├── .gitignore ├── CONTRIBUTING.md ├── LICENSE ├── README.md ├── analytics.js ├── index.html ├── package-lock.json ├── package.json ├── src ├── dataset.ts ├── heatmap.ts ├── linechart.ts ├── nn.ts ├── playground.ts ├── seedrandom.d.ts └── state.ts ├── styles.css ├── tsconfig.json └── tslint.json /.gitignore: -------------------------------------------------------------------------------- 1 | node_modules/ 2 | dist/ 3 | *.log 4 | .vscode 5 | -------------------------------------------------------------------------------- /CONTRIBUTING.md: -------------------------------------------------------------------------------- 1 | Want to contribute? Great! First, read this page (including the small print at the end). 2 | 3 | ### Before you contribute 4 | Before we can use your code, you must sign the 5 | [Google Individual Contributor License Agreement] 6 | (https://cla.developers.google.com/about/google-individual) 7 | (CLA), which you can do online. The CLA is necessary mainly because you own the 8 | copyright to your changes, even after your contribution becomes part of our 9 | codebase, so we need your permission to use and distribute your code. We also 10 | need to be sure of various other things—for instance that you'll tell us if you 11 | know that your code infringes on other people's patents. You don't have to sign 12 | the CLA until after you've submitted your code for review and a member has 13 | approved it, but you must do it before we can put your code into our codebase. 14 | Before you start working on a larger contribution, you should get in touch with 15 | us first through the issue tracker with your idea so that we can help out and 16 | possibly guide you. Coordinating up front makes it much easier to avoid 17 | frustration later on. 18 | 19 | ### Code reviews 20 | All submissions, including submissions by project members, require review. We 21 | use Github pull requests for this purpose. 22 | 23 | ### The small print 24 | Contributions made by corporations are covered by a different agreement than 25 | the one above, the 26 | [Software Grant and Corporate Contributor License Agreement] 27 | (https://cla.developers.google.com/about/google-corporate). 28 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | 2 | Apache License 3 | Version 2.0, January 2004 4 | http://www.apache.org/licenses/ 5 | 6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 7 | 8 | 1. Definitions. 9 | 10 | "License" shall mean the terms and conditions for use, reproduction, 11 | and distribution as defined by Sections 1 through 9 of this document. 12 | 13 | "Licensor" shall mean the copyright owner or entity authorized by 14 | the copyright owner that is granting the License. 15 | 16 | "Legal Entity" shall mean the union of the acting entity and all 17 | other entities that control, are controlled by, or are under common 18 | control with that entity. For the purposes of this definition, 19 | "control" means (i) the power, direct or indirect, to cause the 20 | direction or management of such entity, whether by contract or 21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 22 | outstanding shares, or (iii) beneficial ownership of such entity. 23 | 24 | "You" (or "Your") shall mean an individual or Legal Entity 25 | exercising permissions granted by this License. 26 | 27 | "Source" form shall mean the preferred form for making modifications, 28 | including but not limited to software source code, documentation 29 | source, and configuration files. 30 | 31 | "Object" form shall mean any form resulting from mechanical 32 | transformation or translation of a Source form, including but 33 | not limited to compiled object code, generated documentation, 34 | and conversions to other media types. 35 | 36 | "Work" shall mean the work of authorship, whether in Source or 37 | Object form, made available under the License, as indicated by a 38 | copyright notice that is included in or attached to the work 39 | (an example is provided in the Appendix below). 40 | 41 | "Derivative Works" shall mean any work, whether in Source or Object 42 | form, that is based on (or derived from) the Work and for which the 43 | editorial revisions, annotations, elaborations, or other modifications 44 | represent, as a whole, an original work of authorship. For the purposes 45 | of this License, Derivative Works shall not include works that remain 46 | separable from, or merely link (or bind by name) to the interfaces of, 47 | the Work and Derivative Works thereof. 48 | 49 | "Contribution" shall mean any work of authorship, including 50 | the original version of the Work and any modifications or additions 51 | to that Work or Derivative Works thereof, that is intentionally 52 | submitted to Licensor for inclusion in the Work by the copyright owner 53 | or by an individual or Legal Entity authorized to submit on behalf of 54 | the copyright owner. For the purposes of this definition, "submitted" 55 | means any form of electronic, verbal, or written communication sent 56 | to the Licensor or its representatives, including but not limited to 57 | communication on electronic mailing lists, source code control systems, 58 | and issue tracking systems that are managed by, or on behalf of, the 59 | Licensor for the purpose of discussing and improving the Work, but 60 | excluding communication that is conspicuously marked or otherwise 61 | designated in writing by the copyright owner as "Not a Contribution." 62 | 63 | "Contributor" shall mean Licensor and any individual or Legal Entity 64 | on behalf of whom a Contribution has been received by Licensor and 65 | subsequently incorporated within the Work. 66 | 67 | 2. Grant of Copyright License. Subject to the terms and conditions of 68 | this License, each Contributor hereby grants to You a perpetual, 69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 70 | copyright license to reproduce, prepare Derivative Works of, 71 | publicly display, publicly perform, sublicense, and distribute the 72 | Work and such Derivative Works in Source or Object form. 73 | 74 | 3. Grant of Patent License. Subject to the terms and conditions of 75 | this License, each Contributor hereby grants to You a perpetual, 76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 77 | (except as stated in this section) patent license to make, have made, 78 | use, offer to sell, sell, import, and otherwise transfer the Work, 79 | where such license applies only to those patent claims licensable 80 | by such Contributor that are necessarily infringed by their 81 | Contribution(s) alone or by combination of their Contribution(s) 82 | with the Work to which such Contribution(s) was submitted. If You 83 | institute patent litigation against any entity (including a 84 | cross-claim or counterclaim in a lawsuit) alleging that the Work 85 | or a Contribution incorporated within the Work constitutes direct 86 | or contributory patent infringement, then any patent licenses 87 | granted to You under this License for that Work shall terminate 88 | as of the date such litigation is filed. 89 | 90 | 4. Redistribution. You may reproduce and distribute copies of the 91 | Work or Derivative Works thereof in any medium, with or without 92 | modifications, and in Source or Object form, provided that You 93 | meet the following conditions: 94 | 95 | (a) You must give any other recipients of the Work or 96 | Derivative Works a copy of this License; and 97 | 98 | (b) You must cause any modified files to carry prominent notices 99 | stating that You changed the files; and 100 | 101 | (c) You must retain, in the Source form of any Derivative Works 102 | that You distribute, all copyright, patent, trademark, and 103 | attribution notices from the Source form of the Work, 104 | excluding those notices that do not pertain to any part of 105 | the Derivative Works; and 106 | 107 | (d) If the Work includes a "NOTICE" text file as part of its 108 | distribution, then any Derivative Works that You distribute must 109 | include a readable copy of the attribution notices contained 110 | within such NOTICE file, excluding those notices that do not 111 | pertain to any part of the Derivative Works, in at least one 112 | of the following places: within a NOTICE text file distributed 113 | as part of the Derivative Works; within the Source form or 114 | documentation, if provided along with the Derivative Works; or, 115 | within a display generated by the Derivative Works, if and 116 | wherever such third-party notices normally appear. The contents 117 | of the NOTICE file are for informational purposes only and 118 | do not modify the License. You may add Your own attribution 119 | notices within Derivative Works that You distribute, alongside 120 | or as an addendum to the NOTICE text from the Work, provided 121 | that such additional attribution notices cannot be construed 122 | as modifying the License. 123 | 124 | You may add Your own copyright statement to Your modifications and 125 | may provide additional or different license terms and conditions 126 | for use, reproduction, or distribution of Your modifications, or 127 | for any such Derivative Works as a whole, provided Your use, 128 | reproduction, and distribution of the Work otherwise complies with 129 | the conditions stated in this License. 130 | 131 | 5. Submission of Contributions. Unless You explicitly state otherwise, 132 | any Contribution intentionally submitted for inclusion in the Work 133 | by You to the Licensor shall be under the terms and conditions of 134 | this License, without any additional terms or conditions. 135 | Notwithstanding the above, nothing herein shall supersede or modify 136 | the terms of any separate license agreement you may have executed 137 | with Licensor regarding such Contributions. 138 | 139 | 6. Trademarks. This License does not grant permission to use the trade 140 | names, trademarks, service marks, or product names of the Licensor, 141 | except as required for reasonable and customary use in describing the 142 | origin of the Work and reproducing the content of the NOTICE file. 143 | 144 | 7. Disclaimer of Warranty. Unless required by applicable law or 145 | agreed to in writing, Licensor provides the Work (and each 146 | Contributor provides its Contributions) on an "AS IS" BASIS, 147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 148 | implied, including, without limitation, any warranties or conditions 149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 150 | PARTICULAR PURPOSE. You are solely responsible for determining the 151 | appropriateness of using or redistributing the Work and assume any 152 | risks associated with Your exercise of permissions under this License. 153 | 154 | 8. Limitation of Liability. In no event and under no legal theory, 155 | whether in tort (including negligence), contract, or otherwise, 156 | unless required by applicable law (such as deliberate and grossly 157 | negligent acts) or agreed to in writing, shall any Contributor be 158 | liable to You for damages, including any direct, indirect, special, 159 | incidental, or consequential damages of any character arising as a 160 | result of this License or out of the use or inability to use the 161 | Work (including but not limited to damages for loss of goodwill, 162 | work stoppage, computer failure or malfunction, or any and all 163 | other commercial damages or losses), even if such Contributor 164 | has been advised of the possibility of such damages. 165 | 166 | 9. Accepting Warranty or Additional Liability. While redistributing 167 | the Work or Derivative Works thereof, You may choose to offer, 168 | and charge a fee for, acceptance of support, warranty, indemnity, 169 | or other liability obligations and/or rights consistent with this 170 | License. However, in accepting such obligations, You may act only 171 | on Your own behalf and on Your sole responsibility, not on behalf 172 | of any other Contributor, and only if You agree to indemnify, 173 | defend, and hold each Contributor harmless for any liability 174 | incurred by, or claims asserted against, such Contributor by reason 175 | of your accepting any such warranty or additional liability. 176 | 177 | END OF TERMS AND CONDITIONS 178 | 179 | APPENDIX: How to apply the Apache License to your work. 180 | 181 | To apply the Apache License to your work, attach the following 182 | boilerplate notice, with the fields enclosed by brackets "[]" 183 | replaced with your own identifying information. (Don't include 184 | the brackets!) The text should be enclosed in the appropriate 185 | comment syntax for the file format. We also recommend that a 186 | file or class name and description of purpose be included on the 187 | same "printed page" as the copyright notice for easier 188 | identification within third-party archives. 189 | 190 | Copyright [yyyy] [name of copyright owner] 191 | 192 | Licensed under the Apache License, Version 2.0 (the "License"); 193 | you may not use this file except in compliance with the License. 194 | You may obtain a copy of the License at 195 | 196 | http://www.apache.org/licenses/LICENSE-2.0 197 | 198 | Unless required by applicable law or agreed to in writing, software 199 | distributed under the License is distributed on an "AS IS" BASIS, 200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 201 | See the License for the specific language governing permissions and 202 | limitations under the License. 203 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Deep playground 2 | 3 | Deep playground is an interactive visualization of neural networks, written in 4 | TypeScript using d3.js. We use GitHub issues for tracking new requests and bugs. 5 | Your feedback is highly appreciated! 6 | 7 | **If you'd like to contribute, be sure to review the [contribution guidelines](CONTRIBUTING.md).** 8 | 9 | ## Development 10 | 11 | To run the visualization locally, run: 12 | - `npm i` to install dependencies 13 | - `npm run build` to compile the app and place it in the `dist/` directory 14 | - `npm run serve` to serve from the `dist/` directory and open a page on your browser. 15 | 16 | For a fast edit-refresh cycle when developing run `npm run serve-watch`. 17 | This will start an http server and automatically re-compile the TypeScript, 18 | HTML and CSS files whenever they change. 19 | 20 | ## For owners 21 | To push to production: `git subtree push --prefix dist origin gh-pages`. 22 | 23 | This is not an official Google product. 24 | -------------------------------------------------------------------------------- /analytics.js: -------------------------------------------------------------------------------- 1 | (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ 2 | (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), 3 | m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) 4 | })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); 5 | 6 | var ANALYTICS_ID = 'Add your own analytics ID here'; 7 | ga('create', ANALYTICS_ID, 'auto'); -------------------------------------------------------------------------------- /index.html: -------------------------------------------------------------------------------- 1 | 2 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | A Neural Network Playground 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 |
53 |

Tinker With a Neural Network Right Here in Your Browser.
Don’t Worry, You Can’t Break It. We Promise.

54 |
55 | 56 | 57 |
58 |
59 |
60 | 63 | 67 | 70 |
71 |
72 | Epoch 73 | 74 |
75 |
76 | 77 |
78 | 91 |
92 |
93 |
94 | 95 |
96 | 102 |
103 |
104 |
105 | 106 |
107 | 112 |
113 |
114 |
115 | 116 |
117 | 129 |
130 |
131 |
132 | 133 |
134 | 138 |
139 |
140 |
141 |
142 | 143 | 144 |
145 | 146 | 147 |
148 |

149 | Data 150 |

151 |
152 |

Which dataset do you want to use?

153 |
154 |
155 | 156 |
157 |
158 | 159 |
160 |
161 | 162 |
163 |
164 | 165 |
166 |
167 | 168 |
169 |
170 | 171 |
172 |
173 |
174 |
175 |
176 | 177 |

178 | 179 |

180 |
181 |
182 | 183 |

184 | 185 |

186 |
187 |
188 | 189 |

190 | 191 |

192 |
193 | 196 |
197 |
198 | 199 | 200 |
201 |

Features

202 |

Which properties do you want to feed in?

203 |
204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 |
213 |
Click anywhere to edit.
214 |
Weight/Bias is 0.2.
215 |
216 |
217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | This is the output from one neuron. Hover to see it larger. 227 |
228 |
229 |
230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 |
239 | The outputs are mixed with varying weights, shown by the thickness of the lines. 240 |
241 |
242 |
243 |
244 | 245 | 246 |
247 |

248 |
249 | 252 | 255 |
256 | 257 | 258 |

259 |
260 |
261 | 262 | 263 |
264 |

Output

265 |
266 |
267 | Test loss 268 |
269 |
270 |
271 | Training loss 272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 | 280 | 281 |
282 | Colors shows data, neuron and weight values. 283 |
284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 |
297 |
298 |
299 | 303 | 307 |
308 |
309 |
310 | 311 |
312 | 313 | 314 |
315 | 316 | 319 |
320 | 321 | 322 |
323 |
324 |

Um, What Is a Neural Network?

325 |

It’s a technique for building a computer program that learns from data. It is based very loosely on how we think the human brain works. First, a collection of software “neurons” are created and connected together, allowing them to send messages to each other. Next, the network is asked to solve a problem, which it attempts to do over and over, each time strengthening the connections that lead to success and diminishing those that lead to failure. For a more detailed introduction to neural networks, Michael Nielsen’s Neural Networks and Deep Learning is a good place to start. For a more technical overview, try Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

326 |
327 | 328 |
329 |

This Is Cool, Can I Repurpose It?

330 |

Please do! We’ve open sourced it on GitHub with the hope that it can make neural networks a little more accessible and easier to learn. You’re free to use it in any way that follows our Apache License. And if you have any suggestions for additions or changes, please let us know.

331 |

We’ve also provided some controls below to enable you tailor the playground to a specific topic or lesson. Just choose which features you’d like to be visible below then save this link, or refresh the page.

332 |
333 |
334 | 335 |
336 |

What Do All the Colors Mean?

337 |

Orange and blue are used throughout the visualization in slightly different ways, but in general orange shows negative values while blue shows positive values.

338 |

The data points (represented by small circles) are initially colored orange or blue, which correspond to positive one and negative one.

339 |

In the hidden layers, the lines are colored by the weights of the connections between neurons. Blue shows a positive weight, which means the network is using that output of the neuron as given. An orange line shows that the network is assiging a negative weight.

340 |

In the output layer, the dots are colored orange or blue depending on their original values. The background color shows what the network is predicting for a particular area. The intensity of the color shows how confident that prediction is.

341 |
342 | 343 |
344 |

What Library Are You Using?

