├── .gitignore
├── LICENSE
├── README.md
├── __init__.py
├── examples
├── __init__.py
├── channel_pruning
│ ├── __init__.py
│ ├── prune_train.py
│ └── vgg_pruner.py
└── deep_compression
│ ├── __init__.py
│ ├── decode.py
│ ├── encode.py
│ ├── prune_train.py
│ ├── quantize_train.py
│ ├── rules
│ ├── inception_v3
│ │ ├── coding.rule
│ │ ├── prune_autogenerate.rule
│ │ └── quantize.rule
│ └── resnet50
│ │ ├── coding.rule
│ │ ├── prune_manual.rule
│ │ └── quantize.rule
│ └── sensitivity_scan.py
├── slender
├── __init__.py
├── coding
│ ├── __init__.py
│ ├── codec.py
│ └── encode.py
├── prune
│ ├── __init__.py
│ ├── channel.py
│ └── vanilla.py
├── quantize
│ ├── __init__.py
│ ├── fixed_point.py
│ ├── kmeans.py
│ ├── linear.py
│ └── quantizer.py
├── replicate.py
└── utils.py
└── test
├── __init__.py
├── test_coding.py
├── test_quantize.py
└── test_vanilla_prune.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env/
88 | venv/
89 | ENV/
90 | env.bak/
91 | venv.bak/
92 |
93 | # Spyder project settings
94 | .spyderproject
95 | .spyproject
96 |
97 | # Rope project settings
98 | .ropeproject
99 |
100 | # mkdocs documentation
101 | /site
102 |
103 | # mypy
104 | .mypy_cache/
105 |
106 | # pycharm
107 | .idea/
108 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 | NN Compression Toolkit
633 | Copyright (C) 2018 Xavier Lin
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # nn-compression
2 | A Pytorch implementation of Neural Network Compression (pruning, quantization, encoding/decoding)
3 |
4 | Most work of this repo is better done in [distiller](https://github.com/NervanaSystems/distiller). However, they have not implement channel pruning and coding yet. With coding in this repo, you can save the model with actually much smaller memory size.
5 |
6 | ## Pruning
7 |
8 | Neural Network Pruning reduces the number of nonzero parameters and thus computation amount (FLOPs).
9 |
10 | ### Vanilla Pruning
11 |
12 | Deep Compression uses vanilla pruning method. It prunes the parameters with the least importance.
13 |
14 | * **_Elementwise_** Pruning: prune those with the smallest magnitude
15 |
16 | * **_Kernelwise_** Pruning: prune 2D kernels with the smallest L1(default)/L2 norm
17 |
18 | * **_Filterwise_** Pruning: prune 3D filters with the smallest L1(default)/L2 norm
19 |
20 | ```python
21 | # vanilla pruner usage
22 |
23 | from modules.prune import VanillaPruner
24 |
25 | rule = [
26 | ('0.weight', 'element', [0.3, 0.5], 'abs'),
27 | ('1.weight', 'kernel', [0.4, 0.6], 'default')
28 | ('2.weight', 'filter', [0.5, 0.7], 'l2norm')
29 | ]
30 |
31 | pruner = VanillaPruner(rule=rule)
32 | """
33 | :param rule: str, path to the rule file, each line formats
34 | 'param_name granularity sparsity_stage_0, sparstiy_stage_1, ...'
35 | list of tuple, [(param_name(str), granularity(str),
36 | sparsity(float) or [sparsity_stage_0(float), sparstiy_stage_1,],
37 | fn_importance(optional, str or function))]
38 | 'granularity': str, choose from ['element', 'kernel', 'filter']
39 | 'fn_importance': str, choose from ['abs', 'l1norm', 'l2norm', 'default']
40 | """
41 |
42 | stage = 0
43 |
44 | for epoch in range(0, 90):
45 | if epoch == 0:
46 | pruner.prune(model=model, stage=stage, update_masks=True)
47 | best_prec1 = validate(val_loader, model, criterion, epoch)
48 |
49 | # in train function
50 | for i, (input, target) in enumerate(train_loader):
51 | output = model(input)
52 | loss = criterion(output, target)
53 | optimizer.zero_grad()
54 | loss.backward()
55 | optimizer.step()
56 |
57 | pruner.prune(model=model, stage=stage, update_masks=False)
58 | ```
59 |
60 | ### Channel Pruning
61 |
62 | Channel Pruning is another set of neural network pruning methods. It reduces the number of output channels
63 | in every convolution or fully-connected layers. Therefore, it can directly speed up the inference.
64 |
65 | Channel Pruning takes 2 steps:
66 |
67 | 1. Channel Selection: select channels with least impact to prune
68 | 2. Parameter Reconstruction: reconstruct the parameter values to optimize the output feature of the next
69 | layer to the pruned one
70 |
71 | These two steps are conducted layer by layer.
72 |
73 | ```python
74 | # channel pruning usage
75 |
76 | def prune_channel(sparsity, module, next_module, fn_next_input_feature, input_feature,
77 | method='greedy', cpu=True):
78 | """
79 | channel pruning core function
80 | :param sparsity: float, pruning sparsity
81 | :param module: torch.nn.module, module of the layer being pruned
82 | :param next_module: torch.nn.module, module of the next layer to the one being pruned
83 | :param fn_next_input_feature: function, function to calculate the input feature map for next_module
84 | :param input_feature: torch.(cuda.)Tensor, input feature map of the layer being pruned
85 | :param method: str
86 | 'greedy': select one contributed to the smallest next feature after another
87 | 'lasso': pruned channels by lasso regression
88 | 'random': randomly select
89 | :param cpu: bool, whether done in cpu for larger reconstruction batch size
90 | :return:
91 | void
92 | """
93 | ```
94 |
95 | Detailed example shows in [here](examples/channel_pruning).
96 |
97 | ## Quantization
98 |
99 | Neural Network Quantization is to represent the parameters with fewer bits.
100 |
101 | ### Vanilla Quantization
102 |
103 | There are several ways to quantize neural network parameters:
104 |
105 | * **_Fixed-point_** Quantization: the most common way, uses (*i*+*f*)-bits to represent the number,
106 | where *i*-bits for integer and *f*-bits for fraction.
107 |
108 | * **_Uniform/Linear_** Quantization: quantization centroids lies uniformly in the range of parameter values,
109 | i.e., the quantization step equals $(max - min) / k$, where *k* is the quantization levels
110 |
111 | * **_K-Means_** Quantization: quantization centroids calculated by K-Means clustering
112 |
113 | ```python
114 | # vanilla quantizer usage
115 |
116 | from modules.quantize import Quantizer
117 |
118 | rule = [
119 | ('0.weight', 'k-means', 4, 'k-means++'),
120 | ('1.weight', 'fixed_point', 6, 1),
121 | ]
122 |
123 | quantizer = Quantizer(rule=rule, fix_zeros=True)
124 | """
125 | :param rule: str, path to the rule file, each line formats
126 | 'param_name method bit_length initial_guess_or_bit_length_of_integer'
127 | list of tuple,
128 | [(param_name(str), method(str), bit_length(int),
129 | initial_guess(str)_or_bit_length_of_integer(int))]
130 | :param fix_zeros: whether to fix zeros when quantizing
131 | """
132 |
133 | for epoch in range(0, 90):
134 | # in the train loop
135 |
136 | # in train function
137 | for i, (input, target) in enumerate(train_loader):
138 | output = model(input)
139 | loss = criterion(output, target)
140 | optimizer.zero_grad()
141 | loss.backward()
142 | optimizer.step()
143 |
144 | quantizer.quantize(model=model, update_labels=True, re_quantize=False)
145 | """
146 | :param update_labels: bool, whether to re-allocate the param elements
147 | to the latest centroids when using k-means
148 | :param re_quantize: bool, whether to re-quantize the param when using k-means
149 | """
150 | ```
151 |
152 | ## Coding
153 |
154 | Coding is the last step to compress the neural network in Deep Compression:
155 |
156 | * **_Fixed-point_** Coding: it actually is not a coding method,
157 | just in case if we want to actually save the model in fixed-point style.
158 |
159 | * **_Vanilla (Linear)_** Coding: it uses $log_2 (N)$-bits to represent *N* float number in the codebook,
160 | i.e., there are only *N* possible values in a parameter matrix
161 |
162 | * **_Huffman_** Coding: it uses huffman coding to represent *N* float number in the codebook
163 |
164 | ```python
165 | # coding codec usage (encode)
166 |
167 | import torch
168 | from modules.coding import Codec
169 |
170 | rule = [
171 | ('0.weight', 'huffman', 0, 0, 4),
172 | ('1.weight', 'fixed_point', 6, 1, 4)
173 | ]
174 |
175 | codec = Codec(rule=rule)
176 | """
177 | :param rule: str, path to the rule file, each line formats
178 | 'param_name coding_method bit_length_fixed_point bit_length_fixed_point_of_integer_part
179 | bit_length_of_zero_run_length'
180 | list of tuple,
181 | [(param_name(str), coding_method(str), bit_length_fixed_point(int),
182 | bit_length_fixed_point_of_integer_part(int), bit_length_of_zero_run_length(int))]
183 | """
184 |
185 | encoded_model = codec.encode(model=model)
186 |
187 | torch.save({'state_dict': encoded_model.state_dict()}, 'encode.pth.tar', pickle_protocol=4)
188 | ```
189 |
190 | ```python
191 | # coding codec usage (decode)
192 |
193 | import torch
194 | from modules.coding import Codec
195 |
196 | checkpoint = torch.load('encode.pth.tar')
197 |
198 | model = Codec.decode(model=model, state_dict=checkpoint['state_dict']) # initial model is created before
199 |
200 | torch.save({'state_dict': model.state_dict()}, 'decode.pth.tar')
201 | ```
202 |
203 | ## Rerference
204 |
205 | ```text
206 | @article{han2015deep,
207 | title={Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding},
208 | author={Han, Song and Mao, Huizi and Dally, William J},
209 | journal={arXiv preprint arXiv:1510.00149},
210 | year={2015}
211 | }
212 | ```
213 |
214 | ```text
215 | @inproceedings{han2015learning,
216 | title={Learning both weights and connections for efficient neural network},
217 | author={Han, Song and Pool, Jeff and Tran, John and Dally, William},
218 | booktitle={Advances in neural information processing systems},
219 | pages={1135--1143},
220 | year={2015}
221 | }
222 | ```
223 |
224 | ```text
225 | @article{luo2017thinet,
226 | title={Thinet: A filter level pruning method for deep neural network compression},
227 | author={Luo, Jian-Hao and Wu, Jianxin and Lin, Weiyao},
228 | journal={arXiv preprint arXiv:1707.06342},
229 | year={2017}
230 | }
231 | ```
232 |
233 | ```text
234 | @inproceedings{he2017channel,
235 | title={Channel pruning for accelerating very deep neural networks},
236 | author={He, Yihui and Zhang, Xiangyu and Sun, Jian},
237 | booktitle={International Conference on Computer Vision (ICCV)},
238 | volume={2},
239 | number={6},
240 | year={2017}
241 | }
242 | ```
243 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/synxlin/nn-compression/34918a4ed2bbe44a483a6e81a740ae5fe3ffc065/__init__.py
--------------------------------------------------------------------------------
/examples/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/synxlin/nn-compression/34918a4ed2bbe44a483a6e81a740ae5fe3ffc065/examples/__init__.py
--------------------------------------------------------------------------------
/examples/channel_pruning/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/synxlin/nn-compression/34918a4ed2bbe44a483a6e81a740ae5fe3ffc065/examples/channel_pruning/__init__.py
--------------------------------------------------------------------------------
/examples/channel_pruning/prune_train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import datetime
3 | import os
4 | import shutil
5 | import time
6 |
7 | import torch
8 | import torch.nn as nn
9 | import torch.nn.parallel
10 | import torch.backends.cudnn as cudnn
11 | import torch.optim
12 | import torch.utils.data
13 | import torchvision.transforms as transforms
14 | import torchvision.datasets as datasets
15 | import torchvision.models as models
16 |
17 | from slender.utils import AverageMeter, Logger
18 | from .vgg_pruner import VGGPruner
19 |
20 | model_names = sorted(name for name in models.__dict__
21 | if name.islower() and not name.startswith("__")
22 | and name.startswith("vgg")
23 | and callable(models.__dict__[name]))
24 |
25 | parser = argparse.ArgumentParser(description='PyTorch ThiNet/Channel Pruning')
26 | parser.add_argument('data', metavar='DIR',
27 | help='path to dataset')
28 | parser.add_argument('--arch', '-a', metavar='ARCH', default='vgg16',
29 | choices=model_names,
30 | help='model architecture: ' +
31 | ' | '.join(model_names) +
32 | ' (default: vgg16)')
33 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
34 | help='number of data loading workers (default: 4)')
35 | parser.add_argument('--epochs', default=90, type=int, metavar='N',
36 | help='number of total epochs to run')
37 | parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
38 | help='manual epoch number (useful on restarts)')
39 | parser.add_argument('-b', '--batch-size', default=256, type=int,
40 | metavar='N', help='mini-batch size (default: 256)')
41 | parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
42 | metavar='LR', help='initial learning rate')
43 | parser.add_argument('--lr-decay-step', default=4, type=int, metavar='N',
44 | help='every N epochs lr decays by 0.1 (default:4)')
45 | parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
46 | help='momentum')
47 | parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
48 | metavar='W', help='weight decay (default: 1e-4)')
49 | parser.add_argument('--print-freq', '-p', default=10, type=int,
50 | metavar='N', help='print frequency (default: 10)')
51 | parser.add_argument('--resume', default='', type=str, metavar='PATH',
52 | help='path to latest checkpoint (default: none)')
53 |
54 | parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
55 | help='use pre-trained model: '
56 | 'pytorch: use pytorch official | '
57 | 'path to self-trained moel')
58 | parser.add_argument('--pretrained-parallel', dest='pretrained_parallel',
59 | action='store_true',
60 | help='self-trained model starts with torch.nn.DataParallel')
61 |
62 | parser.add_argument('--pruning-rule', default='',
63 | help='path to quantization rule file')
64 | parser.add_argument('--method', default='greedy', type=str, metavar='METHOD',
65 | help='channel selection method in ThiNet Pruning:' +
66 | ' | '.join(['greedy', 'lasso', 'random']) +
67 | ' (default: greedy)')
68 | parser.add_argument('--rb', '--reconstruction-batch-size', default=128,
69 | type=int, metavar='N', dest='rcn_batch_size',
70 | help='mini-batch size for ThiNet Pruning '
71 | 'Reconstruction (default: 128)')
72 | parser.add_argument('--rcn-gpu', dest='rcn_gpu', action='store_true',
73 | help='use gpu to perform ThiNet Weight Reconstruction')
74 |
75 | best_prec1 = 0
76 |
77 |
78 | def main():
79 | global args, best_prec1, train_log, test_log
80 | args = parser.parse_args()
81 |
82 | dir_name = args.arch + '_' + datetime.datetime.now().strftime('%m%d_%H%M')
83 | log_dir = os.path.join('logs', os.path.join('prune', dir_name))
84 | checkpoint_dir = os.path.join('checkpoints', os.path.join('prune', dir_name))
85 | os.makedirs(log_dir)
86 | os.makedirs(checkpoint_dir)
87 | train_log = Logger(os.path.join(log_dir, 'train.log'))
88 | test_log = Logger(os.path.join(log_dir, 'test.log'))
89 | config_log = Logger(os.path.join(log_dir, 'config.log'))
90 |
91 | for k, v in vars(args).items():
92 | config_log.write(content="{k} : {v}".format(k=k, v=v), wrap=True, flush=True)
93 | config_log.close()
94 |
95 | # create model
96 | print("=" * 89)
97 | print("=> creating model '{}'".format(args.arch))
98 |
99 | if args.resume:
100 | if os.path.isfile(args.resume):
101 | print("=> loading checkpoint '{}'".format(args.resume))
102 | checkpoint = torch.load(args.resume)
103 | args.start_epoch = checkpoint['epoch']
104 | best_prec1 = checkpoint['best_prec1']
105 |
106 | vgg_cfg, batch_norm = checkpoint['cfg']
107 | from torchvision.models.vgg import VGG, make_layers
108 | model = VGG(make_layers(cfg=vgg_cfg, batch_norm=batch_norm), init_weights=False)
109 | model.features = torch.nn.DataParallel(model.features)
110 | model.cuda()
111 | model.load_state_dict(checkpoint['state_dict'])
112 |
113 | optimizer = torch.optim.SGD(model.parameters(), args.lr,
114 | momentum=args.momentum,
115 | weight_decay=args.weight_decay)
116 | optimizer.load_state_dict(checkpoint['optimizer'])
117 | print("=> loaded checkpoint '{}' (epoch {})"
118 | .format(args.resume, checkpoint['epoch']))
119 | else:
120 | print("=> no checkpoint found at '{}'".format(args.resume))
121 | return
122 |
123 | elif args.pretrained:
124 | if args.pretrained == 'pytorch':
125 | print("=> using pre-trained model from model zoo")
126 | model = models.__dict__[args.arch](pretrained=True)
127 | args.pretrained_parallel = False
128 | else:
129 | model = models.__dict__[args.arch]()
130 | if args.pretrained_parallel:
131 | model.features = torch.nn.DataParallel(model.features)
132 | model.cuda()
133 | if os.path.isfile(args.pretrained):
134 | print("=> using pre-trained model '{}'".format(args.pretrained))
135 | checkpoint = torch.load(args.pretrained)
136 | model.load_state_dict(checkpoint['state_dict'])
137 | if not args.pretrained_parallel:
138 | model.features = torch.nn.DataParallel(model.features)
139 | model.cuda()
140 | else:
141 | print("=> no checkpoint found at '{}'".format(args.pretrained))
142 | return
143 | else:
144 | model = models.__dict__[args.arch]()
145 | model.features = torch.nn.DataParallel(model.features)
146 | model.cuda()
147 |
148 | # define loss function (criterion)
149 | criterion = nn.CrossEntropyLoss().cuda()
150 |
151 | cudnn.benchmark = True
152 |
153 | # Data loading code
154 | traindir = os.path.join(args.data, 'train')
155 | valdir = os.path.join(args.data, 'val')
156 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
157 | std=[0.229, 0.224, 0.225])
158 |
159 | train_dataset = datasets.ImageFolder(
160 | traindir,
161 | transforms.Compose([
162 | transforms.RandomResizedCrop(224),
163 | transforms.RandomHorizontalFlip(),
164 | transforms.ToTensor(),
165 | normalize,
166 | ]))
167 |
168 | train_loader = torch.utils.data.DataLoader(
169 | train_dataset, batch_size=args.batch_size, shuffle=True,
170 | num_workers=args.workers, pin_memory=True)
171 |
172 | val_loader = torch.utils.data.DataLoader(
173 | datasets.ImageFolder(valdir, transforms.Compose([
174 | transforms.Resize(256),
175 | transforms.CenterCrop(224),
176 | transforms.ToTensor(),
177 | normalize,
178 | ])),
179 | batch_size=args.batch_size, shuffle=False,
180 | num_workers=args.workers, pin_memory=True)
181 |
182 | if not args.resume:
183 | rcn_loader = torch.utils.data.DataLoader(
184 | datasets.ImageFolder(valdir, transforms.Compose([
185 | transforms.Resize(256),
186 | transforms.CenterCrop(224),
187 | transforms.ToTensor(),
188 | normalize,
189 | ])),
190 | batch_size=args.rcn_batch_size, shuffle=True,
191 | num_workers=args.workers, pin_memory=True)
192 |
193 | prune(train_loader=train_loader, val_loader=val_loader, rcn_loader=rcn_loader,
194 | model=model, criterion=criterion)
195 |
196 | optimizer = torch.optim.SGD(model.parameters(), args.lr,
197 | momentum=args.momentum,
198 | weight_decay=args.weight_decay)
199 |
200 | for epoch in range(args.start_epoch, args.epochs):
201 | adjust_learning_rate(lr_decay_step=args.lr_decay_step,
202 | optimizer=optimizer, epoch=epoch)
203 |
204 | # train for one epoch
205 | train(train_loader=train_loader, model=model, criterion=criterion,
206 | optimizer=optimizer, epoch=epoch, log=True)
207 |
208 | # evaluate on validation set
209 | prec1 = validate(val_loader=val_loader, model=model,
210 | criterion=criterion, epoch=epoch, log=True)
211 |
212 | # remember best prec@1 and save checkpoint
213 | is_best = prec1 > best_prec1
214 | best_prec1 = max(prec1, best_prec1)
215 | save_checkpoint({
216 | 'epoch': epoch + 1,
217 | 'arch': args.arch,
218 | 'state_dict': model.state_dict(),
219 | 'cfg': get_vgg_cfg(model),
220 | 'best_prec1': best_prec1,
221 | 'optimizer': optimizer.state_dict(),
222 | }, is_best=is_best, checkpoint_dir=checkpoint_dir)
223 |
224 |
225 | def train(train_loader, model, criterion, optimizer, epoch, log=False):
226 | batch_time = AverageMeter()
227 | data_time = AverageMeter()
228 | losses = AverageMeter()
229 | top1 = AverageMeter()
230 | top5 = AverageMeter()
231 |
232 | # switch to train mode
233 | model.train()
234 |
235 | end = time.time()
236 | for i, (input, target) in enumerate(train_loader):
237 | # measure data loading time
238 | data_time.update(time.time() - end)
239 |
240 | target = target.cuda(non_blocking=True)
241 |
242 | # compute output
243 | output = model(input)
244 | loss = criterion(output, target)
245 |
246 | # measure accuracy and record loss
247 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
248 | losses.update(loss.item(), input.size(0))
249 | top1.update(prec1[0], input.size(0))
250 | top5.update(prec5[0], input.size(0))
251 |
252 | # compute gradient and do SGD step
253 | optimizer.zero_grad()
254 | loss.backward()
255 | optimizer.step()
256 |
257 | # measure elapsed time
258 | batch_time.update(time.time() - end)
259 | end = time.time()
260 |
261 | if i % args.print_freq == 0:
262 | print('Epoch: [{0}][{1}/{2}]\t'
263 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
264 | 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
265 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
266 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
267 | 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
268 | epoch, i, len(train_loader), batch_time=batch_time,
269 | data_time=data_time, loss=losses, top1=top1, top5=top5))
270 | print("=" * 89)
271 | print(' * Train Epoch: {epoch:3d} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
272 | .format(epoch=epoch, top1=top1, top5=top5))
273 | print("=" * 89)
274 | if log:
275 | train_log.write(content="{epoch}\t"
276 | "{top1.avg:.4e}\t"
277 | "{top5.avg:.4e}\t"
278 | "{loss.avg:.4e}"
279 | .format(epoch=epoch, top1=top1, top5=top5, loss=losses), wrap=True, flush=True)
280 |
281 |
282 | def validate(val_loader, model, criterion, epoch, log=False):
283 | batch_time = AverageMeter()
284 | losses = AverageMeter()
285 | top1 = AverageMeter()
286 | top5 = AverageMeter()
287 |
288 | # switch to evaluate mode
289 | model.eval()
290 |
291 | with torch.no_grad():
292 | end = time.time()
293 | for i, (input, target) in enumerate(val_loader):
294 | target = target.cuda(non_blocking=True)
295 |
296 | # compute output
297 | output = model(input)
298 | loss = criterion(output, target)
299 |
300 | # measure accuracy and record loss
301 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
302 | losses.update(loss.item(), input.size(0))
303 | top1.update(prec1[0], input.size(0))
304 | top5.update(prec5[0], input.size(0))
305 |
306 | # measure elapsed time
307 | batch_time.update(time.time() - end)
308 | end = time.time()
309 |
310 | if i % args.print_freq == 0:
311 | print('Test: [{0}/{1}]\t'
312 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
313 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
314 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
315 | 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
316 | i, len(val_loader), batch_time=batch_time, loss=losses,
317 | top1=top1, top5=top5))
318 |
319 | print("=" * 89)
320 | print(' * Test Epoch: {epoch:3d} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
321 | .format(epoch=epoch, top1=top1, top5=top5))
322 | print("=" * 89)
323 | if log:
324 | test_log.write(content="{epoch}\t"
325 | "{top1.avg:.4e}\t"
326 | "{top5.avg:.4e}\t"
327 | .format(epoch=epoch, top1=top1, top5=top5), wrap=True, flush=True)
328 |
329 | return top1.avg
330 |
331 |
332 | def prune(train_loader, val_loader, rcn_loader, model, criterion):
333 | print("=" * 89)
334 | origin_prec1 = validate(val_loader=val_loader, model=model, criterion=criterion, epoch=0)
335 |
336 | input_iter = iter(rcn_loader)
337 |
338 | print("=" * 89)
339 | print("start ThiNet Pruning")
340 | pruner = VGGPruner(rule=args.pruning_rule)
341 | prune_inputs = pruner.get_prune_inputs(model=model)
342 | for (module_name, module, next_module,
343 | fn_input_feature, fn_next_input_feature) in prune_inputs:
344 | input, _ = input_iter.__next__()
345 | pruner.prune_module(module_name=module_name, module=module,
346 | next_module=next_module, fn_input_feature=fn_input_feature,
347 | fn_next_input_feature=fn_next_input_feature,
348 | input=input, method=args.method, cpu=(not args.rcn_gpu),
349 | verbose=True)
350 | prec1 = validate(val_loader=val_loader, model=model, criterion=criterion, epoch=0)
351 | if prec1 > origin_prec1:
352 | continue
353 | print("=" * 89)
354 | print("Fine-tuning")
355 | print("=" * 89)
356 |
357 | optimizer = torch.optim.SGD(model.parameters(), args.lr,
358 | momentum=args.momentum,
359 | weight_decay=args.weight_decay)
360 | train(train_loader=train_loader, model=model,
361 | criterion=criterion, optimizer=optimizer, epoch=0)
362 | adjust_learning_rate(lr_decay_step=1, optimizer=optimizer, epoch=1)
363 | train(train_loader=train_loader, model=model,
364 | criterion=criterion, optimizer=optimizer, epoch=1)
365 | del optimizer
366 | validate(val_loader=val_loader, model=model,
367 | criterion=criterion, epoch=0)
368 | print("=" * 89)
369 | print("stop ThiNet Pruning")
370 |
371 |
372 | def get_vgg_cfg(model):
373 | """
374 | return config list to generate VGG instance
375 | :param model: class VGG (torch.nn.Module), model to prune
376 | :return:
377 | list, config list to generate VGG instance
378 | """
379 | assert isinstance(model, models.VGG)
380 | features = model.features
381 | if isinstance(features, torch.nn.DataParallel):
382 | features = features.module
383 |
384 | cfg = []
385 | batch_norm = False
386 | for m in features:
387 | if isinstance(m, torch.nn.modules.conv._ConvNd):
388 | cfg.append(m.out_channels)
389 | elif isinstance(m, torch.nn.modules.pooling._MaxPoolNd):
390 | cfg.append('M')
391 | elif isinstance(m, torch.nn.modules.batchnorm._BatchNorm):
392 | batch_norm = True
393 |
394 | return cfg, batch_norm
395 |
396 |
397 | def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', checkpoint_dir='.'):
398 | filename = os.path.join(checkpoint_dir, filename)
399 | torch.save(state, filename, pickle_protocol=4)
400 | if is_best:
401 | shutil.copyfile(filename, os.path.join(checkpoint_dir, 'model_best.pth.tar'))
402 |
403 |
404 | def adjust_learning_rate(lr_decay_step, optimizer, epoch):
405 | """Sets the learning rate to the initial LR decayed by 10 every lr_decay_step epochs"""
406 | lr = args.lr * (0.1 ** (epoch // lr_decay_step))
407 | for param_group in optimizer.param_groups:
408 | param_group['lr'] = lr
409 |
410 |
411 | def accuracy(output, target, topk=(1,)):
412 | """Computes the precision@k for the specified values of k"""
413 | with torch.no_grad():
414 | maxk = max(topk)
415 | batch_size = target.size(0)
416 |
417 | _, pred = output.topk(maxk, 1, True, True)
418 | pred = pred.t()
419 | correct = pred.eq(target.view(1, -1).expand_as(pred))
420 |
421 | res = []
422 | for k in topk:
423 | correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
424 | res.append(correct_k.mul_(100.0 / batch_size))
425 | return res
426 |
427 |
428 | if __name__ == '__main__':
429 | main()
430 |
--------------------------------------------------------------------------------
/examples/channel_pruning/vgg_pruner.py:
--------------------------------------------------------------------------------
1 | import re
2 | import torch
3 | from torchvision.models import VGG
4 |
5 | from slender.prune import prune_channel
6 |
7 |
8 | class VGGPruner(object):
9 |
10 | def __init__(self, rule):
11 | """
12 | Channel Pruner for VGG
13 | :param rule: str, path to the rule file, each line formats 'module_name sparsity'
14 | list of tuple, [(module_name(str), sparsity(float))]
15 | """
16 | if isinstance(rule, str):
17 | content = map(lambda x: x.split(), open(rule).readlines())
18 | content = filter(lambda x: len(x) == 2, content)
19 | rule = list(map(lambda x: (x[0], float(x[1])), content))
20 | assert isinstance(rule, list) or isinstance(rule, tuple)
21 |
22 | self.rule = rule
23 |
24 | def get_param_sparsity(self, module_name):
25 | """
26 | get sparsity based on the name of module
27 | :param module_name: str, name of the module to prune
28 | :return:
29 | float, sparsity
30 | """
31 | rule_id = -1
32 | for idx, x in enumerate(self.rule):
33 | m = re.match(x[0], module_name)
34 | if m is not None and len(module_name) == m.span()[1]:
35 | rule_id = idx
36 | break
37 | if rule_id > -1:
38 | sparsity = self.rule[rule_id][1]
39 | return sparsity
40 | else:
41 | return 1.0
42 |
43 | @staticmethod
44 | def get_prune_inputs(model):
45 | """
46 | get input args for prune() method of VGGPruner Class
47 | :param model: class VGG (torch.nn.Module), model to prune
48 | :return:
49 | list of tuple, [(module_name, module, next_module, fn_input_feature, fn_next_input_feature), ...]
