├── .gitignore
├── .travis.yml
├── LICENSE
├── README.md
├── analyze_results.jl
├── data
└── README.md
├── docs
├── SPEAR_Functions.md
├── SPEAR_Postprocessing.md
├── index.md
├── paper.md
└── refs.bib
├── install_dependencies.jl
├── output.jl
├── par.jl
├── plots
├── README.md
└── example
│ ├── Vfmax01.png
│ └── cumulative_slip.png
├── post
├── README.md
├── event_details.jl
├── plotting_script.jl
└── rough_script.jl
├── run.jl
├── src
├── .ipynb_checkpoints
│ ├── Assemble-checkpoint.jl
│ ├── damageEvol-checkpoint.jl
│ └── untitled-checkpoint.txt
├── Assemble.jl
├── BoundaryMatrix.jl
├── FindNearestNode.jl
├── GetGLL.jl
├── Kassemble.jl
├── MaterialProperties.jl
├── MeshBox.jl
├── NRsearch.jl
├── PCG.jl
├── damageEvol.jl
├── dtevol.jl
├── dump.jl
├── faultZoneGeometry
│ ├── gaussianFaultZoneAssembly.jl
│ └── trapezoidFaultZoneAssembly.jl
├── gll_xwh
│ ├── gll_03.tab
│ ├── gll_04.tab
│ ├── gll_05.tab
│ ├── gll_06.tab
│ ├── gll_07.tab
│ ├── gll_08.tab
│ ├── gll_09.tab
│ ├── gll_10.tab
│ ├── gll_11.tab
│ ├── gll_12.tab
│ ├── gll_13.tab
│ ├── gll_14.tab
│ ├── gll_15.tab
│ ├── gll_16.tab
│ ├── gll_17.tab
│ ├── gll_18.tab
│ ├── gll_19.tab
│ └── gll_20.tab
├── initialConditions
│ └── defaultInitialConditions.jl
├── main.jl
├── otherFunctions.jl
└── untitled.txt
├── tests
├── README.md
└── basic_test_01.jl
└── xfer
├── xfer_dizhi
├── xfer_down
├── xfer_up
└── xfer_wozhi
/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore files with these extensions
2 | *.swp
3 | *.out
4 | *.DS_Store
5 |
6 | !plots/
7 | !data/
8 |
9 | plots/*
10 | data/*
11 |
12 | !plots/README.md
13 | !data/README.md
14 | !plots/example/
15 |
16 |
--------------------------------------------------------------------------------
/.travis.yml:
--------------------------------------------------------------------------------
1 | language: julia
2 | os:
3 | - linux
4 | - osx
5 | julia:
6 | - 1.1
7 | - nightly
8 | branches:
9 | only:
10 | - master
11 | - /^release-.*$/
12 | - /^v\d+\.\d+(\.\d+)?(-\S*)?$/
13 | notifications:
14 | email: false
15 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # SPEAR: SPectral element based EARthquake cycle simulator
2 |
3 | [](https://www.gnu.org/licenses/gpl-3.0) [](https://travis-ci.com/thehalfspace/Spear)
4 |
5 | Numerical simulation of long-term earthquake cycles on a two-dimensional vertical strike-slip fault with dynamic treatment of inertial effects. Written in [Julia](https://julialang.org).
6 |
7 | ## Current Status
8 | v1.0
9 |
10 | ## Features
11 | - Antiplane strain deformation on planar fault with SH waves
12 | - Fully dynamic treatment of seismic events
13 | - Rate-and-state-dependent friction with aging laws
14 | - Adaptive time-stepping to switch between interseismic and seismic events
15 | - Customizable to include off-fault and on-fault heterogeneities
16 | - Complex geometry of fault damage zones including gaussian and trapezoid fault damage zones
17 | - Time-dependent healing of fault damage zones constrained by observations
18 |
19 | ## Dependencies
20 | - [Julia version >= 1.1](https://julialang.org)
21 | - [Algebraic Mulltigrid](https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl)
22 | - [Iterative Solvers](https://github.com/JuliaMath/IterativeSolvers.jl)
23 | - [FEMSparse](https://github.com/ahojukka5/FEMSparse.jl)
24 |
25 | ## Quickstart guide
26 | 1. Install Julia >= 1.1 (preferably the latest version).
27 | 2. Run `install_dependencies.jl` script to install the specific packages.
28 | 3. Open `run.jl` and edit the output file name and the resolution of the problem.
29 | 4. Run `run.jl` from the terminal or IDE of your choice.
30 | 5. The output files are saved in `data/$(simulation_name)`.
31 | 6. You can look at the output file from `analyze_results.jl`.
32 | 7. For basic testing run `julia tests/basic_test_01.jl` to look at two plots saved in the `plots/$(simulation_name)` directory.
33 |
34 | ## Documentation
35 | - Coming soon
36 |
37 | ## Screenshots
38 |
39 |
40 |
41 |
42 | ## References
43 | Please cite the following if using this code:
44 |
45 | [Thakur, P., Huang, Y., & Kaneko, Y. Effects of low‐velocity fault damage zones on long‐term earthquake behaviors on mature strike‐slip faults. Journal of Geophysical Research: Solid Earth, e2020JB019587.](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JB019587)
46 |
47 | [Kaneko, Y., Ampuero, J. P., & Lapusta, N. (2011). Spectral‐element simulations of long‐term fault slip: Effect of low‐rigidity layers on earthquake‐cycle dynamics. Journal of Geophysical Research: Solid Earth, 116(B10).](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JB008395)
48 |
--------------------------------------------------------------------------------
/analyze_results.jl:
--------------------------------------------------------------------------------
1 | using DelimitedFiles
2 |
3 | include("$(@__DIR__)/post/event_details.jl")
4 | include("$(@__DIR__)/post/plotting_script.jl")
5 |
6 | # path to save files
7 | global path = "$(@__DIR__)/plots/test_01/"
8 | mkpath(path)
9 |
10 | global out_path = "$(@__DIR__)/data/test_01/"
11 |
12 |
13 | #= If any of these files don't exist, or you want more information, check lines 153-158 in src/main.jl and uncomment.
14 | Also remember to uncomment the corresponding `end` statements for each of these in lines 418-427 in src/main.jl.
15 | =#
16 |
17 | # Global variables
18 | yr2sec = 365*24*60*60
19 |
20 | # Read data
21 | event_time = readdlm(string(out_path, "event_time.out"), header=false)
22 | tStart = event_time[:,1] # List of start times for all earthquakes (in seconds)
23 | tEnd = event_time[:,2] # List of end times for all earthquakes (in seconds)
24 | hypo = event_time[:,3] # List of hypocenters for all earthquakes (in meters depth)
25 |
26 | event_stress = readdlm(string(out_path, "event_stress.out"), header=false)
27 | indx = Int(length(event_stress[1,:])/2)
28 | taubefore = event_stress[:,1:indx] # List of shear stress along depth before each earthquake
29 | tauafter = event_stress[:,indx+1:end] # List of shear stress along depth after each earthquake
30 |
31 | delfafter = readdlm(string(out_path, "coseismic_slip.out"), header=false) # Coseismic slip = (slip_after - slip_before) each earthquake along depth
32 |
33 |
34 | # These are slip and sliprate stored at every certain timestep (e.g. every 10 or 100 timesteps)
35 | # These are very big files, so I usually only store them when necessary
36 | # slip = readdlm(string(out_path, "slip.out"), header=false)
37 | # sliprate = readdlm(string(out_path, "sliprate.out"), header=false)
38 |
39 | # Order of storage: Seff, tauo, FltX, cca, ccb, xLf
40 | params = readdlm(string(out_path, "params.out"), header=false)
41 |
42 | Seff = params[1,:] # Effective normal stress
43 | tauo = params[2,:] # Initial shear stress
44 | FltX = params[3,:] # Fault location along depth
45 | cca = params[4,:] # Rate-state-friction parameter 'a'
46 | ccb = params[5,:] # Rate-state-friction parameter 'b'
47 | Lc = params[6,:] # Rate-state-friction parameter 'Lc'
48 |
49 | # Index (location) of fault from 0 to 18 km
50 | flt18k = findall(FltX .<= 18)[1]
51 |
52 | time_vel = readdlm(string(out_path, "time_velocity.out"), header=false)
53 | t = time_vel[:,1] # timesteps
54 | Vfmax = time_vel[:,2] # Max. slip rate
55 | Vsurface = time_vel[:,3] # Surface slip rate
56 |
57 |
58 | rho1 = 2670
59 | vs1 = 3464
60 | rho2 = 2500
61 | vs2 = 0.6*vs1
62 | mu = rho2*vs2^2
63 |
64 | delfsec = readdlm(string(out_path, "delfsec.out")) # slip along depth of fault plotted every 0.1 second (edit line 84 in src/main.jl to change)
65 | delfyr = readdlm(string(out_path, "delfyr.out")) # slip along depth plotted every 2 years (edit line 81 to change)
66 | #stress = readdlm(string(out_path, "stress.out"), header=false) # this is shear stress along depth and time: again, very large file so I typically don't save this
67 |
68 | #start_index = get_index(stress', taubefore')
69 | stressdrops = taubefore .- tauafter
70 |
71 | # Mw = moment magnitude
72 | # del_sigma = stress drop
73 | # fault_slip = average slip for one rupture
74 | # rupture_len = length of the rupture
75 |
76 | Mw, del_sigma, fault_slip, rupture_len =
77 | moment_magnitude_new(mu, FltX, delfafter', stressdrops', t);
78 |
79 |
--------------------------------------------------------------------------------
/data/README.md:
--------------------------------------------------------------------------------
1 | ## Directoory to store the output from simulations
2 |
3 | ## Output file details:
4 |
--------------------------------------------------------------------------------
/docs/SPEAR_Functions.md:
--------------------------------------------------------------------------------
1 | # SPEAR: SPectral Element EARthquake Simulator - Function Reference
2 |
3 | ## Overview
4 |
5 | SPEAR is a spectral element method simulator for earthquake cycle dynamics on a 2D vertical strike-slip fault with fully dynamic treatment of seismic events. The code implements rate-and-state friction laws with adaptive time-stepping for both interseismic and coseismic periods.
6 |
7 | ## Setup and Entry Point
8 |
9 | ### `run.jl` - Main execution script
10 | - Entry point for simulations
11 | - Sets simulation resolution and output directory
12 | - Calls `setParameters()` to initialize simulation parameters
13 | - Executes `main()` function to run the simulation
14 |
15 | ### `par.jl` - Parameter setup
16 | - **`setParameters(FZdepth, resolution)`** - Main setup function that initializes all simulation parameters
17 | - Sets domain dimensions (LX=48km depth, LY=30km width)
18 | - Configures mesh resolution and element sizes
19 | - Defines time parameters (150 years total simulation time)
20 | - Sets up material properties and fault parameters
21 | - Returns structured parameter sets for simulation
22 |
23 | ## Initial Conditions and Material Properties
24 |
25 | ### `src/initialConditions/defaultInitialConditions.jl`
26 | - **`fricDepth(FltX)`** - Sets rate-state friction parameters (a, b) as functions of depth
27 | - **`SeffDepth(FltX)`** - Defines effective normal stress profile with depth
28 | - **`tauDepth(FltX)`** - Sets initial shear stress distribution along fault
29 | - **`Int1D(P1, P2, val)`** - Linear interpolation utility function
30 |
31 | ### `src/MaterialProperties.jl`
32 | - **`material_properties(NelX, NelY, NGLL, dxe, dye, ThickX, ThickY, wgll2, rho1, vs1, rho2, vs2)`** - Sets up rectangular fault damage zone with reduced rigidity
33 | - **`rigid(x, y)`** - Defines material properties for trapezoidal damage zone geometry
34 | - **`mat_trap(NelX, NelY, NGLL, iglob, M, dxe, dye, x, y, wgll2)`** - Assembles mass matrix for trapezoidal damage zones
35 | - **`line(x, y)`** - Geometric function defining trapezoid damage zone boundaries
36 |
37 | ## Mesh Generation and Assembly
38 |
39 | ### `src/MeshBox.jl`
40 | - **`MeshBox!(NGLL, Nel, NelX, NelY, FltNglob, dxe, dye)`** - Generates 2D spectral element mesh
41 | - Creates global node connectivity (iglob)
42 | - Generates global coordinates for all GLL nodes
43 | - Handles element-to-element connectivity for rectangular domain
44 |
45 | ### `src/GetGLL.jl`
46 | - **`GetGLL(ngll)`** - Loads precomputed Gauss-Legendre-Lobatto (GLL) quadrature points, weights, and derivative matrices from tabulated data files
47 |
48 | ### `src/Assemble.jl`
49 | - **`Massemble!(NGLL, NelX, NelY, dxe, dye, ThickX, ThickY, rho1, vs1, rho2, vs2, iglob, M, x, y, jac)`** - Assembles global mass matrix and computes stable time step
50 |
51 | ### `src/Kassemble.jl`
52 | - **`stiffness_assembly(NGLL, NelX, NelY, dxe, dye, nglob, iglob, W)`** - Assembles global sparse stiffness matrix
53 | - **`K_element(W, dxe, dye, NGLL, H, Nel)`** - Computes element-level stiffness matrices
54 | - **`FEsparse(Nel, Ke, iglob)`** - Converts local element matrices to global sparse format
55 |
56 | ### `src/BoundaryMatrix.jl`
57 | - **`BoundaryMatrix!(NGLL, NelX, NelY, rho1, vs1, rho2, vs2, dy_deta, dx_dxi, wgll, iglob, side)`** - Creates absorbing boundary condition matrices for domain edges ('L', 'R', 'T', 'B')
58 |
59 | ## Core Simulation Engine
60 |
61 | ### `src/main.jl`
62 | - **`main(P)`** - Main simulation loop
63 | - Initializes kinematic fields (displacement, velocity, acceleration)
64 | - Implements adaptive solver switching between quasi-static (isolver=1) and dynamic (isolver=2) regimes
65 | - Handles fault boundary conditions with rate-state friction
66 | - Manages output at specified time intervals
67 | - Controls earthquake event detection and recording
68 |
69 | ## Fault Mechanics and Solver Functions
70 |
71 | ### `src/NRsearch.jl` - Newton-Raphson Search
72 | - **`FBC!(IDstate, P, NFBC, FltNglob, psi1, Vf1, tau1, psi2, Vf2, tau2, psi, Vf, FltVfree, dt)`** - Fault boundary condition solver using two-step Newton-Raphson iterations
73 | - **`NRsearch!(fo, Vo, cca, ccb, Seff, tau, tauo, psi, FltZ, FltVfree)`** - Core Newton-Raphson algorithm for fault slip velocity computation
74 |
75 | ### `src/otherFunctions.jl` - Rate-State Utilities
76 | - **`slrFunc!(P, NFBC, FltNglob, psi, psi1, Vf, Vf1, IDstate, tau1, dt)`** - Computes slip rates for quasi-static regime
77 | - **`IDS!(xLf, Vo, psi, dt, Vf, cnd, IDstate)`** - Integrates state variable evolution (aging law)
78 | - **`IDS2!(xLf, Vo, psi, psi1, dt, Vf, Vf1, IDstate)`** - Second-order state variable integration
79 | - **`exp1(x)` / `log1(x)`** - Optimized exponential/logarithm functions
80 |
81 | ### `src/dtevol.jl` - Time Step Control
82 | - **`dtevol!(dt, dtmin, XiLf, FaultNglob, NFBC, Vf, isolver)`** - Adaptive time step computation based on CFL condition and fault velocities
83 | - Maximum time step: 50 days
84 | - Time step increase factor: 1.2
85 | - CFL constraint: dt < XiLf/|Vf|
86 |
87 | ## Linear Algebra and Solvers
88 |
89 | ### `src/PCG.jl` - Preconditioned Conjugate Gradient
90 | - **`PCG!(P, Nel, diagKnew, dnew, F, iFlt, FltNI, H, Ht, iglob, nglob, W, a_elem, Conn)`** - Preconditioned conjugate gradient solver for large sparse systems
91 | - **`element_computation!(P, iglob, F_local, H, Ht, W, Nel)`** - Multi-threaded element-level computations
92 |
93 | ## Utilities and Analysis
94 |
95 | ### `src/FindNearestNode.jl`
96 | - **`FindNearestNode(xin, yin, X, Y)`** - Finds nearest mesh nodes to specified coordinates for output locations
97 |
98 | ### `src/damageEvol.jl`
99 | - **`damage_indx!(ThickX, ThickY, dxe, dye, NGLL, NelX, NelY, iglob)`** - Identifies damage indices for fault zone evolution
100 |
101 | ### `src/dump.jl`
102 | - **`stiff_element(NGLL, NelX, NelY, nglob, iglob, dxe, dye)`** - Test function for element stiffness validation (development use only)
103 |
104 | ## Key Parameters and Setup
105 |
106 | ### Material Properties (in `par.jl`):
107 | - **Host rock**: ρ₁ = 2670 kg/m³, vs₁ = 3464 m/s
108 | - **Damage zone**: ρ₂ = 2670 kg/m³, vs₂ = 3464 m/s (adjustable)
109 | - **Domain**: 48 km (depth) × 30 km (width)
110 |
111 | ### Fault Parameters:
112 | - **Plate loading**: Vpl = 1×10⁻⁹ m/s
113 | - **Reference friction**: f₀ = 0.6
114 | - **Reference velocity**: V₀ = 1×10⁻⁶ m/s
115 | - **Characteristic slip**: Dc = 8 mm
116 | - **Rate-state parameters**: a, b values vary with depth
117 |
118 | ### Time Control:
119 | - **Total simulation**: 150 years
120 | - **CFL number**: 0.6
121 | - **Velocity threshold**: 0.001 m/s (earthquake detection)
122 | - **State evolution**: IDstate = 2 (aging law)
123 |
124 | ## Output Files
125 |
126 | The simulation generates several output files in `data/$(simulation_name)/`:
127 | - `stress.out` - Shear stress evolution
128 | - `sliprate.out` - Fault slip rate time series
129 | - `slip.out` - Cumulative slip
130 | - `event_time.out` - Earthquake start/end times and hypocenters
131 | - `coseismic_slip.out` - Slip during individual events
132 | - `params.out` - Simulation parameters
133 |
134 | ## Usage
135 |
136 | 1. Edit `par.jl` to set desired parameters
137 | 2. Edit `src/initialConditions/defaultInitialConditions.jl` for custom initial conditions
138 | 3. Set resolution and output directory in `run.jl`
139 | 4. Run: `julia run.jl`
140 | 5. Analyze results using provided scripts in the analysis directory
--------------------------------------------------------------------------------
/docs/SPEAR_Postprocessing.md:
--------------------------------------------------------------------------------
1 | # SPEAR Postprocessing Scripts - Function Reference
2 |
3 | ## Overview
4 |
5 | The `post/` directory contains Julia scripts for analyzing and visualizing earthquake simulation results from SPEAR. These scripts process the output data files to extract earthquake event details, compute seismic parameters, and generate publication-quality plots.