345 |

We wrote a tiny neural network library 346 | that meets the demands of this educational visualization. For real-world applications, consider the 347 | TensorFlow library. 348 |

349 |
350 | 351 |
352 |

Credits

353 |

354 | This was created by Daniel Smilkov and Shan Carter. 355 | This is a continuation of many people’s previous work — most notably Andrej Karpathy’s convnet.js demo 356 | and Chris Olah’s articles about neural networks. 357 | Many thanks also to D. Sculley for help with the original idea and to Fernanda Viégas and Martin Wattenberg and the rest of the 358 | Big Picture and Google Brain teams for feedback and guidance. 359 |

360 |
361 |
362 | 363 | 364 | 397 | 398 | 399 | 400 | 401 | 402 | -------------------------------------------------------------------------------- /package.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "deep-playground-prototype", 3 | "version": "2016.3.10", 4 | "description": "", 5 | "private": true, 6 | "scripts": { 7 | "clean": "rimraf dist", 8 | "start": "npm run serve-watch", 9 | "prep": "copyfiles analytics.js dist && concat node_modules/material-design-lite/material.min.js node_modules/seedrandom/seedrandom.min.js > dist/lib.js", 10 | "build-css": "concat node_modules/material-design-lite/material.min.css styles.css > dist/bundle.css", 11 | "watch-css": "concat node_modules/material-design-lite/material.min.css styles.css -o dist/bundle.css", 12 | "build-html": "copyfiles index.html dist", 13 | "watch-html": "concat index.html -o dist/index.html", 14 | "build-js": "browserify src/playground.ts -p [tsify] | uglifyjs -c > dist/bundle.js", 15 | "watch-js": "watchify src/playground.ts -p [tsify] -v --debug -o dist/bundle.js", 16 | "build": "npm run prep && npm run build-js && npm run build-css && npm run build-html", 17 | "watch": "npm run prep && concurrently \"npm run watch-js\" \"npm run watch-css\" \"npm run watch-html\"", 18 | "serve": "npx serve dist/", 19 | "serve-watch": "concurrently \"npx serve dist/\" \"npm run watch\"" 20 | }, 21 | "devDependencies": { 22 | "@types/d3": "^3.5.34", 23 | "concat": "^1.0.3", 24 | "concurrently": "3.1.0", 25 | "copyfiles": "1.0.0", 26 | "rimraf": "2.5.4", 27 | "serve": "^11.3.0", 28 | "tsify": "^4.0.0", 29 | "typescript": "^2.9", 30 | "uglify-js": "^2.8.29", 31 | "watchify": "^4.0.0" 32 | }, 33 | "dependencies": { 34 | "d3": "^3.5.16", 35 | "material-design-lite": "^1.3.0", 36 | "seedrandom": "^2.4.3" 37 | } 38 | } 39 | -------------------------------------------------------------------------------- /src/dataset.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | import * as d3 from 'd3'; 17 | 18 | /** 19 | * A two dimensional example: x and y coordinates with the label. 20 | */ 21 | export type Example2D = { 22 | x: number, 23 | y: number, 24 | label: number 25 | }; 26 | 27 | type Point = { 28 | x: number, 29 | y: number 30 | }; 31 | 32 | /** 33 | * Shuffles the array using Fisher-Yates algorithm. Uses the seedrandom 34 | * library as the random generator. 35 | */ 36 | export function shuffle(array: any[]): void { 37 | let counter = array.length; 38 | let temp = 0; 39 | let index = 0; 40 | // While there are elements in the array 41 | while (counter > 0) { 42 | // Pick a random index 43 | index = Math.floor(Math.random() * counter); 44 | // Decrease counter by 1 45 | counter--; 46 | // And swap the last element with it 47 | temp = array[counter]; 48 | array[counter] = array[index]; 49 | array[index] = temp; 50 | } 51 | } 52 | 53 | export type DataGenerator = (numSamples: number, noise: number) => Example2D[]; 54 | 55 | export function classifyTwoGaussData(numSamples: number, noise: number): 56 | Example2D[] { 57 | let points: Example2D[] = []; 58 | 59 | let varianceScale = d3.scale.linear().domain([0, .5]).range([0.5, 4]); 60 | let variance = varianceScale(noise); 61 | 62 | function genGauss(cx: number, cy: number, label: number) { 63 | for (let i = 0; i < numSamples / 2; i++) { 64 | let x = normalRandom(cx, variance); 65 | let y = normalRandom(cy, variance); 66 | points.push({x, y, label}); 67 | } 68 | } 69 | 70 | genGauss(2, 2, 1); // Gaussian with positive examples. 71 | genGauss(-2, -2, -1); // Gaussian with negative examples. 72 | return points; 73 | } 74 | 75 | export function regressPlane(numSamples: number, noise: number): 76 | Example2D[] { 77 | let radius = 6; 78 | let labelScale = d3.scale.linear() 79 | .domain([-10, 10]) 80 | .range([-1, 1]); 81 | let getLabel = (x, y) => labelScale(x + y); 82 | 83 | let points: Example2D[] = []; 84 | for (let i = 0; i < numSamples; i++) { 85 | let x = randUniform(-radius, radius); 86 | let y = randUniform(-radius, radius); 87 | let noiseX = randUniform(-radius, radius) * noise; 88 | let noiseY = randUniform(-radius, radius) * noise; 89 | let label = getLabel(x + noiseX, y + noiseY); 90 | points.push({x, y, label}); 91 | } 92 | return points; 93 | } 94 | 95 | export function regressGaussian(numSamples: number, noise: number): 96 | Example2D[] { 97 | let points: Example2D[] = []; 98 | 99 | let labelScale = d3.scale.linear() 100 | .domain([0, 2]) 101 | .range([1, 0]) 102 | .clamp(true); 103 | 104 | let gaussians = [ 105 | [-4, 2.5, 1], 106 | [0, 2.5, -1], 107 | [4, 2.5, 1], 108 | [-4, -2.5, -1], 109 | [0, -2.5, 1], 110 | [4, -2.5, -1] 111 | ]; 112 | 113 | function getLabel(x, y) { 114 | // Choose the one that is maximum in abs value. 115 | let label = 0; 116 | gaussians.forEach(([cx, cy, sign]) => { 117 | let newLabel = sign * labelScale(dist({x, y}, {x: cx, y: cy})); 118 | if (Math.abs(newLabel) > Math.abs(label)) { 119 | label = newLabel; 120 | } 121 | }); 122 | return label; 123 | } 124 | let radius = 6; 125 | for (let i = 0; i < numSamples; i++) { 126 | let x = randUniform(-radius, radius); 127 | let y = randUniform(-radius, radius); 128 | let noiseX = randUniform(-radius, radius) * noise; 129 | let noiseY = randUniform(-radius, radius) * noise; 130 | let label = getLabel(x + noiseX, y + noiseY); 131 | points.push({x, y, label}); 132 | }; 133 | return points; 134 | } 135 | 136 | export function classifySpiralData(numSamples: number, noise: number): 137 | Example2D[] { 138 | let points: Example2D[] = []; 139 | let n = numSamples / 2; 140 | 141 | function genSpiral(deltaT: number, label: number) { 142 | for (let i = 0; i < n; i++) { 143 | let r = i / n * 5; 144 | let t = 1.75 * i / n * 2 * Math.PI + deltaT; 145 | let x = r * Math.sin(t) + randUniform(-1, 1) * noise; 146 | let y = r * Math.cos(t) + randUniform(-1, 1) * noise; 147 | points.push({x, y, label}); 148 | } 149 | } 150 | 151 | genSpiral(0, 1); // Positive examples. 152 | genSpiral(Math.PI, -1); // Negative examples. 153 | return points; 154 | } 155 | 156 | export function classifyCircleData(numSamples: number, noise: number): 157 | Example2D[] { 158 | let points: Example2D[] = []; 159 | let radius = 5; 160 | function getCircleLabel(p: Point, center: Point) { 161 | return (dist(p, center) < (radius * 0.5)) ? 1 : -1; 162 | } 163 | 164 | // Generate positive points inside the circle. 165 | for (let i = 0; i < numSamples / 2; i++) { 166 | let r = randUniform(0, radius * 0.5); 167 | let angle = randUniform(0, 2 * Math.PI); 168 | let x = r * Math.sin(angle); 169 | let y = r * Math.cos(angle); 170 | let noiseX = randUniform(-radius, radius) * noise; 171 | let noiseY = randUniform(-radius, radius) * noise; 172 | let label = getCircleLabel({x: x + noiseX, y: y + noiseY}, {x: 0, y: 0}); 173 | points.push({x, y, label}); 174 | } 175 | 176 | // Generate negative points outside the circle. 177 | for (let i = 0; i < numSamples / 2; i++) { 178 | let r = randUniform(radius * 0.7, radius); 179 | let angle = randUniform(0, 2 * Math.PI); 180 | let x = r * Math.sin(angle); 181 | let y = r * Math.cos(angle); 182 | let noiseX = randUniform(-radius, radius) * noise; 183 | let noiseY = randUniform(-radius, radius) * noise; 184 | let label = getCircleLabel({x: x + noiseX, y: y + noiseY}, {x: 0, y: 0}); 185 | points.push({x, y, label}); 186 | } 187 | return points; 188 | } 189 | 190 | export function classifyXORData(numSamples: number, noise: number): 191 | Example2D[] { 192 | function getXORLabel(p: Point) { return p.x * p.y >= 0 ? 1 : -1; } 193 | 194 | let points: Example2D[] = []; 195 | for (let i = 0; i < numSamples; i++) { 196 | let x = randUniform(-5, 5); 197 | let padding = 0.3; 198 | x += x > 0 ? padding : -padding; // Padding. 199 | let y = randUniform(-5, 5); 200 | y += y > 0 ? padding : -padding; 201 | let noiseX = randUniform(-5, 5) * noise; 202 | let noiseY = randUniform(-5, 5) * noise; 203 | let label = getXORLabel({x: x + noiseX, y: y + noiseY}); 204 | points.push({x, y, label}); 205 | } 206 | return points; 207 | } 208 | 209 | /** 210 | * Returns a sample from a uniform [a, b] distribution. 211 | * Uses the seedrandom library as the random generator. 212 | */ 213 | function randUniform(a: number, b: number) { 214 | return Math.random() * (b - a) + a; 215 | } 216 | 217 | /** 218 | * Samples from a normal distribution. Uses the seedrandom library as the 219 | * random generator. 220 | * 221 | * @param mean The mean. Default is 0. 222 | * @param variance The variance. Default is 1. 223 | */ 224 | function normalRandom(mean = 0, variance = 1): number { 225 | let v1: number, v2: number, s: number; 226 | do { 227 | v1 = 2 * Math.random() - 1; 228 | v2 = 2 * Math.random() - 1; 229 | s = v1 * v1 + v2 * v2; 230 | } while (s > 1); 231 | 232 | let result = Math.sqrt(-2 * Math.log(s) / s) * v1; 233 | return mean + Math.sqrt(variance) * result; 234 | } 235 | 236 | /** Returns the eucledian distance between two points in space. */ 237 | function dist(a: Point, b: Point): number { 238 | let dx = a.x - b.x; 239 | let dy = a.y - b.y; 240 | return Math.sqrt(dx * dx + dy * dy); 241 | } 242 | -------------------------------------------------------------------------------- /src/heatmap.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | import {Example2D} from "./dataset"; 17 | import * as d3 from 'd3'; 18 | 19 | export interface HeatMapSettings { 20 | [key: string]: any; 21 | showAxes?: boolean; 22 | noSvg?: boolean; 23 | } 24 | 25 | /** Number of different shades (colors) when drawing a gradient heatmap */ 26 | const NUM_SHADES = 30; 27 | 28 | /** 29 | * Draws a heatmap using canvas. Used for showing the learned decision 30 | * boundary of the classification algorithm. Can also draw data points 31 | * using an svg overlayed on top of the canvas heatmap. 32 | */ 33 | export class HeatMap { 34 | private settings: HeatMapSettings = { 35 | showAxes: false, 36 | noSvg: false 37 | }; 38 | private xScale; 39 | private yScale; 40 | private numSamples: number; 41 | private color; 42 | private canvas; 43 | private svg; 44 | 45 | constructor( 46 | width: number, numSamples: number, xDomain: [number, number], 47 | yDomain: [number, number], container, 48 | userSettings?: HeatMapSettings) { 49 | this.numSamples = numSamples; 50 | let height = width; 51 | let padding = userSettings.showAxes ? 20 : 0; 52 | 53 | if (userSettings != null) { 54 | // overwrite the defaults with the user-specified settings. 55 | for (let prop in userSettings) { 56 | this.settings[prop] = userSettings[prop]; 57 | } 58 | } 59 | 60 | this.xScale = d3.scale.linear() 61 | .domain(xDomain) 62 | .range([0, width - 2 * padding]); 63 | 64 | this.yScale = d3.scale.linear() 65 | .domain(yDomain) 66 | .range([height - 2 * padding, 0]); 67 | 68 | // Get a range of colors. 69 | let tmpScale = d3.scale.linear() 70 | .domain([0, .5, 1]) 71 | .range(["#f59322", "#e8eaeb", "#0877bd"]) 72 | .clamp(true); 73 | // Due to numerical error, we need to specify 74 | // d3.range(0, end + small_epsilon, step) 75 | // in order to guarantee that we will have end/step entries with 76 | // the last element being equal to end. 77 | let colors = d3.range(0, 1 + 1E-9, 1 / NUM_SHADES).map(a => { 78 | return tmpScale(a); 79 | }); 80 | this.color = d3.scale.quantize() 81 | .domain([-1, 1]) 82 | .range(colors); 83 | 84 | container = container.append("div") 85 | .style({ 86 | width: `${width}px`, 87 | height: `${height}px`, 88 | position: "relative", 89 | top: `-${padding}px`, 90 | left: `-${padding}px` 91 | }); 92 | this.canvas = container.append("canvas") 93 | .attr("width", numSamples) 94 | .attr("height", numSamples) 95 | .style("width", (width - 2 * padding) + "px") 96 | .style("height", (height - 2 * padding) + "px") 97 | .style("position", "absolute") 98 | .style("top", `${padding}px`) 99 | .style("left", `${padding}px`); 100 | 101 | if (!this.settings.noSvg) { 102 | this.svg = container.append("svg").attr({ 103 | "width": width, 104 | "height": height 105 | }).style({ 106 | // Overlay the svg on top of the canvas. 107 | "position": "absolute", 108 | "left": "0", 109 | "top": "0" 110 | }).append("g") 111 | .attr("transform", `translate(${padding},${padding})`); 112 | 113 | this.svg.append("g").attr("class", "train"); 114 | this.svg.append("g").attr("class", "test"); 115 | } 116 | 117 | if (this.settings.showAxes) { 118 | let xAxis = d3.svg.axis() 119 | .scale(this.xScale) 120 | .orient("bottom"); 121 | 122 | let yAxis = d3.svg.axis() 123 | .scale(this.yScale) 124 | .orient("right"); 125 | 126 | this.svg.append("g") 127 | .attr("class", "x axis") 128 | .attr("transform", `translate(0,${height - 2 * padding})`) 129 | .call(xAxis); 130 | 131 | this.svg.append("g") 132 | .attr("class", "y axis") 133 | .attr("transform", "translate(" + (width - 2 * padding) + ",0)") 134 | .call(yAxis); 135 | } 136 | } 137 | 138 | updateTestPoints(points: Example2D[]): void { 139 | if (this.settings.noSvg) { 140 | throw Error("Can't add points since noSvg=true"); 141 | } 142 | this.updateCircles(this.svg.select("g.test"), points); 143 | } 144 | 145 | updatePoints(points: Example2D[]): void { 146 | if (this.settings.noSvg) { 147 | throw Error("Can't add points since noSvg=true"); 148 | } 149 | this.updateCircles(this.svg.select("g.train"), points); 150 | } 151 | 152 | updateBackground(data: number[][], discretize: boolean): void { 153 | let dx = data[0].length; 154 | let dy = data.length; 155 | 156 | if (dx !== this.numSamples || dy !== this.numSamples) { 157 | throw new Error( 158 | "The provided data matrix must be of size " + 159 | "numSamples X numSamples"); 160 | } 161 | 162 | // Compute the pixel colors; scaled by CSS. 163 | let context = (this.canvas.node() as HTMLCanvasElement).getContext("2d"); 164 | let image = context.createImageData(dx, dy); 165 | 166 | for (let y = 0, p = -1; y < dy; ++y) { 167 | for (let x = 0; x < dx; ++x) { 168 | let value = data[x][y]; 169 | if (discretize) { 170 | value = (value >= 0 ? 