├── .gitignore
├── LICENSE
├── README.md
├── blood
├── dahlin18
│ └── dahlin18.ipynb
├── nestorowa16
│ └── nestorowa16.ipynb
├── paul15
│ ├── paul15-subsampled.ipynb
│ └── paul15.ipynb
└── simulated
│ └── simulated.ipynb
├── comparisons
├── nestorowa16_monocle2
│ └── nestorowa16_monocle2.ipynb
├── paul15_monocle2
│ ├── monocle2_alternative.ipynb
│ └── monocle2_original.ipynb
└── simulated_data
│ ├── _exports.ipynb
│ ├── dpt.ipynb
│ ├── eclair
│ ├── README.md
│ └── logfile_run_X_krumsiek11_scaled.txt
│ ├── monocle2.ipynb
│ └── stemID
│ ├── README.md
│ └── logfile_X_krumsiek11_blobs_shifted.txt
├── connectivity_measure
└── connectivity_measure.ipynb
├── deep_learning
└── deep_learning.ipynb
├── embedding_quality
└── embedding_quality.ipynb
├── planaria
├── planaria.ipynb
├── planaria_paga_velocyto.ipynb
└── velocyto_analysis
│ └── planaria_velocyto_epidermis.ipynb
├── robustness
├── paul15_robustness.ipynb
└── simulated_data_robustness.ipynb
└── zebrafish
└── zebrafish.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pdf
2 | .DS_Store
3 | .gitignore
4 | LICENSE
5 | blood/.DS_Store
6 | blood/dahlin18/.DS_Store
7 | blood/dahlin18/.ipynb_checkpoints/
8 | blood/dahlin18/backup/
9 | blood/dahlin18/data/
10 | blood/dahlin18/figures/
11 | blood/dahlin18/write/
12 | blood/nestorowa16/.DS_Store
13 | blood/nestorowa16/.ipynb_checkpoints/
14 | blood/nestorowa16/cache/
15 | blood/nestorowa16/data/
16 | blood/nestorowa16/figures/
17 | blood/nestorowa16/gephi_coords_paga.gdf
18 | blood/nestorowa16/write/
19 | blood/paul15/.DS_Store
20 | blood/paul15/.ipynb_checkpoints/
21 | blood/paul15/data/
22 | blood/paul15/figures/
23 | blood/paul15/write/
24 | blood/simulated/.DS_Store
25 | blood/simulated/.RData
26 | blood/simulated/.Rhistory
27 | blood/simulated/.ipynb_checkpoints/
28 | blood/simulated/.scanpy/
29 | blood/simulated/README.md
30 | blood/simulated/comparisons/
31 | blood/simulated/comparisons_exports.ipynb
32 | blood/simulated/figures/
33 | blood/simulated/simulated_robustness.ipynb
34 | blood/simulated/write/
35 | connectivity_measure/.DS_Store
36 | connectivity_measure/.ipynb_checkpoints/
37 | connectivity_measure/figures/
38 | embedding_quality/.DS_Store
39 | embedding_quality/.ipynb_checkpoints/
40 | embedding_quality/figures/
41 | embedding_quality/write/
42 | planaria/.DS_Store
43 | planaria/.ipynb_checkpoints/
44 | planaria/data/
45 | planaria/figures/
46 | planaria/velocyto_analysis/
47 | planaria/write/
48 | zebrafish/.DS_Store
49 | zebrafish/.ipynb_checkpoints/
50 | zebrafish/cache/
51 | zebrafish/data/
52 | zebrafish/figures/
53 | zebrafish/write/
54 | comparisons/paul15_monocle2/data/
55 | comparisons/paul15_monocle2/figures/
56 | comparisons/simulated_data/README.md
57 | comparisons/simulated_data/data/
58 | comparisons/simulated_data/eclair/ECLAIR_instance/
59 | comparisons/simulated_data/eclair/X_krumsiek11.txt
60 | comparisons/simulated_data/eclair/X_krumsiek11_blobs.txt
61 | comparisons/simulated_data/eclair/X_krumsiek11_scaled.txt
62 | comparisons/simulated_data/eclair/eclair_plots.ipynb
63 | comparisons/simulated_data/eclair/figures/
64 | comparisons/simulated_data/figures/
65 | comparisons/simulated_data/stemID/RaceID3_StemID2_class.R
66 | comparisons/simulated_data/stemID/RaceID3_StemID2_sample.R
67 | comparisons/simulated_data/stemID/Rplots_X_krumsiek11_blobs_shifted_1.png
68 | comparisons/simulated_data/stemID/Rplots_X_krumsiek11_blobs_shifted_2.png
69 | comparisons/simulated_data/stemID/X_krumsiek11_blobs_shifted.csv
70 | comparisons/simulated_data/stemID/X_krumsiek11_shifted.csv
71 | comparisons/simulated_data/write/
72 | deep_learning/data/
73 | deep_learning/figures/
74 | deep_learning/write/
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | BSD 3-Clause License
2 |
3 | Copyright (c) 2019, F. Alexander Wolf
4 | All rights reserved.
5 |
6 | Redistribution and use in source and binary forms, with or without
7 | modification, are permitted provided that the following conditions are met:
8 |
9 | * Redistributions of source code must retain the above copyright notice, this
10 | list of conditions and the following disclaimer.
11 |
12 | * Redistributions in binary form must reproduce the above copyright notice,
13 | this list of conditions and the following disclaimer in the documentation
14 | and/or other materials provided with the distribution.
15 |
16 | * Neither the name of the copyright holder nor the names of its
17 | contributors may be used to endorse or promote products derived from
18 | this software without specific prior written permission.
19 |
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # PAGA - partition-based graph abstraction
2 |
3 | *Mapping out the coarse-grained connectivity structures of complex manifolds [(Genome Biology, 2019)](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1663-x).*
4 |
5 | 
6 |
7 | PAGA is available within [Scanpy](https://scanpy.readthedocs.io/en/latest/examples.html#trajectory-inference) through: [`tl.paga`](https://scanpy.readthedocs.io/en/latest/api/scanpy.tl.paga.html) | [`pl.paga`](https://scanpy.readthedocs.io/en/latest/api/scanpy.pl.paga.html) | [`pl.paga_path`](https://scanpy.readthedocs.io/en/latest/api/scanpy.pl.paga_path.html) | [`pl.paga_compare`](https://scanpy.readthedocs.io/en/latest/api/scanpy.pl.paga_compare.html).
8 |
9 | Below you find links to all central example notebooks, which also allow reproducing all main figures of the paper. If you start working with PAGA, go through [*blood/paul15*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/blood/paul15/paul15.ipynb).
10 |
11 | notebook | system | details | reference | figure
12 | ---------------| ---------------| ---------| ----------| ------
13 | [*blood/simulated*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/blood/simulated/simulated.ipynb) | hematopoiesis | simulated | [Krumsiek *et al.*, Plos One (2011)](https://doi.org/10.1371/journal.pone.0022649) | 2a
14 | [*blood/paul15*](https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html) | murine hematopoiesis | 2,730 cells, MARS-seq | [Paul *et al.*, Cell (2015)](https://doi.org/10.1016/j.cell.2015.11.013) | 2b
15 | [*blood/nestorowa16*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/blood/nestorowa16/nestorowa16.ipynb) | murine hematopoiesis | 1,654 cells, Smart-seq2 | [Nestorowa *et al.*, Blood (2016)](https://doi.org/10.1182/blood-2016-05-716480) | 2c
16 | [*blood/dahlin18*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/blood/dahlin18/dahlin18.ipynb) | murine hematopoiesis | 44,802 cells, 10x Genomics | [Dahlin *et al.*, Blood (2018)](https://doi.org/10.1182/blood-2017-12-821413) | 2d
17 | [*planaria*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/planaria/planaria.ipynb) | planaria | 21,612 cells | [Plass *et al.*, Science (2018)](https://doi.org/10.1126/science.aaq1723) | 3
18 | [*zebrafish*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/zebrafish/zebrafish.ipynb) | zebrafish embryo | 53,181 cells | [Wagner *et al.*, Science (2018)](https://doi.org/10.1126/science.aar4362) | 4
19 | [*1M_neurons*](https://github.com/theislab/scanpy_usage/blob/master/170522_visualizing_one_million_cells/logfile_1.3M.txt) | neurons | 1.3 million cells, 10x Genomics | [10x Genomics (2017)](https://support.10xgenomics.com/single-cell-gene-expression/datasets/1M_neurons) | S12
20 | [*deep_learning*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/deep_learning/deep_learning.ipynb) | cycling Jurkat cells | 30,000 single-cell images | [Eulenberg *et al.*, Nat. Commun. (2017)](https://doi.org/10.1038/s41467-017-00623-3) | S14
21 |
22 | All supplemental figures of the paper can be reproduced based on the following table.
23 |
24 | notebook | description | figure
25 | ---------------| ----------| ------
26 | [*connectivity_measure*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/connectivity_measure/connectivity_measure.ipynb) | connectivity measure | S1, S2, S3
27 | [*robustness*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/robustness) | robustness and multi-resolution capacity | S4, S5
28 | [*comparisons/simulated_data*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/comparisons/simulated_data) | comparisons for simulated data | S6, S7
29 | [*comparisons/paul15_monocle2*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/comparisons/paul15_monocle2) | comparison Monocle 2 for Paul *et al.* (2015) | S8
30 | [*comparisons/nestorowa16_monocle2*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/comparisons/nestorowa16_monocle2) | comparison Monocle 2 for Nestorowa *et al.* (2016) | S9
31 | [*embedding_quality*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/embedding_quality/embedding_quality.ipynb) | quantifying embedding quality | S10
32 | [*simulation*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/blood/simulated/simulated.ipynb) | simulating hematopoiesis | S11
33 | [*1M_neurons*](https://github.com/theislab/scanpy_usage/blob/master/170522_visualizing_one_million_cells/logfile_1.3M.txt) | neurons, 1.3 million cells, 10x Genomics, [10x Genomics (2017)](https://support.10xgenomics.com/single-cell-gene-expression/datasets/1M_neurons) | S12
34 | [*blood/paul15*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/blood/paul15/paul15.ipynb) | annotation of louvain clusters using PAGA | S13
35 | [*deep_learning*](https://nbviewer.jupyter.org/github/theislab/paga/blob/master/deep_learning/deep_learning.ipynb) | cycling Jurkat cells, 30,000 single-cell images, [Eulenberg *et al.*, Nat. Commun. (2017)](https://doi.org/10.1038/s41467-017-00623-3) | S14
36 |
--------------------------------------------------------------------------------
/blood/paul15/paul15.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "This notebook moved [here](https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html)."
8 | ]
9 | }
10 | ],
11 | "metadata": {
12 | "anaconda-cloud": {},
13 | "kernelspec": {
14 | "display_name": "Python 3",
15 | "language": "python",
16 | "name": "python3"
17 | },
18 | "language_info": {
19 | "codemirror_mode": {
20 | "name": "ipython",
21 | "version": 3
22 | },
23 | "file_extension": ".py",
24 | "mimetype": "text/x-python",
25 | "name": "python",
26 | "nbconvert_exporter": "python",
27 | "pygments_lexer": "ipython3",
28 | "version": "3.6.7"
29 | }
30 | },
31 | "nbformat": 4,
32 | "nbformat_minor": 2
33 | }
34 |
--------------------------------------------------------------------------------
/comparisons/paul15_monocle2/monocle2_alternative.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "*First compiled: September 17, 2017.*"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "# Monocle 2 for data of [Paul *et al.*, Cell (2015)](https://doi.org/10.1016/j.cell.2015.11.013): alternative preprocessing"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "Here we use an alternative preprocessing as in [*monocle2_original*](monocle2_original.ipynb), which reproduces the notebook that accompanies the Monocle 2 publication of [Qiu *et al.*, Nat. Meth. (2017)](https://doi.org/10.1038/nmeth.4402), available from \n",
22 | "[here](https://github.com/cole-trapnell-lab/monocle2-rge-paper/blob/26ce18c97f22e9488eb85971a23311f5252bfce5/Paul_dataset_analysis_final.ipynb).\n",
23 | "\n",
24 | "Instead of manually removing a cluster of lympoid cells, we keep this cluster. Everything else is exactly as in the original notebook."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": 1,
30 | "metadata": {
31 | "collapsed": false,
32 | "scrolled": true
33 | },
34 | "outputs": [],
35 | "source": [
36 | "rm(list = ls()) # clear the environment \n",
37 | "options(warn=-1) # turn off warning message globally \n",
38 | "suppressMessages(library(monocle))\n",
39 | "suppressMessages(library(plyr))\n",
40 | "suppressMessages(library(dplyr))"
41 | ]
42 | },
43 | {
44 | "cell_type": "markdown",
45 | "metadata": {},
46 | "source": [
47 | "# Load the data"
48 | ]
49 | },
50 | {
51 | "cell_type": "markdown",
52 | "metadata": {},
53 | "source": [
54 | "This RData is from Maren Büttner in the Theis lab https://github.com/theislab/scAnalysisTutorial. It's the same data as the one available within Scanpy via [*sc.examples.paul15()*](https://scanpy.readthedocs.io/en/latest/api/scanpy.api.datasets.paul15.html)."
55 | ]
56 | },
57 | {
58 | "cell_type": "code",
59 | "execution_count": 2,
60 | "metadata": {
61 | "collapsed": true
62 | },
63 | "outputs": [],
64 | "source": [
65 | "load('./data/Paul_Cell_MARSseq_GSE72857.RData') \n",
66 | "# the following code is used to select feature genes used by Maren \n",
67 | "gene.names <-sapply(strsplit(rownames(data.debatched), \";\"), \"[\", 1)\n",
68 | "is.informative <- gene.names %in% info.genes[order(info.genes)]\n",
69 | "data.info.genes <- data.debatched[is.informative,]\n",
70 | "rownames(data.info.genes) <- gene.names[is.informative]"
71 | ]
72 | },
73 | {
74 | "cell_type": "markdown",
75 | "metadata": {},
76 | "source": [
77 | "# Create the cell datasets"
78 | ]
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "In constrast to the preprocessing as done for Supplemental Figure 16 of [Qiu *et al.*, Nat. Meth. (2017)](https://doi.org/10.1038/nmeth.4402) and as reproduced here in [*monocle2_original*](monocle2_original.ipynb), now, we do not filter out the cluster of lymphoid cells."
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": 3,
90 | "metadata": {
91 | "collapsed": false,
92 | "scrolled": true
93 | },
94 | "outputs": [
95 | {
96 | "name": "stderr",
97 | "output_type": "stream",
98 | "text": [
99 | "Removing 23 outliers\n"
100 | ]
101 | },
102 | {
103 | "data": {
104 | "text/html": [
105 | "elapsed: 144.463"
106 | ],
107 | "text/latex": [
108 | "\\textbf{elapsed:} 144.463"
109 | ],
110 | "text/markdown": [
111 | "**elapsed:** 144.463"
112 | ],
113 | "text/plain": [
114 | "elapsed \n",
115 | "144.463 "
116 | ]
117 | },
118 | "metadata": {},
119 | "output_type": "display_data"
120 | }
121 | ],
122 | "source": [
123 | "previous_time <- proc.time()[3]\n",
124 | "################################################################################################################################################\n",
125 | "# obtain this mat file from Ido Amit group \n",
126 | "MAP_cells_clusters <- read.csv('./data/MAP.csv', header = F)\n",
127 | "row.names(MAP_cells_clusters) <- MAP_cells_clusters$V1\n",
128 | "\n",
129 | "#filtering cells to include only the ones which were assigned a cluster id: \n",
130 | "valid_subset_GSE72857_exprs <- read.table('./data/GSE72857_umitab.txt', header = T, row.names = 1)\n",
131 | "design_mat <- read.table('./data/GSE72857_experimental_design.txt', header = T, row.names = 1, skip = 19, sep = '\\t')\n",
132 | "design_mat$cluster <- MAP_cells_clusters[row.names(design_mat), 'V2']\n",
133 | "valid_design_mat <- subset(design_mat, !is.na(cluster))\n",
134 | "\n",
135 | "# Get the intersect gene used by Maren Büttner and the genes we have \n",
136 | "common_genes <- rownames(valid_subset_GSE72857_exprs)[rownames(valid_subset_GSE72857_exprs) %in% info.genes]\n",
137 | "fd <- new(\"AnnotatedDataFrame\", data = data.frame(gene_short_name = common_genes, row.names = common_genes))\n",
138 | "pd <- new(\"AnnotatedDataFrame\", data = valid_design_mat)\n",
139 | "\n",
140 | "# create a CDS with data.info.genes \n",
141 | "valid_subset_GSE72857_cds <- newCellDataSet(as(as.matrix(data.info.genes[common_genes, ]), 'sparseMatrix'), \n",
142 | " phenoData = pd, \n",
143 | " featureData = fd,\n",
144 | " lowerDetectionLimit=1,\n",
145 | " expressionFamily=negbinomial.size())\n",
146 | "valid_subset_GSE72857_cds <- estimateSizeFactors(valid_subset_GSE72857_cds)\n",
147 | "valid_subset_GSE72857_cds <- estimateDispersions(valid_subset_GSE72857_cds)\n",
148 | "\n",
149 | "pData(valid_subset_GSE72857_cds)$cell_type <- revalue(as.character(pData(valid_subset_GSE72857_cds)$cluster), \n",
150 | " c(\"1\" = 'erythroid', \"2\" = 'erythroid', \"3\" = 'erythroid', \"4\" = 'erythroid', \"5\" = 'erythroid', \"6\" = 'erythroid', \n",
151 | " \"7\" = 'CMP', \"8\" = 'CMP', \"9\" = 'CMP', \"10\" = 'CMP',\n",
152 | " \"11\" = 'DC', \n",
153 | " \"12\" = 'GMP', \"13\" = 'GMP', \"14\" = 'GMP', \"15\" = 'GMP', \"16\" = 'GMP', \"17\" = 'GMP', \"18\" = 'GMP', \n",
154 | " \"19\" = 'lymphoid'))\n",
155 | "\n",
156 | "# remove all lymphoid cells as they do not belong to myeloid lineage\n",
157 | "# HERE, we commented out the next line; we do NOT remove the lymphoid cells\n",
158 | "# valid_subset_GSE72857_cds <- valid_subset_GSE72857_cds[, pData(valid_subset_GSE72857_cds)$cell_type != 'lymphoid']\n",
159 | "proc.time()[3] - previous_time"
160 | ]
161 | },
162 | {
163 | "cell_type": "markdown",
164 | "metadata": {},
165 | "source": [
166 | "# Reconstructing the trajectory with Monocle 2 "
167 | ]
168 | },
169 | {
170 | "cell_type": "markdown",
171 | "metadata": {},
172 | "source": [
173 | "The variance explained by each component in PCA."