6 |
7 | ## Main Postprocessing Scripts
8 |
9 | ### `post/event_details.jl` - Event Analysis and Calculations
10 |
11 | **Description**: Core analysis functions for extracting earthquake event characteristics from simulation output data.
12 |
13 | #### Main Functions
14 |
15 | **`get_index(seismic_stress, taubefore)`**
16 | - **Purpose**: Finds the index of rupture initiation for each earthquake event
17 | - **Input**:
18 | - `seismic_stress` - stress time series during seismic events
19 | - `taubefore` - stress before each event
20 | - **Method**: Uses L2 norm to match stress patterns between event start and seismic time series
21 | - **Returns**: Array of starting indices for each earthquake event
22 |
23 | **`Coslip(S, Slip, SlipVel, Stress, time_)`**
24 | - **Purpose**: Computes coseismic slip, stress drops, and event timing for all earthquake events
25 | - **Input**:
26 | - `S` - simulation parameters structure
27 | - `Slip` - cumulative slip time series
28 | - `SlipVel` - slip velocity time series
29 | - `Stress` - shear stress time series
30 | - `time_` - simulation time vector
31 | - **Parameters**:
32 | - Event threshold: `Vthres = 0.001` m/s (earthquake detection)
33 | - Event start: max slip rate > 1.01 × threshold
34 | - Event end: max slip rate < 0.99 × threshold
35 | - **Returns**:
36 | - `delfafter` - coseismic slip for each event
37 | - `stressdrops` - stress drop for each event
38 | - `tStart, tEnd` - event start and end times
39 | - `vhypo, hypo` - hypocenter velocity and location
40 |
41 | **`moment_magnitude_new(mu, FltX, delfafter, stressdrops, time_)`**
42 | - **Purpose**: Calculates moment magnitude and rupture characteristics for each earthquake
43 | - **Input**:
44 | - `mu` - shear modulus
45 | - `FltX` - fault depth coordinates
46 | - `delfafter` - coseismic slip from `Coslip()`
47 | - `stressdrops` - stress drops from `Coslip()`
48 | - `time_` - time vector
49 | - **Method**:
50 | - Slip threshold: 1% of maximum slip per event
51 | - Assumes square rupture area (depth dimension = along-strike dimension)
52 | - Seismic moment: M₀ = μ × Area × Depth
53 | - Moment magnitude: Mw = (2/3)×log₁₀(M₀×10⁷) - 10.7
54 | - **Returns**:
55 | - `Mw` - moment magnitude
56 | - `del_sigma` - average stress drop
57 | - `fault_slip` - average coseismic slip
58 | - `rupture_len` - rupture length along depth
59 |
60 | ### `post/plotting_script.jl` - Visualization Functions
61 |
62 | **Description**: Comprehensive plotting functions for creating publication-quality figures from simulation results.
63 |
64 | #### Plot Configuration
65 |
66 | **`plot_params()`**
67 | - **Purpose**: Sets default matplotlib parameters for consistent publication-style plots
68 | - **Settings**:
69 | - Font: STIXGeneral (scientific publication standard)
70 | - Fontsize: 15-17 pt for labels, 13 pt for legends
71 | - Line width: 2.0, axis width: 1.5
72 | - Tick directions: inward
73 | - Auto layout enabled
74 |
75 | #### Main Plotting Functions
76 |
77 | **`slipPlot(delfafter2, rupture_len, FltX, Mw, tStart)`**
78 | - **Purpose**: Creates horizontal bar plots of coseismic slip vs time at multiple depths
79 | - **Features**:
80 | - 4-panel subplot showing slip at 60m, 4km, 6km, and 8km depths
81 | - Color-coded by moment magnitude (inferno_r colormap)
82 | - Filters events with Mw > 2.8
83 | - Time axis inverted (older events at top)
84 | - **Output**: `coseismic_slip.png` (300 DPI)
85 |
86 | **`eqCyclePlot(sliprate, FltX)`**
87 | - **Purpose**: Creates 2D heatmap of slip rate evolution with depth and time
88 | - **Features**:
89 | - Logarithmic color scale (1e-9 to 1e0 m/s)
90 | - Shows earthquake cycles from 16 km depth to surface
91 | - Interpolated color mapping using bicubic interpolation
92 | - Inferno colormap for slip rate visualization
93 | - **Output**: `interpolated_sliprate.png` (300 DPI)
94 |
95 | **`VfmaxPlot(Vfmax, t, yr2sec)`**
96 | - **Purpose**: Plots maximum fault slip rate over simulation time
97 | - **Features**:
98 | - Logarithmic y-axis for slip rate
99 | - Time in years on x-axis
100 | - Shows transition between interseismic and coseismic periods
101 | - **Output**: `Vfmax01.png` (300 DPI)
102 |
103 | **`Vfmaxcomp(Vfmax1, t1, Vfmax2, t2, yr2sec)`**
104 | - **Purpose**: Comparison plot of maximum slip rates from two different simulations
105 | - **Features**:
106 | - Overlay plots with labels ("Thakur", "Abdelmeguid")
107 | - Useful for validation and parameter studies
108 | - **Output**: `Vfmax01.png` (300 DPI)
109 |
110 | **`alphaaPlot(alphaa, t, yr2sec)`**
111 | - **Purpose**: Plots shear modulus contrast evolution over time
112 | - **Application**: For simulations with time-dependent material properties
113 | - **Output**: `alpha_01.png` (300 DPI)
114 |
115 | **`cumSlipPlot(delfsec, delfyr, FltX)`**
116 | - **Purpose**: Shows cumulative slip profiles with depth
117 | - **Features**:
118 | - Two datasets: annual slip (blue) and seismic slip (brown)
119 | - Depth range: 0-24 km
120 | - Inverted y-axis (depth increases downward)
121 | - **Output**: `cumulative_slip.png` (300 DPI)
122 |
123 | **`icsPlot(a_b, Seff, tauo, FltX)`**
124 | - **Purpose**: Plots initial conditions - friction parameters and stress with depth
125 | - **Features**:
126 | - Left axis: Normal and shear stress (MPa)
127 | - Right axis: Rate-state friction parameter (a-b)
128 | - Twin x-axes with different colors
129 | - Depth range: 0-80 km
130 | - **Output**: `ics_02.png` (300 DPI)
131 |
132 | ### `post/rough_script.jl` - Development and Testing Functions
133 |
134 | **Description**: Experimental scripts for testing new analysis approaches and detailed event visualization.
135 |
136 | #### Main Functions
137 |
138 | **`event_indx(tStart, tEnd, time_)`**
139 | - **Purpose**: Finds array indices corresponding to earthquake start and end times
140 | - **Input**: Event times and simulation time vector
141 | - **Returns**: Start and end indices for each event
142 | - **Use**: Facilitates detailed analysis of individual earthquake events
143 |
144 | **`test1(S, O, evno)`**
145 | - **Purpose**: Creates detailed slip rate evolution plot for a specific earthquake event
146 | - **Features**:
147 | - High temporal resolution (0.1 second intervals)
148 | - Slip rate vs depth profile during single event
149 | - Multiple time snapshots overlaid
150 | - Depth range: 0-24 km
151 | - **Input**:
152 | - `S` - simulation parameters
153 | - `O` - output data structure
154 | - `evno` - event number to analyze
155 | - **Output**: `slipvel.pdf` (300 DPI)
156 |
157 | ## Data Processing Workflow
158 |
159 | ### Typical Analysis Sequence:
160 |
161 | 1. **Load simulation output files:**
162 | ```julia
163 | # From data/simulation_name/
164 | stress = readdlm("stress.out")
165 | sliprate = readdlm("sliprate.out")
166 | slip = readdlm("slip.out")
167 | delfsec = readdlm("delfsec.out")
168 | delfyr = readdlm("delfyr.out")
169 | ```
170 |
171 | 2. **Extract event characteristics:**
172 | ```julia
173 | include("post/event_details.jl")
174 | delfafter, stressdrops, tStart, tEnd, vhypo, hypo = Coslip(S, slip, sliprate, stress, time_)
175 | Mw, del_sigma, fault_slip, rupture_len = moment_magnitude_new(mu, FltX, delfafter, stressdrops, time_)
176 | ```
177 |
178 | 3. **Generate visualizations:**
179 | ```julia
180 | include("post/plotting_script.jl")
181 | path = "plots/simulation_name/" # Set output directory
182 | plot_params() # Set plot styling
183 |
184 | # Create plots
185 | slipPlot(delfafter, rupture_len, FltX, Mw, tStart)
186 | VfmaxPlot(Vfmax, time_, yr2sec)
187 | cumSlipPlot(delfsec, delfyr, FltX)
188 | icsPlot(a_b, Seff, tauo, FltX)
189 | ```
190 |
191 | ## Output Files and Analysis
192 |
193 | ### Key Metrics Computed:
194 | - **Earthquake catalogs**: Mw, rupture length, stress drop, recurrence intervals
195 | - **Slip distributions**: Coseismic vs interseismic slip partitioning
196 | - **Rupture dynamics**: Hypocenter locations, rupture velocities
197 | - **Stress evolution**: Pre- and post-event stress states
198 |
199 | ### Visualization Outputs:
200 | - **Event catalogs**: Slip vs time plots colored by magnitude
201 | - **Spatiotemporal evolution**: 2D heatmaps of slip rate
202 | - **Time series**: Maximum slip rate evolution
203 | - **Depth profiles**: Cumulative slip and initial conditions
204 | - **Individual events**: Detailed rupture progression
205 |
206 | ## Dependencies
207 |
208 | **Required Packages:**
209 | - `PyPlot` - Python matplotlib interface
210 | - `StatsBase` - Statistical functions
211 | - `LaTeXStrings` - LaTeX formatting for labels
212 | - `PyCall` - Python integration
213 | - `LinearAlgebra` - Matrix operations
214 |
215 | **Python Dependencies:**
216 | - `matplotlib` - Plotting backend
217 | - Scientific color maps (inferno, etc.)
218 |
219 | ## Usage Notes
220 |
221 | 1. **Set output path**: Define `path` variable before calling plotting functions
222 | 2. **Color normalization**: Magnitude-based coloring automatically scales to data range
223 | 3. **Resolution**: All plots save at 300 DPI for publication quality
224 | 4. **Filtering**: Event analysis typically filters by magnitude thresholds
225 | 5. **Memory**: Large datasets may require chunked processing for memory efficiency
226 |
227 | This postprocessing suite provides comprehensive tools for earthquake cycle analysis, from basic event detection to detailed rupture characterization and publication-ready visualization.
--------------------------------------------------------------------------------
/docs/index.md:
--------------------------------------------------------------------------------
1 | # List of functions used in the package
2 |
--------------------------------------------------------------------------------
/docs/paper.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: 'SPEAR: A Julia package for 2D earthquake cycle simulations'
3 | tags:
4 | - Julia
5 | - geophysics
6 | - seismology
7 | - earthquake cycle
8 | - numerical simulations
9 | authors:
10 | - name: Prithvi Thakur
11 | orcid: 0000-0000-0000-0000
12 | equal-contrib: true
13 | affiliation: "1, 2" # (Multiple affiliations must be quoted)
14 | - name: Yihe Huang
15 | equal-contrib: true # (This is how you can denote equal contributions between multiple authors)
16 | affiliation: 2
17 | - name: Yoshihiro Kaneko
18 | equal-contrib: true # (This is how you can denote equal contributions between multiple authors)
19 | affiliation: 3
20 | - name: Peng Zhai
21 | equal-contrib: true # (This is how you can denote equal contributions between multiple authors)
22 | affiliation: 2
23 | affiliations:
24 | - name: Center for Computation and Visualization, Brown University
25 | index: 1
26 | - name: Department of Earth and Environmental Sciences, Uniersity of Michigan
27 | index: 2
28 | - name: Department of Geophysics, Kyoto University
29 | index: 3
30 | date: 10 October 2025
31 | bibliography: paper.bib
32 |
33 | # Optional fields if submitting to a AAS journal too, see this blog post:
34 | # https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-publishing
35 | #aas-doi: 10.3847/xxxxx <- update this with the DOI from AAS once you know it.
36 | #aas-journal: Astrophysical Journal <- The name of the AAS journal.
37 | ---
38 |
39 | # Summary
40 | Simulating long-term earthquake sequences numerically is a topical problem in the earth sciences. Such simulations encompass a wide range of spatial and temporal scales, with spatial scales ranging from millimeters along frictional contact to kilometers of fault-length, and temporal scales ranging from milliseconds during earthquake ruptures to decades during the aseismic period. Existing methods to simulate such multi-scale, nonlinear problem can be broadly classified into boundary-based methods (Rice, 1993; Lapusta et al., 2000; Barbot, 2019), volume-based methods (Kaneko et al., 2011; Erickson and Dunham2014; Thakur et al., 2020), and hybrid methods (Ma and Elbanna, 2015; Abdelmeguid et al., 2019). The boundary-based methods are very efficient in terms of time complexity and are suitable to study fault-friction and slip history in two and three dimensions. However, such methods cannot capture the heterogeneities in the bulk domain, and the effects of fault zone structures commonly observed in natural faults. Volume-based methods, like finite- or spectral-element are more suitable for such problems, at the cost of computation time. Additionally, several boundary and volume based methods employ a damping approximation to emulate the wave propagation using a quasi-dynamic approach.
41 |
42 | This package contains a Julia implementation of spectral element method to solve two-dimensional fault-slip problem with linear elasticity, accounting for the dynamic inertial
43 | effects and bulk heterogeneities.
44 |
45 |
46 | # Statement of need
47 | Spear is a Julia package for 2D simulations of long-term fault-slip on strike-slip fault systems. Julia enables high-performance speeds while writing at a high-level programming interface, and is suitable for complex numerical simulations. Our package helps us perform complex numerical simulations with off-fault material heterogeneities and full inertial effects of seismic waves. Written in easy-to-use language Julia, and with minimal dependencies, our package is designed for users familiar with computational seismology, and users with minimal Julia or programming experience should be able to get started.
48 |
49 | The purpose of this package is for scientists conducting research in long-term fault-slip dynamics with a focus on off-fault material heterogeneities and fault friction. We can study a wide variety of scientific problems like the effects of dynamic wave reflections due to the low-velocity fault zones, asymmetrical and complex fault zone structures, and time-dependent bulk property changes during the seismic cycle using our package. We have also performed benchmarks for our code in comparison to the other community softwares (Erickson et al., 2023).
50 |
51 | # Features
52 | - Antiplane strain deformation on planar fault with SH waves
53 | - Fully dynamic treatment of seismic events
54 | - Rate-and-state-dependent friction with aging laws
55 | - Adaptive time-stepping to switch between interseismic and seismic events
56 | - Customizable to include off-fault and on-fault heterogeneities
57 | - Complex geometry of fault damage zones including gaussian and trapezoid fault damage zones
58 | - Time-dependent healing of fault damage zones constrained by observations
59 | - Precursory seismic velocity changes in the fault zone
60 |
61 |
62 | # Methodology
63 | We consider a two‐dimensional strike‐slip fault embedded in an elastic medium with Mode III rupture (Figure 1). This implies that the fault motion is out of the plane and only the depth variations of parameters are considered. The top boundary is stress‐free and represents Earth's free surface. The other three boundaries are absorbing boundaries that allow the waves to pass through. Since our model is symmetric across the fault, we restrict the computational domain to only one side of the fault. We model the fault damage zone as an elastic layer with lower seismic wave velocities compared to the host rock. On the fault boundary, we consider a rate- and state-dependent friction law that relates the shear strength on the fault to the
64 | fault slip rate (Dieterich, 1979; Ruina, 1983; Scholz, 1998). We use the regularized form for the shear strength interpreted as a thermally activated creep model (Lapusta et al., 2000; Rice & Ben‐Zion, 1996).