50 | """
51 | assert isinstance(model, VGG)
52 | features = model.features
53 | if isinstance(features, torch.nn.DataParallel):
54 | features = features.module
55 | classifier = model.classifier
56 |
57 | module_name_dict = dict()
58 | for n, m in model.named_modules():
59 | module_name_dict[m] = n
60 |
61 | conv_indices = []
62 | conv_modules = []
63 | conv_names = []
64 | for i, m in enumerate(features):
65 | if isinstance(m, torch.nn.modules.conv._ConvNd):
66 | conv_indices.append(i)
67 | conv_modules.append(m)
68 | conv_names.append(module_name_dict[m])
69 |
70 | fc_indices = []
71 | fc_modules = []
72 | fc_names = []
73 | for i, m in enumerate(classifier):
74 | if isinstance(m, torch.nn.Linear):
75 | fc_indices.append(i)
76 | fc_modules.append(m)
77 | fc_names.append(module_name_dict[m])
78 |
79 | def get_fn_conv_input_feature(idx):
80 | def fn(x):
81 | for seq_i in range(conv_indices[idx]):
82 | x = features[seq_i](x)
83 | return x
84 | return fn
85 |
86 | def get_fn_next_input_feature(idx, module_indices, module_seq):
87 | def fn(x):
88 | for seq_i in range(module_indices[idx]+1, module_indices[idx+1]):
89 | x = module_seq[seq_i](x)
90 | return x
91 | return fn
92 |
93 | prune_modules = []
94 | prune_module_names = []
95 | prune_module_fn = []
96 | prune_module_fn_next = []
97 |
98 | for i in range(len(conv_indices) - 1):
99 | prune_modules.append(conv_modules[i])
100 | prune_module_names.append(conv_names[i])
101 | prune_module_fn.append(get_fn_conv_input_feature(i))
102 | prune_module_fn_next.append(get_fn_next_input_feature(i, conv_indices, features))
103 |
104 | prune_modules.append(conv_modules[-1])
105 | prune_module_names.append(conv_names[-1])
106 | prune_module_fn.append(get_fn_conv_input_feature(-1))
107 |
108 | def fn_next_input_feature(x):
109 | for seq_i in range(conv_indices[-1]+1, len(features)):
110 | x = features[seq_i](x)
111 | x = x.view(x.size(0), -1)
112 | return x
113 | prune_module_fn_next.append(fn_next_input_feature)
114 |
115 | def get_fn_fc_input_feature(idx):
116 | def fn(x):
117 | x = features(x)
118 | x = x.view(x.size(0), -1)
119 | for seq_i in range(fc_indices[idx]):
120 | x = classifier[seq_i](x)
121 | return x
122 | return fn
123 |
124 | for i in range(len(fc_indices) - 1):
125 | prune_modules.append(fc_modules[i])
126 | prune_module_names.append(fc_names[i])
127 | prune_module_fn.append(get_fn_fc_input_feature(i))
128 | prune_module_fn_next.append(get_fn_next_input_feature(i, fc_indices, classifier))
129 |
130 | prune_modules.append(fc_modules[-1])
131 |
132 | prune_inputs = []
133 | for i in range(len(prune_module_names)):
134 | prune_inputs.append((prune_module_names[i], prune_modules[i], prune_modules[i+1],
135 | prune_module_fn[i], prune_module_fn_next[i]))
136 |
137 | return prune_inputs
138 |
139 | def prune_module(self, module_name, module, next_module, fn_input_feature, fn_next_input_feature,
140 | input, method='greedy', cpu=True, verbose=False):
141 | """
142 |
143 | :param module_name: str, the name of the module to prune
144 | :param module: torch.nn.Module, usually _ConvNd or Linear
145 | :param next_module: torch.nn.Module, the next _ConvNd or Linear module to "module"
146 | :param fn_input_feature: function, calculate input feature of "module" from the image
147 | :param fn_next_input_feature: function, calculate input feature of "next_module"
148 | from the output feature of "module"
149 | :param input: torch.tensor, input image of VGG, (batch_size, 3, 224, 224)
150 | :param method: str
151 | 'greedy': select one contributed to the smallest next feature after another
152 | 'lasso': select pruned channels by lasso regression
153 | 'random': randomly select
154 | :param cpu: bool, whether done in cpu for larger reconstruction batch size
155 | :return:
156 | void
157 | """
158 | sparsity = self.get_param_sparsity(module_name=module_name)
159 | if verbose:
160 | print("=" * 89)
161 | print("{param_name:^30} : {spars:.3f}".format(param_name=module_name, spars=sparsity))
162 | input_feature = fn_input_feature(input)
163 | prune_channel(sparsity=sparsity, module=module, next_module=next_module,
164 | fn_next_input_feature=fn_next_input_feature,
165 | input_feature=input_feature, method=method, cpu=cpu)
166 |
--------------------------------------------------------------------------------
/examples/deep_compression/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/synxlin/nn-compression/34918a4ed2bbe44a483a6e81a740ae5fe3ffc065/examples/deep_compression/__init__.py
--------------------------------------------------------------------------------
/examples/deep_compression/decode.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import datetime
4 |
5 | import torch
6 | import torchvision.models as models
7 |
8 | from slender.coding import Codec
9 |
10 | model_names = sorted(name for name in models.__dict__
11 | if name.islower() and not name.startswith("__")
12 | and callable(models.__dict__[name]))
13 |
14 | parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
15 | parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
16 | choices=model_names,
17 | help='model architecture: ' +
18 | ' | '.join(model_names) +
19 | ' (default: resnet50)')
20 | parser.add_argument('--pretrained', dest='pretrained', default='',
21 | help='use pre-trained encoded model')
22 |
23 |
24 | def main():
25 | args = parser.parse_args()
26 |
27 | dir_name = args.arch + '_' + datetime.datetime.now().strftime('%m%d_%H%M')
28 | checkpoint_dir = os.path.join('checkpoints', os.path.join('coding', dir_name))
29 | os.makedirs(checkpoint_dir)
30 |
31 | print("=" * 89)
32 | print("=> creating model '{}'".format(args.arch))
33 |
34 | if args.arch.startswith('inception'):
35 | model = models.__dict__[args.arch](transform_input=True)
36 | else:
37 | model = models.__dict__[args.arch]()
38 |
39 | if args.pretrained:
40 | if os.path.isfile(args.pretrained):
41 | print("=> using pre-trained model '{}'".format(args.pretrained))
42 | checkpoint = torch.load(args.pretrained)
43 |
44 | model = Codec.decode(model=model, state_dict=checkpoint['state_dict'])
45 |
46 | torch.save({
47 | 'state_dict': model.state_dict(),
48 | }, os.path.join(checkpoint_dir, 'decode.pth.tar'), pickle_protocol=4)
49 | else:
50 | print("=> no checkpoint found at '{}'".format(args.pretrained))
51 | else:
52 | print("=> no checkpoint")
53 |
54 | print("=" * 89)
55 |
56 |
57 | if __name__ == '__main__':
58 | main()
59 |
--------------------------------------------------------------------------------
/examples/deep_compression/encode.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import datetime
4 |
5 | import torch
6 | import torchvision.models as models
7 |
8 | from slender.coding import Codec
9 | from slender.utils import Logger
10 |
11 | model_names = sorted(name for name in models.__dict__
12 | if name.islower() and not name.startswith("__")
13 | and callable(models.__dict__[name]))
14 |
15 | parser = argparse.ArgumentParser(description='PyTorch Encoding')
16 | parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
17 | choices=model_names,
18 | help='model architecture: ' +
19 | ' | '.join(model_names) +
20 | ' (default: resnet50)')
21 | parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
22 | help='path to self-trained moel')
23 | parser.add_argument('--pretrained-parallel', dest='pretrained_parallel',
24 | action='store_true',
25 | help='self-trained model starts with torch.nn.DataParallel')
26 | parser.add_argument('--coding-rule', default='',
27 | help='path to coding rule file')
28 |
29 |
30 | def main():
31 | args = parser.parse_args()
32 |
33 | dir_name = args.arch + '_' + datetime.datetime.now().strftime('%m%d_%H%M')
34 | log_dir = os.path.join('logs', os.path.join('coding', dir_name))
35 | checkpoint_dir = os.path.join('checkpoints', os.path.join('coding', dir_name))
36 | os.makedirs(log_dir)
37 | os.makedirs(checkpoint_dir)
38 |
39 | config_log = Logger(os.path.join(log_dir, 'config.log'))
40 |
41 | for k, v in vars(args).items():
42 | config_log.write(content="{k} : {v}".format(k=k, v=v), wrap=True, flush=True)
43 | config_log.close()
44 |
45 | print("=" * 89)
46 | print("=> creating model '{}'".format(args.arch))
47 |
48 | if args.arch.startswith('inception'):
49 | model = models.__dict__[args.arch](transform_input=True)
50 | else:
51 | model = models.__dict__[args.arch]()
52 |
53 | if args.pretrained:
54 | if args.pretrained_parallel:
55 | if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
56 | model.features = torch.nn.DataParallel(model.features).cuda()
57 | else:
58 | model = torch.nn.DataParallel(model).cuda()
59 |
60 | if os.path.isfile(args.pretrained):
61 | print("=> loading checkpoint '{}'".format(args.pretrained))
62 | checkpoint = torch.load(args.pretrained)
63 | model.load_state_dict(checkpoint['state_dict'])
64 | print("=> loaded checkpoint")
65 | else:
66 | print("=> no checkpoint found at '{}'".format(args.pretrained))
67 |
68 | if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
69 | model.features = model.features.module
70 | else:
71 | model = model.module
72 |
73 | model = model.cpu()
74 | else:
75 | if os.path.isfile(args.pretrained):
76 | print("=> using pre-trained model '{}'".format(args.pretrained))
77 | checkpoint = torch.load(args.pretrained)
78 | model.load_state_dict(checkpoint['state_dict'])
79 | else:
80 | print("=> no checkpoint found at '{}'".format(args.pretrained))
81 |
82 | codec = Codec(rule=args.coding_rule)
83 |
84 | encoded_model = codec.encode(model=model)
85 |
86 | torch.save({
87 | 'state_dict': encoded_model.state_dict(),
88 | }, os.path.join(checkpoint_dir, 'encode.pth.tar'), pickle_protocol=4)
89 |
90 | else:
91 | print("=> no checkpoint")
92 |
93 | print("=" * 89)
94 |
95 |
96 | if __name__ == '__main__':
97 | main()
98 |
--------------------------------------------------------------------------------
/examples/deep_compression/prune_train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import datetime
3 | import os
4 | import shutil
5 | import time
6 |
7 | import torch
8 | import torch.backends.cudnn as cudnn
9 | import torch.nn as nn
10 | import torch.nn.parallel
11 | import torch.optim
12 | import torch.utils.data
13 | import torchvision.datasets as datasets
14 | import torchvision.models as models
15 | import torchvision.transforms as transforms
16 |
17 | from slender.prune import VanillaPruner
18 | from slender.utils import AverageMeter, Logger
19 |
20 | model_names = sorted(name for name in models.__dict__
21 | if name.islower() and not name.startswith("__")
22 | and callable(models.__dict__[name]))
23 |
24 | parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
25 | parser.add_argument('data', metavar='DIR',
26 | help='path to dataset')
27 | parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
28 | choices=model_names,
29 | help='model architecture: ' +
30 | ' | '.join(model_names) +
31 | ' (default: resnet50)')
32 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
33 | help='number of data loading workers (default: 4)')
34 | parser.add_argument('--nGPU', type=int, default=4,
35 | help='the number of gpus for training')
36 |
37 | parser.add_argument('--epochs', default=45, type=int, metavar='N',
38 | help='number of total epochs to run')
39 | parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
40 | help='manual epoch number (useful on restarts)')
41 | parser.add_argument('-b', '--batch-size', default=256, type=int,
42 | metavar='N', help='mini-batch size (default: 256)')
43 | parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
44 | metavar='LR',
45 | help='initial learning rate (default: 0.001 |'
46 | ' for inception recommend 0.0256)')
47 | parser.add_argument('--lr-decay-step', default=15, type=int, metavar='N',
48 | help='every N epochs learning rate decays (default:15)')
49 | parser.add_argument('--lr-decay', default=0.1, type=float, metavar='LD',
50 | help='every lr-decay-step epochs learning rate decays '
51 | 'by LD (default:0.1 | for inception recommend 0.16)')
52 | parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
53 | help='momentum (default: 0.9)')
54 | parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
55 | metavar='WD', help='weight decay for sgd (default: 1e-4)')
56 | parser.add_argument('--alpha', default=0.9, type=float,
57 | metavar='ALPHA', help='alpha for RMSprop (default: 0.9)')
58 | parser.add_argument('--eps', '--epsilon', default=1.0, type=float,
59 | metavar='EPS', help='epsilon for RMSprop (default: 1.0)')
60 | parser.add_argument('--print-freq', '-p', default=10, type=int,
61 | metavar='N', help='print frequency (default: 10)')
62 |
63 | parser.add_argument('--resume', default='', type=str, metavar='PATH',
64 | help='path to latest checkpoint (default: none)')
65 | parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
66 | help='use pre-trained model: '
67 | 'pytorch: use pytorch official | '
68 | 'path to self-trained moel')
69 | parser.add_argument('--pretrained-parallel', dest='pretrained_parallel',
70 | action='store_true',
71 | help='self-trained model starts with torch.nn.DataParallel')
72 |
73 | parser.add_argument('--prune-rule', default='',
74 | help='path to prune rule file')
75 | parser.add_argument('--prune-stage', default=0, type=int, metavar='N',
76 | help='pruning stage')
77 |
78 |
79 | best_prec1 = 0
80 |
81 |
82 | def main():
83 | global args, best_prec1, train_log, test_log
84 | args = parser.parse_args()
85 |
86 | dir_name = args.arch + '_' + datetime.datetime.now().strftime('%m%d_%H%M')
87 | log_dir = os.path.join('logs', os.path.join('prune', dir_name))
88 | checkpoint_dir = os.path.join('checkpoints', os.path.join('prune', dir_name))
89 | os.makedirs(log_dir)
90 | os.makedirs(checkpoint_dir)
91 | train_log = Logger(os.path.join(log_dir, 'train.log'))
92 | test_log = Logger(os.path.join(log_dir, 'test.log'))
93 | config_log = Logger(os.path.join(log_dir, 'config.log'))
94 |
95 | for k, v in vars(args).items():
96 | config_log.write(content="{k} : {v}".format(k=k, v=v), wrap=True, flush=True)
97 | config_log.close()
98 |
99 | # create model
100 | print("=" * 89)
101 | print("=> creating model '{}'".format(args.arch))
102 |
103 | if args.pretrained == 'pytorch':
104 | print("=> using pre-trained model from model zoo")
105 | model = models.__dict__[args.arch](pretrained=True)
106 | args.pretrained_parallel = False
107 | else:
108 | if args.arch.startswith('inception'):
109 | model = models.__dict__[args.arch](transform_input=True)
110 | else:
111 | model = models.__dict__[args.arch]()
112 | if args.pretrained and not args.pretrained_parallel:
113 | if os.path.isfile(args.pretrained):
114 | print("=> using pre-trained model '{}'".format(args.pretrained))
115 | checkpoint = torch.load(args.pretrained)
116 | model.load_state_dict(checkpoint['state_dict'])
117 | else:
118 | print("=> no checkpoint found at '{}'".format(args.pretrained))
119 |
120 | if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
121 | model.features = torch.nn.DataParallel(model.features, device_ids=list(range(args.nGPU)))
122 | model.cuda()
123 | else:
124 | model = torch.nn.DataParallel(model, device_ids=list(range(args.nGPU))).cuda()
125 |
126 | if args.pretrained and args.pretrained_parallel:
127 | if os.path.isfile(args.pretrained):
128 | print("=> loading checkpoint '{}'".format(args.pretrained))
129 | checkpoint = torch.load(args.pretrained)
130 | model.load_state_dict(checkpoint['state_dict'])
131 | print("=> loaded checkpoint")
132 | else:
133 | print("=> no checkpoint found at '{}'".format(args.pretrained))
134 |
135 | # define loss function (criterion) and optimizer
136 | criterion = nn.CrossEntropyLoss().cuda()
137 |
138 | if args.arch.startswith('inception'):
139 | optimizer = torch.optim.RMSprop(model.parameters(), args.lr,
140 | alpha=args.alpha, eps=args.eps,
141 | momentum=args.momentum)
142 | else:
143 | optimizer = torch.optim.SGD(model.parameters(), args.lr,
144 | momentum=args.momentum,
145 | weight_decay=args.weight_decay)
146 |
147 | pruner = VanillaPruner(rule=args.prune_rule)
148 |
149 | # optionally resume from a checkpoint
150 | if args.resume:
151 | if os.path.isfile(args.resume):
152 | print("=> loading checkpoint '{}'".format(args.resume))
153 | checkpoint = torch.load(args.resume)
154 | args.start_epoch = checkpoint['epoch']
155 | model.load_state_dict(checkpoint['state_dict'])
156 | best_prec1 = checkpoint['best_prec1']
157 | optimizer.load_state_dict(checkpoint['optimizer'])
158 | optimizer.zero_grad()
159 | pruner.load_state_dict(checkpoint['pruner'], replace_rule=False)
160 | print("=> loaded checkpoint (epoch {:3d}, best_prec1 {:.3f})"
161 | .format(args.start_epoch, best_prec1))
162 | else:
163 | print("=> no checkpoint found at '{}'".format(args.resume))
164 |
165 | print("=" * 89)
166 |
167 | cudnn.benchmark = True
168 |
169 | # Data loading code
170 | traindir = os.path.join(args.data, 'train')
171 | valdir = os.path.join(args.data, 'val')
172 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
173 | std=[0.229, 0.224, 0.225])
174 |
175 | if args.arch.startswith('inception'):
176 | input_size = 299
177 | else:
178 | input_size = 224
179 |
180 | train_loader = torch.utils.data.DataLoader(
181 | datasets.ImageFolder(traindir, transforms.Compose([
182 | transforms.RandomSizedCrop(input_size),
183 | transforms.RandomHorizontalFlip(),
184 | transforms.ToTensor(),
185 | normalize,
186 | ])),
187 | batch_size=args.batch_size, shuffle=True,
