668 |
669 | This program is free software: you can redistribute it and/or modify
670 | it under the terms of the GNU Affero General Public License as published
671 | by the Free Software Foundation, either version 3 of the License, or
672 | (at your option) any later version.
673 |
674 | This program is distributed in the hope that it will be useful,
675 | but WITHOUT ANY WARRANTY; without even the implied warranty of
676 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
677 | GNU Affero General Public License for more details.
678 |
679 | You should have received a copy of the GNU Affero General Public License
680 | along with this program. If not, see .
681 |
682 | Also add information on how to contact you by electronic and paper mail.
683 |
684 | If your software can interact with users remotely through a computer
685 | network, you should also make sure that it provides a way for users to
686 | get its source. For example, if your program is a web application, its
687 | interface could display a "Source" link that leads users to an archive
688 | of the code. There are many ways you could offer source, and different
689 | solutions will be better for different programs; see section 13 for the
690 | specific requirements.
691 |
692 | You should also get your employer (if you work as a programmer) or school,
693 | if any, to sign a "copyright disclaimer" for the program, if necessary.
694 | For more information on this, and how to apply and follow the GNU AGPL, see
695 | .
696 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | TINY DREAM
An embedded, Header Only, Stable Diffusion Inference C++ Library
pixlab.io/tiny-dream
2 |
3 | 
4 |
5 | Latest News 🔥
6 |
9 |
10 | [](https://pixlab.io/tiny-dream)
11 | [](https://pixlab.io/tiny-dream#downloads)
12 | [](https://pixlab.io/tiny-dream#license)
13 |
14 | * [Introduction](#tiny-dream)
15 | * [Features](#td-features)
16 | * [Getting Started](#td-start)
17 | * [Downloads](https://pixlab.io/tiny-dream#downloads)
18 | * [Project Roadmap](#roadmap)
19 | * [License](https://pixlab.io/tiny-dream#license)
20 | * [C++ API Reference Guide](https://pixlab.io/tiny-dream#cpp-api)
21 | * [Issues Tracker](https://github.com/symisc/tiny-dream/issues)
22 | * [Related Projects](#td-projects)
23 |
24 | Introducing PixLab's Tiny Dream
25 | Tiny Dream is a header only, dependency free, partially uncensored, Stable Diffusion implementation written in C++ with primary focus on CPU efficiency, and smaller memory footprint. Tiny Dream runs reasonably fast on the average consumer hardware, require only 1.7 ~ 5.5 GB of RAM to execute, does not enforce Nvidia GPUs presence, and is designed to be embedded on larger codebases (host programs) with an easy to use C++ API. The possibilities are literally endless, or at least extend to the boundaries of Stable Diffusion's latent manifold.
26 | Features 🔥
27 | For the extensive list of features, please refer to the official documentation here.
28 |
29 |
30 | - OpenCV Dependency Free: Only stb_image_write.h from the excellent stb single-header, public domain C library is required for saving images to disk.
31 | - Smallest, Run-Time Memory Footprint for Running Stable Diffusion in Inference.
32 | - Straightforward to Integrate on Existing Codebases: Just drop tinydream.hpp and stb_image_write.h on your source tree with the Pre-trained Models & Assets.
33 | - Reasonably fast on Intel/AMD CPUs (Benchmarks): With TBB threading and SSE/AVX vectorization.
34 | - Support Real-ESRGAN, A Super Resolution Network Upscaler.
35 | - Full Support for Words Priority: Instruct the model to pay attention, and give higher priority to word (keywords) surrounded by parenthesis ().
36 | - Support for Output Metadata: Link meta information to your output images such as copyright notice, comments, or any other meta data you would like to see linked to your image.
37 | - Support for Stable Diffusion Extra Parameters: Adjust Seed resizing & Guidance Scale.
38 |
39 | Getting Started with Tiny-Dream 🔥
40 | Integrating Tiny Dream on your existing code base is straightforward. Here is what to do without having to do a lot of tedious reading and configuration:
41 | Download Tiny-Dream
42 |
43 | - Download the latest public release of Tiny Dream, and extract the package on a directory of your choice.
44 | - Refer to the downloads section to get a copy of the Tiny Dream source code as well as the Pre-Trained Models & Assets.
45 |
46 | Embedding Tiny-Dream
47 |
48 | - The Tiny Dream source code comprise only two header files that is tinydream.hpp and stb_image_write.h.
49 | - All you have to do is drop these two C/C++ header files on your source tree, and instantiate a new tinyDream object as shown on the pseudo C++ code below:
50 |
51 |
52 | ```
53 | #include "tinydream.hpp"
54 | /*
55 | * Main Entry Point. The only required argument is the Positive Prompt.
56 | * Passing a Negative Prompt (words separated by commas) is highly recommended though.
57 | *
58 | * We recommend that you experiment with different seed & step values
59 | * in order to achieve a desirable result.
60 | *
61 | * ./tinydream "positive prompt" ["negative prompt"] [seed] [step]
62 | */
63 | int main(int argc, char *argv[])
64 | {
65 | tinyDream td; // stack allocated tinyDream object
66 |
67 | // Display the library current inference engine, version number, and copyright notice
68 | std::cout << tinyDream::about() << std::endl;
69 |
70 | // At least a positive prompt must be supplied via command line
71 | if (argc < 2) {
72 | std::cout << "Missing Positive (and potentially Negative) Prompt: Describe something you'd like to see generated..." << std::endl;
73 | std::cout << "Example of Prompts:" << std::endl;
74 | // Example of built-in Positive/Negative Prompts
75 | auto prompts = tinyDream::promptExample();
76 | std::cout << "\tPositive Prompt: " << prompts.first << std::endl;
77 | std::cout << "\tNegative Prompt: " << prompts.second << std::endl;
78 | return -1;
79 | }
80 |
81 | // Register a log handler callback responsible of
82 | // consuming log messages generated during inference.
83 | td.setLogCallback(logCallback, nullptr);
84 |
85 | // Optionally, set the assets path if the pre-trained models
86 | // are not extracted on the same directory as your executable
87 | // The Tiny-Dream assets can be downloaded from: https://pixlab.io/tiny-dream#downloads
88 | td.setAssetsPath("/path/to/tinydream/assets"); // Remove or comment this if your assets are located on the same directory as your executable
89 |
90 | // Optionally, set a prefix of your choice to each freshly generated image name
91 | td.setImageOutputPrefix("tinydream-");
92 |
93 | // Optionally, set the directory where you want
94 | // the generated images to be stored
95 | td.setImageOutputPath("/home/photos/");
96 |
97 | int seedMax = 90;
98 | if (argc > 3) {
99 | /*
100 | * Seed in Stable Diffusion is a number used to initialize the generation.
101 | * Controlling the seed can help you generate reproducible images, experiment
102 | * with other parameters, or prompt variations.
103 | */
104 | seedMax = std::atoi(argv[3]);
105 | }
106 | int step = 30;
107 | if (argc > 4) {
108 | /*
109 | * adjusting the inference steps in Stable Diffusion: The more steps you use,
110 | * the better quality you'll achieve but you shouldn't set steps as high
111 | * as possible. Around 30 sampling steps (default value) are usually enough
112 | * to achieve high-quality images.
113 | */
114 | step = std::atoi(argv[4]);
115 | }
116 |
117 | /*
118 | * User Supplied Prompts - Generate an image that matches the input criteria.
119 | *
120 | * Positive Prompt (required): Describe something you'd like to see generated (comma separated words).
121 | * Negative Prompt (optional): Describe something you don't like to see generated (comma separated words).
122 | */
123 | std::string positivePrompt{ argv[1] };
124 | std::string negativePrompt{ "" };
125 | if (argc > 2) {
126 | negativePrompt = std::string{ argv[2] };
127 | }
128 |
129 | /*
130 | * Finally, run Stable Diffusion in inference
131 | *
132 | * The supplied log consumer callback registered previously should shortly receive
133 | * all generated log messages (including errors if any) during inference.
134 | *
135 | * Refer to the official documentation at: https://pixlab.io/tiny-dream#tiny-dream-method
136 | * for the expected parameters the tinyDream::dream() method takes.
137 | */
138 | for (int seed = 1; seed < seedMax; seed++) {
139 | std::string outputImagePath;
140 |
141 | td.dream(
142 | positivePrompt,
143 | negativePrompt,
144 | outputImagePath,
145 | true, /* Set to false if you want 512x512 pixels output instead of 2048x2048 output */
146 | seed,
147 | step
148 | );
149 |
150 | // You do not need to display the generated image path manually each time via std::cout
151 | // as the supplied log callback should have already done that.
152 | std::cout << "Output Image location: " << outputImagePath << std::endl; // uncomment this if too intrusive
153 | }
154 | return 0;
155 | }
156 | ```
157 | Learn the Fundamentals (C++ API)
158 |
159 | - The above code should be self-explanatory, and easy to understand for the average C++ programmer. The full C++ integration code for a typical application embedding Tiny Dream is located at: pixlab.io/tiny-dream#code-gist.
160 | - As of this release, the library exposes a single class named
tinyDream
with the following exported methods:
161 |
171 |
172 | - A step-by-step, detailed integration guide, and call logic of the above methods is located at: pixlab.io/tiny-dream#step-by-step-cpp.
173 |
174 | Building Tiny-Dream
175 |
176 | - Building Tiny-Dream from source require a modern C++17 compiler such as GCC 7 or later, Clang or Microsoft Visual Studio (MSVC).
177 | - You also need to link to the default backend Tensor library in order to generate the executable.
178 | - As of this release, NCNN is the default tensor library. On our Roadmap, we plan to ditch ncnn to a less bloated tensor library such as SOD or GGML with focus on CPU efficiency.
179 | - Alternatively, you can rely on a build manager such as CMAKE to build the executable for you. The Tiny-Dream repository repository already contain the necessarily CMAKE template to build the executable from source.