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 4,
179 | "metadata": {
180 | "collapsed": false
181 | },
182 | "outputs": [
183 | {
184 | "name": "stderr",
185 | "output_type": "stream",
186 | "text": [
187 | "Warning message in (function (A, nv = 5, nu = nv, maxit = 100, work = nv + 7, reorth = TRUE, :\n",
188 | "“did not converge--results might be invlaid!; try increasing maxit or fastpath=FALSE”"
189 | ]
190 | },
191 | {
192 | "data": {},
193 | "metadata": {},
194 | "output_type": "display_data"
195 | },
196 | {
197 | "data": {
198 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAIAAAAAVb93AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzde3wU1dk48LP3+yW7ye5mN4FwBwUtRMgvJQWRqyiUiBBfhQKvtaBgPxpLuIiA\noAURAm0RXiwFC0WhFjCxWBV9FaJJhHCJiiCES5LNZTd7v99m9/fHU+fdhoCDZJOQfb5/zc6c\n2Xmy2X3OmXPOzLBisRj5MRKJxGw2SySSHy2JEEKovbCZFBo+fPjZs2cTHQpCCKF4nNWrV/9o\noT59+hQUFMhksszMTJFIxGKxEh8YQgglOxaTLo4fzchM3gQhhNAtYdTFgRBCqOMxakEjhBDq\neNiCRgihLoppgqYoaufOnRMnTtTpdDweD1bm5OTU1NQkLDaEEEpqjLo4IpHI5MmTjx49Sq+B\nvVgsllarPXnyZGZmZgJj/Ek+/vjjn/3sZxqNprMDQQihn4hRC3rTpk3Hjx8vLCysqKhwOBz0\n+oaGhpEjR65cuTJh4f10L7zwQnyN0kXs3bt36dKle/fu7exAEEJ3AC6TQrt27dq3b9/06dNb\nrdfr9evWrRszZkwCAmsHXXD88/Dhw4cPH87Pz589e3Znx4IQ6uoYtaCvXbs2efLkNjdlZmZa\nLJZ2DQkhhBAhDBN0ZmbmoUOH2txUUlJiMBjaNSSEEEKEMEzQTz755Ny5cxcsWFBRUWG32wkh\nTqfz1KlTixcvnjdv3ty5cxMaIkIIJSdGfdCLFy+urq7esWPHjh07YI1SqYSFSZMmLV26NFHR\nIYRQEmPUguZyufv37z906NBDDz2k0Wi4XK5CocjLy9uxY8eRI0f4fH6io0QIoSTEqAUN8vPz\n8/PzExcKQgiheHipN0IIdVGMWtA+n+/ll18+fPhwQ0ODz+e7vkAXnHF8q2pqar788sva2lqh\nUNinT58xY8aoVKrODgohlNQYJehFixbt3r070aF0og8//PDQoUNNTU1isTgajZaXl1dWVj71\n1FP9+/fv7NAQQsmLURfHwYMHn3rqqZqamnA4HGtLoqNMqNra2tLSUpfLNXTo0EGDBt19992D\nBg36/vvv//73v4fD4c6ODiGUvBgl6Egksnnz5j59+nC5tzCoeKc4f/58U1NTnz592Ox/fxoC\ngcBgMFy5cqWurq5zY0MIJTN8aCxxu90URdH3UAVisTgQCLhcrs6KCiGEGCXotWvXzpw58803\n3zSbzdFoNNExdTCJRMLhcCiKil8ZDAYFAoFUKu2sqBBCiFGCHjVqVGNj4/z587VaLYfDYV0n\n0VEm1IABAzQazZUrV+jO9HA4XF9f37Nnz549e3ZubAihZNYN+5RvVZ8+fcaNG/evf/3rzJkz\ncrmcoiiv19urV6/8/Hy8SBIh1IkYJeg7fZ7Gj5o+fXpWVlZZWZnRaOTxeH379p0wYQI2nxFC\nnQtb0IQQwmazhw8fPnz48HA4zGazORxOZ0eEEEKML/UOBoMbNmwYPny4XC7n8/larXbcuHF/\n/vOfI5FIQuPrYDweD7MzQqiLYNSC9nq9Y8eO/eqrr+g1ZrP5008//fTTT3ft2vXxxx/LZLKE\nRYgQQkmK6TS7U6dOLViwoLy83Ol0BoPBpqamjz/+uLCw8JtvvlmzZk2io0QIoSTEqAX9zjvv\nvP322zNmzKDX6HQ6nU43fvz4sWPHLlq06PXXX09YhAghlKQYtaCbmpoefvjhNjeNGTOmoaGh\nXUNCCCFECMMErdfrP/nkkzY3ff7552q1ul1DQgghRAjDBF1QUPDYY48tXry4rKzMZDKFw2Gb\nzVZVVbVixYqZM2c+8sgjiY4SIYSSEKM+6JdeeqmsrGzjxo0bN25stWno0KGvvPJKAgJDCKFk\nx6gFLZVKjx07tnXr1tGjR6tUKg6HI5VKR4wYsXHjxoqKCvoJ3wghhNoR0ysJeTzewoULFy5c\nmNBoEEII0fChsQgh1EUxTdA+n2/dunX33XefTCbj8/k6nW7ChAk7duwIhUIJjQ8hhJIWoy4O\ns9l8//33nz9/nl5jMpmOHj169OhRuNRboVAkLEKEEEpSjFrQzz//fG1t7cqVK6uqqlwuVyQS\nsdvt5eXlv/3tb0+fPr1q1apER4kQQkmIUQv6/fff379//5QpU+g1SqUyNzc3Nzd3xIgRy5Yt\n27JlS8IiRAihJMWoBR2LxcaOHdvmpvz8/JaWlnYNCSGEECEME3ROTk5ZWVmbm44fPz5w4MB2\nDQkhhBAhDLs41q9fP2nSpCVLljzwwAO9e/eWyWShUKi2tvb9999/5ZVXtm/fnugoEUIoCTFK\n0MOHDyeEFBUVtbl11qxZs2bNol92+wcYIoRQx8ALVRBCqIvCp3ojhFAXhS1ohBDqohgl6GAw\nuGLFin79+gmFQlZbEh0lQgglIUZdHEVFRX/84x8THQpCCKF4jFrQ77zzzrJly+x2e+wGEh0l\nQgglIUYtaIfDsXz5cqlUmuhoEEII0Ri1oLOysqqrq9vrkBUVFfn5+VOnTs3Pz6+oqGizTGVl\nZZtlmOyLEELdxI16LeKtWbOmV69eR44ccTqdTMrfRHl5+aOPPlpeXt5qOV5lZWWbZZjsSxs8\nePDevXtvM9p2l5+fTwjJz8/v7EAQQncARgn61KlTt5/lwbRp0+Kzanl5+bRp01qVmT59+vHj\nx68vw2RfGiZohNCdjlEf9HPPPXf7TXVAUVRubi79Mjc3l6KoVmVCodDIkSOvL/Oj+5rN5nA4\nDMs4+Q8hdKdjlKBPnz69dOnSwsJCtVrNZif82pbS0tL4l2VlZQaDgcmOL7zwAv3YFy6X6fNw\nEUKoa2KaxZYuXdrxz7UKhUKHDh1677331qxZ08GHRgihTscoQefk5JSXlz/44IOJjibe559/\nvmfPHr1ev2XLFp1Ox2SXNWvWBAIBWC4oKEhkdAghlHCMEvSqVatmzpz52muvjR8/XqPRJLr3\nIBAIrF+/3mg0Pv744+PGjWO+Y69evejlGF4+gxC6wzHqUB49erTJZJo7d67BYODxeLdzLw4O\nh9NqXjOHw2lV5m9/+9tdd921c+fOVtmZyb4IIdRtdPTd7IqKioqLiyHPVlRUFBcXX/8cgFOn\nTk2YMOGn7YsQQt1GR98POjc3t7CwcMOGDRRFcTicoqIieubc1KlTYf5GS0vLr371q1Y7lpaW\n3mRfhBDqfjphLlpubu7hw4evX0/PrvvHP/5xq/sihFD3w7SLIxgMbtiwYfjw4XK5nM/na7Xa\ncePG/fnPf45EIgmNDyGEkhajFrTX6x07duxXX31FrzGbzZ9++umnn366a9eujz/+WCaTJSxC\nhBBKUoxa0GvXrj116tSCBQvKy8udTmcwGGxqavr4448LCwu/+eYbvIoEIYQSgVEL+p133nn7\n7bdnzJhBr9HpdDqdbvz48WPHjl20aNHrr7+esAgRQihJMWpBNzU1Pfzww21uGjNmTENDQ7uG\nhBBCiBCGCVqv13/yySdtbvr888/VanW7hoQQQogQhgm6oKDgscceW7x4cVlZmclkCofDNput\nqqpqxYoVM2fOfOSRRxIdJUIIJSFGfdAvvfRSWVnZxo0bN27c2GrT0KFDX3nllQQEhhBCyY5R\nC1oqlR47dmzr1q2jR49WqVQcDkcqlY4YMWLjxo0VFRVKpTLRUSKEUBJieiUhj8dbuHDhwoUL\nExoNQgghWkffLAkhhBBDTBN0ZWXljBkztFotvSYzM3PhwoVGozExgSGEULJj1MXx2WefjR8/\nvtUTWo1G47Zt2w4cOHDixInevXsnJjyEEEpejFrQK1euHDp0aGlpaUtLC73SaDTu2rVLJpPh\nTZkRQigRGLWgq6urL1y4oNfr41caDIZ58+bl5eXl5eUlJjaEEEpqjFrQXC7XZDLdaKvf72+/\neBBCCP0bowQ9ceLESZMmbd68uaqqym63RyIRj8fz/fffb9++fcKECZMmTUp0lAghlIQYdXG8\n9tprI0eOLCwsvH7TgAEDtmzZ0t5RIYQQYtaC7tGjR3V19apVq0aMGJGSksLhcCQSSXZ29vr1\n60+fPt2qbxohhFC7YHoloUqlWr169erVqxMZDEIIof+DVxIihFAXhQkaIYS6KEzQCCHURWGC\nRgihLgoTNEIIdVGYoBFCqItilKBDodDq1avvuusuiUTCakuio0QIoSTEaB70Cy+8sHXr1kSH\nghBCKB6jFvTbb7/91FNP1dfXh8PhWFsSHSVCCCUhRi1on8+3fv16lUqV6GgQQgjRGLWg77nn\nnrNnzyY6FIQQQvEYJeiXXnpp9uzZ+/bta2xsjEQiiY4JIYQQuXkXR6vpGbNmzbpRSeyGRgih\ndofzoBFCqIu6WQsa28UIIdSJsAWNEEJdFNMEXVlZOWPGDK1WS6/JzMxcuHCh0WhMTGAIIZTs\nGM2D/uyzz8aPH09RVPxKo9G4bdu2AwcOnDhxonfv3okJDyGEkhejFvTKlSuHDh1aWlra0tJC\nrzQajbt27ZLJZEVFRQkLDyGEkhejFnR1dfWFCxdaPRzWYDDMmzcvLy8vLy8vMbEhhFBSY9SC\n5nK5JpPpRlv9fn/7xYMQQujfGCXoiRMnTpo0afPmzVVVVXa7PRKJeDye77//fvv27RMmTJg0\naVKio0QIoSTEqIvjtddeGzlyZGFh4fWbBgwYsGXLlvaOCiGEELMWdI8ePaqrq1etWjVixIiU\nlBQOhyORSLKzs9evX3/69OlWfdMIIYTaBaMWNCFEpVKtXr169erViQwGIYTQ/8ErCRFCqIu6\n3QRtMpkUCkW7hIIQQigeoy6Os2fPzpkz59y5c60uJgQSieSWDllRUbFhwwaKojgcTlFRUW5u\n7o1KRiKRefPm7d27F176fL7HHnssvkBpaektHRohhO4gjBL0ypUrv/766zY38fn85cuXMz9e\nRUVFcXEx5GVYLiwsvD5He73e+vr6w4cPO51OemVjY2NmZuYbb7zB/HAIIXTnYtTFUVlZuXHj\nRq/Xe+nSJT6ff/HixVgsZrfb9+/fr1KpRo0axfx4GzZsoDNybm5uYWHhhg0bri/2X//1X0VF\nRRUVFfErm5qa0tPTmR8LIYTuaIxa0E6nc/78+WKxuG/fvoMGDTKZTP369VMqlQUFBVKpdN26\ndUeOHGF4PIqi4tvLubm5bXab0H0XU6dOpVc2NjZigkYIJQ9GCdpgMKxfv76wsFClUg0ePPit\nt96i778xatSoJ554IpER/p+mpiaLxbJgwQK47vz6/uv169fX1dXBMpfLdAYhQgh1TYy6OAoK\nCl599VW1Wk0IycnJeeutt9544w273W4ymZYvX87hcBIc5L81NjayWKwVK1YcOnSoqKiouLi4\nVR/IuXPnTvyg1QMVEULojsOomblixYqGhoaSkhJCyIwZM1atWrVo0aJFixbB1qeffjqBAcaJ\n762m+68PHz5MrxwzZsygQYNg+e9//3vHRIUQQgnCKEFLJJI9e/bAsk6n++ijj373u9+dPn1a\noVA8/vjja9asSWSEN3R9//V///d/08vvvPNOh0eEEELt6adcqDJ8+PBjx4653W6j0bhhwwah\nUMh8Xw6HE98vUVFRwbyHJD8//yfvixBCdxymCZqiqJ07d06cOFGn0/F4PFiZk5NTU1NzS8eL\n7zum50R3wL4IIXTHYdTFEYlEJk+efPTo0VbrT5w4kZeXd/LkyczMTIbHo/uOr7+ScOrUqTe/\nMvAm+yKEUPfDKEFv2rTp+PHjhYWFM2bMGDRokFKphPUNDQ3PPvvsypUrd+/ezfyQubm58SN7\ntDazc6uVN9oXIYS6H0YJeteuXfv27Zs+fXqr9Xq9ft26dWPGjElAYAghlOwY9UFfu3Zt8uTJ\nbW7KzMy0WCztGhJCCCFCGCbozMzMQ4cOtbmppKTEYDC0a0gIIYQIYZign3zyyblz5y5YsKCi\nosJutxNCnE7nqVOnFi9ePG/evLlz5yY0RIQQSk6M+qAXL15cXV29Y8eOHTt2wBp6nHDSpElL\nly5NVHQIIZTEGLWguVzu/v37Dx069NBDD2k0Gi6Xq1Ao8vLyduzYceTIET6fn+goEUIoCd3C\nLd/y8/Pz8/MTFwpCCKF4+NBYhBDqojBBI4RQF4UJGiGEuihM0Agh1EVhgkYIoS6KUYKura1N\ndBwIIYRaYZSgs7Kyhg4dunr16jNnziQ6IIQQQoBRgr733nvPnj378ssvDxs2rEePHosWLfrk\nk08ikUiig0MIoWTGKEGfPXv22rVrf/jDH8aOHdvU1PTGG2+MHz9eo9HMmTPnyJEjsVgs0VEi\nhFASYjpI2LNnz9/+9reffPJJS0vLvn37Zs6cSVHUnj17Hn744SFDhvz973/HNI0QQu3rlmdx\nKJXKxx9//MCBA0aj8bnnnuNwOOfOnSsoKMjOzv7iiy8SESJCCCWnW07QFovlr3/966OPPqrX\n67ds2UJRFCEkOzvbYrGMHj167969CQgSIYSSEdObJV24cKG0tPT999+vqKiApMzj8caPHz9t\n2rSpU6dmZGT4fL4XXnjh1VdfnT17diIDRgihZMEoQffv3//SpUuwLJfLH3zwwWnTpj344IMK\nhYIuIxaLN23aRN8nGiGE0G1ilKAvXbpkMBimTp06bdq0MWPG8Hi8Nov5/X68NzRCCLUXRgn6\n5MmT2dnZLBbr5sXUarXH42mPqBBCCDFL0Pfdd1+i40AIIdQK01kcgUBg06ZNOTk5crmcz+en\np6c/9NBD+/fvx+nPCCGUIIxa0C0tLWPHjv3mm2/oNc3NzR988MEHH3zw5ptvlpSUyGSyhEWI\nEEJJilELevHixVevXl22bNmJEycsFkswGGxqajp27Njzzz9fWVm5bNmyREeJEEJJiFELurS0\n9NChQ+PHj6fX6HQ6nU43atSoBx544Mknn9y6dWvCIkQIoSTFqAXt8/lycnLa3DR27Fi3292u\nISGEECKEYYK+55573nnnnTY3ffrpp4MHD27XkBBCCBHCsIvjpZdemj59ekNDw4wZM/r27cvn\n8z0ez9WrVz/66KN169bdKHcjhBC6HTdL0K2uTFm7du3atWuvLzZ58mScbIcQQu0OHxqLEEJd\n1M1a0NguRgihToQtaIQQ6qIwQSOEUBeFCRohhLooTNAIIdRFYYJGCKEuChM0Qgh1UbdwocpN\n4IQ8hBBqd9iCRgihLupmCTr2g7/+9a8ikWjVqlVnz551u90URTmdzqqqqhdffFGj0Zw5c6bD\nwkUIoeTB6GZJGzdu3L9//9SpU+k1crk8Ozs7Ozs7Jydn6dKlH374YcIiRAihJMWoi+PixYsT\nJkxoc9P48ePLy8vbNSSEEEKEMEzQYrH40KFDbW764IMPmI8lIoQQYo5RF8eUKVPmzZtXXV09\nY8aMAQMGiMVim8126dKlgwcPbtu2raCgINFRIoRQEmKUoF9//fUzZ85s2LBhw4YNrTYNGzas\nuLj4lg5ZUVGxYcMGiqI4HE5RUVFubu6NSkYikXnz5u3du/cn7IsQQnc6Rl0cGo3m5MmTW7du\nHT16tEql4nA4crk8Nzd3y5YtFRUVKpWK+fEqKiqKi4uLiopKS0uLioqKi4srKiquL+b1ei9c\nuPD66687nc5b3RchhLqJWMeaNm1aeXk5/bK8vHzatGnXF5sS51b3BYMHD967d287Rd1u8vPz\nCSH5+fmdHQhC6A7AqIujHVEUFd8vkZubS1HU9cVKS0thIX5uH8N9EUKoe2CaoCmK2r1797vv\nvltdXW21WsPhMCEkJydn3759ffv2TWSEt+DEiRMulwuW2Wy8SBIhdGdjlKAjkcjkyZOPHj3a\nav2JEyfy8vJOnjyZmZmZgNhu2Z/+9Kfz58/DMofD6dxgEELoNjFqZm7atOn48eOFhYUVFRUO\nh4Ne39DQMHLkyJUrVyYsPIQQSl6MWtC7du3at2/f9OnTW63X6/Xr1q0bM2ZMAgL7Kf7nf/6H\n7pXOy8vr3GAQQug2MWpBX7t2bfLkyW1uyszMtFgszI/H4XDi58ZVVFQw74v40X0lEon8BzG8\nAypC6A7HKEFnZmbe6FLvkpISg8HA/Hjx85fpec0dsC9CCN1xGHVxPPnkk3Pnzi0rK5szZ87A\ngQMJIU6ns6amZv/+/Vu3bl22bBnz4+Xm5hYWFrZ5NeDUqVPp2XW3ui9CCHU/LCZdAZFIZNas\nWQcOHLh+06RJk0pKSvh8fgJiuy1DhgxZsmTJrFmzOjuQ//DII48cPnw4Pz//RmckCCFEY9SC\n5nK5+/fvLygo+Mtf/nLy5EmbzSaRSIYMGTJ79uxf//rX3W/GcU1Nzfnz551Op0KhGDhwYL9+\n/To7IoRQMrqFKwnz8/PhSuVujKKoQ4cOHT161GQyxWIxFoul0WjGjRs3ffp0Lrejr7pECCU5\nTDr/4csvvywpKeFwOPfeey+bzY5Go3V1daWlpVqt9v777+/s6BBCyYVR74TP51uyZEn//v0l\nEgmrLYmOssOcPHnS7Xb36tUL+m3YbHZWVpbX6/3qq686OzSEUNJh1IJetGjR7t27Ex1Kp4tG\no42NjTKZrNV6mUzW3NwciUSwlwMh1JEYtaAPHjz41FNP1dTUhMPhNu+Jl+goOwabzRYKhXAf\nqHiRSEQgEODNPRBCHYxRgo5EIps3b+7Tp0+3b0LefffdgUAgEAjQa4LBoM/nGzx4cHfqyUEI\n3REYJdzhw4efPXt25MiRiY6m040ZM+abb7759ttv1Wq1WCz2+XxWq/Wuu+564IEHOjs0hFDS\nYdSCXrt27cyZM998802z2RyNRhMdUydKT09fuHDhgw8+KBaLg8GgWCyeOHHiokWL9Hp9Z4eG\nEEo6jFrQo0aNIoTMnz9//vz5bRboNt3QhJCMjIynn37abrfDhSpKpbL7XYmDELojdPM+5Z+G\nxWKpVKpbehguQgi1O0YJujs1kBFC6E6BJ+8IIdRF3awFDRPL4JYUN38XbGIjhFC7wxY0Qgh1\nUTdrQdPtYmwgI4RQx8MWNEIIdVG3m6BNJpNCoWiXUBBCCMVjlKDPnj177733crnc6280qtPp\nKIpKdJQIIZSEGM2DXrly5ddff93mJj6fv3z58nYNCSGEECEMW9CVlZUbN270er2XLl3i8/kX\nL16MxWJ2u33//v0qlQouBEcIIdS+GCVop9M5f/58sVjct2/fQYMGmUwmQohSqSwoKNi5c+e6\ndesSHCRCCCUjRgnaYDCsX7/eZrMRQgYPHvzWW2/Rm0aNGvXll18mKDiEEEpmjBJ0QUHBq6++\nqlarCSE5OTlvvfXWG2+8YbfbTSbT8uXL8VEjCCGUCIwS9IoVK2bPni2XywkhM2bMkMvlixYt\nUqlUOp1u69atBQUFCQ4SIYSSEaMELZFI9uzZ43Q6CSE6ne6jjz4aNWqUVCo1GAyLFy8uLi5O\ncJAIIZSMfsr9oIcPH37s2LF2DwUhhFC8H7+bHRN4sw6EEGp3eC8OhBDqohjdzQ4hhFDHwxY0\nQgh1UUwTtM/nW7du3X333SeTyfh8vk6nmzBhwo4dO0KhUELjQwihpMVoFofZbL7//vvPnz9P\nrzGZTEePHj169OiuXbs+/vhjvOMoQgi1O0Yt6Oeff762tnblypVVVVUulysSidjt9vLy8t/+\n9renT59etWpVoqNECKEkxKgF/f777+/fv3/KlCn0GqVSmZubm5ubO2LEiGXLlm3ZsiVhESKE\nUJJi1IKOxWJjx45tc1N+fn5LS0u7hoQQQogQhgk6JyenrKyszU3Hjx8fOHBgu4aEEEKIEIZd\nHOvXr580adKSJUseeOCB3r17y2SyUChUW1v7/vvvv/LKK9u3b090lAghlIQYJejhw4cTQoqK\nitrcOmvWrFmzZtEv8fIWhBBqF3ihCkIIdVGMWtDYKEYIoY7XDi1oiqJu/00QQgi1wihBz5w5\ns66urs1NJ06cgB5qhBBC7YtRgj548OBdd921efPm+Mayw+F45plncnNzz5w5k7DwEEIoeTFK\n0AcOHFCr1YWFhSNGjKiqqiKE7Nu3b+DAgdu3b+/bt++HH36Y4CARQigZMUrQjz766Pnz5198\n8cVz587l5OTcc889s2bN8ng8v//977/55puJEycmOkqEEEpCTJ9JKBaLV61a5XA43njjjW++\n+YbNZu/duzc/Pz+hwSGEUDJjOovjyJEjgwcPfuONN3Q63VNPPcXhcKZPnz5nzpzGxsaExocQ\nQkmLUYKePHnyww8/XFNTs2jRogsXLrz55pvV1dWjRo3as2dP//79165de0uHrKioyM/Pnzp1\nan5+fkVFBfMyPp9v6n+6peMihNAdJsYAIWT48OFVVVWt1r/11ltpaWkM3wSUl5c/+uij5eXl\nrZaZlLl06dIzzzzD8ECDBw/eu3cv88A6BnQK5efnd3YgCKE7AKMW9LZt2yorK7Ozs1utnzNn\nzvfff/+b3/yGeX2wYcOGwsLC3NxcQkhubm5hYeGGDRsYlmlqakpPT2d+LIQQuqMxGiR8+umn\nb7QpJSVlx44dzI9HURRkXpCbm3v9hYg3KtPY2IgJGiGUPJjO4qAoavfu3e+++251dbXVag2H\nw4SQnJycffv29e3bN5ER/p+mpiaLxbJgwQKTyUQIKSoqis/jhJDCwsLLly/DMo/H65ioEEIo\nQRgl6EgkMnny5KNHj7Zaf+LEiby8vJMnT2ZmZiYgttYaGxsFAsGKFSsMBkNlZWVxcTHdEwJa\nWloaGho6IBKEEOoAjBL0pk2bjh8/XlhYOGPGjEGDBimVSljf0NDw7LPPrly5cvfu3YkM8t/i\ne6vpvunDhw/TKwsKCqxWKywXFxd3QEgIIZQ4jBL0rl279u3bN3369Fbr9Xr9unXrxowZk4DA\nftz1/dcPP/wwvbxx48YOjwghhNoTo1kc165dmzx5cpubMjMzLRYL8+NxOJz4uc8VFRUcDodh\nmVbzptvcFyGEug1GCTozM/PQoUNtbiopKTEYDMyPV1RUVFxcDHm2oqKiuLj4+idp3agMk30R\nQqjbYNTF8eSTT86dO7esrGzOnDnwDG+n01lTU7N///6tW7cuW7aM+fHovkAIpv0AACAASURB\nVGOKojgcTvxMjKlTp5aWlt6kzE32RQih7ocVY/A4q0gkMmvWrAMHDly/adKkSSUlJXw+PwGx\n3ZYhQ4YsWbIk/mm2XcEjjzxy+PDh/Pz8G52RIIQQjVEXB5fL3b9//6FDhx566CGNRsPlchUK\nRV5e3o4dO44cOdIFszNCCHUDTC9UIYTk5+fj/UURQqjDtMNDYxFCCCUCJmiEEOqiMEEjhFAX\nhQkaIYS6KEzQCCHURWGCRgihLoppgqYoaufOnRMnTtTpdPStlnNycmpqahIWG0IIJbU76X7Q\nCCGUVBi1oOn7QVdUVDgcDnp9Q0PDyJEjV65cmbDwEEIoed3B94PuAHa7/bPPPrt69arf78/I\nyLj77rvlcjmfz9dqtWKxuLOjQwh1c4wSdDveD/oOcvXq1TfffPO7775jsVjRaPTgwYPhcDg9\nPT0zM1Oj0UyePDkvL4/NxlFWhFCidPT9oO8U0Wj03Xff/fbbbwcMGHDPPfcEg0G/3+92u00m\nUzgc/v7773fv3v3ZZ591dpgIoe6MUYKG+0EvWLCgoqLCbrcTQpxO56lTpxYvXjxv3ry5c+cm\nNMROUV9ff+nSJYPBIBaLm5ubm5ubZTJZz549w+FwNBq99957PR7PRx995PP5OjtShFC3xaiL\nY/HixdXV1Tt27NixYwesoZ8bO2nSpKVLlyYqus7jcrn8fr9GoyGEOJ3OQCCQkpJCCInFYsFg\nkBCSnp5uNpuNRmP//v07OVaEUDeF94Num0gk4vP5gUCAEEJRFIvFIoTAww1gGjiHw6EoKhwO\nd26cCKFuDO8H3bYePXpkZGRUV1er1WqxWMxmsyORiMfjEYvFarWaEOJwOKRSaWpqamdHihDq\ntnASQtv4fP6MGTOysrK+/vprv9/PYrGuXLkSiUT69OmTmppqMplsNtuQIUO0Wm1nR4oQ6raY\nJujKysoZM2bE56PMzMyFCxcajcbEBNb5hgwZ8sILLzz00EM9evT42c9+NnDgQK1WGwwGT548\nef78+WAw+PXXX69ater999/3er2dHSxCqBti1MXx2WefjR8/nqKo+JVGo3Hbtm0HDhw4ceJE\n7969ExNeJ+vRo8dvfvObaDRKUVQwGDx16tTly5c//fTTQCAgkUi8Xu+333577ty5c+fOLVq0\nSCqVdna8CKFuhVELeuXKlUOHDi0tLW1paaFXGo3GXbt2yWSyoqKihIXXJbDZbB6PJ5VKR48e\nrVAo/H7/PffcM2TIkD59+gwZMsRgMJw8eRLnRCOE2h2jFnR1dfWFCxf0en38SoPBMG/evLy8\nvLy8vMTE1uXEYrEzZ87weDyFQkGvTElJaWhoqK6unjJlSifGhhDqfphOszOZTDfa6vf72y+e\nLi0cDns8HoFA0Gq9UCi02+0wCQ8hhNoLowQ9ceLESZMmbd68uaqqym63w4Sz77//fvv27RMm\nTJg0aVKio+wi+Hy+XC6//upBn8+nVqthrjRCCLUXRl0cr7322siRIwsLC6/fNGDAgC1btrR3\nVF1Xdnb2uXPnrFYrzIYmhJjNZg6HM3To0M4NDCHU/TBK0D169Kiurv7jH//4r3/969KlSy6X\nSygUDhw4cMaMGc8++2xS3XjzgQceuHz58ldffVVfXy8SiXw+n1gs/sUvfjF69OjODg0h1N0w\nvZJQpVKtXr169erViQzmDiCTyZ599tlhw4ZVV1c3NjYaDIahQ4fm5uZyubdwTSZCCDGBaeWW\n8Xi8+++///777+/sQBBC3RyjQUKfz7dkyZL+/ftLJBJWWxIdZVfm9XqvXLly8eJFuBErQgi1\nF0Yt6EWLFu3evTvRodxxKIo6duzYhx9+aLFYotFoNBpNSUnR6/UpKSk9e/b8xS9+kVS98wih\ndscoQR88ePCpp55asmRJz549sbOV9tFHH+3fv9/n8+n1+oaGhm+//dbtdmu12p49e7LZ7KNH\nj06bNq1Pnz4ajYbD4XR2sAihOw+jbBuJRDZv3iyRSBIdzR3E6XQePXo0GAwOHjzY6XTW1dVx\nudz09HSKokQikdFoPHXqVFlZ2b333nv33XdPmzatZ8+enR0yQugOwyhBDx8+/OzZsyNHjkx0\nNHeQuro6i8WSnp5OCGlubna73RqNhs1m19fXnz59mhAiFov9fr/f7z9y5MiZM2cKCgoGDhzY\n2VEjhO4kjBL02rVrZ86cuWrVqmnTpqWmpuKjrAkhkUgkGo1C3wU8BAs+Fq/Xy+Fw+vTpEwqF\n/H5/S0uLxWL57rvvLl68eNddd12+fJkQ4vf7I5EIdhYhhG6OUY4YNWoUIWT+/Pnz589vs0AS\n3oYiLS1NKpU6HA6ZTMblcuETCAaD4XBYIpGw2WyKouDBhiKRSCqVxmKxK1eu1NTUEELOnz//\n4osvDho0KCMjQ6VS9e3b1+fzURSl1WoxayOEaJgOfiKDwTBs2LAPPviAz+er1WqRSGS1WoPB\noFAoFIvF0WjUZrOFQiGZTJaSkmKxWJqbmwUCAbSyPR7PwYMHo9GoXq8Xi8WBQCAtLU2tVqem\npk6YMCEvLw/TNEKIMEzQSdhA/lEsFmvmzJnBYLCqqsrlcrHZbLvdLpVKVSqVy+UKhUIikYjN\nZsNd/F0uF0VRGo3GarV6PB6/36/VasPhsMPhsNlsDofDarUOGTKkpaWlqqrq3nvvffDBB3v1\n6tWrV6/O/isRQp0JW2o/XUpKysKFC+Ga70Ag0NDQ0NjYeOnSpfPnz0skkj59+nz33XfRaLSl\npYXD4bDZbJFIBDvGYrG0tDSn09nQ0JCSktKvX7/m5uaWlpZwOFxfX3/x4sUzZ87w+XyNRtOz\nZ8+0tDS4ix4hRKvV5uTk4PRqhJLE7SZok8nUv39/p9PZLtHccTgczrBhw4YNGwYvY7GY0+n8\n+OOPP/vss9raWo/H43K5dDqdUqm0WCyEEHhsGAwthsPhSCQCF2cSQi5evCiRSLRarc1ms1qt\nDoejuro6PT3d6/UGAgG1Wp2RkQEd3EOHDoXEnZaW5vP5VCqVXq93uVyEkNTUVKFQ2GkfB0Ko\nXTFK0GfPnp0zZ865c+daPZYQ4PxoGovFUiqVM2fOHDFixMWLF0tKSqqrqzMyMmKxmMVicbvd\n4XCY/JCgA4EAi8WC2//7/f5AIJCVlcXhcKAPRK/XezyelpYWoVAokUjC4XAgEDCZTM3Nzd9+\n+61SqXQ6nUKh0GAwBAKBcDis1WrlcjmXy9VoNOnp6TKZjKIo6OBOSUlJS0sLBoMsFkun04VC\nIeiNSU1NhWFMtVotlUqtViubzdZoNBRF2e12uVyekpLidrsDgYBKpeLxeB6Ph8PhwHlAKBTi\n8/md+2kj1O0xStArV678+uuv29zE5/OXL1/eriF1B1lZWVlZWSNHjvzHP/7xxRdfNDU1URRl\nsVhEIpHH46Eoyu12x2IxqVQaiUR4PF44HObxeBwOJxAIhEIhhUIhEom8Xq/H40lJSVEqlbW1\ntQ6HQyqVZmZmWq1Wq9VKUVQoFOJwOC6Xy+Vy2Ww2tVp97dq1cDiclpZGUZTX6xWLxTqdzmaz\nBYNBeiRTIBCkpaW53W63261UKhUKhc1mC4fDqampHA7H4XDw+XylUhkKhXw+n1KpFIvF0Mku\nl8tZLBa0+mOxmFgshsmCFEUJhUIOh8PhcLhcbjgchj9TLpeHQiGBQOD3+2UyWSwWi8VifD4/\nGo3KZLJAIAD1B4/Hi0QiQqEQPgcowOfzPR6PTCaDYVU4KCEEnmgDg6gQP4fDgWmLKpWKEOJy\nuUQikVAoDIfDUAA+yWg0qlQqKYpyOBxisVgikfh8Pq/Xm5KSIpFI4BRQrVaHQiGbzSaRSORy\nucvl8nq9KpVKJpPZbDYWi5WamhoIBOx2u0QiSUtLs9lsbrdbp9MJhcKWlhY2m52amur3++12\nu0wmUygUVqsVzn4kEkljYyOXy9XpdPAOcrkc3hb+NWw222KxcLnc1NTUUChktVpTUlJkMpnF\nYgkEAlqtls1m22w2Ho+nVCoDgYDT6YQvCVTPMpkM/nY+ny8UCuELJpPJOBxOKBSCEy9CSCgU\n4nK58JEGg0FoHFAUFY1GeTxeqwKoK2CUoCsrKzdu3Pj00083Njbefffd3377bb9+/RwOx0cf\nffTcc8/BJDx0PYlEMmfOnF/84heNjY1ff/31qVOnPvzwQ0JINBq1WCxZWVkURTU2NrJYLEh5\n4XDYarXyeDz4vcFUa/gVhcPhYDCYlZVFfshBvXv3NplMdXV1aWlpffr0MRqNHo9HLBazWCzI\np5D4zGazz+cLh8NwWyu73Q451Ov12mw2j8cD6R6e5hWLxZqbm4VCoU6ng6FLlUqlVCobGxvD\n4XBmZmY0Gm1oaBAIBJmZmc3NzVB/pKSkGI1GmJQSDAZbWloEAkFGRkZDQ0MwGIQ6oKGhIRaL\n6fX6QCBgtVqFQmF6errJZIICYrHYbDZDAa/X63A4hEJhWlpaS0sLFBCJRC0tLSwWS6vVQseR\nUChMTU01m82RSCQlJYXP51utVkIIdPt4PB6JRKJUKiEDpqSk8Hg8m83G4XDS0tI8Ho/T6ZTJ\nZEqlEubewOx+m80mEAhSU1OhgEKhkMlkdrs9EAikpqayWCyo3lJTU+nqTSKROByOUCgE1YPN\nZhMKhWq12uVy0dWDzWaLRqOpqamxWMxut/P5fJVK5fF4PB6PUqkUCoVWqzUajarVaoqinE6n\nQCBQKBQejycYDMpkMh6P53K54OQsGo3CmZNUKg0EAsFgUCqV8ng8r9dLCIH63u/383g8oVAY\nDAZjsZhAIOBwOHDuy2azORwOtAZYLBY8rp7P58diMahrWSwWl8uNRCKQ+kUiEUVRHA4HKlc2\nmx2JRPh8fjAYhKfaw4ka1JcsFovP58Nefr9fLBZ7vV6RSBQOhyHjczgcPp/vdrtTUlJgFN3j\n8UDM0MtHUZRAIPD5fFB9wqVeYrE4FotBGFwuVyAQuFwuhULh8/kEAgGcycGdcOBPEwqF8A7Q\n9AkEAvBrCofDECecC8LoPSEETjEJIV6vl8/nwycDh+ByudBgguclQf0HnwkUYLFY0DhQKpV8\nPh/+dz179jQYDO2VQxglaKfTOX/+fLFY3Ldv30GDBplMpn79+imVyoKCAqlUum7duiNHjrRX\nQN1P7969e/funZeX53A4Ll682NjY2KtXr5ycnEAg4HA43G43fLfMZnNLS0taWhrM0iOEQOuS\n7rBms9ksFisYDEKLFd48GAyKRCK6oQT91E1NTQqFQq/XNzY2WiyWzMxMqVQKU7B79+7t8Xhq\na2slEkm/fv3q6upsNlt6erpAIKivr2exWFlZWW63u7a2ViQS9e/f32g0Go1G+P6ZzWZCiMFg\ncLvddXV1PB5Pr9c7HI6mpiaxWAxtQGhm+ny+hoYGNputVqt9Ph+kbEhwhBCZTBYKhZqammKx\nGPycAoFALBZjsVgWiyUWi8GfYzKZIpEIIcTn8/n9fugdgvtSURQFFwH5/f5oNOp2u1ksFiQp\nmIHu9XqhSnO73fD7h/wLKSYUCkF3EzRmQ6FQNBqF+NlsNnT6OxwOqPCg9oJrkcxmM4/Hc7vd\nUIukpKSIxWIY3dVqtYQQk8kkEAi0Wq3D4XA4HKmpqWKx2GQyhcNhnU4XjUZNJpNIJEpPT7da\nrXa7XaPRQOOaoqj09PRIJNLU1CSVSrVabUtLi8vlggINDQ0URUH9ZzabpVKpXq9vbm6mCxiN\nRhaLpdfr/X6/yWSSy+U6na6pqQluDiMUCqEdkJGR4fF4zGazXC5PT09vaGjwer1arZbP5zc0\nNHA4nMzMTKfTabVaZTKZXq+vr6/3+/3p6elcLrehoYHL5WZmZtpsNjhF0Ol09fX1oVAI5u83\nNjZyOJyePXu2tLQ4nU65XJ6WlmY0GsPhsEajYbFYJpMJ3gG6++RyeWpqqtFohAlOcIrJ5XIz\nMjJMJpPP55PJZGq1uqGhIRqNpqWlQT8hfOtMJlMgEFAoFFD3R6NRjUYDfXc8Hg/q/lAoJJfL\n5XK5yWSCTy8QCNhsNj6fr9PpzGZzMBiUy+VSqRQaB1qt1u/3QxaGxkE4HIbTlJaWFkKIRqPx\n+/1Op1MkEqlUKvhiQOPAZrPFYrHU1FT4q8eOHTt16tR26QNklKANBsP69esLCwtVKtXgwYPf\neust+kneo0aNeuKJJ24/jmSgVCrT0tIIIf3799+8eXNtba3b7RYIBE1NTUaj8V//+ldzc3Of\nPn3MZvPFixcDgYBcLheJRG63WygUcrlcyNQulwvaEeQ/hxwhDdHNIrpRA50GsAANKGhWKJVK\nQgibzfb7/dC9APUBj8eDVgzdveD1env06MHlciEpQ8+G2WzWarUSiaSlpcXj8QwaNIjNZp8/\nf14gEOj1emho63Q6OM33+/0DBw5ksVgXLlwQCAR9+vSxWq3Nzc06nU6tVl++fDkUCvXv3z8W\ni128eFEoFPbu3bulpcVsNqenp6tUqpqamkgk0q9fP4qiLl++LBKJsrKyTCZTU1OTXq9XKpU1\nNTUURfXt2zccDl+7dk0kEvXs2bOpqamxsVGv18vl8suXL0ej0d69e4dCobq6OrFY3KtXL6PR\naLVa9Xq9VCq9cuUKISQrK8vv9zc2NorF4n79+tXX10PtJRaLa2trCSE9e/b0eDxGo1EkEtHV\nG3RxQPXWs2dPt9t97dq1+PpPo9FABoT6z+l0XrlyRSKR9O3b12g02my2tLQ0Lpfb3NzMZrN7\n9+5tt9uvXr0qlUqhgMPhUKlUHA7HZDJBAavVevXqVZFI1KtXr6amJqfTCe335uZmOITNZqM/\nB7PZ7HK51Gp1NBptamqCIKEAjGFYrVYWi5WWlgZVOyEkMzPTbrfX1tby+fz09HSHw0EIUalU\n4XC4sbGREJKenu50Ouvr6+Fsz+VyxWIxaBfDn6nVat1ud1NTE5/Pl0gkMIKtUCjoQ6jVaq/X\n29TUxOVyhUKh0+mEHr9wONzc3ByLxeRyeTAYNJlM8I2FdxCLxVAgGo1C+zoYDLLZbDabDZ1U\nAoGAoiiz2QynnsFgEM5OoHEAdT98e+GcEsZ+IpFILBaDJBsOhymKgrqfoiiPx+Pz+eAxpDab\nDVoGcGrr8XjoISWHw8FiseRyOZzXHjhwgMViTZ8+/faTBqPOpoKCgldffRWewpeTk/PWW2+9\n8cYbdrvdZDItX74cb9X2E8jl8iFDhvz85z/Pzs5++OGHFyxYsH379tmzZ8PZK0yq02g0MD2j\nubkZhung269Wq+ErEgqFhEIhZGQ4OSU/tLUht0IGh/NHOEVtMxi6ALykz2fhJXy/4d3oe39D\nkxP2hQIsFoseQ4ZlKABNWmj+RyIReiW9DJUHzERsVQC+WnQBaFlDDHA+CwXgdwW/ZPjFQgHo\no4cI4QwXCsBeXC43GAzyeDw4FhSAk3QoAEMCfD6fy+XCCQpUjYFAAD5q6P4WCoVw1g9dB1AA\nzpTZbDacbguFwkAgQFEUFIBeCIjN6/VKpVKxWOzz+eCsPL5ALBaD3nypVOrxeOgCXq9XIBDw\n+XxIItCWdLvd0EsAPfhCoZDui4e2pNPphNMvOA8QiUQSiQTOMxQKRUpKisPhiEajIpGIy+U6\nnU6JRCKVSn0+H/RLKJVKh8MBmRSyEnQTQYdPSkqKQqGw2+0wxkAIsdlsMplMpVJBAbVaLZfL\nbTYbIUShUESjUavVqlQqU1NT4VQSWqBwHgYdPhaLRaVSaTQam83mdDpTU1OhTQAnatCflpqa\nqtVqrVary+WiGw0cDkej0fh8PrPZnJaWptPpoF2v0+kEAkFzczOHw0lPT3e73XDaqtVqzWaz\n0+nMyMjg8/lNTU3Qj+dwOMxms06n02q1TU1NDoejR48eHA6noaFBKBT26NHDZrOZTCa9Xg9X\nOdjt9l69enG53LKyMo/Hc/uJglELesWKFQ0NDSUlJYSQGTNmrFq1atGiRYsWLYKtTz/99O3H\ngfR6/TPPPAPNunA4DLfv8Hg8mZmZkAUuXLhAnxRfuHDh8uXLWq2Ww+HABD6VSgVDQ/BzhZEf\nmMgRDoehM4EQAmkduu0IIdClCK1vPp9Pj8jRF69Ho1FYjsVi9PWN9E1ISFymblUBsNlseIf4\n9SwWi37b+Oc80Mv0AvR40DUHLMQ/HaLNd4i/oir+HW5HqxhaLd+oQHwYba6ML0x/UPQbXl+A\n/gTID5UiXZhejq8g6ZXkh5qVrkpJXLVKfqhNoeT19W58Aahi498hvhYn19W7dCVNBwO1NbxD\nfOFWx4pfhmqMPimEd6BrbngHeCsY54xvB8AyXfdDn0Oruh/GRQkhMKBNfqj76XeAWjwajUJ3\nIvnPup8uwOPxoFuMEKJWq51Op8lkonu6fzJGCVoikezZsweWdTrdRx999Lvf/e706dMKheLx\nxx9fs2bNLR2yoqJiw4YN8CkXFRXl5uYyL8Nk3zsXm83u0aNHjx49CCEjRoyIxWLwpQkGg9Bt\nV11dXVlZCSdcLpcLBliCwWA0GlWpVBaLxWQyqVSqPn36XL169dKlSzAt2mQysVgs6OKsra3l\n8XiZmZnQEy2Xy1UqFd0kIYTQp6jhcNhsNovFYuhmZbPZ0CvicDj8fr9SqYRxRR6PB+0mmOYR\ni8XgHn7Q0QytUZlMBmegcGYQCoVglAmapXC9JQxRwmQDqEVEIhF0uMPcPji1hIt0oMkMzUMo\nAGNioVAIevBh1EsgENAFoBkO1+JDugmHw1CAz+fDzxUmxggEAkgoMIAG7WIYQIOWOF290QVg\n/AoSK2QKOATMjoCedLp6g1wD7wAFYJkuABUkXQCW4fQckjidoch1NShd/9GF4Z2hAL2yzeX4\nlfHvAOthIf4QdB1M4mqp+L3iK+b407g2gwTxBeJrqfi6n67m49e3KkC/W5s/tFb1a6vybVbG\nUKzV30tuUFu3etvb8VMuVBk+fPixY8d+2vEqKiqKi4sht8JyYWFhqzx7ozJM9u1OWD/MkhYI\nBDAuPHDgwPz8fLvdDmfE165dg7l0DoejpaXF5/PBqCCM/kM/Mp315HI5zLzm8XhqtRqG/mUy\nGYyzx2IxtVrt9/tDoRCPx0tLSzObzdAPDqNYMMXC7XZbrVbo3Kyrq2tqakpNTZVKpdADm5GR\n4fP56uvrJRJJVlZWY2NjXV2dRqOBG2RDAa/Xe/XqVYVC0bt378bGxitXruh0Oj6f39jYyGaz\nDQaDz+erqamRy+W9evVqbm6+cuWKRqPh8XgwBgXjYJcuXVIoFFlZWWaz2Wq1wo1ejUYjnLcG\nAoGamhqFQgEDVlarVa1Wczic+vp6GKTy+/2XL1+GygkuC9JoNISQ+vp6DocDf8W1a9fEYjHU\nPRaLJS0tjcViGY1GNpsNw03wZ8rlcujc1Gg0sVgMCqSnp0NvrEQigalycO0oIQT6cHU6HfTG\nisViqVTa0tICQ0yxWAxGtDQaDXSVSiQSOGcnhEABq9UaCoXgBN9qtcYXUKlUMFEEZpXAEKhI\nJBKLxTC4Cl3VTqcTRrf8fj8hBOo8u91OURTUwTATVKFQwPREKOB0OoPBID11IRqNwlQTOEsj\nhLhcLihACIFGg1wuh14XKADzGmUyGVTAsVhMJpNBvw18RQOBgN/vl0qlFEXBd1Imk7ndbujI\njsViwWDQ7/fDZQHQcQxVO4fDgflLMPALZ41QL9IFpFIpNKhhngnU3IQQmI4CC3QdLBQKoReR\nxWJB4wA+h1gsBsELBIJIJAKNfaFQGAqFoEEAfTtmszkrKwvuRXy7SeBGlQxp69ztRm7yJq3k\n5+df3yI+fPgwkzJM9qUNGTJkyZIls2bNYhhYx3jkkUfgDzl06FCCDhEMBmGiLswfcLvdkG3N\nZjOLxYKBGqfTCd2IcKEKtMRhch4hJBaLud1usVgMPz+PxwNTi6D/1+PxcLnclpYWuVzu8/nY\nbDbMgoBRF2j1Q6OP7iWHldD+hRkUMF0JJqjB9Gro3ExJSQmHwzabDaYqOxwOuEyGxWJB12Ra\nWhqMxUulUri4BrIVIcRisXA4HLVa7Xa7HQ4HVC02mw1mIrPZbLpr0u12wzQ7iURisVgikQiM\nobW0tPB4PJgD53K54B3iC1itVpiqDG8rk8lgDkAkEklNTY1EIjCLUafTWSwWOI1QKBRQvWk0\nGsiYPB4PZhHAiQg9D0Gr1fp8PpiqpdFoYB6CTCaj5yBCnykUgEkawWBQpVLBNA/ywwQbSMrp\n6elGoxGmiAkEApjFYTAYXC4XzAQ3GAx1dXXBYJAew+RwOD169ICOVKlUmp6eXldXFwqF0tPT\nodeVy+X26NHDYrHY7XaFQqHVaqEAdLXB/MuMjAyr1Wqz2eDyqLq6unA4rNfrKYqC+4UZDAZ4\nB5VKpVKpGhoawuGwwWCIRqONjY0ikchgMJjNZpgDo1AoYB6IwWCAKS5isViv18M7aDQauVwO\n80D0ej2MH0okEvh4XS4XzImiBzZhapBMJoNfBMxhhx5nQohGowmHw/DFhtNKn8+XmprK4/Fg\n/hLMYbdYLAqFQqlUtrS0wPxLDocDp5hZWVnDhg2DCe+zZs2aNGnS7f+cO/peHBRFxbd5c3Nz\nr7868UZlmOyL4NcLy3q9HhZUKlUHPC6AnihC4q6DgFFy+qZRcCUFTFdSKBQCgcBiscCPPBQK\nWSwWgUAAKdLpdCqVSvh5RCKRtLS0SCQCc6ihjw8mGnO5XMhfOp3O5/PBTGSYBeVwOGCCBN1+\nhBwqEolgSA1mItMj+FB7wSw0GBCDH3k0GoVheqlUCjORpVIpl8uF0TMYs3W73Ww2G2YTQu8T\nISQajQYCAWj9OZ1OGKWECQDQDIRxSJFIFF+xcblcGH/z+/3QYQoNOpfLJRAIYrGYQCCAS128\nXi897AnNQz6fD3OHoQaCcya6FzUQCMAYJtS+EokEhi7hEGw2G6YMwXCox+PJy8uD7lq6Hxz+\nrVDA7/cPHz4c/unQ6cRiseC/T19oes8990BPNPyBMD0/HA7Tc4f6VhEsowAADkZJREFU9u0L\nw5KxWAzmAgkEgr59+0IrFTr9CCEw4drhcHC5XGja+3w+uVwO80xisZhcLo9Go1lZWdDc1uv1\nUL3BSRU8LzQcDqenpwuFQoVCkZaW5vf7U1JSOByOSqWCeehw5gFnTjCNRKVSsdlsmUwG45Z0\nrZySkgLDp1AAJpunpKTA3KTx48ePHz++XX5TN0vQbY5vdGX//Oc/YaYt+c8+KdQxYJQGQHYm\nhMTfGwT6oAkhIpGIvnUUdC/A7vRtA6B5BcvxIy3QUUAIgXPJVisJIfB7jn9bQghc4IPaF52F\nKYqix5Chi4w+l6LvZEAIEYlEMGldLBZDmoYkC1NZWCwWjB+43W6JRAL1n8fjgcljMMgBF7hC\n7QXXf8IJFkxyhxTp8/ksFgtchwlTPLVabSQSoS/UhDnsCoVCIpFAPx7c/8BiscCtg+EekzDn\npLm5ORQK6XQ6GAeC1oPb7Xa5XHAVEkxy12q19BVYmZmZcErXLhi1oOkRmPhfYBd04MCB8+fP\nwzJO/kMooegLMeJ/a/RKegSFEEJXxmw2GzqpCSEwvAzLdMUcXwAGqGGZTnlwmSssw+RCWKYr\naeiUb7UXn8+na24+nw+XDhJCMjMz6cihJiCEyOVyujD9/oSQjIwMWICLkkC7dDTfBKNm5rRp\n0wgh5eXlCQ3l9qWlpRl+0NmxIITQ7WLUgt65cyefz//Vr371xz/+8YEHHog/u+xSiouL6eUh\nQ4Z0YiQIIXT7GLWgZTLZ3r176+rqpk2bBn1GrTA/HofDqaiooF9WVFRc3xdxozJM9kUIoW6j\no0fSioqKiouLIc/S85oZlmGyL0IIdRsd/UzC3NzcwsLCNq8GnDp1amlp6U3K3GRfhBDqfjrh\nmYS5ubltXl0C2fnmZW60HiGEup9u+0zCUCh07ty5Tz75pLMD+Q9wSZLZbO5qgSGEOgWbzc7J\nybnRgwNvdqk37UefSdguN9ZrXzqdDq6z+tGScDdxuOg50VHR9+7pyjPK4fJiuOS6s2PpEuD6\nb0KI1WqFOzwguP8tXEvZ2bF0CSKRCG4WBo2wW7Jt27bHHnus7W0xBqZMmXKjt+bz+a+++iqT\nN+mycnJysrOz33vvvc4OpKtYv359dnb23LlzOzuQruL8+fPZ2dnZ2dk1NTWdHUtX8cQTT2Rn\nZ2/atKmzA+kq3n333ezs7Ly8vPZ9W0azOOCZhF6v99KlS3w+/+LFi7FYzG6379+/X6VS4TMJ\nEUIoERgl6OufSUgIgWcS7ty5c926dQkOEiGEkhGjBA3PJIQeSXgmIb1p1KhRX375ZYKC6xjw\nNKCu3CncwYRCoVwup2+DgDgcDnxJ8A5cNLFYLJfL6bttID6fL5fL2/0qa0aDhMuWLVu/fj0h\nJBaL/elPf3r++ef/8Ic/PP7446FQ6JVXXnn77bfpe8ghhBBqL4wStNfrffrpp0tKSpxOZ3Nz\n81133WW32+mtTz/99LZt2xIZJEIIJSNGCbqVkydPtnomYfw9fxFCCLULRgm6sbGRfjYHQgih\njsEoQbPZ7Ozs7ClTpkyZMmXo0KEdEFbH6N7PCGeusrLytddea/U5+Hy+VpPn46/F78Zu8ocn\n7Rdm6tSprdawWKx33nknOb8hkUhk3rx5e/fupdfc6IvRDl8YJpOlBwwYQJfPyMhYsGDBkSNH\n/H5/+07J7mDl5eWPPvpoeXl5q+VkU1lZ2ebncOnSpWeeeaazo+sEN/rD8QsDTCbT7NmzKyoq\nkvAb4vF4zp8///vf/37KlCn0yht9MdrlC8MoQcdise++++7VV18dPnw4ffdnsVj8y1/+8i9/\n+Utzc/OtHrUrmDZtWvznVV5ePm3atE6Mp7NMnz79+PHj9Ev6czh+/PjatWs7L65Oc6M/HL8w\nYPny5aWlpbGk/IZMiUOvvNEXo12+MExvljRo0KBBgwYtX768oaHhvffee++9944dO1ZSUlJS\nUsJisaLR6C033TsbPiMchEKhkSNH0i/pz6GxsTHRz1vrmm70h+MXhhDyxRdfWK3Whx9+mCTl\nN4Tuw4nv87nRF6NdvjC3PPHeYDAsXLjw6NGjFy9enDRpErlznvmN2lRaWhp//UVZWRk80bGp\nqenq1asLFizIz8/Pz8+Pf5ZN95a0f/iPikaje/bsmT59OpxG4wfVAW75dqMNDQ0lJSXvvffe\n559/Hg6HExET6hShUOjQoUPvvffemjVrCCGNjY0CgWDFihUGg6GysrK4uLiwsDAZhsWS9g//\nUV988UUkEhkzZgy8xA+qAzBN0BcuXDh8+PB777138uRJaDKLRKIJEyZMmTIFznfQHe3zzz/f\ns2ePXq/fsmULPNZ+w4YN9Fb6WTbJ8LSEpP3Df9SRI0d++ctfcrn/Thr4QXUARgl64MCB33//\nPSzr9fqHHnpoypQp48aNE4lEiYwNdYRAILB+/Xqj0fj444+PGzfuRsWSs8uVJPEf3kpzc/PV\nq1dXr159owL4QSUCoz7oixcvDhs2bNWqVVVVVUaj8c0335wyZcqdnp3xGeHgb3/721133bVz\n585W2blVr2LyfD43+sOT/Avz1VdfjRgxIv5Xn7TfkFZu9MVony8Mk6keDQ0Ntzo7pOvDaa1g\nwYIFdrv9+vVJ+/kkdFrrnevll1/+3//93/g1yfyBdNg86J9yL45uI2kvDIv36KOPhkKhVith\nOlHSfj4JvDDsjjVnzpyNGzempaXFr0zaD2Tq1Knxl00m7guT1AkaIYS6MrwBOUIIdVGYoBFC\nqIvCBI0QQl0UJmiEEOqiMEEjhFAXhQkaIYS6KEzQCCHURWGCRgihLgoTNEJdGovFoh9jhJIN\nJmiEEOqiMEEjhFAXhQkadUX19fVPPPGEWq2Wy+WjRo06fvx4/Fav17t8+fLevXsLBIKsrKxl\ny5b5fD56K/QJHD9+fOzYsTKZTCqVjh49+vTp06+++urAgQMFAoFGo3nuueeCwWB8+aqqqnHj\nxsnlcoVCMXv27JaWlls9YllZ2ZgxYyQSiVKpfPLJJ+MLRCKR9evX9+vXTygUDhgw4LXXXotE\nIkx2pzs3WnV0HDx48Oc//3lKSopEIhk2bNj27dtv/zNHXVF73X8PofZis9kyMzM1Gs3p06eN\nRuOwYcO4XG5lZSVsDYfDeXl5IpGopKTE6/UeOHCAy+X+v//3/wKBABSAL7ZGo/nnP/9pt9uX\nLl0Ka7KyssrKytxu95IlSwghL774Ynx5tVr94Ycfer3e0tJSkUg0ePBgn893S0fU6/VlZWUe\nj+fXv/41IaSoqIj+ix577DEOh7Nnzx6v1/uPf/yDz+dPmDAhEokw2f363+mWLVsIIfPnz3c4\nHFeuXJkyZQohZM2aNQn5Z6BOhQkadTmrVq0ihBQXF8PLkpISQsijjz4KL7dt20YIKSwspMsv\nWLCAEPLaa6/BS8hou3fvhpdmsxnWHDlyBNbY7XZCSN++fePLb9iwgX7DlStXEkLWrVt3S0fc\nsWMHvKypqSGE9OvXD14eOnSIEPKb3/yG3r2wsJAQ8uc//5nJ7tcn6IyMDEKIw+GAl0ajkRCS\nmprK4KNFdxhM0KjLycnJIYTA0y9jsRj0Nmg0Gng5evRoQsjx48fp8uXl5YSQ++67D15CRqOf\nMkE/h8npdNK7EEIEAkF8+aqqKnprVVUVISQ7O/uWjmgymeAlPExZLBbDy4ceeogQEn+zdnjQ\nxoQJE5jsfn2CFgqFhJCDBw8y+jTRnQwTNOpyUlJSCCE2m63NrSqVihDS3NxMr3E6nYQQmUwG\nLyGjhcNhusD1OS5+DSzHH87lchFCpFLpLR2Roqg231+j0bR6f4fDQQjRarVMdr8++FmzZhFC\nuFxufn7+zp074wND3QzesB91OVwul6KocDhMP0D6+q2hUIjH48GaUCgkEAh4PB48GgYG0+K/\n2DdfA8vxh6Moisvl0m94m0fk8XjxQ4Lxfwg0lpmEF781FApt2rTpL3/5y+XLlwkhHA5nxowZ\nW7duVavVP/7hojsKzuJAXQ6cwgcCgTa3wnNL3W43vcZmsxFCoN39k8U/9wvenH7D2zyiRCIh\ncV3GNMjOPwH//7drPy/JBGEcwJ9FjYXUQ5CE5LImZkaJe2jxH/AqGJIQBN4FQW+dvHbq2LmD\nyXYLBBX24KE/oYutIvgrPEinUBHRDgNLFPSKxvtOvN/PaWZ2dkYW+bo8zsbG5eVls9ms1+vX\n19eSJGmadn5+vtpqwDMENHDn4OCAiPr9Puv2+31BEDweD+seHh4SUavVMuc/PT0R0dHR0Tqb\ntttts12v14koFAr9yI7Hx8dExP76+1mBQCCbzeq6TkSPj48/vj78cwho4E4ikSCiWq3GuiyA\nYrEY656dnRHRw8ODOb9arZrjKyuVSmb7/v7e/Bjr78hKxpqmmSMvLy+CIKiqusztFovl04gk\nSYIgDAYD1nU6nUTk8/mWWQ1+mb9Z8AZYxtvbm9/v93q9jUbDMIy9vb2tra1Op8OuTiYTRVHs\ndnulUhmPx+VyeXNz8+TkZDqdsglfv9jfj7C20+msVquj0ahYLFqtVlVVzWPOa+44m82i0ago\nipqmjcdjwzBOT09dLtfz8/MytweDQfpwpmWxWFxdXRFRMpnsdrvD4fDi4oKI7u7uVnjUwDkE\nNPCo1+slEgm73b69vR2PxxuNxserr6+v6XR6Z2fHZrPJspzL5T5WeFcL6EKhEA6HRVHc3d3N\nZDKfSsZr7jiZTPL5vCzLNpvN7XanUinz9+aPt+u6vr+/z96j2ch8Pr+5uYlEIg6HQxRFRVFu\nb2+/f57wS+EUB/zvvh6TAOAEatAAAJxCQAMAcAoBDQDAKdSgAQA4hTdoAABOIaABADiFgAYA\n4BQCGgCAUwhoAABOIaABADiFgAYA4BQCGgCAU+/9gYm4b/PB1wAAAABJRU5ErkJggg==",
199 | "text/plain": [
200 | "plot without title"
201 | ]
202 | },
203 | "metadata": {},
204 | "output_type": "display_data"
205 | }
206 | ],
207 | "source": [
208 | "options(repr.plot.width=4, repr.plot.height=3)\n",
209 | "plot_pc_variance_explained(valid_subset_GSE72857_cds) + geom_vline(xintercept = 10)"
210 | ]
211 | },
212 | {
213 | "cell_type": "markdown",
214 | "metadata": {},
215 | "source": [
216 | "The actual computation."
217 | ]
218 | },
219 | {
220 | "cell_type": "code",
221 | "execution_count": 5,
222 | "metadata": {
223 | "collapsed": false,
224 | "scrolled": false
225 | },
226 | "outputs": [
227 | {
228 | "data": {
229 | "text/html": [
230 | "elapsed: 96.9320000000002"
231 | ],
232 | "text/latex": [
233 | "\\textbf{elapsed:} 96.9320000000002"
234 | ],
235 | "text/markdown": [
236 | "**elapsed:** 96.9320000000002"
237 | ],
238 | "text/plain": [
239 | "elapsed \n",
240 | " 96.932 "
241 | ]
242 | },
243 | "metadata": {},
244 | "output_type": "display_data"
245 | }
246 | ],
247 | "source": [
248 | "previous_time <- proc.time()[3]\n",
249 | "valid_subset_GSE72857_cds2 <- reduceDimension(valid_subset_GSE72857_cds,\n",
250 | " norm_method = 'log', verbose = F, max_components = 10) \n",
251 | "valid_subset_GSE72857_cds2 <- orderCells(valid_subset_GSE72857_cds2, reverse = T)\n",
252 | "proc.time()[3] - previous_time"
253 | ]
254 | },
255 | {
256 | "cell_type": "markdown",
257 | "metadata": {},
258 | "source": [
259 | "# Similar analysis as for Supplemental Figure 16 of [Qiu *et al.*, Nat. Meth. (2017)](https://doi.org/10.1038/nmeth.4402)"
260 | ]
261 | },
262 | {
263 | "cell_type": "markdown",
264 | "metadata": {},
265 | "source": [
266 | "## Analogous to Supplemental Figure 16a"
267 | ]
268 | },
269 | {
270 | "cell_type": "markdown",
271 | "metadata": {},
272 | "source": [
273 | "Without removing the lymphoid cells, the figure fundamentally differs from the original [notebook](https://github.com/cole-trapnell-lab/monocle2-rge-paper/blob/26ce18c97f22e9488eb85971a23311f5252bfce5/Paul_dataset_analysis_final.ipynb)."
274 | ]
275 | },
276 | {
277 | "cell_type": "code",
278 | "execution_count": 10,
279 | "metadata": {
280 | "collapsed": false
281 | },
282 | "outputs": [
283 | {
284 | "data": {},
285 | "metadata": {},
286 | "output_type": "display_data"
287 | },
288 | {
289 | "data": {
290 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAHgCAIAAAAHZGA3AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOydd3wU1drHn7Mtu+mFVBIgIaRRpEsAAQUsICgooFLEKxd5L1ZUEMWrV+WiCChc\nvV4Ve6EICQZsIFIihBJ6CwRCek82ZbPJlpnz/rG4JJuZZWd2d5KQ5/vxg7NnZs55suU3pzzn\neQilFBAEQYQga2sDEATpeKBwIAgiGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiC\nCAaFA0EQwaBwIAgiGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBw\nIAgiGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBwIAgiGBQOBEEE\ng8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBwdDyMRmNoaGibNF1XV0da0iZm\npKamqlQqQohKpUpNTW0TG24I38fUhh+fHTOEfrIoHB2JmpqagwcPPvzww+Xl5W1iQHZ2dmJi\nIm2G9DakpqbOmjVr06ZNlNJNmzbNmjWrvWkH38fU5h+fHTOEfrIKNxuJtMRspnW1xNsHVCoR\ndwcEBLjCCKprLJYRhada8HMvOzs7NjbWFTZAjdlUx5giVBqFwG7LjBkzNm3aNGXKFACYMmXK\nt99+O2PGDKPR6BKrrOgaQEbA01PMvXwfk4s+PgAzC7VN4K0CDzG/X04zhH6yKBzSwWZnmTd8\nRRsaQKlUTH5APnS40BqszwHRY4RGY1XqgUklVRkAEBf54ISh38llAiTs8uXLLhGOV3LPvl1w\nkaU0Ru21rffwvl5+jt+rVCotqmFhxIgRarXaeZOsNBlg209QWAwAEBsDk+4CuVxYDXwfk/Mf\nHwDApQr4+DDUG0Ahgwf7wR09hVbAaYbQTxaHKlLBsubvvqR6PQCA2WxO2US11dJb8efZV0qq\nDlmOLxVuOXn5A0G3Z2dnnzp1Ki4uTqlUip5f2FNT8e/8LJZSAMht0v/tUqag28eMGbNixYqC\nggKWZQsLC1999dU777xThBl8HDh8TTUA4HIOHDvlwrqdhgJ8egR0RgAAM4VNp6C03iUVC/1k\nUTgkgtZoaaMeLGJPKVBKS4qkN6Nce8x6TIi8rOaYnYtbk52dTQhJS0szGAyi5xeO67TWYxbo\nSV0tCwLmSl577bWXX365W7ducrk8Kirqk08+ef7554XaYIeyCoC/nsSEQFlbTke0or4Japuu\nfYuAAqVQUOOSioV+sigcEkH8/EGhBHL9K0mCQ6Q3I8AnjpBrHzqlTIB3vKDbDx48+Pvvvyck\nJMhkMuv8glAbemm8rcdyILEaLxkI6Lq/8sory5cvN5vNDMMUFxe//PLLS5cuFWqDHQL8rv8q\nKAVXzUu4Bh8PUCtavFuhPi6pWOgnS9pkYrxzwhw7Yt66ARgGCJHfcZfizgmiqyJE5AdX15C7\ncd+oen0BAIT6D5o+Zo9K4dQ3T4QlLNBHLhzZVFEAAL5yxY+9R4zxD3b8dk9PT71lxAcAAPX1\n9WFhYQ0NDYJssENdPWxMgbp6AICQLjBjKniImcgG4H9zRH98AACZhfD5UTCzQADG9YJp/UTW\ncyMzbmAkRSSErdEy506z5aVO1uPMB2cy66+W/ppfvodlzULvVSqVKSkp1pcpKSlKpVKcGZn1\n1WmVxZVGQxvawIfJRK/m0bwCyjBO1cP3MTn7u9M20hNFtLjWqUpamiH0XUXh6JC0leKnpKR4\nenpavmHNjzubDQ7iLuFwEc3NEPqutos/ABFKG37zLM8iALB5RnU2GxyhAwkHFfiu4hwHgiCC\nwVUVBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBwIAgiGBQOBEEEg8KB\nIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBwIAgiGBQOBEEEg8KBIIhgUDgQBBEM\nCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBwIAgiGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQ\nRDAdVTjKy8tfeuml/v37+/j4qNXq6Ojo8ePHf/nll3q93noNIYQQ4nidQq9HkE5LhxSOc+fO\n9enT54cffnjttdcuX75cV1f3+++/jxw5ct68eX379s3NzW1rA93Ftm3bVCoVIUSlUqWmpraV\nGTk5OZMmTfL19W1DM1JTU9vDW2EHo9EYGhravKT92ywA2gEZNWoUABw+fNimfPny5QAwefJk\ny0uhf2A7f0O2bdvm6em5detWSmlKSoqnp2dKSor0ZjQ0NPTs2XP16tV1dXVtZUbzdtvwreBD\nq9UeOHBg6tSpzb9OKSkpGo1my5YttF3aLJT2+zuxg4eHBwCUl5fblOfn5wOAj48P/UsFbPRR\np9O99NJL0dHRKpUqJCRk8uTJJ06csJzi01OTybRixYrY2FgPD4+4uLi3337bZDKJtpw1N5lq\nclijTsS9arV648aN1pcpKSlKpVKMDZQtbSysMJSKuJdSum7dujlz5jhvhtbE5DWaTCwr4l6l\nUtn8VyfaBl5YaqqlpnqRd3N+kZRK5XfffWd96XqbpaVDCkdCQgIAPPDAAyUlJXYua92DmD17\nNgC88sordXV1q1atAoB+/frZuZ5S+tBDD8nl8q+//rqhoWHLli0qlerOO+80m80izG68urPw\nP0F5KyF/jab+1CdCbwcAm3ZF9I+0xsppGcmxv0DsL/DkiQeNjEFoDXffffe+ffuE3mXDy5cr\nZb9fgl2XYv68erq+SejtNn+40Wh0YVfRrKdXP2TPvciee5HN/5JlxT8mWtgJAM0fOQUFBWFh\nYc7Y2bZ0SOE4cOBAWFgYACgUigkTJnz55Zdarbb1Za2FwNfXFwCqqqoopQ0NDQAgl8vtXJ+S\nkgIA8+fPt5YsWrQIAD799FPBRrPmgnUBee/K8lZC3kqSt0puqrkquJJmbNiwIS4uTuhdy84+\n0esXYhGO2F/gs6urhdYQERHx4YcfJiUlKRQKmye/g/xRrYddlyz/yX6/NPhwvtAabNrNzMx0\noXCUpF5TDct/FXvEV8VplV6vz8jIuO2229auXSu+6ramQ06ODh8+/MqVK19++eWECRP2798/\nd+7ckJCQu++++7///a9Op7NzY21tLaU0MDAQAIqLiwGAYRg713/22WcAMHfuXGvJtGnTAOCH\nH34QarO5No9t0gJlAQCAAsuYKk4LrcRCY2PjG2+88cQTT3z99ddC7z1Xd8x6LCPys7XH7FzM\nSXV19UcffbR+/Xq9Xr9p06ZZs2YJnec7XtdkPWYpnKw3sLYjxRtgbddkMh06dOjxxx/XaDTC\nquCnqQjgr7U1QqCpUKBxdiGEeHp6Jicnp6enDxkyxIU1S0yHFA4A8PT0fPTRR3/88cfq6ur9\n+/c//fTTZ86cWbhwYXx8fFZWFt9dpaWl//nPf2bPnj1gwIDevXvfsJWjR48CgGVkZCExMREA\nTp06JdRguU8kUaiBWN9wogiME1oJAHz77bdxcXH79u07ceLErbfeKvT2Hp5x5K8PnaVMjFe8\n0Bqampq++OKL5ORkpVI5ZcqUb7/9dsaMGYJq6OWpsh7LCcRqlDKBi+DWdjUazWOPPTZ79uzg\n4GBhVfCj6mLVDaAUVC6r2FIh1Wq1+/fvHzVq1N69e11ZtcS0dZfHZej1ess3ePz48ZYSmz/w\nyJEjgYGBcrn88ccfT09Pv3jxos0Frd8QhULB+aYpFAoRFurOfpW/SmkZqtSkvyr4dp3u7rvv\n7tGjx2effSaidQuF+qu37YmyjFPuPzBIZ6oTWgO0HKtT4VMtDEtnnC6xDFV8/7i8p1ov1AYb\ntm3bdv/99ztZiRWjlmb/+9o45cp7LNMoviqbb1fzU/n5+b169RJfdVvTIYVDrVYDQE1NjU25\nxYNDo9FYXtoIgWUR94MPPrCW3FA4/Pz8OBsSjbmuQJ+9zVh1QcS9zz777FtvveW8DY1m/f6K\nXw9V7TGzYqZ4XbWikVnblFauqzSKtOGbb76xvpwxY4YzYtoa1kjrL1LdZcoyTtUDLVdV3LsS\nJC0dUjhuueUWAEhPT7cpt0xwBAQEWF7aCIG3tzcAVFdXW15qtdobCsfIkSMBIDMz0y1/hkDi\n4+NLS0WuobqQ9uBDYfWJKCsre/PNN5OSkoxGo8Q2OAK09ONo8/fNhXRI4Vi3bh0AzJgxw6Z8\ny5YtADB9+nTLS7lc3vyT69q1KwBYf3sbN260UQqb6yml//vf/wDghRdesJYUFRUBwJAhQ1z7\nFzmCpZ/VHkaalqclAIhbVXGhDT4+Pvfdd19BQUGb2HBDoNUiXZu/b66iQwoHwzDTp08HgHnz\n5mVlZRkMhuLi4g8//NDX1zc2NjY//9rynmUi8+jRo5aXL7zwAgA8/fTT9fX1O3bsCAsLU6lU\nzaXE5npKqdlsHj9+vMXzqrGx8dKlS1OnTg0JCbl48aLEfzKCtCs6pHBY+Pbbb++4446AgACl\nUtmtW7exY8d+/vnnev31mbZdu3bFxcVZ+xF6vf6JJ54IDAz08/ObMGFCenr68uXLPT09vb29\nOa+30NTU9Nprr/Xo0UOpVEZERMydO9cqTAjSaSG0lbc1giCIfTqqHweCIG0ICgeCIIJB4UAQ\nRDAoHAiCCAaFA0EQwaBwIAgiGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaF\nA0EQwaBwIAgiGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFA0EQwaBwIAgi\nGBQOBEEEg8KBIIhgUDgQBBEMCgeCIIJB4UAQRDAoHAiCCAaFoyORmpqqUqkIISqVKjU1tU1s\nIK2Qy+VtYonRaAwNDW1e0h7eHyutzWtOWlqaQqGQ0h4X47rE94h7SUlJ0Wg0W7ZssRx7enqm\npKS0rUm5ubmhoaGpqakSt6vVag8cODB16tTmX+Dm70nbvj+c5jXnwIEDo0eP7tC/vg5sekeE\nMTc11uWYTToR9yqVyu+++876MiUlRalUiqiHpWxhU02poU7EvTaMGTNm7dq14u7VGmleAzWx\nYu7lfPIplcrmSiH6/aGUUpayWjNbaxZ3t/0H8/nz52+99dby8vIOLRyEtvw7EfdRXbTr/N6H\nTU1VcrkmNnltRPzfBd1OCDGZTNb+bWFh4ZAhQ0pKSgRVUmVqmHRmfUZtLgA8GHzLd0mzVTKR\nA43NmzcvW7YsKytLJhM84H3lHPv2RcpSiPGCbcmyvn5EnA2EXP8CNz/mK3EIPWtaV0qzmwBA\nNsBLsSAEFC4wz0JRUdHUqVM3bNgQExMj0rz2Ac5xSASlzLk/ZpgNWgBgmaZLB/+vSZcrsAZq\nUY3GxsZDhw498sgjS5cuFWrGKzk/H6rNsxxvqTj1QVG60BosMAyzdOnSJUuWiFCNPRX031mU\npQAAuXr427H29eNhUqstqgEA7IkGZletq2qura2dPn36//73v5iYGFfV2VZ05OmZDkWTLs9s\n1FqOKVBgGV31abV3D6H1EHL96ffOO+8Ivf2YrhDg2g9VTsix+gKhNVjYvHmz0WicPXu2iHuP\n11w/ZimcrKUsBZnIh7rrYfON1mMiA5prcEm1BoNh2rRpr7/++oABA1xSYduCPQ6J8PCKlMvV\nQKxvOPH0jRNRD6VUq9Xu379/1KhRe/fuFXp7nKaL7C8bGArxniEibACADz/8cNGiRSqVSsS9\nvbyvH8sJxHq1I9UAABKihL/soSyQMDF/Y2tmz549Z86c8ePHu6S2NqcDj7I6HKWXv76YPo9l\nTQCkx4Bl0QPfEHS7zZC4oKBg7Nixly5dElRJblP1qOMfFBi0ADDIN2pP/4U+cg9BNQDAlStX\nbrnllpKSEh8fH6H3AgBL4ZGj7KYCCgC+CvhxuGxMcDua46DVZvM7JbTSBACkm4dycThoRD5f\nbczjbq6D/gDbYEK2E9OkK6jI3dagvSDiXletGugZ469VF/Zos80sI+J2SumaNWsefvhhcfda\nyaxm04rZSoNTlYCbVlUMLHNWz1zQU0bUqg+XeULPtnM6sOmdjfbjpzBx4sSvv/66TZq2Adql\nH4cVFA6kXWB5igKAzdNVYsLCwvLy8tqq9ebY/Pbayftj5SYWDpzjQBBEMLiqgiCIYFA4EAQR\nDAoHgiCCQeFAEEQwKBwIgggGhQNBEMGgcCAIIhgUDgRBBIPCgSCIYFA4EAQRDAoHgiCCQeFA\nEEQwKBwIgggGhQNBEMGgcCAIIhgUDgRBBIPCgSCIYFA4EAQRDAoHgiCCQeFAEEQwKBwIgggG\nhQNBEMGgcCAIIhgUDgRBBIPCgSCIYFA4EAQRDAoHgiCCQeFAEEQwKBwIgggGhQNBEMGgcCAI\nIhgUDgRBBIPCgSCIYFA4EAQRDAoHgiCCQeFAEEQwKBwIgggGhQNBEMGgcCAIIhgUDgRBBIPC\ngSCIYFA4EAQRTIcUjiVLllRWVra1FQjSeSGU0ra2QTAajWbPnj3Dhg1ra0MQpJPSIXscCIK0\nLSgcCIIIBoUDQRDBoHAgCCIYFA4EQQSDwoEgiGBQOBAEEYyirQ1AkHYMpXCuDHRGSAwBP3Vb\nW9OOQOFAkFawFHKrQWeCr49BXRMAgJzAwuHQJ6ytLWsvoHAgSEuaTPDufiioaVHIUPjsKLw3\nqY1sanfgHAeCtOS7E7aqYaHBJLkp7RcUDgRphpGBzEKecxTMrKTGtGNQOBCkGeU6YPi3fZbW\nS2hKuwaFA0GaEWh36QQXVv4ChQNBmmGwOxjx8ZDKjvZOG6yqlJaWfvrpp2fPnjUajYsXL05O\nTgaAjIyMlStXMgwjl8uthQgiNf52+xQsBRmRypR2jdQ9DoPB8M9//rNv375ffvnl4sWL16xZ\nk5GRkZGRsWbNmsWLF6elpVkLJTYMQQAACAE5/48CVeMvpO5x7Nq1Kykp6f777weA5OTkRYsW\nrVy5EgCsvQxrYWpqqsS2IQgAgAyA4SqXo2pcR+oeR2Zm5vjx460vk5OTU1NTGYZpPjZJTk5m\nGM6PDkHcTIMRTDzTHJSC3iitNe0XqXscubm5eXl5//3vf4uLi6FZR+OGjBkzRqfTWY67du3q\nRhORzgwhQAA4F2RZgLNlMDRKapPaJVILh06n++WXX5566qlevXodOXJkzZo1ixYtktgGBOHF\nUwlBnlCp5z6rR+fRa0gtHEaj8ZlnnomNjYWWcxw35PnnnzeZrn1s8+fPd6OJSGemtpFXNQBg\nIHZ1r9EGy7HR0dHWY8enMyZNur6/aObMma43C0EA4FQJ76kQL/BFP45rSD05KpfLjxw5Yn2Z\nkZEhl8vlcnnz9VdLocSGIQgAAPAvnYzuKaEZ7R2phaO5m4bVfYOzUGLDEAQAIDqQ91RhrYR2\ntHfaIJMbp5OoIM9RzOSGuJH5W7nLZQD/uR+U2BcGwBSQCGLLP1J5t8+/eReEektrTTsFN7kh\nSEsUPD8KBUAXT2lNab+gcCBISzyU3OXdAu1tY+lk4BuBIC0ZGMFdXqUHtuON690ECgeCtGRQ\nJHd5bRNkVUhrSvsFo5wjSEsO5/OeqjdIaIerYRj28iVgzKRHDPH0crIyFA4EaYnBzHvKSyWh\nHS6lqcn40Xu0tAQAiMZTOf8pEuGU+zwOVRCkJSOjeU912IgczKF0i2oAAG1qMv+63ckKsceB\nIC2J68J7qkeAhHa4CKPB/MdO9vjR6yWUpdWVTtaKwoEgLcnI4z3VAUMHmn74nj19okVniRBZ\nD2f33eBQBUFa8uN5y/+rDboTVVfLGptldePzDWu3GA3s2VMA0Dw2kaxnL8WE+5ysGHscCNKM\nuiaoaTSzzAuHv/7PuV9YygLAwz1H/m/kE74qDTBsB9urwlJgW7jPk9Aw5dwnQMnj5OYwHU1B\nEcSt5GkB4PXjm9ee/cmiGgCw8cqBBX9+DABQ08GWY2m97Y5eWl7G7NvtfM0oHEhzaPHFT0/v\nvPfs71O1xX+0tTFtQENTIwB8mvW75eXgwYOnT59OgW7KOVBvaqxhGtrUOsEQX3/beRlKzXt+\nY/7c62TNOFRBAADMxtrLR16ozNtmaqokRAZAKgvSBkxM9wvpSJmxzGZzeXl5U1NTY2OjVqvV\narWcx3yFADC2a9/tdy6taKyzVJiZmdmnTx8AYCnNra94qO/g89pCAFCr1RqNRq1WBwQEBAQE\nOH4cHBysdHqYIAAPD8U995l/2tbybWLM21NIaJisV4LoilE4EACASwf/r/zKRgoUAOi1Ljop\nz9nUJsJhMBgaGhpqamp0Ol1DQ0NDQ4NWq7Uc6HS6mpoay3F9fX1tba3luK6urq6urqGhobGx\nka9af39/Ly8vLy8vHx8fPz+/wMDAbt26WY4t5b6+vuEqP81BRTfvLvkNlc0jTihk8piAiNc/\nWq2t5baqtLT0ypUrVqtYlntjvkql8vLyCggIsLTo7e1tY5XVEl9fX8uxn5+fj4+Pl5eXp6eY\nvbnyUXfQ8jLmaMsMZ4Sw2ZdQOBAnoRV5abRVUgAiE/n10Gq1dp7t9o/56lQqlV26dLF5hoeG\nhjrynNdoNAKsz9j68oCpT6R/LCOEpfSrL78CgOf7TvIiymkjx0FXXweraWxsdPBPrqqqunz5\nsrWwqqrKaORN4NL6z7T/twf6+0dnZ9lOSVBKS4oEvCetQOFAAIAolD5Gs77Foh1RhPWcJaiW\ngoKChQsX7tu3r66uju8ajUZj80SNiIiwPFG9vLz8/f29vb0tx60fyx4eksQKju0yn45nKf33\nyZQCXWWQ2ueZPhMW33I/AIXcaseFQ6PRaDSagICAiAie7bY8mM1ma2dKp9NxdqwaGhpqa2st\np4qLi5v3zmxqGxIelj57WutW2OwsWldLfP0E2WYFhQOBJl2+UhNibCxtXujl38c7qL+gekpK\nSrZv375w4cJ+/frxdcVlsnY/H79gGLzw04LEOxck3tlgNngpmqlViBThvxQKhaXLIO52m2Gd\nR3EhnD3GcR2ltEaLwoE4xIX8b7MKNsmIvG/032PCJ1oKT++arNeetbmyvvoUpSwhgn/nc+bM\nGTp0qAtsbSt8PODRQfBVJlBooRrDukEvfm/0doON6DA7d5htP9trEC/xOojC0Yk4l/fVr0fn\nEiIDCldK0iYM+S4iKNmDKBuqT3Fdzuprs7z8kxyvX9GYP6g7ELaDOTtwMLw7RAfA8SJgKHT3\nB4ZCiDdEinw4tyUsa97zO99JohYy9dMSFI5ORFb+94TIri2aUPLTkUcAICZ4bAABzpDV9RWH\nHBQORldc9cvcLrm7UhYCe+RBU8/flcF9XWm69IT7wkRHpzPaLbS4EHjWdwCAmk2i9960+wEn\n4kJajDuuSUV5yW6+QPfludu4T7REfyml+JMeTbm7rjVirKze9Q8nrERcBjXzxxbxUBEf8cqI\nwtGJ6Nvjb62nLexs+CTcWdttoNqd8ylzPRszoayp8oxoIxEXIouMAiV38CHF+IngxEQ1Ckcn\nIi5y2pQR20P8BzYvNPMLR4+B/7phnYy+gmmsAoD8avjnNpizHp7bCEfKuzltLOIKFErCPVQh\nzP4/wCh+NgrnODoXEUEjfDSRZdpMa0mAiQBXzyJh1Jc+QQNbl9sg9wwBmfxCETP5P2BmgBCg\nFFKOn/lf1MdPPPGEK01HRGAyUoZztEJpXS1bkCfrGSeuYuxxdC5+OTr7cnGLmQt/L46YLjKZ\nR1P9VU5BaQ1RaN7cDmYGWAoTJk567fV/+fj4PPfcc3bcQBGJkCuAf0GdqMQ71KFwdCJM5oar\npb/YFOYYLxNiG2OCZQ25J/5Vmv3VDevU6XT6oHEn8q+lHPn111/PnTtXX1/f2Nj41VdfVVRg\nPoE2RSYDNbc6yLpHk65RoivGoUonoqL2VOt4u40y8O7/bP2JNTb9C0LklQU/hfWa27ywuLg4\nKyvr4sWLFy5csBzk5+d7eQD5q9Z77rnnjz+u7cdfsGDBggULAgMDExISEhMT4+PjExMTExIS\noqOj5fIOFQ6nQ2PgmMiQhYQp/77QmclRFI7OwoX87345Opszx3hE9wcun/kfY7bZ5kCrtKZP\nPvkkJyfn3Llz58+fLywstGy+8vT0TExMTEpKGjt2bExMTFJS0jvvvPPtt99QCmlpaQAgI9A1\nLHD3vkN5eXmWe3NycrZv315eXm6pOjw8vHfv3pZ7e/fu3bt37/DwcHe/A50Ro4HTj4MtL2VO\nn5QPEu/gi9nqOwvrf4mpa8i1boElMgVlzYSQIXGLb+v79rHtyXXlh5pfzzAw73XIKwEvL6/4\n+Hhrf8FybLPfrLq6euStt1y4XGh56ecp2/HzbyNHj2t+Dcuyubm5WVlZFy5csPZZKiuvhdvu\n1q1bfHx8QkLCP/7xj4QE8du9keZQbbXx7dc5T8l6xSvnLRRdMwpHZ2FdqrepVQCrIL/eM+84\nUnzmvZxjy2xOmVkf2n1LfHx8t27dCLmxh6HZbE75+r1jf/7ULSrykSdXBgQ7tCW0srIyKysr\nKyvr5MmTO3bsKCgooJTGx8e/++679957r4N/WodBz4JGJmlyFkoNrywChml9BoUDcYi0jCmX\ni9Io2HZchyW+whz/gDHaBqckRD7mbyZpchBRSidOnPjLL9cmbi07aPfu3XvbbbdJ0LoE0ItN\n5k/KaY0ZvOWKx4Jl/cWE5BHVMDW89AznGcWYcfJ7JouuGFdVOgvjB37aK3KKXG47x55b+hs1\n6Vtfr1R3kSxz2dmzZy2qMXHixAULFrAsSwhZtWqVNK27HYaaPyildWYAgAbG/Ek5NPDuH3Et\nVFfPd4r0iHGmZpwc7SxoPLpMGraluu7CFztb7FtTKLw0/nEN2nPNCwkhsbeudrJFlmVLS0u1\nPDSPglVcXGy5ZcyYMVevXlUoFGazefv27REREQEOEBQUJFGMHxEYqenfRVT/l1JQAAPL5htk\nieJ3pjoO8fEFpQJMXD5gjRxPC8dB4egsmBh9xvl/XS35yaZ8UOyzRtjaoFyY9TEAACAASURB\nVD1vXY5VacL737PLK6A3Zz2WaKBarbb5vzYvrf/W13M88Xx8fKy/+eDg4Li4uKampg0bNgBA\nfn6+n5+fXC5nGKZ79+4TJkywVF5RUZGdnW05NplMNhUqFAp/f/+AgADLv9YDy79dvMOCaTcf\n2sUzTBHQyyMw0lfKxWDzD1W0wDYOIAmS7neneOhR8zeftS5nsy/KBopfVUHh6CzsOfn0mau2\nX6Bgv34aGFxjzmzmxEFK66LeXfuDVvsJZzehdc0eHh6BgYFWLejevXv//v35egec4T+NRuPp\n06cvXLjwwQcfKJVKk8lEKX3zzTdnzeKOXWjtqvBRWFhoOQiRdf9i+m4PhQYAzKeh4jfIM+n+\n/cczv2RvcKQvY5E2Z+KSs3+2kk4CJEC63x3fFljm5An5XfcSf5FxxlA4OgsXC36wKTEaZIsf\nzSsriZLLYOk8uGMoAEBpJf3+5yO7Dh3x9Lr+6E5KSrL5OVmf7RacDAioUqm2bt06e/bso0eP\nGo1GtVr9yiuv8KkG/BXO05FYntnvMKaqZrYR8FR5v3X3Z4Pu6HOx+qRFXHJycuzLor+/v1qt\n9vLyWrdu3R133OHIGtM1qk1gbLX4QIFWmEgE96ZVl8PypVBhzTQ3h/QfJK5aXFXpLHy0PVRv\nKG9eQll59ckX/fz+kgCPS4qqNyhrBACNb6/B92cqlJJGsqGU5ufn19bWxsTEeHu7JrrnhcXc\n32/vBOj2N9vff1NTU+vOS2Vl5ZYtWy5cuGC5ZujQoZs2berRo4cjrbP7681fcTndK4niyTBZ\nH/dPczQ2Gt5YyhfLR/n3J2WxIje5YY+jszAg9qkD515tXkJk7LynRsSEX3OXOL5jRC29Nn3Q\nWJddkvVpVN/nnWw08wScOQ8UoE8iDL3RVltCSPfu3Z1ssTn1Z3h36Zm5VhvUanV4eLiND+uy\nZcusqgEAmZmZM2fOPHDggEMWMDztmynzfaXs3+K3ijgIW1HGHwGMyLpHi64Zl2M7C8MSl/l7\n2azA0e2HppuZaxmM6iqONY8gqK+75GSLZ87D3gNQrYXqGth/EM6cd7I+wVT9ydub9nRYoL77\n7jvLgYeHx6JFi1iWPXjwYEFBgSP3kn6e3CvaFGilybG9x05BgoL5zwE4PuZqxQ16HEVFRa+9\n9tqOHTu0Wm1iYuKLL744c+ZMWwNIhxzvdEI81aE1DTnNS8xM455Tz44f+LGxsZS2DDKs9Ah0\nsrkrudfCcwAFQiA7B/oKiHzsAgz8W3P9BnP/ZhiGycrKsmyuseyyyc3NtZyaPHlyVVWV5XjU\nqFFDhgyx7rVJSEjw8vJqXRst51cHKolnXa2W75QsNg4U4gcc9u68cuXK8OHDrRuTTp06NWvW\nrOzs7Ndff110e0hzLuvO/1y6WQaySRGPdPeMdXdzIX4DiqsybArPXF1/a/xSL4/g63GMAQAg\nMHKCk815NJ/+o1BXDwZjy0I3Q3nToYGxDDSRYDQar1y50nzvzMWLFy3ZpORyeXR0dGJiYmFh\nYXl5OaW0rq5u+PDhP/zwQ2Nj48CBAy9durR9+3bLfKpKperVq5dlI09SUpJl0423tze9xB+R\nhKVUayaB7p0roBd4u3lsfi7V1RNvH3E127N72bJlarU6JSVl9OjRAPDzzz+/+OKL//rXv3r3\n7j1tGkduKEQQp2uPzjg8wsyaAOB/V1ekJmf28uZ2nXAJJdWHz+d/3bqcUra4+lBC1ENhsY+W\nZH9hKfQPG+l81tgB/SDr0rVhPgWorIKtafDwA850kIUhUwDLox1rV/73/V3LtNprD2TLbt3k\n5OR58+ZZ+hHWJZsdO3ZMnjxZJpP99ttvO3fupJS+8MIL7777ruWsVqu1bv89d+7cxo0bc3Nz\nLYljAwICFg2ZvzhyPrcFBIiP291JSFgY7zmDgRbkkcQ+4mq2Jxy7d+9OSUkZOXKk5eWsWbOG\nDh06dOjQ+fPnDxs2LCrK7VM7NzcvnXnMohoAYGKNX+a+v7zPp+5rbtex+SYzt7Ogn1cPXfXp\nspwN1hKWUiJz9msdFgL3TYCUHddLikuhWgtBzo6BHMWnN9Ee5R4qZOmOPvTQQ9b9vt268QZJ\nvffee7dt27Z8+fJLly6FhobOmzfvmWeu7/4ICAgYOXKk9TcCAFVVVdYdwKYc3iE8SdSA0u0K\nKrOrC7TRPTFHa2pqBg1qscwbFxf36aefTp8+fd68eb/++quABW2kJQeqdmXrrnt5s5Qt0F91\nZ4O0qv5C6x1uANCnx9zwwGEXDyxgmetfo7qyA9kHn+w1/EMnW/Vt1RGWcjYs/EGoOQ609dZQ\nAt//9IXj9UyePHnyZEf3gwUFBY0YMWLEiBEAwKRpmR85ZhkIAJgkeSNkMuLjS+u5U/kST/Hr\nwfZWVUJCQvbu3WtTOG3atJkzZ+7cuXP58uWiW0U2F663KTlRe7DCUMp5sSsgXXz7Nk+MoFaG\nD4x9+qHb/7xr8BcAYDbW2EQAqyjYYVuHcIICITQECLm2thDSRbruBgCwJi7VAAACphopDODz\nEKUAUGrrOO8u+FOrEE+OCV0HsSccEyZMeOSRR9auXXvp0qXGxkZr+YcffhgbG/vqq6/OmTOn\n+RI34jjyVn29JqbxUPUf7mtx/KD/qVVBAGA2QWkBFBaUZF5ct2X/uJNX/gsAXaJsg1+4xPtr\n3wEorwBKwUMN/XrDg/dJN8EBANV8zhYsVO6RwgDZMG9Qcf/ESC+1FBYAUK5gHH8ZIb5ae8Lx\n5ptv+vn5Pfvss/Hx8Z6e1yMI+Pn5/fbbb3Fxcd98801SkrQrbDcLD0b+rXWhp9yNydDDAobE\nR04/fQjefAJWLYK3n4LVL0BedtPuE0+WVB8KjZ0VEt1iwjt64BtOtnjpCmSevDY2MRiAUnCi\naywGPf8UQ90pSUYKSsLnAya7W6pMtP7+vKecSDptTzhCQ0OPHz/+yiuv9O3b18enxWg1Jibm\nxIkT69atu+2223x9O3yKTekZHjR2WeL7arkG/tL9GK+EEUHj3dronv1p374Pet21l+XFsH4F\nNNTT/LLdAND7js3979kd2HVcYORdAybsDe4xxcnmCouvH1MKl644WZ9g7GS/pvypEV2JiV6L\n/t4K0kX8xjkBUEp4+hXE158EBomuuEP6bt00e1VYyqYWf3W69mgXVeic7k/5Kd04AVBSffjB\nR4Zl7ARKYfr06SaTKTU1FQAefgpeXvRZnx4cPSAn+X0fnGyZCjKyK9x1OwTwPwJdS+mPlG+0\n4hFIer4khQ3G/7vaep8bUcuUH/aQoHVaXGhcu5LzFFF5qN58V3TNuFelLZER2QNdH3ug62Mu\nqa24uFir1ZaUlHAe9BpQWV0OQAAoaDSabt26WeLlVJbA8P4Lg4OWh4eHBwQERERE2BxERUWJ\n61T6tVpSKSyCrzbAvDngLX5WTgBExZ2kDgAUIVIYQHMNHLtjAaiBhQYWvNy+4YNyxUO5hsKp\n5XYUDm5MlHknb/emipN+cs3L3cdNCEpsa4vAYDBUVFSUlpaWlZWVl5eXlJSUl5dXVFQUFxdX\nVFRYjptfL5PJgoODg4ODQ0NDExISImONGcd+uHgSAKChoSEyMlIul5vN5rAo5aOz55WVlZWV\nlV25cuXgwYPV1dXN65HL5SEhIcHBweHh4SEhISEhIc0PgoODQ0JCOEPjnOaaNzczkJ0DA/q6\n8I3hxVDK25t22p/eIWgVz4iIgnl1seKfke42gPjx9u5IL6e+0igc3LyRu/Ot3J0AIAMy6cz6\nAwOfHubryo2bNlii7PF1FrRabXV1taFZZh2ZTBYaGmrpF0RFRfXr1691T6F1yJw1Xw/K2HXc\nbIKtW7cqFAqz2RQaCfdMvO3hsf+xubKxsbG1DZbjY8eOWQ6aX69Wq1v1VnqY5Au4/1j+aX4X\nw+9y7ic+9pUASDRvQEM23wgsBZl7F5lIaBhRa2hTY+tTihFOBYJG4eBmU+kJywELFChdlL3t\nhW6339+lr8wNy4n5+fnx8fE2UWT8/f1DQ0NDQkISExPDwsIsD3bLE97y8LeZrnaEmZM+zntt\n6Pavad4lSsHUbxhM/3vwuMHvtb5So9HExMTExPDGs62srLT0cUpLS60HZWVlFRUV58+fLysr\n0+sb31k7n7RKXCoj0IsjWa1bsLMQWbWHRs50+8owCVTI+nuxJ22zUgAAUAAzgLt37hBCwsJp\nbk7rM2xZqby7+HjFKBzc6FrOyGfU5T5w9ouHQwd+nzTb5W2VlpY2NTW9+uqrw4YNCwkJsciE\nO6LvhgYMnvPg6piEpU1NhiDfuFG3vBUTPkkhF+NQ0KVLly5duti5QK/Xf/YdtUk/6KGCMSM4\n3EndhMoXOB61AADQcFEiG2gFj6OXioDK7cpFK8tZLtUAAGbfbvnQ4aJrbkvhOHLkyL///e9t\n