65 |
66 | We use a spectral element method to simulate dynamic ruptures and aseismic creep on the fault (Kaneko et al., 2011). Full inertial effects are considered during earthquake rupture and an adaptive time stepping technique is used to switch from interseismic to seismic events based on a threshold maximum slip velocity of 5 mm s−1 on the fault. This fully dynamic modeling approach can simulate interseismic slip, earthquake nucleation, rupture propagation, and postseismic deformation during multiple seismic cycles in a single computational framework. We use a two-dimensional quadrilateral mesh with five Gauss-Lobatto-Legendre interpolation points inside each spectral-element. We implement Kaneko et al.'s (2011) algorithm in Julia (Bezanson et al., 2017) using a more efficient linear solver based on the Algebraic Multigrid scheme (Ruge & Stüben, 1987) for the elliptic (interseismic) part of the earthquake sequence. We use the Algebraic Multigrid as a preconditioner while solving the sparse linear system using the conjugate gradient method. This combines the superior convergence properties of the Algebraic Multigrid with the stability of Krylov methods and is very well suited for symmetric, positive definite matrices. This iterative technique uses a fixed number of iterations independent of the mesh size. Landry and Barbot (2016, 2019) have derived the equations to solve elliptic equations using the Geometric Multigrid in 2‐D and 3‐D. While the Geometric Multigrid has superior convergence properties, the Algebraic Multigrid is better suited for more complicated meshes and is scalable to a wide variety of problems as the solver works with the numerical coefficients of the linear system as opposed to the mesh structure. The detailed algorithm is described in Tatebe (1993). In addition, we use the built‐in multithreading feature of Julia.
67 |
68 | The software is open-source and available on Github under GNU license, and can be accessed at: https://github.com/thehalfspace/Spear. The instructions to run the simulations are provided in the README. Open source contributions are welcome from users and can be added under github issues and pull-requests.
69 |
70 | # Citations
71 |
72 | Citations to entries in paper.bib should be in
73 | [rMarkdown](http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html)
74 | format.
75 |
76 | If you want to cite a software repository URL (e.g. something on GitHub without a preferred
77 | citation) then you can do it with the example BibTeX entry below for @fidgit.
78 |
79 | For a quick reference, the following citation commands can be used:
80 | - `@author:2001` -> "Author et al. (2001)"
81 | - `[@author:2001]` -> "(Author et al., 2001)"
82 | - `[@author1:2001; @author2:2001]` -> "(Author1 et al., 2001; Author2 et al., 2002)"
83 |
84 | # Figures
85 |
86 | Figures can be included like this:
87 | 
88 | and referenced from text using \autoref{fig:example}.
89 |
90 | Figure sizes can be customized by adding an optional second parameter:
91 | { width=20% }
92 |
93 | # Acknowledgements
94 |
95 | We acknowledge contributions from Brigitta Sipocz, Syrtis Major, and Semyeong
96 | Oh, and support from Kathryn Johnston during the genesis of this project.
97 |
98 | # References
99 |
--------------------------------------------------------------------------------
/docs/refs.bib:
--------------------------------------------------------------------------------
1 | @article{Rice1993,
2 | author = {Rice, J. R.},
3 | year = {1993},
4 | title = {Spatio-temporal complexity of slip on a fault},
5 | journal = {Journal of Geophysical Research: Solid Earth},
6 | volume = {98},
7 | number = {B6},
8 | pages = {9885--9907},
9 | doi = {10.1029/93JB00191}
10 | }
11 |
12 | @article{Lapusta2000,
13 | author = {Lapusta, N. and Rice, J. R. and Ben-Zion, Y. and Zheng, G.},
14 | year = {2000},
15 | title = {Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction},
16 | journal = {Journal of Geophysical Research: Solid Earth},
17 | volume = {105},
18 | number = {B10},
19 | pages = {23765--23789},
20 | doi = {10.1029/2000JB900250}
21 | }
22 |
23 | @article{Barbot2019,
24 | author = {Barbot, S.},
25 | year = {2019},
26 | title = {Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault},
27 | journal = {Tectonophysics},
28 | volume = {768},
29 | pages = {228171},
30 | doi = {10.1016/j.tecto.2019.228171}
31 | }
32 |
33 | @article{Kaneko2011,
34 | author = {Kaneko, Y. and Lapusta, N. and Ampuero, J. P.},
35 | year = {2011},
36 | title = {Spectral-element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow depths},
37 | journal = {Journal of Geophysical Research: Solid Earth},
38 | volume = {116},
39 | number = {B10},
40 | doi = {10.1029/2011JB008197}
41 | }
42 |
43 | @article{Erickson2014,
44 | author = {Erickson, B. A. and Dunham, E. M.},
45 | year = {2014},
46 | title = {An efficient numerical method for earthquake cycles in heterogeneous media with realistic rheologies},
47 | journal = {Journal of Geophysical Research: Solid Earth},
48 | volume = {119},
49 | number = {4},
50 | pages = {3290--3316},
51 | doi = {10.1002/2013JB010732}
52 | }
53 |
54 | @article{Thakur2020,
55 | author = {Thakur, P. and Huang, Y. and Kaneko, Y.},
56 | year = {2020},
57 | title = {Effects of low-velocity fault damage zones on long-term earthquake behaviors on mature strike-slip faults},
58 | journal = {Journal of Geophysical Research: Solid Earth},
59 | volume = {125},
60 | number = {8},
61 | doi = {10.1029/2020JB019418}
62 | }
63 |
64 | @article{Thakur2021,
65 | author = {Thakur, P. and Huang, Y.},
66 | year = {2021},
67 | title = {Influence of fault zone maturity on fully dynamic earthquake cycles},
68 | journal = {Geophysical Research Letters},
69 | volume = {48},
70 | number = {16},
71 | doi = {10.1029/2021GL094032}
72 | }
73 |
74 | @article{Thakur2024,
75 | author = {Thakur, P. and Huang, Y.},
76 | year = {2024},
77 | title = {The effects of precursory velocity changes on earthquake nucleation and stress evolution in dynamic earthquake cycle simulations},
78 | journal = {Earth and Planetary Science Letters},
79 | volume = {640},
80 | pages = {118480},
81 | doi = {10.1016/j.epsl.2024.118480}
82 | }
83 |
84 | @inproceedings{Zhai2023,
85 | author = {Zhai, P. and Huang, Y.},
86 | year = {2023},
87 | title = {The effects of characteristic slip distance on earthquake nucleation styles in fully dynamic seismic cycles},
88 | booktitle = {2023 AGU Annual Meeting},
89 | address = {San Francisco, CA}
90 | }
91 |
92 | @article{Abdelmeguid2019,
93 | author = {Abdelmeguid, M. and Ma, X. and Barall, M. and Dunham, E. M. and Elbanna, A. E.},
94 | year = {2019},
95 | title = {A hybrid numerical method for modeling dynamic earthquake rupture with off-fault plasticity},
96 | journal = {Journal of Geophysical Research: Solid Earth},
97 | volume = {124},
98 | number = {10},
99 | pages = {10564--10588},
100 | doi = {10.1029/2019JB018036}
101 | }
102 |
103 | @article{Ma2015,
104 | author = {Ma, X. and Elbanna, A. E.},
105 | year = {2015},
106 | title = {A hybrid numerical scheme for modeling dynamic rupture and off-fault plasticity},
107 | journal = {Journal of Geophysical Research: Solid Earth},
108 | volume = {120},
109 | number = {9},
110 | pages = {6363--6388},
111 | doi = {10.1002/2015JB012200}
112 | }
113 |
114 | @article{Dieterich1979,
115 | author = {Dieterich, J. H.},
116 | year = {1979},
117 | title = {Modeling of rock friction: 1. Experimental results and constitutive equations},
118 | journal = {Journal of Geophysical Research},
119 | volume = {84},
120 | number = {B5},
121 | pages = {2161--2168},
122 | doi = {10.1029/JB084iB05p02161}
123 | }
124 |
125 | @article{Ruina1983,
126 | author = {Ruina, A.},
127 | year = {1983},
128 | title = {Slip instability and state variable friction laws},
129 | journal = {Journal of Geophysical Research: Solid Earth},
130 | volume = {88},
131 | number = {B12},
132 | pages = {10359--10370},
133 | doi = {10.1029/JB088iB12p10359}
134 | }
135 |
136 | @article{Scholz1998,
137 | author = {Scholz, C. H.},
138 | year = {1998},
139 | title = {Earthquakes and friction laws},
140 | journal = {Nature},
141 | volume = {391},
142 | number = {6662},
143 | pages = {37--42},
144 | doi = {10.1038/34097}
145 | }
146 |
147 | @incollection{Ruge1987,
148 | author = {Ruge, J. W. and St{\"u}ben, K.},
149 | year = {1987},
150 | title = {Algebraic multigrid (AMG)},
151 | booktitle = {Multigrid methods},
152 | editor = {McCormick, S. F.},
153 | pages = {73--130},
154 | publisher = {SIAM}
155 | }
156 |
157 | @article{Tatebe1993,
158 | author = {Tatebe, O.},
159 | year = {1993},
160 | title = {The multigrid preconditioned conjugate gradient method},
161 | journal = {Computer Physics Communications},
162 | volume = {74},
163 | number = {2},
164 | pages = {233--244},
165 | doi = {10.1016/0010-4655(93)90066-V}
166 | }
167 |
168 | @article{Bezanson2017,
169 | author = {Bezanson, J. and Edelman, A. and Karpinski, S. and Shah, V. B.},
170 | year = {2017},
171 | title = {Julia: A fresh approach to numerical computing},
172 | journal = {SIAM Review},
173 | volume = {59},
174 | number = {1},
175 | pages = {65--98},
176 | doi = {10.1137/141000671}
177 | }
178 |
179 | @article{RiceBenZion1996,
180 | author = {Rice, J. R. and Ben-Zion, Y.},
181 | year = {1996},
182 | title = {Slip complexity in earthquake fault models},
183 | journal = {Proceedings of the National Academy of Sciences},
184 | volume = {93},
185 | number = {9},
186 | pages = {3811--3818},
187 | doi = {10.1073/pnas.93.9.3811}
188 | }
189 |
190 | @article{Landry2016,
191 | author = {Landry, W. and Barbot, S.},
192 | year = {2016},
193 | title = {The role of viscoelasticity on fault stress evolution and earthquake interactions},
194 | journal = {Geophysical Journal International},
195 | volume = {204},
196 | number = {3},
197 | pages = {1322--1336},
198 | doi = {10.1093/gji/ggv527}
199 | }
200 |
201 | @article{Landry2019,
202 | author = {Landry, W. and Barbot, S.},
203 | year = {2019},
204 | title = {Thermomechanical effects of shear heating in the lower crust},
205 | journal = {Geophysical Journal International},
206 | volume = {219},
207 | number = {1},
208 | pages = {442--463},
209 | doi = {10.1093/gji/ggz291}
210 | }
211 |
212 |
--------------------------------------------------------------------------------
/install_dependencies.jl:
--------------------------------------------------------------------------------
1 | import Pkg
2 | Pkg.add(["Printf", "LinearAlgebra", "DelimitedFiles", "SparseArrays",
3 | "AlgebraicMultigrid","StaticArrays", "IterativeSolvers",
4 | "FEMSparse", "PyPlot", "StatsBase", "LaTeXStrings", "PyCall"])
5 |
6 |
--------------------------------------------------------------------------------
/output.jl:
--------------------------------------------------------------------------------
1 | #################################
2 | # READ OUTPUT FROM SIMULATION
3 | #################################
4 |
5 | mutable struct results
6 | seismic_stress::Array{Float64,2}
7 | seismic_slipvel::Array{Float64,2}
8 | seismic_slip::Array{Float64,2}
9 | index_eq::Array{Float64}
10 | is_stress::Array{Float64,2}
11 | is_slipvel::Array{Float64,2}
12 | is_slip::Array{Float64,2}
13 | dSeis::Matrix{Float64}
14 | vSeis::Matrix{Float64}
15 | aSeis::Matrix{Float64}
16 | tStart::Array{Float64}
17 | tEnd::Array{Float64}
18 | taubefore::Array{Float64,2}
19 | tauafter::Array{Float64,2}
20 | delfafter::Array{Float64,2}
21 | hypo::Array{Float64}
22 | time_::Array{Float64}
23 | Vfmax::Array{Float64}
24 | end
25 |
26 | struct params_int{T<:Int}
27 | # Domain size
28 | Nel::T
29 | FltNglob::T
30 |
31 | # Time parameters
32 | yr2sec::T
33 | Total_time::T
34 | IDstate::T
35 |
36 | # Fault setup parameters
37 | nglob::T
38 |
39 | end
40 |
41 | struct params_float{T<:AbstractFloat}
42 | # Jacobian for global -> local coordinate conversion
43 | # jac::T
44 | # coefint1::T
45 | # coefint2::T
46 | ETA::T
47 |
48 | # Earthquake parameters
49 | Vpl::T
50 | Vthres::T
51 | Vevne::T
52 |
53 | # Setup parameters
54 | dt0::T
55 | end
56 |
57 | struct params_farray{T<:Array{Float64}}
58 | fo::T
59 | Vo::T
60 | xLf::T
61 |
62 | M::T
63 |
64 | BcLC::T
65 | BcTC::T
66 |
67 | FltB::T
68 | FltZ::T
69 | FltX::T
70 |
71 | cca::T
72 | ccb::T
73 | Seff::T
74 | tauo::T
75 | XiLf::T
76 | # diagKnew::T
77 |
78 | xout::T
79 | yout::T
80 | end
81 |
82 | struct params_iarray{T<:Array{Int}}
83 | iFlt::T
84 | iBcL::T
85 | iBcT::T
86 | FltIglobBC::T
87 | FltNI::T
88 | out_seis::T
89 | end
90 |
--------------------------------------------------------------------------------
/par.jl:
--------------------------------------------------------------------------------
1 | #######################################################################
2 | # PARAMETER FILE: SET THE PHYSICAL PARAMETERS FOR THE SIMULATION
3 | #######################################################################
4 | include("$(@__DIR__)/src/GetGLL.jl") # Polynomial interpolation
5 | include("$(@__DIR__)/src/MeshBox.jl") # Build 2D mesh
6 | include("$(@__DIR__)/src/MaterialProperties.jl") # Build 2D mesh
7 | include("$(@__DIR__)/src/Assemble.jl") # Assemble mass and stiffness matrix
8 | include("$(@__DIR__)/src/Kassemble.jl") # Assemble mass and stiffness matrix
9 | # include("$(@__DIR__)/trapezoidFZ/Assemble.jl") # Gaussian fault zone assemble
10 | include("$(@__DIR__)/src/BoundaryMatrix.jl") # Boundary matrices
11 | include("$(@__DIR__)/src/FindNearestNode.jl") # Nearest node for output
12 | include("$(@__DIR__)/src/initialConditions/defaultInitialConditions.jl")
13 | include("$(@__DIR__)/src/damageEvol.jl") # Stiffness index of damaged medium
14 |
15 |
16 | function setParameters(FZdepth, res)
17 |
18 | LX::Int = 48e3 # depth dimension of rectangular domain
19 | LY::Int = 30e3 # off fault dimenstion of rectangular domain
20 |
21 | NelX::Int = 30*res # no. of elements in x
22 | NelY::Int = 20*res # no. of elements in y
23 |
24 | dxe::Float64 = LX/NelX # Size of one element along X
25 | dye::Float64 = LY/NelY # Size of one element along Y
26 | Nel::Int = NelX*NelY # Total no. of elements
27 |
28 | println("dxe = ", dxe)
29 | println("dye = ", dye)
30 |
31 | P::Int = 4 # Lagrange polynomial degree
32 | NGLL::Int = P + 1 # No. of Gauss-Legendre-Lobatto nodes
33 | FltNglob::Int = NelX*(NGLL - 1) + 1
34 |
35 | # Jacobian for global -> local coordinate conversion
36 | dx_dxi::Float64 = 0.5*dxe
37 | dy_deta::Float64 = 0.5*dye
38 | jac::Float64 = dx_dxi*dy_deta
39 | coefint1::Float64 = jac/dx_dxi^2
40 | coefint2::Float64 = jac/dy_deta^2
41 |
42 | #..................
43 | # TIME PARAMETERS
44 | #..................
45 |
46 | yr2sec::Int = 365*24*60*60
47 |
48 | Total_time::Int = 150*yr2sec # Set the total time for simulation here
49 |
50 | CFL::Float64 = 0.6 # Courant stability number
51 |
52 | IDstate::Int = 2 # State variable equation type
53 |
54 | # Some other time variables used in the loop
55 | dtincf::Float64 = 1.2
56 | gamma_::Float64 = pi/4
57 | dtmax::Int = 400 * 24 * 60*60 # 100 days
58 |
59 |
60 | #...................
61 | # MEDIUM PROPERTIES
62 | #...................
63 |
64 | # default
65 | rho1::Float64 = 2670
66 | vs1::Float64 = 3464
67 |
68 | # The entire medium has low rigidity
69 | # rho1::Float64 = 2500
70 | # vs1::Float64 = 0.6*3464
71 |
72 | rho2::Float64 = 2670
73 | vs2::Float64 = 1.00*vs1
74 |
75 | ETA = 0.
76 |
77 | # Low velocity layer dimensions
78 | ThickX::Float64 = LX - 0*ceil(FZdepth/dxe)*dxe # ~FZdepth m deep
79 | ThickY::Float64 = 0.0*ceil(0.0e3/dye)*dye # ~ 0.25*2 km wide
80 |
81 | #.......................
82 | # EARTHQUAKE PARAMETERS
83 | #.......................
