12.973979877505268, 14.840872471509348]","[8.64467503092006, 7.542503074667513, 11.744049970732323, 13.690835607175373, 15.765376080819824]","[4.338158762339471, 6.1077685411038445, 8.42886783989758, 9.388758992389157, 10.728568166917448]","[22.96787348567323, 30.522880324969172, 36.89005263755145, 31.508659181877807, 42.738873549758935]","[7.7350191629973235, 9.015745160654069, 10.624627962592179, 12.369667944872557, 13.133320937603962]",, 10 | 8,"[20.655811779029527, 18.055187230436804, 10.695314255350352, 9.685538187900605, 10.975568877655553]","[4.239042588357179, 5.898208374107066, 7.761024589978661, 9.362813117100197, 10.67268152434962]","[23.923565847531, 21.302917938532957, 22.90121954662709, 21.600263491152848, 20.976227269334053]","[4.83759219637983, 7.2576768249974135, 8.625374549167944, 9.682908221356756, 10.56582418947214]","[36.91499719072186, 36.016255015965896, 43.388399856101266, 44.06279953026298, 55.36232789353714]","[4.291293605895347, 5.831740146967028, 7.483433652807693, 9.050459764628368, 10.955908717338392]","[32.71181618263505, 23.425164325082033, 21.091288087968497, 17.71807625664853, 26.618294156215015]","[6.4981080809528065, 7.819740989301422, 9.172723857028185, 10.736281456002356, 11.973412388051125]","[13.323918699122911, 13.657526208106773, 18.26064694061357, 10.902793465328333, 13.668985071288153]","[5.572907663208014, 6.693071564911611, 8.560637743573295, 9.406656774171237, 10.630640034588883]","[108.98432903524764, 62.73173013140322, 93.02095138186881, 58.73962654718006, 34.703008097009366]","[10.268388498948076, 8.669927739288841, 11.64481979470401, 9.923079706358232, 10.036354206198322]",, 11 | 9,"[10.475436475526871, 10.598950689319203, 27.546046382421295, 15.68423796437445, 15.964309198972423]","[4.264426609765766, 6.016374738545278, 7.653233296759833, 8.890618468682279, 9.952949090660946]","[4.590648414355362, 5.691730893028691, 7.070479577493403, 7.819518748775509, 8.630089057800841]","[3.966590710179209, 5.804645394228159, 7.596834152283281, 9.043530656674081, 10.17866364845378]","[14.360044455437194, 31.31441101298472, 25.66468557629013, 25.42413420622794, 23.04011419124713]","[3.9966426053695456, 5.918992057871601, 7.299998754151503, 8.707986904325635, 10.038116318420476]","[18.493845698651228, 7.847915281706595, 11.276610186578983, 14.891416856330236, 15.772636657312642]","[6.320504922045424, 7.633343306334403, 9.07264561489475, 10.642668151844486, 12.101216432140596]","[21.29402598499449, 14.998821717130081, 21.01112178415357, 11.048084169817432, 21.65587692374468]","[4.694330645880605, 6.105307627118718, 7.764625653941952, 9.250602845795978, 10.817853202838696]","[35.53322541792227, 15.213072073727481, 24.376780371453933, 25.964705401980474, 42.58844762004115]","[8.451818972978048, 8.209126696482418, 10.001888054498908, 12.79973010136016, 11.555280480710838]",, 12 | 10,"[17.940971407282536, 15.56677613767954, 14.894929698445731, 13.984999182454002, 12.5794500470265]","[4.227893357908201, 6.1170769355506645, 7.941292110430527, 9.287419392175094, 10.439581572336152]","[7.706320560371655, 11.696743929577085, 10.959841970855315, 12.066914937319625, 13.065424935735404]","[4.984463058466284, 6.647250727036502, 8.563919606657722, 10.025804606446984, 11.158452218780168]","[21.921713792181627, 17.079563397555425, 17.814503616864823, 38.007585949996695, 28.80163535393581]","[4.178788285774102, 