27YBQEZGxsqVKxmGkcvlixcvTk52doeVk3RTB5QYbR11N5Qdf7XHnYmeoe5o8d577x061O0d\n6EG9nhsQ+5SZaVQp3Pvz9fT0HJUMu/a2KDQY4bc9oNND8hC3Nn4NdTdSe5pnNVSaQDQGlhZz\nj5eIpxQBk9niQr5TtKoSDAYQ+3xy6P2zvydF3I6VrKysbdu2WfYRZmRkrFmzZvHixWlpaYsX\nL16zZk1Ghu3ub4mZGJTE6VhXauCfphZLjbFaEQwsSDT0lxGFu1XDQg+ejWMHj4CRf/bBhZir\neU95dJXEg9VDBnwC4f4dbgAg6x7D6x4ql4MTQZidFd7MzEwRweYLCgrWr1+/ZMkSy8uVK1cu\nWrTI0stITk5etGjRypXci8+SsShqzCj/FoHVZCALVHgO8nHlTPipU6eiB0XdNfoecyWMmzlm\n0+5vXVh5m1PNsx+EUmhwKqeHozSV866qmGskcl+ST+D2ECVBUvQ4iJ+/fOw9nNohHznGmWz1\n9u4kf9H82IYhQ4bExgqLQFNVVbV27doXXnjBz+/ae8owTPOxSXJyMmNnXksSvOSqH/rM/SDu\ngeH+0Zauh4yQVbH3+SpctsWgqqrq9vFjck8WAgtAoSHHOOu+ufn5+a6qv83pEsg9IiDEmdBT\nAjDy72Qz2Wa8dBfMz9wtSRblXDH2Lu7N9Ubxe+rByTkOuVweFxe3bt06x2/R6/XvvPPOP/7x\njzA7IUa4eP31163rDoGBbl+F/7nqwvSzXzY0iwNDgX2/YN9j4S6bhnht/UvaihoAePDBByMj\nI9etW2duYD7/4vPXX3vdVU20LT7ecOtAOJRpW04p5OZLEUbQTkQRifylK83QwPEIJL4y2T0S\n+c+aUzez58+2LmdOHFPcJz4clz3hsHqjuyqqqMlkevvttx955BE763x87N27V6e7tsuCM6mP\na5l/cXMjbTEfzlB6obGUpVToiqxOp8vLy7N4Q1z/t6T4rP9BywWHDh2aMWOGXC5ngV35zsod\n23fExMSEh4db3CIs/4p232xDDAY4y7N32rk0LI7iN5CU/8L9vVW7ZYLbFoZzIRaA9PVyd9DA\na1DKHD/CfUru1GfgkPWu2s+yZs2aO+64o3///iLuHTNmjLXH8c0337jEHj6aWHOxoZa29FYm\nQJI0YXyqUVNTU1xcXFRUVFJSUlhYWFpaavm3oKCgrKysedbCoKCg8PDw8IRgVci1+pcsWXLo\n0CFCCLDQ85bosKCwS5cu7du3zxrtFQDkcnloaGhkZGRYWFhUVFRoaGhUVFRYWFhkZGR4eHhQ\nkPjdSu4jOwd0nD8cAjE9pDDAwLukAF3GSjE3SXhmQNkD9XSsL+kuSb5bnh+vfIhTC5cOCYde\nr//Xv/6VmppaVFSk13PMazmoLAcOHDhw4MCaNWuaFzoYW6l5hOS1a9c6coto1DJFb6+wc/rS\n5n8XIfA83LJ9+3ZrryEnJ8dyYA1dacHaTejbt++dd94ZERFh7UEEBFzLuMdSdvCWkOrvqph6\neOqppwAAZCBTQ8P8iy/eu2p08D2WyywJmW1aPHToUHFxcWlpC/MCAgJsOinWdsPCwpzMtCYO\nvqWTYH/QSBKMQneF92tp4o3+7UpIX0+Qc++sp2UmKYSDEFmvBDbrnG2xXK64e5IzFTskHE8+\n+eQXXwgItcZHWlqaTcnkyZPT0tKmTJmSkZFhnR/NyMiQMi0wJ18mPjzu5Ec15usORGxt05zb\n77K+tPhxRkdHjxgxomvXrl27drUMKCzOnTesX0ZkM/o+pv33+8WrzMarAADKUAhZBMoI+t+c\nt6zCYUmx1rs3RxDj6urq4uLiwsLCkpKSgoKCkpKSoqKioqKis2fPlpWVNdcUb2/vIUOGfPXV\nVxKHiY3uDvIDwLQKV+gr1e5YO4lLzDreUy6E+Mp5HvjEjje6a5GPGddaOKjTs9MO3b9169a/\n//3vS5Ys6d69u8INE+IW3w3LiqzVp8PlrQhikE/UkcHPDji6ppExspQFQkYbuvxj0yarRjjp\n2bmjZMP63FXKnrLuH8mYWgoslfkDALCUrTKUOVJDYGBgYGBgnz4cE+Ymk8kySrKoSWZm5jff\nfFNSUiKxcAT4Q2RXyGuVuignD0xmULp/jK+JBF029ymZJGsatI7hCvMKABRqGQiWIiSHLCz8\nr/Q21yEqNTQ2ghNzhQ59emaz+b333uNMOeMSrL4b7cdzFAB6aULSBz71/PFNe04eXjjonvem\nzVYSl/WDUoq+suYxkfvJKKUEiGVWZXSwswlNlEplVFSUVSaOHDni7lkhPprH8rFCWSgphW5u\n3xoK3klEl83d66g/R7vc4f69KgEK4iujdRziweYa5LFSDNjMu35p3euhulrTN+uV858SXa1D\nwjFkyJCTJ09aAje7FuvgJTk52RJXpl0xwLvr2+qRtz7z/JzDz7tQNQCAALHGiiAAA/yHFzfl\nG5jGsaH3vRC3woUNtSEMwzFOsVBQJIVw+PWH0h95zvElVHUtBGSTA5lvKzlOSRVAiz1+lKt1\nYK9k0/o64iNyqc6hObM333xz+vTpn3zySXl5Ocubw/bmRC6Xjx492uVzLg9G/o39K20aS+m8\n6BfTxxQcGVu5os9nGrmLe3Zl1DNy2aa3tNE/8cencAeNTbyzDG7YwcdBDc9CJAB4hEsUNFnW\nlXtQREKkSmln5g+n7ibPUSujRo0qLi5+4oknQkND5XJ5a/9R0c23f0rM9fvuDri9fnPi4RU/\nVbksb3IXVXNHAvpF7hreS8VS2Agj9zKKVGZyYWJh/wd2NATee4D9mD9+r8tp5M9/6CeJS4o2\nk/ePVUmVpYFEe5DQlnMZBIiPXCZZlHOeoKdACHFTsGIEAJYZDsLQ7vXUeElfOfXs51caubqd\nwvns6urmLzNr/px+aPhbF56tMVW5pH6GwpA/2ANV1wcLlAIhsI5/hdLlZBzlTYYgTeBiOxGJ\nPaWKCQJKonw5Qn6XH4lTk+4qEqqU9fdSLA4HTyl+elSrBYYvChkFJ0YPkjqAdTj0jPE0W2H5\n+rPAGlnYV3Olp8ZeHAoHaWBa7LKllJ6sOXSy5tCp2kObh2XwRaZ2nIv1UNrUakqMwvk6+o8T\n7H8HSPGt1TXwroeqJemn+/UnlXu4TCDgGc1R7C685fLpkuxpawUtsrv1qakRxOZkusl7HEbK\nnm2o3VFV8vSVk8/nnD6v586Fx4dGrlS31NYQlWtSn4wLvc+mhAKlQE/WHM7Xu+Bx7MH/Pf0o\nh54S9jaIJCiAe46DEEhKkMKAkHtAwbU3VR0hRevtARJo7yHHFojfUemocDAMs379+rvuuiss\nLEz51zb+W2+99fLly6Lbdh8Mpe8XZfc/tkudntr32K5J5w78p+jymsJL/Y/9fkGIdlxurOxC\nrq91D/PrcVega77yM7v9445gbtc9BXGBh0NPL3udlk15Usxwy3n+juTBEC7JVhEA6LWE2MiE\nTAUR027mWbnm0Aa7jm7UzUMVs9k8YcKEXbt22ZQfOXJk5MiRR48ebW+Z69/Iv/BGHsdEpomy\nL+Sc+amPQ+vKRpa5++THRSXFUFJDArzU0WGpvf/mqkVZBVF+PCittKlQZ65/8fSjZ+uOykDO\nApMcNLarpodLmpATMPMMFXpIk52AtvY8AgBw/97mZjYoIOYZor8KDVeAmkETDV49QSZJLqT2\nAC3jzUZM/PxlPcTP9DjU41i9evX+/fsXLVqUkZFRU3M9yEFRUdGIESP++c9/im7eTXxUzNvb\nP9ng0C6FcqMu8cBbOcs3sY98Bou20se+bnxuw+7cU+LsqTOzP1c2HKy1nXUIU0cGqYIJUABg\ngenl3fuDAT+Ia6I1PLkHAQBGBUsxRO3Vk9tZwSRNFjUrBDxjIHg8hNwDPgmdSDUAgETzbkOX\nJfUDtfiVHYd6HJ9//vl33333wAMP2JRHRESsWLHi9ttvF928m6gy84amM9vZwNCM5Xm7cj76\nCX5qFsjgVOG6/3t55h/7HTfjhzLde/naciOT02Sy/ISiNcrzw7qr5de7ymuyXzlbd8xynK07\nl1L41dwezzrehB0UBEw8f+vhaprg4/buOl8EMJNUedoRWRfexFPsyWNw/4Pia3bkotzc3AkT\nuP2go6KiKitds0LpQuysAnVTevKea8YlfTnsvBZMYvbs2Y8//jiw9Mie9OZb3e3zcnbl9DMl\nGbVNVxpNVnuuNprmnm+xFeVs3THr/n0ZkVlFxHlu7cIrDQ18YxiXUsczmxQgVbplBDw8+LoV\ntLGB1ojfI+xQjyMqKiolJWXmzJmtT/34449du3YV3bzb4P9h8PyaGIbJyso6f/78uXPnzp8/\nf7IXA9prwSR27Njx6quvWo6HDRs2ePDgmJiYpKSk3r17JyYmenpyKJGBpSvyuT+Vn6paxCXo\n4Rl3vu4kSxkAYCkb4xV/w7/NQUZ3gT8ruE8NCpBidjAyAo4cty2Uy6FruASNI9cghPD9GGh+\nLvEPEFetQ8Lx+OOPz507Nz09/dFHH01ISACA2tray5cvb9y48YMPPli6dKm4tt2Hp1zRwOP3\nUm02AoDRaMzOzs7Kyrp48eKFCxcsB/X19QCgUCiio6MHskm7ugaaCquB0ocfflir1apUKrPZ\nPHDgwEuXLqWlpVnyqnl4ePTq1SshISE+Pj4pKSk+Pj4+Pt7b2/u9fC2fdunMDG0mX8/HLT+m\n/bOkqQAA+vgOfrT7M656E/icRL0UpL+fFMIRzZX6LtAfSsul2KiCWKB2vLycCHDgUExAs9k8\na9asTZs2tT519913//jjjyqVVI73AOBAtvpBJ3Yfr+d+4Ptn55EXl1tD71jylVm6D5aDiIhr\ny3cpKSkPPPCATCaTyWRyudxgMLzyyitvvfWW5axWq7X0TXJyciwHubm5lo08AQEB5ne+rI/m\nzc2Zldw93uv6O9bI6DO16SqZx+CA2+QuWrWhAPKtvNOjB8bIhgdJoR3vfWSbTo0QIAQengrh\nwmLOIiIxvvUKX+pp1VMvkEieHBY3wqEeh0Kh2Lhx44wZMz777LOjR49WV1d7eXn17dt39uzZ\n8+bNa5PoUvaZGBDKJxyJvx0c8PDDiYmJlm6CnYXkqVOnbt26dfny5WfOnImKinryyScXLlxo\nPRsQEDBy5MiRI0daS6qqqqydl+9MTbz5VwhEa1rM7Gvknrd1uYvvcnHwpmkHAIAmSTYq5hVw\nJGGkFCiFrGwUDokgkd3pBY5gxQAg2m0UBEU5nzJlypQpU0S3JCV/1vKm4rl31Vsvd3MoT/dP\nVeefDTtTtHp0P6+Hv0x85BbvG/gbBgUFWaVkRn3TkMOtItgAAMAt3mqVm1MNA0Auf+ISlQyG\nBUrR3bhylfdU+3vW3LSQiK7AKRxqDQkUH6r25vwAD9TxLvSc1zuUiq3EWDft7JdFxlqW0tO6\nkvtOf0YdW8e1kFbBHd4aAIIUUvxo8xp4rVXyZxdzLXwjJbkMklw2BYzYhWGYfbu5TzXxb152\nAIeEQ6/XL1myJC4uzsvLizMtkzMWuAMTvy/t7f43DggKAJl1BY2siaUW1yw2z1Cd1yRg7erX\nSl7hOFjr1AfmIKEaO2uxcMH1eSw56MOjDiOHQbAL9gkiN4bW14GZe5WACHkQtkbSYMWSYQ3D\n15ohPg45PEd4tIgYISeyUJWAfKtK/qTGTSwtNzIhKvc+9CPsRso5XE0T3e8A9sef3OUXsmHI\nQHc3jgAAEP5VCwp/hVoQhUM9Dkuw4suXL5tMJsqFuLbdh5p/DP1tWZ4jNSR4hqpk11VVLXDj\n2dNRvPIkBxLsZtUAAF8lhPL7E0szx1HKs0/CTkgqxLVQLX/ebSDOxONwSDgswYp79uzpjhDn\n7sDMr2XfVji0lfhcQ6mRvd7Ha2CNZ3QljhtwbzBv/GgvhURDu32j5JwNEYAu0sT45invJVkQ\nnU4PCeIfmMsIOBEQ0yHhsAQrFt2G9NgRUr3ZoXTW4R62we0iWpXYYell3kBedQwricM3zM3k\nDhpHAX6WJPgo59pRdHcY7rL0u8gNoDX8PQ6WpbX8WblvxM0ZrNjOemeA0qGnbZSH/zORo6wv\nn4saHekhwM3uUC3/cigFPV/wb9dxvh4OVfOqg3NpQx0lgOsNSx7szHMOEQbly6ZnOVvmUAYf\nThwaeowaNQoAnnjiiSeeeILbgnY2zaGQyTh8jwAAwMtOCvOWvN9ryv3BfU/UFw3w6TrGP1aQ\nAX29PY7WGfjOarjHEK7kks7eJ3JniBSjpR7doKrlStSAvhCBG1UkRBbRlfj58/YsnEiK1THm\nLITSxLMEBQC5TY18p1ozxj9WqGRY6Kq298bqzDSAJx2xq0jytld/rQmC3Z+goL5l9Cmlwjx2\n9M35fWu/KJTEx5fW1nLOOBEnpiwd6rNyrqS051UVO9MYTawUc/o/VfAPVQB8FG4fKsT5AN9K\nm4JArGsCp94AmzRuQf7iR9SISBiGLSrgm6e2u+ZyA25Oz1El/8IF63QAcUcosxvlys6ij6vI\n0/NGJeHLs+FybNrx9LQnpohbkMvtTCmRMPFRmx0VDoPBsHLlyiFD6O/A9QAAG3BJREFUhvj6\n+qpUqtDQ0HHjxn366adm/kFBG+Kv4J0BlfFGJ3AlIfyjRxkBtfv3qtjxa2cB/uCJ0+Faerf0\nHDUYJd1CjQAAUMqbhhOAN+WKAzgkHA0NDaNHj16yZElmZmZ9fb3JZCovL9+9e/f8+fNvu+22\nep5Nu22IgeUdrMgl6WTFe/P+SNw/MQoA0FUD/fiDbhyolGJpbNRwUDebSSkqDftiA2zdbjtj\nirgRQog3/7hUKT7+qqPLsceOHVuwYMHBgwdra2sNBkNJScnOnTsXLVp05syZN954Q3TzbsJg\nJ+67JL/bSgOvlsdKk4wIYAz/fpDb+KMKuhCjCZparixVVcHVPPjye6iplaB9BACAdOWJuKFW\n23MPuxEOCceGDRu+//77jz76KDk52TJUCQsLGz9+/OrVqzdv3rx161bRzbsJFf9WEUaSIb6S\n/30dE8DrVOpaQjx41cFHkh26ag/w9OQQakrhIH86aMSF0Mpy9uI57nNNTW53ACspKbn33ns5\nT91+++1FRUWim3cTAXLepzrj3KZAB9Hz5ybYpRWwHuwMKy7xdru6ORSw2QXcdTsouLrDeone\ng84OLS2xE7mbFnGHjHEEh4QjIiLi999/5zy1d+/eoCDx4UDcRFcnEka4BA/+XXZaqdKKNPC3\no5JqMa1nNPzfY+DtZRtkoLckKSARanftwu2BfGbMmPHQQw+9+OKL6enpZWVlJpOpuro6MzNz\n2bJl06dPnzp1qujm3cTfwrji5EpIkidvl0ctib+3nWxMAPBziURLsroG+Hoj6BpahKjz9obE\nOGnaR+yMSQkJFp+J0yHXsVdffTU9PX3VqlWrVq2yOTVgwABr/N72w9elvFtg4zRSOD9V8S90\nqSSZnZUTUPInZKqyt4PBZega4JOvofUClxL3qkiFrHsP/pOUNjQQP5FJbhx6+nl7e+/bt++D\nDz4YPXp0YGCgXC739vYeOnToqlWrMjIy/P3FB1l3EycbeGftPSTZYlXQyCsc0gQKBgA//rU2\nPkFxLX+kc6gGANTUORMIAhEACQgkXjxPSplctGqA43tVlErlwoULm4f5bs808ftx5Ojt5u92\nEXYmR9vcQ58APNBVim5PNY+/htoDgxVLh6z/QOYAR95SEsKbHdKhap25ud3iwZ+dRJqZyYsN\nvIOBLiqJNno9GMmtDv38iDSrKnzeswbebcOIG+AJSkxLS/jCkTqCo8Kh1+tXrFgxePBgHx8f\nix/HnXfe+fHHHxvtbvhvK5K8eIPuhKmkWXDhfaQX8fuGuZZ3+8rmducw4wEeQXE5NTy5Y1kK\np3gSfSAuxmhgjh/lO0lLivlO3RCHhKO8vHzw4MEvv/zysWPHdDqdyWQqKyvbtWvXggULbrvt\nttraducGGOXB+0h9OESK7IMj/HnlqcbENEnihOatgC8Gy6ZEtJCJEA/ybKxEwtHI76yRXyiN\nCZ0d9uoVexnYG8QP2x0Sjueeey4vL++f//xnZmZmXV2d2WzWarUHDx58+umnjx8//tprr4lu\n3k38VM0tpYSQV7slSWDAAF/ecBcUQOf+CGBWNg+TrblFluhDunvC0ngonijzaQcxMRyL34g4\njd2IGyS2l/iKHblo+/btGzdunDRpkrXE398/OTk5OTl56NChS5cuff/990Vb4A6MPCo7zj/E\n0+EIYM5QaOCN+iEj0EXCBUkFgediyXNS9TIcpCvmf5QEWWR33nSgKg9ur14Ha3bkIkrp2LFj\nOU9NmTKlokKSTdpCGOzNsUIsJ2RFdB9pDAjll4Yg90fxaf9o2tizt7NAjQbeaPOeTs2QO/Ql\nvvXWW9PT0zlP7d+/PyGh3fkP/9LntoHe/pYUc3JCwlTq0X5dfuw9fJB3gDQGPN6V17el0swa\nJIul014pFh8lFxEA8fHlm6eXObdK4NBQ5e2337777ruXLFlyxx13xMTE+Pj4GI3GvLy87du3\nv/XWWx999JEzFrgDP4Xy2MBxbWhAD7VCTrj9vinlzhtwk2F/zTVQIgHv7NAynqRYAGxttTOZ\n3BwSjiFDhgDA4sWLOc/OmjVr1qxZ1pdt7uDUHiAE5IQwXG9FoEJmJ7LhTUOj3Qy53bpKZUfn\nhhbzBhwFg4HW1hB/kRKO4223oCTk0XAOXxIZQEp/8YEeOxC+djPt8rl4IC7Gx14WMaIRHxrG\noR4HdiJE8GFCcJKX6tcqPQUY5ONRZWK6qRV/i/AN92gHy6Hux75TeV4exItJO4EIxGQvpj+t\nqiIRIvt+neJL3CYoCXm2m/+z3drdDsD2QG27C1N7k+Jlt+PHn8v+hjg0VDEYDMuWLevVq5da\nrSZciG4euVmxH67IuQ1WiKPIorrJuvXgPieXkSD+sLQ3wqEex+LFi9etWye6DaQTYj+7YPsL\njH+TYjazpTxe1DKF6CUVcDxY8dKlS7VabUfJ5Ia0czBDgjSwJUXAtw01zKksvg71OGpqal5+\n+WVvOwkaEKQVhPBusKrFVRVJsLNuQkxNzvhxONTj6NGjx6lTp8Q1gHRasCfa5pDgUL4UkGxp\nGa0Uv1nEIeGYPXv27Nmzf/7557o6fFIgLsC+lwfiQmR2EsQ6EUzHIeGYOHHi1atXJ06c6Ofn\nh6sqiPP07NHWFnQaKH9yMmoUH4vNIeF49tlnRTdgw6FDh6ZMmTJ58uQpU6ZkZGRYyzMyMjjL\nkQ6KfZdznByVDv5dQyREfHoEh4Tj+PHjL730Unl5OcMwzqyqHD58ePXq1YsXL05LS1u8ePGa\nNWssGpGRkbFmzZrW5UjHRc0byQgAoA6XYyWDL48PAeLpxX3KARzdq/LSSy8FBwfLnItO/e67\n7z799NPJyckAkJycvGjRopUrVwLAypUrFy1a1Loc6bjYH7/a9YRGXIreNo3eNWRyt/tx3Hrr\nrQcPHhTdhhWj0ThixAjry+TkZIZhAIBhGItq2JQjHRf7nqP23cMQV8KTw4Y44W8ODvpxvPba\na9OnT3/nnXfGjx8fEhKisBvI0A5paWnNX6anp3ft6ugem+3bt5v+ek55eYnvYiHSYF8apIr0\njoBswGAmfW/rzfVU7pR4O3Tz6NGjAWDu3Ll8Fwh1HjUajSkpKdu2bXvjjTccvGX16tU63bWg\nzO0wdxwiCB3OcUiF4u5JoFQyf+y0PeFceps26DLu3bv366+/joiIeP/998PCMGptZwRdwySD\nzcthuTK5gcmpjEiSxuNoamp6++23CwsLH3nkkXHjhIX227t3r/VY40QAEqQ9IEkCXwSAUtNn\nHwHfjKHRKHpnvaQRwL799tukpKT169fbqIZcLrfx6ZDjN+umxluSHJQIm5vDqxoKhdvjcQCA\nwWBYuXLlkCFDfH19VSpVaGjouHHjPv30U7OQ9JPHjh278847W5dz+nQ4Xi3SDrHvqYFdRong\n/3nKx93jTMUODVUaGhrGjh17+PBha0l5efnu3bt37979+eef79y508fHob0HFRUVc+bMsSlM\nS0uz+m4wDCOXyxcvXtx8dRbpiNh/oPjgspgkyLrwRkySxTgVu9Eh4XjzzTePHTu2YMGCOXPm\n9O7dW61WV1dXnzlz5tdff/3444/feOONd99915F6tmzZwncqOTk5NTXVUauRdo/9JXsvHKpI\nA//6Iy0uhO7Roit2SDg2bNjw/fffT5s2zVoSFhYWFhY2fvz4sWPHPvnkkw4KB9J5sL//1eDU\njD7iMHY2qoQ6FcjHoTmOkpKSe++9l/PU7bffXlRU5IwFSCekAL8y0qBWg5ozYxvhnTR1DIeE\nIyIi4vfff+c8tXfv3qCgIGcsQDohQqbUEaeQRURxljO/7XCqWkcumjFjxkMPPfTiiy+mp6eX\nlZWZTKbq6urMzMxly5ZNnz596tSpzliAdELQ9VcyaAPn+hal2mpnqnVojuPVV19NT09ftWrV\nqlWrbE4NGDDgrbfecsYC5GbFw4N3iN0vSVpTOjFE48npvunkJjeHehze3t779u374IMPRo8e\nHRgYKJfLvb29hw4dumrVqoyMDNw5gnAyZgR3uUYDSfHSmtKZCQ7mLKZKpTO1OrpXRalULly4\ncOHChc40hnQq+iaBjzfsSQeDCUKDgGWhvhG6d4Xbkm+QIBJxIbSggLu8soLq6om3yOivGBcB\ncSM9usFjM9vaiE4MraqgPAmZgGHolWxyy0BxNd9A+RmGWbFiRVSU7cRsRETE3//+95ycHHGt\nIggiAbQg395p7pVah7iBcDzyyCMvv/xyYWGhTXlJScn69etvueWWnTtb7fNHEKR9QPnHhKRL\nqKxnnOia7QnHpk2bNm/e/NBDD7XOxpSTk7N27drAwMBp06YV8AyiEARpW+SJffgCi8p69rzB\nvgC72BOOzz//fM6cORs2bOjXr5/Nqejo6KeffvrUqVM9e/ZcvXq16OYRBHEjSqWMx7WcOXLQ\nmSBg9iTn+PHje/bssXOBv7//+++/P3/+fNHNIwjiVli+KOcUaF0tCebdPmsfez2Ompqa2Ngb\n7L0dMmRIfr7dCRgEQdoOQrmjnAMALRG/ZciecPj6+lZX38AvVafTOZlsBUEQ9yHr1p33nJvy\nqtxyyy3ff/+9/fvT0tISEhJEN48giHvx68JdrlIRJ2L52BOOWbNmvf7663amOY4fP75kyZIZ\nM2aIbh5BEDdCKZvJnU1VFhBINOLjKdkTjrlz5w4cOHDcuHEzZ85MS0vLz89vamoym81lZWU7\nd+6cN2/esGHDQkND0Q8dQdontLqKLyU9W1bqzByHvVUVmUy2ffv2hx566Pvvv+ccswwdOvTH\nH3