188 | num_workers=args.workers, pin_memory=True)
189 |
190 | val_loader = torch.utils.data.DataLoader(
191 | datasets.ImageFolder(valdir, transforms.Compose([
192 | transforms.Scale(int(input_size / 0.875)),
193 | transforms.CenterCrop(input_size),
194 | transforms.ToTensor(),
195 | normalize,
196 | ])),
197 | batch_size=args.batch_size, shuffle=False,
198 | num_workers=args.workers, pin_memory=True)
199 |
200 | for epoch in range(args.start_epoch, args.epochs):
201 | if epoch == 0:
202 | pruner.prune(model=model, stage=args.prune_stage, update_masks=True)
203 | best_prec1 = validate(val_loader, model, criterion, epoch)
204 |
205 | adjust_learning_rate(optimizer, epoch=epoch)
206 |
207 | # train for one epoch
208 | train(train_loader=train_loader, model=model, criterion=criterion, optimizer=optimizer,
209 | pruner=pruner, epoch=epoch)
210 |
211 | # evaluate on validation set
212 | prec1 = validate(val_loader=val_loader, model=model, criterion=criterion, epoch=epoch)
213 |
214 | # remember best prec@1 and save checkpoint
215 | is_best = prec1 > best_prec1
216 | best_prec1 = max(prec1, best_prec1)
217 | save_checkpoint({
218 | 'epoch': epoch + 1,
219 | 'arch': args.arch,
220 | 'state_dict': model.state_dict(),
221 | 'best_prec1': best_prec1,
222 | 'optimizer': optimizer.state_dict(),
223 | 'pruner': pruner.state_dict(),
224 | }, is_best=is_best, checkpoint_dir=checkpoint_dir)
225 | if (epoch + 1) in args.prune_step:
226 | save_checkpoint({
227 | 'epoch': epoch + 1,
228 | 'arch': args.arch,
229 | 'state_dict': model.state_dict(),
230 | 'prec1': prec1,
231 | 'pruner': pruner.state_dict(),
232 | }, is_best=False, filename='stage_{}.pth.tar'.format(stage_id),
233 | checkpoint_dir=checkpoint_dir)
234 |
235 | train_log.close()
236 | test_log.close()
237 |
238 |
239 | def train(train_loader, model, criterion, optimizer, pruner, epoch):
240 | batch_time = AverageMeter()
241 | data_time = AverageMeter()
242 | losses = AverageMeter()
243 | top1 = AverageMeter()
244 | top5 = AverageMeter()
245 |
246 | # switch to train mode
247 | model.train()
248 | print("=" * 89)
249 |
250 | end = time.time()
251 | for i, (input, target) in enumerate(train_loader):
252 | # measure data loading time
253 | data_time.update(time.time() - end)
254 |
255 | target = target.cuda(non_blocking=True)
256 |
257 | # compute output
258 | if args.arch.startswith('inception'):
259 | output, aux_output = model(input)
260 | loss = criterion(output, target) + criterion(aux_output, target)
261 |
262 | else:
263 | output = model(input)
264 | loss = criterion(output, target)
265 |
266 | # measure accuracy and record loss
267 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
268 | losses.update(loss.item(), input.size(0))
269 | top1.update(prec1[0], input.size(0))
270 | top5.update(prec5[0], input.size(0))
271 |
272 | # compute gradient and do SGD step
273 | optimizer.zero_grad()
274 | loss.backward()
275 | optimizer.step()
276 |
277 | # pruning
278 | pruner.prune(model=model, stage=args.prune_stage, update_masks=False)
279 |
280 | # measure elapsed time
281 | batch_time.update(time.time() - end)
282 | end = time.time()
283 |
284 | if i % args.print_freq == 0:
285 | print("Epoch: [{0}][{1}/{2}]\t"
286 | "Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
287 | "Data {data_time.val:.3f} ({data_time.avg:.3f})\t"
288 | "Loss {loss.val:.4f} ({loss.avg:.4f})\t"
289 | "Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t"
290 | "Prec@5 {top5.val:.3f} ({top5.avg:.3f})".format(
291 | epoch, i, len(train_loader), batch_time=batch_time,
292 | data_time=data_time, loss=losses, top1=top1, top5=top5))
293 | print("=" * 89)
294 | print(' * Train Epoch: {epoch:3d} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
295 | .format(epoch=epoch, top1=top1, top5=top5))
296 | print("=" * 89)
297 | train_log.write(content="{epoch}\t"
298 | "{top1.avg:.4e}\t"
299 | "{top5.avg:.4e}\t"
300 | "{loss.avg:.4e}"
301 | .format(epoch=epoch, top1=top1, top5=top5, loss=losses), wrap=True, flush=True)
302 |
303 |
304 | def validate(val_loader, model, criterion, epoch):
305 | batch_time = AverageMeter()
306 | losses = AverageMeter()
307 | top1 = AverageMeter()
308 | top5 = AverageMeter()
309 |
310 | # switch to evaluate mode
311 | model.eval()
312 | print("=" * 89)
313 |
314 | with torch.no_grad():
315 | end = time.time()
316 | for i, (input, target) in enumerate(val_loader):
317 | target = target.cuda(non_blocking=True)
318 |
319 | # compute output
320 | output = model(input)
321 | loss = criterion(output, target)
322 |
323 | # measure accuracy and record loss
324 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
325 | losses.update(loss.item(), input.size(0))
326 | top1.update(prec1[0], input.size(0))
327 | top5.update(prec5[0], input.size(0))
328 |
329 | # measure elapsed time
330 | batch_time.update(time.time() - end)
331 | end = time.time()
332 |
333 | if i % args.print_freq == 0:
334 | print('Test: [{0}/{1}]\t'
335 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
336 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
337 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
338 | 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
339 | i, len(val_loader), batch_time=batch_time, loss=losses,
340 | top1=top1, top5=top5))
341 | print("=" * 89)
342 | print(' * Test Epoch: {epoch:3d} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
343 | .format(epoch=epoch, top1=top1, top5=top5))
344 | print("=" * 89)
345 | test_log.write(content="{epoch}\t"
346 | "{top1.avg:.4e}\t"
347 | "{top5.avg:.4e}\t"
348 | .format(epoch=epoch, top1=top1, top5=top5), wrap=True, flush=True)
349 |
350 | return top1.avg
351 |
352 |
353 | def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', checkpoint_dir='.'):
354 | filename = os.path.join(checkpoint_dir, filename)
355 | torch.save(state, filename, pickle_protocol=4)
356 | if is_best:
357 | shutil.copyfile(filename, os.path.join(checkpoint_dir, 'model_best.pth.tar'))
358 |
359 |
360 | def adjust_learning_rate(optimizer, epoch=0):
361 | """
362 | Sets the learning rate to the initial LR decayed by args.lr_decay every lr_decay_step epochs
363 | :param optimizer:
364 | :param epoch:
365 | :param stage:
366 | :return:
367 | """
368 | decay = epoch // args.lr_decay_step
369 | lr = args.lr * (args.lr_decay ** decay)
370 | print("Stage: {stage:2d} Epoch: {epoch:3d} | "
371 | "learning rate = {lr:.6f} = origin x ({lr_decay:.2f} ** {decay:2d})"
372 | .format(stage=args.prune_stage, epoch=epoch, lr=lr, lr_decay=args.lr_decay, decay=decay))
373 |
374 | for param_group in optimizer.param_groups:
375 | param_group['lr'] = lr
376 |
377 |
378 | def accuracy(output, target, topk=(1,)):
379 | """Computes the precision@k for the specified values of k"""
380 | with torch.no_grad():
381 | maxk = max(topk)
382 | batch_size = target.size(0)
383 |
384 | _, pred = output.topk(maxk, 1, True, True)
385 | pred = pred.t()
386 | correct = pred.eq(target.view(1, -1).expand_as(pred))
387 |
388 | res = []
389 | for k in topk:
390 | correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
391 | res.append(correct_k.mul_(100.0 / batch_size))
392 | return res
393 |
394 |
395 | if __name__ == '__main__':
396 | main()
397 |
--------------------------------------------------------------------------------
/examples/deep_compression/quantize_train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import datetime
3 | import os
4 | import shutil
5 | import time
6 |
7 | import torch
8 | import torch.backends.cudnn as cudnn
9 | import torch.nn as nn
10 | import torch.nn.parallel
11 | import torch.optim
12 | import torch.utils.data
13 | import torchvision.datasets as datasets
14 | import torchvision.models as models
15 | import torchvision.transforms as transforms
16 |
17 | from slender.quantize import Quantizer
18 | from slender.utils import AverageMeter, Logger
19 |
20 | model_names = sorted(name for name in models.__dict__
21 | if name.islower() and not name.startswith("__")
22 | and callable(models.__dict__[name]))
23 |
24 | parser = argparse.ArgumentParser(description='PyTorch Quantized Training')
25 | parser.add_argument('data', metavar='DIR',
26 | help='path to dataset')
27 | parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
28 | choices=model_names,
29 | help='model architecture: ' +
30 | ' | '.join(model_names) +
31 | ' (default: resnet50)')
32 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
33 | help='number of data loading workers (default: 4)')
34 | parser.add_argument('--nGPU', type=int, default=4,
35 | help='the number of gpus for training')
36 |
37 | parser.add_argument('--epochs', default=20, type=int, metavar='N',
38 | help='number of total epochs to run')
39 | parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
40 | help='manual epoch number (useful on restarts)')
41 | parser.add_argument('-b', '--batch-size', default=256, type=int,
42 | metavar='N', help='mini-batch size (default: 256)')
43 | parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
44 | metavar='LR',
45 | help='initial learning rate (default: 0.001 |'
46 | ' for inception recommend 0.0256)')
47 | parser.add_argument('--lr-decay', default=0.1, type=float, metavar='LD',
48 | help='every N1,N2,... epochs learning rate decays by LD '
49 | '(default:0.1 | for inception recommend 0.16)')
50 | parser.add_argument('--lr-decay-step', default=5, metavar='N', type=int,
51 | help='every N epochs learning rate decays (default: 5)')
52 | parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
53 | help='momentum (default: 0.9)')
54 | parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
55 | metavar='WD', help='weight decay for sgd (default: 1e-4)')
56 | parser.add_argument('--alpha', default=0.9, type=float,
57 | metavar='ALPHA', help='alpha for RMSprop (default: 0.9)')
58 | parser.add_argument('--eps', '--epsilon', default=1.0, type=float,
59 | metavar='EPS', help='epsilon for RMSprop (default: 1.0)')
60 | parser.add_argument('--print-freq', '-p', default=10, type=int,
61 | metavar='N', help='print frequency (default: 10)')
62 |
63 | parser.add_argument('--resume', default='', type=str, metavar='PATH',
64 | help='path to latest checkpoint (default: none)')
65 | parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
66 | help='use pre-trained model: '
67 | 'pytorch: use pytorch official | '
68 | 'path to self-trained moel')
69 | parser.add_argument('--pretrained-parallel', dest='pretrained_parallel',
70 | action='store_true',
71 | help='self-trained model starts with torch.nn.DataParallel')
72 |
73 | parser.add_argument('--quantize-rule', default='',
74 | help='path to quantization rule file')
75 | parser.add_argument('-z', '--not-fix-zeros', dest='not_fix_zeros',
76 | action="store_true", help='not fix zeros in quantization')
77 | parser.add_argument('-l', '--update-labels', dest='update_labels', action="store_true",
78 | help='update centers of codebook and labels per iteration')
79 | parser.add_argument('-r', '--re-quantize', dest='re_quantize', action="store_true",
80 | help='re-quantize (re-kmeans) per iteration')
81 |
82 |
83 | best_prec1 = 0
84 |
85 |
86 | def main():
87 | global args, best_prec1, train_log, test_log
88 | args = parser.parse_args()
89 |
90 | dir_name = args.arch + '_' + datetime.datetime.now().strftime('%m%d_%H%M')
91 | log_dir = os.path.join('logs', os.path.join('quantize', dir_name))
92 | checkpoint_dir = os.path.join('checkpoints', os.path.join('quantize', dir_name))
93 | os.makedirs(log_dir)
94 | os.makedirs(checkpoint_dir)
95 | train_log = Logger(os.path.join(log_dir, 'train.log'))
96 | test_log = Logger(os.path.join(log_dir, 'test.log'))
97 | config_log = Logger(os.path.join(log_dir, 'config.log'))
98 |
99 | for k, v in vars(args).items():
100 | config_log.write(content="{k} : {v}".format(k=k, v=v), wrap=True, flush=True)
101 | config_log.close()
102 |
103 | # create model
104 | print("=" * 89)
105 | print("=> creating model '{}'".format(args.arch))
106 |
107 | if args.pretrained == 'pytorch':
108 | print("=> using pre-trained model from pytorch model zoo")
109 | model = models.__dict__[args.arch](pretrained=True)
110 | args.pretrained_parallel = False
111 | else:
112 | if args.arch.startswith('inception'):
113 | model = models.__dict__[args.arch](transform_input=True)
114 | else:
115 | model = models.__dict__[args.arch]()
116 | if args.pretrained and not args.pretrained_parallel:
117 | if os.path.isfile(args.pretrained):
118 | print("=> using pre-trained model '{}'".format(args.pretrained))
119 | checkpoint = torch.load(args.pretrained)
120 | model.load_state_dict(checkpoint['state_dict'])
121 | else:
122 | print("=> no checkpoint found at '{}'".format(args.pretrained))
123 |
124 | if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
125 | model.features = torch.nn.DataParallel(model.features, device_ids=list(range(args.nGPU)))
126 | model.cuda()
127 | else:
128 | model = torch.nn.DataParallel(model, device_ids=list(range(args.nGPU))).cuda()
129 |
130 | if args.pretrained and args.pretrained_parallel:
131 | if os.path.isfile(args.pretrained):
132 | print("=> loading checkpoint '{}'".format(args.pretrained))
133 | checkpoint = torch.load(args.pretrained)
134 | model.load_state_dict(checkpoint['state_dict'])
135 | print("=> loaded checkpoint")
136 | else:
137 | print("=> no checkpoint found at '{}'".format(args.pretrained))
138 |
139 | # define loss function (criterion) and optimizer
140 | criterion = nn.CrossEntropyLoss().cuda()
141 |
142 | if args.arch.startswith('inception'):
143 | optimizer = torch.optim.RMSprop(model.parameters(), args.lr,
144 | alpha=args.alpha, eps=args.eps,
145 | momentum=args.momentum)
146 | else:
147 | optimizer = torch.optim.SGD(model.parameters(), args.lr,
148 | momentum=args.momentum,
149 | weight_decay=args.weight_decay)
150 |
151 | # quantize
152 | quantizer = Quantizer(rule=args.quantize_rule, fix_zeros=(not args.not_fix_zeros))
153 |
154 | # optionally resume from a checkpoint
155 | if args.resume:
156 | if os.path.isfile(args.resume):
157 | print("=> loading checkpoint '{}'".format(args.resume))
158 | checkpoint = torch.load(args.resume)
159 | args.start_epoch = checkpoint['epoch']
160 | model.load_state_dict(checkpoint['state_dict'])
161 | best_prec1 = checkpoint['best_prec1']
162 | optimizer.load_state_dict(checkpoint['optimizer'])
163 | optimizer.zero_grad()
164 | quantizer.load_state_dict(checkpoint['quantizer'])
165 | print("=> loaded checkpoint (epoch {:3d}, best_prec1 {:.3f})"
166 | .format(args.start_epoch, best_prec1))
167 | else:
168 | print("=> no checkpoint found at '{}'".format(args.resume))
169 |
170 | cudnn.benchmark = True
171 |
172 | # Data loading code
173 | traindir = os.path.join(args.data, 'train')
174 | valdir = os.path.join(args.data, 'val')
175 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
176 | std=[0.229, 0.224, 0.225])
177 |
178 | if args.arch.startswith('inception'):
179 | input_size = 299
180 | else:
181 | input_size = 224
182 |
183 | train_loader = torch.utils.data.DataLoader(
184 | datasets.ImageFolder(traindir, transforms.Compose([
185 | transforms.RandomSizedCrop(input_size),
186 | transforms.RandomHorizontalFlip(),
187 | transforms.ToTensor(),
188 | normalize,
189 | ])),
190 | batch_size=args.batch_size, shuffle=True,
191 | num_workers=args.workers, pin_memory=True)
192 |
193 | val_loader = torch.utils.data.DataLoader(
194 | datasets.ImageFolder(valdir, transforms.Compose([
195 | transforms.Scale(int(input_size / 0.875)),
196 | transforms.CenterCrop(input_size),
197 | transforms.ToTensor(),
198 | normalize,
199 | ])),
200 | batch_size=args.batch_size, shuffle=False,
201 | num_workers=args.workers, pin_memory=True)
202 |
203 | for epoch in range(args.start_epoch, args.epochs):
204 | adjust_learning_rate(optimizer, epoch)
205 |
206 | # train for one epoch
207 | train(train_loader=train_loader, model=model, criterion=criterion, optimizer=optimizer,
208 | quantizer=quantizer, epoch=epoch)
209 |
210 | # evaluate on validation set
211 | prec1 = validate(val_loader, model, criterion, epoch)
212 |
213 | # remember best prec@1 and save checkpoint
214 | is_best = prec1 > best_prec1
215 | best_prec1 = max(prec1, best_prec1)
216 | save_checkpoint({
217 | 'epoch': epoch + 1,
218 | 'arch': args.arch,
219 | 'state_dict': model.state_dict(),
220 | 'best_prec1': best_prec1,
221 | 'optimizer': optimizer.state_dict(),
222 | 'quantizer': quantizer.state_dict(),
223 | }, is_best=is_best, checkpoint_dir=checkpoint_dir)
224 |
225 | train_log.close()
226 | test_log.close()
227 |
228 |
229 | def train(train_loader, model, criterion, optimizer, quantizer, epoch):
230 | batch_time = AverageMeter()
231 | data_time = AverageMeter()
232 | losses = AverageMeter()
233 | top1 = AverageMeter()
234 | top5 = AverageMeter()
235 |
236 | # switch to train mode
237 | model.train()
238 | print("=" * 89)
239 |
240 | end = time.time()
241 | for i, (input, target) in enumerate(train_loader):
242 | # measure data loading time
243 | data_time.update(time.time() - end)
244 |
245 | target = target.cuda(non_blocking=True)
246 |
247 | # compute output
248 | if args.arch.startswith('inception'):
249 | output, aux_output = model(input)
250 | loss = criterion(output, target) + criterion(aux_output, target)
251 |
252 | else:
253 | output = model(input)
254 | loss = criterion(output, target)
255 |
256 | # measure accuracy and record loss
257 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