6.005237281437893, 7.570718987003061, 8.711226147060266, 9.853713981098949]","[10.77244187619403, 9.155856160783852, 9.92665709638512, 10.546840845598332, 19.577550358519886]","[6.236212361106819, 7.394559598401483, 8.725990499249283, 10.202885320878606, 11.73308362894993]","[5.188906275043339, 10.636254460518508, 11.919232449314341, 21.6761888918895, 25.922807339375748]","[4.547751259102923, 6.574697951477187, 7.670847997607866, 9.120391445584438, 10.284091193327708]","[96.04625582471567, 30.61245352542883, 49.30245549366921, 127.42661444554967, 65.59939560696137]","[5.963658671086927, 11.093447081838963, 9.93577910906637, 9.856227919588699, 11.81099037869781]",, 13 | 11,"[11.419984855724714, 9.938664540976248, 16.21937772096971, 30.85719039325251, 39.79137601118692]","[4.030929266342935, 5.746973972393777, 7.44501731339124, 9.060667858974362, 10.360959808169124]","[6.408857241172733, 8.276376406430195, 8.44868121724751, 9.56043901607696, 10.565777725333074]","[4.216029852961861, 6.157631711814869, 8.339458223053898, 9.992737249895574, 11.227435891011053]","[26.108611031728906, 34.651213317685574, 26.035601106427304, 25.545066002996304, 32.40405161266393]","[5.212379039999485, 6.9354480914713825, 8.05249265313163, 9.3631754268406, 10.34081489685439]","[17.953060197850164, 21.56150454747059, 10.334261641735207, 19.285751872992282, 15.81889725315701]","[6.698587623332325, 7.79332779279721, 8.593954076881415, 10.490116988058002, 11.805886014622798]","[16.78613408853251, 35.26102532253718, 38.747737010823904, 31.07454740522269, 19.299259210161622]","[5.145717862252704, 7.173382211590047, 8.863575157626581, 10.039855574857095, 10.479946687876447]","[24.176152800498897, 46.334094546235804, 24.545206199103212, 18.99642993188424, 38.2138128347405]","[6.190598490571798, 7.721113511627699, 8.75463716448456, 10.516718280205188, 10.989748019358679]",, 14 | 12,"[21.62823727921454, 25.218629708991934, 19.470350617772954, 16.924239516275765, 23.0360254516917]","[4.799802142992817, 6.731757396578346, 8.499386883654696, 9.868741295435589, 11.328188113932454]","[16.06023744894481, 16.37271555715846, 17.306020955768332, 17.64035410753521, 18.038892806613113]","[4.798349653221985, 6.4208244093932265, 8.442749029044732, 9.978158082421983, 11.18064401550062]","[41.45083943607232, 41.70052635450909, 22.259766463051744, 38.417332530400564, 50.513810875460464]","[5.671910013010198, 7.426083136386835, 8.198474031049525, 9.82328091456155, 11.270120147162862]","[16.350772342452267, 18.18709517501293, 18.382767137958663, 13.704605908278575, 13.210186799087339]","[6.455539631682225, 7.381634777852968, 8.768479732558983, 10.171860932287055, 11.424531239037409]","[14.067656848009019, 14.395691174190532, 14.250568251532245, 26.305927234506925, 29.250246212448666]","[4.900455580762215, 6.309182363029916, 7.818099034503419, 9.713001969724932, 10.953364309770253]","[28.48195158392892, 22.786893461039064, 21.134251911511207, 22.571082846365915, 26.179765320254685]","[8.175315456965922, 9.336864800279463, 10.722700798994241, 11.751072898400743, 13.14900332835264]",, 15 | 13,"[15.418236710344054, 19.430570091812264, 12.506670795666594, 18.286774079101985, 27.30979119512995]","[4.177858216141072, 5.965452080962092, 7.554793303629919, 9.027185279321738, 10.643325682133405]","[18.629805385209032, 18.368567070774294, 18.51555392235499, 18.87209535526083, 