84 |
85 | Vpl::Float64 = 1e-9 # Plate loading
86 |
87 | fo::Vector{Float64} = repeat([0.6], FltNglob) # Reference friction coefficient
88 | Vo::Vector{Float64} = repeat([1e-6], FltNglob) # Reference velocity 'Vo'
89 | xLf::Vector{Float64} = repeat([0.008], FltNglob) # Dc (Lc) = 8 mm
90 |
91 | Vthres::Float64 = 0.001
92 | Vevne::Float64 = Vthres
93 |
94 | #-----------#
95 | #-----------#
96 | # SETUP
97 | #-----------#
98 | #-----------#
99 |
100 | #....................
101 | # 2D Mesh generation
102 | #....................
103 | iglob::Array{Int,3}, x::Vector{Float64}, y::Vector{Float64} =
104 | MeshBox!(NGLL, Nel, NelX, NelY, FltNglob, dxe, dye)
105 | x = x .- LX
106 | #return x
107 | nglob::Int = length(x)
108 |
109 | # The derivatives of the Lagrange Polynomials were pre-tabulated
110 | # xgll = location of the GLL nodes inside the reference segment [-1,1]
111 | xgll::Vector{Float64}, wgll::Vector{Float64}, H::Matrix{Float64} = GetGLL(NGLL)
112 | wgll2::SMatrix{NGLL,NGLL,Float64} = wgll*wgll'
113 |
114 | #.............................
115 | # OUTPUT RECEIVER LOCATIONS
116 | #.............................
117 | # For now, it saves slip, sliprate, and stress at the nearest node specified.
118 | # My coordinates are weird, might change them later.
119 | # x coordinate = along dip fault length (always -ve below the free surface)
120 | # y coordinate = off-fault distance (+ve)
121 |
122 |
123 | x_out = [48.0, 48.0, 48.0, 48.0, 48.0, 48.0].*(-1e3) # x coordinate of receiver
124 | y_out = [0.0, 150.0, 300.0, 0.0, 0.0, 0.0] # y coordinate of receiver
125 | # n_receiver = length(x_receiver) # number of receivers
126 |
127 | x_out, y_out, out_seis, dist = FindNearestNode(x_out, y_out, x, y)
128 |
129 |
130 | #.................
131 | # Initialization
132 | #.................
133 |
134 | # For internal forces
135 | # W::Array{Float64,3} = zeros(NGLL, NGLL, Nel)
136 |
137 | # Global Mass Matrix
138 | M::Vector{Float64} = zeros(nglob)
139 |
140 | # Mass+Damping matrix
141 | # MC::Vector{Float64} = zeros(nglob)
142 |
143 | # Assemble mass and stiffness matrix
144 | M, dt::Float64, muMax = Massemble!(NGLL, NelX, NelY, dxe, dye,
145 | ThickX,ThickY, rho1, vs1, rho2, vs2, iglob,M, x, y, jac)
146 |
147 | # Material properties for a narrow rectangular damaged zone of
148 | # half-thickness ThickY and depth ThickX
149 | W = material_properties(NelX, NelY,NGLL,dxe, dye, ThickX, ThickY, wgll2, rho1, vs1, rho2, vs2)
150 |
151 | # Material properties for trapezoid damaged zone
152 | # M, W = mat_trap(NelX, NelY,NGLL, iglob, M, dxe, dye, x,y, wgll2)
153 |
154 | # Stiffness Assembly
155 | Ksparse::SparseMatrixCSC{Float64} = stiffness_assembly(NGLL, NelX, NelY, dxe,dye, nglob, iglob, W)
156 |
157 | # Damage Indexed Kdam
158 | did = damage_indx!(ThickX, ThickY, dxe, dye, NGLL, NelX, NelY, iglob)
159 |
160 | # return Ksparse, Kdam, iglob
161 | # Kdam[Kdam .> 1.0] .= 1.0
162 |
163 | # Time solver variables
164 | dt = CFL*dt
165 | dtmin = dt
166 | half_dt = 0.5*dtmin
167 | half_dt_sq = 0.5*dtmin^2
168 |
169 | #......................
170 | # Boundary conditions :
171 | #......................
172 |
173 | # Left boundary
174 | BcLC::Vector{Float64}, iBcL::Vector{Int} = BoundaryMatrix!(NGLL, NelX, NelY, rho1, vs1, rho2, vs2, dy_deta, dx_dxi, wgll, iglob, 'L')
175 |
176 | # Right Boundary = free surface: nothing to do
177 | # BcRC, iBcR = BoundaryMatrix(P, wgll, iglob, 'R')
178 |
179 | # Top Boundary
180 | BcTC::Vector{Float64}, iBcT::Vector{Int} = BoundaryMatrix!(NGLL, NelX, NelY, rho1, vs1, rho2, vs2, dy_deta, dx_dxi, wgll, iglob, 'T')
181 |
182 | # Mass matrix at boundaries
183 | # Mq = M[:]
184 | M[iBcL] .= M[iBcL] .+ half_dt*BcLC
185 | M[iBcT] .= M[iBcT] .+ half_dt*BcTC
186 | # M[iBcR] .= M[iBcR] .+ half_dt*BcRC
187 |
188 |
189 | # Dynamic fault at bottom boundary
190 | FltB::Vector{Float64}, iFlt::Vector{Int} = BoundaryMatrix!(NGLL, NelX, NelY, rho1, vs1, rho2, vs2, dy_deta, dx_dxi, wgll, iglob, 'B')
191 |
192 | FltZ::Vector{Float64} = M[iFlt]./FltB /half_dt * 0.5
193 | FltX::Vector{Float64} = x[iFlt]
194 |
195 | #......................
196 | # Initial Conditions
197 | #......................
198 | cca::Vector{Float64}, ccb::Vector{Float64} = fricDepth(FltX) # rate-state friction parameters
199 | Seff::Vector{Float64} = SeffDepth(FltX) # effective normal stress
200 | tauo::Vector{Float64} = tauDepth(FltX) # initial shear stress
201 |
202 | # Kelvin-Voigt Viscosity
203 | Nel_ETA::Int = 0
204 | if ETA !=0
205 | Nel_ETA = NelX
206 | x1 = 0.5*(1 .+ xgll')
207 | eta_taper = exp.(-pi*x1.^2)
208 | eta = ETA*dt*repeat([eta_taper], NGLL)
209 |
210 | else
211 | Nel_ETA = 0
212 | end
213 |
214 | # Compute XiLF used in timestep calculation
215 | XiLf::Vector{Float64} = XiLfFunc!(LX, FltNglob, gamma_, xLf, muMax, cca, ccb, Seff)
216 |
217 | # Find nodes that do not belong to the fault
218 | FltNI::Vector{Int} = deleteat!(collect(1:nglob), iFlt)
219 |
220 | # Compute diagonal of K
221 | # diagKnew::Vector{Float64} = KdiagFunc!(FltNglob, NelY, NGLL, Nel, coefint1, coefint2, iglob, W, H, Ht, FltNI)
222 |
223 | # Fault boundary: indices where fault within 24 km
224 | fbc = reshape(iglob[:,1,:], length(iglob[:,1,:]))
225 | idx = findall(fbc .== findall(x .== -24e3)[1] - 1)[1]
226 | FltIglobBC::Vector{Int} = fbc[1:idx]
227 |
228 | # Display important parameters
229 | println("Total number of nodes on fault: ", FltNglob)
230 | println("Average node spacing: ", LX/(FltNglob-1), " m")
231 | println("ThickY: ", ThickY, " m")
232 | @printf("dt: %1.09f s\n", dt)
233 |
234 |
235 | return params_int(Nel, FltNglob, yr2sec, Total_time, IDstate, nglob),
236 | params_float(ETA, Vpl, Vthres, Vevne, dt),
237 | params_farray(fo, Vo, xLf, M, BcLC, BcTC, FltB, FltZ, FltX, cca, ccb, Seff, tauo, XiLf, x_out, y_out),
238 | params_iarray(iFlt, iBcL, iBcT, FltIglobBC, FltNI, out_seis), Ksparse, iglob, NGLL, wgll2, nglob, did
239 |
240 | end
241 |
242 |
243 |
244 | struct params_int{T<:Int}
245 | # Domain size
246 | Nel::T
247 | FltNglob::T
248 |
249 | # Time parameters
250 | yr2sec::T
251 | Total_time::T
252 | IDstate::T
253 |
254 | # Fault setup parameters
255 | nglob::T
256 |
257 | end
258 |
259 | struct params_float{T<:AbstractFloat}
260 | # Jacobian for global -> local coordinate conversion
261 | # jac::T
262 | # coefint1::T
263 | # coefint2::T
264 |
265 | ETA::T
266 |
267 | # Earthquake parameters
268 | Vpl::T
269 | Vthres::T
270 | Vevne::T
271 |
272 | # Setup parameters
273 | dt0::T
274 | end
275 |
276 | struct params_farray{T<:Vector{Float64}}
277 | fo::T
278 | Vo::T
279 | xLf::T
280 |
281 | M::T
282 |
283 | BcLC::T
284 | BcTC::T
285 |
286 | FltB::T
287 | FltZ::T
288 | FltX::T
289 |
290 | cca::T
291 | ccb::T
292 | Seff::T
293 | tauo::T
294 |
295 | XiLf::T
296 | # diagKnew::T
297 |
298 | xout::T
299 | yout::T
300 | end
301 |
302 | struct params_iarray{T<:Vector{Int}}
303 | iFlt::T
304 | iBcL::T
305 | iBcT::T
306 | FltIglobBC::T
307 | FltNI::T
308 | out_seis::T
309 | end
310 |
311 | # Calculate XiLf used in computing the timestep
312 | function XiLfFunc!(LX, FltNglob, gamma_, xLf, muMax, cca, ccb, Seff)
313 |
314 | hcell = LX/(FltNglob-1)
315 | Ximax = 0.5
316 | Xithf = 1
317 |
318 | Xith:: Vector{Float64} = zeros(FltNglob)
319 | XiLf::Vector{Float64} = zeros(FltNglob)
320 |
321 | # @inbounds for j = 1:FltNglob
322 | @inbounds for j = 1:FltNglob
323 |
324 | # Compute time restricting parameters
325 | expr1 = -(cca[j] - ccb[j])/cca[j]
326 | expr2 = gamma_*muMax/hcell*xLf[j]/(cca[j]*Seff[j])
327 | ro = expr2 - expr1
328 |
329 | if (0.25*ro*ro - expr2) >= 0
330 | Xith[j] = 1/ro
331 | else
332 | Xith[j] = 1 - expr1/expr2
333 | end
334 |
335 | # For each node, compute slip that node cannot exceed in one timestep
336 | if Xithf*Xith[j] > Ximax
337 | XiLf[j] = Ximax*xLf[j]
338 | else
339 | XiLf[j] = Xithf*Xith[j]*xLf[j]
340 | end
341 | end
342 |
343 |
344 | return XiLf
345 | end
346 |
--------------------------------------------------------------------------------
/plots/README.md:
--------------------------------------------------------------------------------
1 | ### Directory for saving plots from the output
2 |
--------------------------------------------------------------------------------
/plots/example/Vfmax01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/thehalfspace/Spear/0b7dc5671761d1a06fe2f700e0ef39557eb67cda/plots/example/Vfmax01.png
--------------------------------------------------------------------------------
/plots/example/cumulative_slip.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/thehalfspace/Spear/0b7dc5671761d1a06fe2f700e0ef39557eb67cda/plots/example/cumulative_slip.png
--------------------------------------------------------------------------------
/post/README.md:
--------------------------------------------------------------------------------
1 | ## Postprocessing folder
2 |
3 | ### Scripts for plotting etc.
4 |
5 |
--------------------------------------------------------------------------------
/post/event_details.jl:
--------------------------------------------------------------------------------
1 | #################################
2 | # MODULE FOR SOME CALCULATIONS
3 | # FROM SIMULATION OUTPUT
4 | #################################
5 | using LinearAlgebra
6 |
7 | # get index of start of rupture
8 | function get_index(seismic_stress, taubefore)
9 |
10 | len = length(taubefore[:,1])
11 | index_start = zeros(Int, length(taubefore[1,:]))
12 | for i in 1:length(taubefore[1,:])
13 | temp = zeros(length(seismic_stress[1,:]))
14 | # index_start[i] = findall(seismic_stress[len,:] .== taubefore[len,i])[1]
15 | for j in 1:length(seismic_stress[1,:])
16 | temp[j] = norm(seismic_stress[:,j] .- taubefore[:,i])
17 | end
18 |
19 | index_start[i] = findmin(temp)[2]
20 | end
21 |
22 | index_start
23 | end
24 |
25 | #.................................................
26 | # Compute the final Coseismic slip for each event
27 | #.................................................
28 | function Coslip(S, Slip, SlipVel, Stress, time_=zeros(1000000))
29 | Vfmax = maximum(SlipVel, dims = 1)[:]
30 |
31 | delfafter::Array{Float64,2} = zeros(size(Slip))
32 | tStart::Array{Float64} = zeros(size(Slip[1,:]))
33 | tEnd::Array{Float64} = zeros(size(Slip[1,:]))
34 |
35 | taubefore::Array{Float64,2} = zeros(size(Slip))
36 | tauafter::Array{Float64,2} = zeros(size(Slip))
37 |
38 | hypo::Array{Float64} = zeros(size(Slip[1,:])) # Hypocenter
39 | vhypo::Array{Float64} = zeros(size(Slip[1,:])) # Velocity at hypocenter
40 |
41 | Vthres = 0.001 # event threshold
42 | slipstart = 0
43 | it = 1; it2 = 1
44 | delfref = zeros(size(Slip[:,1]))
45 |
46 | for i = 1:length(Slip[1,:])
47 |
48 | # Start of each event
49 | if Vfmax[i] > 1.01*Vthres && slipstart == 0
50 | delfref = Slip[:,i]
51 | slipstart = 1
52 | tStart[it2] = time_[i]
53 |
54 | taubefore[:,it2] = Stress[:,i]
55 | vhypo[it2], indx = findmax(SlipVel[:,i])
56 |
57 | hypo[it2] = S.FltX[indx]
58 |
59 | it2 = it2+1
60 | end
61 |
62 | # End of each event
63 | if Vfmax[i] < 0.99*Vthres && slipstart == 1
64 | delfafter[:,it] = Slip[:,i] - delfref
65 | tauafter[:,it] = Stress[:,i]
66 | tEnd[it] = time_[i]
67 | slipstart = 0
68 | it = it + 1
69 | end
70 | end
71 |
72 | return delfafter[:,1:it-1], (taubefore-tauafter)[:,1:it-1], tStart[1:it2-1], tEnd[1:it-1], vhypo[1:it2-1], hypo[1:it2-1]
73 | end
74 |
75 | #..........................................................
76 | # Compute the moment magnitude:
77 | # Assumed the rupture area to be square; the rupture
78 | # dimension along depth is the same as the rupture
79 | # dimension perpendicular to the plane
80 | #..........................................................