258 | losses.update(loss.item(), input.size(0))
259 | top1.update(prec1[0], input.size(0))
260 | top5.update(prec5[0], input.size(0))
261 |
262 | # compute gradient and do SGD step
263 | optimizer.zero_grad()
264 | loss.backward()
265 | optimizer.step()
266 |
267 | # quantize
268 | quantizer.quantize(model=model, update_labels=args.update_labels, re_quantize=args.re_quantize)
269 |
270 | # measure elapsed time
271 | batch_time.update(time.time() - end)
272 | end = time.time()
273 |
274 | if i % args.print_freq == 0:
275 | print('Epoch: [{0}][{1}/{2}]\t'
276 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
277 | 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
278 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
279 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
280 | 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
281 | epoch, i, len(train_loader), batch_time=batch_time,
282 | data_time=data_time, loss=losses, top1=top1, top5=top5))
283 | print("=" * 89)
284 | print(' * Train Epoch: {epoch:3d} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
285 | .format(epoch=epoch, top1=top1, top5=top5))
286 | print("=" * 89)
287 | train_log.write(content="{epoch}\t"
288 | "{top1.avg:.4e}\t"
289 | "{top5.avg:.4e}\t"
290 | "{loss.avg:.4e}"
291 | .format(epoch=epoch, top1=top1, top5=top5, loss=losses), wrap=True, flush=True)
292 |
293 |
294 | def validate(val_loader, model, criterion, epoch):
295 | batch_time = AverageMeter()
296 | losses = AverageMeter()
297 | top1 = AverageMeter()
298 | top5 = AverageMeter()
299 |
300 | # switch to evaluate mode
301 | model.eval()
302 | print("=" * 89)
303 |
304 | end = time.time()
305 | for i, (input, target) in enumerate(val_loader):
306 | target = target.cuda(non_blocking=True)
307 |
308 | # compute output
309 | output = model(input)
310 | loss = criterion(output, target)
311 |
312 | # measure accuracy and record loss
313 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
314 | losses.update(loss.item(), input.size(0))
315 | top1.update(prec1[0], input.size(0))
316 | top5.update(prec5[0], input.size(0))
317 |
318 | # measure elapsed time
319 | batch_time.update(time.time() - end)
320 | end = time.time()
321 |
322 | if i % args.print_freq == 0:
323 | print('Test: [{0}/{1}]\t'
324 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
325 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
326 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
327 | 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
328 | i, len(val_loader), batch_time=batch_time, loss=losses,
329 | top1=top1, top5=top5))
330 |
331 | print("=" * 89)
332 | print(' * Test Epoch: {epoch:3d} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
333 | .format(epoch=epoch, top1=top1, top5=top5))
334 | print("=" * 89)
335 | test_log.write(content="{epoch}\t"
336 | "{top1.avg:.4e}\t"
337 | "{top5.avg:.4e}\t"
338 | .format(epoch=epoch, top1=top1, top5=top5), wrap=True, flush=True)
339 |
340 | return top1.avg
341 |
342 |
343 | def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', checkpoint_dir='.'):
344 | filename = os.path.join(checkpoint_dir, filename)
345 | torch.save(state, filename, pickle_protocol=4)
346 | if is_best:
347 | shutil.copyfile(filename, os.path.join(checkpoint_dir, 'model_best.pth.tar'))
348 |
349 |
350 | def adjust_learning_rate(optimizer, epoch):
351 | """
352 | Sets the learning rate to the initial LR decayed by args.lr_decay every lr_decay_step epochs
353 | :param optimizer:
354 | :param epoch:
355 | :return:
356 | """
357 | decay = epoch // args.lr_decay_step
358 | lr = args.lr * (args.lr_decay ** decay)
359 | print("Epoch: {epoch:3d} | learning rate = {lr:.6f} = origin x ({lr_decay:.2f} ** {decay:2d})"
360 | .format(epoch=epoch, lr=lr, lr_decay=args.lr_decay, decay=decay))
361 | for param_group in optimizer.param_groups:
362 | param_group['lr'] = lr
363 |
364 |
365 | def accuracy(output, target, topk=(1,)):
366 | """Computes the precision@k for the specified values of k"""
367 | with torch.no_grad():
368 | maxk = max(topk)
369 | batch_size = target.size(0)
370 |
371 | _, pred = output.topk(maxk, 1, True, True)
372 | pred = pred.t()
373 | correct = pred.eq(target.view(1, -1).expand_as(pred))
374 |
375 | res = []
376 | for k in topk:
377 | correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
378 | res.append(correct_k.mul_(100.0 / batch_size))
379 | return res
380 |
381 |
382 | if __name__ == '__main__':
383 | main()
384 |
--------------------------------------------------------------------------------
/examples/deep_compression/rules/inception_v3/coding.rule:
--------------------------------------------------------------------------------
1 | Conv2d_1a_3x3.conv.weight huffman 0 0 4
2 | Conv2d_2a_3x3.conv.weight huffman 0 0 4
3 | Conv2d_2b_3x3.conv.weight huffman 0 0 4
4 | Conv2d_3b_1x1.conv.weight huffman 0 0 4
5 | Conv2d_4a_3x3.conv.weight huffman 0 0 4
6 | Mixed_5b.branch1x1.conv.weight huffman 0 0 4
7 | Mixed_5b.branch5x5_1.conv.weight huffman 0 0 4
8 | Mixed_5b.branch5x5_2.conv.weight huffman 0 0 4
9 | Mixed_5b.branch3x3dbl_1.conv.weight huffman 0 0 4
10 | Mixed_5b.branch3x3dbl_2.conv.weight huffman 0 0 4
11 | Mixed_5b.branch3x3dbl_3.conv.weight huffman 0 0 4
12 | Mixed_5b.branch_pool.conv.weight huffman 0 0 4
13 | Mixed_5c.branch1x1.conv.weight huffman 0 0 4
14 | Mixed_5c.branch5x5_1.conv.weight huffman 0 0 4
15 | Mixed_5c.branch5x5_2.conv.weight huffman 0 0 4
16 | Mixed_5c.branch3x3dbl_1.conv.weight huffman 0 0 4
17 | Mixed_5c.branch3x3dbl_2.conv.weight huffman 0 0 4
18 | Mixed_5c.branch3x3dbl_3.conv.weight huffman 0 0 4
19 | Mixed_5c.branch_pool.conv.weight huffman 0 0 4
20 | Mixed_5d.branch1x1.conv.weight huffman 0 0 4
21 | Mixed_5d.branch5x5_1.conv.weight huffman 0 0 4
22 | Mixed_5d.branch5x5_2.conv.weight huffman 0 0 4
23 | Mixed_5d.branch3x3dbl_1.conv.weight huffman 0 0 4
24 | Mixed_5d.branch3x3dbl_2.conv.weight huffman 0 0 4
25 | Mixed_5d.branch3x3dbl_3.conv.weight huffman 0 0 4
26 | Mixed_5d.branch_pool.conv.weight huffman 0 0 4
27 | Mixed_6a.branch3x3.conv.weight huffman 0 0 4
28 | Mixed_6a.branch3x3dbl_1.conv.weight huffman 0 0 4
29 | Mixed_6a.branch3x3dbl_2.conv.weight huffman 0 0 4
30 | Mixed_6a.branch3x3dbl_3.conv.weight huffman 0 0 4
31 | Mixed_6b.branch1x1.conv.weight huffman 0 0 4
32 | Mixed_6b.branch7x7_1.conv.weight huffman 0 0 4
33 | Mixed_6b.branch7x7_2.conv.weight huffman 0 0 4
34 | Mixed_6b.branch7x7_3.conv.weight huffman 0 0 4
35 | Mixed_6b.branch7x7dbl_1.conv.weight huffman 0 0 4
36 | Mixed_6b.branch7x7dbl_2.conv.weight huffman 0 0 4
37 | Mixed_6b.branch7x7dbl_3.conv.weight huffman 0 0 4
38 | Mixed_6b.branch7x7dbl_4.conv.weight huffman 0 0 4
39 | Mixed_6b.branch7x7dbl_5.conv.weight huffman 0 0 4
40 | Mixed_6b.branch_pool.conv.weight huffman 0 0 4
41 | Mixed_6c.branch1x1.conv.weight huffman 0 0 4
42 | Mixed_6c.branch7x7_1.conv.weight huffman 0 0 4
43 | Mixed_6c.branch7x7_2.conv.weight huffman 0 0 4
44 | Mixed_6c.branch7x7_3.conv.weight huffman 0 0 4
45 | Mixed_6c.branch7x7dbl_1.conv.weight huffman 0 0 4
46 | Mixed_6c.branch7x7dbl_2.conv.weight huffman 0 0 4
47 | Mixed_6c.branch7x7dbl_3.conv.weight huffman 0 0 4
48 | Mixed_6c.branch7x7dbl_4.conv.weight huffman 0 0 4
49 | Mixed_6c.branch7x7dbl_5.conv.weight huffman 0 0 4
50 | Mixed_6c.branch_pool.conv.weight huffman 0 0 4
51 | Mixed_6d.branch1x1.conv.weight huffman 0 0 4
52 | Mixed_6d.branch7x7_1.conv.weight huffman 0 0 4
53 | Mixed_6d.branch7x7_2.conv.weight huffman 0 0 4
54 | Mixed_6d.branch7x7_3.conv.weight huffman 0 0 4
55 | Mixed_6d.branch7x7dbl_1.conv.weight huffman 0 0 4
56 | Mixed_6d.branch7x7dbl_2.conv.weight huffman 0 0 4
57 | Mixed_6d.branch7x7dbl_3.conv.weight huffman 0 0 4
58 | Mixed_6d.branch7x7dbl_4.conv.weight huffman 0 0 4
59 | Mixed_6d.branch7x7dbl_5.conv.weight huffman 0 0 4
60 | Mixed_6d.branch_pool.conv.weight huffman 0 0 4
61 | Mixed_6e.branch1x1.conv.weight huffman 0 0 4
62 | Mixed_6e.branch7x7_1.conv.weight huffman 0 0 4
63 | Mixed_6e.branch7x7_2.conv.weight huffman 0 0 4
64 | Mixed_6e.branch7x7_3.conv.weight huffman 0 0 4
65 | Mixed_6e.branch7x7dbl_1.conv.weight huffman 0 0 4
66 | Mixed_6e.branch7x7dbl_2.conv.weight huffman 0 0 4
67 | Mixed_6e.branch7x7dbl_3.conv.weight huffman 0 0 4
68 | Mixed_6e.branch7x7dbl_4.conv.weight huffman 0 0 4
69 | Mixed_6e.branch7x7dbl_5.conv.weight huffman 0 0 4
70 | Mixed_6e.branch_pool.conv.weight huffman 0 0 4
71 | Mixed_7a.branch3x3_1.conv.weight huffman 0 0 4
72 | Mixed_7a.branch3x3_2.conv.weight huffman 0 0 4
73 | Mixed_7a.branch7x7x3_1.conv.weight huffman 0 0 4
74 | Mixed_7a.branch7x7x3_2.conv.weight huffman 0 0 4
75 | Mixed_7a.branch7x7x3_3.conv.weight huffman 0 0 4
76 | Mixed_7a.branch7x7x3_4.conv.weight huffman 0 0 4
77 | Mixed_7b.branch1x1.conv.weight huffman 0 0 4
78 | Mixed_7b.branch3x3_1.conv.weight huffman 0 0 4
79 | Mixed_7b.branch3x3_2a.conv.weight huffman 0 0 4
80 | Mixed_7b.branch3x3_2b.conv.weight huffman 0 0 4
81 | Mixed_7b.branch3x3dbl_1.conv.weight huffman 0 0 4
82 | Mixed_7b.branch3x3dbl_2.conv.weight huffman 0 0 4
83 | Mixed_7b.branch3x3dbl_3a.conv.weight huffman 0 0 4
84 | Mixed_7b.branch3x3dbl_3b.conv.weight huffman 0 0 4
85 | Mixed_7b.branch_pool.conv.weight huffman 0 0 4
86 | Mixed_7c.branch1x1.conv.weight huffman 0 0 4
87 | Mixed_7c.branch3x3_1.conv.weight huffman 0 0 4
88 | Mixed_7c.branch3x3_2a.conv.weight huffman 0 0 4
89 | Mixed_7c.branch3x3_2b.conv.weight huffman 0 0 4
90 | Mixed_7c.branch3x3dbl_1.conv.weight huffman 0 0 4
91 | Mixed_7c.branch3x3dbl_2.conv.weight huffman 0 0 4
92 | Mixed_7c.branch3x3dbl_3a.conv.weight huffman 0 0 4
93 | Mixed_7c.branch3x3dbl_3b.conv.weight huffman 0 0 4
94 | Mixed_7c.branch_pool.conv.weight huffman 0 0 4
95 | fc.weight huffman 0 0 4
96 |
--------------------------------------------------------------------------------
/examples/deep_compression/rules/inception_v3/prune_autogenerate.rule:
--------------------------------------------------------------------------------
1 | module.Conv2d_1a_3x3.conv.weight element 0.4,0.6
2 | module.Conv2d_2a_3x3.conv.weight element 0.3,0.4
3 | module.Conv2d_2b_3x3.conv.weight element 0.2,0.5
4 | module.Conv2d_3b_1x1.conv.weight element 0.2,0.4
5 | module.Conv2d_4a_3x3.conv.weight element 0.3,0.5
6 | module.Mixed_5b.branch1x1.conv.weight element 0.2,0.4
7 | module.Mixed_5b.branch5x5_1.conv.weight element 0.5,0.7
8 | module.Mixed_5b.branch5x5_2.conv.weight element 0.6,0.8
9 | module.Mixed_5b.branch3x3dbl_1.conv.weight element 0.5,0.7
10 | module.Mixed_5b.branch3x3dbl_2.conv.weight element 0.6,0.7
11 | module.Mixed_5b.branch3x3dbl_3.conv.weight element 0.7,0.8
12 | module.Mixed_5b.branch_pool.conv.weight element 0.4,0.6
13 | module.Mixed_5c.branch1x1.conv.weight element 0.3,0.5
14 | module.Mixed_5c.branch5x5_1.conv.weight element 0.5,0.9
15 | module.Mixed_5c.branch5x5_2.conv.weight element 0.7,0.8
16 | module.Mixed_5c.branch3x3dbl_1.conv.weight element 0.5,0.8
17 | module.Mixed_5c.branch3x3dbl_2.conv.weight element 0.7,0.8
18 | module.Mixed_5c.branch3x3dbl_3.conv.weight element 0.7,0.8
19 | module.Mixed_5c.branch_pool.conv.weight element 0.4,0.7
20 | module.Mixed_5d.branch1x1.conv.weight element 0.4,0.6
21 | module.Mixed_5d.branch5x5_1.conv.weight element 0.6,0.8
22 | module.Mixed_5d.branch5x5_2.conv.weight element 0.7,0.8
23 | module.Mixed_5d.branch3x3dbl_1.conv.weight element 0.7,0.9
24 | module.Mixed_5d.branch3x3dbl_2.conv.weight element 0.6,0.7
25 | module.Mixed_5d.branch3x3dbl_3.conv.weight element 0.7,0.8
26 | module.Mixed_5d.branch_pool.conv.weight element 0.5,0.7
27 | module.Mixed_6a.branch3x3.conv.weight element 0.6,0.8
28 | module.Mixed_6a.branch3x3dbl_1.conv.weight element 0.6,0.9
29 | module.Mixed_6a.branch3x3dbl_2.conv.weight element 0.7,0.8
30 | module.Mixed_6a.branch3x3dbl_3.conv.weight element 0.8,0.9
31 | module.Mixed_6b.branch1x1.conv.weight element 0.4,0.5
32 | module.Mixed_6b.branch7x7_1.conv.weight element 0.6,0.8
33 | module.Mixed_6b.branch7x7_2.conv.weight element 0.8,0.9
34 | module.Mixed_6b.branch7x7_3.conv.weight element 0.7,0.8
35 | module.Mixed_6b.branch7x7dbl_1.conv.weight element 0.6,0.8
36 | module.Mixed_6b.branch7x7dbl_2.conv.weight element 0.8,0.9
37 | module.Mixed_6b.branch7x7dbl_3.conv.weight element 0.7,0.8
38 | module.Mixed_6b.branch7x7dbl_4.conv.weight element 0.8,0.9
39 | module.Mixed_6b.branch7x7dbl_5.conv.weight element 0.7,0.9
40 | module.Mixed_6b.branch_pool.conv.weight element 0.5,0.6
41 | module.Mixed_6c.branch1x1.conv.weight element 0.4,0.8
42 | module.Mixed_6c.branch7x7_1.conv.weight element 0.7,0.9
43 | module.Mixed_6c.branch7x7_2.conv.weight element 0.8,0.9
44 | module.Mixed_6c.branch7x7_3.conv.weight element 0.7,0.9
45 | module.Mixed_6c.branch7x7dbl_1.conv.weight element 0.8,0.9
46 | module.Mixed_6c.branch7x7dbl_2.conv.weight element 0.8,0.9
47 | module.Mixed_6c.branch7x7dbl_3.conv.weight element 0.8,0.9
48 | module.Mixed_6c.branch7x7dbl_4.conv.weight element 0.8,0.9
49 | module.Mixed_6c.branch7x7dbl_5.conv.weight element 0.8,0.9
50 | module.Mixed_6c.branch_pool.conv.weight element 0.5,0.7
51 | module.Mixed_6d.branch1x1.conv.weight element 0.5,0.7
52 | module.Mixed_6d.branch7x7_1.conv.weight element 0.7,0.8
53 | module.Mixed_6d.branch7x7_2.conv.weight element 0.8,0.9
54 | module.Mixed_6d.branch7x7_3.conv.weight element 0.7,0.9
55 | module.Mixed_6d.branch7x7dbl_1.conv.weight element 0.6,0.8
56 | module.Mixed_6d.branch7x7dbl_2.conv.weight element 0.7,0.9
57 | module.Mixed_6d.branch7x7dbl_3.conv.weight element 0.7,0.8
58 | module.Mixed_6d.branch7x7dbl_4.conv.weight element 0.6,0.8
59 | module.Mixed_6d.branch7x7dbl_5.conv.weight element 0.6,0.8
60 | module.Mixed_6d.branch_pool.conv.weight element 0.5,0.7
61 | module.Mixed_6e.branch1x1.conv.weight element 0.5,0.8
62 | module.Mixed_6e.branch7x7_1.conv.weight element 0.5,0.8
63 | module.Mixed_6e.branch7x7_2.conv.weight element 0.7,0.9
64 | module.Mixed_6e.branch7x7_3.conv.weight element 0.6,0.8
65 | module.Mixed_6e.branch7x7dbl_1.conv.weight element 0.6,0.8
66 | module.Mixed_6e.branch7x7dbl_2.conv.weight element 0.6,0.8
67 | module.Mixed_6e.branch7x7dbl_3.conv.weight element 0.6,0.8
68 | module.Mixed_6e.branch7x7dbl_4.conv.weight element 0.6,0.8
69 | module.Mixed_6e.branch7x7dbl_5.conv.weight element 0.6,0.7
70 | module.Mixed_6e.branch_pool.conv.weight element 0.5,0.7
71 | module.Mixed_7a.branch3x3_1.conv.weight element 0.5,0.8
72 | module.Mixed_7a.branch3x3_2.conv.weight element 0.7,0.8
73 | module.Mixed_7a.branch7x7x3_1.conv.weight element 0.6,0.8
74 | module.Mixed_7a.branch7x7x3_2.conv.weight element 0.7,0.9
75 | module.Mixed_7a.branch7x7x3_3.conv.weight element 0.7,0.9
76 | module.Mixed_7a.branch7x7x3_4.conv.weight element 0.8,0.9
77 | module.Mixed_7b.branch1x1.conv.weight element 0.6,0.8
78 | module.Mixed_7b.branch3x3_1.conv.weight element 0.6,0.7
79 | module.Mixed_7b.branch3x3_2a.conv.weight element 0.6,0.8
80 | module.Mixed_7b.branch3x3_2b.conv.weight element 0.7,0.8
81 | module.Mixed_7b.branch3x3dbl_1.conv.weight element 0.5,0.7
82 | module.Mixed_7b.branch3x3dbl_2.conv.weight element 0.6,0.7
83 | module.Mixed_7b.branch3x3dbl_3a.conv.weight element 0.5,0.7
84 | module.Mixed_7b.branch3x3dbl_3b.conv.weight element 0.5,0.7
85 | module.Mixed_7b.branch_pool.conv.weight element 0.5,0.8
86 | module.Mixed_7c.branch1x1.conv.weight element 0.9,0.9
87 | module.Mixed_7c.branch3x3_1.conv.weight element 0.5,0.7
88 | module.Mixed_7c.branch3x3_2a.conv.weight element 0.9,0.9
89 | module.Mixed_7c.branch3x3_2b.conv.weight element 0.9,0.9
90 | module.Mixed_7c.branch3x3dbl_1.conv.weight element 0.4,0.7
91 | module.Mixed_7c.branch3x3dbl_2.conv.weight element 0.7,0.8
92 | module.Mixed_7c.branch3x3dbl_3a.conv.weight element 0.6,0.8
93 | module.Mixed_7c.branch3x3dbl_3b.conv.weight element 0.6,0.8
94 | module.Mixed_7c.branch_pool.conv.weight element 0.8,0.9
95 | module.fc.weight element 0.6,0.8
96 |
--------------------------------------------------------------------------------
/examples/deep_compression/rules/inception_v3/quantize.rule:
--------------------------------------------------------------------------------
1 | module.Conv2d_1a_3x3.conv.weight k-means 6 k-means++
2 | module.Conv2d_2a_3x3.conv.weight k-means 6 k-means++
3 | module.Conv2d_2b_3x3.conv.weight k-means 6 k-means++
4 | module.Conv2d_3b_1x1.conv.weight k-means 6 k-means++
5 | module.Conv2d_4a_3x3.conv.weight k-means 6 k-means++
6 | module.Mixed_5b.branch1x1.conv.weight k-means 6 k-means++
7 | module.Mixed_5b.branch5x5_1.conv.weight k-means 4 k-means++
8 | module.Mixed_5b.branch5x5_2.conv.weight k-means 4 k-means++
9 | module.Mixed_5b.branch3x3dbl_1.conv.weight k-means 4 k-means++
10 | module.Mixed_5b.branch3x3dbl_2.conv.weight k-means 4 k-means++
11 | module.Mixed_5b.branch3x3dbl_3.conv.weight k-means 4 k-means++
12 | module.Mixed_5b.branch_pool.conv.weight k-means 6 k-means++
13 | module.Mixed_5c.branch1x1.conv.weight k-means 6 k-means++
14 | module.Mixed_5c.branch5x5_1.conv.weight k-means 4 k-means++
15 | module.Mixed_5c.branch5x5_2.conv.weight k-means 4 k-means++
16 | module.Mixed_5c.branch3x3dbl_1.conv.weight k-means 4 k-means++
17 | module.Mixed_5c.branch3x3dbl_2.conv.weight k-means 4 k-means++
18 | module.Mixed_5c.branch3x3dbl_3.conv.weight k-means 4 k-means++
19 | module.Mixed_5c.branch_pool.conv.weight k-means 4 k-means++
20 | module.Mixed_5d.branch1x1.conv.weight k-means 6 k-means++
21 | module.Mixed_5d.branch5x5_1.conv.weight k-means 4 k-means++
22 | module.Mixed_5d.branch5x5_2.conv.weight k-means 4 k-means++
23 | module.Mixed_5d.branch3x3dbl_1.conv.weight k-means 4 k-means++