180 | - An example of generating a heavy optimized executable without relying on a external build manager is shown just below:
181 |
182 |
183 | ```
184 | git clone https://github.com/symisc/tiny-dream.git
185 | cd tiny-dream
186 | g++ -o tinydream boilerplate.cpp -funsafe-math-optimizations -Ofast -flto=auto -funroll-all-loops -pipe -march=native -std=c++17 -Wall -Wextra `pkg-config --cflags --libs ncnn` -lstdc++ -pthread -Wl -flto -fopt-info-vec-optimized
187 | ./tinydream "pyramid, desert, palm trees, river, (landscape), (high quality)"
188 | ```
189 | Get the Pre-Trained Models & Assets
190 |
191 | - Once your executable built, you will need the Tiny Dream Pre-Trained Models & Assets path accessible to your executable.
192 | - The Tiny Dream assets comprise all pre-trained models (over 2GB as of this release) required by the tinyDream::dream() method in order to run stable diffusion in inference.
193 | - You can download the pre-trained models from the Download section on the PixLab website.
194 | - Once downloaded, extract the assets ZIP archive in a directory of your choice (usually the directory where your executable is located), and set the full path via tinyDream::setAssetsPath() or from the Tiny Dream constructor.
195 |
196 | Continue with The C++ API Reference Guide
197 | The Tiny Dream C++ Interface, provides detailed specifications for all of the various methods the Tiny Dream class exports. Once the reader understands the basic principles of operation for Tiny Dream, that document should serve as a reference guide.
198 | TODOs & Roadmap 🔥
199 | As we continue to develop and improve Tiny Dream, we have an exciting roadmap of future addons and enhancements planned. Refer to the Roadmap page at pixlab.io/tiny-dream or the PixLab Blog for the exhaustive list of todos & ongoing progress...
200 |
201 | - Move the Tensor library to a non bloated one such as SOD or GGML with focus on CPU performance.
202 | - Provide a Cross-Platform GUI to Tiny Dream implemented in Dear imGUI.
203 | - Provide a Web-Assembly port to the library once the future Tensor library (SOD or GGML) ported to WASM.
204 | - Output SVG, and easy to alter formats (potentially PSD) rather than static PNGs.
205 | - Provide an Android, proof of concept, show-case APK.
206 |
207 | Official Docs & Resources
208 |
220 | Related Projects 🔥
221 | You may find useful the following production-ready projects developed & maintained by PixLab | Symisc Systems:
222 |
223 | - SOD - An Embedded, Dependency-Free, Computer Vision C/C++ Library.
224 | - FACEIO - Cross Browser, Passwordless Facial Authentication Framework.
225 | - PixLab Annotate - Online Image Annotation, Labeling & Segmentation Tool.
226 | - ASCII Art - Real-Time ASCII Art Rendering C Library.
227 | - UnQLite - An Embedded, Transactional Key/Value Database Engine.
228 |
229 |
--------------------------------------------------------------------------------
/boilerplate.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | * Tiny Dream Integration Boilerplate.
3 | *
4 | * Compile this file together with the Tiny Dream header (tinydream.hpp) to generate
5 | * the executable. Example of heavy optimized compilation under g++:
6 | *
7 | * g++ -o tinydream boileplate.cpp -funsafe-math-optimizations -Ofast -flto=auto -funroll-all-loops -pipe -march=native -std=c++17 -Wall -Wextra `pkg-config --cflags --libs ncnn` -lstdc++ -pthread -Wl -flto -fopt-info-vec-optimized
8 | *
9 | * To run the program simply type:
10 | *
11 | * ./tinydream "pyramid, desert, palm trees, river, (landscape), (high quality)"
12 | *
13 | * Under Microsoft Visual Studio (>= 2019), just drop `tinydream.hpp` on your source
14 | * tree and you're done.
15 | *
16 | * Do not forget to link to the current backend tensor library (TINY_DREAM_INFERENCE_ENGINE).
17 | * You will need to Pre-trained Models from https://pixlab.io/tiny-dream#downloads in order
18 | * to start generating images (Stable Diffusion Inference).
19 | *
20 | * If you have any trouble integrating Tiny-Dream on your project, please submit a support
21 | * ticket at: https://pixlab.io/tiny-dream
22 | */
23 | /*
24 | * This simple program is a quick introduction on how to embed
25 | * and start experimenting with Tiny Dream (Stable Diffusion inference)
26 | * without having to do a lot of tedious reading and configuration.
27 | *
28 | * Make sure you have the latest release of Tiny-Dream
29 | * plus the Pre-Trained Models from:
30 | *
31 | * https://pixlab.io/tiny-dream#downloads
32 | *
33 | * The Tiny Dream C++ documentation is available to consult on:
34 | * https://pixlab.io/tiny-dream
35 | * https://github.com/symisc/tiny-dream
36 | */
37 | #include "tinydream.hpp"
38 | #include
39 | /*
40 | * Register a log consumer callback first
41 | *
42 | * The main task of the supplied callback is to consume log messages
43 | * generated during Stable Diffusion inference.
44 | * Inference may take some time to execute depending on the available
45 | * resources so it make sense to log everything to the terminal or
46 | * text file for example.
47 | *
48 | * The supplied callback must have the following signature:
49 | * void(const char *zLogMsg,int msgLen void *pUserData)
50 | *
51 | * Refer to the setLogCallback() API documentation at: https://pixlab.io/tiny-dream#set-log-callback
52 | * for additional information.
53 | */
54 | #if defined (_WIN32) || defined(_WIN64) || defined (_MSC_VER)
55 | #include
56 | #define TD_WIN
57 | #else
58 | /* Assume POSIX compatible */
59 | #include
60 | #endif
61 | void logCallback(const char* zLogMsg, int msgLen, [[maybe_unused]] void* pCookie)
62 | {
63 | // All this log consumer callback does, is just redirecting
64 | // the generated log messages by the inference engine
65 | // to the default standard output (STDOUT)
66 | #ifdef TD_WIN
67 | WriteFile(GetStdHandle(STD_OUTPUT_HANDLE), static_cast(zLogMsg), static_cast(msgLen), 0, 0);
68 | #else
69 | write(STDOUT_FILENO, static_cast(zLogMsg), static_cast(msgLen));
70 | #endif /* __WINT__ */
71 | }
72 | /*
73 | * Main Entry Point. The only required argument is the Positive Prompt.
74 | * Passing a Negative Prompt (words separated by commas) is highly recommended though.
75 | *
76 | * We recommend that you experiment with different seed & step values
77 | * in order to achieve a desirable result.
78 | *
79 | * ./tinydream "positive prompt" ["negative prompt"] [seed] [step]
80 | */
81 | int main(int argc, char *argv[])
82 | {
83 | tinyDream td; // stack allocated tinyDream object
84 |
85 | // Display the library current inference engine, version number, and copyright notice
86 | std::cout << tinyDream::about() << std::endl;
87 |
88 | // At least a positive prompt must be supplied via command line
89 | if (argc < 2) {
90 | std::cout << "Missing Positive (and potentially Negative) Prompt: Describe something you'd like to see generated..." << std::endl;
91 | std::cout << "Example of Prompts:" << std::endl;
92 | // Example of built-in Positive/Negative Prompts
93 | auto prompts = tinyDream::promptExample();
94 | std::cout << "\tPositive Prompt: " << prompts.first << std::endl;
95 | std::cout << "\tNegative Prompt: " << prompts.second << std::endl;
96 | return -1;
97 | }
98 |
99 | // Register a log handler callback responsible of
100 | // consuming log messages generated during inference.
101 | td.setLogCallback(logCallback, nullptr);
102 |
103 | // Optionally, set the assets path if the pre-trained models
104 | // are not extracted on the same directory as your executable
105 | // The Tiny-Dream assets can be downloaded from: https://pixlab.io/tiny-dream#downloads
106 | td.setAssetsPath("/path/to/tinydream/assets"); // Remove or comment this if your assets are located on the same directory as your executable
107 |
108 | // Optionally, set a prefix of your choice to each freshly generated image name
109 | // td.setImageOutputPrefix("tinydream-");
110 |
111 | // Optionally, set the directory where you want
112 | // the generated images to be stored
113 | //td.setImageOutputPath("/home/photos/");
114 |
115 | int seedMax = 90;
116 | if (argc > 3) {
117 | /*
118 | * Seed in Stable Diffusion is a number used to initialize the generation.
119 | * Controlling the seed can help you generate reproducible images, experiment
120 | * with other parameters, or prompt variations.
121 | */
122 | seedMax = std::atoi(argv[3]);
123 | }
124 | int step = 30;
125 | if (argc > 4) {
126 | /*
127 | * adjusting the inference steps in Stable Diffusion: The more steps you use,
128 | * the better quality you'll achieve but you shouldn't set steps as high
129 | * as possible. Around 30 sampling steps (default value) are usually enough
130 | * to achieve high-quality images.
131 | */
132 | step = std::atoi(argv[4]);
133 | }
134 |
135 | /*
136 | * User Supplied Prompts - Generate an image that matches the input criteria.
137 | *
138 | * Positive Prompt (required): Describe something you'd like to see generated (comma separated words).
139 | * Negative Prompt (optional): Describe something you don't like to see generated (comma separated words).
140 | */
141 | std::string positivePrompt{ argv[1] };
142 | std::string negativePrompt{ "" };
143 | if (argc > 2) {
144 | negativePrompt = std::string{ argv[2] };
145 | }
146 |
147 | /*
148 | * Finally, run Stable Diffusion in inference
149 | *
150 | * The supplied log consumer callback registered previously should shortly receive
151 | * all generated log messages (including errors if any) during inference.
152 | *
153 | * Refer to the official documentation at: https://pixlab.io/tiny-dream#tiny-dream-method
154 | * for the expected parameters the tinyDream::dream() method takes.