/09MQ4cAjSHiF2cx6y9fWikwncYF7Tz8/vl19+SUtLe/DBByMjI1UqlaenZ/fu3adPn755\n8+ZDhw5hRiUEab+oNcAfrxjqakRX7JDr2KRJkyZNmiS6DQRB2goil/GmU6uqFF0trqQiyM0L\npbSigvesE1HOUTgQ5OaFEOD31ZDHumeTG4IgHR3Cv3eetb/p3i4oHAhyU2NnCyzD641+Q1A4\nEORmxl5wQAmSTiMI0hGh/jxpj2RyWWio6GpROBDkZoZw7kEloHjgIXCTyzmCIB0dWQiXAxgF\naBIfxQdQOBDk5kY+eixnuXnHVtrAE+PHAVA4EOSmRqniTmNDKS3ME10rCgeC3Mwwv/8KLM+y\nqxMhuFA4EORmhjl3mu8UCRa/QxWFA0FuZqhOx3eK+IjM/wgoHAhyk2No5Cwm4V1BLjocBwoH\ngtzcmMycxbL4RGdqReFAkJsWtrAAgDscB/H1d6ZmFA4EuXmpq+U7Y971szMVo3AgyE2LLLYX\n77lGPa2vF1+z6DsRBGnvqDxkXYL5TlLtDdKt2QGFA0FuajS8gc5pjVZ0rSgcCHLzwrJsEW+Y\nL6LA5VgEQVpBi4t4/c0BSDDG40AQpBXUZLR3mj8c6Q1B4UCQmxeZvcEIzc8VX7HoOxEEae/U\n2VtwpXq96IpROBDkpoWE8K7FAgBRKkXXjMKBIDctzNlTds6SXgmia0bhQJCbFnr6hJ2z9nPZ\n2weFA0FuXjQaN1WMwoEgNy2ypD685/hzyjpUs1N3IwjSnlHwT39SoIUFoitG4UCQmxZC7fUr\n2PNnRNeMwoEgNy3mk0fsnCXhXUXXjMKBIDctRG1vcpSEYpTz/2/vXmOiONc4gD+7C8te2IUq\nN7ckRQ9iMNTatWA3Na2XCkQDASUVjadpGmOMbWyybbbaJrVpTLkkbPQLSW0aE2IaNUYBbyTy\nQSDZMeIlxg9ejkejqUqhLCzLXtx12PNhjpPNgsPOcJm9/H+fZt5533eeHXYe5vLuDABMolpX\nLrCUZXol9xwriYNhmNra2urq6traWoZh5A4HIBEoF/9LYGloaFB6z5JbziKGYex2u81m6+zs\ntNlsdrsduQNgFoSmflLx/xUUSu44JhJHc3Oz1Wq1WCxEZLFYrFZrc3Oz3EEBxD329k2BpamW\nNZJ7TpHcchaxLMtlDY7FYmFZNqKO2+0OvU6fyhm88xIgeUz8557A0tDwP5JHncdE4ohGVVXV\n+OuX2S1atEjeYADig8AAMKLQ+Jjk4aP41w2QsJQLFggtNWRI7jlujjhaWlr485eKigp5gwGI\nCyGjUGqYcI9JPnCIm8SxatUqftrv98sYCUC8UGp1kRcLwyjS06X3LLnlLFKpVOH3XxmGUc3g\nPdoAwFEsMgksDcX7E8DCx27wYzrkDgog7k3zZumBF5J7jolTFX7sBsuyKpXKZrOF350FAIne\n/FIVIgqNjUruOCYSBxFZLJazZ8/KHQVAQgm9eCa0mBVKK8Ji4lQFAOZC6OVLgaUTM7jJgMQB\nkLCUOUI/nFcYDNJ7ltwSAGIcK/iuNiWexwEAk4X+EfrhfNz/rB4A5oJSJ/gbtgnBH90L9yy5\nJQDEOEWe0M9BlUV4kxsATCb4WmlFTq7kjpE4ABJWKCQ4UsPnk9wzEgdA4hI84pgQHh4mCIkD\nIHEJXxxNkT5wHIkDIGEpCxYLLFVkCj3mZ5qeJbcEgFin1aVs+/eUSxS5ixQZSfAEMACQQGUu\nVb1nnnj4YOKaY+Lxf0N+r0KZoih5L7Vu+0y6ReIASHQqlXJZsXJZ8Sx2iVMVABANiQMAREPi\nAADRkDgAQDQkDgAQDYkDAESLy9uxoVCov7+ff5UsAMw6pVK5evVq/RveSq3gXwEfRzQaTVpa\n2ty9tCkjI0Oj0QQCgZGRkTlaRYxTqVRZWVlE5HQ6g8Gg3OHIw2g0arXaZP4atLa21tfXT7ko\nLhPHXDt48OCFCxfKyspaW1vljkUeL168qKqqIqKjR4+azWa5w5HHoUOH2tvbzWbz0aNH5Y4l\n5uAaBwCIhsQBAKLF5cXRuabRaIxGo06nkzsQ2SiVSqPRSETJ/PZvfA0E4BoHAIiGUxUAEA2J\nAwBEQ+IAANGQOKZ37dq1mpoauaOQwdWrV2tra6urq2traxmGkTucecUwTNJ+9qiEQNDdu3cP\nHDhQVVUldyDz7erVq3V1dQ6HIxQKORwOfjoZhH/eZPvsUULiEPL06dNvv/12dHQ0CRPH1q1b\ne3t7+VmHw1FTUyNjPPOppqYmPFMk1WePEk5V3mh4ePjIkSPfffddxgweBh2/AoHARx99xM9a\nLBaWZWWMZz6xLGuxWPjZpPrsUcIAsKl5vd6mpqa9e/fm5eXJHYs8Ojs7w2f7+vrefvttuYKB\nWIPEMYVgMNjY2Lhjx44lS5bIHYv8AoHAmTNn2tvbf/nlF7ljgViBxEFEVF1dzU93dnba7fb1\n69evXLlSxpDmX8RG4CauXLnS1tZmMpkOHz6ctAdfMBmGnE8hfBcKF3H0ntj8fn9jY+Nff/1V\nX1//6aefyh3OvKquro74W08uSXI44pjC5K9IEn5vjh8/vnz58p9//lnuQGSgUqkYhuGvjzIM\nk8w/9psS7qrA1G7cuFFeXi53FPKw2Wx2u50b98UwjN1ut9lscgcVW3DEAVMbGhr6/PPPIwqT\n5LDLYrFYrdbm5maWZVUqlc1mC787C4RrHAAgAU5VAEA0JA4AEA2JAwBEQ+IAANGQOABANCQO\nABANiQMAREPiAADRkDgSwcTExLFjxzZs2JCdna1Wq3NyciorK0+dOiV3XHJSKBQKhSLKyrt3\n746+MhASRwJwuVxr1679+uuvKyoqbt265XK5uru7s7Kytm3bVl9fj0dXTcvr9XZ0dMgdRbyR\n+9mFMFOVlZVKpbK7uzui/LPPPiOiX3/9VZaoZBfN13t4ePjixYvr1q3DviAWNlZ8O3fuHBFt\n37598qLbt28TUX5+Pl8yPj5+4MCBxYsXq9Xqd955Z//+/R6Ph1/K7Tw9PT3r169PT0/X6/Uf\nf/zxjRs3Dh06tGzZMrVanZ2d/c033/j9/vD6/f39GzZsMBgMRqNx586dg4OD4TFEs8be3t61\na9fqdLqMjIwvv/wyvEIwGGxoaCgsLExLSysqKmpsbAwGg9E0j/K/I/6JSoaNFd/q6uqIqKOj\nY9qawWBwzZo1Wq22o6PD4/GcPHkyJSXlww8/jEgEOTk558+fHxkZ2b9/P1dSUFDQ19fndru/\n//57Ivrxxx/D6y9cuLCrq8vj8XR2dmq12pKSEq/XK2qNJpOpr69vfHx8165dRGSz2fiY6+vr\nVSpVW1ubx+M5ffq0Wq0uLy9/9epVNM1F5QIkDrGwseJbfn4+ET158mTamq2trURktVr5kj17\n9hBRU1MTN8vtPMeOHeNmBwcHuZILFy5wJSMjI0RUWFgYXr+5uZnv8KeffiKihoYGUWv87bff\nuNmHDx8S0dKlS7nZM2fOENHu3bv55larlYh+//33aJojccwpbKz4plaricjn801b85NPPuEO\n7PkSh8NBRB988AE3y+08z54942b5q6oul4tvQkRpaWnh9a9fv84vvX79OhGtWrVK1Br//vtv\nbjYYDBKRTqfjZjdv3kxE4e834Z6sU15eHk1zJI45hedxxDe9Xu/1eoPBYErKNM9kWrhwodPp\nHBgYyM3N5UrGxsYyMjIMBsPY2BgRcfcjw7viSsK/IeEl3LTT6Xzrrbe4pW6322g0pqenu93u\n6NfIsqxSqZzcf25u7uDgYHj/LpcrMzMzNzd3YGBg2uaTgxcgqjIQbsfGu+zsbCIaHh6etqbL\n5SKiBQsW8CUajYaI/H5/eLVpE1AEg8HAT+t0OiJ6+fKlqDXyu30Ep9PJNVe8lpmZSZM+7Jua\nw5zCRo9vq1evJiLuBkqEx48fKxQKk8nEzWq1WiLijgU43J7J/z+XJhAI8NNc53yHM1yjXq8n\notHR0YiDZO6UBOSFxBHfuLsqUw4S5e7Ubtq0iZtdvnw5ET169IivcOfOHSIqKSmZSQBPnjzh\np+/du0dEK1asmJU1vvvuu0TEXfKEWIPEEd+2bt1aWlra1tZ28+bN8PLR0dGWlha9Xv/DDz9w\nJdx4sPb2dr5OV1cXXy4Zl544J0+epNe5bOZr3LlzJxGdOHGCL3n+/LlCoSgrK4umOV5oMLfm\n91oszL7nz58XFxdnZWX98ccfQ0NDPp+vp6fHbDYbDIauri6+mt/vf//999PT0y9duuTz+S5e\nvKjX60tLSwOBAFdh8vdBuISbNhqNXV1dXq/3zz//TElJKSsr44dpzHCNr1692rhxo0ajOXHi\nhM/ne/DgwZYtW3Jycu7fvx9N8+LiYiLq7++PZhtiXxALGysReDyepqYms9ms0+k0Gk1RUdG+\nffsmD+5wOp1fffVVXl5eampqQUGB1WoNv4IgLXEcP3585cqVGo0mPz9/3759EZckZrhGv99/\n8ODBgoKC1NRUk8n0xRdfPH36NMrmly9fLioq4o47ptl8SBzi4XYsSIRbmMkM1zgAQDQkDgAQ\nDYkDAETDNQ4AEA1HHAAgGhIHAIiGxAEAoiFxAIBoSBwAIBoSBwCIhsQBAKIhcQCAaP8Djt8A\n4ldjDMEAAAAASUVORK5CYII=",
291 | "text/plain": [
292 | "plot without title"
293 | ]
294 | },
295 | "metadata": {},
296 | "output_type": "display_data"
297 | }
298 | ],
299 | "source": [
300 | "detailed_cell_type_color <- c(\"B\" = \"#E088B8\", \"DC\" = \"#46C7EF\", \"Eos\" = \"#EFAD1E\", \"Ery\" = \"#8CB3DF\", \"Mo\" = \"#53C0AD\", \"MEP\" = \"#4EB859\", \"GMP\" = \"#D097C4\", \"MK\" = \"#ACC436\", \"Neu\" = \"#F5918A\", \"lymphoid\" = \"#FF0000\")\n",
301 | "\n",
302 | "pData(valid_subset_GSE72857_cds2)$cell_type2 <- revalue(as.character(pData(valid_subset_GSE72857_cds2)$cluster), \n",
303 | " c(\"1\" = 'Ery', \"2\" = 'Ery', \"3\" = 'Ery', \"4\" = 'Ery', \"5\" = 'Ery', \"6\" = 'Ery', \n",
304 | " \"7\" = 'MEP', \"8\" = 'MK', \"9\" = 'GMP', \"10\" = 'GMP',\n",
305 | " \"11\" = 'DC', \n",
306 | " \"12\" = 'B', \"13\" = 'B', \"14\" = 'Mo', \"15\" = 'Mo', \"16\" = 'Neu', \"17\" = 'Neu', \"18\" = 'Eos', \n",
307 | " \"19\" = 'lymphoid'))\n",
308 | "\n",
309 | "options(repr.plot.width=3, repr.plot.height=4)\n",
310 | "plot_complex_cell_trajectory(valid_subset_GSE72857_cds2, color_by = 'State', show_branch_points = T, \n",
311 | " cell_size = 0.5, cell_link_size = 0.3, root_states = c(15))"
312 | ]
313 | },
314 | {
315 | "cell_type": "markdown",
316 | "metadata": {},
317 | "source": [
318 | "## Analogous to Supplemental Figure 16b"
319 | ]
320 | },
321 | {
322 | "cell_type": "markdown",
323 | "metadata": {},
324 | "source": [
325 | "Without removing the lymphoid cells, the figure fundamentally differs from the original [notebook](https://github.com/cole-trapnell-lab/monocle2-rge-paper/blob/26ce18c97f22e9488eb85971a23311f5252bfce5/Paul_dataset_analysis_final.ipynb)."
326 | ]
327 | },
328 | {
329 | "cell_type": "code",
330 | "execution_count": 11,
331 | "metadata": {
332 | "collapsed": false
333 | },
334 | "outputs": [
335 | {
336 | "data": {},
337 | "metadata": {},
338 | "output_type": "display_data"
339 | },
340 | {
341 | "data": {
342 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAIAAAAAVb93AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOydeXxU1fn/n3O32WeyTPY9gQBhCTuyiSsFimAqFRfUtq5t3b7UQv1VW/1qW6WK\nrVq/rbgDVURIwQ1FrMiO7CQQIPu+zGT29S7n98cNQzKZQDKZm0ngvl++cObcueecmcx87rnP\neRaEMQYZGRkZmcEHEe0JyMjIyMiERhZoGRkZmUGKLNAyMjIygxRZoGVkZGQGKYNaoFFXGIYp\nLi7u/rLi4mKGYS7+GhkZGZkhx6AWaADAndiwYcOyZcuC9Le4uHjZsmUbNmy4yGtkZGRkhiR4\nENN9eps3b1ar1Zs3bw759CKNMjIyMkMOhCXzg8YAHzV4v2ljCQQLEpmiFEVfe0AoxPSKi4uX\nLl3q9/sBgGGYDRs2FBUVXeQ1MhKxc+fO3NzcjIyMaE9ERuayRUKB3tri+0eVBwAAAWB4Ik99\nYwLTpx5CCnTn9p5eIDMAzJkzZ8mSJY888ki0JyIjc9kioQ36gIXt6B0DAbDPwko3lkxUkK+O\nMjKSIqFAq0kE6MJTHYV6fq2MjIyMTDASCnRRsiIgyRSBFiX12QYdkuLiYpqmxcc0TV/E8S4i\nw8nIyMhECwkFukBH/d843a2piqWpyn+O0+VpyP73GXCqE59e3PGu/8PJyMjIRBFp/aCzVOS9\nmapfZCrTlBEYSFTedevWBdw2ioqK1q1b11mju79GRkZGZohCRXsClwChC5Zrmqa7O9WJGr10\n6VKWZXt6jYyMjMxQZFALdC+dBIqKimSXZxkZmcuPwR7qLSMjI3PFIgu0jIyMzCBlUJs4ZGRk\nrhBqnfX7Ww+pKVWSKtHqsxqV8eONY7tEUlyRyAItIyMTZf7v1Dvb6r4JapyVPP23hVd6IgHZ\nxCEjIxNNPq/ZcbTaSkJwZNnu5n1nbeVRmdLgQRZoGRmZaPJDCeUmmgXguh8yec0DP59BhSzQ\nMjIyUeOMqVmHszzIhEEIOkQSZL5hWFRmNXiQBVpGRiZqtNm9AKAVUhEO3g+cnz7XqIyPxqQG\nEbJAy8jIRI1hcUkAMJy/WQkdWkyCUnwwQTEiatMaNMheHDIyMlEjyaDSalhwGSdzj3uQiUak\nRfFaGY8Boy9OfD45d2q0JxhlZIGWkZGJGghBhlZ72uVDQKhxImCc6nsoDtyNUFOm2Bvt2UUf\nWaCvXJqbm9esWVNSUuL3+1esWDF9+nQA2Ldv36pVq3ieJ0ky0CgjIx3t7S6ESdyRFg1xQjIF\nkAG5epQc5ZkNAmQb9BWKz+f7wx/+MHbs2Pfee2/FihWrV6/et2/fvn37Vq9evWLFiq1btwYa\noz1Tmcsci/sMRsE7hAggBo9k+Su9ppq8gr5C2b59e0FBwc033wwA06dPX758+apVqwAgsGoO\nNIasWSMjExHM3vbD9JYs5DbARACEceclYzfZvvKQV9BXKIcOHbrxxhsDT6dPn15cXMzzfGeb\nxvTp03mej8bsZK4UFAhbaecxqrhU8TukfRShNgCMAQOAV1VOkVe6RMsr6CuU6urqmpqaN954\no7GxETotnC9OWVmZ3W4XH8vaLRMBsCeHclRyOhNPf8fTCuqddH4Wg3UOoqGFP8jja0kUgVJ5\nQxdZoK9QnE7nl19++cgjjwwfPvzgwYOrV69evnz5Jc967bXXDhw4ID4mCPn2S6a/aJSp4xSO\nOi6RBQ8A+MBWQX7ecQxDtaM2T58TzflFG/k3doXi9/sfe+yxkSNHkiTZ2QYtIzOQICDqmWkp\nwkQEFAVKGmsoUML5LKMUcaWvIK/0938lk5NzYW3SS3Pzs88+6/P5xMe33367VDOTuZIgKCMP\nWA1GF7ScV2aMgMAgxCvioju3qCOvoK9QSJI8ePBg4Om+fftIkiRJsrNfndjY+Syj0Zh2HiTv\nsctEggxdugWVa4UUAHz+PyBBQQClodTRnl2UkQX6CqWzm3PA/TlkY7RnKnM54+N9e6qqCaBp\nUMOF+imIAgWJweV0RnNygwDZxHGFErA7BwUNhmyUkZGIGmddIjfFRH6kwONJoHnwAwAAprHW\ni6xlzvLJuglRnmJUkQX6ykX0fe5No4yMRNAERWCGwqoa9G2CMEbAQCOVAGwTcRAALLw12hOM\nMrJAy8jIRI1sXZYJfaHCsRbC3IyOAAAAEs3QADA+fmwU5zYYkG3QMjIyUQMBmpWfbCE61x7s\nUOdYRUyCyhiVWQ0eZIGWkZGJJuONY0K2uzj3AM9kECILtIyMTDTJ0WWSiO7ejq70THYAsg1a\nRmao47d7AQGjU0Z7ImHi9vMZ3HXV5HYAzGAdAxonagKARHqIFSR0+/i9Z61tdn+SQTE936Bi\nIpBFRBZoGZmhisDy1dvKHA1WANClx2TPG0lQQy+10DlLLQnMVezvGNACAAZcRm5oI05kMJnR\nnlofEDDeuL/F7PQDhkaLv9Hqu3NmSv9juWQTh4zMUKXlSL2ozgDgqLe2HqmP7nzCI0Wn8yG7\nqM4imcI1AHDKUxm1OfUdk4M1OfwdmVIBt1h9TVZf/7sd1AKNeiDa85KRGRR4TM5AUnuaFzwV\nJs7mie6UwoBABAVM4CkCRGEVANg4M8ZDxg5NdJOlzQdarG6uv93283ypwaGI9qRkZAYFyli1\n6JSm8Xg1TjdRa2p8c7frdFO059U33j/373Y4G8jCAYDNxGkASFMPpXwv8VomLa7LNoCfF34o\nt/Wz28Eu0DIyMj2RODFdaVBRHE/7O1ZqGGPL9tPRnVVfOW4utRM1p8mP3Ki1gvxsD/2/5eSn\nADDBODraU+sDCEHRlESDmup8SXH6+lvUQlKBxt4zrzu2X+vYfr2v/G0pBiguLmYYBiHEMEzn\nAOVAuwjDMJs3b5ZiAjIyUcRb3qY127WeTrZOjHkPi/1DqdgNK7AA0EacPET9vYHYy4NPXEof\nM52I9tT6hoIm0uKUgRt8jMGo668XhoQC7atc6y39K++s4h0VnhP/66/5JLL9FxcXL1u2bMOG\nDRjjDRs2LFu2LKDRS5cuFdtF1q5du3TpUtk2InM54Wuwmr8o4Z0+EIRAI0KIMWpRJBy8BgYM\nGHr4YTr5oReoYndzF1LyAeKFi7y2V0go0GzTN4AIwKJpiWCbtofRyUU2CZcuXbpu3bqioiIA\nKCoqWrdu3dKlS8VDgiAwzIVth6VLl7IsO4TsWTIyl8RbbYZuiw4qVmVcVBidCYUFAkQTIaJU\nAMDJ9teAO/D4eR4u/EmEJldbPzuU0A8a0boLc0WAGEMYnVxk2cuyrKjOIkVFRSzLio/feeed\nxYsXp6SkLFmyZOrUqYmJiddff30Yo8vIDFoIzYUlCCCgY9VJt00hh2C4SqImqd5RhwEsZWZn\nnU2TqosrSAAErIC9vE9JKqI9wT5gp84C5EDHTQH6yrxeU3PVoqwFYXcooUAr8n7BNm4T778Q\nQSvyfibdWEHcfffdc+fOLSkpOXTo0CeffPLtt9/+5je/eeqppwZsAjIyfcDjgS++AJ6H+fNB\np+vlSdqCVMfBatYi2gFQzOzhQ1GdASCW1lfYfQef3dVe2rHejBkeN+WPs1VG9dBSZwA4h7ez\nZEaSMIEHtoHYZUXlH1c0D1KBpuIn6a770l+7CSGCybqV0Ea4Oi9N08XFxYFFdHFxMU133CtR\nFOV0Om+44YYbbrgBAE6ePDlu3DhZoGUGHWYz/M//wEcfgXjzhxD88pfw2mvQi4rpiCFTfjbD\ndapJYDllZhyTpJd8ttLQ4Go6+cbh9lMXrAHWcsvRv+6f+eINUZxVeGgpw0lydz2xK9Di5b08\n5kkU5q6AtG52pD5fNeZJ5eiVEVdnAOi8MRjYMBQP6fX6Tz65sCdZXl4e0G4ZmUHEbbfB2rVw\n3jQHGMMbb8A//tHLsxFDasen66dkDzl19vl8ra2t5eXlhw8f5j1809560Rw6efLkW2+9FTA2\nn2jl3P5dB3efPXu2paXF6/VGe8qXxuTwM6aZhNB51YsmJYwPW51h8OfiCLmzJxqmAxuDLMvS\nNL1hw4bAanrt2rVFRUV33XWX+FQ8OmBzlpHpFVYr7NgRov2ZZ+Chh2DoLClYlrXZbDabzWq1\nWq1Wm81mt9ttXRHbA3QW3FmrbxDO+wUeOnRozJgxAIAxZtrJm5/+ScDuoVAoDAaDXq83GAyx\nsbGGrojtnQ/p9XqFYkAtJCV1zlg2pcjzUKl6XzVzlkXevJjMhwse6E+fg1qgL+kYV1RU5Pf7\nu7f/+Mc/DtkuIzOIUCiAIIDv5rPc3g4bN8Iddwz8jHieb2lpsVgsXq/X4/FYQhF0qKe1rUKh\niIuLiz1PSkpKbm6uUqmM7cb/a/iTJtHgNjnweX9BhJBCpUlKSPp0/RbBwfc0gTNnzogt7e3t\nPl/oxBeBEVUqVcjRgw4lJiZSVJiqyLu8M1paKUHQ+NLOJR3lgT9rLX/+6EvPT/l9T54ql2RQ\nC7SMzOWMSgXTpsHevSEOVVf3v3tBEJqbmy+itt3be1LbIGlLSUm5iOSJ7SqVqjeTxIB1dWlL\n7nvh/b/8ChEEFoT3P/gAY7zw53foBPXkMZMYkrl0LwAejyfk2+zeWFlZKbZbLJZLvtneyHpS\nUhJJkgCQbHFWqDXtDF+iFYbjWzjB20DsKbOe/a5x943p1/bmXXRHFmgZmehx//3BAo0QYAx9\nLKaOMX7ooYeCrAp2u93hcIR8vWgHCJgLsrKyAo/FBwGLQaA97Ld4cRCgNDQ5YfrUh55ft+Pj\nN9pb