24 | module.Mixed_5d.branch3x3dbl_2.conv.weight k-means 4 k-means++
25 | module.Mixed_5d.branch3x3dbl_3.conv.weight k-means 4 k-means++
26 | module.Mixed_5d.branch_pool.conv.weight k-means 4 k-means++
27 | module.Mixed_6a.branch3x3.conv.weight k-means 4 k-means++
28 | module.Mixed_6a.branch3x3dbl_1.conv.weight k-means 4 k-means++
29 | module.Mixed_6a.branch3x3dbl_2.conv.weight k-means 4 k-means++
30 | module.Mixed_6a.branch3x3dbl_3.conv.weight k-means 4 k-means++
31 | module.Mixed_6b.branch1x1.conv.weight k-means 6 k-means++
32 | module.Mixed_6b.branch7x7_1.conv.weight k-means 4 k-means++
33 | module.Mixed_6b.branch7x7_2.conv.weight k-means 4 k-means++
34 | module.Mixed_6b.branch7x7_3.conv.weight k-means 4 k-means++
35 | module.Mixed_6b.branch7x7dbl_1.conv.weight k-means 4 k-means++
36 | module.Mixed_6b.branch7x7dbl_2.conv.weight k-means 4 k-means++
37 | module.Mixed_6b.branch7x7dbl_3.conv.weight k-means 4 k-means++
38 | module.Mixed_6b.branch7x7dbl_4.conv.weight k-means 4 k-means++
39 | module.Mixed_6b.branch7x7dbl_5.conv.weight k-means 4 k-means++
40 | module.Mixed_6b.branch_pool.conv.weight k-means 6 k-means++
41 | module.Mixed_6c.branch1x1.conv.weight k-means 4 k-means++
42 | module.Mixed_6c.branch7x7_1.conv.weight k-means 4 k-means++
43 | module.Mixed_6c.branch7x7_2.conv.weight k-means 4 k-means++
44 | module.Mixed_6c.branch7x7_3.conv.weight k-means 4 k-means++
45 | module.Mixed_6c.branch7x7dbl_1.conv.weight k-means 4 k-means++
46 | module.Mixed_6c.branch7x7dbl_2.conv.weight k-means 4 k-means++
47 | module.Mixed_6c.branch7x7dbl_3.conv.weight k-means 4 k-means++
48 | module.Mixed_6c.branch7x7dbl_4.conv.weight k-means 4 k-means++
49 | module.Mixed_6c.branch7x7dbl_5.conv.weight k-means 4 k-means++
50 | module.Mixed_6c.branch_pool.conv.weight k-means 4 k-means++
51 | module.Mixed_6d.branch1x1.conv.weight k-means 4 k-means++
52 | module.Mixed_6d.branch7x7_1.conv.weight k-means 4 k-means++
53 | module.Mixed_6d.branch7x7_2.conv.weight k-means 4 k-means++
54 | module.Mixed_6d.branch7x7_3.conv.weight k-means 4 k-means++
55 | module.Mixed_6d.branch7x7dbl_1.conv.weight k-means 4 k-means++
56 | module.Mixed_6d.branch7x7dbl_2.conv.weight k-means 4 k-means++
57 | module.Mixed_6d.branch7x7dbl_3.conv.weight k-means 4 k-means++
58 | module.Mixed_6d.branch7x7dbl_4.conv.weight k-means 4 k-means++
59 | module.Mixed_6d.branch7x7dbl_5.conv.weight k-means 4 k-means++
60 | module.Mixed_6d.branch_pool.conv.weight k-means 4 k-means++
61 | module.Mixed_6e.branch1x1.conv.weight k-means 4 k-means++
62 | module.Mixed_6e.branch7x7_1.conv.weight k-means 4 k-means++
63 | module.Mixed_6e.branch7x7_2.conv.weight k-means 4 k-means++
64 | module.Mixed_6e.branch7x7_3.conv.weight k-means 4 k-means++
65 | module.Mixed_6e.branch7x7dbl_1.conv.weight k-means 4 k-means++
66 | module.Mixed_6e.branch7x7dbl_2.conv.weight k-means 4 k-means++
67 | module.Mixed_6e.branch7x7dbl_3.conv.weight k-means 4 k-means++
68 | module.Mixed_6e.branch7x7dbl_4.conv.weight k-means 4 k-means++
69 | module.Mixed_6e.branch7x7dbl_5.conv.weight k-means 4 k-means++
70 | module.Mixed_6e.branch_pool.conv.weight k-means 4 k-means++
71 | module.Mixed_7a.branch3x3_1.conv.weight k-means 4 k-means++
72 | module.Mixed_7a.branch3x3_2.conv.weight k-means 4 k-means++
73 | module.Mixed_7a.branch7x7x3_1.conv.weight k-means 4 k-means++
74 | module.Mixed_7a.branch7x7x3_2.conv.weight k-means 4 k-means++
75 | module.Mixed_7a.branch7x7x3_3.conv.weight k-means 4 k-means++
76 | module.Mixed_7a.branch7x7x3_4.conv.weight k-means 4 k-means++
77 | module.Mixed_7b.branch1x1.conv.weight k-means 4 k-means++
78 | module.Mixed_7b.branch3x3_1.conv.weight k-means 4 k-means++
79 | module.Mixed_7b.branch3x3_2a.conv.weight k-means 4 k-means++
80 | module.Mixed_7b.branch3x3_2b.conv.weight k-means 4 k-means++
81 | module.Mixed_7b.branch3x3dbl_1.conv.weight k-means 4 k-means++
82 | module.Mixed_7b.branch3x3dbl_2.conv.weight k-means 4 k-means++
83 | module.Mixed_7b.branch3x3dbl_3a.conv.weight k-means 4 k-means++
84 | module.Mixed_7b.branch3x3dbl_3b.conv.weight k-means 4 k-means++
85 | module.Mixed_7b.branch_pool.conv.weight k-means 4 k-means++
86 | module.Mixed_7c.branch1x1.conv.weight k-means 4 k-means++
87 | module.Mixed_7c.branch3x3_1.conv.weight k-means 4 k-means++
88 | module.Mixed_7c.branch3x3_2a.conv.weight k-means 4 k-means++
89 | module.Mixed_7c.branch3x3_2b.conv.weight k-means 4 k-means++
90 | module.Mixed_7c.branch3x3dbl_1.conv.weight k-means 4 k-means++
91 | module.Mixed_7c.branch3x3dbl_2.conv.weight k-means 4 k-means++
92 | module.Mixed_7c.branch3x3dbl_3a.conv.weight k-means 4 k-means++
93 | module.Mixed_7c.branch3x3dbl_3b.conv.weight k-means 4 k-means++
94 | module.Mixed_7c.branch_pool.conv.weight k-means 4 k-means++
95 | module.fc.weight k-means 4 k-means++
96 |
--------------------------------------------------------------------------------
/examples/deep_compression/rules/resnet50/coding.rule:
--------------------------------------------------------------------------------
1 | (layer[0-5\.]+)*(conv[1-3]|downsample\.0)\.weight huffman 0 0 4
2 | fc\.weight huffman 0 0 4
3 |
--------------------------------------------------------------------------------
/examples/deep_compression/rules/resnet50/prune_manual.rule:
--------------------------------------------------------------------------------
1 | module\.conv1\.weight element 0.4,0.4,0.5
2 | module\.layer[1-3]\.0\.conv1\.weight element 0.5,0.5,0.6
3 | module\.layer1\.0\.downsample\.0\.weight element 0.5,0.5,0.6
4 | module\.layer2\.0\.conv2\.weight element 0.5,0.6,0.667
5 | module\.layer4\.[0-9a-z\.]+ 0.5,0.667,0.7
6 | module\.layer[0-5\.]+conv[1-3]\.weight element 0.5,0.7
7 | module\.layer[0-4\.]+downsample\.0\.weight element 0.5,0.7
8 | module\.fc.weight element 0.5,0.75,0.8
9 |
--------------------------------------------------------------------------------
/examples/deep_compression/rules/resnet50/quantize.rule:
--------------------------------------------------------------------------------
1 | module\.layer[1-3]\.0\.conv1\.weight k-means 6 k-means++
2 | module\.layer1\.0\.downsample\.0\.weight k-means 6 k-means++
3 | module\.layer2\.0\.conv2\.weight kmeans 6 k-means++
4 | module\.layer4\.[0-9a-z\.]+ k-means 4 k-means++
5 | module\.layer[0-5\.]+conv[1-3]\.weight k-means 4 k-means++
6 | module\.layer[0-4\.]+downsample\.0\.weight k-means 4 k-means++
7 | module\.fc.weight k-means 4 k-means++
8 |
--------------------------------------------------------------------------------
/examples/deep_compression/sensitivity_scan.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import datetime
3 | import os
4 |
5 | import numpy as np
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | import torch.nn.parallel
9 | import torch.utils.data
10 | import torchvision.datasets as datasets
11 | import torchvision.models as models
12 | import torchvision.transforms as transforms
13 |
14 | from slender.prune import prune_vanilla_elementwise
15 | from slender.utils import get_sparsity, AverageMeter, Logger
16 |
17 | model_names = sorted(name for name in models.__dict__
18 | if name.islower() and not name.startswith("__")
19 | and callable(models.__dict__[name]))
20 |
21 | parser = argparse.ArgumentParser(description='PyTorch Pruning Sensitivity Scan')
22 | parser.add_argument('data', metavar='DIR',
23 | help='path to dataset')
24 | parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
25 | choices=model_names,
26 | help='model architecture: ' +
27 | ' | '.join(model_names) +
28 | ' (default: resnet50)')
29 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
30 | help='number of data loading workers (default: 4)')
31 | parser.add_argument('--nGPU', type=int, default=4,
32 | help='the number of gpus for training')
33 | parser.add_argument('-b', '--batch-size', default=256, type=int,
34 | metavar='N', help='mini-batch size (default: 256)')
35 |
36 | parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
37 | help='use pre-trained model: '
38 | 'pytorch: use pytorch official | '
39 | 'path to self-trained moel')
40 | parser.add_argument('--pretrained-parallel', dest='pretrained_parallel',
41 | action='store_true',
42 | help='self-trained model starts with torch.nn.DataParallel')
43 |
44 | parser.add_argument('--relatively-prune', dest='relatively', action='store_true',
45 | help='relatively prune')
46 |
47 |
48 | def main():
49 | global scan_log, rule_log
50 | args = parser.parse_args()
51 |
52 | dir_name = args.arch + '_' + datetime.datetime.now().strftime('%m%d_%H%M')
53 | log_dir = os.path.join('logs', os.path.join('scan', dir_name))
54 | os.makedirs(log_dir)
55 | scan_log = Logger(os.path.join(log_dir, 'scan.log'))
56 | rule_log = Logger(os.path.join(log_dir, 'recommend.rule'))
57 |
58 | # create model
59 | print("=> creating model '{}'".format(args.arch))
60 |
61 | if args.pretrained == 'pytorch':
62 | print("=> using pre-trained model from pytorch model zoo")
63 | model = models.__dict__[args.arch](pretrained=True)
64 | args.pretrained_parallel = False
65 | else:
66 | if args.arch.startswith('inception'):
67 | model = models.__dict__[args.arch](transform_input=True)
68 | else:
69 | model = models.__dict__[args.arch]()
70 | if args.pretrained and not args.pretrained_parallel:
71 | if os.path.isfile(args.pretrained):
72 | print("=> using pre-trained model '{}'".format(args.pretrained))
73 | checkpoint = torch.load(args.pretrained)
74 | model.load_state_dict(checkpoint['state_dict'])
75 | else:
76 | print("=> no checkpoint found at '{}'".format(args.pretrained))
77 |
78 | if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
79 | model.features = torch.nn.DataParallel(model.features, device_ids=list(range(args.nGPU)))
80 | model.cuda()
81 | else:
82 | model = torch.nn.DataParallel(model, device_ids=list(range(args.nGPU))).cuda()
83 |
84 | if args.pretrained and args.pretrained_parallel:
85 | if os.path.isfile(args.pretrained):
86 | print("=> loading checkpoint '{}'".format(args.pretrained))
87 | checkpoint = torch.load(args.pretrained)
88 | model.load_state_dict(checkpoint['state_dict'])
89 | print("=> loaded checkpoint")
90 | else:
91 | print("=> no checkpoint found at '{}'".format(args.pretrained))
92 |
93 | cudnn.benchmark = True
94 |
95 | # Data loading code
96 | valdir = os.path.join(args.data, 'val')
97 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
98 | std=[0.229, 0.224, 0.225])
99 |
100 | if args.arch.startswith('inception'):
101 | input_size = 299
102 | else:
103 | input_size = 224
104 |
105 | val_loader = torch.utils.data.DataLoader(
106 | datasets.ImageFolder(valdir, transforms.Compose([
107 | transforms.Scale(int(input_size / 0.875)),
108 | transforms.CenterCrop(input_size),
109 | transforms.ToTensor(),
110 | normalize,
111 | ])),
112 | batch_size=args.batch_size, shuffle=False,
113 | num_workers=args.workers, pin_memory=True)
114 |
115 | # test baseline top1 accuracy
116 | top1, _ = validate(val_loader=val_loader, model=model, sparsity=0)
117 | # sensitivity scan
118 | sensitivity_scan(model=model, val_loader=val_loader, relatively=args.relatively, top1=top1)
119 |
120 | scan_log.close()
121 | rule_log.close()
122 |
123 |
124 | def validate(val_loader, model, sparsity):
125 | top1 = AverageMeter()
126 | top5 = AverageMeter()
127 |
128 | # switch to evaluate mode
129 | model.eval()
130 |
131 | with torch.no_grad():
132 | for i, (input, target) in enumerate(val_loader):
133 | target = target.cuda(non_blocking=True)
134 |
135 | # compute output
136 | output = model(input)
137 |
138 | # measure accuracy and record loss
139 | prec1, prec5 = accuracy(output, target, topk=(1, 5))
140 | top1.update(prec1[0], input.size(0))
141 | top5.update(prec5[0], input.size(0))
142 |
143 | print(' * Sparsity: {spars:.2f} | Prec@1: {top1.avg:.3f} | Prec@5: {top5.avg:.3f}'
144 | .format(spars=sparsity, top1=top1, top5=top5))
145 |
146 | return top1.avg, top5.avg
147 |
148 |
149 | def sensitivity_scan(model, val_loader, top1, relatively=False):
150 | c1 = 100 - (100-top1) * 1.01
151 | c5 = 100 - (100-top1) * 1.05
152 | for i, (param_name, param) in enumerate(model.named_parameters()):
153 | print("{:3d} -> {param_name:^30} -> {param_shape}"
154 | .format(i, param_name=param_name, param_shape=param.size()))
155 | scan_log.write(content="@Param: {param_name:^30}".format(param_name=param_name), wrap=True)
156 | if param.dim() > 1:
157 | p1s, p5s = 1.0, 1.0
158 | scan_log.write(content="------ scanning param ------", wrap=True, verbose=True)
159 | param_clone = param.data.clone()
160 | origin_sparsity = get_sparsity(param=param_clone)
161 | for sparsity in np.arange(start=0.1, stop=1.0, step=0.1):
162 | if relatively:
163 | sparsity *= origin_sparsity
164 | prune_vanilla_elementwise(sparsity=sparsity, param=param.data)
165 | top1, top5 = validate(val_loader=val_loader, model=model, sparsity=sparsity)
166 | scan_log.write(content="{spars:.3f}\t{top1:.3f}\t{top5:.5f}"
167 | .format(spars=sparsity, top1=top1, top5=top5),
168 | wrap=True)
169 | param.data.copy_(param_clone)
170 | if top1 > c5:
171 | p5s = min(p5s, sparsity)
172 | if top1 > c1:
173 | p1s = min(p1s, sparsity)
174 | break
175 | scan_log.flush()
176 | rule_log.write("{param_name} {stage_0:.5f},{stage_1:.5f}"
177 | .format(param_name=param_name, stage_0=p1s, stage_1=p5s),
178 | wrap=True, verbose=True, flush=True)
179 | else:
180 | scan_log.write("------ skipping param ------", wrap=True, verbose=True, flush=True)
181 |
182 |
183 | def accuracy(output, target, topk=(1,)):
184 | """Computes the precision@k for the specified values of k"""
185 | with torch.no_grad():
186 | maxk = max(topk)
187 | batch_size = target.size(0)
188 |
189 | _, pred = output.topk(maxk, 1, True, True)
190 | pred = pred.t()
191 | correct = pred.eq(target.view(1, -1).expand_as(pred))
192 |
193 | res = []
194 | for k in topk:
195 | correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
196 | res.append(correct_k.mul_(100.0 / batch_size))
197 | return res
198 |
199 |
200 | if __name__ == '__main__':
201 | main()
202 |
--------------------------------------------------------------------------------
/slender/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/synxlin/nn-compression/34918a4ed2bbe44a483a6e81a740ae5fe3ffc065/slender/__init__.py
--------------------------------------------------------------------------------
/slender/coding/__init__.py:
--------------------------------------------------------------------------------
1 | from .codec import Codec
2 |
--------------------------------------------------------------------------------
/slender/coding/codec.py:
--------------------------------------------------------------------------------
1 | import re
2 | import torch
3 |
4 | from .encode import EncodedParam, EncodedModule
5 | from ..utils import AverageMeter
6 |
7 |
8 | class Codec(object):
9 | def __init__(self, rule):
10 | """
11 | Codec for coding
12 | :param rule: str, path to the rule file, each line formats
13 | 'param_name coding_method bit_length_fixed_point bit_length_fixed_point_of_integer_part
14 | bit_length_of_zero_run_length'
15 | list of tuple,
16 | [(param_name(str), coding_method(str), bit_length_fixed_point(int),
17 | bit_length_fixed_point_of_integer_part(int), bit_length_of_zero_run_length(int))]
18 | """
19 | if isinstance(rule, str):
20 | content = map(lambda x: x.split(), open(rule).readlines())
21 | content = filter(lambda x: len(x) == 5, content)
22 | rule = list(map(lambda x: (x[0], x[1], int(x[2]), int(x[3]), int(x[4])), content))
23 | assert isinstance(rule, list) or isinstance(rule, tuple)
24 | self.rule = rule
25 | self.stats = {
26 | 'compression_ratio': {
27 | 'compressed': AverageMeter(),
28 | 'total': AverageMeter()
29 | },
30 | 'memory_size': {
31 | 'codebook': AverageMeter(),
32 | 'param': AverageMeter(),
33 | 'compressed_param': AverageMeter(),
34 | 'index': AverageMeter(),
35 | 'total': AverageMeter()
36 | },
37 | 'detail': dict()
38 | }
39 |
40 | print("=" * 89)
41 | print("Initializing Huffman Codec\n"
42 | "Rules\n"
43 | "{rule}".format(rule=self.rule))
44 | print("=" * 89)
45 |
46 | def reset_stats(self):
47 | """
48 | reset stats of codec
49 | :return:
50 | void
51 | """
52 | self.stats['detail'] = dict()
53 | for _, v in self.stats['compression_ratio'].items():
54 | v.reset()
55 | for _, v in self.stats['memory_size'].items():
56 | v.reset()
57 |
58 | def encode_param(self, param, param_name):
59 | """
60 | encode the parameters based on rule
61 | :param param: torch.(cuda.)tensor, parameter
62 | :param param_name: str, name of parameter
63 | :return:
64 | EncodedParam, encoded parameter
65 | """
66 | rule_id = -1
67 | for idx, x in enumerate(self.rule):
68 | m = re.match(x[0], param_name)
69 | if m is not None and len(param_name) == m.span()[1]:
70 | rule_id = idx
71 | break
72 | if rule_id > -1:
73 | rule = self.rule[rule_id]
74 | encoded_param = EncodedParam(param, method=rule[1],
75 | bit_length=rule[2], bit_length_integer=rule[3],
76 | encode_indices=True, bit_length_zero_run_length=rule[4])
77 | return encoded_param
78 | else:
79 | return None
80 |
81 | def encode(self, model):
82 | """
83 | encode network based on rule
84 | :param model: torch.(cuda.)module, network model
85 | :return:
86 | EncodedModule, encoded model
87 | """
88 | assert isinstance(model, torch.nn.Module)
89 | self.reset_stats()
90 | encoded_params = dict()
91 | print("=" * 89)
92 | print("Start Encoding")
93 | print("=" * 89)
94 | print("{:^30} | {:<25} | {:<25} | {:<25} | {:<25} | {:<25} | {:<25} | {:<25}".
