\n",
1028 | "\n",
1041 | "
\n",
1042 | " \n",
1043 | " \n",
1044 | " | \n",
1045 | " vertices | \n",
1046 | " faces_sum | \n",
1047 | " faces_num | \n",
1048 | " faces_points | \n",
1049 | "
\n",
1050 | " \n",
1051 | " \n",
1052 | " \n",
1053 | " | 0 | \n",
1054 | " 297 | \n",
1055 | " 712 | \n",
1056 | " 184 | \n",
1057 | " 13 | \n",
1058 | "
\n",
1059 | " \n",
1060 | " | 1 | \n",
1061 | " 378 | \n",
1062 | " 298 | \n",
1063 | " 45 | \n",
1064 | " 84 | \n",
1065 | "
\n",
1066 | " \n",
1067 | " | 2 | \n",
1068 | " 360 | \n",
1069 | " 416 | \n",
1070 | " 77 | \n",
1071 | " 48 | \n",
1072 | "
\n",
1073 | " \n",
1074 | " | 3 | \n",
1075 | " 912 | \n",
1076 | " 1200 | \n",
1077 | " 290 | \n",
1078 | " 24 | \n",
1079 | "
\n",
1080 | " \n",
1081 | " | 4 | \n",
1082 | " 1140 | \n",
1083 | " 1102 | \n",
1084 | " 164 | \n",
1085 | " 183 | \n",
1086 | "
\n",
1087 | " \n",
1088 | " | ... | \n",
1089 | " ... | \n",
1090 | " ... | \n",
1091 | " ... | \n",
1092 | " ... | \n",
1093 | "
\n",
1094 | " \n",
1095 | " | 1083 | \n",
1096 | " 1056 | \n",
1097 | " 1404 | \n",
1098 | " 270 | \n",
1099 | " 42 | \n",
1100 | "
\n",
1101 | " \n",
1102 | " | 1084 | \n",
1103 | " 96 | \n",
1104 | " 106 | \n",
1105 | " 23 | \n",
1106 | " 8 | \n",
1107 | "
\n",
1108 | " \n",
1109 | " | 1085 | \n",
1110 | " 222 | \n",
1111 | " 282 | \n",
1112 | " 67 | \n",
1113 | " 8 | \n",
1114 | "
\n",
1115 | " \n",
1116 | " | 1086 | \n",
1117 | " 270 | \n",
1118 | " 380 | \n",
1119 | " 71 | \n",
1120 | " 29 | \n",
1121 | "
\n",
1122 | " \n",
1123 | " | 1087 | \n",
1124 | " 564 | \n",
1125 | " 1728 | \n",
1126 | " 312 | \n",
1127 | " 27 | \n",
1128 | "
\n",
1129 | " \n",
1130 | "
\n",
1131 | "
1088 rows × 4 columns
\n",
1132 | "
"
1133 | ],
1134 | "text/plain": [
1135 | " vertices faces_sum faces_num faces_points\n",
1136 | "0 297 712 184 13\n",
1137 | "1 378 298 45 84\n",
1138 | "2 360 416 77 48\n",
1139 | "3 912 1200 290 24\n",
1140 | "4 1140 1102 164 183\n",
1141 | "... ... ... ... ...\n",
1142 | "1083 1056 1404 270 42\n",
1143 | "1084 96 106 23 8\n",
1144 | "1085 222 282 67 8\n",
1145 | "1086 270 380 71 29\n",
1146 | "1087 564 1728 312 27\n",
1147 | "\n",
1148 | "[1088 rows x 4 columns]"
1149 | ]
1150 | },
1151 | "execution_count": 35,
1152 | "metadata": {},
1153 | "output_type": "execute_result"
1154 | }
1155 | ],
1156 | "source": [
1157 | "test_info_df = pd.DataFrame(test_info)\n",
1158 | "test_info_df"
1159 | ]
1160 | },
1161 | {
1162 | "cell_type": "code",
1163 | "execution_count": 36,
1164 | "metadata": {},
1165 | "outputs": [
1166 | {
1167 | "name": "stdout",
1168 | "output_type": "stream",
1169 | "text": [
1170 | "vertices 2346\n",
1171 | "faces_sum 3862\n",
1172 | "faces_num 1246\n",
1173 | "faces_points 330\n",
1174 | "dtype: int64\n",
1175 | "====================\n",
1176 | "vertices 2292\n",
1177 | "faces_sum 3504\n",
1178 | "faces_num 1123\n",
1179 | "faces_points 257\n",
1180 | "dtype: int64\n"
1181 | ]
1182 | }
1183 | ],
1184 | "source": [
1185 | "print(train_info_df.max())\n",
1186 | "print(\"=\"*20)\n",
1187 | "print(test_info_df.max())"
1188 | ]
1189 | },
1190 | {
1191 | "cell_type": "code",
1192 | "execution_count": 38,
1193 | "metadata": {},
1194 | "outputs": [],
1195 | "source": [
1196 | "train_info_df.to_csv(os.path.join(out_dir, \"statistics\", \"train_info.csv\"))\n",
1197 | "test_info_df.to_csv(os.path.join(out_dir, \"statistics\", \"test_info.csv\"))"
1198 | ]
1199 | },
1200 | {
1201 | "cell_type": "markdown",
1202 | "metadata": {},
1203 | "source": [