19.329328688177387]","[4.688780882719136, 6.582360023660589, 8.822104556273514, 10.419214325769682, 11.614534234570652]","[20.94922682277409, 15.139769022548947, 20.318107297263875, 15.808737278938741, 9.29630646224789]","[5.2208445552789104, 6.738786192723838, 8.298102760841376, 9.502434838805282, 10.465464854768655]","[13.162190807673008, 11.797262158127293, 13.305965887324897, 11.090201387842272, 19.671553733436372]","[6.319778645541291, 7.471369149836335, 8.84987897884494, 10.111694836997707, 11.66104203575607]","[37.02401073344066, 33.79586313785038, 18.096443332029818, 9.221664785923966, 23.216467296955454]","[4.404812626705197, 6.313198145175332, 7.848827633390293, 9.804061031699375, 10.641389069775958]","[21.5693376962069, 25.2543614496809, 20.070770304525322, 21.892101474990984, 20.580838382114212]","[7.694899228061088, 9.613639759507969, 11.23655466091204, 13.647148376329344, 14.391196080710236]",, 16 | 14,"[7.286719015776133, 6.195566740211203, 10.976858885116002, 12.389554108860366, 16.565873933779386]","[4.330242343917677, 6.451732889379989, 7.999588996763234, 9.7952945398002, 11.845864907285288]","[9.956735717763198, 11.27719823327834, 12.726852953504327, 13.604701293073676, 14.393177127689999]","[4.390820075280736, 6.104542419591767, 7.919259742743394, 9.336897427333538, 10.410311834652017]","[4.879548136326206, 12.508453048113989, 12.70999403675538, 18.355719518429616, 14.423093491183256]","[4.515081277019327, 6.400980153533169, 8.056148452467099, 9.384289904323674, 10.323626314902828]","[23.108444767290656, 22.941648808176634, 21.447544893925297, 14.73985853918213, 11.63968474500557]","[7.690213203712787, 8.350795231311386, 10.037081248409608, 11.61293960576843, 13.028458952314912]","[14.028541782882806, 19.410237787434077, 9.74360159566752, 9.423044591741498, 12.15466258160245]","[4.479023210561717, 6.258919760660935, 7.774686764867286, 9.392752284968973, 10.52393041933422]","[16.28946727706267, 17.690953207670987, 16.333735122068134, 16.76595884758886, 16.905784913562993]","[6.871474983676131, 8.18191502198342, 9.71460291628805, 10.929673777751818, 11.649469833739893]",, 17 | 15,"[26.84069199131563, 22.284005343740894, 18.42775195054157, 15.513363498160244, 9.726764559862017]","[4.1473398385747835, 6.184892695958225, 7.682053027033793, 9.078629175008265, 10.693417947386996]","[9.500789270887154, 11.742990445680446, 13.983931794468962, 14.916401146968369, 15.693792244217452]","[4.912270022239092, 6.716811348043307, 8.680171990768027, 10.361233277925667, 11.53327197701529]","[37.184438531150995, 29.235916105003856, 17.412490902087175, 9.019579913116257, 18.898601957739697]","[5.378307455833529, 7.186147103280015, 8.303334108245469, 9.376912556980747, 10.68420942386474]","[11.617822985736009, 12.008133176222453, 11.74295166689214, 13.146980750728238, 12.465327157616372]","[6.092889263821914, 7.201750362588723, 8.34239656493223, 9.738980142470737, 10.84234226599849]","[8.869997957307195, 14.869559029062332, 8.088986833991774, 8.913444082373587, 17.62027685801095]","[4.766478346552267, 6.7582220373775375, 8.004698739209319, 10.044011259899733, 11.245854684227535]","[17.716700495828988, 17.32283840401786, 17.61884603368761, 26.171318879786593, 20.602367338701747]","[6.265192705402563, 8.030740108697048, 9.738146940942464, 11.359874095180144, 12.315433098542446]",, 18 | 16,"[4.08841125661179, 7.712548831579706, 