95 | format('Param Name', 'Param Density', 'Param Bit', 'Index Bit', 'Param Mem',
96 | 'Index Mem', 'Codebook Mem', 'Compression Ratio'))
97 | for param_name, param in model.named_parameters():
98 | if 'AuxLogits' in param_name:
99 | # deal with googlenet
100 | continue
101 | encoded_param = self.encode_param(param=param.data, param_name=param_name)
102 | if encoded_param is not None:
103 | # check encoded result
104 | assert torch.equal(param.data, encoded_param.data)
105 | stats = encoded_param.stats
106 | print("{param_name:^30} | {density:<25} | {bit_param:<25} | {bit_index:<25} | "
107 | "{mem_param:<25} | {mem_index:<25} | {mem_codebook:<25} | {compression_ratio:<25}"
108 | .format(param_name=param_name, density=stats['num_nz'] / stats['num_el'],
109 | bit_param=stats['bit_length']['param'], bit_index=stats['bit_length']['index'],
110 | mem_param=stats['memory_size']['param'], mem_index=stats['memory_size']['index'],
111 | mem_codebook=stats['memory_size']['codebook'],
112 | compression_ratio=stats['compression_ratio']))
113 | encoded_params[param_name] = encoded_param
114 | # statistics
115 | self.stats['compression_ratio']['compressed'].accumulate(stats['num_el'] * 32,
116 | stats['memory_size']['total'])
117 | self.stats['compression_ratio']['total'].accumulate(stats['num_el'] * 32,
118 | stats['memory_size']['total'])
119 | self.stats['memory_size']['codebook'].accumulate(stats['memory_size']['codebook'])
120 | self.stats['memory_size']['param'].accumulate(stats['memory_size']['param'])
121 | self.stats['memory_size']['index'].accumulate(stats['memory_size']['index'])
122 | self.stats['memory_size']['compressed_param'].accumulate(stats['memory_size']['param'])
123 | self.stats['detail'][param_name] = stats
124 | else:
125 | print("{:^30} | skipping".format(param_name))
126 | memory_size_param = param.data.numel() * 32
127 | self.stats['compression_ratio']['total'].accumulate(memory_size_param, memory_size_param)
128 | self.stats['memory_size']['param'].accumulate(memory_size_param)
129 | print("=" * 89)
130 | print("Stop Encoding")
131 | print("=" * 89)
132 | print("Compress Ratio | {}\n"
133 | "Overall Compress Ratio | {}\n"
134 | "Codebook Memory Size | {:.3f} KB\n"
135 | "Compressed Param Memory Size | {:.3f} KB\n"
136 | "Index Memory Size | {:.3f} KB\n"
137 | "Overall Param Memory Size | {:.3f} KB"
138 | .format(self.stats['compression_ratio']['compressed'].avg,
139 | self.stats['compression_ratio']['total'].avg,
140 | self.stats['memory_size']['codebook'].sum / 8 / 1024,
141 | self.stats['memory_size']['compressed_param'].sum / 8 / 1024,
142 | self.stats['memory_size']['index'].sum / 8 / 1024,
143 | self.stats['memory_size']['param'].sum / 8 / 1024))
144 | print("=" * 89)
145 | return EncodedModule(module=model, encoded_param=encoded_params)
146 |
147 | @staticmethod
148 | def decode(model, state_dict):
149 | """
150 | decode the network using state dict from EncodedModule
151 | :param model: torch.nn.module, network model
152 | :param state_dict: state dict from EncodedModule
153 | :return:
154 | torch.nn.module, decoded network
155 | """
156 | assert isinstance(model, torch.nn.Module)
157 | print("=" * 89)
158 | print("Start Decoding")
159 | for param_name, param in model.named_parameters():
160 | if 'AuxLogits' in param_name:
161 | # deal with googlenet
162 | state_dict[param_name] = param.data
163 | elif param_name in state_dict and isinstance(state_dict[param_name], dict):
164 | print("Decoding {}".format(param_name))
165 | encoded_param = EncodedParam()
166 | encoded_param.load_state_dict(state_dict[param_name])
167 | state_dict[param_name] = encoded_param.data
168 | model.load_state_dict(state_dict)
169 | print("Stop Decoding")
170 | print("=" * 89)
171 | return model
172 |
--------------------------------------------------------------------------------
/slender/coding/encode.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | import multiprocessing
4 | from collections import Counter
5 | from heapq import heappush, heappop, heapify
6 | from bitarray import bitarray
7 | from itertools import repeat
8 |
9 | from ..replicate import replicate
10 | from ..utils import iter_str_every
11 |
12 |
13 | def get_huffman_codebook(symb2freq):
14 | """
15 | Huffman encode the given dict mapping symbols to weights
16 | :param symb2freq: dict, {symbol: frequency}
17 | :return:
18 | dict, value(float/int) : code(bitarray)
19 | """
20 | heap = [[wt, [sym, ""]] for sym, wt in symb2freq.items()]
21 | heapify(heap)
22 | while len(heap) > 1:
23 | lo = heappop(heap)
24 | hi = heappop(heap)
25 | for pair in lo[1:]:
26 | pair[1] = '0' + pair[1]
27 | for pair in hi[1:]:
28 | pair[1] = '1' + pair[1]
29 | heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])
30 | codebook = sorted(heappop(heap)[1:], key=lambda p: (len(p[-1]), p))
31 | return dict(map(lambda x: (x[0], bitarray(x[1])), codebook))
32 |
33 |
34 | def get_vanilla_codebook(symb):
35 | codebook = dict()
36 | symb = set(symb)
37 | bit_length = int(math.ceil(math.log(len(symb), 2)))
38 | bit_format = '{:0%db}' % bit_length
39 | for i, s in enumerate(symb):
40 | codebook[s] = bitarray(bit_format.format(i))
41 | return codebook
42 |
43 |
44 | def _encode_positive_integer(args):
45 | """
46 |
47 | :param args[0]: x: int
48 | :param args[1]: bit_length: int, bit length of fixed point x,
49 | including sign bit
50 | :return:
51 | str,
52 | """
53 | bit_format = '{:0%db}' % args[1]
54 | return bit_format.format(args[0])
55 |
56 |
57 | def _encode_float(args):
58 | """
59 |
60 | :param args[0]: x: int or float
61 | :param args[1]: bit_length: int, bit length of fixed point x,
62 | including sign bit
63 | :param args[2]: bit_length_integer: int, bit length of integer part
64 | of fixed point x
65 | :return:
66 | str,
67 | """
68 | bit_format = '{:0%db}' % args[1]
69 | mul_coeff = 2 ** (args[1] - args[2] - 1)
70 | add_coeff = 2 ** args[1]
71 | return bit_format.format(int(math.floor(args[0] * mul_coeff)) + add_coeff)[-args[1]:]
72 |
73 |
74 | def _decode_positive_integer(bits):
75 | """
76 |
77 | :param bits:
78 | :return:
79 | """
80 | return int(bits, 2)
81 |
82 |
83 | def _decode_float(args):
84 | """
85 |
86 | :param args[0]: bits:
87 | :param args[1]: bit_length:
88 | :param args[2]: bit_length_integer:
89 | :return:
90 | """
91 | div_coeff = 2 ** (args[2] - args[1] + 1)
92 | max_coeff = 2 ** (args[1] - 1)
93 | sub_coeff = 2 * max_coeff
94 |
95 | num = int(args[0], 2)
96 | if num >= max_coeff:
97 | num -= sub_coeff
98 | num *= div_coeff
99 | return num
100 |
101 |
102 | class EncodedParam(object):
103 |
104 | def __init__(self, param=None, method='huffman',
105 | bit_length=8, bit_length_integer=0,
106 | encode_indices=False, bit_length_zero_run_length=4):
107 | """
108 | EncodedParam class
109 | :param param: torch.(cuda.)tensor, default=None
110 | :param method: str, coding method,
111 | choose from ['vanilla', 'fixed_point', 'huffman']
112 | :param bit_length: int, bit length of fixed point param,
113 | including sign bit, default=8
114 | :param bit_length_integer: int, bit length of integer part
115 | of fixed point param, default=0
116 | :param encode_indices: bool, whether to encode zero run length, default=False
117 | :param bit_length_zero_run_length: int, bit length of zero run length
118 | without sign bit
119 | since run length is non-negative
120 | """
121 | assert method in ['vanilla', 'fixed_point', 'huffman']
122 | if bit_length <= 0:
123 | bit_length = 0
124 | bit_length_integer = 0
125 | if method == 'fixed_point':
126 | method = 'vanilla'
127 | if bit_length_integer < 0 or method != 'fixed_point':
128 | bit_length_integer = 0
129 | self.method = method
130 | self.bit_length = bit_length
131 | self.bit_length_integer = bit_length_integer
132 | if bit_length_zero_run_length <= 0:
133 | encode_indices = False
134 | bit_length_zero_run_length = 0
135 | self.max_bit_length_zero_run_length = bit_length_zero_run_length
136 | self.encode_indices = encode_indices
137 | self.max_zero_run_length = max_zero_run_length = 2 ** bit_length_zero_run_length - 2
138 |
139 | self.bit_stream = {'param': None, 'index': None}
140 | self.codebook = None
141 |
142 | if torch.is_tensor(param):
143 | self.num_el = num_el = param.numel()
144 | self.num_nz = self.num_el
145 | self.shape = param.size()
146 | num_cpu = multiprocessing.cpu_count()
147 | if encode_indices:
148 | param = param.view(num_el)
149 | nonzero_indices = param.nonzero()
150 | self.num_nz = nonzero_indices.numel()
151 | nonzero_indices, _ = torch.sort(nonzero_indices.view(self.num_nz))
152 | nonzero_indices[1:] -= (nonzero_indices[:-1] + 1)
153 | run_length = nonzero_indices.cpu().tolist()
154 | num_chunks = 0
155 | run_length_chunks = []
156 | for rl in run_length:
157 | if rl <= max_zero_run_length:
158 | run_length_chunks.append(rl)
159 | else:
160 | left_rl = rl
161 | while left_rl > max_zero_run_length:
162 | run_length_chunks.append(max_zero_run_length + 1)
163 | left_rl -= max_zero_run_length
164 | num_chunks += 1
165 | run_length_chunks.append(left_rl)
166 | # encode indices (fixed point)
167 | # bit_format = '{:0%db}' % bit_length_zero_run_length
168 | # parallel encode
169 | pool = multiprocessing.Pool(processes=num_cpu)
170 | bit_stream_index = ''.join(pool.map(_encode_positive_integer,
171 | zip(run_length_chunks,
172 | repeat(bit_length_zero_run_length))))
173 | pool.close()
174 | self.bit_stream['index'] = bitarray(bit_stream_index)
175 | param = param[param != 0]
176 | else:
177 | self.bit_stream['index'] = bitarray()
178 | param = param.view(num_el)
179 | # get param codebook
180 | param_list = param.cpu().tolist()
181 | if self.method == 'huffman':
182 | symb2freq = Counter(param_list)
183 | self.codebook = get_huffman_codebook(symb2freq)
184 | # encode param
185 | self.bit_stream['param'] = bitarray()
186 | self.bit_stream['param'].encode(self.codebook, param_list)
187 | elif self.method == 'vanilla':
188 | symb = set(param_list)
189 | self.codebook = get_vanilla_codebook(symb)
190 | # encode param
191 | self.bit_stream['param'] = bitarray()
192 | self.bit_stream['param'].encode(self.codebook, param_list)
193 | else: # fixed point
194 | # bit_format = '{:0%db}' % self.bit_length
195 | # mul_coeff = 2 ** (self.bit_length - self.bit_length_integer - 1)
196 | # add_coeff = 2 ** self.bit_length
197 | # bit_stream = ''.join(map(lambda x: bit_format
198 | # .format(int(math.floor(x * mul_coeff)) + add_coeff)[-self.bit_length:],
199 | # param_list))
200 | # parallel encode
201 | pool = multiprocessing.Pool(processes=num_cpu)
202 | bit_stream = ''.join(pool.map(_encode_float,
203 | zip(param_list, repeat(bit_length),
204 | repeat(bit_length_integer))))
205 | pool.close()
206 | self.bit_stream['param'] = bitarray(bit_stream)
207 | else:
208 | self.num_el = 0
209 | self.num_nz = 0
210 | self.shape = None
211 |
212 | @property
213 | def memory_size(self):
214 | """
215 | memory size in bit (total bit length) after encoding
216 | :return:
217 | int, bit length after encoding
218 | """
219 | if self.codebook is None:
220 | return len(self.bit_stream['param']) + len(self.bit_stream['index'])
221 | else:
222 | return 32 * len(self.codebook) + \
223 | sum(map(lambda v: len(v), self.codebook.values())) + \
224 | len(self.bit_stream['param']) + len(self.bit_stream['index'])
225 |
226 | @property
227 | def stats(self):
228 | """
229 | stats of encoding
230 | :return:
231 | dict, containing info of memory_size of codebook/param/index, compression ratio, num_el and shape
232 | """
233 | stats = dict()
234 | stats['memory_size'] = dict()
235 | stats['bit_length'] = dict()
236 |
237 | if self.codebook is None:
238 | stats['memory_size']['codebook'] = 0
239 | stats['bit_length']['codebook'] = 0
240 | else:
241 | stats['bit_length']['codebook'] = sum(map(lambda v: len(v), self.codebook.values()))
242 | stats['memory_size']['codebook'] = 32 * len(self.codebook) + stats['bit_length']['codebook']
243 | stats['bit_length']['codebook'] /= len(self.codebook)
244 |
245 | stats['memory_size']['param'] = len(self.bit_stream['param'])
246 | stats['bit_length']['param'] = stats['memory_size']['param'] / self.num_nz
247 |
248 | stats['memory_size']['index'] = len(self.bit_stream['index'])
249 | stats['bit_length']['index'] = stats['memory_size']['index'] / self.num_nz
250 |
251 | stats['memory_size']['total'] = stats['memory_size']['codebook'] + stats['memory_size']['param'] + \
252 | stats['memory_size']['index']
253 | stats['compression_ratio'] = (32 * self.num_el) / stats['memory_size']['total']
254 |
255 | stats['num_el'] = self.num_el
256 | stats['num_nz'] = self.num_nz
257 | stats['shape'] = self.shape
258 | return stats
259 |
260 | @property
261 | def data(self):
262 | """
263 | returns decoded param
264 | :return: torch.tensor, param
265 | """
266 | if self.codebook is None:
267 | bit_stream = self.bit_stream['param'].to01()
268 | bit_length = self.bit_length
269 | bit_length_integer = self.bit_length_integer
270 |
271 | # div_coeff = 2 ** (self.bit_length_integer - bit_length + 1)
272 | # max_coeff = 2 ** (bit_length - 1)
273 | # sub_coeff = 2 * max_coeff
274 | # param_list = []
275 | # for i in range(0, len(bit_stream), bit_length):
276 | # bits = bit_stream[i:(i + bit_length)]
277 | # num = int(bits, 2)
278 | # if num >= max_coeff:
279 | # num -= sub_coeff
280 | # num *= div_coeff
281 | # param_list.append(num)
282 |
283 | pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
284 | param_list = list(pool.map(_decode_float,
285 | zip(iter_str_every(bit_stream, bit_length),
286 | repeat(bit_length), repeat(bit_length_integer))))
287 | pool.close()
288 | else:
289 | param_list = self.bit_stream['param'].decode(self.codebook)
290 |
291 | if self.encode_indices:
292 | param_nz_list = param_list
293 | bit_stream = self.bit_stream['index'].to01()
294 | param_list = []
295 | nz_idx = 0
296 | for i in range(0, len(bit_stream), self.max_bit_length_zero_run_length):
297 | bits = bit_stream[i:(i+self.max_bit_length_zero_run_length)]
298 | run_length = int(bits, 2)
299 | if run_length > self.max_zero_run_length:
300 | param_list.extend([0] * self.max_zero_run_length)
301 | else:
302 | param_list.extend([0] * run_length)
303 | param_list.append(param_nz_list[nz_idx])
304 | nz_idx += 1
305 | param_list.extend([0] * (self.num_el - len(param_list)))
306 |
307 | return torch.tensor(param_list).view(self.shape)
308 |
309 | def state_dict(self):
310 | """
311 | Returns a dictionary containing a whole state of the EncodedParam
312 | :return: dict, a dictionary containing a whole state of the EncodedParam
313 | """
314 | state_dict = dict()
315 | state_dict['method'] = self.method
316 | state_dict['bit_length'] = self.bit_length
317 | state_dict['bit_length_integer'] = self.bit_length_integer
318 | state_dict['encode_indices'] = self.encode_indices
319 | state_dict['max_bit_length_zero_run_length'] = self.max_bit_length_zero_run_length
320 | state_dict['max_zero_run_length'] = self.max_zero_run_length
321 | state_dict['num_el'] = self.num_el
322 | state_dict['num_nz'] = self.num_nz
323 | state_dict['shape'] = self.shape
324 | state_dict['bit_stream'] = self.bit_stream
325 | state_dict['codebook'] = self.codebook
326 | return state_dict
327 |
328 | def load_state_dict(self, state_dict):
329 | """
330 | Recover EncodedParam
331 | :param state_dict: dict, a dictionary containing a whole state of the EncodedParam
332 | :return: EncodedParam
333 | """
334 | for k, v in state_dict.items():
335 | self.__setattr__(k, v)
336 |
337 |
338 | class EncodedModule(object):
339 |
340 | def __init__(self, module, encoded_param):
341 | """
342 | Encoded Module class
343 | :param module: torch.nn.Module, network model or nn module
344 | :param encoded_param: dict, {param name(str): encoded parameters(dict, EncodedParam.state_dict())}
345 | """
346 | assert isinstance(module, torch.nn.Module)
347 | assert isinstance(encoded_param, dict)
348 | self.module = replicate(module)
349 | self.encoded_param = encoded_param
350 |
351 | for param_name, param in self.module.named_parameters():
352 | if 'AuxLogits' in param_name or param_name in self.encoded_param:
353 | param.data.set_()
354 |
355 | def state_dict(self):
356 | """
357 | Returns a dictionary containing a whole state of the encoded module
358 | :return: dict, a dictionary containing a whole state of the encoded module
359 | """
360 | state_dict = self.module.state_dict()
361 | for param_name, param in self.encoded_param.items():
362 | state_dict[param_name] = param.state_dict()
363 | return state_dict
364 |
--------------------------------------------------------------------------------
/slender/prune/__init__.py:
--------------------------------------------------------------------------------
1 | from .vanilla import VanillaPruner
2 | from .channel import *
3 |
--------------------------------------------------------------------------------
/slender/prune/channel.py:
--------------------------------------------------------------------------------
1 | import math
2 | import random
3 | import torch
4 | from sklearn.linear_model import Lasso
5 |
6 |
7 | num_pruned_tolerate_coeff = 1.1
8 |
9 |
10 | def channel_selection(sparsity, output_feature, fn_next_output_feature, method='greedy'):
11 | """
12 | select channel to prune with a given metric
13 | :param sparsity: float, pruning sparsity
14 | :param output_feature: torch.(cuda.)Tensor, output feature map of the layer being pruned
15 | :param fn_next_output_feature: function, function to calculate the next output feature map
16 | :param method: str
17 | 'greedy': select one contributed to the smallest next feature after another
18 | 'lasso': select pruned channels by lasso regression
19 | 'random': randomly select
20 | :return:
21 | list of int, indices of filters to be pruned
22 | """
23 | num_channel = output_feature.size(1)
24 | num_pruned = int(math.floor(num_channel * sparsity))
25 |
26 | if method == 'greedy':
27 | indices_pruned = []
28 | while len(indices_pruned) < num_pruned:
29 | min_diff = 1e10
30 | min_idx = 0
31 | for idx in range(num_channel):
32 | if idx in indices_pruned:
33 | continue
34 | indices_try = indices_pruned + [idx]
35 | output_feature_try = torch.zeros_like(output_feature)
36 | output_feature_try[:, indices_try, ...] = output_feature[:, indices_try, ...]
37 | output_feature_try = fn_next_output_feature(output_feature_try)
38 | output_feature_try_norm = output_feature_try.norm(2)
39 | if output_feature_try_norm < min_diff:
40 | min_diff = output_feature_try_norm
41 | min_idx = idx
42 | indices_pruned.append(min_idx)
43 | elif method == 'lasso':
44 | next_output_feature = fn_next_output_feature(output_feature)
45 | num_el = next_output_feature.numel()
46 | next_output_feature = next_output_feature.data.view(num_el).cpu()
47 | next_output_feature_divided = []
48 | for idx in range(num_channel):
49 | output_feature_try = torch.zeros_like(output_feature)
50 | output_feature_try[:, idx, ...] = output_feature[:, idx, ...]
51 | output_feature_try = fn_next_output_feature(output_feature_try)
52 | next_output_feature_divided.append(output_feature_try.data.view(num_el, 1))
53 | next_output_feature_divided = torch.cat(next_output_feature_divided, dim=1).cpu()
54 |
55 | alpha = 5e-5
56 | solver = Lasso(alpha=alpha, warm_start=True, selection='random')
57 |
58 | # first, try to find a alpha that provides enough pruned channels
59 | alpha_l, alpha_r = 0, alpha
60 | num_pruned_try = 0
61 | while num_pruned_try < num_pruned:
62 | alpha_r *= 2
63 | solver.alpha = alpha_r
64 | solver.fit(next_output_feature_divided, next_output_feature)
65 | num_pruned_try = sum(solver.coef_ == 0)
66 |
67 | # then, narrow down alpha to get more close to the desired number of pruned channels
68 | num_pruned_max = int(num_pruned * num_pruned_tolerate_coeff)
69 | while True:
70 | alpha = (alpha_l + alpha_r) / 2
71 | solver.alpha = alpha
72 | solver.fit(next_output_feature_divided, next_output_feature)
73 | num_pruned_try = sum(solver.coef_ == 0)
74 | if num_pruned_try > num_pruned_max:
75 | alpha_r = alpha
76 | elif num_pruned_try < num_pruned:
77 | alpha_l = alpha
78 | else:
79 | break
80 |
81 | # finally, convert lasso coeff to indices
82 | indices_pruned = solver.coef_.nonzero()[0].tolist()
83 | elif method == 'random':
84 | indices_pruned = random.sample(range(num_channel), num_pruned)
85 | else:
86 | raise NotImplementedError
87 |
88 | return indices_pruned
89 |
90 |
91 | def module_surgery(module, next_module, indices_pruned):
92 | """
93 | prune the redundant filters/channels
94 | :param module: torch.nn.module, module of the layer being pruned
95 | :param next_module: torch.nn.module, module of the next layer to the one being pruned
96 | :param indices_pruned: list of int, indices of filters/channels to be pruned
97 | :return:
98 | void
99 | """
100 | # operate module
101 | if isinstance(module, torch.nn.modules.conv._ConvNd):
102 | indices_stayed = list(set(range(module.out_channels)) - set(indices_pruned))
103 | num_channels_stayed = len(indices_stayed)
104 | module.out_channels = num_channels_stayed
105 | elif isinstance(module, torch.nn.Linear):
106 | indices_stayed = list(set(range(module.out_features)) - set(indices_pruned))
107 | num_channels_stayed = len(indices_stayed)
108 | module.out_features = num_channels_stayed
109 | else:
110 | raise NotImplementedError
111 | # operate module weight
112 | new_weight = module.weight[indices_stayed, ...].clone()
113 | del module.weight
114 | module.weight = torch.nn.Parameter(new_weight)
115 | # operate module bias
116 | if module.bias is not None:
117 | new_bias = module.bias[indices_stayed, ...].clone()
118 | del module.bias
119 | module.bias = torch.nn.Parameter(new_bias)
120 | # operate next_module
121 | if isinstance(next_module, torch.nn.modules.conv._ConvNd):
122 | next_module.in_channels = num_channels_stayed
123 | elif isinstance(next_module, torch.nn.Linear):
124 | next_module.in_features = num_channels_stayed
125 | else:
126 | raise NotImplementedError
127 | # operate next_module weight
128 | new_weight = next_module.weight[:, indices_stayed, ...].clone()
129 | del next_module.weight
130 | next_module.weight = torch.nn.Parameter(new_weight)
131 |
132 |
133 | def weight_reconstruction(next_module, next_input_feature, next_output_feature, cpu=True):
134 | """
135 | reconstruct the weight of the next layer to the one being pruned
136 | :param next_module: torch.nn.module, module of the next layer to the one being pruned
137 | :param next_input_feature: torch.(cuda.)Tensor, new input feature map of the next layer
138 | :param next_output_feature: torch.(cuda.)Tensor, original output feature map of the next layer
139 | :param cpu: bool, whether done in cpu
140 | :return:
141 | void
142 | """
143 | if next_module.bias is not None:
144 | bias_size = [1] * next_output_feature.dim()
145 | bias_size[1] = -1
146 | next_output_feature -= next_module.bias.view(bias_size)
147 | if cpu:
148 | next_input_feature = next_input_feature.cpu()
149 | if isinstance(next_module, torch.nn.modules.conv._ConvNd):
150 | unfold = torch.nn.Unfold(kernel_size=next_module.kernel_size,
151 | dilation=next_module.dilation,
152 | padding=next_module.padding,
153 | stride=next_module.stride)
154 | if not cpu:
155 | unfold = unfold.cuda()
156 | unfold.eval()
157 | next_input_feature = unfold(next_input_feature)
158 | next_input_feature = next_input_feature.transpose(1, 2)
159 | num_fields = next_input_feature.size(0) * next_input_feature.size(1)
160 | next_input_feature = next_input_feature.reshape(num_fields, -1)
161 | next_output_feature = next_output_feature.view(next_output_feature.size(0), next_output_feature.size(1), -1)
162 | next_output_feature = next_output_feature.transpose(1, 2).reshape(num_fields, -1)
163 | if cpu:
164 | next_output_feature = next_output_feature.cpu()
165 | param, _ = torch.gels(next_output_feature.data, next_input_feature.data)
166 | param = param[0:next_input_feature.size(1), :].clone().t().contiguous().view(next_output_feature.size(1), -1)
167 | if isinstance(next_module, torch.nn.modules.conv._ConvNd):
168 | param = param.view(next_module.out_channels, next_module.in_channels, *next_module.kernel_size)
169 | del next_module.weight
170 | next_module.weight = torch.nn.Parameter(param)
171 |
172 |
173 | def prune_channel(sparsity, module, next_module, fn_next_input_feature, input_feature, method='greedy', cpu=True):
174 | """
175 | channel pruning core function
176 | :param sparsity: float, pruning sparsity
177 | :param module: torch.nn.module, module of the layer being pruned
178 | :param next_module: torch.nn.module, module of the next layer to the one being pruned
179 | :param fn_next_input_feature: function, function to calculate the input feature map for next_module
180 | :param input_feature: torch.(cuda.)Tensor, input feature map of the layer being pruned
181 | :param method: str
182 | 'greedy': select one contributed to the smallest next feature after another
183 | 'lasso': pruned channels by lasso regression
184 | 'random': randomly select
185 | :param cpu: bool, whether done in cpu for larger reconstruction batch size
186 | :return:
187 | void
188 | """
189 | assert input_feature.dim() >= 2 # N x C x ...