155 | */
156 | for (int seed = 1; seed < seedMax; seed++) {
157 | std::string outputImagePath;
158 |
159 | td.dream(
160 | positivePrompt,
161 | negativePrompt,
162 | outputImagePath,
163 | true, /* Set to false if you want 512x512 pixels output instead of 2048x2048 output */
164 | seed,
165 | step
166 | );
167 |
168 | // You do not need to display the generated image path manually each time via std::cout
169 | // as the supplied log callback should have already done that.
170 | std::cout << "Output Image location: " << outputImagePath << std::endl; // uncomment this if too intrusive
171 | }
172 | return 0;
173 | }
--------------------------------------------------------------------------------
/stb_image_write.h:
--------------------------------------------------------------------------------
1 | /* stb_image_write - v1.16 - public domain - http://nothings.org/stb
2 | writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015
3 | no warranty implied; use at your own risk
4 |
5 | Before #including,
6 |
7 | #define STB_IMAGE_WRITE_IMPLEMENTATION
8 |
9 | in the file that you want to have the implementation.
10 |
11 | Will probably not work correctly with strict-aliasing optimizations.
12 |
13 | ABOUT:
14 |
15 | This header file is a library for writing images to C stdio or a callback.
16 |
17 | The PNG output is not optimal; it is 20-50% larger than the file
18 | written by a decent optimizing implementation; though providing a custom
19 | zlib compress function (see STBIW_ZLIB_COMPRESS) can mitigate that.
20 | This library is designed for source code compactness and simplicity,
21 | not optimal image file size or run-time performance.
22 |
23 | BUILDING:
24 |
25 | You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h.
26 | You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace
27 | malloc,realloc,free.
28 | You can #define STBIW_MEMMOVE() to replace memmove()
29 | You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function
30 | for PNG compression (instead of the builtin one), it must have the following signature:
31 | unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality);
32 | The returned data will be freed with STBIW_FREE() (free() by default),
33 | so it must be heap allocated with STBIW_MALLOC() (malloc() by default),
34 |
35 | UNICODE:
36 |
37 | If compiling for Windows and you wish to use Unicode filenames, compile
38 | with
39 | #define STBIW_WINDOWS_UTF8
40 | and pass utf8-encoded filenames. Call stbiw_convert_wchar_to_utf8 to convert
41 | Windows wchar_t filenames to utf8.
42 |
43 | USAGE:
44 |
45 | There are five functions, one for each image file format:
46 |
47 | int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
48 | int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
49 | int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
50 | int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality);
51 | int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
52 |
53 | void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically
54 |
55 | There are also five equivalent functions that use an arbitrary write function. You are
56 | expected to open/close your file-equivalent before and after calling these:
57 |
58 | int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes);
59 | int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
60 | int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
61 | int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
62 | int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality);
63 |
64 | where the callback is:
65 | void stbi_write_func(void *context, void *data, int size);
66 |
67 | You can configure it with these global variables:
68 | int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE
69 | int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression
70 | int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode
71 |
72 |
73 | You can define STBI_WRITE_NO_STDIO to disable the file variant of these
74 | functions, so the library will not use stdio.h at all. However, this will
75 | also disable HDR writing, because it requires stdio for formatted output.
76 |
77 | Each function returns 0 on failure and non-0 on success.
78 |
79 | The functions create an image file defined by the parameters. The image
80 | is a rectangle of pixels stored from left-to-right, top-to-bottom.
81 | Each pixel contains 'comp' channels of data stored interleaved with 8-bits
82 | per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is
83 | monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall.
84 | The *data pointer points to the first byte of the top-left-most pixel.
85 | For PNG, "stride_in_bytes" is the distance in bytes from the first byte of
86 | a row of pixels to the first byte of the next row of pixels.
87 |
88 | PNG creates output files with the same number of components as the input.
89 | The BMP format expands Y to RGB in the file format and does not
90 | output alpha.
91 |
92 | PNG supports writing rectangles of data even when the bytes storing rows of
93 | data are not consecutive in memory (e.g. sub-rectangles of a larger image),
94 | by supplying the stride between the beginning of adjacent rows. The other
95 | formats do not. (Thus you cannot write a native-format BMP through the BMP
96 | writer, both because it is in BGR order and because it may have padding
97 | at the end of the line.)
98 |
99 | PNG allows you to set the deflate compression level by setting the global
100 | variable 'stbi_write_png_compression_level' (it defaults to 8).
101 |
102 | HDR expects linear float data. Since the format is always 32-bit rgb(e)
103 | data, alpha (if provided) is discarded, and for monochrome data it is
104 | replicated across all three channels.
105 |
106 | TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed
107 | data, set the global variable 'stbi_write_tga_with_rle' to 0.
108 |
109 | JPEG does ignore alpha channels in input data; quality is between 1 and 100.
110 | Higher quality looks better but results in a bigger image.
111 | JPEG baseline (no JPEG progressive).
112 |
113 | CREDITS:
114 |
115 |
116 | Sean Barrett - PNG/BMP/TGA
117 | Baldur Karlsson - HDR
118 | Jean-Sebastien Guay - TGA monochrome
119 | Tim Kelsey - misc enhancements
120 | Alan Hickman - TGA RLE
121 | Emmanuel Julien - initial file IO callback implementation
122 | Jon Olick - original jo_jpeg.cpp code
123 | Daniel Gibson - integrate JPEG, allow external zlib
124 | Aarni Koskela - allow choosing PNG filter
125 |
126 | bugfixes:
127 | github:Chribba
128 | Guillaume Chereau
129 | github:jry2
130 | github:romigrou
131 | Sergio Gonzalez
132 | Jonas Karlsson
133 | Filip Wasil
134 | Thatcher Ulrich
135 | github:poppolopoppo
136 | Patrick Boettcher
137 | github:xeekworx
138 | Cap Petschulat
139 | Simon Rodriguez
140 | Ivan Tikhonov
141 | github:ignotion
142 | Adam Schackart
143 | Andrew Kensler
144 |
145 | LICENSE
146 |
147 | See end of file for license information.
148 |
149 | */
150 |
151 | #ifndef INCLUDE_STB_IMAGE_WRITE_H
152 | #define INCLUDE_STB_IMAGE_WRITE_H
153 |
154 | #include
155 |
156 | // if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline'
157 | #ifndef STBIWDEF
158 | #ifdef STB_IMAGE_WRITE_STATIC
159 | #define STBIWDEF static
160 | #else
161 | #ifdef __cplusplus
162 | #define STBIWDEF extern "C"
163 | #else
164 | #define STBIWDEF extern
165 | #endif
166 | #endif
167 | #endif
168 |
169 | #ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations
170 | STBIWDEF int stbi_write_tga_with_rle;
171 | STBIWDEF int stbi_write_png_compression_level;
172 | STBIWDEF int stbi_write_force_png_filter;
173 | #endif
174 |
175 | #ifndef STBI_WRITE_NO_STDIO
176 | STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
177 | STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
178 | STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
179 | STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
180 | STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality);
181 |
182 | #ifdef STBIW_WINDOWS_UTF8
183 | STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input);
184 | #endif
185 | #endif
186 |
187 | typedef void stbi_write_func(void *context, void *data, int size);
188 |
189 | STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes);
190 | STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
191 | STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
192 | STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
193 | STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality);
194 |
195 | STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean);
196 |
197 | #endif//INCLUDE_STB_IMAGE_WRITE_H
198 |
199 | #ifdef STB_IMAGE_WRITE_IMPLEMENTATION
200 |
201 | #ifdef _WIN32
202 | #ifndef _CRT_SECURE_NO_WARNINGS
203 | #define _CRT_SECURE_NO_WARNINGS
204 | #endif
205 | #ifndef _CRT_NONSTDC_NO_DEPRECATE
206 | #define _CRT_NONSTDC_NO_DEPRECATE
207 | #endif
208 | #endif
209 |
210 | #ifndef STBI_WRITE_NO_STDIO
211 | #include
212 | #endif // STBI_WRITE_NO_STDIO
213 |
214 | #include
215 | #include
216 | #include
217 | #include
218 |
219 | #if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED))
220 | // ok
221 | #elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED)
222 | // ok
223 | #else
224 | #error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)."