1 : -1); 171 | } 172 | let c = d3.rgb(this.color(value)); 173 | image.data[++p] = c.r; 174 | image.data[++p] = c.g; 175 | image.data[++p] = c.b; 176 | image.data[++p] = 160; 177 | } 178 | } 179 | context.putImageData(image, 0, 0); 180 | } 181 | 182 | private updateCircles(container, points: Example2D[]) { 183 | // Keep only points that are inside the bounds. 184 | let xDomain = this.xScale.domain(); 185 | let yDomain = this.yScale.domain(); 186 | points = points.filter(p => { 187 | return p.x >= xDomain[0] && p.x <= xDomain[1] 188 | && p.y >= yDomain[0] && p.y <= yDomain[1]; 189 | }); 190 | 191 | // Attach data to initially empty selection. 192 | let selection = container.selectAll("circle").data(points); 193 | 194 | // Insert elements to match length of points array. 195 | selection.enter().append("circle").attr("r", 3); 196 | 197 | // Update points to be in the correct position. 198 | selection 199 | .attr({ 200 | cx: (d: Example2D) => this.xScale(d.x), 201 | cy: (d: Example2D) => this.yScale(d.y), 202 | }) 203 | .style("fill", d => this.color(d.label)); 204 | 205 | // Remove points if the length has gone down. 206 | selection.exit().remove(); 207 | } 208 | } // Close class HeatMap. 209 | 210 | export function reduceMatrix(matrix: number[][], factor: number): number[][] { 211 | if (matrix.length !== matrix[0].length) { 212 | throw new Error("The provided matrix must be a square matrix"); 213 | } 214 | if (matrix.length % factor !== 0) { 215 | throw new Error("The width/height of the matrix must be divisible by " + 216 | "the reduction factor"); 217 | } 218 | let result: number[][] = new Array(matrix.length / factor); 219 | for (let i = 0; i < matrix.length; i += factor) { 220 | result[i / factor] = new Array(matrix.length / factor); 221 | for (let j = 0; j < matrix.length; j += factor) { 222 | let avg = 0; 223 | // Sum all the values in the neighborhood. 224 | for (let k = 0; k < factor; k++) { 225 | for (let l = 0; l < factor; l++) { 226 | avg += matrix[i + k][j + l]; 227 | } 228 | } 229 | avg /= (factor * factor); 230 | result[i / factor][j / factor] = avg; 231 | } 232 | } 233 | return result; 234 | } 235 | -------------------------------------------------------------------------------- /src/linechart.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | import * as d3 from 'd3'; 17 | 18 | type DataPoint = { 19 | x: number; 20 | y: number[]; 21 | }; 22 | 23 | /** 24 | * A multi-series line chart that allows you to append new data points 25 | * as data becomes available. 26 | */ 27 | export class AppendingLineChart { 28 | private numLines: number; 29 | private data: DataPoint[] = []; 30 | private svg; 31 | private xScale; 32 | private yScale; 33 | private paths; 34 | private lineColors: string[]; 35 | 36 | private minY = Number.MAX_VALUE; 37 | private maxY = Number.MIN_VALUE; 38 | 39 | constructor(container, lineColors: string[]) { 40 | this.lineColors = lineColors; 41 | this.numLines = lineColors.length; 42 | let node = container.node() as HTMLElement; 43 | let totalWidth = node.offsetWidth; 44 | let totalHeight = node.offsetHeight; 45 | let margin = {top: 2, right: 0, bottom: 2, left: 2}; 46 | let width = totalWidth - margin.left - margin.right; 47 | let height = totalHeight - margin.top - margin.bottom; 48 | 49 | this.xScale = d3.scale.linear() 50 | .domain([0, 0]) 51 | .range([0, width]); 52 | 53 | this.yScale = d3.scale.linear() 54 | .domain([0, 0]) 55 | .range([height, 0]); 56 | 57 | this.svg = container.append("svg") 58 | .attr("width", width + margin.left + margin.right) 59 | .attr("height", height + margin.top + margin.bottom) 60 | .append("g") 61 | .attr("transform", `translate(${margin.left},${margin.top})`); 62 | 63 | this.paths = new Array(this.numLines); 64 | for (let i = 0; i < this.numLines; i++) { 65 | this.paths[i] = this.svg.append("path") 66 | .attr("class", "line") 67 | .style({ 68 | "fill": "none", 69 | "stroke": lineColors[i], 70 | "stroke-width": "1.5px" 71 | }); 72 | } 73 | } 74 | 75 | reset() { 76 | this.data = []; 77 | this.redraw(); 78 | this.minY = Number.MAX_VALUE; 79 | this.maxY = Number.MIN_VALUE; 80 | } 81 | 82 | addDataPoint(dataPoint: number[]) { 83 | if (dataPoint.length !== this.numLines) { 84 | throw Error("Length of dataPoint must equal number of lines"); 85 | } 86 | dataPoint.forEach(y => { 87 | this.minY = Math.min(this.minY, y); 88 | this.maxY = Math.max(this.maxY, y); 89 | }); 90 | 91 | this.data.push({x: this.data.length + 1, y: dataPoint}); 92 | this.redraw(); 93 | } 94 | 95 | private redraw() { 96 | // Adjust the x and y domain. 97 | this.xScale.domain([1, this.data.length]); 98 | this.yScale.domain([this.minY, this.maxY]); 99 | // Adjust all the elements (lines). 100 | let getPathMap = (lineIndex: number) => { 101 | return d3.svg.line<{x: number, y:number}>() 102 | .x(d => this.xScale(d.x)) 103 | .y(d => this.yScale(d.y[lineIndex])); 104 | }; 105 | for (let i = 0; i < this.numLines; i++) { 106 | this.paths[i].datum(this.data).attr("d", getPathMap(i)); 107 | } 108 | } 109 | } 110 | -------------------------------------------------------------------------------- /src/nn.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | /** 17 | * A node in a neural network. Each node has a state 18 | * (total input, output, and their respectively derivatives) which changes 19 | * after every forward and back propagation run. 20 | */ 21 | export class Node { 22 | id: string; 23 | /** List of input links. */ 24 | inputLinks: Link[] = []; 25 | bias = 0.1; 26 | /** List of output links. */ 27 | outputs: Link[] = []; 28 | totalInput: number; 29 | output: number; 30 | /** Error derivative with respect to this node's output. */ 31 | outputDer = 0; 32 | /** Error derivative with respect to this node's total input. */ 33 | inputDer = 0; 34 | /** 35 | * Accumulated error derivative with respect to this node's total input since 36 | * the last update. This derivative equals dE/db where b is the node's 37 | * bias term. 38 | */ 39 | accInputDer = 0; 40 | /** 41 | * Number of accumulated err. derivatives with respect to the total input 42 | * since the last update. 43 | */ 44 | numAccumulatedDers = 0; 45 | /** Activation function that takes total input and returns node's output */ 46 | activation: ActivationFunction; 47 | 48 | /** 49 | * Creates a new node with the provided id and activation function. 50 | */ 51 | constructor(id: string, activation: ActivationFunction, initZero?: boolean) { 52 | this.id = id; 53 | this.activation = activation; 54 | if (initZero) { 55 | this.bias = 0; 56 | } 57 | } 58 | 59 | /** Recomputes the node's output and returns it. */ 60 | updateOutput(): number { 61 | // Stores total input into the node. 62 | this.totalInput = this.bias; 63 | for (let j = 0; j < this.inputLinks.length; j++) { 64 | let link = this.inputLinks[j]; 65 | this.totalInput += link.weight * link.source.output; 66 | } 67 | this.output = this.activation.output(this.totalInput); 68 | return this.output; 69 | } 70 | } 71 | 72 | /** 73 | * An error function and its derivative. 74 | */ 75 | export interface ErrorFunction { 76 | error: (output: number, target: number) => number; 77 | der: (output: number, target: number) => number; 78 | } 79 | 80 | /** A node's activation function and its derivative. */ 81 | export interface ActivationFunction { 82 | output: (input: number) => number; 83 | der: (input: number) => number; 84 | } 85 | 86 | /** Function that computes a penalty cost for a given weight in the network. */ 87 | export interface RegularizationFunction { 88 | output: (weight: number) => number; 89 | der: (weight: number) => number; 90 | } 91 | 92 | /** Built-in error functions */ 93 | export class Errors { 94 | public static SQUARE: ErrorFunction = { 95 | error: (output: number, target: number) => 96 | 0.5 * Math.pow(output - target, 2), 97 | der: (output: number, target: number) => output - target 98 | }; 99 | } 100 | 101 | /** Polyfill for TANH */ 102 | (Math as any).tanh = (Math as any).tanh || function(x) { 103 | if (x === Infinity) { 104 | return 1; 105 | } else if (x === -Infinity) { 106 | return -1; 107 | } else { 108 | let e2x = Math.exp(2 * x); 109 | return (e2x - 1) / (e2x + 1); 110 | } 111 | }; 112 | 113 | /** Built-in activation functions */ 114 | export class Activations { 115 | public static TANH: ActivationFunction = { 116 | output: x => (Math as any).tanh(x), 117 | der: x => { 118 | let output = Activations.TANH.output(x); 119 | return 1 - output * output; 120 | } 121 | }; 122 | public static RELU: ActivationFunction = { 123 | output: x => Math.max(0, x), 124 | der: x => x <= 0 ? 0 : 1 125 | }; 126 | public static SIGMOID: ActivationFunction = { 127 | output: x => 1 / (1 + Math.exp(-x)), 128 | der: x => { 129 | let output = Activations.SIGMOID.output(x); 130 | return output * (1 - output); 131 | } 132 | }; 133 | public static LINEAR: ActivationFunction = { 134 | output: x => x, 135 | der: x => 1 136 | }; 137 | } 138 | 139 | /** Build-in regularization functions */ 140 | export class RegularizationFunction { 141 | public static L1: RegularizationFunction = { 142 | output: w => Math.abs(w), 143 | der: w => w < 0 ? -1 : (w > 0 ? 1 : 0) 144 | }; 145 | public static L2: RegularizationFunction = { 146 | output: w => 0.5 * w * w, 147 | der: w => w 148 | }; 149 | } 150 | 151 | /** 152 | * A link in a neural network. Each link has a weight and a source and 153 | * destination node. Also it has an internal state (error derivative 154 | * with respect to a particular input) which gets updated after 155 | * a run of back propagation. 156 | */ 157 | export class Link { 158 | id: string; 159 | source: Node; 160 | dest: Node; 161 | weight = Math.random() - 0.5; 162 | isDead = false; 163 | /** Error derivative with respect to this weight. */ 164 | errorDer = 0; 165 | /** Accumulated error derivative since the last update. */ 166 | accErrorDer = 0; 167 | /** Number of accumulated derivatives since the last update. */ 168 | numAccumulatedDers = 0; 169 | regularization: RegularizationFunction; 170 | 171 | /** 172 | * Constructs a link in the neural network initialized with random weight. 173 | * 174 | * @param source The source node. 175 | * @param dest The destination node. 176 | * @param regularization The regularization function that computes the 177 | * penalty for this weight. If null, there will be no regularization. 178 | */ 179 | constructor(source: Node, dest: Node, 180 | regularization: RegularizationFunction, initZero?: boolean) { 181 | this.id = source.id + "-" + dest.id; 182 | this.source = source; 183 | this.dest = dest; 184 | this.regularization = regularization; 185 | if (initZero) { 186 | this.weight = 0; 187 | } 188 | } 189 | } 190 | 191 | /** 192 | * Builds a neural network. 193 | * 194 | * @param networkShape The shape of the network. E.g. [1, 2, 3, 1] means 195 | * the network will have one input node, 2 nodes in first hidden layer, 196 | * 3 nodes in second hidden layer and 1 output node. 197 | * @param activation The activation function of every hidden node. 198 | * @param outputActivation The activation function for the output nodes. 199 | * @param regularization The regularization function that computes a penalty 200 | * for a given weight (parameter) in the network. If null, there will be 201 | * no regularization. 202 | * @param inputIds List of ids for the input nodes. 203 | */ 204 | export function buildNetwork( 205 | networkShape: number[], activation: ActivationFunction, 206 | outputActivation: ActivationFunction, 207 | regularization: RegularizationFunction, 208 | inputIds: string[], initZero?: boolean): Node[][] { 209 | let numLayers = networkShape.length; 210 | let id = 1; 211 | /** List of layers, with each layer being a list of nodes. */ 212 | let network: Node[][] = []; 213 | for (let layerIdx = 0; layerIdx < numLayers; layerIdx++) { 214 | let isOutputLayer = layerIdx === numLayers - 1; 215 | let isInputLayer = layerIdx === 0; 216 | let currentLayer: Node[] = []; 217 | network.push(currentLayer); 218 | let numNodes = networkShape[layerIdx]; 219 | for (let i = 0; i < numNodes; i++) { 220 | let nodeId = id.toString(); 221 | if (isInputLayer) { 222 | nodeId = inputIds[i]; 223 | } else { 224 | id++; 225 | } 226 | let node = new Node(nodeId, 227 | isOutputLayer ? outputActivation : activation, initZero); 228 | currentLayer.push(node); 229 | if (layerIdx >= 1) { 230 | // Add links from nodes in the previous layer to this node. 231 | for (let j = 0; j < network[layerIdx - 1].length; j++) { 232 | let prevNode = network[layerIdx - 1][j]; 233 | let link = new Link(prevNode, node, regularization, initZero); 234 | prevNode.outputs.push(link); 235 | node.inputLinks.push(link); 236 | } 237 | } 238 | } 239 | } 240 | return network; 241 | } 242 | 243 | /** 244 | * Runs a forward propagation of the provided input through the provided 245 | * network. This method modifies the internal state of the network - the 246 | * total input and output of each node in the network. 247 | * 248 | * @param network The neural network. 249 | * @param inputs The input array. Its length should match the number of input 250 | * nodes in the network. 251 | * @return The final output of the network. 252 | */ 253 | export function forwardProp(network: Node[][], inputs: number[]): number { 254 | let inputLayer = network[0]; 255 | if (inputs.length !== inputLayer.length) { 256 | throw new Error("The number of inputs must match the number of nodes in" + 257 | " the input layer"); 258 | } 259 | // Update the input layer. 260 | for (let i = 0; i < inputLayer.length; i++) { 261 | let node = inputLayer[i]; 262 | node.output = inputs[i]; 263 | } 264 | for (let layerIdx = 1; layerIdx < network.length; layerIdx++) { 265 | let currentLayer = network[layerIdx]; 266 | // Update all the nodes in this layer. 267 | for (let i = 0; i < currentLayer.length; i++) { 268 | let node = currentLayer[i]; 269 | node.updateOutput(); 270 | } 271 | } 272 | return network[network.length - 1][0].output; 273 | } 274 | 275 | /** 276 | * Runs a backward propagation using the provided target and the 277 | * computed output of the previous call to forward propagation. 278 | * This method modifies the internal state of the network - the error 279 | * derivatives with respect to each node, and each weight 280 | * in the network. 