10.100746348707034, 13.236441706621838, 15.567577634181424]","[4.2950715007239575, 6.312613424495635, 7.905164952066142, 9.222869155797763, 10.910396311287133]","[6.851155210128088, 7.080236860376468, 12.009841049331445, 13.208314551320562, 15.063872079193988]","[4.20678384976455, 5.435825883690677, 6.719781272005906, 7.690742968179484, 8.71894562298461]","[5.415815988983868, 6.751317508031557, 8.603998057202947, 8.820779069514126, 12.140193371349955]","[4.165203054348186, 6.49351327615372, 7.924413016057998, 9.010216273034564, 10.344378576664417]","[24.21488029926392, 22.170384450078437, 11.697789445537692, 14.176649899765021, 25.1216582532792]","[8.329305532441504, 8.555797516230488, 9.12866367638963, 10.458088399784272, 11.918421801480205]","[11.799551093393223, 13.91053796242816, 7.312049049324565, 9.519231163093316, 18.31514742654411]","[5.093133191246632, 6.285170419486303, 7.956072640908932, 9.793036873875455, 11.238739595707417]","[14.84395011880843, 15.61106304239002, 19.897256199555446, 18.079618319777374, 17.21530363592665]","[6.181622007014774, 7.521660765162176, 9.43829201556123, 11.085734265293775, 12.106249703340644]",, 19 | 17,"[5.964182139347701, 6.602666097659807, 7.561426667390308, 11.095843363053781, 13.804047937297295]","[4.19305815667486, 6.438661814313744, 8.117827186581579, 9.529768817235865, 11.020667861546936]","[63.92348880805644, 53.432451116607595, 59.43166089398929, 54.23256580678538, 55.269602995029985]","[7.28139312398573, 7.0663379625483165, 8.528795699547263, 9.272439262274565, 10.239528843768218]","[4.387562984422066, 6.950572566616661, 10.656139346163139, 7.551889298683545, 24.545637974107244]","[4.142662199066045, 6.404930726414948, 7.809004331106335, 8.82173114597881, 10.195546522713153]","[12.36880914853839, 8.486978201829398, 9.6733048972831, 15.35363882780684, 18.009125273973773]","[7.281436577496554, 7.521138917998144, 8.743144984506852, 10.271261551679228, 11.340312046919829]","[25.422779403306357, 14.332385327117883, 16.607401634606273, 9.7197409680775, 12.55340130638504]","[5.287600796976061, 6.595215995583626, 8.227618124403786, 10.03965691426436, 12.046359382916018]","[16.62593921140122, 19.421835494731315, 31.680441907257155, 33.32005987325386, 34.97430012406452]","[7.025745696198188, 7.8702031556833445, 9.181740549884163, 10.748263865820318, 12.039934051194114]",, 20 | 18,"[4.548502639640654, 11.303556233464276, 15.520143039297164, 7.992430573925481, 10.60169521371161]","[4.181972061135107, 6.3678249697973435, 8.120675341510841, 9.330290993225045, 10.548575475924766]","[51.66468454938824, 52.00805835260193, 56.52318666832492, 52.270429283489186, 51.382863880268914]","[7.1295130078595035, 8.658746513900342, 9.201794910728582, 9.899025764820914, 10.676605074583318]","[26.122182083317604, 34.76673301694707, 41.04727854772289, 30.734163899277295, 37.57216280355167]","[4.312244675357601, 6.505850264705483, 8.20102660751236, 8.83369111019371, 10.005536426669716]","[11.300229331124727, 16.997393392660985, 13.843039317459363, 9.223183893053232, 10.585698388144845]","[6.378153115404617, 7.754134314910955, 9.027689143778632, 10.379227115002992, 11.548485880447993]","[5.025141964754836, 12.578934484130336, 21.36480549491582, 15.280792400645726, 9.101658622929323]","[4.727738100044316, 7.220501442367549, 9.29293731449609, 10.94452598908124, 12.101647929558897]","[19.811601052516934, 