225 | #endif
226 |
227 | #ifndef STBIW_MALLOC
228 | #define STBIW_MALLOC(sz) malloc(sz)
229 | #define STBIW_REALLOC(p,newsz) realloc(p,newsz)
230 | #define STBIW_FREE(p) free(p)
231 | #endif
232 |
233 | #ifndef STBIW_REALLOC_SIZED
234 | #define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz)
235 | #endif
236 |
237 |
238 | #ifndef STBIW_MEMMOVE
239 | #define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz)
240 | #endif
241 |
242 |
243 | #ifndef STBIW_ASSERT
244 | #include
245 | #define STBIW_ASSERT(x) assert(x)
246 | #endif
247 |
248 | #define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff)
249 |
250 | #ifdef STB_IMAGE_WRITE_STATIC
251 | static int stbi_write_png_compression_level = 8;
252 | static int stbi_write_tga_with_rle = 1;
253 | static int stbi_write_force_png_filter = -1;
254 | #else
255 | int stbi_write_png_compression_level = 8;
256 | int stbi_write_tga_with_rle = 1;
257 | int stbi_write_force_png_filter = -1;
258 | #endif
259 |
260 | static int stbi__flip_vertically_on_write = 0;
261 |
262 | STBIWDEF void stbi_flip_vertically_on_write(int flag)
263 | {
264 | stbi__flip_vertically_on_write = flag;
265 | }
266 |
267 | typedef struct
268 | {
269 | stbi_write_func *func;
270 | void *context;
271 | unsigned char buffer[64];
272 | int buf_used;
273 | } stbi__write_context;
274 |
275 | // initialize a callback-based context
276 | static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context)
277 | {
278 | s->func = c;
279 | s->context = context;
280 | }
281 |
282 | #ifndef STBI_WRITE_NO_STDIO
283 |
284 | static void stbi__stdio_write(void *context, void *data, int size)
285 | {
286 | fwrite(data,1,size,(FILE*) context);
287 | }
288 |
289 | #if defined(_WIN32) && defined(STBIW_WINDOWS_UTF8)
290 | #ifdef __cplusplus
291 | #define STBIW_EXTERN extern "C"
292 | #else
293 | #define STBIW_EXTERN extern
294 | #endif
295 | STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide);
296 | STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default);
297 |
298 | STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input)
299 | {
300 | return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL);
301 | }
302 | #endif
303 |
304 | static FILE *stbiw__fopen(char const *filename, char const *mode)
305 | {
306 | FILE *f;
307 | #if defined(_WIN32) && defined(STBIW_WINDOWS_UTF8)
308 | wchar_t wMode[64];
309 | wchar_t wFilename[1024];
310 | if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename)/sizeof(*wFilename)))
311 | return 0;
312 |
313 | if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode)/sizeof(*wMode)))
314 | return 0;
315 |
316 | #if defined(_MSC_VER) && _MSC_VER >= 1400
317 | if (0 != _wfopen_s(&f, wFilename, wMode))
318 | f = 0;
319 | #else
320 | f = _wfopen(wFilename, wMode);
321 | #endif
322 |
323 | #elif defined(_MSC_VER) && _MSC_VER >= 1400
324 | if (0 != fopen_s(&f, filename, mode))
325 | f=0;
326 | #else
327 | f = fopen(filename, mode);
328 | #endif
329 | return f;
330 | }
331 |
332 | static int stbi__start_write_file(stbi__write_context *s, const char *filename)
333 | {
334 | FILE *f = stbiw__fopen(filename, "wb");
335 | stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f);
336 | return f != NULL;
337 | }
338 |
339 | static void stbi__end_write_file(stbi__write_context *s)
340 | {
341 | fclose((FILE *)s->context);
342 | }
343 |
344 | #endif // !STBI_WRITE_NO_STDIO
345 |
346 | typedef unsigned int stbiw_uint32;
347 | typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1];
348 |
349 | static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v)
350 | {
351 | while (*fmt) {
352 | switch (*fmt++) {
353 | case ' ': break;
354 | case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int));
355 | s->func(s->context,&x,1);
356 | break; }
357 | case '2': { int x = va_arg(v,int);
358 | unsigned char b[2];
359 | b[0] = STBIW_UCHAR(x);
360 | b[1] = STBIW_UCHAR(x>>8);
361 | s->func(s->context,b,2);
362 | break; }
363 | case '4': { stbiw_uint32 x = va_arg(v,int);
364 | unsigned char b[4];
365 | b[0]=STBIW_UCHAR(x);
366 | b[1]=STBIW_UCHAR(x>>8);
367 | b[2]=STBIW_UCHAR(x>>16);
368 | b[3]=STBIW_UCHAR(x>>24);
369 | s->func(s->context,b,4);
370 | break; }
371 | default:
372 | STBIW_ASSERT(0);
373 | return;
374 | }
375 | }
376 | }
377 |
378 | static void stbiw__writef(stbi__write_context *s, const char *fmt, ...)
379 | {
380 | va_list v;
381 | va_start(v, fmt);
382 | stbiw__writefv(s, fmt, v);
383 | va_end(v);
384 | }
385 |
386 | static void stbiw__write_flush(stbi__write_context *s)
387 | {
388 | if (s->buf_used) {
389 | s->func(s->context, &s->buffer, s->buf_used);
390 | s->buf_used = 0;
391 | }
392 | }
393 |
394 | static void stbiw__putc(stbi__write_context *s, unsigned char c)
395 | {
396 | s->func(s->context, &c, 1);
397 | }
398 |
399 | static void stbiw__write1(stbi__write_context *s, unsigned char a)
400 | {
401 | if ((size_t)s->buf_used + 1 > sizeof(s->buffer))
402 | stbiw__write_flush(s);
403 | s->buffer[s->buf_used++] = a;
404 | }
405 |
406 | static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c)
407 | {
408 | int n;
409 | if ((size_t)s->buf_used + 3 > sizeof(s->buffer))
410 | stbiw__write_flush(s);
411 | n = s->buf_used;
412 | s->buf_used = n+3;
413 | s->buffer[n+0] = a;
414 | s->buffer[n+1] = b;
415 | s->buffer[n+2] = c;
416 | }
417 |
418 | static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d)
419 | {
420 | unsigned char bg[3] = { 255, 0, 255}, px[3];
421 | int k;
422 |
423 | if (write_alpha < 0)
424 | stbiw__write1(s, d[comp - 1]);
425 |
426 | switch (comp) {
427 | case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case
428 | case 1:
429 | if (expand_mono)
430 | stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp
431 | else
432 | stbiw__write1(s, d[0]); // monochrome TGA
433 | break;
434 | case 4:
435 | if (!write_alpha) {
436 | // composite against pink background
437 | for (k = 0; k < 3; ++k)
438 | px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255;
439 | stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]);
440 | break;
441 | }
442 | /* FALLTHROUGH */
443 | case 3:
444 | stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]);
445 | break;
446 | }
447 | if (write_alpha > 0)
448 | stbiw__write1(s, d[comp - 1]);
449 | }
450 |
451 | static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono)
452 | {
453 | stbiw_uint32 zero = 0;
454 | int i,j, j_end;
455 |
456 | if (y <= 0)
457 | return;
458 |
459 | if (stbi__flip_vertically_on_write)
460 | vdir *= -1;
461 |
462 | if (vdir < 0) {
463 | j_end = -1; j = y-1;
464 | } else {
465 | j_end = y; j = 0;
466 | }
467 |
468 | for (; j != j_end; j += vdir) {
469 | for (i=0; i < x; ++i) {
470 | unsigned char *d = (unsigned char *) data + (j*x+i)*comp;
471 | stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d);
472 | }
473 | stbiw__write_flush(s);
474 | s->func(s->context, &zero, scanline_pad);
475 | }
476 | }
477 |
478 | static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...)
479 | {
480 | if (y < 0 || x < 0) {
481 | return 0;
482 | } else {
483 | va_list v;
484 | va_start(v, fmt);
485 | stbiw__writefv(s, fmt, v);
486 | va_end(v);
487 | stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono);
488 | return 1;
489 | }
490 | }
491 |
492 | static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data)
493 | {
494 | if (comp != 4) {
495 | // write RGB bitmap
496 | int pad = (-x*3) & 3;
497 | return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad,
498 | "11 4 22 4" "4 44 22 444444",
499 | 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header
500 | 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header
501 | } else {
502 | // RGBA bitmaps need a v4 header
503 | // use BI_BITFIELDS mode with 32bpp and alpha mask
504 | // (straight BI_RGB with alpha mask doesn't work in most readers)
505 | return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *)data,1,0,
506 | "11 4 22 4" "4 44 22 444444 4444 4 444 444 444 444",
507 | 'B', 'M', 14+108+x*y*4, 0, 0, 14+108, // file header
508 | 108, x,y, 1,32, 3,0,0,0,0,0, 0xff0000,0xff00,0xff,0xff000000u, 0, 0,0,0, 0,0,0, 0,0,0, 0,0,0); // bitmap V4 header
509 | }
510 | }
511 |
512 | STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data)
513 | {
514 | stbi__write_context s = { 0 };
515 | stbi__start_write_callbacks(&s, func, context);
516 | return stbi_write_bmp_core(&s, x, y, comp, data);
517 | }
518 |
519 | #ifndef STBI_WRITE_NO_STDIO
520 | STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data)
521 | {
522 | stbi__write_context s = { 0 };
523 | if (stbi__start_write_file(&s,filename)) {
524 | int r = stbi_write_bmp_core(&s, x, y, comp, data);
525 | stbi__end_write_file(&s);
526 | return r;
527 | } else
528 | return 0;
529 | }
530 | #endif //!STBI_WRITE_NO_STDIO
531 |
532 | static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data)
533 | {
534 | int has_alpha = (comp == 2 || comp == 4);
535 | int colorbytes = has_alpha ? comp-1 : comp;
536 | int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3
537 |
538 | if (y < 0 || x < 0)
539 | return 0;
540 |
541 | if (!stbi_write_tga_with_rle) {
542 | return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0,
543 | "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8);
544 | } else {
545 | int i,j,k;
546 | int jend, jdir;
547 |
548 | stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8);
549 |
550 | if (stbi__flip_vertically_on_write) {
551 | j = 0;
552 | jend = y;
553 | jdir = 1;
554 | } else {
555 | j = y-1;
556 | jend = -1;
557 | jdir = -1;
558 | }
559 | for (; j != jend; j += jdir) {
560 | unsigned char *row = (unsigned char *) data + j * x * comp;
561 | int len;
562 |
563 | for (i = 0; i < x; i += len) {
564 | unsigned char *begin = row + i * comp;
565 | int diff = 1;
566 | len = 1;
567 |
568 | if (i < x - 1) {
569 | ++len;
570 | diff = memcmp(begin, row + (i + 1) * comp, comp);
571 | if (diff) {
572 | const unsigned char *prev = begin;
573 | for (k = i + 2; k < x && len < 128; ++k) {
574 | if (memcmp(prev, row + k * comp, comp)) {
575 | prev += comp;
576 | ++len;
577 | } else {
578 | --len;
579 | break;
580 | }
581 | }
582 | } else {
583 | for (k = i + 2; k < x && len < 128; ++k) {
584 | if (!memcmp(begin, row + k * comp, comp)) {
585 | ++len;