281 | */ 282 | export function backProp(network: Node[][], target: number, 283 | errorFunc: ErrorFunction): void { 284 | // The output node is a special case. We use the user-defined error 285 | // function for the derivative. 286 | let outputNode = network[network.length - 1][0]; 287 | outputNode.outputDer = errorFunc.der(outputNode.output, target); 288 | 289 | // Go through the layers backwards. 290 | for (let layerIdx = network.length - 1; layerIdx >= 1; layerIdx--) { 291 | let currentLayer = network[layerIdx]; 292 | // Compute the error derivative of each node with respect to: 293 | // 1) its total input 294 | // 2) each of its input weights. 295 | for (let i = 0; i < currentLayer.length; i++) { 296 | let node = currentLayer[i]; 297 | node.inputDer = node.outputDer * node.activation.der(node.totalInput); 298 | node.accInputDer += node.inputDer; 299 | node.numAccumulatedDers++; 300 | } 301 | 302 | // Error derivative with respect to each weight coming into the node. 303 | for (let i = 0; i < currentLayer.length; i++) { 304 | let node = currentLayer[i]; 305 | for (let j = 0; j < node.inputLinks.length; j++) { 306 | let link = node.inputLinks[j]; 307 | if (link.isDead) { 308 | continue; 309 | } 310 | link.errorDer = node.inputDer * link.source.output; 311 | link.accErrorDer += link.errorDer; 312 | link.numAccumulatedDers++; 313 | } 314 | } 315 | if (layerIdx === 1) { 316 | continue; 317 | } 318 | let prevLayer = network[layerIdx - 1]; 319 | for (let i = 0; i < prevLayer.length; i++) { 320 | let node = prevLayer[i]; 321 | // Compute the error derivative with respect to each node's output. 322 | node.outputDer = 0; 323 | for (let j = 0; j < node.outputs.length; j++) { 324 | let output = node.outputs[j]; 325 | node.outputDer += output.weight * output.dest.inputDer; 326 | } 327 | } 328 | } 329 | } 330 | 331 | /** 332 | * Updates the weights of the network using the previously accumulated error 333 | * derivatives. 334 | */ 335 | export function updateWeights(network: Node[][], learningRate: number, 336 | regularizationRate: number) { 337 | for (let layerIdx = 1; layerIdx < network.length; layerIdx++) { 338 | let currentLayer = network[layerIdx]; 339 | for (let i = 0; i < currentLayer.length; i++) { 340 | let node = currentLayer[i]; 341 | // Update the node's bias. 342 | if (node.numAccumulatedDers > 0) { 343 | node.bias -= learningRate * node.accInputDer / node.numAccumulatedDers; 344 | node.accInputDer = 0; 345 | node.numAccumulatedDers = 0; 346 | } 347 | // Update the weights coming into this node. 348 | for (let j = 0; j < node.inputLinks.length; j++) { 349 | let link = node.inputLinks[j]; 350 | if (link.isDead) { 351 | continue; 352 | } 353 | let regulDer = link.regularization ? 354 | link.regularization.der(link.weight) : 0; 355 | if (link.numAccumulatedDers > 0) { 356 | // Update the weight based on dE/dw. 357 | link.weight = link.weight - 358 | (learningRate / link.numAccumulatedDers) * link.accErrorDer; 359 | // Further update the weight based on regularization. 360 | let newLinkWeight = link.weight - 361 | (learningRate * regularizationRate) * regulDer; 362 | if (link.regularization === RegularizationFunction.L1 && 363 | link.weight * newLinkWeight < 0) { 364 | // The weight crossed 0 due to the regularization term. Set it to 0. 365 | link.weight = 0; 366 | link.isDead = true; 367 | } else { 368 | link.weight = newLinkWeight; 369 | } 370 | link.accErrorDer = 0; 371 | link.numAccumulatedDers = 0; 372 | } 373 | } 374 | } 375 | } 376 | } 377 | 378 | /** Iterates over every node in the network/ */ 379 | export function forEachNode(network: Node[][], ignoreInputs: boolean, 380 | accessor: (node: Node) => any) { 381 | for (let layerIdx = ignoreInputs ? 1 : 0; 382 | layerIdx < network.length; 383 | layerIdx++) { 384 | let currentLayer = network[layerIdx]; 385 | for (let i = 0; i < currentLayer.length; i++) { 386 | let node = currentLayer[i]; 387 | accessor(node); 388 | } 389 | } 390 | } 391 | 392 | /** Returns the output node in the network. */ 393 | export function getOutputNode(network: Node[][]) { 394 | return network[network.length - 1][0]; 395 | } 396 | -------------------------------------------------------------------------------- /src/playground.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | import * as nn from "./nn"; 17 | import {HeatMap, reduceMatrix} from "./heatmap"; 18 | import { 19 | State, 20 | datasets, 21 | regDatasets, 22 | activations, 23 | problems, 24 | regularizations, 25 | getKeyFromValue, 26 | Problem 27 | } from "./state"; 28 | import {Example2D, shuffle} from "./dataset"; 29 | import {AppendingLineChart} from "./linechart"; 30 | import * as d3 from 'd3'; 31 | 32 | let mainWidth; 33 | 34 | // More scrolling 35 | d3.select(".more button").on("click", function() { 36 | let position = 800; 37 | d3.transition() 38 | .duration(1000) 39 | .tween("scroll", scrollTween(position)); 40 | }); 41 | 42 | function scrollTween(offset) { 43 | return function() { 44 | let i = d3.interpolateNumber(window.pageYOffset || 45 | document.documentElement.scrollTop, offset); 46 | return function(t) { scrollTo(0, i(t)); }; 47 | }; 48 | } 49 | 50 | const RECT_SIZE = 30; 51 | const BIAS_SIZE = 5; 52 | const NUM_SAMPLES_CLASSIFY = 500; 53 | const NUM_SAMPLES_REGRESS = 1200; 54 | const DENSITY = 100; 55 | 56 | enum HoverType { 57 | BIAS, WEIGHT 58 | } 59 | 60 | interface InputFeature { 61 | f: (x: number, y: number) => number; 62 | label?: string; 63 | } 64 | 65 | let INPUTS: {[name: string]: InputFeature} = { 66 | "x": {f: (x, y) => x, label: "X_1"}, 67 | "y": {f: (x, y) => y, label: "X_2"}, 68 | "xSquared": {f: (x, y) => x * x, label: "X_1^2"}, 69 | "ySquared": {f: (x, y) => y * y, label: "X_2^2"}, 70 | "xTimesY": {f: (x, y) => x * y, label: "X_1X_2"}, 71 | "sinX": {f: (x, y) => Math.sin(x), label: "sin(X_1)"}, 72 | "sinY": {f: (x, y) => Math.sin(y), label: "sin(X_2)"}, 73 | }; 74 | 75 | let HIDABLE_CONTROLS = [ 76 | ["Show test data", "showTestData"], 77 | ["Discretize output", "discretize"], 78 | ["Play button", "playButton"], 79 | ["Step button", "stepButton"], 80 | ["Reset button", "resetButton"], 81 | ["Learning rate", "learningRate"], 82 | ["Activation", "activation"], 83 | ["Regularization", "regularization"], 84 | ["Regularization rate", "regularizationRate"], 85 | ["Problem type", "problem"], 86 | ["Which dataset", "dataset"], 87 | ["Ratio train data", "percTrainData"], 88 | ["Noise level", "noise"], 89 | ["Batch size", "batchSize"], 90 | ["# of hidden layers", "numHiddenLayers"], 91 | ]; 92 | 93 | class Player { 94 | private timerIndex = 0; 95 | private isPlaying = false; 96 | private callback: (isPlaying: boolean) => void = null; 97 | 98 | /** Plays/pauses the player. */ 99 | playOrPause() { 100 | if (this.isPlaying) { 101 | this.isPlaying = false; 102 | this.pause(); 103 | } else { 104 | this.isPlaying = true; 105 | if (iter === 0) { 106 | simulationStarted(); 107 | } 108 | this.play(); 109 | } 110 | } 111 | 112 | onPlayPause(callback: (isPlaying: boolean) => void) { 113 | this.callback = callback; 114 | } 115 | 116 | play() { 117 | this.pause(); 118 | this.isPlaying = true; 119 | if (this.callback) { 120 | this.callback(this.isPlaying); 121 | } 122 | this.start(this.timerIndex); 123 | } 124 | 125 | pause() { 126 | this.timerIndex++; 127 | this.isPlaying = false; 128 | if (this.callback) { 129 | this.callback(this.isPlaying); 130 | } 131 | } 132 | 133 | private start(localTimerIndex: number) { 134 | d3.timer(() => { 135 | if (localTimerIndex < this.timerIndex) { 136 | return true; // Done. 137 | } 138 | oneStep(); 139 | return false; // Not done. 140 | }, 0); 141 | } 142 | } 143 | 144 | let state = State.deserializeState(); 145 | 146 | // Filter out inputs that are hidden. 147 | state.getHiddenProps().forEach(prop => { 148 | if (prop in INPUTS) { 149 | delete INPUTS[prop]; 150 | } 151 | }); 152 | 153 | let boundary: {[id: string]: number[][]} = {}; 154 | let selectedNodeId: string = null; 155 | // Plot the heatmap. 156 | let xDomain: [number, number] = [-6, 6]; 157 | let heatMap = 158 | new HeatMap(300, DENSITY, xDomain, xDomain, d3.select("#heatmap"), 159 | {showAxes: true}); 160 | let linkWidthScale = d3.scale.linear() 161 | .domain([0, 5]) 162 | .range([1, 10]) 163 | .clamp(true); 164 | let colorScale = d3.scale.linear() 165 | .domain([-1, 0, 1]) 166 | .range(["#f59322", "#e8eaeb", "#0877bd"]) 167 | .clamp(true); 168 | let iter = 0; 169 | let trainData: Example2D[] = []; 170 | let testData: Example2D[] = []; 171 | let network: nn.Node[][] = null; 172 | let lossTrain = 0; 173 | let lossTest = 0; 174 | let player = new Player(); 175 | let lineChart = new AppendingLineChart(d3.select("#linechart"), 176 | ["#777", "black"]); 177 | 178 | function makeGUI() { 179 | d3.select("#reset-button").on("click", () => { 180 | reset(); 181 | userHasInteracted(); 182 | d3.select("#play-pause-button"); 183 | }); 184 | 185 | d3.select("#play-pause-button").on("click", function () { 186 | // Change the button's content. 187 | userHasInteracted(); 188 | player.playOrPause(); 189 | }); 190 | 191 | player.onPlayPause(isPlaying => { 192 | d3.select("#play-pause-button").classed("playing", isPlaying); 193 | }); 194 | 195 | d3.select("#next-step-button").on("click", () => { 196 | player.pause(); 197 | userHasInteracted(); 198 | if (iter === 0) { 199 | simulationStarted(); 200 | } 201 | oneStep(); 202 | }); 203 | 204 | d3.select("#data-regen-button").on("click", () => { 205 | generateData(); 206 | parametersChanged = true; 207 | }); 208 | 209 | let dataThumbnails = d3.selectAll("canvas[data-dataset]"); 210 | dataThumbnails.on("click", function() { 211 | let newDataset = datasets[this.dataset.dataset]; 212 | if (newDataset === state.dataset) { 213 | return; // No-op. 214 | } 215 | state.dataset = newDataset; 216 | dataThumbnails.classed("selected", false); 217 | d3.select(this).classed("selected", true); 218 | generateData(); 219 | parametersChanged = true; 220 | reset(); 221 | }); 222 | 223 | let datasetKey = getKeyFromValue(datasets, state.dataset); 224 | // Select the dataset according to the current state. 225 | d3.select(`canvas[data-dataset=${datasetKey}]`) 226 | .classed("selected", true); 227 | 228 | let regDataThumbnails = d3.selectAll("canvas[data-regDataset]"); 229 | regDataThumbnails.on("click", function() { 230 | let newDataset = regDatasets[this.dataset.regdataset]; 231 | if (newDataset === state.regDataset) { 232 | return; // No-op. 233 | } 234 | state.regDataset = newDataset; 235 | regDataThumbnails.classed("selected", false); 236 | d3.select(this).classed("selected", true); 237 | generateData(); 238 | parametersChanged = true; 239 | reset(); 240 | }); 241 | 242 | let regDatasetKey = getKeyFromValue(regDatasets, state.regDataset); 243 | // Select the dataset according to the current state. 244 | d3.select(`canvas[data-regDataset=${regDatasetKey}]`) 245 | .classed("selected", true); 246 | 247 | d3.select("#add-layers").on("click", () => { 248 | if (state.numHiddenLayers >= 6) { 249 | return; 250 | } 251 | state.networkShape[state.numHiddenLayers] = 2; 252 | state.numHiddenLayers++; 253 | parametersChanged = true; 254 | reset(); 255 | }); 256 | 257 | d3.select("#remove-layers").on("click", () => { 258 | if (state.numHiddenLayers <= 0) { 259 | return; 260 | } 261 | state.numHiddenLayers--; 262 | state.networkShape.splice(state.numHiddenLayers); 263 | parametersChanged = true; 264 | reset(); 265 | }); 266 | 267 | let showTestData = d3.select("#show-test-data").on("change", function() { 268 | state.showTestData = this.checked; 269 | state.serialize(); 270 | userHasInteracted(); 271 | heatMap.updateTestPoints(state.showTestData ? testData : []); 272 | }); 273 | // Check/uncheck the checkbox according to the current state. 274 | showTestData.property("checked", state.showTestData); 275 | 276 | let discretize = d3.select("#discretize").on("change", function() { 277 | state.discretize = this.checked; 278 | state.serialize(); 279 | userHasInteracted(); 280 | updateUI(); 281 | }); 282 | // Check/uncheck the checbox according to the current state. 283 | discretize.property("checked", state.discretize); 284 | 285 | let percTrain = d3.select("#percTrainData").on("input", function() { 286 | state.percTrainData = this.value; 287 | d3.select("label[for='percTrainData'] .value").text(this.value); 288 | generateData(); 289 | parametersChanged = true; 290 | reset(); 291 | }); 292 | percTrain.property("value", state.percTrainData); 293 | d3.select("label[for='percTrainData'] .value").text(state.percTrainData); 294 | 295 | let noise = d3.select("#noise").on("input", function() { 296 | state.noise = this.value; 297 | d3.select("label[for='noise'] .value").text(this.value); 298 | generateData(); 299 | parametersChanged = true; 300 | reset(); 301 | }); 302 | let currentMax = parseInt(noise.property("max")); 303 | if (state.noise > currentMax) { 304 | if (state.noise <= 80) { 305 | noise.property("max", state.noise); 306 | } else { 307 | state.noise = 50; 308 | } 309 | } else if (state.noise < 0) { 310 | state.noise = 0; 311 | } 312 | noise.property("value", state.noise); 313 | d3.select("label[for='noise'] .value").text(state.noise); 314 | 315 | let batchSize = d3.select("#batchSize").on("input", function() { 316 | state.batchSize = this.value; 317 | d3.select("label[for='batchSize'] .value").text(this.value); 318 | parametersChanged = true; 319 | reset(); 320 | }); 321 | batchSize.property("value", state.batchSize); 322 | d3.select("label[for='batchSize'] .value").text(state.batchSize); 323 | 324 | let activationDropdown = d3.select("#activations").on("change", function() { 325 | state.activation = activations[this.value]; 326 | parametersChanged = true; 327 | reset(); 328 | }); 329 | activationDropdown.property("value", 330 | getKeyFromValue(activations, state.activation)); 331 | 332 | let learningRate = d3.select("#learningRate").on("change", function() { 333 | state.learningRate = +this.value; 334 | state.serialize(); 335 | userHasInteracted(); 336 | parametersChanged = true; 337 | }); 338 | learningRate.property("value", state.learningRate); 339 | 340 | let regularDropdown = d3.select("#regularizations").on("change", 341 | function() { 342 | state.regularization = regularizations[this.value]; 343 | parametersChanged = true; 344 | reset(); 345 | }); 346 | regularDropdown.property("value", 347 | getKeyFromValue(regularizations, state.regularization)); 348 | 349 | let regularRate = d3.select("#regularRate").on("change", function() { 350 | state.regularizationRate = +this.value; 351 | parametersChanged = true; 352 | reset(); 353 | }); 354 | regularRate.property("value", state.regularizationRate); 355 | 356 | let problem = d3.select("#problem").on("change", function() { 357 | state.problem = problems[this.value]; 358 | generateData(); 359 | drawDatasetThumbnails(); 360 | parametersChanged = true; 361 | reset(); 362 | }); 363 | problem.property("value", getKeyFromValue(problems, state.problem)); 364 | 365 | // Add scale to the gradient color map. 366 | let x = d3.scale.linear().domain([-1, 1]).range([0, 144]); 367 | let xAxis = d3.svg.axis() 368 | .scale(x) 369 | .orient("bottom") 370 | .tickValues([-1, 0, 1]) 371 | .tickFormat(d3.format("d")); 372 | d3.select("#colormap g.core").append("g") 373 | .attr("class", "x axis") 374 | .attr("transform", "translate(0,10)") 375 | .call(xAxis); 376 | 377 | // Listen for css-responsive changes and redraw the svg network. 