16.887851693505095, 16.71049841325825, 17.7919237437105, 17.264435169394268]","[5.85560270010388, 7.396129667369299, 9.081665871900098, 10.910984843809189, 12.13480255411019]",, 21 | 19,"[6.453743249769177, 10.535714656525535, 8.625367451386994, 11.8410269937908, 17.394884833038418]","[4.397533299248139, 6.562746750500463, 7.997858379066772, 9.323415490265603, 10.672725189578157]","[36.12697157161732, 38.59192048410302, 35.086173154163035, 38.03424454402787, 40.7304370064249]","[5.029831551139756, 6.669239664863451, 8.149595056842774, 9.483674349603868, 10.8954516233338]","[18.14865921577537, 34.236778111661756, 34.656720486669016, 20.413737371441098, 25.104698870818048]","[4.308197653625323, 6.772827140028465, 8.46975550801438, 9.14875267437017, 10.175673895835649]","[7.782078581757762, 9.591174490823137, 9.847304370276397, 9.18254620791049, 15.050633073937062]","[6.954355122108826, 8.063120602533111, 9.157219074632566, 10.51915679166128, 11.591233052000472]","[11.30499514429054, 6.7265448054445995, 8.26779472933661, 10.575064137926237, 9.419697462644995]","[5.609564052292463, 7.404721781531043, 8.958759249665132, 10.562027120264593, 12.145615004789253]","[19.735386128948843, 19.391736814604947, 20.487628451067664, 20.72331354223952, 22.073535287177794]","[6.214305784252045, 8.063683672668407, 8.939317882720296, 9.912091597044267, 11.190414472397421]",, 22 | 20,"[6.373255145298586, 5.792114466977427, 10.154581939904766, 9.918927499773782, 8.90042662381497]","[4.301635400480178, 6.3035723967807655, 7.962963797318593, 9.48613468685293, 10.775013917305106]","[38.06723881965011, 39.49398661654012, 41.10739909697648, 39.77583626938219, 40.25301137047251]","[4.987122078395099, 6.590441687490074, 8.221916025782019, 9.560815052520608, 10.803422614228008]","[13.455825755301841, 12.281763519404084, 24.485383501245728, 16.171164603473347, 8.706569853609539]","[4.204430720708307, 6.397106860828601, 7.963754949948003, 9.058239504962879, 10.166619502794008]","[8.6814679423293, 14.78789054388768, 9.300147456196816, 14.057738907658917, 10.752749563285825]","[6.352004854080269, 7.768267390314916, 9.22211639918904, 10.920985355186168, 11.900637775322297]","[9.474313758711702, 6.223055323148858, 13.691159326387977, 10.963646305700598, 12.246562996386585]","[5.849070777492036, 7.796049904761496, 9.936664662174497, 12.239384365174534, 13.663865319230654]","[37.38029962559474, 46.89255397350361, 49.95430366531492, 22.562203648564637, 21.623920689673852]","[5.923258863082224, 7.390804769726439, 8.695944298102345, 8.682825640383832, 10.007194147659387]",, 23 | 21,"[11.58765434418573, 5.4068526494260425, 8.71000337256227, 18.454565409288854, 15.399782421941637]","[4.453188672470758, 6.427302605591188, 8.062943401416698, 9.443828552954091, 10.7624233530924]","[12.228469609929913, 7.419528837941823, 7.449825578525669, 8.308814357736228, 9.181397779272846]","[4.60439365975985, 6.133440122396005, 7.691339306027365, 9.079019264079427, 10.401071414224328]","[6.027509308553443, 14.366921214038314, 37.423932069389295, 18.959789860444907, 10.304581220010023]","[4.222070267561729, 6.279596555785563, 7.935031414348032, 8.736121175773109, 9.940588300173873]","[5.987434998828505, 8.211085416035061, 9.571809065919908, 10.557759304148245, 10.201585442973563]","[6.708722892899878, 7.860411566021913, 9.769263288275146, 10.769412315010179, 