586 | } else {
587 | break;
588 | }
589 | }
590 | }
591 | }
592 |
593 | if (diff) {
594 | unsigned char header = STBIW_UCHAR(len - 1);
595 | stbiw__write1(s, header);
596 | for (k = 0; k < len; ++k) {
597 | stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp);
598 | }
599 | } else {
600 | unsigned char header = STBIW_UCHAR(len - 129);
601 | stbiw__write1(s, header);
602 | stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin);
603 | }
604 | }
605 | }
606 | stbiw__write_flush(s);
607 | }
608 | return 1;
609 | }
610 |
611 | STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data)
612 | {
613 | stbi__write_context s = { 0 };
614 | stbi__start_write_callbacks(&s, func, context);
615 | return stbi_write_tga_core(&s, x, y, comp, (void *) data);
616 | }
617 |
618 | #ifndef STBI_WRITE_NO_STDIO
619 | STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data)
620 | {
621 | stbi__write_context s = { 0 };
622 | if (stbi__start_write_file(&s,filename)) {
623 | int r = stbi_write_tga_core(&s, x, y, comp, (void *) data);
624 | stbi__end_write_file(&s);
625 | return r;
626 | } else
627 | return 0;
628 | }
629 | #endif
630 |
631 | // *************************************************************************************************
632 | // Radiance RGBE HDR writer
633 | // by Baldur Karlsson
634 |
635 | #define stbiw__max(a, b) ((a) > (b) ? (a) : (b))
636 |
637 | #ifndef STBI_WRITE_NO_STDIO
638 |
639 | static void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear)
640 | {
641 | int exponent;
642 | float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2]));
643 |
644 | if (maxcomp < 1e-32f) {
645 | rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0;
646 | } else {
647 | float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp;
648 |
649 | rgbe[0] = (unsigned char)(linear[0] * normalize);
650 | rgbe[1] = (unsigned char)(linear[1] * normalize);
651 | rgbe[2] = (unsigned char)(linear[2] * normalize);
652 | rgbe[3] = (unsigned char)(exponent + 128);
653 | }
654 | }
655 |
656 | static void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte)
657 | {
658 | unsigned char lengthbyte = STBIW_UCHAR(length+128);
659 | STBIW_ASSERT(length+128 <= 255);
660 | s->func(s->context, &lengthbyte, 1);
661 | s->func(s->context, &databyte, 1);
662 | }
663 |
664 | static void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data)
665 | {
666 | unsigned char lengthbyte = STBIW_UCHAR(length);
667 | STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code
668 | s->func(s->context, &lengthbyte, 1);
669 | s->func(s->context, data, length);
670 | }
671 |
672 | static void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline)
673 | {
674 | unsigned char scanlineheader[4] = { 2, 2, 0, 0 };
675 | unsigned char rgbe[4];
676 | float linear[3];
677 | int x;
678 |
679 | scanlineheader[2] = (width&0xff00)>>8;
680 | scanlineheader[3] = (width&0x00ff);
681 |
682 | /* skip RLE for images too small or large */
683 | if (width < 8 || width >= 32768) {
684 | for (x=0; x < width; x++) {
685 | switch (ncomp) {
686 | case 4: /* fallthrough */
687 | case 3: linear[2] = scanline[x*ncomp + 2];
688 | linear[1] = scanline[x*ncomp + 1];
689 | linear[0] = scanline[x*ncomp + 0];
690 | break;
691 | default:
692 | linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0];
693 | break;
694 | }
695 | stbiw__linear_to_rgbe(rgbe, linear);
696 | s->func(s->context, rgbe, 4);
697 | }
698 | } else {
699 | int c,r;
700 | /* encode into scratch buffer */
701 | for (x=0; x < width; x++) {
702 | switch(ncomp) {
703 | case 4: /* fallthrough */
704 | case 3: linear[2] = scanline[x*ncomp + 2];
705 | linear[1] = scanline[x*ncomp + 1];
706 | linear[0] = scanline[x*ncomp + 0];
707 | break;
708 | default:
709 | linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0];
710 | break;
711 | }
712 | stbiw__linear_to_rgbe(rgbe, linear);
713 | scratch[x + width*0] = rgbe[0];
714 | scratch[x + width*1] = rgbe[1];
715 | scratch[x + width*2] = rgbe[2];
716 | scratch[x + width*3] = rgbe[3];
717 | }
718 |
719 | s->func(s->context, scanlineheader, 4);
720 |
721 | /* RLE each component separately */
722 | for (c=0; c < 4; c++) {
723 | unsigned char *comp = &scratch[width*c];
724 |
725 | x = 0;
726 | while (x < width) {
727 | // find first run
728 | r = x;
729 | while (r+2 < width) {
730 | if (comp[r] == comp[r+1] && comp[r] == comp[r+2])
731 | break;
732 | ++r;
733 | }
734 | if (r+2 >= width)
735 | r = width;
736 | // dump up to first run
737 | while (x < r) {
738 | int len = r-x;
739 | if (len > 128) len = 128;
740 | stbiw__write_dump_data(s, len, &comp[x]);
741 | x += len;
742 | }
743 | // if there's a run, output it
744 | if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd
745 | // find next byte after run
746 | while (r < width && comp[r] == comp[x])
747 | ++r;
748 | // output run up to r
749 | while (x < r) {
750 | int len = r-x;
751 | if (len > 127) len = 127;
752 | stbiw__write_run_data(s, len, comp[x]);
753 | x += len;
754 | }
755 | }
756 | }
757 | }
758 | }
759 | }
760 |
761 | static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data)
762 | {
763 | if (y <= 0 || x <= 0 || data == NULL)
764 | return 0;
765 | else {
766 | // Each component is stored separately. Allocate scratch space for full output scanline.
767 | unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4);
768 | int i, len;
769 | char buffer[128];
770 | char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n";
771 | s->func(s->context, header, sizeof(header)-1);
772 |
773 | #ifdef __STDC_LIB_EXT1__
774 | len = sprintf_s(buffer, sizeof(buffer), "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x);
775 | #else
776 | len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x);
777 | #endif
778 | s->func(s->context, buffer, len);
779 |
780 | for(i=0; i < y; i++)
781 | stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*x*(stbi__flip_vertically_on_write ? y-1-i : i));
782 | STBIW_FREE(scratch);
783 | return 1;
784 | }
785 | }
786 |
787 | STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data)
788 | {
789 | stbi__write_context s = { 0 };
790 | stbi__start_write_callbacks(&s, func, context);
791 | return stbi_write_hdr_core(&s, x, y, comp, (float *) data);
792 | }
793 |
794 | STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data)
795 | {
796 | stbi__write_context s = { 0 };
797 | if (stbi__start_write_file(&s,filename)) {
798 | int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data);
799 | stbi__end_write_file(&s);
800 | return r;
801 | } else
802 | return 0;
803 | }
804 | #endif // STBI_WRITE_NO_STDIO
805 |
806 |
807 | //////////////////////////////////////////////////////////////////////////////
808 | //
809 | // PNG writer
810 | //
811 |
812 | #ifndef STBIW_ZLIB_COMPRESS
813 | // stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size()
814 | #define stbiw__sbraw(a) ((int *) (void *) (a) - 2)
815 | #define stbiw__sbm(a) stbiw__sbraw(a)[0]
816 | #define stbiw__sbn(a) stbiw__sbraw(a)[1]
817 |
818 | #define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a))
819 | #define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0)
820 | #define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a)))
821 |
822 | #define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v))
823 | #define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0)
824 | #define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0)
825 |
826 | static void *stbiw__sbgrowf(void **arr, int increment, int itemsize)
827 | {
828 | int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1;
829 | void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2);
830 | STBIW_ASSERT(p);
831 | if (p) {
832 | if (!*arr) ((int *) p)[1] = 0;
833 | *arr = (void *) ((int *) p + 2);
834 | stbiw__sbm(*arr) = m;
835 | }
836 | return *arr;
837 | }
838 |
839 | static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount)
840 | {
841 | while (*bitcount >= 8) {
842 | stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer));
843 | *bitbuffer >>= 8;
844 | *bitcount -= 8;
845 | }
846 | return data;
847 | }
848 |
849 | static int stbiw__zlib_bitrev(int code, int codebits)
850 | {
851 | int res=0;
852 | while (codebits--) {
853 | res = (res << 1) | (code & 1);
854 | code >>= 1;
855 | }
856 | return res;
857 | }
858 |
859 | static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit)
860 | {
861 | int i;
862 | for (i=0; i < limit && i < 258; ++i)
863 | if (a[i] != b[i]) break;
864 | return i;
865 | }
866 |
867 | static unsigned int stbiw__zhash(unsigned char *data)
868 | {
869 | stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
870 | hash ^= hash << 3;
871 | hash += hash >> 5;
872 | hash ^= hash << 4;
873 | hash += hash >> 17;
874 | hash ^= hash << 25;
875 | hash += hash >> 6;
876 | return hash;
877 | }
878 |
879 | #define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount))
880 | #define stbiw__zlib_add(code,codebits) \
881 | (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush())
882 | #define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c)
883 | // default huffman tables
884 | #define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8)
885 | #define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9)
886 | #define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7)
887 | #define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8)
888 | #define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n))
889 | #define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n))
890 |
891 | #define stbiw__ZHASH 16384
892 |
893 | #endif // STBIW_ZLIB_COMPRESS
894 |
895 | STBIWDEF unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality)
896 | {
897 | #ifdef STBIW_ZLIB_COMPRESS
898 | // user provided a zlib compress implementation, use that
899 | return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality);
900 | #else // use builtin
901 | static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
902 | static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
903 | static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
904 | static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
905 | unsigned int bitbuf=0;
906 | int i,j, bitcount=0;
907 | unsigned char *out = NULL;