378 | 379 | window.addEventListener("resize", () => { 380 | let newWidth = document.querySelector("#main-part") 381 | .getBoundingClientRect().width; 382 | if (newWidth !== mainWidth) { 383 | mainWidth = newWidth; 384 | drawNetwork(network); 385 | updateUI(true); 386 | } 387 | }); 388 | 389 | // Hide the text below the visualization depending on the URL. 390 | if (state.hideText) { 391 | d3.select("#article-text").style("display", "none"); 392 | d3.select("div.more").style("display", "none"); 393 | d3.select("header").style("display", "none"); 394 | } 395 | } 396 | 397 | function updateBiasesUI(network: nn.Node[][]) { 398 | nn.forEachNode(network, true, node => { 399 | d3.select(`rect#bias-${node.id}`).style("fill", colorScale(node.bias)); 400 | }); 401 | } 402 | 403 | function updateWeightsUI(network: nn.Node[][], container) { 404 | for (let layerIdx = 1; layerIdx < network.length; layerIdx++) { 405 | let currentLayer = network[layerIdx]; 406 | // Update all the nodes in this layer. 407 | for (let i = 0; i < currentLayer.length; i++) { 408 | let node = currentLayer[i]; 409 | for (let j = 0; j < node.inputLinks.length; j++) { 410 | let link = node.inputLinks[j]; 411 | container.select(`#link${link.source.id}-${link.dest.id}`) 412 | .style({ 413 | "stroke-dashoffset": -iter / 3, 414 | "stroke-width": linkWidthScale(Math.abs(link.weight)), 415 | "stroke": colorScale(link.weight) 416 | }) 417 | .datum(link); 418 | } 419 | } 420 | } 421 | } 422 | 423 | function drawNode(cx: number, cy: number, nodeId: string, isInput: boolean, 424 | container, node?: nn.Node) { 425 | let x = cx - RECT_SIZE / 2; 426 | let y = cy - RECT_SIZE / 2; 427 | 428 | let nodeGroup = container.append("g") 429 | .attr({ 430 | "class": "node", 431 | "id": `node${nodeId}`, 432 | "transform": `translate(${x},${y})` 433 | }); 434 | 435 | // Draw the main rectangle. 436 | nodeGroup.append("rect") 437 | .attr({ 438 | x: 0, 439 | y: 0, 440 | width: RECT_SIZE, 441 | height: RECT_SIZE, 442 | }); 443 | let activeOrNotClass = state[nodeId] ? "active" : "inactive"; 444 | if (isInput) { 445 | let label = INPUTS[nodeId].label != null ? 446 | INPUTS[nodeId].label : nodeId; 447 | // Draw the input label. 448 | let text = nodeGroup.append("text").attr({ 449 | class: "main-label", 450 | x: -10, 451 | y: RECT_SIZE / 2, "text-anchor": "end" 452 | }); 453 | if (/[_^]/.test(label)) { 454 | let myRe = /(.*?)([_^])(.)/g; 455 | let myArray; 456 | let lastIndex; 457 | while ((myArray = myRe.exec(label)) != null) { 458 | lastIndex = myRe.lastIndex; 459 | let prefix = myArray[1]; 460 | let sep = myArray[2]; 461 | let suffix = myArray[3]; 462 | if (prefix) { 463 | text.append("tspan").text(prefix); 464 | } 465 | text.append("tspan") 466 | .attr("baseline-shift", sep === "_" ? "sub" : "super") 467 | .style("font-size", "9px") 468 | .text(suffix); 469 | } 470 | if (label.substring(lastIndex)) { 471 | text.append("tspan").text(label.substring(lastIndex)); 472 | } 473 | } else { 474 | text.append("tspan").text(label); 475 | } 476 | nodeGroup.classed(activeOrNotClass, true); 477 | } 478 | if (!isInput) { 479 | // Draw the node's bias. 480 | nodeGroup.append("rect") 481 | .attr({ 482 | id: `bias-${nodeId}`, 483 | x: -BIAS_SIZE - 2, 484 | y: RECT_SIZE - BIAS_SIZE + 3, 485 | width: BIAS_SIZE, 486 | height: BIAS_SIZE, 487 | }).on("mouseenter", function() { 488 | updateHoverCard(HoverType.BIAS, node, d3.mouse(container.node())); 489 | }).on("mouseleave", function() { 490 | updateHoverCard(null); 491 | }); 492 | } 493 | 494 | // Draw the node's canvas. 495 | let div = d3.select("#network").insert("div", ":first-child") 496 | .attr({ 497 | "id": `canvas-${nodeId}`, 498 | "class": "canvas" 499 | }) 500 | .style({ 501 | position: "absolute", 502 | left: `${x + 3}px`, 503 | top: `${y + 3}px` 504 | }) 505 | .on("mouseenter", function() { 506 | selectedNodeId = nodeId; 507 | div.classed("hovered", true); 508 | nodeGroup.classed("hovered", true); 509 | updateDecisionBoundary(network, false); 510 | heatMap.updateBackground(boundary[nodeId], state.discretize); 511 | }) 512 | .on("mouseleave", function() { 513 | selectedNodeId = null; 514 | div.classed("hovered", false); 515 | nodeGroup.classed("hovered", false); 516 | updateDecisionBoundary(network, false); 517 | heatMap.updateBackground(boundary[nn.getOutputNode(network).id], 518 | state.discretize); 519 | }); 520 | if (isInput) { 521 | div.on("click", function() { 522 | state[nodeId] = !state[nodeId]; 523 | parametersChanged = true; 524 | reset(); 525 | }); 526 | div.style("cursor", "pointer"); 527 | } 528 | if (isInput) { 529 | div.classed(activeOrNotClass, true); 530 | } 531 | let nodeHeatMap = new HeatMap(RECT_SIZE, DENSITY / 10, xDomain, 532 | xDomain, div, {noSvg: true}); 533 | div.datum({heatmap: nodeHeatMap, id: nodeId}); 534 | 535 | } 536 | 537 | // Draw network 538 | function drawNetwork(network: nn.Node[][]): void { 539 | let svg = d3.select("#svg"); 540 | // Remove all svg elements. 541 | svg.select("g.core").remove(); 542 | // Remove all div elements. 543 | d3.select("#network").selectAll("div.canvas").remove(); 544 | d3.select("#network").selectAll("div.plus-minus-neurons").remove(); 545 | 546 | // Get the width of the svg container. 547 | let padding = 3; 548 | let co = d3.select(".column.output").node() as HTMLDivElement; 549 | let cf = d3.select(".column.features").node() as HTMLDivElement; 550 | let width = co.offsetLeft - cf.offsetLeft; 551 | svg.attr("width", width); 552 | 553 | // Map of all node coordinates. 554 | let node2coord: {[id: string]: {cx: number, cy: number}} = {}; 555 | let container = svg.append("g") 556 | .classed("core", true) 557 | .attr("transform", `translate(${padding},${padding})`); 558 | // Draw the network layer by layer. 559 | let numLayers = network.length; 560 | let featureWidth = 118; 561 | let layerScale = d3.scale.ordinal() 562 | .domain(d3.range(1, numLayers - 1)) 563 | .rangePoints([featureWidth, width - RECT_SIZE], 0.7); 564 | let nodeIndexScale = (nodeIndex: number) => nodeIndex * (RECT_SIZE + 25); 565 | 566 | 567 | let calloutThumb = d3.select(".callout.thumbnail").style("display", "none"); 568 | let calloutWeights = d3.select(".callout.weights").style("display", "none"); 569 | let idWithCallout = null; 570 | let targetIdWithCallout = null; 571 | 572 | // Draw the input layer separately. 573 | let cx = RECT_SIZE / 2 + 50; 574 | let nodeIds = Object.keys(INPUTS); 575 | let maxY = nodeIndexScale(nodeIds.length); 576 | nodeIds.forEach((nodeId, i) => { 577 | let cy = nodeIndexScale(i) + RECT_SIZE / 2; 578 | node2coord[nodeId] = {cx, cy}; 579 | drawNode(cx, cy, nodeId, true, container); 580 | }); 581 | 582 | // Draw the intermediate layers. 583 | for (let layerIdx = 1; layerIdx < numLayers - 1; layerIdx++) { 584 | let numNodes = network[layerIdx].length; 585 | let cx = layerScale(layerIdx) + RECT_SIZE / 2; 586 | maxY = Math.max(maxY, nodeIndexScale(numNodes)); 587 | addPlusMinusControl(layerScale(layerIdx), layerIdx); 588 | for (let i = 0; i < numNodes; i++) { 589 | let node = network[layerIdx][i]; 590 | let cy = nodeIndexScale(i) + RECT_SIZE / 2; 591 | node2coord[node.id] = {cx, cy}; 592 | drawNode(cx, cy, node.id, false, container, node); 593 | 594 | // Show callout to thumbnails. 595 | let numNodes = network[layerIdx].length; 596 | let nextNumNodes = network[layerIdx + 1].length; 597 | if (idWithCallout == null && 598 | i === numNodes - 1 && 599 | nextNumNodes <= numNodes) { 600 | calloutThumb.style({ 601 | display: null, 602 | top: `${20 + 3 + cy}px`, 603 | left: `${cx}px` 604 | }); 605 | idWithCallout = node.id; 606 | } 607 | 608 | // Draw links. 609 | for (let j = 0; j < node.inputLinks.length; j++) { 610 | let link = node.inputLinks[j]; 611 | let path: SVGPathElement = drawLink(link, node2coord, network, 612 | container, j === 0, j, node.inputLinks.length).node() as any; 613 | // Show callout to weights. 614 | let prevLayer = network[layerIdx - 1]; 615 | let lastNodePrevLayer = prevLayer[prevLayer.length - 1]; 616 | if (targetIdWithCallout == null && 617 | i === numNodes - 1 && 618 | link.source.id === lastNodePrevLayer.id && 619 | (link.source.id !== idWithCallout || numLayers <= 5) && 620 | link.dest.id !== idWithCallout && 621 | prevLayer.length >= numNodes) { 622 | let midPoint = path.getPointAtLength(path.getTotalLength() * 0.7); 623 | calloutWeights.style({ 624 | display: null, 625 | top: `${midPoint.y + 5}px`, 626 | left: `${midPoint.x + 3}px` 627 | }); 628 | targetIdWithCallout = link.dest.id; 629 | } 630 | } 631 | } 632 | } 633 | 634 | // Draw the output node separately. 635 | cx = width + RECT_SIZE / 2; 636 | let node = network[numLayers - 1][0]; 637 | let cy = nodeIndexScale(0) + RECT_SIZE / 2; 638 | node2coord[node.id] = {cx, cy}; 639 | // Draw links. 640 | for (let i = 0; i < node.inputLinks.length; i++) { 641 | let link = node.inputLinks[i]; 642 | drawLink(link, node2coord, network, container, i === 0, i, 643 | node.inputLinks.length); 644 | } 645 | // Adjust the height of the svg. 646 | svg.attr("height", maxY); 647 | 648 | // Adjust the height of the features column. 649 | let height = Math.max( 650 | getRelativeHeight(calloutThumb), 651 | getRelativeHeight(calloutWeights), 652 | getRelativeHeight(d3.select("#network")) 653 | ); 654 | d3.select(".column.features").style("height", height + "px"); 655 | } 656 | 657 | function getRelativeHeight(selection) { 658 | let node = selection.node() as HTMLAnchorElement; 659 | return node.offsetHeight + node.offsetTop; 660 | } 661 | 662 | function addPlusMinusControl(x: number, layerIdx: number) { 663 | let div = d3.select("#network").append("div") 664 | .classed("plus-minus-neurons", true) 665 | .style("left", `${x - 10}px`); 666 | 667 | let i = layerIdx - 1; 668 | let firstRow = div.append("div").attr("class", `ui-numNodes${layerIdx}`); 669 | firstRow.append("button") 670 | .attr("class", "mdl-button mdl-js-button mdl-button--icon") 671 | .on("click", () => { 672 | let numNeurons = state.networkShape[i]; 673 | if (numNeurons >= 8) { 674 | return; 675 | } 676 | state.networkShape[i]++; 677 | parametersChanged = true; 678 | reset(); 679 | }) 680 | .append("i") 681 | .attr("class", "material-icons") 682 | .text("add"); 683 | 684 | firstRow.append("button") 685 | .attr("class", "mdl-button mdl-js-button mdl-button--icon") 686 | .on("click", () => { 687 | let numNeurons = state.networkShape[i]; 688 | if (numNeurons <= 1) { 689 | return; 690 | } 691 | state.networkShape[i]--; 692 | parametersChanged = true; 693 | reset(); 694 | }) 695 | .append("i") 696 | .attr("class", "material-icons") 697 | .text("remove"); 698 | 699 | let suffix = state.networkShape[i] > 1 ? "s" : ""; 700 | div.append("div").text( 701 | state.networkShape[i] + " neuron" + suffix 702 | ); 703 | } 704 | 705 | function updateHoverCard(type: HoverType, nodeOrLink?: nn.Node | nn.Link, 706 | coordinates?: [number, number]) { 707 | let hovercard = d3.select("#hovercard"); 708 | if (type == null) { 709 | hovercard.style("display", "none"); 710 | d3.select("#svg").on("click", null); 711 | return; 712 | } 713 | d3.select("#svg").on("click", () => { 714 | hovercard.select(".value").style("display", "none"); 715 | let input = hovercard.select("input"); 716 | input.style("display", null); 717 | input.on("input", function() { 718 | if (this.value != null && this.value !== "") { 719 | if (type === HoverType.WEIGHT) { 720 | (nodeOrLink as nn.Link).weight = +this.value; 721 | } else { 722 | (nodeOrLink as nn.Node).bias = +this.value; 723 | } 724 | updateUI(); 725 | } 726 | }); 727 | input.on("keypress", () => { 728 | if ((d3.event as any).keyCode === 13) { 729 | updateHoverCard(type, nodeOrLink, coordinates); 730 | } 731 | }); 732 | (input.node() as HTMLInputElement).focus(); 733 | }); 734 | let value = (type === HoverType.WEIGHT) ? 735 | (nodeOrLink as nn.Link).weight : 736 | (nodeOrLink as nn.Node).bias; 737 | let name = (type === HoverType.WEIGHT) ? "Weight" : "Bias"; 738 | hovercard.style({ 739 | "left": `${coordinates[0] + 20}px`, 740 | "top": `${coordinates[1]}px`, 741 | "display": "block" 742 | }); 743 | hovercard.select(".type").text(name); 744 | hovercard.select(".value") 745 | .style("display", null) 746 | .text(value.toPrecision(2)); 747 | hovercard.select("input") 748 | .property("value", value.toPrecision(2)) 749 | .style("display", "none"); 750 | } 751 | 752 | function drawLink( 753 | input: nn.Link, node2coord: {[id: string]: {cx: number, cy: number}}, 754 | network: nn.Node[][], container, 755 | isFirst: boolean, index: number, length: number) { 756 | let line = container.insert("path", ":first-child"); 757 | let source = node2coord[input.source.id]; 758 | let dest = node2coord[input.dest.id]; 759 | let datum = { 760 | source: { 761 | y: source.cx + RECT_SIZE / 2 + 2, 762 | x: source.cy 763 | }, 764 | target: { 765 | y: dest.cx - RECT_SIZE / 2, 766 | x: dest.cy + ((index - (length - 1) / 2) / length) * 12 767 | } 768 | }; 769 | let diagonal = d3.svg.diagonal().projection(d => [d.y, d.x]); 770 | line.attr({ 771 | "marker-start": "url(#markerArrow)", 772 | class: "link", 773 | id: "link" + input.source.id + "-" + input.dest.id, 774 | d: diagonal(datum, 0) 775 | }); 776 | 777 | // Add an invisible thick link that will be used for 778 | // showing the weight value on hover. 