190 | output_feature = module(input_feature)
191 | next_input_feature = fn_next_input_feature(output_feature)
192 | next_output_feature = next_module(next_input_feature)
193 |
194 | def fn_next_output_feature(feature):
195 | return next_module(fn_next_input_feature(feature))
196 |
197 | indices_pruned = channel_selection(sparsity=sparsity, output_feature=output_feature,
198 | fn_next_output_feature=fn_next_output_feature, method=method)
199 | module_surgery(module=module, next_module=next_module, indices_pruned=indices_pruned)
200 |
201 | next_input_feature = fn_next_input_feature(module(input_feature))
202 | weight_reconstruction(next_module=next_module, next_input_feature=next_input_feature,
203 | next_output_feature=next_output_feature, cpu=cpu)
204 |
--------------------------------------------------------------------------------
/slender/prune/vanilla.py:
--------------------------------------------------------------------------------
1 | import re
2 | import math
3 | import torch
4 | from collections import Iterable
5 |
6 |
7 | def prune_vanilla_elementwise(param, sparsity, fn_importance=lambda x: x.abs()):
8 | """
9 | element-wise vanilla pruning
10 | :param param: torch.(cuda.)Tensor, weight of conv/fc layer
11 | :param sparsity: float, pruning sparsity
12 | :param fn_importance: function, inputs 'param' and returns the importance of
13 | each position in 'param',
14 | default=lambda x: x.abs()
15 | :return:
16 | torch.(cuda.)ByteTensor, mask for zeros
17 | """
18 | sparsity = min(max(0.0, sparsity), 1.0)
19 | if sparsity == 1.0:
20 | return torch.zeros_like(param).byte()
21 | num_el = param.numel()
22 | importance = fn_importance(param)
23 | num_pruned = int(math.ceil(num_el * sparsity))
24 | num_stayed = num_el - num_pruned
25 | if sparsity <= 0.5:
26 | _, topk_indices = torch.topk(importance.view(num_el), k=num_pruned,
27 | dim=0, largest=False, sorted=False)
28 | mask = torch.zeros_like(param).byte()
29 | param.view(num_el).index_fill_(0, topk_indices, 0)
30 | mask.view(num_el).index_fill_(0, topk_indices, 1)
31 | else:
32 | thr = torch.min(torch.topk(importance.view(num_el), k=num_stayed,
33 | dim=0, largest=True, sorted=False)[0])
34 | mask = torch.lt(importance, thr)
35 | param.masked_fill_(mask, 0)
36 | return mask
37 |
38 |
39 | def prune_vanilla_kernelwise(param, sparsity, fn_importance=lambda x: x.norm(1, -1)):
40 | """
41 | kernel-wise vanilla pruning, the importance determined by L1 norm
42 | :param param: torch.(cuda.)Tensor, weight of conv/fc layer
43 | :param sparsity: float, pruning sparsity
44 | :param fn_importance: function, inputs 'param' as size (param.size(0) * param.size(1), -1) and
45 | returns the importance of each kernel in 'param',
46 | default=lambda x: x.norm(1, -1)
47 | :return:
48 | torch.(cuda.)ByteTensor, mask for zeros
49 | """
50 | assert param.dim() >= 3
51 | sparsity = min(max(0.0, sparsity), 1.0)
52 | if sparsity == 1.0:
53 | return torch.zeros_like(param).byte()
54 | num_kernels = param.size(0) * param.size(1)
55 | param_k = param.view(num_kernels, -1)
56 | param_importance = fn_importance(param_k)
57 | num_pruned = int(math.ceil(num_kernels * sparsity))
58 | _, topk_indices = torch.topk(param_importance, k=num_pruned,
59 | dim=0, largest=False, sorted=False)
60 | mask = torch.zeros_like(param).byte()
61 | mask_k = mask.view(num_kernels, -1)
62 | param_k.index_fill_(0, topk_indices, 0)
63 | mask_k.index_fill_(0, topk_indices, 1)
64 | return mask
65 |
66 |
67 | def prune_vanilla_filterwise(sparsity, param, fn_importance=lambda x: x.norm(1, -1)):
68 | """
69 | filter-wise vanilla pruning, the importance determined by L1 norm
70 | :param param: torch.(cuda.)Tensor, weight of conv/fc layer
71 | :param sparsity: float, pruning sparsity
72 | :param fn_importance: function, inputs 'param' as size (param.size(0), -1) and
73 | returns the importance of each filter in 'param',
74 | default=lambda x: x.norm(1, -1)
75 | :return:
76 | torch.(cuda.)ByteTensor, mask for zeros
77 | """
78 | assert param.dim() >= 3
79 | sparsity = min(max(0.0, sparsity), 1.0)
80 | if sparsity == 1.0:
81 | return torch.zeros_like(param).byte()
82 | num_filters = param.size(0)
83 | param_k = param.view(num_filters, -1)
84 | param_importance = fn_importance(param_k)
85 | num_pruned = int(math.ceil(num_filters * sparsity))
86 | _, topk_indices = torch.topk(param_importance, k=num_pruned,
87 | dim=0, largest=False, sorted=False)
88 | mask = torch.zeros_like(param).byte()
89 | mask_k = mask.view(num_filters, -1)
90 | param_k.index_fill_(0, topk_indices, 0)
91 | mask_k.index_fill_(0, topk_indices, 1)
92 | return mask
93 |
94 |
95 | class VanillaPruner(object):
96 |
97 | def __init__(self, rule=None):
98 | """
99 | Pruner Class for Vanilla Pruning Method
100 | :param rule: str, path to the rule file, each line formats
101 | 'param_name granularity sparsity_stage_0, sparstiy_stage_1, ...'
102 | list of tuple, [(param_name(str), granularity(str),
103 | sparsity(float) or [sparsity_stage_0(float), sparstiy_stage_1,],
104 | fn_importance(optional, str or function))]
105 | 'granularity': str, choose from ['element', 'kernel', 'filter']
106 | 'fn_importance': str, choose from ['abs', 'l1norm', 'l2norm']
107 | """
108 | if rule:
109 | if isinstance(rule, str):
110 | content = map(lambda x: x.split(), open(rule).readlines())
111 | content = filter(lambda x: len(x) == 3, content)
112 | rule = list(map(lambda x: (x[0], x[1], list(map(float, x[2].split(',')))), content))
113 | for r in rule:
114 | if not isinstance(r[2], Iterable):
115 | assert isinstance(r[2], float) or isinstance(r[2], int)
116 | r[2] = [float(r[2])]
117 | if len(r) == 3:
118 | r.append('default')
119 | granularity = r[1]
120 | if granularity == 'element':
121 | r.append(prune_vanilla_elementwise)
122 | elif granularity == 'kernel':
123 | r.append(prune_vanilla_kernelwise)
124 | elif granularity == 'filter':
125 | r.append(prune_vanilla_filterwise)
126 | else:
127 | raise NotImplementedError
128 |
129 | self.rule = rule
130 |
131 | self.masks = dict()
132 |
133 | print("=" * 89)
134 | if self.rule:
135 | print("Initializing Vanilla Pruner with rules:")
136 | for r in self.rule:
137 | print(r[:-1])
138 | else:
139 | print("Initializing Vanilla Pruner WITHOUT rules")
140 | print("=" * 89)
141 |
142 | def load_state_dict(self, state_dict, replace_rule=True):
143 | """
144 | Recover Pruner
145 | :param state_dict: dict, a dictionary containing a whole state of the Pruner
146 | :param replace_rule: bool, whether to use rule settings in 'state_dict'
147 | :return: VanillaPruner
148 | """
149 | if replace_rule:
150 | self.rule = state_dict['rule']
151 | for r in self.rule:
152 | granularity = r[1]
153 | if granularity == 'element':
154 | r.append(prune_vanilla_elementwise)
155 | elif granularity == 'kernel':
156 | r.append(prune_vanilla_kernelwise)
157 | elif granularity == 'filter':
158 | r.append(prune_vanilla_filterwise)
159 | else:
160 | raise NotImplementedError
161 | self.masks = state_dict['masks']
162 | print("=" * 89)
163 | print("Customizing Vanilla Pruner with rules:")
164 | for r in self.rule:
165 | print(r[:-1])
166 | print("=" * 89)
167 |
168 | def state_dict(self):
169 | """
170 | Returns a dictionary containing a whole state of the Pruner
171 | :return: dict, a dictionary containing a whole state of the Pruner
172 | """
173 | state_dict = dict()
174 | state_dict['rule'] = [r[:-1] for r in self.rule]
175 | state_dict['masks'] = self.masks
176 | return state_dict
177 |
178 | def prune_param(self, param, param_name, stage=0, verbose=False):
179 | """
180 | prune parameter
181 | :param param: torch.(cuda.)tensor
182 | :param param_name: str, name of param
183 | :param stage: int, the pruning stage, default=0
184 | :param verbose: bool, whether to print the pruning details
185 | :return:
186 | torch.(cuda.)ByteTensor, mask for zeros
187 | """
188 | rule_id = -1
189 | for idx, r in enumerate(self.rule):
190 | m = re.match(r[0], param_name)
191 | if m is not None and len(param_name) == m.span()[1]:
192 | rule_id = idx
193 | break
194 | if rule_id > -1:
195 | sparsity = self.rule[rule_id][2][stage]
196 | fn_prune = self.rule[rule_id][-1]
197 | fn_importance = self.rule[rule_id][3]
198 | if verbose:
199 | print("{param_name:^30} | {stage:5d} | {spars:.3f}".
200 | format(param_name=param_name, stage=stage, spars=sparsity))
201 | if fn_importance is None or fn_importance == 'default':
202 | mask = fn_prune(param=param, sparsity=sparsity)
203 | elif fn_importance == 'abs':
204 | mask = fn_prune(param=param, sparsity=sparsity, fn_importance=lambda x: x.abs())
205 | elif fn_importance == 'l1norm':
206 | mask = fn_prune(param=param, sparsity=sparsity, fn_importance=lambda x: x.norm(1, -1))
207 | elif fn_importance == 'l2norm':
208 | mask = fn_prune(param=param, sparsity=sparsity, fn_importance=lambda x: x.norm(2, -1))
209 | else:
210 | mask = fn_prune(param=param, sparsity=sparsity, fn_importance=fn_importance)
211 | return mask
212 | else:
213 | if verbose:
214 | print("{param_name:^30} | skipping".format(param_name=param_name))
215 | return None
216 |
217 | def prune(self, model, stage=0, update_masks=False, verbose=False):
218 | """
219 | prune models
220 | :param model: torch.nn.Module
221 | :param stage: int, the pruning stage, default=0
222 | :param update_masks: bool, whether update masks
223 | :param verbose: bool, whether to print the pruning details
224 | :return:
225 | void
226 | """
227 | update_masks = True if update_masks or len(self.masks) == 0 else False
228 | if verbose:
229 | print("=" * 89)
230 | print("Pruning Models")
231 | if len(self.masks) == 0:
232 | print("Initializing Masks")
233 | elif update_masks:
234 | print("Updating Masks")
235 | print("=" * 89)
236 | print("{name:^30} | stage | sparsity".format(name='param_name'))
237 | for param_name, param in model.named_parameters():
238 | if 'AuxLogits' not in param_name:
239 | # deal with googlenet
240 | if param.dim() > 1:
241 | if update_masks:
242 | mask = self.prune_param(param=param.data, param_name=param_name,
243 | stage=stage, verbose=verbose)
244 | if mask is not None:
245 | self.masks[param_name] = mask
246 | else:
247 | if param_name in self.masks:
248 | mask = self.masks[param_name]
249 | param.data.masked_fill_(mask, 0)
250 | if verbose:
251 | print("=" * 89)
252 |
--------------------------------------------------------------------------------
/slender/quantize/__init__.py:
--------------------------------------------------------------------------------
1 | from .quantizer import Quantizer
2 |
--------------------------------------------------------------------------------
/slender/quantize/fixed_point.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def quantize_fixed_point(param, bit_length=8, bit_length_integer=0, **unused):
5 | """
6 | vanilla fixed point quantization, inherently fixing zeros
7 | :param param: torch.(cuda.)tensor
8 | :param bit_length: int, bit length of fixed point param
9 | including sign bit, default=8
10 | :param bit_length_integer: int, bit length of integer part
11 | of fixed point param, default=0
12 | :param unused: unused: unused options
13 | :return:
14 | """
15 | mul_coeff = 2 ** (bit_length - 1 - bit_length_integer)
16 | div_coeff = 2 ** (bit_length_integer - bit_length + 1)
17 | max_coeff = 2 ** (bit_length - 1)
18 | param.mul_(mul_coeff).floor_().clamp_(-max_coeff - 1, max_coeff - 1).mul_(div_coeff)
19 | codebook = {'cluster_centers_': torch.arange(-max_coeff * div_coeff,
20 | max_coeff * div_coeff, div_coeff),
21 | 'method': 'fixed_point',
22 | }
23 | return codebook
--------------------------------------------------------------------------------
/slender/quantize/kmeans.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from sklearn.cluster import KMeans
3 | import torch
4 |
5 |
6 | def quantize_k_means(param, k=16, codebook=None, guess='k-means++',
7 | update_labels=False, re_quantize=False, **unused):
8 | """
9 | quantize using k-means clustering
10 | :param param:
11 | :param codebook: sklearn.cluster.KMeans, codebook of quantization, default=None
12 | :param k: int, the number of quantization level, default=16
13 | :param guess: str, initial quantization centroid generation method,
14 | choose from 'linear', 'random', 'k-means++'
15 | numpy.ndarray of shape (num_el, 1)
16 | :param update_labels: bool, whether to re-allocate the param elements to the latest centroids
17 | :param re_quantize: bool, whether to re-quantize the param
18 | :param unused: unused options
19 | :return:
20 | sklearn.cluster.KMeans, codebook of quantization
21 | """
22 | param_shape = param.size()
23 | num_el = param.numel()
24 | param_1d = param.view(num_el)
25 |
26 | if codebook is None or re_quantize:
27 | param_numpy = param_1d.view(num_el, 1).cpu().numpy()
28 |
29 | if guess == 'linear':
30 | guess = np.linspace(np.min(param_numpy), np.max(param_numpy), k)
31 | guess = guess.reshape(guess.size, 1)
32 | codebook = KMeans(n_clusters=k, init=guess, n_jobs=-1).fit(param_numpy)
33 | codebook.cluster_centers_ = torch.from_numpy(codebook.cluster_centers_).float()
34 | codebook.labels_ = torch.from_numpy(codebook.labels_).long()
35 | if param.is_cuda:
36 | codebook.cluster_centers_ = codebook.cluster_centers_.cuda(param.device)
37 |
38 | else:
39 | if update_labels:
40 | sorted_centers, indices = torch.sort(codebook.cluster_centers_, dim=0)
41 | boundaries = (sorted_centers[1:] + sorted_centers[:-1]) / 2
42 | sorted_labels = torch.ge(param_1d - boundaries, 0).long().sum(dim=0)
43 | codebook.labels_ = indices.index_select(0, sorted_labels).view(num_el)
44 | for i in range(k):
45 | codebook.cluster_centers_[i, 0] = param_1d[codebook.labels_ == i].mean()
46 |
47 | param_quantize = codebook.cluster_centers_[codebook.labels_].view(param_shape)
48 | if param.is_contiguous():
49 | param_quantize = param_quantize.contiguous()
50 | param.set_(param_quantize)
51 |
52 | return codebook
53 |
54 |
55 | def quantize_k_means_fix_zeros(param, k=16, guess='k-means++', codebook=None,
56 | update_labels=False, re_quantize=False, **unused):
57 | """
58 | quantize using k-means clustering while fixing the zeros
59 | :param param:
60 | :param codebook: sklearn.cluster.KMeans, codebook of quantization, default=None
61 | :param k: int, the number of quantization level, default=16
62 | :param guess: str, initial quantization centroid generation method,
63 | choose from 'linear', 'random', 'k-means++'
64 | :param update_labels: bool, whether to re-allocate the param elements to the latest centroids
65 | :param re_quantize: bool, whether to re-quantize the param
66 | :param unused: unused options
67 | :return:
68 | sklearn.cluster.KMeans, codebook of quantization
69 | """
70 | param_shape = param.size()
71 | num_el = param.numel()
72 | param_1d = param.view(num_el)
73 | if codebook is not None:
74 | param_1d[codebook.labels_ == 0] = 0
75 |
76 | if codebook is None or re_quantize:
77 | param_numpy = param_1d.cpu().numpy()
78 | param_nz = param_numpy[param_numpy != 0]
79 | param_nz = param_nz.reshape(param_nz.size, 1)
80 |
81 | if guess == 'linear':
82 | guess = np.linspace(np.min(param_nz), np.max(param_nz), k - 1) # one less cluster due to zero-fixed
83 | guess = guess.reshape(guess.size, 1)
84 | codebook = KMeans(n_clusters=k-1, init=guess, n_jobs=-1).fit(param_nz) # one less cluster due to zero-fixed
85 | centers = codebook.cluster_centers_
86 | centers = np.append(0.0, centers) # append zero as centroid[0]
87 | codebook.cluster_centers_ = centers.reshape(centers.size, 1)
88 | codebook.labels_ = codebook.predict(param_numpy.reshape(num_el, 1))
89 | codebook.cluster_centers_ = torch.from_numpy(codebook.cluster_centers_).float()
90 | codebook.labels_ = torch.from_numpy(codebook.labels_).long()
91 | if param.is_cuda:
92 | codebook.cluster_centers_ = codebook.cluster_centers_.cuda(param.device)
93 |
94 | # nonzero_indices = param_1d.nonzero()
95 | # nonzero_indices = nonzero_indices.view(nonzero_indices.numel())
96 | # codebook.cluster_centers_ = torch.from_numpy(codebook.cluster_centers_).float().cuda()
97 | # labels_ = torch.from_numpy(codebook.labels_).long().cuda().add_(1)
98 | # codebook.labels_ = labels_.new(num_el).zero_().index_copy_(0, nonzero_indices, labels_)
99 |
100 | else:
101 | if update_labels:
102 | sorted_centers, indices = torch.sort(codebook.cluster_centers_, dim=0)
103 | boundaries = (sorted_centers[1:] + sorted_centers[:-1]) / 2
104 | sorted_labels = torch.ge(param_1d - boundaries, 0).long().sum(dim=0)
105 | codebook.labels_ = indices.index_select(0, sorted_labels).view(num_el)
106 | for i in range(1, k):
107 | # not from (0, k), because we fix the zero centroid
108 | codebook.cluster_centers_[i, 0] = param_1d[codebook.labels_ == i].mean()
109 |
110 | param_quantize = codebook.cluster_centers_[codebook.labels_].view(param_shape)
111 | if not param.is_contiguous():
112 | param_quantize = param_quantize.contiguous()
113 | param.set_(param_quantize)
114 |
115 | return codebook
116 |
--------------------------------------------------------------------------------
/slender/quantize/linear.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 |
4 | magic_percentile = 0.001
5 |
6 |
7 | def quantize_linear(param, k=16, **unused):
8 | """
9 | linearly quantize
10 | :param param: torch.(cuda.)tensor
11 | :param k: int, the number of quantization level, default=16
12 | :param unused: unused options
13 | :return:
14 | dict, {'centers_': torch.tensor}, codebook of quantization
15 | """
16 | num_el = param.numel()
17 | kth = int(math.ceil(num_el * magic_percentile))
18 | param_flatten = param.view(num_el)
19 | param_min, _ = torch.topk(param_flatten, kth, dim=0, largest=False, sorted=False)
20 | param_min = param_min.max()
21 | param_max, _ = torch.topk(param_flatten, kth, dim=0, largest=True, sorted=False)
22 | param_max = param_max.min()
23 | step = (param_max - param_min) / (k - 1)
24 | param.clamp_(param_min, param_max).sub_(param_min).div_(step).round_().mul_(step).add_(param_min)
25 | # codebook = {'centers_': torch.tensor(list(set(param_flatten.cpu().tolist())))}
26 | codebook = {'cluster_centers_': torch.linspace(param_min, param_max, k),
27 | 'method': 'linear',
28 | }
29 | return codebook
30 |
31 |
32 | def quantize_linear_fix_zeros(param, k=16, **unused):
33 | """
34 | linearly quantize while fixing zeros
35 | :param param: torch.(cuda.)tensor
36 | :param k: int, the number of quantization level, default=16
37 | :param unused: unused options
38 | :return:
39 | dict, {'centers_': torch.tensor}, codebook of quantization
40 | """
41 | zero_mask = torch.eq(param, 0.0) # get zero mask
42 | num_param = param.numel()
43 | kth = int(math.ceil(num_param * magic_percentile))
44 | param_flatten = param.view(num_param)
45 | param_min, _ = torch.topk(param_flatten, kth, dim=0, largest=False, sorted=False)
46 | param_min = param_min.max()
47 | param_max, _ = torch.topk(param_flatten, kth, dim=0, largest=True, sorted=False)
48 | param_max = param_max.min()
49 | step = (param_max - param_min) / (k - 2)
50 | param.clamp_(param_min, param_max).sub_(param_min).div_(step).round_().mul_(step).add_(param_min)
51 | param.masked_fill_(zero_mask, 0) # recover zeros
52 | # codebook = {'centers_': torch.tensor(list(set(param_flatten.cpu().tolist())))}
53 | codebook = {'cluster_centers_': torch.zeros(k),
54 | 'method': 'linear',
55 | }
56 | codebook['cluster_centers_'][1:] = torch.linspace(param_min, param_max, k - 1)
57 | return codebook
--------------------------------------------------------------------------------
/slender/quantize/quantizer.py:
--------------------------------------------------------------------------------
1 | import re
2 | from sklearn.cluster import KMeans
3 |
4 | from slender.quantize.fixed_point import quantize_fixed_point
5 | from slender.quantize.linear import quantize_linear, quantize_linear_fix_zeros
6 | from slender.quantize.kmeans import quantize_k_means, quantize_k_means_fix_zeros
7 |
8 |
9 | def vanilla_quantize(method='k-means', fix_zeros=True, **options):
10 | """
11 | returns quantization function based on the options
12 | :param fix_zeros: bool, whether to fix zeros in the param
13 | :param method: str, quantization method, choose from 'linear', 'k-means'
14 | :param bit_length: int, bit length of fixed point param, default=8
15 | :param bit_length_integer: int, bit length of integer part
16 | of fixed point param, default=0
17 | :param k: int, the number of quantization level, default=16
18 | :param codebook: sklearn.cluster.KMeans, codebook of quantization, default=None
19 | :param guess: str, initial quantization centroid generation method,
20 | choose from 'linear', 'random', 'k-means++'
21 | numpy.ndarray of shape (num_el, 1)
22 | :param update_labels: bool, whether to re-allocate the param elements
23 | to the latest centroids when using k-means
24 | :param re_quantize: bool, whether to re-quantize the param when using k-means
25 | :return:
26 | codebook
27 | """
28 | if method == 'k-means':
29 | if fix_zeros:
30 | return quantize_k_means_fix_zeros(**options)
31 | else:
32 | return quantize_k_means(**options)
33 | elif method == 'linear':
34 | if fix_zeros:
35 | return quantize_linear_fix_zeros(**options)
36 | else:
37 | return quantize_linear(**options)
38 | else:
39 | return quantize_fixed_point(**options)
40 |
41 |
42 | class Quantizer(object):
43 |
44 | def __init__(self, rule=None, fix_zeros=True):
45 | """
46 | Quantizer class for quantization
47 | :param rule: str, path to the rule file, each line formats
48 | 'param_name method bit_length initial_guess_or_bit_length_of_integer'
49 | list of tuple,
50 | [(param_name(str), method(str), bit_length(int),
51 | initial_guess(str)_or_bit_length_of_integer(int))]
52 | :param fix_zeros: whether to fix zeros when quantizing
53 | """
54 | if rule:
55 | if isinstance(rule, str):
56 | content = map(lambda x: x.split(), open(rule).readlines())
57 | content = filter(lambda x: len(x) == 4, content)
58 | rule = list(map(lambda x: (x[0], x[1], int(x[2]),
59 | int(x[3]) if x[1] == 'fixed_point' else x[3]),
60 | content))
61 | self.rule = rule
62 |
63 | self.codebooks = dict()
64 | self.fix_zeros = fix_zeros
65 | self.fn_quantize = vanilla_quantize
66 |
67 | print("=" * 89)
68 | if self.rule:
69 | print("Initializing Quantizer with rules:")
70 | for r in self.rule:
71 | print(r)
72 | else:
73 | print("Initializing Quantizer WITHOUT rules")
74 | print("=" * 89)
75 |
76 | def load_state_dict(self, state_dict):
77 | """
78 | Recover Quantizer
79 | :param state_dict: dict, a dictionary containing a whole state of the Quantizer
80 | :return:
81 | Quantizer
82 | """
83 | self.rule = state_dict['rule']
84 | self.fix_zeros = state_dict['fix_zeros']
85 | self.codebooks = dict()
86 | for name, codebook in state_dict['codebooks'].items():
87 | if codebook['method'] == 'k-means':
88 | self.codebooks[name] = KMeans().set_params(**codebook['params'])
89 | self.codebooks[name].cluster_centers_ = codebook['centers']
90 | self.codebooks[name].labels_ = codebook['labels']
91 | else:
92 | self.codebooks[name] = codebook
93 | print("=" * 89)
94 | print("Customizing Quantizer with rules:")
95 | for r in self.rule:
96 | print(r)
97 | print("=" * 89)
98 |
99 | def state_dict(self):
100 | """
101 | Returns a dictionary containing a whole state of the Quantizer
102 | :return: dict, a dictionary containing a whole state of the Quantizer
103 | """
104 | state_dict = dict()
105 | state_dict['rule'] = self.rule
106 | state_dict['fix_zeros'] = self.fix_zeros
107 | codebooks = dict()
108 | for name, codebook in self.codebooks.items():
109 | if isinstance(codebook, KMeans):
110 | codebooks[name] = {
111 | 'params': codebook.get_params(),
112 | 'centers': codebook.cluster_centers_,
113 | 'labels': codebook.labels_,
114 | 'method': 'k-means'
115 | }
116 | else:
117 | codebooks[name] = codebook
118 | state_dict['codebooks'] = codebooks
119 | return state_dict
120 |
121 | def quantize_param(self, param, param_name, verbose=False, **quantize_options):
122 | """
123 | quantize param
124 | :param param: torch.(cuda.)tensor
125 | :param param_name: str, name of param
126 | :param update_labels: bool, whether to re-allocate the param elements
127 | to the latest centroids when using k-means
128 | :param re_quantize: bool, whether to re-quantize the param when using k-means
129 | :param verbose: bool, whether to print quantize details
130 | :return:
131 | dict, {'centers_': torch.tensor}, codebook of linear quantization
132 | sklearn.cluster.KMeans, codebook of k-means quantization
133 | """
134 | rule_id = -1
135 | for idx, r in enumerate(self.rule):
136 | m = re.match(r[0], param_name)
137 | if m is not None and len(param_name) == m.span()[1]:
138 | rule_id = idx
139 | break
140 | if rule_id > -1:
141 | method = self.rule[rule_id][1]
142 | bit_length = self.rule[rule_id][2]
143 | k = 2 ** bit_length
144 | guess = self.rule[rule_id][3]
145 | bit_length_integer = guess
146 | if k <= 0:
147 | if verbose:
148 | print("{param_name:^30} | skipping".format(param_name=param_name))
149 | return None
150 | codebook = self.codebooks.get(param_name)
151 | if verbose:
152 | if codebook is None:
153 | print("{param_name:^30} | {bit_length:2d} bit | initializing".