11.726638272303145]","[12.429837223281629, 13.358322307623311, 19.14421931415143, 22.975153555845534, 20.91331308900475]","[4.514879418355888, 7.11890879003971, 9.096936006970534, 11.31889252537121, 11.986471580714273]","[88.80902734762782, 71.44750974305886, 73.16953084058217, 23.76381604242238, 56.298870426250616]","[6.037899337592356, 6.872717856027469, 9.44420534211977, 12.511976400702471, 10.016969532049774]",, 24 | 22,"[10.732753099386287, 10.036290967626666, 10.859704347164715, 15.775159512003196, 20.631278636686908]","[4.568637938648794, 6.572516671477508, 8.13650354000777, 9.580572018944494, 10.888848873491453]","[7.640325204142265, 8.214162297073448, 8.9282832152403, 9.560691610526154, 10.250886847950252]","[5.746106898974947, 6.385179677810905, 7.8874354966407765, 9.38392425223903, 10.851842252504186]","[48.499696977033864, 213.82807793944804, 245.80845238963343, 233.2171986470927, 254.87132429384803]","[5.927842165153607, 17.841595233189295, 21.087793016274613, 20.61963826519671, 23.106852862943754]","[7.153281995768217, 10.681122223959228, 19.628804619443496, 25.787397794263207, 36.20738067068333]","[7.644252189055126, 7.971372603195974, 9.72650055324331, 11.477808828660404, 13.47958731732342]","[9.100933994565478, 7.418371055173026, 9.468831625113166, 18.1428533369309, 28.3699311383529]","[4.647457400125028, 6.941118321129353, 8.556504394878512, 10.613288826586961, 12.15332777965436]","[34.765696309649485, 96.0857455236125, 41.617834300500434, 23.981422631886282, 42.8405307197888]","[6.952760255034425, 12.828595116947126, 11.499186233181144, 12.064201907783985, 13.067138884976265]",, 25 | 23,"[5.551934703137019, 10.816251569322354, 12.71821826102919, 18.250367937531806, 20.69675476658786]","[4.533582131390009, 6.538296936531256, 8.117346390886041, 9.639773745975369, 10.869512176454991]","[12.914498137575691, 9.328032038206205, 10.391666707972263, 11.24225500215245, 12.008142657236505]","[4.48291132481509, 6.198868595333148, 7.627939131676675, 8.856719676847861, 9.973968574089175]","[26.554301559019784, 16.339454432616215, 24.479198853135962, 30.255148905720652, 34.0276829344691]","[4.0383852380729435, 5.7480028113129675, 7.480284711692804, 9.160544629420656, 9.247458033241259]","[7.70357280161381, 11.24805683804763, 19.455139235663452, 9.058728207907885, 16.790143221078687]","[6.409147883932924, 7.813801886728755, 9.276554326013036, 10.628040695816903, 11.984745412937633]","[7.607418411648161, 8.598670542933574, 15.720251431711873, 14.89547025633178, 10.120273205164535]","[4.597123952854931, 6.834525751209604, 8.400642372185711, 10.32326536334165, 11.673730157364643]","[37.86810427491495, 25.675550304486517, 22.862211013240717, 23.443028478113266, 22.652908099581182]","[6.130283255896765, 8.841923063289748, 10.250188341319951, 11.207914548168649, 12.705453766703394]",, 26 | 24,"[10.814436170399683, 18.9851930524308, 12.019423718853865, 13.620075750084522, 24.288881672125346]","[4.757361639723115, 6.860470515167007, 8.347397807018485, 9.849795021192042, 11.169952572277483]","[66.33998706667761, 67.96046266046446, 67.44183820781518, 67.57646741839308, 67.87491944021443]","[6.783292586865783, 7.593603940100853, 9.197784229797175, 10.62382991424586, 11.823805534884912]","[11.126016383395145, 17.418790383821086, 24.652045712912816, 25.443530000235846, 9.947119525575664]","[3.8890273171118177, 5.437084541496297, 6.8725784971998385, 