81 | function moment_magnitude_new(mu, FltX, delfafter, stressdrops ,time_)
82 | # Final coseismic slip of each earthquake
83 | # delfafter, stressdrops = Coslip(S, Slip, SlipVel, Stress, time_)
84 | FltNglob = length(FltX)
85 |
86 | iter = length(delfafter[1,:])
87 | seismic_moment = zeros(iter)
88 | rupture_len = zeros(iter)
89 | fault_slip = zeros(iter)
90 | temp_sigma = 0
91 | iter2 = 1
92 |
93 | del_sigma = zeros(iter)
94 |
95 | dx = diff(FltX).*1e3
96 |
97 | for i = 1:iter
98 |
99 | # slip threshold = 1% of maximum slip
100 | slip_thres = 0.01*maximum(delfafter[:,i])
101 |
102 | # area = slip*(rupture dimension along depth)
103 | # zdim = rupture along z dimension = depth rupture dimension
104 | area = 0; zdim = 0; temp_sigma = 0; temp_slip = 0
105 |
106 | for j = 1:FltNglob
107 | if delfafter[j,i] >= slip_thres
108 | area = area + delfafter[j,i]*dx[j-1]
109 | zdim = zdim + dx[j-1]
110 | temp_slip = temp_slip + delfafter[j,i]
111 |
112 | # Avg. stress drops along rupture area
113 | temp_sigma = temp_sigma + stressdrops[j,i]*dx[j-1]
114 | end
115 | end
116 |
117 | seismic_moment[i] = mu*area*zdim
118 | del_sigma[i] = temp_sigma/zdim
119 | fault_slip[i] = temp_slip/zdim
120 |
121 | rupture_len[i] = zdim
122 |
123 |
124 | end
125 | # seismic_moment = filter!(x->x!=0, seismic_moment)
126 | # del_sigma = filter!(x->x!=0, del_sigma)
127 | Mw = (2/3)*log10.(seismic_moment.*1e7) .- 10.7
128 |
129 | return Mw, del_sigma, fault_slip, rupture_len
130 | end
131 |
--------------------------------------------------------------------------------
/post/plotting_script.jl:
--------------------------------------------------------------------------------
1 | ##############################
2 | # PLOTTING SCRIPTS
3 | ##############################
4 |
5 | using PyPlot
6 | using StatsBase
7 | using LaTeXStrings
8 | using PyCall
9 | mpl = pyimport("matplotlib")
10 |
11 | # Default plot params
12 | function plot_params()
13 | plt.rc("xtick", labelsize=16)
14 | plt.rc("ytick", labelsize=16)
15 | plt.rc("xtick", direction="in")
16 | plt.rc("ytick", direction="in")
17 | plt.rc("font", size=15)
18 | plt.rc("figure", autolayout="True")
19 | plt.rc("axes", titlesize=16)
20 | plt.rc("axes", labelsize=17)
21 | plt.rc("xtick.major", width=1.5)
22 | plt.rc("xtick.major", size=5)
23 | plt.rc("ytick.major", width=1.5)
24 | plt.rc("ytick.major", size=5)
25 | plt.rc("lines", linewidth=2)
26 | plt.rc("axes", linewidth=1.5)
27 | plt.rc("legend", fontsize=13)
28 | plt.rc("mathtext", fontset="stix")
29 | plt.rc("font", family="STIXGeneral")
30 |
31 | # Default width for Nature is 7.2 inches,
32 | # height can be anything
33 | #plt.rc("figure", figsize=(7.2, 4.5))
34 | end
35 |
36 | # Plot slip vs event number
37 | function slipPlot(delfafter2, rupture_len, FltX, Mw, tStart)
38 | plot_params()
39 | fig, ax = PyPlot.subplots(nrows=1, ncols=4, sharex="all", sharey="all", figsize=(9.2, 5.00))
40 |
41 | xaxis = tStart[Mw .>2.8]
42 | delfafter = delfafter2[:,Mw .> 2.8]
43 | Mw2 = Mw[Mw .> 2.8]
44 |
45 | # Normalize colorbar
46 | norm = matplotlib.colors.Normalize(vmin = minimum(Mw2),
47 | vmax=maximum(Mw2))
48 | colors = matplotlib.cm.inferno_r(norm(Mw2))
49 |
50 | ax[1].barh(xaxis, delfafter[end-1,:], height=6,
51 | color=colors, align="center");
52 | ax[1].set_ylabel("Time (yr)")
53 | ax[1].invert_yaxis()
54 | ax[1].set_title("At 60 m depth")
55 |
56 | trench_depth1 = findall(abs.(FltX) .< 4.0e3)[1]
57 | trench_depth2 = findall(abs.(FltX) .< 6.0e3)[1]
58 | trench_depth3 = findall(abs.(FltX) .< 8.0e3)[1]
59 |
60 | ax[2].barh(xaxis, delfafter[trench_depth1,:], height=6,
61 | color=colors, align="center");
62 | ax[2].invert_yaxis()
63 | ax[2].set_title("At 4 km depth")
64 |
65 | ax[3].barh(xaxis, delfafter[trench_depth2,:], height=6,
66 | color=colors, align="center");
67 | ax[3].invert_yaxis()
68 | ax[3].set_title("At 6 km depth")
69 |
70 | ax[4].barh(xaxis, delfafter[trench_depth3,:], height=6,
71 | color=colors, align="center");
72 | ax[4].invert_yaxis()
73 | ax[4].set_title("At 8 km depth")
74 |
75 | sm = matplotlib.cm.ScalarMappable(norm=norm, cmap="inferno_r")
76 | sm.set_array([])
77 | fig.colorbar(sm, shrink=0.9, label="Mw")
78 | plt.xlabel("Coseismic Slip (m)")
79 | plt.tight_layout()
80 | show()
81 |
82 | figname = string(path, "coseismic_slip.png")
83 | fig.savefig(figname, dpi = 300)
84 | end
85 |
86 | # Cumulative sliprate plot
87 | function eqCyclePlot(sliprate, FltX)
88 | indx = findall(abs.(FltX) .<= 16e3)[1]
89 | value = sliprate[indx:end,10000:end]
90 |
91 | depth = -FltX[indx:end]./1e3
92 |
93 | plot_params()
94 | fig = PyPlot.figure(figsize=(9.2, 4.45))
95 | ax = fig.add_subplot(111)
96 |
97 | c = ax.imshow(value, cmap="inferno", aspect="auto",
98 | norm=matplotlib.colors.LogNorm(vmin=1e-9, vmax=1e0),
99 | interpolation="bicubic",
100 | extent=[0,length(sliprate[1,:]), 0,16])
101 |
102 | # for stress
103 | # c = ax.imshow(value, cmap="inferno", aspect="auto",
104 | # vmin=22.5, vmax=40,
105 | # interpolation="bicubic",
106 | # extent=[0,length(seismic_slipvel[1,:]), 0,16])
107 |
108 | ax.set_xlabel("Timesteps")
109 | ax.set_ylabel("Depth (km)")
110 |
111 | ax.invert_yaxis()
112 | cbar = fig.colorbar(c)
113 | # cbar.set_ticks(cbar.get_ticks()[1:2:end])
114 |
115 | show()
116 | figname = string(path, "interpolated_sliprate.png")
117 | fig.savefig(figname, dpi = 300)
118 |
119 | end
120 |
121 | # Plot Vfmax
122 | function VfmaxPlot(Vfmax, t, yr2sec)
123 | plot_params()
124 | fig = PyPlot.figure(figsize=(7.2, 3.45))
125 | ax = fig.add_subplot(111)
126 |
127 | ax.plot(t./yr2sec, Vfmax, lw = 2.0)
128 | ax.set_xlabel("Time (years)")
129 | ax.set_ylabel("Max. Slip rate (m/s)")
130 | ax.set_yscale("log")
131 | # ax.set_xlim([230,400])
132 | show()
133 |
134 | figname = string(path, "Vfmax01.png")
135 | fig.savefig(figname, dpi = 300)
136 | end
137 |
138 | function Vfmaxcomp(Vfmax1, t1, Vfmax2, t2, yr2sec)
139 | plot_params()
140 | fig = PyPlot.figure(figsize=(7.2, 3.45))
141 | ax = fig.add_subplot(111)
142 |
143 | ax.plot(t1./yr2sec, Vfmax1, lw = 2.0, label="Thakur")
144 | ax.plot(t2./yr2sec, Vfmax2, lw = 2.0, alpha=0.7, label="Abdelmeguid")
145 | ax.set_xlabel("Time (years)")
146 | ax.set_ylabel("Max. Slip rate (m/s)")
147 | # ax.set_yscale("log")
148 | plt.legend()
149 | # ax.set_xlim([230,400])
150 | show()
151 |
152 | figname = string(path, "Vfmax01.png")
153 | fig.savefig(figname, dpi = 300)
154 | end
155 |
156 | # Plot alpha
157 | function alphaaPlot(alphaa, t, yr2sec)
158 | plot_params()
159 | fig = PyPlot.figure(figsize=(7.2, 3.45))
160 | ax = fig.add_subplot(111)
161 |
162 | ax.plot(t./yr2sec, alphaa, lw = 2)
163 | ax.set_xlabel("Time (years)")
164 | ax.set_ylabel("Shear Modulus Contrast (%)")
165 | # ax.set_xlim([230,400])
166 | show()
167 |
168 |
169 | figname = string(path, "alpha_01.png")
170 | fig.savefig(figname, dpi = 300)
171 | end
172 |
173 | # Plot cumulative slip
174 | function cumSlipPlot(delfsec, delfyr, FltX)
175 | indx = findall(abs.(FltX) .<= 18)[1]
176 |
177 | delfsec2 = transpose(delfsec[:,indx:end])
178 | delfyr2 = transpose(delfyr)
179 |
180 | plot_params()
181 | fig = PyPlot.figure(figsize=(7.2, 4.45))
182 | ax = fig.add_subplot(111)
183 | plt.rc("font",size=12)
184 |
185 | ax.plot(delfyr2, FltX, color="royalblue", lw=1.0)
186 | ax.plot(delfsec2, FltX[indx:end], color="chocolate", lw=1.0)
187 | ax.set_xlabel("Accumulated Slip (m)")
188 | ax.set_ylabel("Depth (km)")
189 | ax.set_ylim([0,24])
190 | # ax.set_xlim([1,20])
191 |
192 | ax.invert_yaxis()
193 |
194 | show()
195 |
196 | figname = string(path, "cumulative_slip.png")
197 | fig.savefig(figname, dpi = 300)
198 |
199 | end
200 |
201 | # Plot friction parameters
202 | function icsPlot(a_b, Seff, tauo, FltX)
203 | plot_params()
204 | fig = PyPlot.figure(figsize=(7.2, 4.45))
205 | ax = fig.add_subplot(111)
206 |
207 | ax.plot(Seff, FltX, "k-", label="Normal Stress")
208 | ax.plot(tauo, FltX, "k--", label="Shear Stress")
209 | ax.set_xlabel("Stresses (MPa)")
210 | ax.set_ylabel("Depth (km)")
211 | plt.legend(loc="lower right")
212 |
213 | col="tab:blue"
214 | ax2 = ax.twiny()
215 | ax2.plot(a_b, FltX, label="(a-b)")
216 | ax2.set_xlabel("Rate-state friction value", color=col)
217 | ax2.get_xaxis().set_tick_params(color=col)
218 | ax2.tick_params(axis="x", labelcolor=col)
219 |
220 | ax.set_ylim([0,80])
221 | ax.invert_yaxis()
222 | show()
223 |
224 | figname = string(path, "ics_02.png")
225 | fig.savefig(figname, dpi = 300)
226 | end
227 |
--------------------------------------------------------------------------------
/post/rough_script.jl:
--------------------------------------------------------------------------------
1 | #################################
2 | # SOME ROUGH SCRIPTS
3 | # FOR TRYING OUT STUFF
4 | #################################
5 |
6 | using StatsBase
7 | using PyPlot
8 |
9 | # Get index for each event
10 | function event_indx(tStart, tEnd, time_)
11 | start_indx = zeros(size(tStart))
12 | end_indx = zeros(size(tEnd))
13 |
14 | for i = 1:length(tStart)
15 |
16 | start_indx[i] = findall(time_ .== tStart[i])[1]
17 | end_indx[i] = findall(time_ .== tEnd[i])[1]
18 | end
19 |
20 | return start_indx, end_indx
21 | end
22 |
23 | # Plot sliprates for each event with depth
24 | function test1(S, O, evno)
25 | start_indx = zeros(size(O.tStart))
26 | end_indx = zeros(size(O.tEnd))
27 |
28 | for i = 1:length(O.tStart)
29 |
30 | start_indx[i] = findall(O.time_ .== O.tStart[i])[1]
31 | end_indx[i] = findall(O.time_ .== O.tEnd[i])[1]
32 | end
33 |
34 | start_indx = Int.(start_indx)[evno]
35 | end_indx = Int.(end_indx)[evno]
36 | sv = zeros(size(O.seismic_slipvel))
37 |
38 | inc = 0.1 # time interval = 0.1 sec for plotting
39 | to = O.time_[start_indx] # start time
40 | j = 1
41 | for i=start_indx:end_indx
42 | if O.time_[i] >= to
43 | sv[:,j] = O.seismic_slipvel[:,i]
44 | to = to + inc
45 | j = j+1
46 | end
47 | end
48 |
49 | sv = sv[:,1:j]
50 |
51 | fig = PyPlot.figure(figsize=(8,6))
52 | ax = fig.add_subplot(111)
53 |
54 | ax.plot(sv, S.FltX/1e3, ".--", label="a", lw = 1)
55 | ax.set_xlabel("Slip rate (m/s)")
56 | ax.set_ylabel("Depth (km)")
57 | ax.set_title("Slip rate for one event")
58 | # ax.set_xlim([0, 0.02])
59 | ax.set_ylim([-24, 0])
60 | show()
61 |
62 | figname = string(path, "slipvel.pdf")
63 | fig.savefig(figname, dpi = 300)
64 | end
65 |
66 |
--------------------------------------------------------------------------------
/run.jl:
--------------------------------------------------------------------------------
1 | #################################
2 | # Run the simulations from here
3 | #################################
4 |
5 | # 1. Go to par.jl and change as needed
6 | # 2. Go to src/initialConditions/defaultInitialConditions and change as needed
7 | # 3. Change the name of the simulation in this file
8 | # 4. Run the simulation from terminal. (julia run.jl)
9 | # 5. Plot results from the scripts folder
10 |
11 | using Printf, LinearAlgebra, DelimitedFiles, SparseArrays,
12 | AlgebraicMultigrid, StaticArrays, IterativeSolvers, FEMSparse
13 | using Base.Threads
14 | # BLAS.set_num_threads(1)
15 |
16 | include("$(@__DIR__)/par.jl") # Set Parameters
17 |
18 | # Put the resolution for the simulation here: should be an integer
19 | resolution = 4
20 |
21 | # Output directory to save data
22 | out_dir = "$(@__DIR__)/data/test_01/"
23 | mkpath(out_dir)
24 |
25 | P = setParameters(0e3,resolution) # args = fault zone depth, resolution
26 |
27 | include("$(@__DIR__)/src/dtevol.jl")
28 | include("$(@__DIR__)/src/NRsearch.jl")
29 | include("$(@__DIR__)/src/otherFunctions.jl")
30 |
31 | include("$(@__DIR__)/src/main.jl")
32 |
33 | simulation_time = @elapsed @time main(P)
34 |
35 | println("\n")
36 |
37 | @info("Simulation Complete!");
38 |
--------------------------------------------------------------------------------
/src/.ipynb_checkpoints/Assemble-checkpoint.jl:
--------------------------------------------------------------------------------
1 | ###################################################
2 | # ASSEMBLE THE MASS AND THE STIFFNESS MATRICES
3 | ###################################################
4 |
5 |
6 |
7 | function Massemble!(NGLL, NelX, NelY, dxe, dye, ThickX,
8 | ThickY, rho1, vs1, rho2, vs2, iglob,
9 | M, x, y, jac)
10 |
11 |
12 | xgll, wgll, H = GetGLL(NGLL)
13 | wgll2 = wgll*wgll';
14 |
15 | rho::Matrix{Float64} = zeros(NGLL, NGLL)
16 | mu::Matrix{Float64} = zeros(NGLL, NGLL)
17 |
18 | vso = zeros(NGLL, NGLL)
19 | vs = zeros(NGLL-1, NGLL)
20 | dx = zeros(NGLL-1, NGLL)
21 | muMax = 0
22 | dt = Inf
23 |
24 | # damage zone index
25 | damage_idx = zeros(Int, NelX*NelY)
26 |
27 | @inbounds @fastmath for ey = 1:NelY
28 | @inbounds @fastmath for ex = 1:NelX
29 |
30 | eo = (ey-1)*NelX + ex
31 | ig = iglob[:,:,eo]
32 |
33 | # Properties of heterogeneous medium
34 | if ex*dxe >= ThickX && (dye <= ey*dye <= ThickY)
35 | damage_idx[eo] = eo
36 | rho[:,:] .= rho2
37 | mu[:,:] .= rho2*vs2^2
38 | else
39 | rho[:,:] .= rho1
40 | mu[:,:] .= rho1*vs1^2
41 | end
42 |
43 | if muMax < maximum(maximum(mu))
44 | muMax = maximum(maximum(mu))
45 | end
46 |
47 | # Diagonal Mass Matrix
48 | M[ig] .+= wgll2.*rho*jac
49 |
50 | # Local contributions to the stiffness matrix
51 | # W[:,:,eo] .= wgll2.*mu;
52 |
53 | # Set timestep
54 | vso .= sqrt.(mu./rho)
55 |
56 | if dxe 0]
71 | end
72 |
--------------------------------------------------------------------------------
/src/.ipynb_checkpoints/damageEvol-checkpoint.jl:
--------------------------------------------------------------------------------
1 | #####################################
2 | # DAMAGE EVOLUTION IN TIME
3 | #####################################
4 |
5 | function damage_indx!(ThickX, ThickY, Wid, dxe, dye, NGLL, NelX, NelY, iglob)
6 |
7 | ww::Matrix{Float64} = zeros(NGLL, NGLL)
8 | Ke2::Array{Float64,4} = zeros(NGLL,NGLL,NGLL,NGLL)
9 | Ke::Array{Float64,3} = zeros(NGLL*NGLL,NGLL*NGLL, Nel)
10 |
11 | @inbounds for eo in 1:Nel
12 | Ke2 .= 0.