154 | format(param_name=param_name, bit_length=bit_length))
155 | elif method == 'k-means':
156 | if quantize_options.get('re_quantize'):
157 | print("{param_name:^30} | {bit_length:2d} bit | re-quantizing".
158 | format(param_name=param_name, bit_length=bit_length))
159 | elif quantize_options.get('update_labels'):
160 | print("{param_name:^30} | {bit_length:2d} bit | updating labels and centroids".
161 | format(param_name=param_name, bit_length=bit_length))
162 | else:
163 | print("{param_name:^30} | {bit_length:2d} bit | updating centroids only".
164 | format(param_name=param_name, bit_length=bit_length))
165 | else:
166 | print("{param_name:^30} | {bit_length:2d} bit | re-quantizing".
167 | format(param_name=param_name, bit_length=bit_length))
168 | codebook = self.fn_quantize(method=method, fix_zeros=self.fix_zeros,
169 | param=param, bit_length=bit_length,
170 | bit_length_integer=bit_length_integer,
171 | k=k, guess=guess, codebook=codebook,
172 | **quantize_options)
173 | return codebook
174 | else:
175 | if verbose:
176 | print("{param_name:^30} | skipping".format(param_name=param_name))
177 | return None
178 |
179 | def quantize(self, model, update_labels=False, re_quantize=False, verbose=False):
180 | """
181 | quantize model
182 | :param model: torch.nn.module
183 | :param update_labels: bool, whether to re-allocate the param elements
184 | to the latest centroids when using k-means
185 | :param re_quantize: bool, whether to re-quantize the param when using k-means
186 | :param verbose: bool, whether to print quantize details
187 | :return:
188 | void
189 | """
190 | if verbose:
191 | print("=" * 89)
192 | print("Quantizing Model")
193 | print("=" * 89)
194 | print("{name:^30} | qz bit | state".format(name='param_name'))
195 | for param_name, param in model.named_parameters():
196 | if param.dim() > 1:
197 | codebook = self.quantize_param(param.data, param_name, verbose=verbose,
198 | update_labels=update_labels,
199 | re_quantize=re_quantize)
200 | if codebook is not None:
201 | self.codebooks[param_name] = codebook
202 | if verbose:
203 | print("=" * 89)
204 |
--------------------------------------------------------------------------------
/slender/replicate.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def replicate(network, keep_param=False):
5 | assert isinstance(network, torch.nn.Module)
6 |
7 | params = list(network.parameters())
8 | param_indices = {param: idx for idx, param in enumerate(params)}
9 | param_copies = [torch.nn.Parameter(param.detach().clone()) for param in params]
10 |
11 | buffers = list(network._all_buffers())
12 | buffer_indices = {buf: idx for idx, buf in enumerate(buffers)}
13 | buffer_copies = [buffer.clone() for buffer in buffers]
14 |
15 | modules = list(network.modules())
16 | module_indices = {}
17 | module_copies = []
18 |
19 | for i, module in enumerate(modules):
20 | module_indices[module] = i
21 | replica = module.__new__(type(module))
22 | replica.__dict__ = module.__dict__.copy()
23 | replica._parameters = replica._parameters.copy()
24 | replica._buffers = replica._buffers.copy()
25 | replica._modules = replica._modules.copy()
26 | module_copies.append(replica)
27 |
28 | for i, module in enumerate(modules):
29 | for key, child in module._modules.items():
30 | if child is None:
31 | replica = module_copies[i]
32 | replica._modules[key] = None
33 | else:
34 | module_idx = module_indices[child]
35 | replica = module_copies[i]
36 | replica._modules[key] = module_copies[module_idx]
37 | for key, param in module._parameters.items():
38 | if param is None:
39 | replica = module_copies[i]
40 | replica._parameters[key] = None
41 | else:
42 | param_idx = param_indices[param]
43 | replica = module_copies[i]
44 | replica._parameters[key] = param_copies[param_idx]
45 | for key, buf in module._buffers.items():
46 | if buf is None:
47 | replica = module_copies[i]
48 | replica._buffers[key] = None
49 | else:
50 | buffer_idx = buffer_indices[buf]
51 | replica = module_copies[i]
52 | replica._buffers[key] = buffer_copies[buffer_idx]
53 |
54 | return module_copies[0]
55 |
--------------------------------------------------------------------------------
/slender/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | from itertools import islice
3 |
4 |
5 | def iter_str_every(iterable, k):
6 | """
7 |
8 | :param iterable:
9 | :param k:
10 | :return:
11 | """
12 | i = iter(iterable)
13 | piece = ''.join(islice(i, k))
14 | while piece:
15 | yield piece
16 | piece = ''.join(islice(i, k))
17 |
18 |
19 | def get_sparsity(param):
20 | """
21 |
22 | :param param:
23 | :return:
24 | """
25 | mask = param.eq(0)
26 | return float(mask.sum()) / mask.numel()
27 |
28 |
29 | class AverageMeter(object):
30 | """Computes and stores the average and current value"""
31 | def __init__(self):
32 | self.val = 0
33 | self.avg = 0
34 | self.sum = 0
35 | self.count = 0
36 |
37 | def reset(self):
38 | self.val = 0
39 | self.avg = 0
40 | self.sum = 0
41 | self.count = 0
42 |
43 | def update(self, val, n=1):
44 | self.val = val
45 | self.sum += val * n
46 | self.count += n
47 | if self.count > 0:
48 | self.avg = self.sum / self.count
49 |
50 | def accumulate(self, val, n=1):
51 | self.sum += val
52 | self.count += n
53 | if self.count > 0:
54 | self.avg = self.sum / self.count
55 |
56 |
57 | class Logger(object):
58 | def __init__(self, file_path):
59 | """
60 | write log to file
61 | :param file_path: str, path to the file
62 | """
63 | self.f = open(file_path, 'w')
64 | self.fid = self.f.fileno()
65 | self.filepath = file_path
66 |
67 | def close(self):
68 | """
69 | close log file
70 | :return:
71 | """
72 | return self.f.close()
73 |
74 | def flush(self):
75 | self.f.flush()
76 | os.fsync(self.fid)
77 |
78 | def write(self, content, wrap=True, flush=False, verbose=False):
79 | """
80 | write file and flush buffer to the disk
81 | :param content: str
82 | :param wrap: bool, whether to add '\n' at the end of the content
83 | :param flush: bool, whether to flush buffer to the disk, default=False
84 | :param verbose: bool, whether to print the content, default=False
85 | :return:
86 | void
87 | """
88 | if verbose:
89 | print(content)
90 | if wrap:
91 | content += "\n"
92 | self.f.write(content)
93 | if flush:
94 | self.f.flush()
95 | os.fsync(self.fid)
96 |
97 |
98 | class StageScheduler(object):
99 |
100 | def __init__(self, max_num_stage, stage_step=45):
101 | """
102 |
103 | :param max_num_stage:
104 | :param stage_step:
105 | """
106 | self.max_num_stage = max_num_stage
107 |
108 | self.stage_step = stage_step
109 | if isinstance(stage_step, int):
110 | self.stage_step = [stage_step] * max_num_stage
111 | if isinstance(stage_step, str):
112 | self.stage_step = list(map(int, stage_step.split(',')))
113 | assert isinstance(self.stage_step, list)
114 |
115 | num_stage = len(self.stage_step)
116 | if num_stage < self.max_num_stage:
117 | for i in range(self.max_num_stage - num_stage):
118 | self.stage_step.append(self.stage_step[num_stage - 1])
119 | elif num_stage > self.max_num_stage:
120 | self.max_num_stage = num_stage
121 | assert len(self.stage_step) == self.max_num_stage
122 |
123 | for i in range(1, self.max_num_stage):
124 | self.stage_step[i] += self.stage_step[i - 1]
125 |
126 | def step(self, epoch):
127 | """
128 |
129 | :param epoch:
130 | :return:
131 | """
132 | stage = self.max_num_stage - 1
133 | for i, max_epoch in enumerate(self.stage_step):
134 | if epoch < max_epoch:
135 | stage = i
136 | break
137 | if stage > 0:
138 | epoch -= self.stage_step[stage - 1]
139 | return stage, epoch
140 |
--------------------------------------------------------------------------------
/test/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/synxlin/nn-compression/34918a4ed2bbe44a483a6e81a740ae5fe3ffc065/test/__init__.py
--------------------------------------------------------------------------------
/test/test_coding.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from slender.prune.vanilla import prune_vanilla_elementwise
4 | from slender.quantize.linear import quantize_linear_fix_zeros
5 | from slender.quantize.fixed_point import quantize_fixed_point
6 | from slender.quantize.quantizer import Quantizer
7 | from slender.coding.encode import EncodedParam
8 | from slender.coding.codec import Codec
9 |
10 |
11 | def test_encode_param():
12 | param = torch.rand(256, 128, 3, 3)
13 | prune_vanilla_elementwise(sparsity=0.7, param=param)
14 | quantize_linear_fix_zeros(param, k=16)
15 | huffman = EncodedParam(param=param, method='huffman',
16 | encode_indices=True, bit_length_zero_run_length=4)
17 | stats = huffman.stats
18 | print(stats)
19 | assert torch.eq(param, huffman.data).all()
20 | state_dict = huffman.state_dict()
21 | huffman = EncodedParam()
22 | huffman.load_state_dict(state_dict)
23 | assert torch.eq(param, huffman.data).all()
24 | vanilla = EncodedParam(param=param, method='vanilla',
25 | encode_indices=True, bit_length_zero_run_length=4)
26 | stats = vanilla.stats
27 | print(stats)
28 | assert torch.eq(param, vanilla.data).all()
29 | quantize_fixed_point(param=param, bit_length=4, bit_length_integer=0)
30 | fixed_point = EncodedParam(param=param, method='fixed_point',
31 | bit_length=4, bit_length_integer=0,
32 | encode_indices=True, bit_length_zero_run_length=4)
33 | stats = fixed_point.stats
34 | print(stats)
35 | assert torch.eq(param, fixed_point.data).all()
36 |
37 |
38 | def test_codec():
39 | quantize_rule = [
40 | ('0.weight', 'k-means', 4, 'k-means++'),
41 | ('1.weight', 'fixed_point', 6, 1),
42 | ]
43 | model = torch.nn.Sequential(torch.nn.Conv2d(256, 128, 3, bias=True),
44 | torch.nn.Conv2d(128, 512, 1, bias=False))
45 | mask_dict = {}
46 | for n, p in model.named_parameters():
47 | mask_dict[n] = prune_vanilla_elementwise(sparsity=0.6, param=p.data)
48 | quantizer = Quantizer(rule=quantize_rule, fix_zeros=True)
49 | quantizer.quantize(model, update_labels=False, verbose=True)
50 | rule = [
51 | ('0.weight', 'huffman', 0, 0, 4),
52 | ('1.weight', 'fixed_point', 6, 1, 4)
53 | ]
54 | codec = Codec(rule=rule)
55 | encoded_module = codec.encode(model)
56 | print(codec.stats)
57 | state_dict = encoded_module.state_dict()
58 | model_2 = torch.nn.Sequential(torch.nn.Conv2d(256, 128, 3, bias=True),
59 | torch.nn.Conv2d(128, 512, 1, bias=False))
60 | model_2 = Codec.decode(model_2, state_dict)
61 | for p1, p2 in zip(model.parameters(), model_2.parameters()):
62 | if p1.dim() > 1:
63 | assert torch.eq(p1, p2).all()
64 |
--------------------------------------------------------------------------------
/test/test_quantize.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from slender.prune.vanilla import prune_vanilla_elementwise
4 | from slender.quantize.linear import quantize_linear, quantize_linear_fix_zeros
5 | from slender.quantize.kmeans import quantize_k_means, quantize_k_means_fix_zeros
6 | from slender.quantize.fixed_point import quantize_fixed_point
7 | from slender.quantize.quantizer import Quantizer
8 |
9 |
10 | def test_quantize_linear():
11 | param = torch.rand(128, 64, 3, 3) - 0.5
12 | codebook = quantize_linear(param, k=16)
13 | assert codebook['cluster_centers_'].numel() == 16
14 | centers_ = codebook['cluster_centers_'].tolist()
15 | vals = set(param.view(param.numel()).tolist())
16 | for v in vals:
17 | assert v in centers_
18 |
19 |
20 | def test_quantize_linear_fix_zeros():
21 | param = torch.rand(128, 64, 3, 3) - 0.5
22 | mask = prune_vanilla_elementwise(sparsity=0.4, param=param)
23 | codebook = quantize_linear_fix_zeros(param, k=16)
24 | assert codebook['cluster_centers_'].numel() == 16
25 | centers_ = codebook['cluster_centers_'].tolist()
26 | vals = set(param.view(param.numel()).tolist())
27 | for v in vals:
28 | assert v in centers_
29 | assert param.masked_select(mask).eq(0).all()
30 |
31 |
32 | def test_quantize_k_means():
33 | param = torch.rand(128, 64, 3, 3) - 0.5
34 | codebook = quantize_k_means(param, k=16)
35 | assert codebook.cluster_centers_.numel() == 16
36 | centers_ = codebook.cluster_centers_.view(16).tolist()
37 | vals = set(param.view(param.numel()).tolist())
38 | for v in vals:
39 | assert v in centers_
40 | param = torch.rand(128, 64, 3, 3)
41 | codebook = quantize_k_means(param, k=16, codebook=codebook,
42 | update_centers=True)
43 | assert codebook.cluster_centers_.numel() == 16
44 | centers_ = codebook.cluster_centers_.view(16).tolist()
45 | vals = set(param.view(param.numel()).tolist())
46 | for v in vals:
47 | assert v in centers_
48 |
49 |
50 | def test_quantize_k_means_fix_zeros():
51 | param = torch.rand(128, 64, 3, 3) - 0.5
52 | mask = prune_vanilla_elementwise(sparsity=0.4, param=param)
53 | codebook = quantize_k_means_fix_zeros(param, k=16)
54 | assert codebook.cluster_centers_.numel() == 16
55 | centers_ = codebook.cluster_centers_.view(16).tolist()
56 | vals = set(param.view(param.numel()).tolist())
57 | for v in vals:
58 | assert v in centers_
59 | assert param.masked_select(mask).eq(0).all()
60 | codebook = quantize_k_means_fix_zeros(param, k=16, codebook=codebook,
61 | update_centers=True)
62 | assert codebook.cluster_centers_.numel() == 16
63 | centers_ = codebook.cluster_centers_.view(16).tolist()
64 | vals = set(param.view(param.numel()).tolist())
65 | for v in vals:
66 | assert v in centers_
67 | assert param.masked_select(mask).eq(0).all()
68 |
69 |
70 | def test_quantized_fixed_point():
71 | param = torch.rand(128, 64, 3, 3) - 0.5
72 | mask = prune_vanilla_elementwise(sparsity=0.4, param=param)
73 | codebook = quantize_fixed_point(param, bit_length=8, bit_length_integer=1)
74 | assert codebook['cluster_centers_'].numel() == 2 ** 8
75 | centers_ = codebook['cluster_centers_'].tolist()
76 | vals = set(param.view(param.numel()).tolist())
77 | for v in vals:
78 | assert v in centers_
79 | assert param.masked_select(mask).eq(0).all()
80 |
81 |
82 | def test_quantizer():
83 | rule = [
84 | ('0.weight', 'k-means', 4, 'k-means++'),
85 | ('1.weight', 'fixed_point', 6, 1),
86 | ]
87 | rule_dict = {
88 | '0.weight': ['k-means', 16],
89 | '1.weight': ['fixed_point', 6, 1]
90 | }
91 | model = torch.nn.Sequential(torch.nn.Conv2d(256, 128, 3, bias=True),
92 | torch.nn.Conv2d(128, 512, 1, bias=False))
93 | mask_dict = {}
94 | for n, p in model.named_parameters():
95 | mask_dict[n] = prune_vanilla_elementwise(sparsity=0.4, param=p)
96 | quantizer = Quantizer(rule=rule, fix_zeros=True)
97 | quantizer.quantize(model, update_labels=False, verbose=True)
98 | for n, p in model.named_parameters():
99 | if n in rule_dict:
100 | vals = set(p.data.view(p.numel()).tolist())
101 | if rule_dict[n][0] == 'k-means':
102 | centers_ = quantizer.codebooks[n].cluster_centers_.view(rule_dict[n][1]).tolist()
103 | else:
104 | centers_ = quantizer.codebooks[n]['cluster_centers_']
105 | for v in vals:
106 | assert v in centers_
107 | assert p.data.masked_select(mask_dict[n]).eq(0).all
108 |
109 | state_dict = quantizer.state_dict()
110 | quantizer = Quantizer().load_state_dict(state_dict)
111 | model = torch.nn.Sequential(torch.nn.Conv2d(256, 128, 3, bias=True),
112 | torch.nn.Conv2d(128, 512, 1, bias=False))
113 | mask_dict = {}
114 | for n, p in model.named_parameters():
115 | mask_dict[n] = prune_vanilla_elementwise(sparsity=0.4, param=p)
116 | quantizer.quantize(model, update_labels=True, verbose=True)
117 | for n, p in model.named_parameters():
118 | if n in rule_dict:
119 | vals = set(p.data.view(p.numel()).tolist())
120 | if rule_dict[n][0] == 'k-means':
121 | centers_ = quantizer.codebooks[n].cluster_centers_.view(rule_dict[n][1]).tolist()
122 | else:
123 | centers_ = quantizer.codebooks[n]['cluster_centers_']
124 | for v in vals:
125 | assert v in centers_
126 | assert p.data.masked_select(mask_dict[n]).eq(0).all
--------------------------------------------------------------------------------
/test/test_vanilla_prune.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 |
4 | from slender.prune.vanilla import prune_vanilla_elementwise, prune_vanilla_kernelwise, \
5 | prune_vanilla_filterwise, VanillaPruner
6 |
7 |
8 | def test_prune_vanilla_elementwise():
9 | param = torch.rand(64, 128, 3, 3)
10 | mask = prune_vanilla_elementwise(sparsity=0.3, param=param)
11 | assert mask.sum() == int(math.ceil(param.numel() * 0.3))
12 | assert param.masked_select(mask).eq(0).all()
13 | mask = prune_vanilla_elementwise(sparsity=0.7, param=param)
14 | assert mask.sum() == int(math.ceil(param.numel() * 0.7))
15 | assert param.masked_select(mask).eq(0).all()
16 |
17 |
18 | def test_prune_vanilla_kernelwise():
19 | param = torch.rand(64, 128, 3, 3)
20 | mask = prune_vanilla_kernelwise(sparsity=0.5, param=param)
21 | mask_s = mask.view(64*128, -1).all(1).sum()
22 | assert mask_s == 32*128
23 | assert param.masked_select(mask).eq(0).all()
24 |
25 |
26 | def test_prune_vanilla_filterwise():
27 | param = torch.rand(64, 128, 3, 3)
28 | mask = prune_vanilla_filterwise(sparsity=0.5, param=param)
29 | mask_s = mask.view(64, -1).all(1).sum()
30 | assert mask_s == 32
31 | assert param.masked_select(mask).eq(0).all()
32 |
33 |
34 | def test_vanilla_pruner():
35 | rule = [
36 | ('0.weight', 'element', [0.3, 0.5]),
37 | ('1.weight', 'element', [0.4, 0.6])
38 | ]
39 | rule_dict = {
40 | '0.weight': [0.3, 0.5],
41 | '1.weight': [0.4, 0.6]
42 | }
43 | model = torch.nn.Sequential(torch.nn.Conv2d(256, 128, 3, bias=True),
44 | torch.nn.Conv2d(128, 512, 1, bias=False))
45 | pruner = VanillaPruner(rule=rule)
46 | pruner.prune(model=model, stage=0, verbose=True)
47 | for n, param in model.named_parameters():
48 | if param.dim() > 1:
49 | mask = pruner.masks[n]
50 | assert mask.sum() == int(math.ceil(param.numel() * rule_dict[n][0]))
51 | assert param.data.masked_select(mask).eq(0).all()
52 | state_dict = pruner.state_dict()
53 | pruner = VanillaPruner().load_state_dict(state_dict)
54 | model = torch.nn.Sequential(torch.nn.Conv2d(256, 128, 3, bias=True),
55 | torch.nn.Conv2d(128, 512, 1, bias=False))
56 | pruner.prune(model=model, stage=0)
57 | for n, param in model.named_parameters():
58 | if param.dim() > 1:
59 | mask = pruner.masks[n]
60 | assert mask.sum() == int(math.ceil(param.numel() * rule_dict[n][0]))
61 | assert param.data.masked_select(mask).eq(0).all()
62 | pruner.prune(model=model, stage=1, update_masks=True, verbose=True)
63 | for n, param in model.named_parameters():
64 | if param.dim() > 1:
65 | mask = pruner.masks[n]
66 | assert mask.sum() == int(math.ceil(param.numel() * rule_dict[n][1]))
67 | assert param.data.masked_select(mask).eq(0).all()
68 |
--------------------------------------------------------------------------------