8.064284956052155, 9.555803817832937]","[8.125966907632689, 20.748919747063578, 21.891175678512646, 9.272060554100843, 15.127882881384458]","[6.564853800014986, 7.852256650100732, 9.388873248796967, 10.362434545218246, 11.588241301192529]","[4.757913581735523, 13.435480396688723, 8.218550236259329, 19.809147032735574, 15.983196776648025]","[4.544998867609738, 6.836458392129353, 8.441440557202144, 10.520772679001071, 11.87159836498602]","[50.720730574403575, 69.3266071859342, 58.40703362403923, 35.935896960444936, 34.545920283828735]","[6.154964586519126, 7.693493218540342, 9.269365035544018, 9.99075518650225, 11.013498649838485]",, 27 | 25,"[21.038431710799852, 10.716957408027781, 15.345587797450117, 17.491674062459268, 19.409449411612258]","[5.40795922989638, 7.117489351986639, 8.580240160998729, 10.195860008912225, 11.44765261809847]","[9.983116839924747, 11.021779126165672, 12.895706096656223, 13.707563846979722, 14.52577341408806]","[4.217449529018248, 6.138675083732958, 8.180298925989309, 9.7246241297242, 10.883010768215879]","[14.980263023101555, 19.352010469364235, 30.37869361958705, 16.137413181786687, 13.534509304622922]","[3.874026404990971, 5.561698814988382, 7.471495345352432, 8.423113181262732, 9.380289277024758]","[21.325231136208743, 21.605624344741827, 19.568146331660454, 25.4514593162739, 13.687475861983614]","[7.514009529634266, 8.700853105207026, 9.861840381934995, 11.010648527802674, 11.713908205307147]","[5.360268384229064, 8.441273163297538, 8.540961287521268, 12.025824027175492, 20.378046405677257]","[4.619892646678774, 6.894973992282844, 8.830005184584598, 11.04071257755468, 12.846061947931195]","[16.484365997319035, 16.615934520038415, 21.031138787118266, 24.435134689577318, 21.029643437950195]","[5.280984520241525, 6.758154904500836, 9.271986191248883, 11.246883484950933, 12.009854869704496]",, 28 | 26,"[17.31200120545121, 17.881844653691733, 18.97997979282356, 22.368008870266543, 18.841275054542965]","[4.76164454744548, 6.753789027949804, 8.276846832234156, 9.926314844539679, 11.126053336813788]","[19.10725968062583, 20.773416402615123, 22.79148003024582, 23.55062789202368, 24.269596781073812]","[4.251682308833751, 6.108600352232569, 8.07869051658537, 9.622016717169274, 10.800611649138702]","[14.82656662312264, 15.62297030053577, 8.314778123860275, 18.57681002880792, 9.405431772932236]","[4.283646541716269, 5.513488036764746, 6.947520999657099, 8.131740087972283, 9.411185893328451]","[20.870050962002036, 12.766579042652811, 11.853573527202014, 14.380006616368798, 10.82295094703249]","[7.12198336655062, 8.337776892158987, 9.583226897123751, 11.179862890794867, 11.96773980181307]","[6.566902548512375, 6.6490877049461465, 8.922265072288376, 7.94004780765485, 12.645330046447123]","[4.59104566767574, 6.834551515398102, 8.497160691522582, 10.608233540478695, 12.141240469452706]","[17.54560589285379, 20.577688769409484, 27.57920187916897, 48.655147256852416, 37.53853096116978]","[5.4063046874040595, 6.9314724880073495, 8.798038810694688, 10.777355390639567, 11.72785845270623]",, 29 | 27,"[4.510992801012064, 6.421246720931438, 7.417955899620711, 15.618118249135108, 18.179237941934637]","[5.000805276643269, 7.1032990586639935, 8.479512247414949, 10.177097827584523, 11.423627159057846]","[43.8248679085686, 43.62452338661251, 42.67343312600523, 42.769833189259174, 42.97728732943698]","[6.114168658610731, 