908 | unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char**));
909 | if (hash_table == NULL)
910 | return NULL;
911 | if (quality < 5) quality = 5;
912 |
913 | stbiw__sbpush(out, 0x78); // DEFLATE 32K window
914 | stbiw__sbpush(out, 0x5e); // FLEVEL = 1
915 | stbiw__zlib_add(1,1); // BFINAL = 1
916 | stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman
917 |
918 | for (i=0; i < stbiw__ZHASH; ++i)
919 | hash_table[i] = NULL;
920 |
921 | i=0;
922 | while (i < data_len-3) {
923 | // hash next 3 bytes of data to be compressed
924 | int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3;
925 | unsigned char *bestloc = 0;
926 | unsigned char **hlist = hash_table[h];
927 | int n = stbiw__sbcount(hlist);
928 | for (j=0; j < n; ++j) {
929 | if (hlist[j]-data > i-32768) { // if entry lies within window
930 | int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i);
931 | if (d >= best) { best=d; bestloc=hlist[j]; }
932 | }
933 | }
934 | // when hash table entry is too long, delete half the entries
935 | if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) {
936 | STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality);
937 | stbiw__sbn(hash_table[h]) = quality;
938 | }
939 | stbiw__sbpush(hash_table[h],data+i);
940 |
941 | if (bestloc) {
942 | // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal
943 | h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1);
944 | hlist = hash_table[h];
945 | n = stbiw__sbcount(hlist);
946 | for (j=0; j < n; ++j) {
947 | if (hlist[j]-data > i-32767) {
948 | int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1);
949 | if (e > best) { // if next match is better, bail on current match
950 | bestloc = NULL;
951 | break;
952 | }
953 | }
954 | }
955 | }
956 |
957 | if (bestloc) {
958 | int d = (int) (data+i - bestloc); // distance back
959 | STBIW_ASSERT(d <= 32767 && best <= 258);
960 | for (j=0; best > lengthc[j+1]-1; ++j);
961 | stbiw__zlib_huff(j+257);
962 | if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]);
963 | for (j=0; d > distc[j+1]-1; ++j);
964 | stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5);
965 | if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]);
966 | i += best;
967 | } else {
968 | stbiw__zlib_huffb(data[i]);
969 | ++i;
970 | }
971 | }
972 | // write out final bytes
973 | for (;i < data_len; ++i)
974 | stbiw__zlib_huffb(data[i]);
975 | stbiw__zlib_huff(256); // end of block
976 | // pad with 0 bits to byte boundary
977 | while (bitcount)
978 | stbiw__zlib_add(0,1);
979 |
980 | for (i=0; i < stbiw__ZHASH; ++i)
981 | (void) stbiw__sbfree(hash_table[i]);
982 | STBIW_FREE(hash_table);
983 |
984 | // store uncompressed instead if compression was worse
985 | if (stbiw__sbn(out) > data_len + 2 + ((data_len+32766)/32767)*5) {
986 | stbiw__sbn(out) = 2; // truncate to DEFLATE 32K window and FLEVEL = 1
987 | for (j = 0; j < data_len;) {
988 | int blocklen = data_len - j;
989 | if (blocklen > 32767) blocklen = 32767;
990 | stbiw__sbpush(out, data_len - j == blocklen); // BFINAL = ?, BTYPE = 0 -- no compression
991 | stbiw__sbpush(out, STBIW_UCHAR(blocklen)); // LEN
992 | stbiw__sbpush(out, STBIW_UCHAR(blocklen >> 8));
993 | stbiw__sbpush(out, STBIW_UCHAR(~blocklen)); // NLEN
994 | stbiw__sbpush(out, STBIW_UCHAR(~blocklen >> 8));
995 | memcpy(out+stbiw__sbn(out), data+j, blocklen);
996 | stbiw__sbn(out) += blocklen;
997 | j += blocklen;
998 | }
999 | }
1000 |
1001 | {
1002 | // compute adler32 on input
1003 | unsigned int s1=1, s2=0;
1004 | int blocklen = (int) (data_len % 5552);
1005 | j=0;
1006 | while (j < data_len) {
1007 | for (i=0; i < blocklen; ++i) { s1 += data[j+i]; s2 += s1; }
1008 | s1 %= 65521; s2 %= 65521;
1009 | j += blocklen;
1010 | blocklen = 5552;
1011 | }
1012 | stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8));
1013 | stbiw__sbpush(out, STBIW_UCHAR(s2));
1014 | stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8));
1015 | stbiw__sbpush(out, STBIW_UCHAR(s1));
1016 | }
1017 | *out_len = stbiw__sbn(out);
1018 | // make returned pointer freeable
1019 | STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len);
1020 | return (unsigned char *) stbiw__sbraw(out);
1021 | #endif // STBIW_ZLIB_COMPRESS
1022 | }
1023 |
1024 | static unsigned int stbiw__crc32(unsigned char *buffer, int len)
1025 | {
1026 | #ifdef STBIW_CRC32
1027 | return STBIW_CRC32(buffer, len);
1028 | #else
1029 | static unsigned int crc_table[256] =
1030 | {
1031 | 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
1032 | 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
1033 | 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
1034 | 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
1035 | 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
1036 | 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
1037 | 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
1038 | 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
1039 | 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
1040 | 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
1041 | 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
1042 | 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
1043 | 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
1044 | 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
1045 | 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
1046 | 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
1047 | 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
1048 | 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
1049 | 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
1050 | 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
1051 | 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
1052 | 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
1053 | 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
1054 | 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
1055 | 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
1056 | 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
1057 | 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
1058 | 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
1059 | 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
1060 | 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
1061 | 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
1062 | 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
1063 | };
1064 |
1065 | unsigned int crc = ~0u;
1066 | int i;
1067 | for (i=0; i < len; ++i)
1068 | crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)];
1069 | return ~crc;
1070 | #endif
1071 | }
1072 |
1073 | #define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4)
1074 | #define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v));
1075 | #define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3])
1076 |
1077 | static void stbiw__wpcrc(unsigned char **data, int len)
1078 | {
1079 | unsigned int crc = stbiw__crc32(*data - len - 4, len+4);
1080 | stbiw__wp32(*data, crc);
1081 | }
1082 |
1083 | static unsigned char stbiw__paeth(int a, int b, int c)
1084 | {
1085 | int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c);
1086 | if (pa <= pb && pa <= pc) return STBIW_UCHAR(a);
1087 | if (pb <= pc) return STBIW_UCHAR(b);
1088 | return STBIW_UCHAR(c);
1089 | }
1090 |
1091 | // @OPTIMIZE: provide an option that always forces left-predict or paeth predict
1092 | static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char *line_buffer)
1093 | {
1094 | static int mapping[] = { 0,1,2,3,4 };
1095 | static int firstmap[] = { 0,1,0,5,6 };
1096 | int *mymap = (y != 0) ? mapping : firstmap;
1097 | int i;
1098 | int type = mymap[filter_type];
1099 | unsigned char *z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height-1-y : y);
1100 | int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes;
1101 |
1102 | if (type==0) {
1103 | memcpy(line_buffer, z, width*n);
1104 | return;
1105 | }
1106 |
1107 | // first loop isn't optimized since it's just one pixel
1108 | for (i = 0; i < n; ++i) {
1109 | switch (type) {
1110 | case 1: line_buffer[i] = z[i]; break;
1111 | case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break;
1112 | case 3: line_buffer[i] = z[i] - (z[i-signed_stride]>>1); break;
1113 | case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-signed_stride],0)); break;
1114 | case 5: line_buffer[i] = z[i]; break;
1115 | case 6: line_buffer[i] = z[i]; break;
1116 | }
1117 | }
1118 | switch (type) {
1119 | case 1: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-n]; break;
1120 | case 2: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-signed_stride]; break;
1121 | case 3: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - ((z[i-n] + z[i-signed_stride])>>1); break;
1122 | case 4: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-signed_stride], z[i-signed_stride-n]); break;
1123 | case 5: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - (z[i-n]>>1); break;
1124 | case 6: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break;
1125 | }
1126 | }
1127 |
1128 | STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len)
1129 | {
1130 | int force_filter = stbi_write_force_png_filter;
1131 | int ctype[5] = { -1, 0, 4, 2, 6 };
1132 | unsigned char sig[8] = { 137,80,78,71,13,10,26,10 };
1133 | unsigned char *out,*o, *filt, *zlib;
1134 | signed char *line_buffer;
1135 | int j,zlen;
1136 |
1137 | if (stride_bytes == 0)
1138 | stride_bytes = x * n;
1139 |
1140 | if (force_filter >= 5) {
1141 | force_filter = -1;
1142 | }
1143 |
1144 | filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0;
1145 | line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; }
1146 | for (j=0; j < y; ++j) {
1147 | int filter_type;
1148 | if (force_filter > -1) {
1149 | filter_type = force_filter;
1150 | stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, force_filter, line_buffer);
1151 | } else { // Estimate the best filter by running through all of them:
1152 | int best_filter = 0, best_filter_val = 0x7fffffff, est, i;
1153 | for (filter_type = 0; filter_type < 5; filter_type++) {
1154 | stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, filter_type, line_buffer);
1155 |
1156 | // Estimate the entropy of the line using this filter; the less, the better.