779 | container.append("path") 780 | .attr("d", diagonal(datum, 0)) 781 | .attr("class", "link-hover") 782 | .on("mouseenter", function() { 783 | updateHoverCard(HoverType.WEIGHT, input, d3.mouse(this)); 784 | }).on("mouseleave", function() { 785 | updateHoverCard(null); 786 | }); 787 | return line; 788 | } 789 | 790 | /** 791 | * Given a neural network, it asks the network for the output (prediction) 792 | * of every node in the network using inputs sampled on a square grid. 793 | * It returns a map where each key is the node ID and the value is a square 794 | * matrix of the outputs of the network for each input in the grid respectively. 795 | */ 796 | function updateDecisionBoundary(network: nn.Node[][], firstTime: boolean) { 797 | if (firstTime) { 798 | boundary = {}; 799 | nn.forEachNode(network, true, node => { 800 | boundary[node.id] = new Array(DENSITY); 801 | }); 802 | // Go through all predefined inputs. 803 | for (let nodeId in INPUTS) { 804 | boundary[nodeId] = new Array(DENSITY); 805 | } 806 | } 807 | let xScale = d3.scale.linear().domain([0, DENSITY - 1]).range(xDomain); 808 | let yScale = d3.scale.linear().domain([DENSITY - 1, 0]).range(xDomain); 809 | 810 | let i = 0, j = 0; 811 | for (i = 0; i < DENSITY; i++) { 812 | if (firstTime) { 813 | nn.forEachNode(network, true, node => { 814 | boundary[node.id][i] = new Array(DENSITY); 815 | }); 816 | // Go through all predefined inputs. 817 | for (let nodeId in INPUTS) { 818 | boundary[nodeId][i] = new Array(DENSITY); 819 | } 820 | } 821 | for (j = 0; j < DENSITY; j++) { 822 | // 1 for points inside the circle, and 0 for points outside the circle. 823 | let x = xScale(i); 824 | let y = yScale(j); 825 | let input = constructInput(x, y); 826 | nn.forwardProp(network, input); 827 | nn.forEachNode(network, true, node => { 828 | boundary[node.id][i][j] = node.output; 829 | }); 830 | if (firstTime) { 831 | // Go through all predefined inputs. 832 | for (let nodeId in INPUTS) { 833 | boundary[nodeId][i][j] = INPUTS[nodeId].f(x, y); 834 | } 835 | } 836 | } 837 | } 838 | } 839 | 840 | function getLoss(network: nn.Node[][], dataPoints: Example2D[]): number { 841 | let loss = 0; 842 | for (let i = 0; i < dataPoints.length; i++) { 843 | let dataPoint = dataPoints[i]; 844 | let input = constructInput(dataPoint.x, dataPoint.y); 845 | let output = nn.forwardProp(network, input); 846 | loss += nn.Errors.SQUARE.error(output, dataPoint.label); 847 | } 848 | return loss / dataPoints.length; 849 | } 850 | 851 | function updateUI(firstStep = false) { 852 | // Update the links visually. 853 | updateWeightsUI(network, d3.select("g.core")); 854 | // Update the bias values visually. 855 | updateBiasesUI(network); 856 | // Get the decision boundary of the network. 857 | updateDecisionBoundary(network, firstStep); 858 | let selectedId = selectedNodeId != null ? 859 | selectedNodeId : nn.getOutputNode(network).id; 860 | heatMap.updateBackground(boundary[selectedId], state.discretize); 861 | 862 | // Update all decision boundaries. 863 | d3.select("#network").selectAll("div.canvas") 864 | .each(function(data: {heatmap: HeatMap, id: string}) { 865 | data.heatmap.updateBackground(reduceMatrix(boundary[data.id], 10), 866 | state.discretize); 867 | }); 868 | 869 | function zeroPad(n: number): string { 870 | let pad = "000000"; 871 | return (pad + n).slice(-pad.length); 872 | } 873 | 874 | function addCommas(s: string): string { 875 | return s.replace(/\B(?=(\d{3})+(?!\d))/g, ","); 876 | } 877 | 878 | function humanReadable(n: number): string { 879 | return n.toFixed(3); 880 | } 881 | 882 | // Update loss and iteration number. 883 | d3.select("#loss-train").text(humanReadable(lossTrain)); 884 | d3.select("#loss-test").text(humanReadable(lossTest)); 885 | d3.select("#iter-number").text(addCommas(zeroPad(iter))); 886 | lineChart.addDataPoint([lossTrain, lossTest]); 887 | } 888 | 889 | function constructInputIds(): string[] { 890 | let result: string[] = []; 891 | for (let inputName in INPUTS) { 892 | if (state[inputName]) { 893 | result.push(inputName); 894 | } 895 | } 896 | return result; 897 | } 898 | 899 | function constructInput(x: number, y: number): number[] { 900 | let input: number[] = []; 901 | for (let inputName in INPUTS) { 902 | if (state[inputName]) { 903 | input.push(INPUTS[inputName].f(x, y)); 904 | } 905 | } 906 | return input; 907 | } 908 | 909 | function oneStep(): void { 910 | iter++; 911 | trainData.forEach((point, i) => { 912 | let input = constructInput(point.x, point.y); 913 | nn.forwardProp(network, input); 914 | nn.backProp(network, point.label, nn.Errors.SQUARE); 915 | if ((i + 1) % state.batchSize === 0) { 916 | nn.updateWeights(network, state.learningRate, state.regularizationRate); 917 | } 918 | }); 919 | // Compute the loss. 920 | lossTrain = getLoss(network, trainData); 921 | lossTest = getLoss(network, testData); 922 | updateUI(); 923 | } 924 | 925 | export function getOutputWeights(network: nn.Node[][]): number[] { 926 | let weights: number[] = []; 927 | for (let layerIdx = 0; layerIdx < network.length - 1; layerIdx++) { 928 | let currentLayer = network[layerIdx]; 929 | for (let i = 0; i < currentLayer.length; i++) { 930 | let node = currentLayer[i]; 931 | for (let j = 0; j < node.outputs.length; j++) { 932 | let output = node.outputs[j]; 933 | weights.push(output.weight); 934 | } 935 | } 936 | } 937 | return weights; 938 | } 939 | 940 | function reset(onStartup=false) { 941 | lineChart.reset(); 942 | state.serialize(); 943 | if (!onStartup) { 944 | userHasInteracted(); 945 | } 946 | player.pause(); 947 | 948 | let suffix = state.numHiddenLayers !== 1 ? "s" : ""; 949 | d3.select("#layers-label").text("Hidden layer" + suffix); 950 | d3.select("#num-layers").text(state.numHiddenLayers); 951 | 952 | // Make a simple network. 953 | iter = 0; 954 | let numInputs = constructInput(0 , 0).length; 955 | let shape = [numInputs].concat(state.networkShape).concat([1]); 956 | let outputActivation = (state.problem === Problem.REGRESSION) ? 957 | nn.Activations.LINEAR : nn.Activations.TANH; 958 | network = nn.buildNetwork(shape, state.activation, outputActivation, 959 | state.regularization, constructInputIds(), state.initZero); 960 | lossTrain = getLoss(network, trainData); 961 | lossTest = getLoss(network, testData); 962 | drawNetwork(network); 963 | updateUI(true); 964 | }; 965 | 966 | function initTutorial() { 967 | if (state.tutorial == null || state.tutorial === '' || state.hideText) { 968 | return; 969 | } 970 | // Remove all other text. 971 | d3.selectAll("article div.l--body").remove(); 972 | let tutorial = d3.select("article").append("div") 973 | .attr("class", "l--body"); 974 | // Insert tutorial text. 975 | d3.html(`tutorials/${state.tutorial}.html`, (err, htmlFragment) => { 976 | if (err) { 977 | throw err; 978 | } 979 | tutorial.node().appendChild(htmlFragment); 980 | // If the tutorial has a tag, set the page title to that. 981 | let title = tutorial.select("title"); 982 | if (title.size()) { 983 | d3.select("header h1").style({ 984 | "margin-top": "20px", 985 | "margin-bottom": "20px", 986 | }) 987 | .text(title.text()); 988 | document.title = title.text(); 989 | } 990 | }); 991 | } 992 | 993 | function drawDatasetThumbnails() { 994 | function renderThumbnail(canvas, dataGenerator) { 995 | let w = 100; 996 | let h = 100; 997 | canvas.setAttribute("width", w); 998 | canvas.setAttribute("height", h); 999 | let context = canvas.getContext("2d"); 1000 | let data = dataGenerator(200, 0); 1001 | data.forEach(function(d) { 1002 | context.fillStyle = colorScale(d.label); 1003 | context.fillRect(w * (d.x + 6) / 12, h * (d.y + 6) / 12, 4, 4); 1004 | }); 1005 | d3.select(canvas.parentNode).style("display", null); 1006 | } 1007 | d3.selectAll(".dataset").style("display", "none"); 1008 | 1009 | if (state.problem === Problem.CLASSIFICATION) { 1010 | for (let dataset in datasets) { 1011 | let canvas: any = 1012 | document.querySelector(`canvas[data-dataset=${dataset}]`); 1013 | let dataGenerator = datasets[dataset]; 1014 | renderThumbnail(canvas, dataGenerator); 1015 | } 1016 | } 1017 | if (state.problem === Problem.REGRESSION) { 1018 | for (let regDataset in regDatasets) { 1019 | let canvas: any = 1020 | document.querySelector(`canvas[data-regDataset=${regDataset}]`); 1021 | let dataGenerator = regDatasets[regDataset]; 1022 | renderThumbnail(canvas, dataGenerator); 1023 | } 1024 | } 1025 | } 1026 | 1027 | function hideControls() { 1028 | // Set display:none to all the UI elements that are hidden. 1029 | let hiddenProps = state.getHiddenProps(); 1030 | hiddenProps.forEach(prop => { 1031 | let controls = d3.selectAll(`.ui-${prop}`); 1032 | if (controls.size() === 0) { 1033 | console.warn(`0 html elements found with class .ui-${prop}`); 1034 | } 1035 | controls.style("display", "none"); 1036 | }); 1037 | 1038 | // Also add checkbox for each hidable control in the "use it in classrom" 1039 | // section. 1040 | let hideControls = d3.select(".hide-controls"); 1041 | HIDABLE_CONTROLS.forEach(([text, id]) => { 1042 | let label = hideControls.append("label") 1043 | .attr("class", "mdl-checkbox mdl-js-checkbox mdl-js-ripple-effect"); 1044 | let input = label.append("input") 1045 | .attr({ 1046 | type: "checkbox", 1047 | class: "mdl-checkbox__input", 1048 | }); 1049 | if (hiddenProps.indexOf(id) === -1) { 1050 | input.attr("checked", "true"); 1051 | } 1052 | input.on("change", function() { 1053 | state.setHideProperty(id, !this.checked); 1054 | state.serialize(); 1055 | userHasInteracted(); 1056 | d3.select(".hide-controls-link") 1057 | .attr("href", window.location.href); 1058 | }); 1059 | label.append("span") 1060 | .attr("class", "mdl-checkbox__label label") 1061 | .text(text); 1062 | }); 1063 | d3.select(".hide-controls-link") 1064 | .attr("href", window.location.href); 1065 | } 1066 | 1067 | function generateData(firstTime = false) { 1068 | if (!firstTime) { 1069 | // Change the seed. 1070 | state.seed = Math.random().toFixed(5); 1071 | state.serialize(); 1072 | userHasInteracted(); 1073 | } 1074 | Math.seedrandom(state.seed); 1075 | let numSamples = (state.problem === Problem.REGRESSION) ? 1076 | NUM_SAMPLES_REGRESS : NUM_SAMPLES_CLASSIFY; 1077 | let generator = state.problem === Problem.CLASSIFICATION ? 1078 | state.dataset : state.regDataset; 1079 | let data = generator(numSamples, state.noise / 100); 1080 | // Shuffle the data in-place. 1081 | shuffle(data); 1082 | // Split into train and test data. 1083 | let splitIndex = Math.floor(data.length * state.percTrainData / 100); 1084 | trainData = data.slice(0, splitIndex); 1085 | testData = data.slice(splitIndex); 1086 | heatMap.updatePoints(trainData); 1087 | heatMap.updateTestPoints(state.showTestData ? testData : []); 1088 | } 1089 | 1090 | let firstInteraction = true; 1091 | let parametersChanged = false; 1092 | 1093 | function userHasInteracted() { 1094 | if (!firstInteraction) { 1095 | return; 1096 | } 1097 | firstInteraction = false; 1098 | let page = 'index'; 1099 | if (state.tutorial != null && state.tutorial !== '') { 1100 | page = `/v/tutorials/${state.tutorial}`; 1101 | } 1102 | ga('set', 'page', page); 1103 | ga('send', 'pageview', {'sessionControl': 'start'}); 1104 | } 1105 | 1106 | function simulationStarted() { 1107 | ga('send', { 1108 | hitType: 'event', 1109 | eventCategory: 'Starting Simulation', 1110 | eventAction: parametersChanged ? 'changed' : 'unchanged', 1111 | eventLabel: state.tutorial == null ? '' : state.tutorial 1112 | }); 1113 | parametersChanged = false; 1114 | } 1115 | 1116 | drawDatasetThumbnails(); 1117 | initTutorial(); 1118 | makeGUI(); 1119 | generateData(true); 1120 | reset(true); 1121 | hideControls(); 1122 | -------------------------------------------------------------------------------- /src/seedrandom.d.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | interface Math { 17 | seedrandom: (seed: string) => void; 18 | } 19 | 20 | declare let ga: any; -------------------------------------------------------------------------------- /src/state.ts: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | import * as nn from "./nn"; 17 | import * as dataset from "./dataset"; 18 | 19 | /** Suffix added to the state when storing if a control is hidden or not. */ 20 | const HIDE_STATE_SUFFIX = "_hide"; 21 | 22 | /** A map between names and activation functions. */ 23 | export let activations: {[key: string]: nn.ActivationFunction} = { 24 | "relu": nn.Activations.RELU, 25 | "tanh": nn.Activations.TANH, 26 | "sigmoid": nn.Activations.SIGMOID, 27 | "linear": nn.Activations.LINEAR 28 | }; 29 | 30 | /** A map between names and regularization functions. */ 31 | export let regularizations: {[key: string]: nn.RegularizationFunction} = { 32 | "none": null, 33 | "L1": nn.RegularizationFunction.L1, 34 | "L2": nn.RegularizationFunction.L2 35 | }; 36 | 37 | /** A map between dataset names and functions that generate classification data. */ 38 | export let datasets: {[key: string]: dataset.DataGenerator} = { 39 | "circle": dataset.classifyCircleData, 40 | "xor": dataset.classifyXORData, 41 | "gauss": dataset.classifyTwoGaussData, 42 | "spiral": dataset.classifySpiralData, 43 | }; 44 | 45 | /** A map between dataset names and functions that generate regression data. */ 46 | export let regDatasets: {[key: string]: dataset.DataGenerator} = { 47 | "reg-plane": dataset.regressPlane, 48 | "reg-gauss": dataset.regressGaussian 49 | }; 50 | 51 | export function getKeyFromValue(obj: any, value: any): string { 52 | for (let key in obj) { 53 | if (obj[key] === value) { 54 | return key; 55 | } 56 | } 57 | return undefined; 58 | } 59 | 60 | function endsWith(s: string, suffix: string): boolean { 61 | return s.substr(-suffix.length) === suffix; 62 | } 63 | 64 | function getHideProps(obj: any): string[] { 65 | let result: string[] = []; 66 | for (let prop in obj) { 67 | if (endsWith(prop, HIDE_STATE_SUFFIX)) { 68 | result.push(prop); 69 | } 70 | } 71 | return result; 72 | } 73 | 74 | /** 75 | * The data type of a state variable. Used for determining the 76 | * (de)serialization method. 77 | */ 78 | export enum Type { 79 | STRING, 80 | NUMBER, 81 | ARRAY_NUMBER, 82 | ARRAY_STRING, 83 | BOOLEAN, 84 | OBJECT 85 | } 86 | 87 | export enum Problem { 88 | CLASSIFICATION, 89 | REGRESSION 90 | } 91 | 92 | export let problems = { 93 | "classification": Problem.CLASSIFICATION, 94 | "regression": Problem.REGRESSION 95 | }; 96 | 97 | export interface Property { 98 | name: string; 99 | type: Type; 100 | keyMap?: {[key: string]: any}; 101 | }; 102 | 103 | // Add the GUI state. 