13 |
14 | for i in 1:NGLL, j in 1:NGLL
15 | for k in 1:NGLL, l in 1:NGLL
16 | Ke2[i,j,k,l] = 1
17 | end
18 | end
19 | Ke[:,:,eo] = reshape(Ke2,NGLL*NGLL,NGLL*NGLL)
20 | end
21 |
22 | return FEsparse(NelX*NelY, Ke, iglob)
23 |
24 | end
25 |
--------------------------------------------------------------------------------
/src/.ipynb_checkpoints/untitled-checkpoint.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/thehalfspace/Spear/0b7dc5671761d1a06fe2f700e0ef39557eb67cda/src/.ipynb_checkpoints/untitled-checkpoint.txt
--------------------------------------------------------------------------------
/src/Assemble.jl:
--------------------------------------------------------------------------------
1 | ###################################################
2 | # ASSEMBLE THE MASS AND THE STIFFNESS MATRICES
3 | ###################################################
4 |
5 |
6 |
7 | function Massemble!(NGLL, NelX, NelY, dxe, dye, ThickX,
8 | ThickY, rho1, vs1, rho2, vs2, iglob,
9 | M, x, y, jac)
10 |
11 |
12 | xgll, wgll, H = GetGLL(NGLL)
13 | wgll2 = wgll*wgll';
14 |
15 | rho::Matrix{Float64} = zeros(NGLL, NGLL)
16 | mu::Matrix{Float64} = zeros(NGLL, NGLL)
17 |
18 | vso = zeros(NGLL, NGLL)
19 | vs = zeros(NGLL-1, NGLL)
20 | dx = zeros(NGLL-1, NGLL)
21 | muMax = 0
22 | dt = Inf
23 |
24 | # # damage zone index
25 | # damage_idx = zeros(Int, NelX*NelY)
26 |
27 | @inbounds @fastmath for ey = 1:NelY
28 | @inbounds @fastmath for ex = 1:NelX
29 |
30 | eo = (ey-1)*NelX + ex
31 | ig = iglob[:,:,eo]
32 |
33 | # Properties of heterogeneous medium
34 | if ex*dxe >= ThickX && (dye <= ey*dye <= ThickY)
35 | # damage_idx[eo] = eo
36 | rho[:,:] .= rho2
37 | mu[:,:] .= rho2*vs2^2
38 | else
39 | rho[:,:] .= rho1
40 | mu[:,:] .= rho1*vs1^2
41 | end
42 |
43 | if muMax < maximum(maximum(mu))
44 | muMax = maximum(maximum(mu))
45 | end
46 |
47 | # Diagonal Mass Matrix
48 | M[ig] .+= wgll2.*rho*jac
49 |
50 | # Local contributions to the stiffness matrix
51 | # W[:,:,eo] .= wgll2.*mu;
52 |
53 | # Set timestep
54 | vso .= sqrt.(mu./rho)
55 |
56 | if dxe= ThickX && (dye <= ey*dye <= ThickY)
15 | mu .= rho2*vs2^2
16 | # damage_idx[eo] = eo
17 | else
18 | mu .= rho1*vs1^2
19 | end
20 | W[:,:,eo] = wgll2.*mu
21 | end
22 | end
23 | W
24 | end
25 |
26 | #=
27 | FZ-oute FZ-inner Fault
28 | V V V
29 | ------P1--------------|
30 | \ | |
31 | \ | |
32 | \ | |
33 | P2 -------| |
34 | | |
35 | | |
36 | =#
37 |
38 |
39 |
40 | # Material properties for a trapezium damage zone
41 | # Linear function: shape of trapezoid
42 | function line(x,y)
43 | P1 = [0 3e3] # Top point of the outer damage zone in flower structure
44 | P2 = [-8e3 1.5e3] # Bottom point
45 |
46 | f = (y - P2[2]) - ((P1[2]-P2[2])/(P1[1]-P2[1]))*(x - P2[1])
47 |
48 | return f
49 | end
50 |
51 | # Set up trapezoidal rigidity
52 | function rigid(x,y)
53 | # Rigidity: host rock and fault zone
54 | rho1::Float64 = 2670
55 | vs1::Float64 = 3464
56 |
57 | rho2 = 0.6*rho1 # Inner damage zone
58 | vs2 = 0.6*vs1 # Inner damage zone
59 | rho3 = 0.8*rho1 # outer damage zone
60 | vs3 = 0.8*vs1 # outer damage zone
61 |
62 | rhoglob::Array{Float64} = zeros(length(x))
63 | vsglob::Array{Float64} = zeros(length(x))
64 |
65 | for i = 1:length(x)
66 | if x[i] > -8e3 # Depth of the outer damage zone
67 | if line(x[i],y[i]) < 0
68 | rhoglob[i] = rho3
69 | vsglob[i] = vs3
70 | else
71 | rhoglob[i] = rho1
72 | vsglob[i] = vs1
73 | end
74 | else
75 | rhoglob[i] = rho1
76 | vsglob[i] = vs1
77 | end
78 |
79 | end
80 |
81 | for i = 1:length(x)
82 | if y[i]<0.25e3 # Thickness of the inner damage zone
83 | rhoglob[i] = rho2
84 | vsglob[i] = vs2
85 | end
86 | end
87 |
88 |
89 | return rhoglob, vsglob
90 | end
91 |
92 | function mat_trap(NelX, NelY, NGLL, iglob, M, dxe, dye, x,y, wgll2)
93 | dx_dxi::Float64 = 0.5*dxe
94 | dy_deta::Float64 = 0.5*dye
95 | jac::Float64 = dx_dxi*dy_deta
96 |
97 | mu::Matrix{Float64} = zeros(NGLL, NGLL)
98 | rho::Matrix{Float64} = zeros(NGLL, NGLL)
99 | W::Array{Float64,3} = zeros(NGLL, NGLL, NelX*NelY)
100 | rhoglob, vsglob = rigid(x,y)
101 | muglob = rhoglob.*(vsglob.^2)
102 |
103 | @inbounds for ey in 1:NelY
104 | @inbounds for ex in 1:NelX
105 | eo = (ey-1)*NelX + ex
106 | ig = iglob[:,:,eo]
107 |
108 | mu[:,:] = muglob[ig]
109 | rho[:,:] = rhoglob[ig]
110 |
111 | W[:,:,eo] = wgll2.*mu
112 | M[ig] .+= wgll2.*rho*jac
113 | end
114 | end
115 | return M,W
116 | end
117 |
--------------------------------------------------------------------------------
/src/MeshBox.jl:
--------------------------------------------------------------------------------
1 | ###############################################################################
2 | # Spectral Element Mesh for Rectangular Box, with internal
3 | # Gauss-Legendre-Lobatto (GLL) dub-grids.
4 | #
5 | # INPUT: LX = x-dimension
6 | # LY = y-dimension
7 | # NELX = no. of elements in x
8 | # NELY = no. of elements in y
9 | # NGLL = no. of GLL nodes
10 |
11 |
12 | # OUTPUT: iglob[ngll, ngll, NELX, NELY] = maps local to global
13 | # numbering
14 | # I = iglob[i,j,e] is the global node index of the
15 | # (i,j)th GLL node internal to the
16 | # e-th element.
17 |
18 | # Elements are numbered row by row from from bottom-left
19 | # to top-right. The table iglob is needed to assemble
20 | # global data from local data.
21 |
22 | # x[:] = global x coordinates of GLL nodes, starting at 0
23 | # y[:] = global y coordinates of GLL nodes, starting at 0
24 | ###############################################################################
25 |
26 |
27 | function MeshBox!(NGLL, Nel, NelX, NelY, FltNglob, dxe, dye)
28 |
29 | XGLL = GetGLL(NGLL)[1]
30 |
31 | iglob = zeros(Int, NGLL, NGLL, Nel)
32 | nglob = FltNglob*(NelY*(NGLL-1) + 1)
33 |
34 | x::Vector{Float64} = zeros(nglob)
35 | y::Vector{Float64} = zeros(nglob)
36 |
37 | et = 0
38 | last_iglob = 0
39 |
40 | ig = reshape(collect(1:NGLL*NGLL), NGLL, NGLL)
41 | igL = reshape(collect(1:NGLL*(NGLL-1)), NGLL-1, NGLL) # Left edge
42 | igB = reshape(collect(1:NGLL*(NGLL-1)), NGLL, NGLL-1) # Bottom edge
43 | igLB = reshape(collect(1:(NGLL-1)*(NGLL-1)), NGLL-1, NGLL-1) # rest of the elements
44 |
45 | xgll = repeat(0.5*(1 .+ XGLL), 1, NGLL)
46 | ygll = dye*xgll'
47 | xgll = dxe*xgll
48 |
49 |
50 | @inbounds for ey = 1:NelY # number of x elements
51 | @inbounds for ex = 1:NelX # number of y elements
52 |
53 | et = et + 1
54 |
55 | # Redundant nodes at element edges
56 |
57 | # NGLL = number of GLL nodes per element
58 |
59 | if et == 1
60 | ig = reshape(collect(1:NGLL*NGLL), NGLL, NGLL)
61 | else
62 | if ey ==1 # Bottom Row
63 | ig[1,:] = iglob[NGLL, :, et-1] # Left edge
64 | ig[2:end, :] = last_iglob .+ igL # The rest
65 |
66 | elseif ex == 1 # Left Column
67 | ig[:,1] = iglob[:,NGLL,et-NelX] # Bottom edge
68 | ig[:,2:end] = last_iglob .+ igB # The rest
69 |
70 | else # Other Elements
71 | ig[1,:] = iglob[NGLL, :, et-1] # Left edge
72 | ig[:,1] = iglob[:, NGLL, et-NelX]# Bottom edge
73 | ig[2:end, 2:end] = last_iglob .+ igLB
74 | end
75 | end
76 |
77 | iglob[:,:,et] = ig
78 | last_iglob = ig[NGLL, NGLL]
79 |
80 | # Global coordinates of computational nodes
81 | @inbounds x[ig] .= dxe*(ex-1) .+ xgll
82 | @inbounds y[ig] .= dye*(ey-1) .+ ygll
83 |
84 | end
85 | end
86 |
87 | return iglob, x, y
88 | end
89 |
90 |
--------------------------------------------------------------------------------
/src/NRsearch.jl:
--------------------------------------------------------------------------------
1 | ####################################
2 | # NEWTON RHAPSON SEARCH METHOD
3 | ####################################
4 |
5 | # Fault Boundary function
6 | function FBC!(IDstate, P::params_farray, NFBC, FltNglob, psi1, Vf1, tau1, psi2, Vf2, tau2, psi, Vf, FltVfree, dt)
7 |
8 | # tauNR::Vector{BigFloat} = zeros(FltNglob)
9 | tauNR::BigFloat = 0.
10 |
11 | for j = NFBC:FltNglob
12 |
13 | tauNR = 0.
14 | psi1[j] = IDS!(P.xLf[j], P.Vo[j], psi[j], dt, Vf[j], 1e-5, IDstate)
15 |
16 | Vf1[j], tau1[j] = NRsearch!(P.fo[j], P.Vo[j], P.cca[j], P.ccb[j], P.Seff[j],
17 | tauNR, P.tauo[j], psi1[j], P.FltZ[j], FltVfree[j])
18 |
19 | if Vf[j] > 1e10 || isnan(Vf[j]) == 1 || isnan(tau1[j]) == 1
20 |
21 | println("Fault Location = ", j)
22 | println(" Vf = ", Vf[j])
23 | println(" tau1 = ", tau1[j])
24 |
25 | println("psi =", psi[j])
26 | println("psi1 =", psi1[j])
27 | # Save simulation results
28 | #filename = string(dir, "/data", name, "nrfail.jld2")
29 | #@save filename results(Stress,SlipVel, Slip, time_)
30 | @error("NR SEARCH FAILED!")
31 | return
32 | end
33 |
34 | psi2[j] = IDS2!(P.xLf[j], P.Vo[j], psi[j], psi1[j], dt, Vf[j], Vf1[j], IDstate)
35 |
36 | # NRsearch 2nd loop
37 | Vf2[j], tau2[j] = NRsearch!(P.fo[j], P.Vo[j], P.cca[j], P.ccb[j], P.Seff[j],
38 | tau1[j], P.tauo[j], psi2[j], P.FltZ[j], FltVfree[j])
39 |
40 | end
41 |
42 | return psi1, Vf1, tau1, psi2, Vf2, tau2
43 | end
44 |
45 |
46 | # Newton Rhapson search method
47 | function NRsearch!(fo, Vo, cca, ccb, Seff, tau, tauo, psi, FltZ, FltVfree)
48 |
49 | Vw = 1e10
50 | fact = 1. + (Vo/Vw)*exp(-psi)
51 | fa::BigFloat = 0.
52 | help1::BigFloat = 0.
53 | help2::BigFloat = 0.
54 | delta::BigFloat = 0.
55 |
56 | # NR search point by point for tau if Vf < Vlimit
57 | eps = 0.001*cca*Seff
58 | k = 0
59 | delta = Inf
60 |
61 | while abs(delta) > eps
62 | fa = fact*tau/(Seff*cca)
63 | help = -(fo + ccb*psi)/cca
64 |
65 | help1 = exp(help + fa)
66 | help2 = exp(help - fa)
67 |
68 | Vf = Vo*(help1 - help2)
69 |
70 | Vfprime = fact*(Vo/(cca*Seff))*(help1 + help2)
71 |
72 | delta = (FltZ*FltVfree - FltZ*Vf + tauo - tau)/(1 + FltZ*Vfprime)
73 |
74 | tau = tau + delta
75 | k = k + 1
76 |
77 | if abs(delta) > 1e10 || k == 1000
78 | println("k = ", k)
79 | # Save simulation results
80 | #filename = string(dir, "/data", name, "nrfail.jld2")
81 | #@save filename
82 | # @error("NR search fails to converge")
83 |
84 | return Float64(Vf), Float64(tau)
85 | end
86 | end
87 |
88 | fa = fact*tau/(Seff*cca)
89 |
90 | help = -(fo + ccb*psi)/cca
91 |
92 | help1 = exp(help + fa)
93 | help2 = exp(help - fa)
94 |
95 | Vf = Vo*(help1 - help2)
96 |
97 | return Float64(Vf), Float64(tau)
98 | end
99 |
--------------------------------------------------------------------------------
/src/PCG.jl:
--------------------------------------------------------------------------------
1 | ################################################
2 | #
3 | # SOLVE FOR DISPLACEMENT USING PRECONDITIONED
4 | # CONJUGATE GRADIENT METHOD
5 | #
6 | ################################################
7 |
8 | function PCG!(P::params_float, Nel::Int, diagKnew::Array{Float64}, dnew::Array{Float64}, F::Array{Float64}, iFlt::Array{Int},FltNI::Array{Int}, H::Array{Float64,2}, Ht::Array{Float64,2}, iglob::Array{Int,3}, nglob::Int, W::Array{Float64,3}, a_elem::Array{Float64}, Conn)
9 |
10 | a_local::Array{Float64} = zeros(nglob)
11 | dd_local::Array{Float64} = zeros(nglob)
12 | p_local::Array{Float64} = zeros(nglob)
13 |
14 | a_elem = element_computation!(P, iglob, F, H, Ht, W, Nel)
15 | Fnew = -mul!(a_local, Conn, a_elem[:])[FltNI]
16 |
17 | dd_local[FltNI] .= dnew
18 | dd_local[iFlt] .= 0.
19 |
20 | a_local[:] .= 0.
21 |
22 | a_elem = element_computation!(P, iglob, dd_local, H, Ht, W, Nel)
23 |
24 | anew = mul!(a_local, Conn, a_elem[:])[FltNI]
25 |
26 | # Initial residue
27 | rnew = Fnew - anew
28 | znew = rnew./diagKnew
29 | pnew = znew
30 | p_local[:] .= 0.
31 | p_local[FltNI] = pnew
32 |
33 | @inbounds for n = 1:8000
34 | anew[:] .= 0.
35 | a_local[:] .= 0.
36 |
37 | a_elem = element_computation!(P, iglob, p_local, H, Ht, W, Nel)
38 | anew = mul!(a_local, Conn, a_elem[:])[FltNI]
39 |
40 | alpha_ = znew'*rnew/(pnew'*anew)
41 | dnew .+= alpha_*pnew
42 | rold = rnew
43 | zold = znew
44 | rnew = rold - alpha_*anew
45 | znew = rnew./diagKnew
46 | beta_ = znew'*rnew/(zold'*rold)
47 | pnew = znew + beta_*pnew
48 | p_local[:] .= 0.