1204 | "# check dataset"
1205 | ]
1206 | },
1207 | {
1208 | "cell_type": "code",
1209 | "execution_count": 39,
1210 | "metadata": {},
1211 | "outputs": [
1212 | {
1213 | "name": "stdout",
1214 | "output_type": "stream",
1215 | "text": [
1216 | "50 6\n"
1217 | ]
1218 | }
1219 | ],
1220 | "source": [
1221 | "with open(os.path.join(data_dir, \"preprocessed\", \"train\", classes[0]+\".json\")) as fr:\n",
1222 | " train = json.load(fr)\n",
1223 | " \n",
1224 | "with open(os.path.join(data_dir, \"preprocessed\", \"valid\", classes[0]+\".json\")) as fr:\n",
1225 | " valid = json.load(fr)\n",
1226 | " \n",
1227 | "print(len(train), len(valid))"
1228 | ]
1229 | },
1230 | {
1231 | "cell_type": "code",
1232 | "execution_count": 40,
1233 | "metadata": {},
1234 | "outputs": [
1235 | {
1236 | "data": {
1237 | "text/plain": [
1238 | "{'vertices': [[166, 121, 166],\n",
1239 | " [166, 121, 88],\n",
1240 | " [166, 108, 166],\n",
1241 | " [166, 108, 88],\n",
1242 | " [165, 106, 165],\n",
1243 | " [165, 106, 89],\n",
1244 | " [165, 104, 165],\n",
1245 | " [165, 104, 89],\n",
1246 | " [165, 103, 165],\n",
1247 | " [165, 103, 89]],\n",
1248 | " 'faces': [[203, 202, 200, 201],\n",
1249 | " [203, 201, 147, 143, 97, 101, 1, 3],\n",
1250 | " [203, 195, 194, 202],\n",
1251 | " [203, 3, 5, 195],\n",
1252 | " [202, 194, 4, 2],\n",
1253 | " [202, 2, 0, 98, 94, 140, 144, 200],\n",
1254 | " [201, 200, 144, 145, 184, 185, 146, 147],\n",
1255 | " [199, 198, 196, 197],\n",
1256 | " [199, 197, 7, 9],\n",
1257 | " [199, 193, 192, 198]]}"
1258 | ]
1259 | },
1260 | "execution_count": 40,
1261 | "metadata": {},
1262 | "output_type": "execute_result"
1263 | }
1264 | ],
1265 | "source": [
1266 | "{k: v[:10] for k, v in train[0].items()}"
1267 | ]
1268 | },
1269 | {
1270 | "cell_type": "code",
1271 | "execution_count": 41,
1272 | "metadata": {},
1273 | "outputs": [
1274 | {
1275 | "data": {
1276 | "text/plain": [
1277 | "{'vertices': [[164, 161, 158],\n",
1278 | " [164, 161, 96],\n",
1279 | " [164, 160, 159],\n",
1280 | " [164, 160, 95],\n",
1281 | " [164, 98, 159],\n",
1282 | " [164, 98, 95],\n",
1283 | " [163, 163, 158],\n",
1284 | " [163, 163, 96],\n",
1285 | " [163, 162, 158],\n",
1286 | " [163, 162, 96]],\n",
1287 | " 'faces': [[98, 96, 95, 97],\n",
1288 | " [98, 76, 73, 97],\n",
1289 | " [98, 76, 72, 96],\n",
1290 | " [97, 95, 71, 73],\n",
1291 | " [96, 96, 72, 72],\n",
1292 | " [96, 95, 95, 96],\n",
1293 | " [96, 94, 93, 95],\n",
1294 | " [96, 72, 65, 94],\n",
1295 | " [95, 93, 64, 71],\n",
1296 | " [95, 71, 71, 95]]}"
1297 | ]
1298 | },
1299 | "execution_count": 41,
1300 | "metadata": {},
1301 | "output_type": "execute_result"
1302 | }
1303 | ],
1304 | "source": [
1305 | "{k: v[:10] for k, v in valid[0].items()}"
1306 | ]
1307 | },
1308 | {
1309 | "cell_type": "code",
1310 | "execution_count": null,
1311 | "metadata": {},
1312 | "outputs": [],
1313 | "source": []
1314 | }
1315 | ],
1316 | "metadata": {
1317 | "kernelspec": {
1318 | "display_name": "Python 3",
1319 | "language": "python",
1320 | "name": "python3"
1321 | },
1322 | "language_info": {
1323 | "codemirror_mode": {
1324 | "name": "ipython",
1325 | "version": 3
1326 | },
1327 | "file_extension": ".py",
1328 | "mimetype": "text/x-python",
1329 | "name": "python",
1330 | "nbconvert_exporter": "python",
1331 | "pygments_lexer": "ipython3",
1332 | "version": "3.8.5"
1333 | }
1334 | },
1335 | "nbformat": 4,
1336 | "nbformat_minor": 4
1337 | }
1338 |
--------------------------------------------------------------------------------