104 | export class State { 105 | 106 | private static PROPS: Property[] = [ 107 | {name: "activation", type: Type.OBJECT, keyMap: activations}, 108 | {name: "regularization", type: Type.OBJECT, keyMap: regularizations}, 109 | {name: "batchSize", type: Type.NUMBER}, 110 | {name: "dataset", type: Type.OBJECT, keyMap: datasets}, 111 | {name: "regDataset", type: Type.OBJECT, keyMap: regDatasets}, 112 | {name: "learningRate", type: Type.NUMBER}, 113 | {name: "regularizationRate", type: Type.NUMBER}, 114 | {name: "noise", type: Type.NUMBER}, 115 | {name: "networkShape", type: Type.ARRAY_NUMBER}, 116 | {name: "seed", type: Type.STRING}, 117 | {name: "showTestData", type: Type.BOOLEAN}, 118 | {name: "discretize", type: Type.BOOLEAN}, 119 | {name: "percTrainData", type: Type.NUMBER}, 120 | {name: "x", type: Type.BOOLEAN}, 121 | {name: "y", type: Type.BOOLEAN}, 122 | {name: "xTimesY", type: Type.BOOLEAN}, 123 | {name: "xSquared", type: Type.BOOLEAN}, 124 | {name: "ySquared", type: Type.BOOLEAN}, 125 | {name: "cosX", type: Type.BOOLEAN}, 126 | {name: "sinX", type: Type.BOOLEAN}, 127 | {name: "cosY", type: Type.BOOLEAN}, 128 | {name: "sinY", type: Type.BOOLEAN}, 129 | {name: "collectStats", type: Type.BOOLEAN}, 130 | {name: "tutorial", type: Type.STRING}, 131 | {name: "problem", type: Type.OBJECT, keyMap: problems}, 132 | {name: "initZero", type: Type.BOOLEAN}, 133 | {name: "hideText", type: Type.BOOLEAN} 134 | ]; 135 | 136 | [key: string]: any; 137 | learningRate = 0.03; 138 | regularizationRate = 0; 139 | showTestData = false; 140 | noise = 0; 141 | batchSize = 10; 142 | discretize = false; 143 | tutorial: string = null; 144 | percTrainData = 50; 145 | activation = nn.Activations.TANH; 146 | regularization: nn.RegularizationFunction = null; 147 | problem = Problem.CLASSIFICATION; 148 | initZero = false; 149 | hideText = false; 150 | collectStats = false; 151 | numHiddenLayers = 1; 152 | hiddenLayerControls: any[] = []; 153 | networkShape: number[] = [4, 2]; 154 | x = true; 155 | y = true; 156 | xTimesY = false; 157 | xSquared = false; 158 | ySquared = false; 159 | cosX = false; 160 | sinX = false; 161 | cosY = false; 162 | sinY = false; 163 | dataset: dataset.DataGenerator = dataset.classifyCircleData; 164 | regDataset: dataset.DataGenerator = dataset.regressPlane; 165 | seed: string; 166 | 167 | /** 168 | * Deserializes the state from the url hash. 169 | */ 170 | static deserializeState(): State { 171 | let map: {[key: string]: string} = {}; 172 | for (let keyvalue of window.location.hash.slice(1).split("&")) { 173 | let [name, value] = keyvalue.split("="); 174 | map[name] = value; 175 | } 176 | let state = new State(); 177 | 178 | function hasKey(name: string): boolean { 179 | return name in map && map[name] != null && map[name].trim() !== ""; 180 | } 181 | 182 | function parseArray(value: string): string[] { 183 | return value.trim() === "" ? [] : value.split(","); 184 | } 185 | 186 | // Deserialize regular properties. 187 | State.PROPS.forEach(({name, type, keyMap}) => { 188 | switch (type) { 189 | case Type.OBJECT: 190 | if (keyMap == null) { 191 | throw Error("A key-value map must be provided for state " + 192 | "variables of type Object"); 193 | } 194 | if (hasKey(name) && map[name] in keyMap) { 195 | state[name] = keyMap[map[name]]; 196 | } 197 | break; 198 | case Type.NUMBER: 199 | if (hasKey(name)) { 200 | // The + operator is for converting a string to a number. 201 | state[name] = +map[name]; 202 | } 203 | break; 204 | case Type.STRING: 205 | if (hasKey(name)) { 206 | state[name] = map[name]; 207 | } 208 | break; 209 | case Type.BOOLEAN: 210 | if (hasKey(name)) { 211 | state[name] = (map[name] === "false" ? false : true); 212 | } 213 | break; 214 | case Type.ARRAY_NUMBER: 215 | if (name in map) { 216 | state[name] = parseArray(map[name]).map(Number); 217 | } 218 | break; 219 | case Type.ARRAY_STRING: 220 | if (name in map) { 221 | state[name] = parseArray(map[name]); 222 | } 223 | break; 224 | default: 225 | throw Error("Encountered an unknown type for a state variable"); 226 | } 227 | }); 228 | 229 | // Deserialize state properties that correspond to hiding UI controls. 230 | getHideProps(map).forEach(prop => { 231 | state[prop] = (map[prop] === "true") ? true : false; 232 | }); 233 | state.numHiddenLayers = state.networkShape.length; 234 | if (state.seed == null) { 235 | state.seed = Math.random().toFixed(5); 236 | } 237 | Math.seedrandom(state.seed); 238 | return state; 239 | } 240 | 241 | /** 242 | * Serializes the state into the url hash. 243 | */ 244 | serialize() { 245 | // Serialize regular properties. 246 | let props: string[] = []; 247 | State.PROPS.forEach(({name, type, keyMap}) => { 248 | let value = this[name]; 249 | // Don't serialize missing values. 250 | if (value == null) { 251 | return; 252 | } 253 | if (type === Type.OBJECT) { 254 | value = getKeyFromValue(keyMap, value); 255 | } else if (type === Type.ARRAY_NUMBER || 256 | type === Type.ARRAY_STRING) { 257 | value = value.join(","); 258 | } 259 | props.push(`${name}=${value}`); 260 | }); 261 | // Serialize properties that correspond to hiding UI controls. 262 | getHideProps(this).forEach(prop => { 263 | props.push(`${prop}=${this[prop]}`); 264 | }); 265 | window.location.hash = props.join("&"); 266 | } 267 | 268 | /** Returns all the hidden properties. */ 269 | getHiddenProps(): string[] { 270 | let result: string[] = []; 271 | for (let prop in this) { 272 | if (endsWith(prop, HIDE_STATE_SUFFIX) && String(this[prop]) === "true") { 273 | result.push(prop.replace(HIDE_STATE_SUFFIX, "")); 274 | } 275 | } 276 | return result; 277 | } 278 | 279 | setHideProperty(name: string, hidden: boolean) { 280 | this[name + HIDE_STATE_SUFFIX] = hidden; 281 | } 282 | } 283 | -------------------------------------------------------------------------------- /styles.css: -------------------------------------------------------------------------------- 1 | /* Copyright 2016 Google Inc. All Rights Reserved. 2 | 3 | Licensed under the Apache License, Version 2.0 (the "License"); 4 | you may not use this file except in compliance with the License. 5 | You may obtain a copy of the License at 6 | 7 | http://www.apache.org/licenses/LICENSE-2.0 8 | 9 | Unless required by applicable law or agreed to in writing, software 10 | distributed under the License is distributed on an "AS IS" BASIS, 11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | See the License for the specific language governing permissions and 13 | limitations under the License. 14 | ==============================================================================*/ 15 | 16 | /* General Type */ 17 | 18 | body { 19 | font-family: "Helvetica", "Arial", sans-serif; 20 | background-color: #f7f7f7; 21 | } 22 | 23 | h1 { 24 | font-size: 34px; 25 | } 26 | 27 | header h1 { 28 | line-height: 1.45em; 29 | font-weight: 300; 30 | color: rgba(255, 255, 255, 0.7); 31 | } 32 | 33 | h1 b { 34 | font-weight: 400; 35 | color: rgba(255, 255, 255, 1); 36 | } 37 | 38 | h2 { 39 | margin: 5px 0; 40 | font-weight: 300; 41 | font-size: 18px; 42 | } 43 | 44 | h3 { 45 | margin: 10px 0; 46 | } 47 | 48 | p a { 49 | color: #0D658C; 50 | } 51 | 52 | /* Layout */ 53 | 54 | body { 55 | margin: 0; 56 | } 57 | 58 | .l--body { 59 | width: 550px; 60 | margin-left: auto; 61 | margin-right: auto; 62 | } 63 | 64 | .l--page { 65 | width: 944px; 66 | margin-left: auto; 67 | margin-right: auto; 68 | } 69 | 70 | @media (min-width: 1180px) { 71 | .l--page { 72 | width: 1100px; 73 | } 74 | } 75 | 76 | @media (min-width: 1400px) { 77 | .l--page { 78 | width: 1220px; 79 | } 80 | } 81 | 82 | /* Buttons */ 83 | 84 | #main-part .mdl-button { 85 | background-color: rgba(158,158,158,.1); 86 | width: 28px; 87 | height: 28px; 88 | min-width: 28px; 89 | } 90 | 91 | #main-part .mdl-button:hover { 92 | background-color: rgba(158,158,158,.3); 93 | } 94 | 95 | #main-part .mdl-button:focus:not(:active) { 96 | background-color: rgba(158,158,158,.4); 97 | } 98 | 99 | #main-part .mdl-button:active { 100 | background-color: rgba(158,158,158,.5); 101 | } 102 | 103 | #main-part .mdl-button .material-icons { 104 | font-size: 20px; 105 | color: rgba(0, 0, 0, 0.7); 106 | } 107 | 108 | 109 | .button { 110 | cursor: pointer; 111 | display: -webkit-box; 112 | display: -moz-box; 113 | display: -ms-flexbox; 114 | display: -webkit-flex; 115 | display: flex; 116 | align-items: center; 117 | -webkit-justify-content: center; 118 | justify-content: center; 119 | width: 24px; 120 | height: 24px; 121 | font-size: 18px; 122 | border-radius: 50%; 123 | margin: 0 1px; 124 | background-color: rgba(0,0,0,0.05); 125 | outline: none; 126 | border: none; 127 | padding: 0; 128 | color: #666; 129 | transition: background-color 0.3s, color 0.3s; 130 | } 131 | 132 | .button:hover { 133 | background-color: rgba(0,0,0,0.1); 134 | 135 | } 136 | 137 | .button:active { 138 | background-color: rgba(0,0,0,0.15); 139 | color: #333; 140 | } 141 | 142 | .button i { 143 | font-size: 16px; 144 | } 145 | 146 | .hide-button { 147 | cursor: pointer; 148 | padding: 6px 4px 8px 4px; 149 | border-left: 1px solid #2c2c2c; 150 | border-bottom: 1px solid #2c2c2c; 151 | position: fixed; 152 | right: 0px; 153 | background: #1a1a1a; 154 | color: #eee; 155 | font: 11px 'Lucida Grande', sans-serif; 156 | display: table; 157 | } 158 | 159 | /* Header */ 160 | 161 | .github-link { 162 | width: 60px; 163 | height: 60px; 164 | position: absolute; 165 | display: block; 166 | top: 0; 167 | right: 0; 168 | z-index: 1000; 169 | } 170 | 171 | .github-link .bg { 172 | fill: #fff; 173 | fill-opacity: 0.2; 174 | } 175 | 176 | .github-link:hover .bg { 177 | fill-opacity: 0.3; 178 | } 179 | 180 | .github-link .icon { 181 | fill: #fff; 182 | fill-opacity: 0.6; 183 | } 184 | 185 | .github-link:hover .icon { 186 | fill-opacity: 0.7; 187 | } 188 | 189 | header { 190 | border-bottom: solid 1px rgba(0,0,0,0.4); 191 | background-color: #183D4E; 192 | color: white; 193 | overflow: hidden; 194 | box-shadow: 0 2px 4px rgba(0,0,0,0.2); 195 | position: relative; 196 | } 197 | 198 | header h1 { 199 | font-size: 30px; 200 | text-align: center; 201 | margin-top: 30px; 202 | margin-bottom: 30px; 203 | -webkit-font-smoothing: antialiased; 204 | } 205 | 206 | header h1 .optional { 207 | display: none; 208 | } 209 | 210 | @media (min-width: 1064px) { 211 | header h1 .optional { 212 | display: inline; 213 | } 214 | } 215 | 216 | @media (min-height: 700px) { 217 | header h1 { 218 | margin-top: 40px; 219 | margin-bottom: 40px; 220 | } 221 | } 222 | 223 | @media (min-height: 800px) { 224 | header h1 { 225 | font-size: 34px; 226 | margin-top: 60px; 227 | margin-bottom: 60px; 228 | } 229 | } 230 | 231 | /* Top Controls */ 232 | 233 | #top-controls { 234 | border-bottom: 1px solid #ddd; 235 | padding: 18px 0; 236 | box-shadow: 0 1px 4px rgba(0,0,0,0.08); 237 | background: white; 238 | } 239 | 240 | @media (min-height: 700px) { 241 | #top-controls { 242 | padding: 24px 0; 243 | } 244 | } 245 | 246 | #top-controls .container { 247 | display: -webkit-box; 248 | display: -moz-box; 249 | display: -ms-flexbox; 250 | display: -webkit-flex; 251 | display: flex; 252 | -webkit-justify-content: space-betweenspace-between; 253 | justify-content: space-between; 254 | } 255 | 256 | #top-controls .timeline-controls { 257 | display: -webkit-box; 258 | display: -moz-box; 259 | display: -ms-flexbox; 260 | display: -webkit-flex; 261 | display: flex; 262 | align-items: center; 263 | margin-right: 20px; 264 | width: 140px; 265 | } 266 | 267 | #play-pause-button .material-icons { 268 | color: white; 269 | font-size: 36px; 270 | transform: translate(-18px,-12px); 271 | } 272 | 273 | 274 | #play-pause-button .material-icons:nth-of-type(2) { 275 | display: none; 276 | } 277 | 278 | #play-pause-button.playing .material-icons:nth-of-type(1) { 279 | display: none; 280 | } 281 | 282 | #play-pause-button.playing .material-icons:nth-of-type(2) { 283 | display: inherit; 284 | } 285 | 286 | #top-controls .control { 287 | flex-grow: 1; 288 | max-width: 180px; 289 | min-width: 110px; 290 | margin-left: 30px; 291 | margin-top: 6px; 292 | } 293 | 294 | #top-controls .control .label, 295 | #top-controls .control label { 296 | color: #777; 297 | font-size: 13px; 298 | display: block; 299 | margin-bottom: 6px; 300 | font-weight: 300; 301 | } 302 | 303 | #top-controls .control .value { 304 | font-size: 24px; 305 | margin: 0; 306 | font-weight: 300; 307 | } 308 | 309 | #top-controls .control .select { 310 | position: relative; 311 | } 312 | 313 | #top-controls .control select { 314 | -webkit-appearance: none; 315 | -moz-appearance: none; 316 | appearance: none; 317 | display: block; 318 | background: none; 319 | border: none; 320 | border-radius: 0; 321 | padding: 6px 0; 322 | width: 100%; 323 | font-size: 14px; 324 | border-bottom: solid 1px #ccc; 325 | color: #333; 326 | outline: none; 327 | } 328 | 329 | #top-controls .control select:focus { 330 | border-bottom-color: #183D4E; 331 | } 332 | 333 | #top-controls .control .select::after { 334 | class: "material-icons"; 335 | content: "arrow_drop_down"; 336 | color: #999; 337 | font-family: 'Material Icons'; 338 | font-weight: normal; 339 | font-style: normal; 340 | font-size: 18px; 341 | line-height: 1; 342 | letter-spacing: normal; 343 | text-transform: none; 344 | display: inline-block; 345 | white-space: nowrap; 346 | word-wrap: normal; 347 | direction: ltr; 348 | position: absolute; 349 | right: 0; 350 | top: 6px; 351 | pointer-events: none; 352 | } 353 | 354 | /* Hover card */ 355 | #hovercard { 356 | display: none; 357 | position: absolute; 358 | padding: 5px; 359 | border: 1px solid #aaa; 360 | z-index: 1000; 361 | background: #fff; 362 | cursor: default; 363 | border-radius: 5px; 364 | left: 240px; 365 | width: 150px; 366 | top: -20px; 367 | } 368 | 369 | #hovercard input { 370 | width: 60px; 371 | } 372 | 373 | /* Main Part*/ 374 | 375 | #main-part { 376 | display: -webkit-box; 377 | display: -moz-box; 378 | display: -ms-flexbox; 379 | display: -webkit-flex; 380 | display: flex; 381 | -webkit-justify-content: space-between; 382 | justify-content: space-between; 383 | margin-top: 30px; 384 | margin-bottom: 50px; 385 | padding-top: 2px; 386 | position: relative; 387 | } 388 | 389 | @media (min-height: 700px) { 390 | #main-part { 391 | margin-top: 50px; 392 | } 393 | } 394 | 395 | #main-part h4 { 396 | display: -webkit-box; 397 | display: -moz-box; 398 | display: -ms-flexbox; 399 | display: -webkit-flex; 400 | display: flex; 401 | align-items: center; 402 | font-weight: 400; 403 | font-size: 16px; 404 | text-transform: uppercase; 405 | position: relative; 406 | padding-bottom: 8px; 407 | margin: 0; 408 | line-height: 1.4em; 409 | } 410 | 411 | #main-part p, 412 | #main-part .column .label, 413 | #main-part .column label { 414 | font-weight: 300; 415 | line-height: 1.38em; 416 | margin: 0; 417 | color: #777; 418 | font-size: 13px; 419 | } 420 | 421 | .more { 422 | position: absolute; 423 | left: 50%; 424 | } 425 | 426 | .more button { 427 | position: absolute; 428 | left: -28px; 429 | top: -28px; 430 | background: white; 431 | } 432 | 433 | .more button:hover, 434 | .more button:active, 435 | .more button:focus, 436 | .more button:focus:not(:active) { 437 | background: white; 438 | } 439 | 440 | svg text { 441 | dominant-baseline: middle; 442 | } 443 | 444 | canvas { 445 | display: block; 446 | } 447 | 448 | .link { 449 | fill: none; 450 | stroke: #aaa; 451 | stroke-width: 1; 452 | } 453 | 454 | g.column rect { 455 | stroke: none; 456 | } 457 | 458 | #heatmap { 459 | position: relative; 460 | float: left; 461 | margin-top: 10px; 462 | } 463 | 464 | #heatmap .tick line { 465 | stroke: #ddd; 466 | } 467 | 468 | #heatmap .tick text { 469 | fill: #bbb; 470 | dominant-baseline: auto; 471 | } 472 | 473 | #heatmap .tick:nth-child(7) text { 474 | fill: #333; 475 | } 476 | 477 | #heatmap .tick:nth-child(7) line { 478 | stroke: #999; 479 | } 480 | 481 | /* Data column */ 482 | 483 | .vcenter { 484 | display: -webkit-box; 485 | display: -moz-box; 486 | display: -ms-flexbox; 487 | display: -webkit-flex; 488 | display: flex; 489 | align-items: center; 490 | } 491 | 492 | .data.column { 493 | width: 10%; 494 | } 495 | 496 | .data.column .dataset-list { 497 | margin: 20px 0 10px; 498 | overflow: hidden; 499 | } 500 | 501 | .data.column .dataset { 502 | position: relative; 503 | float: left; 504 | width: 34px; 505 | height: 34px; 506 | margin: 0 14px 14px 0; 507 | } 508 | 509 | .data.column .dataset:nth-of-type(2n) { 510 | margin-right: 0; 511 | } 512 | 513 | .data.column .data-thumbnail { 514 | cursor: pointer; 515 | width: 100%; 516 | height: 100%; 517 | opacity: 0.2; 518 | border: 2px solid rgba(0,0,0,0.1); 519 | border-radius: 3px; 520 | } 521 | 522 | /*.data.column .dataset:first-of-type { 523 | margin-top: 8px; 524 | } 525 | 526 | .data.column .dataset:last-of-type { 527 | margin-bottom: 20px; 528 | }*/ 529 | 530 | .data.column .data-thumbnail:hover { 531 | border: 2px solid #999; 532 | } 533 | 534 | .data.column .data-thumbnail.selected { 535 | border: 2px solid black; 536 | opacity: 1; 537 | box-shadow: 0 1px 5px rgba(0,0,0,0.2); 538 | background-color: white; 539 | } 540 | 541 | #main-part .data.column .dataset .label { 542 | position: absolute; 543 | left: 48px; 544 | top: calc(50% - 9px); 545 | display: none; 546 | } 547 | 548 | #main-part .data.column p.slider { 549 | margin: 0 -25px 20px; 550 | } 551 | 552 | #main-part .basic-button { 553 | font-family: "Roboto", "Helvetica", "Arial", sans-serif; 554 | margin-top: 25px; 555 | height: 34px; 556 | margin-right: 0; 557 | width: 100%; 558 | display: block; 559 | color: rgba(0, 0, 0, 0.5); 560 | border: none; 561 | background: rgba(158,158,158,.1); 562 | border-radius: 3px; 563 | padding: 5px; 564 | font-size: 12px; 565 | text-transform: uppercase; 566 | font-weight: 500; 567 | outline: none; 568 | transition: background 0.3s linear; 569 | cursor: pointer; 570 | } 571 | 572 | #main-part .basic-button:hover { 573 | background: rgba(158,158,158,.3); 574 | color: rgba(0, 0, 0, 0.6); 575 | } 576 | 577 | #main-part .basic-button:focus { 578 | background: rgba(158,158,158,.4); 579 | color: rgba(0, 0, 0, 0.7); 580 | } 581 | 582 | #main-part .basic-button:active { 583 | background: rgba(158,158,158,.5); 584 | color: rgba(0, 0, 0, 0.8); 585 | } 586 | 587 | /* Features column */ 588 | 589 | .features.column { 590 | width: 10%; 591 | position: relative; 592 | } 593 | 594 | .features.column .plus-minus-neurons { 595 | position: absolute; 596 | text-align: center; 597 | line-height: 28px; 598 | top: -58px; 599 | width: 65px; 600 | height: 44px; 601 | font-size: 12px; 602 | z-index: 100; 603 | } 604 | 605 | .plus-minus-neurons .mdl-button:first-of-type { 606 | margin-right: 5px; 607 | } 608 | 609 | .features.column .callout { 610 | position: absolute; 611 | width: 95px; 612 | font-style: italic; 613 | } 614 | 615 | .features.column .callout svg { 616 | position: absolute; 617 | left: -15px; 618 | width: 30px; 619 | height: 30px; 620 | } 621 | 622 | .features.column .callout svg path { 623 | fill: none; 624 | stroke: black; 625 | stroke-opacity: 0.4; 626 | } 627 | 628 | .features.column .callout svg defs path { 629 | fill: black; 630 | stroke: none; 631 | fill-opacity: 0.4; 632 | } 633 | 634 | #main-part .features.column .callout .label { 635 | position: absolute; 636 | top: 24px; 637 | left: 3px; 638 | font-size: 11px; 639 | } 640 | 641 | /* Network (inside features column) */ 642 | 643 | #network { 644 | position: absolute; 645 | top: 110px; 646 | left: 0; 647 | z-index: 100; 648 | } 649 | 650 | #network svg .main-label { 651 | font-size: 13px; 652 | fill: #333; 653 | font-weight: 300; 654 | } 655 | 656 | .axis line { 657 | fill: none; 658 | stroke: #777; 659 | shape-rendering: crispEdges; 660 | } 661 | 662 | .axis text { 663 | fill: #777; 664 | font-size: 10px; 665 | } 666 | 667 | .axis path { 668 | display: none; 669 | } 670 | 671 | #network svg .active .main-label { 672 | fill: #333 673 | } 674 | 675 | #network svg #markerArrow { 676 | fill: black; 677 | stroke: black; 678 | stroke-opacity: 0.2; 679 | } 680 | 681 | #network .node { 682 | cursor: default; 683 | } 684 | 685 | #network .node rect { 686 | fill: white; 687 | stroke-width: 0; 688 | } 689 | 690 | #network .node.inactive { 691 | opacity: 0.5; 692 | } 693 | 694 | #network .node.hovered { 695 | opacity: 1.0; 696 | } 697 | 698 | @-webkit-keyframes flowing { 699 | from { stroke-dashoffset: 0; } to { stroke-dashoffset: -10; } 700 | } 701 | 702 | #network .core .link { 703 | stroke-dasharray: 9 1; 704 | stroke-dashoffset: 1; 705 | /*-webkit-animation: 0.5s linear 0s infinite flowing;*/ 706 | } 707 | 708 | /** Invisible thick links used for showing weight values on mouse hover. */ 709 | #network .core .link-hover { 710 | stroke-width: 8; 711 | stroke: black; 712 | fill: none; 713 | opacity: 0; 714 | } 715 | 716 | #network .canvas canvas { 717 | position: absolute; 718 | top: -2px; 719 | left: -2px; 720 | border: 2px solid black; 721 | border-radius: 3px; 722 | box-shadow: 0 2px 5px rgba(0,0,0,0.2); 723 | } 724 | 725 | #network .canvas.inactive canvas { 726 | box-shadow: inherit; 727 | } 728 | 729 | #network .canvas.inactive canvas { 730 | opacity: 0.4; 731 | border: 0; 732 | top: 0; 733 | left: 0; 734 | } 735 | 736 | #network .canvas.hovered canvas { 737 | opacity: 1.0; 738 | border: 2px solid #666; 739 | top: -2px; 740 | left: -2px; 741 | } 742 | 743 | /* Hidden layers column */ 744 | 745 | .hidden-layers.column { 746 | width: 40%; 747 | } 748 | 749 | #main-part .hidden-layers h4 { 750 | -webkit-justify-content: center; 751 | justify-content: center; 752 | margin-top: -5px; 753 | } 754 | 755 | .hidden-layers #layers-label { 756 | width: 125px; 757 | display: inline-block; 758 | } 759 | 760 | .hidden-layers #num-layers { 761 | margin: 0 10px; 762 | width: 10px; 763 | display: inline-block; 764 | } 765 | 766 | .hidden-layers h4 .mdl-button { 767 | margin-right: 5px; 768 | } 769 | 770 | .bracket { 771 | margin-top: 5px; 772 | border: solid 1px rgba(0, 0, 0, 0.2); 773 | border-bottom: 0; 774 | height: 4px; 775 | } 776 | 777 | .bracket.reverse { 778 | border-bottom: solid 1px rgba(0, 0, 0, 0.2); 779 | border-top: 0; 780 | margin-top: 0; 781 | margin-bottom: 5px; 782 | } 783 | 784 | /* Output column */ 785 | 786 | .output.column { 787 | width: 275px; 788 | } 789 | 790 | .metrics { 791 | position: relative; 792 | font-weight: 300; 793 | font-size: 13px; 794 | height: 60px; 795 | } 796 | 797 | #linechart { 798 | position: absolute; 799 | top: 0; 800 | right: 0; 801 | width: 50%; 802 | height: 55px; 803 | } 804 | .metrics .train { 805 | color: #777; 806 | } 807 | 808 | #loss-test { 809 | color: black; 810 | } 811 | 812 | .output .output-stats .value { 813 | color: rgba(0, 0, 0, 0.6); 814 | /*font-size: 20px;*/ 815 | font-weight: 300; 816 | display: inline; 817 | 818 | } 819 | 820 | g.train circle { 821 | stroke: white; 822 | stroke-width: 1; 823 | stroke-opacity: 0.8; 824 | fill-opacity: 0.9; 825 | } 826 | 827 | g.test circle { 828 | stroke-width: 1; 829 | stroke: black; 830 | stroke-opacity: 0.6; 831 | fill-opacity: 0.9; 832 | } 833 | 834 | #main-part .output .mdl-checkbox__label.label { 835 | line-height: 1.7em; 836 | } 837 | 838 | /* Article */ 839 | 840 | article { 841 | background: white; 842 | padding: 80px 0; 843 | box-shadow: 0 0px 4px rgba(0, 0, 0, 0.1); 844 | /*border-top: 1px solid rgba(0, 0, 0, 0.08);*/ 845 | } 846 | 847 | article h2, article h3 { 848 | margin: 60px 0 20px 0; 849 | font-size: 22px; 850 | font-weight: 500; 851 | line-height: 1.45em; 852 | color: rgba(0, 0, 0, 0.7); 853 | } 854 | 855 | article h3 { 856 | margin: 40px 0 20px 0; 857 | font-size: 18px; 858 | } 859 | 860 | article :first-child h2 { 861 | margin-top: 0; 862 | } 863 | 864 | article p { 865 | font-weight: 400; 866 | font-size: 17px; 867 | line-height: 1.6; 868 | color: rgba(0, 0, 0, 0.7); 869 | 870 | } 871 | 872 | /* Footer */ 873 | 874 | footer { 875 | border-top: solid 1px #eee; 876 | color: #ccc; 877 | font-weight: 300; 878 | padding: 40px 0; 879 | height: 30px; 880 | } 881 | 882 | footer svg { 883 | margin-top: 2px; 884 | float: left; 885 | width: 110px; 886 | height: 18px; 887 | fill: #aaa; 888 | } 889 | 890 | footer .links { 891 | float: right; 892 | font-size: 13px; 893 | height: 30px; 894 | line-height: 30px; 895 | margin-left: 20px; 896 | } 897 | 898 | footer .links a { 899 | margin-right: 15px; 900 | text-decoration: none; 901 | color: #999; 902 | } 903 | 904 | footer .links a:hover { 905 | text-decoration: underline; 906 | } 907 | 908 | .hide-controls { 909 | display: -webkit-box; 910 | display: -moz-box; 911 | display: -ms-flexbox; 912 | display: -webkit-flex; 913 | display: flex; 914 | flex-wrap: wrap; 915 | -webkit-justify-content: space-between; 916 | justify-content: space-between; 917 | } 918 | 919 | .hide-controls label.mdl-checkbox { 920 | width: 145px; 921 | height: 30px; 922 | } 923 | 924 | .hide-controls .mdl-checkbox__label { 925 | font-size: 13px; 926 | } 927 | 928 | /* Material Overrides */ 929 | 930 | /* Buttons */ 931 | 932 | .mdl-button--fab.mdl-button--colored, 933 | .mdl-button--fab.mdl-button--colored:hover, 934 | .mdl-button--fab.mdl-button--colored:active, 935 | .mdl-button--fab.mdl-button--colored:focus, 936 | .mdl-button--fab.mdl-button--colored:focus:not(:active) { 937 | background: #183D4E; 938 | } 939 | 940 | /* Checkbox */ 941 | 942 | .mdl-checkbox__box-outline { 943 | border-color: rgba(0, 0, 0, 0.5); 944 | } 945 | 946 | .mdl-checkbox.is-checked .mdl-checkbox__tick-outline { 947 | background-color: #183D4E; 948 | } 949 | 950 | .mdl-checkbox.is-checked .mdl-checkbox__tick-outline { 951 | background-color: #183D4E; 952 | } 953 | 954 | .mdl-checkbox.is-checked .mdl-checkbox__box-outline { 955 | border-color: #183D4E; 956 | } 957 | 958 | .mdl-checkbox__ripple-container .mdl-ripple { 959 | background-color: #183D4E; 960 | } 961 | 962 | /* Slider */ 963 | 964 | #main-part .mdl-slider.is-upgraded { 965 | color: #183D4E; 966 | } 967 | 968 | #main-part .mdl-slider__background-lower { 969 | background-color: #183D4E; 970 | } 971 | 972 | #main-part .mdl-slider.is-upgraded::-webkit-slider-thumb { 973 | background-color: #183D4E; 974 | } 975 | 976 | #main-part .mdl-slider.is-upgraded::-moz-range-thumb { 977 | background-color: #183D4E; 978 | } 979 | 980 | #main-part .mdl-slider.is-upgraded::-ms-thumb { 981 | background-color: #183D4E; 982 | } 983 | 984 | #main-part .mdl-slider.is-upgraded.is-lowest-value::-webkit-slider-thumb { 985 | border-color: #183D4E; 986 | } 987 | 988 | #main-part .mdl-slider.is-upgraded.is-lowest-value::-moz-range-thumb { 989 | border-color: #183D4E; 990 | } 991 | /* Keep grey focus circle for non-start values */ 992 | #main-part .mdl-slider.is-upgraded:focus:not(:active)::-webkit-slider-thumb { 993 | box-shadow: 0 0 0 10px rgba(0,0,0, 0.12); 994 | } 995 | -------------------------------------------------------------------------------- /tsconfig.json: -------------------------------------------------------------------------------- 1 | { 2 | "compilerOptions": { 3 | "module": "commonjs", 4 | "removeComments": true, 5 | "preserveConstEnums": true 6 | }, 7 | "exclude": [ 8 | "node_modules" 9 | ] 10 | } 11 | -------------------------------------------------------------------------------- /tslint.json: -------------------------------------------------------------------------------- 1 | { 2 | "rules": { 3 | "class-name": true, 4 | "comment-format": [ 5 | true, 6 | "check-space" 7 | ], 8 | "max-line-length": [true, 80], 9 | "indent": [ 10 | true, 11 | "spaces" 12 | ], 13 | "no-duplicate-variable": true, 14 | "no-eval": true, 15 | "no-internal-module": true, 16 | "no-trailing-whitespace": true, 17 | "no-var-keyword": true, 18 | "no-unused-variable": true, 19 | "no-unused-expression": true, 20 | "no-switch-case-fall-through": true, 21 | "no-unreachable": true, 22 | "one-line": [ 23 | true, 24 | "check-open-brace", 25 | "check-whitespace" 26 | ], 27 | "forin": false, 28 | "quotemark": [ 29 | true, 30 | "double" 31 | ], 32 | "semicolon": [ 33 | true, 34 | "always" 35 | ], 36 | "triple-equals": false, 37 | "typedef-whitespace": [ 38 | true, 39 | { 40 | "call-signature": "nospace", 41 | "index-signature": "nospace", 42 | "parameter": "nospace", 43 | "property-declaration": "nospace", 44 | "variable-declaration": "nospace" 45 | } 46 | ], 47 | "variable-name": [ 48 | true, 49 | "ban-keywords" 50 | ], 51 | "whitespace": [ 52 | true, 53 | "check-branch", 54 | "check-decl", 55 | "check-operator", 56 | "check-separator", 57 | "check-type" 58 | ] 59 | } 60 | } 61 | --------------------------------------------------------------------------------