7.624016794588502, 9.3960390866039, 10.788066640738501, 11.945046798204844]","[30.04104294655611, 41.97415971739648, 33.51609903494498, 32.61376345686699, 36.61112869214713]","[4.559168197895555, 6.976403795744873, 8.215821631399947, 9.600461275371059, 10.729453449645927]","[14.580215279624365, 9.063721373118945, 8.769828708175693, 12.251802329292177, 17.357551409304754]","[6.7011894923719995, 7.946815336967421, 9.188678737467827, 10.689722725193482, 11.862154088034176]","[12.006571707150465, 11.614844502125777, 16.81006001044121, 10.083615431789818, 9.846471537670698]","[4.704909556773405, 6.808912398612203, 8.379619627064685, 10.44296357326024, 12.136438555046755]","[28.986158846753202, 43.79623749722666, 57.18186105840039, 47.134319286395694, 24.28360501526962]","[6.738993316240774, 8.782613998174519, 10.88699215385325, 12.466110925956349, 13.652802212781326]",, 30 | 28,"[7.666312399135212, 5.8158772760878215, 7.286141781836912, 10.526465279387526, 9.256108503604054]","[4.801860597585042, 6.805062238949014, 8.320190319300046, 10.032553789815136, 11.069893309057592]","[28.465436945019523, 29.36976151815514, 31.236884242001917, 31.97217745100729, 32.68908254931365]","[4.548756850232967, 6.487677904517357, 8.420423672323604, 9.86342552914452, 10.982270075662246]","[20.65039202146485, 22.39670738012546, 31.554662243844305, 30.380855156374547, 35.557228644812696]","[4.173785235514321, 5.642951396442041, 7.077053913170415, 8.218642052281847, 9.410331158231184]","[7.630340220769924, 13.305775726811705, 9.61887816715907, 14.431889839112586, 12.124791971703829]","[6.63723111506844, 7.7237388361942925, 8.927043336671991, 10.35923424007347, 11.429435205101017]","[6.004699419028496, 19.348016238810413, 11.830056963103704, 8.137481143677697, 17.36452854172809]","[5.118000570525898, 6.951206323922326, 8.556553065631563, 10.650997218151076, 12.769358566831663]","[34.19811991226117, 27.407839640432226, 36.862030198651595, 32.16423906523905, 25.090266948013173]","[6.0345583481460014, 6.92988612762448, 8.357459210710273, 9.58479608247328, 10.620253113451987]",, 31 | 29,"[6.531013780665303, 5.278190516921811, 9.98642562987615, 10.59627051132005, 11.334155734315637]","[4.93687480285417, 6.852831695825993, 8.351641409630913, 10.110813126996836, 11.24175355489743]","[11.119030558873469, 10.495294105704197, 10.223932399152554, 10.748409748248687, 11.320974310158745]","[4.430196837405913, 6.438416339425945, 8.386125718567685, 9.816230540057914, 11.009923217791505]","[5.941398414239351, 6.333433616987339, 15.139612821421808, 8.588859430699657, 31.949327039555076]","[4.116190526237042, 5.6999395183848724, 7.601691339756836, 8.827088228357152, 9.488541596933437]","[18.551694460354902, 25.114041867535914, 25.77244495740731, 22.22152402985384, 29.42345209386734]","[6.596394760522678, 7.8033792130716195, 8.755054346283618, 10.206331200465407, 11.336963178532091]","[5.045049020175532, 8.521958345760234, 9.259234972900355, 17.708174683093453, 15.777246955823967]","[4.73018617448406, 6.790575558644655, 8.852770726481513, 11.061762624095582, 12.39458367455978]","[27.194815281097046, 24.890164860109564, 22.86854014369433, 28.14657343300222, 34.84881754619031]","[5.873138258216309, 7.4471817067673305, 9.192716419353685, 10.635525536523776, 11.813743938030042]",, 32 | --------------------------------------------------------------------------------