49 | p_local[FltNI] = pnew
50 |
51 | if norm(rnew)/norm(Fnew) < 1e-5
52 | break;
53 | end
54 |
55 | if n == 8000 || norm(rnew)/norm(Fnew) > 1e10
56 | print(norm(rnew)/norm(Fnew))
57 | println("\nn = ", n)
58 |
59 | #filename = string(dir, "/data", name, "pcgfail.jld2")
60 | #@save filename dnew rnew Fnew
61 | @error("PCG did not converge")
62 | return
63 | end
64 | end
65 |
66 | return dnew
67 | end
68 |
69 |
70 | # Multi-threading
71 | function element_computation!(P::params_float, iglob::Array{Int,3}, F_local::Array{Float64}, H::Array{Float64,2}, Ht::Array{Float64,2}, W::Array{Float64,3}, Nel)
72 | a_local = zeros(size(F_local))
73 | a_elem = zeros(size(iglob))
74 | Threads.@threads for tid in 1:Threads.nthreads()
75 | len = div(Nel, Threads.nthreads())
76 | domain = ((tid-1)*len + 1):tid*len
77 |
78 | @inbounds @simd for eo in domain
79 | ig = iglob[:,:,eo]
80 | Wlocal = W[:,:,eo]
81 | locall = F_local[ig]
82 | a_elem[:,:,eo] = P.coefint1*H*(Wlocal.*(Ht*locall)) + P.coefint2*(Wlocal.*(locall*H))*Ht
83 | end
84 | end
85 | return a_elem
86 | end
87 |
88 |
--------------------------------------------------------------------------------
/src/damageEvol.jl:
--------------------------------------------------------------------------------
1 | #####################################
2 | # DAMAGE EVOLUTION IN TIME
3 | #####################################
4 |
5 | function damage_indx!(ThickX, ThickY, dxe, dye, NGLL, NelX, NelY, iglob)
6 |
7 | ww::Matrix{Float64} = zeros(NGLL, NGLL)
8 | Ke2::Array{Float64,4} = zeros(NGLL,NGLL,NGLL,NGLL)
9 | Ke3::Array{Float64,4} = zeros(NGLL,NGLL,NGLL,NGLL)
10 | Ke_d::Array{Float64,3} = zeros(NGLL*NGLL,NGLL*NGLL, NelX*NelY)
11 | Ke_und::Array{Float64,3} = ones(NGLL*NGLL,NGLL*NGLL, NelX*NelY)
12 |
13 | @inbounds @fastmath for ey = 1:NelY
14 | @inbounds @fastmath for ex = 1:NelX
15 | eo = (ey-1)*NelX + ex
16 | ig = iglob[:,:,eo]
17 |
18 | # Properties of heterogeneous medium
19 | for i in 1:NGLL, j in 1:NGLL
20 | for k in 1:NGLL, l in 1:NGLL
21 |
22 | if ex*dxe >= ThickX && (dye <= ey*dye <= ThickY)
23 | Ke2[i,j,k,l] = 1000.0
24 | # Ke3[i,j,k,l] = 0.0
25 |
26 | else
27 | Ke2[i,j,k,l] = -1000
28 | end
29 | end
30 | end
31 | Ke_d[:,:,eo] = reshape(Ke2,NGLL*NGLL,NGLL*NGLL)
32 | # Ke_und[:,:,eo] = reshape(Ke3,NGLL*NGLL,NGLL*NGLL)
33 | end
34 | end
35 |
36 | Kdam = FEsparse(NelX*NelY, Ke_d, iglob)
37 | # Kdam[Kdam .> 1.0] .= 1.0
38 |
39 | # Kudam = FEsparse(NelX*NelY, Ke_und, iglob)
40 | # Kudam[Kudam .> 1.0] .= 1.0
41 |
42 | return findall(Kdam .> 0)
43 |
44 | end
45 |
--------------------------------------------------------------------------------
/src/dtevol.jl:
--------------------------------------------------------------------------------
1 | ############################################
2 | # Compute the timestep for next iteration
3 | ############################################
4 |
5 | function dtevol!(dt, dtmin, XiLf, FaultNglob, NFBC, Vf, isolver)
6 |
7 | dtmax::Int = 50 * 24 * 60*60 # 5 days
8 | dtincf::Float64 = 1.2
9 |
10 | if isolver == 1
11 |
12 | # initial value of dt
13 | dtnx = dtmax
14 |
15 | # Adjust the timestep according to cell velocities and slip
16 | for i = NFBC:FaultNglob
17 |
18 | if abs(Vf[i])*dtmax > XiLf[i]
19 | dtcell = XiLf[i]/abs(Vf[i])
20 |
21 | if dtcell < dtnx
22 | dtnx = dtcell
23 | end
24 | end
25 | end
26 |
27 | if dtmin > dtnx
28 | dtnx = dtmin
29 | end
30 |
31 | if dtnx > dtincf*dt
32 | dtnx = dtincf*dt
33 | end
34 |
35 | dt = dtnx
36 |
37 | elseif isolver == 2
38 |
39 | dt = dtmin
40 | end
41 |
42 | return dt
43 |
44 | end
45 |
--------------------------------------------------------------------------------
/src/dump.jl:
--------------------------------------------------------------------------------
1 | ##########################################
2 | ## trying out stuff here. this file is not
3 | ## important for simulations
4 | ##########################################
5 |
6 |
7 | ## Testing elemental k matrix
8 | # Single element stiffness
9 | function stiff_element(NGLL, NelX, NelY, nglob, iglob, dxe, dye)
10 | xgll, wgll, H = GetGLL(NGLL)
11 | Ht = H'
12 | wgll2 = wgll*wgll'
13 |
14 | # Jacobians
15 | dx_dxi::Float64 = 0.5*dxe
16 | dy_deta::Float64 = 0.5*dye
17 | jac::Float64 = dx_dxi*dy_deta
18 | c1::Float64 = jac/dx_dxi^2
19 | c2::Float64 = jac/dy_deta^2
20 |
21 | rho1::Float64 = 2500
22 | vs1::Float64 = 0.6*3464
23 | mu = 20
24 | Nel = 600;
25 | Ke2 = zeros(NGLL,NGLL,NGLL,NGLL)
26 |
27 | u = rand(5,5)
28 |
29 | W = wgll2.*mu
30 | del = Matrix{Float64}(I,NGLL,NGLL) # identity matrix
31 | nn = 1
32 | n = 0; q=0; w=0 # iterator
33 | term1 = 0; term2 = 0
34 | for i in 1:5
35 | for j in 1:5
36 | term1 = 0; term2 = 0
37 | for k in 1:5
38 | for l in 1:5
39 | term1 = 0; term2 = 0
40 | for p in 1:5
41 | term1 += del[i,k]*W[k,p]*(jac/dy_deta^2)*H[j,p]*H[l,p]
42 | term2 += del[j,l]*W[p,j]*(jac/dx_dxi^2)*H[i,p]*H[k,p]
43 | end
44 | Ke2[i,j,k,l] = term1 + term2
45 | end
46 | end
47 | end
48 | end
49 |
50 |
51 | Ke = reshape(Ke2,NGLL*NGLL,NGLL*NGLL)
52 |
53 |
54 | # Calculate Ku for one element
55 | wloc = wgll2.*mu
56 | d_xi = Ht*u
57 | d_eta = u*H
58 |
59 | d_xi = H*(wloc.*d_xi)
60 | d_eta = (wloc.*d_eta)*Ht
61 |
62 | Ku = c1*d_xi + c2*d_eta
63 |
64 | return Ku, reshape(Ke*u[:],NGLL,NGLL)
65 |
66 | end
67 |
68 |
--------------------------------------------------------------------------------
/src/faultZoneGeometry/gaussianFaultZoneAssembly.jl:
--------------------------------------------------------------------------------
1 | ###################################################
2 | # ASSEMBLE THE MASS AND THE STIFFNESS MATRICES
3 | ###################################################
4 |
5 | # Gaussian function
6 | function gauss(x, mu, sigma)
7 | return ((x .- mu)./(2*sigma)).^2
8 | end
9 |
10 | # Debug the setup
11 | function rigid(x,y)
12 |
13 | # Rigidity: host rock and fault zone
14 | muhost = P.rho1*P.vs1^2
15 | mufz = P.rho2*P.vs2^2
16 |
17 | # Gaussian fault zone mean and std
18 | meanx = 0
19 | meany = 0
20 | sigx = (P.LX - P.ThickX)/3
21 | sigy = P.ThickY/3
22 |
23 | muglob = (mufz-muhost)*exp.(-(gauss(x, meanx, sigx) .+
24 | gauss(y, meany, sigy))) .+ muhost
25 |
26 | vsglob = (P.vs2-P.vs1)*exp.(-(gauss(x, meanx, sigx) .+
27 | gauss(y, meany, sigy))) .+ P.vs1
28 | rhoglob = (P.rho2-P.rho1)*exp.(-(gauss(x, meanx, sigx) .+
29 | gauss(y, meany, sigy))) .+ P.rho1
30 |
31 | return muglob, vsglob, rhoglob
32 | end
33 |
34 | function assemble(P::parameters, iglob, M, W, x, y)
35 |
36 |
37 | xgll, wgll, H = GetGLL(P.NGLL)
38 | wgll2 = wgll*wgll';
39 |
40 | rho::Matrix{Float64} = zeros(P.NGLL, P.NGLL)
41 | mu::Matrix{Float64} = zeros(P.NGLL, P.NGLL)
42 |
43 | vso = zeros(P.NGLL, P.NGLL)
44 | vs = zeros(P.NGLL-1, P.NGLL)
45 | dx = zeros(P.NGLL-1, P.NGLL)
46 | muMax = 0
47 | dt = Inf
48 |
49 | muglob, vsglob, rhoglob = rigid(x,y)
50 |
51 | # # Rigidity: host rock and fault zone
52 | # muhost = P.rho1*P.vs1^2
53 | # mufz = P.rho2*P.vs2^2
54 |
55 | # # Gaussian fault zone mean and std
56 | # meanx = -P.LX
57 | # meany = 0
58 | # sigx = (P.LX - P.ThickX)/3
59 | # sigy = P.ThickY/3
60 |
61 | for ey = 1:P.NelY
62 | for ex = 1:P.NelX
63 |
64 | eo = (ey-1)*P.NelX + ex
65 | ig = iglob[:,:,eo]
66 |
67 | mu[:,:] = muglob[ig]
68 | rho[:,:] = rhoglob[ig]
69 |
70 | if muMax < maximum(maximum(mu))
71 | muMax = maximum(maximum(mu))
72 | end
73 |
74 | # Diagonal Mass Matrix
75 | M[ig] .+= wgll2.*rho*P.jac
76 |
77 | # Local contributions to the stiffness matrix
78 | W[:,:,eo] .= wgll2.*mu;
79 |
80 | # Set timestep
81 | vso .= sqrt.(mu./rho)
82 |
83 | if P.dxe -8e3
28 | if line(x[i],y[i]) < 0
29 | rhoglob[i] = rho3
30 | vsglob[i] = vs3
31 | else
32 | rhoglob[i] = P.rho1
33 | vsglob[i] = P.vs1
34 | end
35 | else
36 | rhoglob[i] = P.rho1
37 | vsglob[i] = P.vs1
38 | end
39 |
40 | end
41 |
42 | for i = 1:length(x)
43 | if y[i]<0.25e3
44 | rhoglob[i] = rho2
45 | vsglob[i] = vs2
46 | end
47 | end
48 |
49 |
50 | return rhoglob, vsglob
51 | end
52 |
53 | function assemble(P::parameters, iglob, M, W, x, y)
54 |
55 | xgll, wgll, H = GetGLL(P.NGLL)
56 | wgll2 = wgll*wgll';
57 |
58 | rhoglob, vsglob = rigid(x,y)
59 | muglob = rhoglob.*(vsglob.^2)
60 |
61 | rho::Matrix{Float64} = zeros(P.NGLL, P.NGLL)
62 | mu::Matrix{Float64} = zeros(P.NGLL, P.NGLL)
63 |
64 | vso = zeros(P.NGLL, P.NGLL)
65 | vs = zeros(P.NGLL-1, P.NGLL)
66 | dx = zeros(P.NGLL-1, P.NGLL)
67 | muMax = 0
68 | dt = Inf
69 |
70 | # Rigidity: host rock and fault zone
71 |
72 | for ey = 1:P.NelY
73 | for ex = 1:P.NelX
74 |
75 | eo = (ey-1)*P.NelX + ex
76 | ig = iglob[:,:,eo]
77 |
78 | mu[:,:] = muglob[ig]
79 | rho[:,:] = rhoglob[ig]
80 |
81 | if muMax < maximum(maximum(mu))
82 | muMax = maximum(maximum(mu))
83 | end
84 |
85 | # Diagonal Mass Matrix
86 | M[ig] .+= wgll2.*rho*P.jac
87 |
88 | # Local contributions to the stiffness matrix
89 | W[:,:,eo] .= wgll2.*mu;
90 |
91 | # Set timestep
92 | vso .= sqrt.(mu./rho)
93 |
94 | if P.dxe abs(fP5[2]))
29 |
30 | a_b[fric_depth1] .= Int1D(fP1, fP2, FltX[fric_depth1])
31 | a_b[fric_depth2] .= Int1D(fP2, fP3, FltX[fric_depth2])
32 | a_b[fric_depth3] .= Int1D(fP3, fP4, FltX[fric_depth3])
33 | a_b[fric_depth4] .= Int1D(fP4, fP5, FltX[fric_depth4])
34 | a_b[fric_depth5] .= 0.0047
35 |
36 | # cca[fric_depth4] .= Int1D(fP4, fP5, FltX[fric_depth4]) .+ 0.0001
37 | cca .= ccb .+ a_b
38 | # ccb .= cca .- a_b
39 |
40 | return cca, ccb
41 | end
42 |
43 |
44 |
45 | # Effective normal stress
46 | function SeffDepth(FltX)
47 |
48 | FltNglob = length(FltX)
49 |
50 | Seff::Array{Float64} = repeat([50e6], FltNglob)
51 | sP1 = [10e6 0]
52 | sP2 = [50e6 -2e3]
53 | Seff_depth = findall(abs.(FltX) .<= abs(sP2[2]))
54 | Seff[Seff_depth] = Int1D(sP1, sP2, FltX[Seff_depth])
55 |
56 | return Seff
57 | end
58 |
59 |
60 | # Shear stress
61 | function tauDepth(FltX)
62 |
63 | FltNglob = length(FltX)
64 |
65 | tauo::Array{Float64} = repeat([22.5e6], FltNglob)
66 | tP1 = [0.01e6 0]
67 | tP2 = [30e6 -2e3]
68 | # tP2 = [30e6 -0.5e3]
69 | tP3 = [30e6 -14e3]
70 | tP4 = [22.5e6 -17e3]
71 | tP5 = [22.5e6 -24e3]
72 |
73 | tau_depth1 = findall(abs.(FltX) .<= abs(tP2[2]))
74 | tau_depth2 = findall(abs(tP2[2]) .< abs.(FltX) .<= abs(tP3[2]))
75 | tau_depth3 = findall(abs(tP3[2]) .< abs.(FltX) .<= abs(tP4[2]))
76 | tau_depth4 = findall(abs(tP4[2]) .< abs.(FltX) .<= abs(tP5[2]))
77 |
78 | tauo[tau_depth1] = Int1D(tP1, tP2, FltX[tau_depth1])
79 | tauo[tau_depth2] = Int1D(tP2, tP3, FltX[tau_depth2])
80 | tauo[tau_depth3] = Int1D(tP3, tP4, FltX[tau_depth3])
81 | tauo[tau_depth4] = Int1D(tP4, tP5, FltX[tau_depth4])
82 |
83 | return tauo
84 | end
85 |
--------------------------------------------------------------------------------
/src/main.jl:
--------------------------------------------------------------------------------
1 | ###############################################################################
2 | #
3 | # SPECTRAL ELEMENT METHOD FOR EARTHQUAKE CYCLE SIMULATION
4 | #
5 | # Written in: Julia 1.0
6 | #
7 | # Created: 09/18/2022
8 | # Author: Prithvi Thakur (Original code by Kaneko et al. 2011)
9 | #
10 | # Adapted from Kaneko et al. (2011)
11 | # and J.P. Ampuero's SEMLAB
12 | #
13 | ###############################################################################
14 |
15 | function main(P)
16 |
17 | # P[1] = integer
18 | # P[2] = float
19 | # P[3] = float array
20 | # P[4] = integer array
21 | # P[5] = ksparse
22 | # P[6] = damage_idx
23 |
24 |
25 |
26 | # Time solver variables
27 | dt::Float64 = P[2].dt0
28 | dtmin::Float64 = dt
29 | half_dt::Float64 = 0.5*dtmin
30 | half_dt_sq::Float64 = 0.5*dtmin^2
31 |
32 | # dt modified slightly for damping
33 | if P[2].ETA != 0
34 | dt = dt/sqrt(1 + 2*P[2].ETA)
35 | end
36 |
37 | # Initialize kinematic field: global arrays
38 | d::Vector{Float64} = zeros(P[1].nglob)
39 | v::Vector{Float64} = zeros(P[1].nglob)
40 | v .= 0.5e-3
41 | a::Vector{Float64} = zeros(P[1].nglob)
42 |
43 | #.....................................
44 | # Stresses and time related variables
45 | #.....................................
46 | tau::Vector{Float64} = zeros(P[1].FltNglob)
47 | FaultC::Vector{Float64} = zeros(P[1].FltNglob)
48 | Vf::Vector{Float64} = zeros(P[1].FltNglob)
49 | Vf1::Vector{Float64} = zeros(P[1].FltNglob)
50 | Vf2::Vector{Float64} = zeros(P[1].FltNglob)
51 | Vf0::Vector{Float64} = zeros(length(P[4].iFlt))
52 | FltVfree::Vector{Float64} = zeros(length(P[4].iFlt))
53 | psi::Vector{Float64} = zeros(P[1].FltNglob)
54 | psi0::Vector{Float64} = zeros(P[1].FltNglob)
55 | psi1::Vector{Float64} = zeros(P[1].FltNglob)
56 | psi2::Vector{Float64} = zeros(P[1].FltNglob)
57 | tau1::Vector{Float64} = zeros(P[1].FltNglob)
58 | tau2::Vector{Float64} = zeros(P[1].FltNglob)
59 | tau3::Vector{Float64} = zeros(P[1].FltNglob)
60 |
61 |
62 | # Initial state variable
63 | psi = P[3].tauo./(P[3].Seff.*P[3].ccb) - P[3].fo./P[3].ccb - (P[3].cca./P[3].ccb).*log.(2*v[P[4].iFlt]./P[3].Vo)
64 | psi0 .= psi[:]
65 |
66 | isolver::Int = 1
67 |
68 | # Some more initializations
69 | r::Vector{Float64} = zeros(P[1].nglob)
70 | beta_::Vector{Float64} = zeros(P[1].nglob)
71 | alpha_::Vector{Float64} = zeros(P[1].nglob)
72 |
73 | F::Vector{Float64} = zeros(P[1].nglob)
74 | dPre::Vector{Float64} = zeros(P[1].nglob)
75 | vPre::Vector{Float64} = zeros(P[1].nglob)
76 | dd::Vector{Float64} = zeros(P[1].nglob)
77 | dnew::Vector{Float64} = zeros(length(P[4].FltNI))
78 |
79 |
80 | # Save output variables at certain timesteps: define those timesteps
81 | tvsx::Float64 = 2e-0*P[1].yr2sec # 2 years for interseismic period
82 | tvsxinc::Float64 = tvsx
83 |
84 | tevneinc::Float64 = 0.1 # 0.1 second for seismic period
85 | delfref = zeros(P[1].FltNglob)
86 |
87 | # Iterators
88 | idelevne::Int= 0
89 | tevneb::Float64= 0.
90 | tevne::Float64= 0.
91 | ntvsx::Int= 0
92 | nevne::Int= 0
93 | slipstart::Int= 0
94 | idd::Int = 0
95 | it_s = 0; it_e = 0
96 | rit = 0
97 |
98 | v = v[:] .- 0.5*P[2].Vpl
99 | Vf = 2*v[P[4].iFlt]
100 | iFBC::Vector{Int64} = findall(abs.(P[3].FltX) .> 24e3)
101 | NFBC::Int64 = length(iFBC) + 1
102 | Vf[iFBC] .= 0.