1157 | est = 0;
1158 | for (i = 0; i < x*n; ++i) {
1159 | est += abs((signed char) line_buffer[i]);
1160 | }
1161 | if (est < best_filter_val) {
1162 | best_filter_val = est;
1163 | best_filter = filter_type;
1164 | }
1165 | }
1166 | if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it
1167 | stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, best_filter, line_buffer);
1168 | filter_type = best_filter;
1169 | }
1170 | }
1171 | // when we get here, filter_type contains the filter type, and line_buffer contains the data
1172 | filt[j*(x*n+1)] = (unsigned char) filter_type;
1173 | STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n);
1174 | }
1175 | STBIW_FREE(line_buffer);
1176 | zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, stbi_write_png_compression_level);
1177 | STBIW_FREE(filt);
1178 | if (!zlib) return 0;
1179 |
1180 | // each tag requires 12 bytes of overhead
1181 | out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12);
1182 | if (!out) return 0;
1183 | *out_len = 8 + 12+13 + 12+zlen + 12;
1184 |
1185 | o=out;
1186 | STBIW_MEMMOVE(o,sig,8); o+= 8;
1187 | stbiw__wp32(o, 13); // header length
1188 | stbiw__wptag(o, "IHDR");
1189 | stbiw__wp32(o, x);
1190 | stbiw__wp32(o, y);
1191 | *o++ = 8;
1192 | *o++ = STBIW_UCHAR(ctype[n]);
1193 | *o++ = 0;
1194 | *o++ = 0;
1195 | *o++ = 0;
1196 | stbiw__wpcrc(&o,13);
1197 |
1198 | stbiw__wp32(o, zlen);
1199 | stbiw__wptag(o, "IDAT");
1200 | STBIW_MEMMOVE(o, zlib, zlen);
1201 | o += zlen;
1202 | STBIW_FREE(zlib);
1203 | stbiw__wpcrc(&o, zlen);
1204 |
1205 | stbiw__wp32(o,0);
1206 | stbiw__wptag(o, "IEND");
1207 | stbiw__wpcrc(&o,0);
1208 |
1209 | STBIW_ASSERT(o == out + *out_len);
1210 |
1211 | return out;
1212 | }
1213 |
1214 | #ifndef STBI_WRITE_NO_STDIO
1215 | STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes)
1216 | {
1217 | FILE *f;
1218 | int len;
1219 | unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len);
1220 | if (png == NULL) return 0;
1221 |
1222 | f = stbiw__fopen(filename, "wb");
1223 | if (!f) { STBIW_FREE(png); return 0; }
1224 | fwrite(png, 1, len, f);
1225 | fclose(f);
1226 | STBIW_FREE(png);
1227 | return 1;
1228 | }
1229 | #endif
1230 |
1231 | STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes)
1232 | {
1233 | int len;
1234 | unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len);
1235 | if (png == NULL) return 0;
1236 | func(context, png, len);
1237 | STBIW_FREE(png);
1238 | return 1;
1239 | }
1240 |
1241 |
1242 | /* ***************************************************************************
1243 | *
1244 | * JPEG writer
1245 | *
1246 | * This is based on Jon Olick's jo_jpeg.cpp:
1247 | * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html
1248 | */
1249 |
1250 | static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18,
1251 | 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 };
1252 |
1253 | static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) {
1254 | int bitBuf = *bitBufP, bitCnt = *bitCntP;
1255 | bitCnt += bs[1];
1256 | bitBuf |= bs[0] << (24 - bitCnt);
1257 | while(bitCnt >= 8) {
1258 | unsigned char c = (bitBuf >> 16) & 255;
1259 | stbiw__putc(s, c);
1260 | if(c == 255) {
1261 | stbiw__putc(s, 0);
1262 | }
1263 | bitBuf <<= 8;
1264 | bitCnt -= 8;
1265 | }
1266 | *bitBufP = bitBuf;
1267 | *bitCntP = bitCnt;
1268 | }
1269 |
1270 | static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) {
1271 | float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p;
1272 | float z1, z2, z3, z4, z5, z11, z13;
1273 |
1274 | float tmp0 = d0 + d7;
1275 | float tmp7 = d0 - d7;
1276 | float tmp1 = d1 + d6;
1277 | float tmp6 = d1 - d6;
1278 | float tmp2 = d2 + d5;
1279 | float tmp5 = d2 - d5;
1280 | float tmp3 = d3 + d4;
1281 | float tmp4 = d3 - d4;
1282 |
1283 | // Even part
1284 | float tmp10 = tmp0 + tmp3; // phase 2
1285 | float tmp13 = tmp0 - tmp3;
1286 | float tmp11 = tmp1 + tmp2;
1287 | float tmp12 = tmp1 - tmp2;
1288 |
1289 | d0 = tmp10 + tmp11; // phase 3
1290 | d4 = tmp10 - tmp11;
1291 |
1292 | z1 = (tmp12 + tmp13) * 0.707106781f; // c4
1293 | d2 = tmp13 + z1; // phase 5
1294 | d6 = tmp13 - z1;
1295 |
1296 | // Odd part
1297 | tmp10 = tmp4 + tmp5; // phase 2
1298 | tmp11 = tmp5 + tmp6;
1299 | tmp12 = tmp6 + tmp7;
1300 |
1301 | // The rotator is modified from fig 4-8 to avoid extra negations.
1302 | z5 = (tmp10 - tmp12) * 0.382683433f; // c6
1303 | z2 = tmp10 * 0.541196100f + z5; // c2-c6
1304 | z4 = tmp12 * 1.306562965f + z5; // c2+c6
1305 | z3 = tmp11 * 0.707106781f; // c4
1306 |
1307 | z11 = tmp7 + z3; // phase 5
1308 | z13 = tmp7 - z3;
1309 |
1310 | *d5p = z13 + z2; // phase 6
1311 | *d3p = z13 - z2;
1312 | *d1p = z11 + z4;
1313 | *d7p = z11 - z4;
1314 |
1315 | *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6;
1316 | }
1317 |
1318 | static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) {
1319 | int tmp1 = val < 0 ? -val : val;
1320 | val = val < 0 ? val-1 : val;
1321 | bits[1] = 1;
1322 | while(tmp1 >>= 1) {
1323 | ++bits[1];
1324 | }
1325 | bits[0] = val & ((1<0)&&(DU[end0pos]==0); --end0pos) {
1368 | }
1369 | // end0pos = first element in reverse order !=0
1370 | if(end0pos == 0) {
1371 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
1372 | return DU[0];
1373 | }
1374 | for(i = 1; i <= end0pos; ++i) {
1375 | int startpos = i;
1376 | int nrzeroes;
1377 | unsigned short bits[2];
1378 | for (; DU[i]==0 && i<=end0pos; ++i) {
1379 | }
1380 | nrzeroes = i-startpos;
1381 | if ( nrzeroes >= 16 ) {
1382 | int lng = nrzeroes>>4;
1383 | int nrmarker;
1384 | for (nrmarker=1; nrmarker <= lng; ++nrmarker)
1385 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes);
1386 | nrzeroes &= 15;
1387 | }
1388 | stbiw__jpg_calcBits(DU[i], bits);
1389 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]);
1390 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
1391 | }
1392 | if(end0pos != 63) {
1393 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
1394 | }
1395 | return DU[0];
1396 | }
1397 |
1398 | static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) {
1399 | // Constants that don't pollute global namespace
1400 | static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};
1401 | static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
1402 | static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d};
1403 | static const unsigned char std_ac_luminance_values[] = {
1404 | 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,
1405 | 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,
1406 | 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,
1407 | 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
1408 | 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,
1409 | 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,
1410 | 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
1411 | };
1412 | static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0};
1413 | static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
1414 | static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77};
1415 | static const unsigned char std_ac_chrominance_values[] = {
1416 | 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,
1417 | 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,
1418 | 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,
1419 | 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
1420 | 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,
1421 | 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,
1422 | 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
1423 | };
1424 | // Huffman tables
1425 | static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}};
1426 | static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}};
1427 | static const unsigned short YAC_HT[256][2] = {
1428 | {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1429 | {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1430 | {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1431 | {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1432 | {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1433 | {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1434 | {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1435 | {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1436 | {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1437 | {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1438 | {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1439 | {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1440 | {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1441 | {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1442 | {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0},
1443 | {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
1444 | };
1445 | static const unsigned short UVAC_HT[256][2] = {
1446 | {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1447 | {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1448 | {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1449 | {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1450 | {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1451 | {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1452 | {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1453 | {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1454 | {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1455 | {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1456 | {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1457 | {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1458 | {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1459 | {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1460 | {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0},
1461 | {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
1462 | };
1463 | static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22,
1464 | 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99};
1465 | static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99,
1466 | 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99};
1467 | static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f,
1468 | 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f };
1469 |
1470 | int row, col, i, k, subsample;
1471 | float fdtbl_Y[64], fdtbl_UV[64];
1472 | unsigned char YTable[64], UVTable[64];
1473 |
1474 | if(!data || !width || !height || comp > 4 || comp < 1) {
1475 | return 0;
1476 | }
1477 |
1478 | quality = quality ? quality : 90;
1479 | subsample = quality <= 90 ? 1 : 0;
1480 | quality = quality < 1 ? 1 : quality > 100 ? 100 : quality;
1481 | quality = quality < 50 ? 5000 / quality : 200 - quality * 2;
1482 |
1483 | for(i = 0; i < 64; ++i) {
1484 | int uvti, yti = (YQT[i]*quality+50)/100;
1485 | YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti);
1486 | uvti = (UVQT[i]*quality+50)/100;
1487 | UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti);
1488 | }
1489 |
1490 | for(row = 0, k = 0; row < 8; ++row) {
1491 | for(col = 0; col < 8; ++col, ++k) {
1492 | fdtbl_Y[k] = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
1493 | fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
1494 | }
1495 | }
1496 |
1497 | // Write Headers
1498 | {
1499 | static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 };
1500 | static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 };
1501 | const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width),
1502 | 3,1,(unsigned char)(subsample?0x22:0x11),0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 };
1503 | s->func(s->context, (void*)head0, sizeof(head0));
1504 | s->func(s->context, (void*)YTable, sizeof(YTable));
1505 | stbiw__putc(s, 1);
1506 | s->func(s->context, UVTable, sizeof(UVTable));
1507 | s->func(s->context, (void*)head1, sizeof(head1));
1508 | s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1);
1509 | s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values));
1510 | stbiw__putc(s, 0x10); // HTYACinfo
1511 | s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1);
1512 | s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values));
1513 | stbiw__putc(s, 1); // HTUDCinfo
1514 | s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1);
1515 | s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values));
1516 | stbiw__putc(s, 0x11); // HTUACinfo
1517 | s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1);
1518 | s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values));
1519 | s->func(s->context, (void*)head2, sizeof(head2));
1520 | }
1521 |
1522 | // Encode 8x8 macroblocks
1523 | {
1524 | static const unsigned short fillBits[] = {0x7F, 7};
1525 | int DCY=0, DCU=0, DCV=0;
1526 | int bitBuf=0, bitCnt=0;
1527 | // comp == 2 is grey+alpha (alpha is ignored)
1528 | int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0;
1529 | const unsigned char *dataR = (const unsigned char *)data;
1530 | const unsigned char *dataG = dataR + ofsG;
1531 | const unsigned char *dataB = dataR + ofsB;
1532 | int x, y, pos;
1533 | if(subsample) {
1534 | for(y = 0; y < height; y += 16) {
1535 | for(x = 0; x < width; x += 16) {
1536 | float Y[256], U[256], V[256];
1537 | for(row = y, pos = 0; row < y+16; ++row) {
1538 | // row >= height => use last input row
1539 | int clamped_row = (row < height) ? row : height - 1;
1540 | int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp;
1541 | for(col = x; col < x+16; ++col, ++pos) {
1542 | // if col >= width => use pixel from last input column
1543 | int p = base_p + ((col < width) ? col : (width-1))*comp;
1544 | float r = dataR[p], g = dataG[p], b = dataB[p];
1545 | Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128;
1546 | U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b;
1547 | V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b;
1548 | }
1549 | }
1550 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+0, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1551 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+8, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1552 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+128, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1553 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+136, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1554 |
1555 | // subsample U,V
1556 | {
1557 | float subU[64], subV[64];
1558 | int yy, xx;
1559 | for(yy = 0, pos = 0; yy < 8; ++yy) {
1560 | for(xx = 0; xx < 8; ++xx, ++pos) {
1561 | int j = yy*32+xx*2;
1562 | subU[pos] = (U[j+0] + U[j+1] + U[j+16] + U[j+17]) * 0.25f;
1563 | subV[pos] = (V[j+0] + V[j+1] + V[j+16] + V[j+17]) * 0.25f;
1564 | }
1565 | }
1566 | DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subU, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
1567 | DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subV, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
1568 | }
1569 | }
1570 | }
1571 | } else {
1572 | for(y = 0; y < height; y += 8) {
1573 | for(x = 0; x < width; x += 8) {
1574 | float Y[64], U[64], V[64];
1575 | for(row = y, pos = 0; row < y+8; ++row) {
1576 | // row >= height => use last input row
1577 | int clamped_row = (row < height) ? row : height - 1;
1578 | int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp;
1579 | for(col = x; col < x+8; ++col, ++pos) {
1580 | // if col >= width => use pixel from last input column
1581 | int p = base_p + ((col < width) ? col : (width-1))*comp;
1582 | float r = dataR[p], g = dataG[p], b = dataB[p];
1583 | Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128;
1584 | U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b;
1585 | V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b;
1586 | }
1587 | }
1588 |
1589 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y, 8, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1590 | DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, U, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
1591 | DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, V, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
1592 | }
1593 | }
1594 | }
1595 |
1596 | // Do the bit alignment of the EOI marker
1597 | stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits);
1598 | }
1599 |
1600 | // EOI
1601 | stbiw__putc(s, 0xFF);
1602 | stbiw__putc(s, 0xD9);
1603 |
1604 | return 1;
1605 | }
1606 |
1607 | STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality)
1608 | {
1609 | stbi__write_context s = { 0 };
1610 | stbi__start_write_callbacks(&s, func, context);
1611 | return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality);
1612 | }
1613 |
1614 |
1615 | #ifndef STBI_WRITE_NO_STDIO
1616 | STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality)
1617 | {
1618 | stbi__write_context s = { 0 };
1619 | if (stbi__start_write_file(&s,filename)) {
1620 | int r = stbi_write_jpg_core(&s, x, y, comp, data, quality);
1621 | stbi__end_write_file(&s);
1622 | return r;
1623 | } else
1624 | return 0;
1625 | }
1626 | #endif
1627 |
1628 | #endif // STB_IMAGE_WRITE_IMPLEMENTATION
1629 |
1630 | /* Revision history
1631 | 1.16 (2021-07-11)
1632 | make Deflate code emit uncompressed blocks when it would otherwise expand
1633 | support writing BMPs with alpha channel
1634 | 1.15 (2020-07-13) unknown
1635 | 1.14 (2020-02-02) updated JPEG writer to downsample chroma channels
1636 | 1.13
1637 | 1.12
1638 | 1.11 (2019-08-11)
1639 |
1640 | 1.10 (2019-02-07)
1641 | support utf8 filenames in Windows; fix warnings and platform ifdefs
1642 | 1.09 (2018-02-11)
1643 | fix typo in zlib quality API, improve STB_I_W_STATIC in C++
1644 | 1.08 (2018-01-29)
1645 | add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter
1646 | 1.07 (2017-07-24)
1647 | doc fix
1648 | 1.06 (2017-07-23)
1649 | writing JPEG (using Jon Olick's code)
1650 | 1.05 ???
1651 | 1.04 (2017-03-03)
1652 | monochrome BMP expansion
1653 | 1.03 ???
1654 | 1.02 (2016-04-02)
1655 | avoid allocating large structures on the stack
1656 | 1.01 (2016-01-16)
1657 | STBIW_REALLOC_SIZED: support allocators with no realloc support
1658 | avoid race-condition in crc initialization
1659 | minor compile issues
1660 | 1.00 (2015-09-14)
1661 | installable file IO function
1662 | 0.99 (2015-09-13)
1663 | warning fixes; TGA rle support
1664 | 0.98 (2015-04-08)
1665 | added STBIW_MALLOC, STBIW_ASSERT etc
1666 | 0.97 (2015-01-18)
1667 | fixed HDR asserts, rewrote HDR rle logic
1668 | 0.96 (2015-01-17)
1669 | add HDR output
1670 | fix monochrome BMP
1671 | 0.95 (2014-08-17)
1672 | add monochrome TGA output
1673 | 0.94 (2014-05-31)
1674 | rename private functions to avoid conflicts with stb_image.h
1675 | 0.93 (2014-05-27)
1676 | warning fixes
1677 | 0.92 (2010-08-01)
1678 | casts to unsigned char to fix warnings
1679 | 0.91 (2010-07-17)
1680 | first public release
1681 | 0.90 first internal release
1682 | */
1683 |
1684 | /*
1685 | ------------------------------------------------------------------------------
1686 | This software is available under 2 licenses -- choose whichever you prefer.
1687 | ------------------------------------------------------------------------------
1688 | ALTERNATIVE A - MIT License
1689 | Copyright (c) 2017 Sean Barrett
1690 | Permission is hereby granted, free of charge, to any person obtaining a copy of
1691 | this software and associated documentation files (the "Software"), to deal in
1692 | the Software without restriction, including without limitation the rights to
1693 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
1694 | of the Software, and to permit persons to whom the Software is furnished to do
1695 | so, subject to the following conditions:
1696 | The above copyright notice and this permission notice shall be included in all
1697 | copies or substantial portions of the Software.
1698 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1699 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1700 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1701 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1702 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
1703 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
1704 | SOFTWARE.
1705 | ------------------------------------------------------------------------------
1706 | ALTERNATIVE B - Public Domain (www.unlicense.org)
1707 | This is free and unencumbered software released into the public domain.
1708 | Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
1709 | software, either in source code form or as a compiled binary, for any purpose,
1710 | commercial or non-commercial, and by any means.
1711 | In jurisdictions that recognize copyright laws, the author or authors of this
1712 | software dedicate any and all copyright interest in the software to the public
1713 | domain. We make this dedication for the benefit of the public at large and to
1714 | the detriment of our heirs and successors. We intend this dedication to be an
1715 | overt act of relinquishment in perpetuity of all present and future rights to
1716 | this software under copyright law.
1717 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1718 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1719 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1720 | AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
1721 | ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
1722 | WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1723 | ------------------------------------------------------------------------------
1724 | */
1725 |
--------------------------------------------------------------------------------
/tinydream.hpp:
--------------------------------------------------------------------------------
1 | #pragma once
2 | /*
3 | * Tiny Dream - Header-Only, Embedded Stable Diffusion Inference Library.
4 | *
5 | * Copyright (C) 2023 PixLab| Symisc Systems. https://pixlab.io/tiny-dream
6 | * Version 1.7.5
7 | *
8 | * Symisc Systems employs a dual licensing model that offers customers
9 | * a choice of either our open source license (GNU Affero AGPLv3)
10 | * or a commercial license.
11 | *
12 | * For information on licensing, redistribution of the Tiny Dream,
13 | * and for a DISCLAIMER OF ALL WARRANTIES please visit:
14 | * https://pixlab.io/tiny-dream#license
15 | * or contact:
16 | * licensing@symisc.net
17 | * support@pixlab.io
18 | */
19 | /*
20 | * This file is part of Tiny Dream - Open Source Release (GNU Affero AGPLv3)
21 | *
22 | * Tiny Dream is free software : you can redistribute it and/or modify
23 | * it under the terms of the GNU Affero General Public License as published by
24 | * the Free Software Foundation, either version 3 of the License, or
25 | * (at your option) any later version.
26 | *
27 | * Tiny Dream is distributed in the hope that it will be useful,
28 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
30 | * GNU General Public License for more details.
31 | *
32 | * You should have received a copy of the GNU Affero General Public License
33 | * along with Tiny Dream. If not, see .
34 | */
35 | /*
36 | * The TINY_DREAM_VERSION_STR C preprocessor macro evaluates to a string literal
37 | * that is the Tiny Dream version in the format "X.Y.Z" where X is the major
38 | * version number and Y is the minor version number and Z is the release
39 | * number.
40 | */
41 | #define TINY_DREAM_VERSION_STR "1.7.5"
42 | /*
43 | * The TINY_DREAM_VERSION_NUMBER C preprocessor macro resolves to an integer
44 | * with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
45 | * numbers used in [TINY_DREAM_VERSION_STR].
46 | */
47 | #define TINY_DREAM_VERSION_NUMBER 1007005
48 | /* $SymiscID: tinydream.hpp v1.7.5 WIN10/VS2019 2023-08-07 05:34 stable $ */
49 | #include
50 | #include
51 | #include
52 | #include
53 | #include