103 |
104 |
105 | v[P[4].FltIglobBC] .= 0.
106 |
107 | # on fault and off fault stiffness
108 | Ksparse = P[5]
109 |
110 | # Intact rock stiffness
111 | Korig = copy(Ksparse) # K original
112 |
113 | # Linear solver stuff
114 | kni = -Ksparse[P[4].FltNI, P[4].FltNI]
115 | nKsparse = -Ksparse
116 |
117 | # algebraic multigrid preconditioner
118 | ml = ruge_stuben(kni)
119 | p = aspreconditioner(ml)
120 | tmp = copy(a)
121 |
122 |
123 | # faster matrix multiplication
124 | # Ksparse = Ksparse'
125 | # nKsparse = nKsparse'
126 | # kni = kni'
127 |
128 | # Ksparse = ThreadedMul(Ksparse)
129 | # nKsparse = ThreadedMul(nKsparse)
130 | # kni = ThreadedMul(kni)
131 |
132 |
133 | # Save parameters to file
134 | open(string(out_dir,"params.out"), "w") do io
135 | write(io, join(P[3].Seff/1e6, " "), "\n")
136 | write(io, join(P[3].tauo/1e6, " "), "\n")
137 | write(io, join(-P[3].FltX/1e3, " "), "\n")
138 | write(io, join(P[3].cca, " "), "\n")
139 | write(io, join(P[3].ccb, " "), "\n")
140 | write(io, join(P[3].xLf, " "), "\n")
141 | end
142 |
143 |
144 | # Open files to begin writing
145 | open(string(out_dir,"stress.out"), "w") do stress
146 | open(string(out_dir,"sliprate.out"), "w") do sliprate
147 | open(string(out_dir,"slip.out"), "w") do slip
148 | open(string(out_dir,"delfsec.out"), "w") do dfsec
149 | open(string(out_dir,"delfyr.out"), "w") do dfyr
150 | open(string(out_dir,"event_time.out"), "w") do event_time
151 | open(string(out_dir,"event_stress.out"), "w") do event_stress
152 | open(string(out_dir,"coseismic_slip.out"), "w") do dfafter
153 | open(string(out_dir,"time_velocity.out"), "w") do Vf_time
154 |
155 | #....................
156 | # Start of time loop
157 | #....................
158 | it = 0
159 | t = 0.
160 | Vfmax = 0.
161 |
162 | tStart2 = dt
163 | tStart = dt
164 | tEnd = dt
165 | taubefore = P[3].tauo
166 | tauafter = P[3].tauo
167 | delfafter = 2*d[P[4].iFlt] .+ P[2].Vpl*t
168 | hypo = 0.
169 |
170 | while t < P[1].Total_time
171 | it = it + 1
172 | t = t + dt
173 |
174 | if isolver == 1
175 |
176 | vPre .= v
177 | dPre .= d
178 |
179 | Vf0 .= 2*v[P[4].iFlt] .+ P[2].Vpl
180 | Vf .= Vf0
181 |
182 | for p1 = 1:2
183 |
184 | # Compute the on-Fault displacement
185 | F .= 0.
186 | F[P[4].iFlt] .= dPre[P[4].iFlt] .+ v[P[4].iFlt]*dt
187 |
188 | # Assign previous displacement field as initial guess
189 | dnew .= d[P[4].FltNI]
190 |
191 |
192 | # Solve d = K^-1F by MGCG
193 | rhs = (mul!(tmp,Ksparse,F))[P[4].FltNI]
194 | # rhs = (Ksparse*F)[P[4].FltNI]
195 |
196 | # direct inversion
197 | # dnew = -(kni\rhs)
198 |
199 | # mgcg
200 | dnew = cg!(dnew, kni, rhs, Pl=p, reltol=1e-6)
201 |
202 | # update displacement on the medium
203 | d[P[4].FltNI] .= dnew
204 |
205 | # make d = F on the fault
206 | d[P[4].iFlt] .= F[P[4].iFlt]
207 |
208 | # Compute on-fault stress
209 | a .= 0.
210 | mul!(a,Ksparse,d)
211 | # a = Ksparse*d
212 |
213 | # Enforce K*d to be zero for velocity boundary
214 | a[P[4].FltIglobBC] .= 0.
215 |
216 | tau1 .= -a[P[4].iFlt]./P[3].FltB
217 |
218 | # Function to calculate on-fault sliprate
219 | psi1, Vf1 = slrFunc!(P[3], NFBC, P[1].FltNglob, psi, psi1, Vf, Vf1, P[1].IDstate, tau1, dt)
220 |
221 | Vf1[iFBC] .= P[2].Vpl
222 | Vf .= (Vf0 + Vf1)/2
223 | v[P[4].iFlt] .= 0.5*(Vf .- P[2].Vpl)
224 |
225 | end
226 |
227 | psi .= psi1[:]
228 | tau .= tau1[:]
229 | tau[iFBC] .= 0.
230 | Vf1[iFBC] .= P[2].Vpl
231 |
232 | v[P[4].iFlt] .= 0.5*(Vf1 .- P[2].Vpl)
233 | v[P[4].FltNI] .= (d[P[4].FltNI] .- dPre[P[4].FltNI])/dt
234 |
235 | # Line 731: P_MA: Omitted
236 | a .= 0.
237 | d[P[4].FltIglobBC] .= 0.
238 | v[P[4].FltIglobBC] .= 0.
239 |
240 |
241 | # If isolver != 1, or max slip rate is < 10^-2 m/s
242 | else
243 |
244 | dPre .= d
245 | vPre .= v
246 |
247 | # Update
248 | d .= d .+ dt.*v .+ (half_dt_sq).*a
249 |
250 | # Prediction
251 | v .= v .+ half_dt.*a
252 | a .= 0.
253 |
254 | # Internal forces -K*d[t+1] stored in global array 'a'
255 | mul!(a,nKsparse,d)
256 | # a = nKsparse*d
257 |
258 | # Enforce K*d to be zero for velocity boundary
259 | a[P[4].FltIglobBC] .= 0.
260 |
261 | # Absorbing boundaries
262 | a[P[4].iBcL] .= a[P[4].iBcL] .- P[3].BcLC.*v[P[4].iBcL]
263 | a[P[4].iBcT] .= a[P[4].iBcT] .- P[3].BcTC.*v[P[4].iBcT]
264 |
265 | ###### Fault Boundary Condition: Rate and State #############
266 | FltVfree .= 2*v[P[4].iFlt] .+ 2*half_dt*a[P[4].iFlt]./P[3].M[P[4].iFlt]
267 | Vf .= 2*vPre[P[4].iFlt] .+ P[2].Vpl
268 |
269 |
270 | # Sliprate and NR search
271 | psi1, Vf1, tau1, psi2, Vf2, tau2 = FBC!(P[1].IDstate, P[3], NFBC, P[1].FltNglob, psi1, Vf1, tau1, psi2, Vf2, tau2, psi, Vf, FltVfree, dt)
272 |
273 | tau .= tau2 .- P[3].tauo
274 | tau[iFBC] .= 0.
275 | psi .= psi2
276 | a[P[4].iFlt] .= a[P[4].iFlt] .- P[3].FltB.*tau
277 | ########## End of fault boundary condition ##############
278 |
279 |
280 | # Solve for a_new
281 | a .= a./P[3].M
282 |
283 | # Correction
284 | v .= v .+ half_dt*a
285 |
286 | v[P[4].FltIglobBC] .= 0.
287 | a[P[4].FltIglobBC] .= 0.
288 |
289 | #### Line 861: Omitting P_Ma
290 |
291 |
292 | end # of isolver if loop
293 |
294 | Vfmax = 2*maximum(v[P[4].iFlt]) .+ P[2].Vpl
295 |
296 | #-----
297 | # Output the variables before and after events
298 | #-----
299 | if Vfmax > 1.01*P[2].Vthres && slipstart == 0
300 | it_s = it_s + 1
301 | delfref = 2*d[P[4].iFlt] .+ P[2].Vpl*t
302 |
303 | slipstart = 1
304 |
305 | tStart = t
306 | taubefore = (tau +P[3].tauo)./1e6
307 |
308 | vhypo, indx = findmax(2*v[P[4].iFlt] .+ P[2].Vpl)
309 | hypo = P[3].FltX[indx]
310 |
311 | end
312 | if Vfmax < 0.99*P[2].Vthres && slipstart == 1
313 | it_e = it_e + 1
314 | delfafter = 2*d[P[4].iFlt] .+ P[2].Vpl*t .- delfref
315 |
316 | tEnd = t
317 | tauafter = (tau +P[3].tauo)./1e6
318 |
319 | # Save start and end time and stress
320 | write(event_time, join(hcat(tStart,tEnd, -hypo), " "), "\n")
321 | write(event_stress, join(hcat(taubefore, tauafter), " "), "\n")
322 | write(dfafter, join(delfafter, " "), "\n")
323 |
324 | slipstart = 0
325 |
326 | end
327 |
328 |
329 |
330 | #-----
331 | # Output the variables certain timesteps: 2yr interseismic, 1 sec dynamic
332 | #-----
333 | if t > tvsx
334 | ntvsx = ntvsx + 1
335 | idd += 1
336 | # write(stress, join((tau + P[3].tauo)./1e6, " "), "\n")
337 | write(dfyr, join(2*d[P[4].iFlt] .+ P[2].Vpl*t, " "), "\n")
338 |
339 | tvsx = tvsx + tvsxinc
340 | end
341 |
342 | if Vfmax > P[2].Vevne
343 | if idelevne == 0
344 | nevne = nevne + 1
345 | idd += 1
346 | idelevne = 1
347 | tevneb = t
348 | tevne = tevneinc
349 |
350 | # write(stress, join((tau + P[3].tauo)./1e6, " "), "\n")
351 | write(dfsec, join(2*d[P[4].iFlt] .+ P[2].Vpl*t, " "), "\n")
352 | end
353 |
354 | if idelevne == 1 && (t - tevneb) > tevne
355 | nevne = nevne + 1
356 | idd += 1
357 |
358 | write(dfsec, join(2*d[P[4].iFlt] .+ P[2].Vpl*t, " "), "\n")
359 | tevne = tevne + tevneinc
360 | end
361 |
362 | else
363 | idelevne = 0
364 | end
365 |
366 | current_sliprate = 2*v[P[4].iFlt] .+ P[2].Vpl
367 |
368 | # Output timestep info on screen
369 | if mod(it,500) == 0
370 | @printf("Time (yr) = %1.5g\n", t/P[1].yr2sec)
371 | # println("Vfmax = ", maximum(current_sliprate))
372 | end
373 |
374 |
375 | # Write stress, sliprate, slip to file every 10 timesteps
376 | if mod(it,10) == 0
377 | write(sliprate, join(2*v[P[4].iFlt] .+ P[2].Vpl, " "), "\n")
378 | write(stress, join((tau + P[3].tauo)./1e6, " "), "\n")
379 | end
380 |
381 | # Determine quasi-static or dynamic regime based on max-slip velocity
382 | # if isolver == 1 && Vfmax < 5e-3 || isolver == 2 && Vfmax < 2e-3
383 | if isolver == 1 && Vfmax < 5e-3 || isolver == 2 && Vfmax < 2e-3
384 | isolver = 1
385 | else
386 | isolver = 2
387 | end
388 |
389 | # Write max sliprate and time
390 | write(Vf_time, join(hcat(t,Vfmax,Vf[end]), " "), "\n")
391 |
392 | # Compute next timestep dt
393 | dt = dtevol!(dt , dtmin, P[3].XiLf, P[1].FltNglob, NFBC, current_sliprate, isolver)
394 |
395 |
396 | end # end of time loop
397 |
398 | # close files
399 | end
400 | end
401 | end
402 | end
403 | end
404 | end
405 | end
406 | end
407 | end
408 |
409 |
410 | end
411 |
--------------------------------------------------------------------------------
/src/otherFunctions.jl:
--------------------------------------------------------------------------------
1 | exp1(x::Float64) = ccall(:exp, Float64, (Float64,), x)
2 | log1(x::Float64) = ccall(:log, Float64, (Float64,), x)
3 |
4 | # IDstate functions
5 | function IDS!(xLf, Vo, psi, dt, Vf, cnd, IDstate = 2)
6 | #= compute slip-rates on fault based on different
7 | formulations =#
8 |
9 | if IDstate == 1
10 | psi1 = psi + dt*((Vo./xLf).*exp1(-psi) - abs(Vf)./xLf)
11 |
12 | elseif IDstate == 2
13 | VdtL = abs(Vf)*dt/xLf
14 | if VdtL < cnd
15 | psi1 = log1( exp1(psi-VdtL) + Vo*dt/xLf -
16 | 0.5*Vo*abs(Vf)*dt*dt/(xLf^2))
17 | else
18 | psi1 = log1(exp1(psi-VdtL) + (Vo/abs(Vf))*(1-exp1(-VdtL)))
19 | end
20 |
21 | elseif IDstate == 3
22 | psi1 = exp1(-abs(Vf)*dt/xLf) * log1(abs(Vf)/Vo) +
23 | exp1(-abs(Vf)*dt/xLf)*psi + log1(Vo/abs(Vf))
24 |
25 | if ~any(imag(psi1)) == 0
26 | return
27 | end
28 | end
29 |
30 | return psi1
31 |
32 | end
33 |
34 | # On fault slip rates
35 | function IDS2!(xLf, Vo, psi, psi1, dt, Vf, Vf1, IDstate = 2)
36 |
37 | if IDstate == 1
38 | psi2 = psi + 0.5*dt*( (Vo/xLf)*exp1(-psi) - abs(Vf)/xLf
39 | + (Vo/xLf)*exp1(-psi1) - abs(Vf1)/xLf )
40 |
41 | elseif IDstate == 2
42 | VdtL = 0.5*abs(Vf1 + Vf)*dt/xLf
43 |
44 | if VdtL < 1e-6
45 | psi2 = log1( exp1(psi-VdtL) + Vo*dt/xLf -
46 | 0.5*Vo*0.5*abs(Vf1 + Vf)*dt*dt/(xLf^2))
47 | else
48 | psi2 = log1(exp1(psi-VdtL) +
49 | (Vo/(0.5*abs(Vf + Vf1)))*(1-exp1(-VdtL)))
50 | end
51 |
52 | elseif IDstate == 3
53 | psi2 = exp1(-0.5*abs(Vf + Vf1)*dt/xLf) * log1(0.5*abs(Vf + Vf1)/Vo) +
54 | exp1(-0.5*abs(Vf + Vf1)*dt/xLf)*psi
55 | + log1(Vo/(-0.5*abs(Vf + Vf1)) )
56 | end
57 |
58 | return psi2
59 | end
60 |
61 | # Slip rates on fault for quasi-static regime
62 | function slrFunc!(P::params_farray, NFBC, FltNglob, psi, psi1, Vf, Vf1, IDstate, tau1, dt)
63 |
64 | tauAB::Vector{Float64} = zeros(FltNglob)
65 |
66 | # temp::Float64 = 0.
67 |
68 | for j = NFBC:FltNglob
69 |
70 | # temp = 0.
71 | psi1[j] = IDS!(P.xLf[j], P.Vo[j], psi[j], dt, Vf[j], 1e-6, IDstate)
72 |
73 | tauAB[j] = tau1[j] + P.tauo[j]
74 | fa = tauAB[j]/(P.Seff[j]*P.cca[j])
75 | help = -(P.fo[j] + P.ccb[j]*psi1[j])/P.cca[j]
76 | help1 = exp(help + fa)
77 | help2 = exp(help - fa)
78 | Vf1[j] = P.Vo[j]*(help1 - help2)
79 | end
80 |
81 | return psi1, Vf1
82 |
83 | end
84 |
--------------------------------------------------------------------------------
/src/untitled.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/thehalfspace/Spear/0b7dc5671761d1a06fe2f700e0ef39557eb67cda/src/untitled.txt
--------------------------------------------------------------------------------
/tests/README.md:
--------------------------------------------------------------------------------
1 | ### Test for different simulation runs, and their results.
2 |
--------------------------------------------------------------------------------
/tests/basic_test_01.jl:
--------------------------------------------------------------------------------
1 | #######################################
2 | # Basic testing to visualize results
3 | # #####################################
4 |
5 | include("$(@__DIR__)/../analyze_results.jl")
6 |
7 | VfmaxPlot(Vfmax, t, yr2sec);
8 | cumSlipPlot(delfsec[1:4:end,:], delfyr[1:4:end, :], FltX);
9 |
--------------------------------------------------------------------------------
/xfer/xfer_dizhi:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | scp prith@dizhi.earth.lsa.umich.edu:/opt/home/prith/Desktop/JuliaSEM/output/$1 /Users/prith/JuliaSEM/output/dizhi_sims/
4 |
--------------------------------------------------------------------------------
/xfer/xfer_down:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | scp flux-xfer.arc-ts.umich.edu:$1 .
4 |
--------------------------------------------------------------------------------
/xfer/xfer_up:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | scp $1 flux-xfer.arc-ts.umich.edu:
4 |
--------------------------------------------------------------------------------
/xfer/xfer_wozhi:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | scp -r prith@wozhi.earth.lsa.umich.edu:/opt/home/prith/damageEvol/data/$1 /Users/prith/damage_evol/data/.
4 |
--------------------------------------------------------------------------------