6mISkn8+5xbXNXZlur6X6gwAKpVKpVLFxsampqb28pTO1pjAv6KVpnOjyWQqLS0VXywI\nISJPNBqNwWCIiYl98Mn32Zh4AJwidPz5UoRpJdT7LZ7wvaFlgZaRiR5FRfDHP0Jt7YUWioJn\nn4Vr+7bgqq+v/+KLLzIyMhITE4cNGxYQ1piYmM46G/g3wu+if8xMnnK2Dg0bN2PYuBkAIPDm\nc/BWbHLi4+N+Kem4MTExMTExfTrF4XAECbrFYhEfuDmSjRErDHQKJQQ0hrsnlXaGPUlZoGVk\nosdXX0Fzc5cWjCEhoa/dNDU11dfXb9q0aerUqRGb20AxKy+jsqGBFzAGQIDKmZ3G+JTnpvy+\nP84PEqHT6XQ6XVpaWvdDLTb/ul2N3dsRIIcpCbLDHFEWaBmZgcNyrs1RZ6G1ioSxqZSChPvv\nv+BjJ8Lz8OijcM89Q8iLo5/EaenbZ6Yer7G3uS0+Rf2DGddPMI5DMMQSMxh1tJImvGywDQQB\nePzhp+SQBVpGZoBoOljTeqQeECCMrGdb8+ekkXZ78IswBo8HGhshKysac4wOSQZm7jgjgBFg\neLTnEiYCBi8XQogxQHZC+BGecj5oGZmBwFPR5t11Tu90q9xewILf6be7SUhODn4dQpCSAhkZ\nfeqcJMk5c+aIvgQyUcHj75wm6QI5iaqpw8JJQyQiC7SMjOSwbc62zccQxxO8oPBzeqdb5fHx\nbhbWrAlhyvjVr3oT6t0Znud37tzJd3eplhko9CoKyGBfbBa59vP/dLLhbxLKAi0jIzmeKhMW\nhIBVFQlY4Wf9R2rgvfeDA1Uwhqefhm++GfA5yvQLi8/ahI8HNdJYY2hf+MGprWF3Kwu0jIzk\nEIoQmz2syek/VAKhXGvhhRf61L9s4og6NWZXijCle7sSx1laU8LuVhZoGRnJ8TaEDlpDCgZC\n1pHoIcitO3a7ffny5UuXLt25c+eqVat6io6TkZo2kwJCe54gDe6209BrZIGWkZEWwce5Tobw\nkFVmxNL33hm64NNNN/WmZ5/PN2fOnFdeeaWyshIAPv7449mzZ3s8nv7NVyYcnN4eNwAyYsKP\nDJIFWkZGWgQfF9SizIyLvSY/YclEWLECvvgCuqetUPbKMWvdunXHjh0DgIULFz777LNarba0\ntPTdd9+NxKxl+sawZLX4oPv1tjAz/EB5WaBlZKSF0iuZZH2HKQMBqWESbpmgn5ZDMBRwHDz5\nJASteREKDi/sBsa4oqLisw1bxHy827ZtKy0tdTqdCKFNmzadO3cuZNYIGekYm6kDABdq6m7m\n0KrCl1k5UEVGRnISiiZYdpT5WxxUjCr22nyCOf+7e+klON51619MlnTNNUE9+P3+kpKSY+c5\nfvy4x+35xY/uElPyzp8//9tvvwUAjPG3336bn5+v1WoLCwvHjx9fWFg4YcKEMWPGKHu3KpcJ\nG5JEdqjV8F22BNuI40mGhWH3KQu0jIzkUHplQtH4EAe++iq4RamE3/8ebr65srKytLT08Hma\nmpoAgCTJESNGTJo06ZZbbplSOKnhm4q3vnyfF/itWzscuQiC+PrrrxUKhXjW/v3733rrLTFX\nckpKyqRJkyZNmjR69OiCgoKCggK5zn1kiVHTDa4LHykG7AGTkyq/nCuqyMhcZvAuH8FQiCYB\nICgvkkBRf33kkf2HDh3LyamurgYAmqYLCgrmzp0bWAt3TsBW1qL+/R1PvLjhbz7WBwBKpfKl\nl14SC9jPmjVLfI3NZjt+/Hhg6f3111+LtSwyMzPFJbZIbm7uwLz9y5jCbG19SS4GAQEBAAjA\nS5hzucUsj2kyzGuhLNAyMgMEZ/ea/nPM12RDBGGYkWuYmQdNTYGjGKHVT0zdNa0KEeiewnvE\npW5WVtZFvJuzbxx5J3nbNYWzTtSWxI5M+tEtC5KSkoJeYzAYrr766quvvjrQ0tjYGFiYv/XW\nW01NTWq1+tChQ6NGjYr4W76iKMzQbT7dpOKM4lMMKE4YiQFO1TsLs3pbrD0IWaBlZAaI9m2l\nvhYbAGBBsO4uZ1IMqv37xUNf3DT8ozvH2GKUJCB0DX3r1NsLYkdcskNlnDp/yfh8GH8t9MHK\nmZqampqaetNNNwHA9u3bf/GLX9TX148ePfqGG254/fXX8/Pzw3pzgwmMeaeP1CpC+5hLxn8b\n9jN8F5dnHlgS6It44F0SWaBlZAaCxm9K/VUmBNCiEqwM5DmQv6xGxXV44L3/i/FelfhjxBig\n1FLWG4HuJ6WlpTfddBPLsgCAMd6xY8f8+fNPnDih0WikHloqMLZ8d9ZxuBbzAkERsXMLtGND\n5G6WiNKzGjXu4vLsQLUxOC8jXs5mJyMziPFUtLGH68XlXIKX4BFeOdX9f9DM0R0rpIQ2d2KL\n+9pvqsYda0EY4pVSlZjqzJtvvsmyrCAIP/7xjx966CFBECorKz///PMBGFoizF+V2g9WY14A\nAIETTF+WuKpMAzO0x8+zni7q7Ee2drIsO1HVH4GWV9AyMpLjbrQGHhMYsh0kABzS+Lb87n9u\nee6vAPDYS/tzKi0UJwDA6el5eTvf6eeILMu2tbVZLJampqbGxsZAydTOT1taWkR36Wuuuaaq\nqoqiKI7j7rzzzscffzw1NVWsDBugc0ugTOqgAnO883iXiE2XWmn76owmuSlr7gha3dvyhuFR\n0RwcwKnAhlxuQXWr53CVfXJumMGEskDLyEgOE3vBaCAAtKkEAEAAp2fPEBuHnzUHXjBqXwV8\n8RUsXtxTbx6Px2w2m0ymtrY2k8lkMpnMZnNQi8Vuw0qFp+1Ct0qlMj4+3mg0Go3GcePGGY3G\nAwcOHDp0CGNcW1trMBhIkuQ4buHChUlJSWI/VVVVYucc1yUYUqPRGI3GhIQEsTex2/j4+MTE\nRPFBfGx8fHwc4hHnYbEgqIxaREhuDvbWW4Pi+BAGAHC1OJr212ReJ20pgFa7HwHCwYGECADO\nNblkgZaRGbxoC1JO7ilJs2IAYEn8aZYfADCgpOQ0ISPbE59D+DzKs4cQ36GDpZ9/vqelpfPK\nN7D49Xq9nXtGCCUnJwfWuXl5ebNmzXKNyKxNMfAIaYAgScItCJPikx/In2CgFZ3PPXr06FVX\nXcVx3Ouvv07TNMdxWVlZ7733nsEQnGDe6/W2t7d3n4z4uKqqymKxNDQ02Gw2Bc08++sV+MbG\nZsYyu/Enw9w5AODgTWt2bcQM0X1hnpaW1tfKrT3BtgWnXeYpAgAAY3dzt8o1kUanIrupcwcK\nWo4klJEZxCACHZkTv7myTs2iKi3voQAAVD6u/O1Pyh/4m4JWAgDTVJX0z+WEzwMA965Zc2DN\nGoIgAotTo9E4cuTIkIvWID2tcdmeOLRDfOwGQTTIHjQ1sVj4f2NmdH7lhAkTtmzZct999zU0\nNPj9/quuuurdd9/trs4AoFQqRd+Pi7xHQRDMZnP90aPlyj8RpHc4AJW5nit/jOJ0OjL+lqtm\nPvHGK62trTabrcsng1Dn9xgfHx94j1OnTi0oKOj9h0wZuph6BQIJiAAAhEAR2y3bSaQZk6H9\n/nSIVIIIwaRwl88gC7SMzMBwY3LW9lLzSLtiilU4rfOcOHGwdtf3d036qaHiBBIEX84Yf0qO\n86qF+p0bMUJbd+7UTZ6s6p5EqReU2y2BhVynB/iEpQ0DDirGOm/evPr6+sbGRqVSGRcX14/3\nBwRBJCQkHMefE0RHYRGCV7h1ZRSnVbqz02Oyz549K7Z7PJ7uy3CR2tra/fv3WyyW1tbWgoKC\nF198cf78+b2cgHp4IiIJ8YIEgDllxzslFFTKVMkLPLa72JDtfuP3mca7wu5WFmgZmYFAf8Y1\nu02DARDgTA9zi3Ymu3DCsBcfoVrqAEBQ65t/+RIXmwQACOPE6mqYPTu8gZJUoZzkEGgpuqdS\n2RdfGvcegRP8qE18rHYOEwiuNf1DACB4lbFhWeBlKpVKpVKlpqaOHj26eyfNzc0/+clPmpqa\nTp48uWDBgvnz53/88cdarfbSwyMEgAng1HQrJygUPlLPt5KUxzDnBjpecsfBeC2DuqWywyCU\nt9dX2Wty9dnhdSu72cnIDATWijboyOiOAICjqZTPNojqDACExxnz9VpF7emOV+fkhD3QmJiE\n2YkdNWdjfMT9ZcrnftCsOK66l5Z8FSmwvMqVJ+7NqZyjvOrqjnbC64j7by87ufvuuw8cOBB4\num3btscee6y3M8CAAXm4BC8f7+MNXl8C9ilIRbeqjxKgoIjuFmgEKI+/ycaGbwGXBVpGZiAg\nyC6/NYSBtLTgQHFYLDC1ZZqj3wIApKXB+Uwa4fHYqCkvTbp+5ejpf2xOHGkj1TwkeYi075o4\nm7S5/CkVHeOeqrGPAQCe6qRKCPuVbb3pwWazffPNN4IgKBSK5cuXAwDGeOPGjThkWYPuEAgD\nyWNRkREAePgEIin8ilO9x+0PGS6IGNDmasPPcyKbOGRkBoL40SkNuyvFxwhj2s/5M0dpRUUG\nAADK1gYAoNPBF1/0f7hsrSGL0dY2neh4jgHzvLfOojVIu13GKUsTG25FdcvculOdmpHSnd3T\nKYIgVFRUHDt27OjRo3v27BG1eNGiRWZzh4+gw+FYuHDh5MmTxbxOOT3fXqjzk1ynmzobGjAm\nbPurDDOH9fN9XRIFTXSkiu2KRgUGRS/sMz0wqAW6p3SIvb2cysgMGmiHR+Py2FSkgMDoZAmM\nDy388bVxbvq99y78qkkSNm6EceMiMiKiCUQTmMUB0ygpcbCG4PHr6wo9KjXChNZWmFr1kFdd\nbY/bR7F6t5CDcUduDJPJdOzYsUAy1XPnzrEsixAaNWpUQUEBwzAsy9rt9hkzZmzcuNHj8cTE\nxBAEsWbNGjHnKk3Tw4cPn3SeCRMmBGLT4+YW+FudrMnReVa2A1WGGXlS5+WgCDQuXXOiLtjV\nz+VBVa2enMQwr4toMIsdQoN6elc4c+bMueWWWx599NFoT2Ro0PafY3vNjXsSWZaATBeMQIbr\nfzJLQVKg04Gz06/6qqtg375IDWo/UGX5rsN3QpEWm3THFEkDRni/p/TtAxhRXcun4vphr9gV\n3jM7pnTOba1QKMaMGVNQUCDq7JgxY0SH6FdfffWxxx4jCEIQBPHfTZs2/eQnPwEAi8XSOUd2\nWVmZGAkZSHU9adKkCYoM/mhLl2khlPk/13fkd5USl4//5/a67u25ycqiyWHWjR3UK2gZmcsD\nzPKlDvO6YV7AgAHqtJDJ0gqSAoulizoDQF2IX3jY6KflMKkGb3U7FaPSjE6VOpzPwdbypEAI\nQaMgXfuMuoRP//KXv4wePXrevHmipaKwsDCkz/UjjzySmJj497//vby8fMyYMStXrpw3b554\nKDY2dtasWYFU1+3t7UePHg2kut62bdv0nML3f/EcgbqY+2kNGgB1BoAvjobO+1HvaAYYlAJ9\noNx2qt6JAI3N0k7KCd9bOyQIoeLi4j/+8Y+lpaUcx91000333HPPkiVLxKOffvrpa6+99vXX\nX0d2UJnLCVYQLH6PgVYoSGl/CPbDNd9pnRgurCx/MPhuAYDYWIiJAeuFTB3QKXFzRFBmxCkz\n+uXg3Iex6Hi/8rDCnRnkz4cA1aAsp3M7TV/aoQIhdNttt912222XfGVcXNz1118vFigAAK/X\n2/iv3US33J60r85b267MlPZDcHr5WlPoPVgXukSFyYsg4ffyWLVjd5kFABCg70rblTQxOj18\nY3lInn/++XfeeaewsBAAbr/99g8//DAg0OvXr7/99tsjO5zM5cQJS+srpw86WD9DUvcNG3dd\ncrZ0Y7lKm+ozOm9dgdvvAwDYtAk6R9YlJMCbb0Zq0K115z6uOe3lOQOjfGzk5HGxiZHquSeU\njNFu9PtbWtN9XeoGKFx5c/On9Ead+4OCUZC+EKVyeUHrPtsitUBbeghUAYC4GG9Phy6JhG52\nFS1u0S6PASMEFc3uMDpBoQgcfe+99yZNmkRRFAAsXrz4u+++s9vtAOB0Or/++mvRbiUj0x0B\n47+dPuhkWQBgee7/zhx989wxq98nyVheljU5Re9gJGbwQXD9aaF9+2l47LEu+/5uN/QmIuNS\ncFh4o+zQB5UnvTwHADa/94WSfS6uRwWJILuJUl5/kge+Xtlioxw2ymmjnAq/cbJScj8KcDkI\n6PoekUARHh9v4DHXwzkRw8eGLqPuJhqXFlwXdrcSCnSXFCEYlEw4Y+FQBI52jkTSaDQ33njj\n5s2bAaC4uPiaa64JaeGSkQGANp/bzvrF7DYYAAPe3lj5x+Pfs0L4xS96gp7J8AQAACAASURB\nVHf5AWCElaQENK2FmtpGPXBaOd5MOY7UQltX72C/H4TQv/PegwH/5tCOb1tqu3Qs8OWOEJki\nIgvv51OVx+PYuK/i976Z8snqjLWvZHzwWtqHVtJxZtv3gsQqKbS2EKjLECSwNOkAgFKytoeT\nIoZRH8JDhkWeNHW6mgyz3hVIKtATc/SB1S5BovHZEbZBQzc/PNHKAQD//ve/ZfuGzEWIY1Q0\n0WXjCAM0uB2nbOaeTgkbOlZN0ORNNUzyvoqSv7+9+0+vfLnpw3aXHQCEMYVdXnrttUD09yd5\nzm5pcDu6t8cx4aeN7yU+iztFUGpthce0ZQCAAQuA/YT/jLqatqfZXOckHR3FxAiYosjAnbqg\noxsEgQaAs/qWi5wYETQKkuzmyUdjlcUpHDhnDXlKb5BQoFNjFXfPTp2SZ5g6zHDP1amJoa4w\nkWX+/PlHjhwpKSk5cODAwoV9qNI2yGloaLjvvvuSk5MVCsX48ePXr1/f/TU9+YzLhIQmiAfz\nx1PdvBoEKdw6CUSo6OJ9X776+xVr93362Ynv//7NuuteurfJ1orf/wDEGoAIwezZsHlz/0ez\n+kNYPAti4jM0kV8hBcHolbFt1yJMErjLxQ8BAkCcXVqXWSI+gdGSlKrFoKjSM3XxyjKC4Px8\nDAD4wnWi6D0Hzln5Hr48de3hB3BKu3kdr6OvHjUQxXtEGIZZtGjRnXfeefPNN4eXCWwQUlFR\nMWPGjNbWVvHp8ePHly1bdu7cuWeeeSaq8xryXJOUpSLpf5456uD8AJgAiFOoRhriIz6Q4ONK\nfOY/fPZPjOCnP/0py7LFxcV2r+vPez/c8vwyOHMGmpogJgYi9I0dZTASCAVdaRrdrhavK0kp\nbc4gSkWrXcMwCFMdY76L+UH05VAJigJXLgDQvuCK4xFHm+QVGj0cyVDYizBmBSZWecbDx+t9\n4Qdb95JWu7+nQzZX+HazwZ6L4+KbhN25/fbbT5w48dBDDw3YDKXmqaeeUiqVmzdvFqtmrF27\nNjk5+dlnn924cWO0pza0KbG2vVR6wMn5xUC7NLX+6XGzVBH1t3M6nadPn97z+X//hk9xfj9g\nrFKp8vLyKIoSsLD36IHd73+zd+/eWpb1R66ClI5mfp0/USMQZCeJtrG+j6tP93xSZMACpvxx\nCIhrLVMWt123oH3WTaY5DzYu0fJqQDyjVly6i34Nj6GhgsScArtJYBHiafUZQtGgpZrSdJLf\nvseoe/RR6U+03aAOVLn4Gwt5tL29fe7cuVOnTpVsUgPNjh07Nm/eHHDOX7Zs2dSpU6dOnfrA\nAw9cddVVGRkZ0Z3e0GVHUzV0cqGoc9tXnzrw54nXKog+aKUgCC0tLfX19U1NTXV1deK/jY2N\nDQ0N9fX1WkI5I68wp2CMf2bHLbbL5UpPTxeLSylphdarnH7NdT7WhxBKSkpKTU1NS0tLT09P\nSUnJyMgIPO3TdjePhe3N1S6i62Yjxk2e4CjkiIMIhAVXe8r3+vbpk5wju8QTYtLv8KqTIuxo\n2xne6QsueSXQbNJHpG3WLPUi6cYVuWq44Wyr1eVG0C2nq6Fn7b4kg1qg+4TD4XC73c8+++wH\nH3wQ7blEEqvVOmnSpM4t+fn5a9asufXWW++7775t27Zd3tbn/W0NnzaUO1jfSL3xF8PHKYmI\nfWP9At+RSwB3/KZqXPYDbQ1XJ2V2fpkgCM3NzU1NTZWVlY2NjWKO+cDTzgWo9Hp9enp6ampq\nbm7uzJkzCxPyxrsTRZ08yXp263Ws07lp0yaKoliWBYDpBVNJkiwtLW1qaerc7YkTJ7766qva\n2trOlQBjY2Nzc3NTUlLEqlHiKKKO6/VdjMuHzM1lobY68/UDEa6iyGMt2u1KTxbNBheyIsLy\n4+o9pEYhYAWJOpngeQ0A4vUHtPFGSYcGALWCTM4t21fqS8QTgg7NGx/+6JePQBuNxri4uGee\neSZIzoY6iYmJ3333XVBdiZ/+9Kd33nnn+vXr//SnPz311FPRmpvUnLS0vnzqgLgoanQ7D5ga\nXplyY6S8EWYlZhwwNSIMuNMF7tt9e/ed+bCzBLe3t/t850uEEER2draojwsXLgzSyqBtj8Y3\nd3HYI3ryjXWrbn/8N+v/+gLn8YrqnJ8+7PGiX8bkGTOH5+UNzws5Q4vFEnRVaGxsPHz4cEVF\nhbVT8KFYjyog33jscEgP3vgZo4m7NWtUBD61SzHiuh+dOvA87QuWJIzYnsoFRAwCCfFZZPuZ\nQAPCSsAEIA60EltXAADA5DWdobYb2FwFdLnjabP547RhLqIvH4EO/IouMxYsWHDHHXc888wz\n8+fPz8jICKjAP/7xjwMHDjz99NNnz5598sknoztJidhvasSdylS4OLa49sy9wwovelJvmZ6Q\n9ujIydsOHj2r4zv8DDBs/vPfSw4dSE5OFs0L06ZNC7I2BC1XLwJn93a2wv12zs2zfnT1D69/\nTLfaMlNz502+TpegT58TWppFYmNjxQRAQe0Y4+bm5oAhJWBXOXz48JYtWyA+5oa3X0ZEx712\njB/dq8mdPjkyH9olYcGOEPJqqhjfhcBFgfA7Y454LDm6TAldBrCf97b66E6ShkEABFRsIaIl\nNK0EGGEY/j0uayB26yFHgxM58OlwGgDUW3wj0sLcnr18BPpy5bnnnvv6668ff/zxxx9/HDpZ\n3g0Gw1dffTV//vy1a9euXbs2qnOUCgVBBhUROmxuipRAA8AMXXL8OcUnOb5TsYLeDzfVKsa/\nvCblqhERCUpWpBi8DZYO+wmGYfmZue7kGwtv7jjsYaHWDJwAVJ+3BxFCKSkpYgq37kedLtfv\njn3XzPkoAelZ5KSEl9mKXzYbrpcylj3A/kPPYODbUoqVrpwOjUZ8S+YHLl1ZHj1X0qFZq9vH\nadUkQ6IOhwpOUW/jEtTGBwZCngHaG/IKuQcAAINQS36XKkwT2zWK8G07g92LQyYpKenIkSO/\n//3vx44dq9N1CUnKzc09evToq6++Onv27N6v7IYQOdpgO2ar123yhZMzoDvftdTcd+QrSkB3\nn1OsOqB+6qi60EwmD8+MVMqI+AVjmAQdACCCiL0mn07QmbaVBr1G8EU+uK4d+GbOV2Alnzmi\n+v1R1bNH1FPaqM01Zy59Zr/BHG/zlQAAJvy2+F0Y8QDAkx6B8AEIvFHaaBE6Vo0RafEOd3OJ\nPj7W7s8wWRc8rh/+y8aPjpiOSzo0ANSavOXNbgAgkF1DHx0Ow2jcsWq+iIPHJZEFeggQFxf3\n/PPPnzhxQsw00hm1Wv3II498//33QdXs+8TBgwdvvrljZbdv376ioqJFixYVFRXti1xi4vAg\nQu1/tvvCTz0ToMZl+8eZIy6e/TjXy58fRT8li0mO2HWOilWn/HxG+q+vyXj8ev20HG+NWfB0\nyRTBJGgpCeqb2FkfhWHZOYWSRwBA8+jWSgW4evTSjSC+Jjsh0ABA++MTmooQJgCA4DVJdXcB\nIJ0m81Id9AtEk5oxaQzpRMBxgtLPx2AEOk7JgbDm9PuSDg0Adg8HACr6aLrh4UTtqlT9b+PV\n/xQP9VTwuzfIAn2lU1ZW9p///EdMfL5v377Vq1evWLFi69atK1asWL16dXQ1erg+luyU2xcB\n6GkmWxuBFCtlNrOY1eV4PP/sqPY38l1J986IvW5k/3sOgtQqEEUABBd8RgDGm8dHfDgAyNPF\nZnEKBY8Q7hiIwDCbktyNAQAovTK+5SoAUHjSAROiERxhRLH6vLjbYzT5Uk+AbDupZ2pUVLuG\nbopTliox9/TpohRvTJvPjIMrbkeY1FgFAhSvfpM4b2DRKf6rpE4CQKxGXkHLhEVdXd1bb721\ncuVK8emqVauWL18+ffp0AJg+ffry5ctXrVoVxeklKjW/GjFRQ3V8v41K9YrR05m++Cn3RLxC\nBQAtPxz/atnD626646Wf3nrPr+9raZHwHlyREUuqFQBIzJqvHpNKx0kS16ciqfsnThMI6HxN\nWDBmjBRjBcGyPMFlAADLdE5djwWCz8y5W+rRsc2qsF4od0AgQUs3MJhc0DRhpH641D4kcVo6\nJQ5RhKXzx06TTQAQqwl/q0/eJLxyMZvNf//735944olAHATP86I6i0yfPp3nI5/drU/MScqc\nk5Tp47nI5tSfGJdsbLEWP/knLGAAEHh+48aN1dXVu3fvliJtMWfztG44xLt9AIBUjGFytn6S\nhPf7w+KMzrmjzV+dAowBUMzVw/Rx4SdU6z0Cxzt1FQDgVzY5Yg7rrBMBEAYBk65/f/vhrxf8\nUlKVxN7glBck4QOMUr36X4+cH/KUyCIINCtkUGQdOu9a7+eGA4DFySXHhOnnJ6+gr1DcbveL\nL774q1/9Kjm5D3lk3n777d+dZyD9GiNe8YRAyPXZdyBgLAhLlix5/PHHEUIHDx7cvXt3ZAcS\nsfz3DGvr2NsUXH6CIaUuwqQtTG+7Sv/YRy960hh/q8O2p0LwS54TWWFQU7yG4FXpFY/qrJMA\nEMuY6oavBl6R25rY4m6VdHQi3ghdvyc8VgFAGkskuSQduQOzkzW5fsULYkAQYfHc5uNzAMDi\nDt8GLa+gr0RYln3hhRfuuOOO3Ny+JZE5cuTIgQMHxMdEvxNj9h4M0OJxkQglKNXh9WC328+d\nO1d5nsbGxm+//Va0vO/fv3/p0qUkSQqC8LOf/WzatGm5ncjMzBQrQvQHts0BgdBrhFiT5FHX\nAEBo6Efn36Vq8LlRs7sMfPXWxKXSxnBRKrpBQaS3LFB4Ou4PaH98Uv3tpKDQYoImpK2oAiRl\n8w3TUecI4AGAx7TTnwIAKroZ6QckNTxifVx2ve01irAIWC3gju+qyS4LtExfWL169XXXXTd+\nfJ83qUaMGBFwxD5y5Eik5xUaN8f+pXTvaasZACbFpzxRMJXu2QzNcVxdXV11dXVNTU11dXVV\nVVV1dXV1dXVDQ0PAXKNSqbKzsw1xsR6vFwvCypUr9+/fL0bM63S6vXv3btq0STifOF+tVmdn\nZ+fk5GR3IisrKyEhofdvgUkysBZPR+YPjOmEAXHMtfnzDKkAHUZRT7WJs3mk8BvpjCJ+B1N+\nNwTC5wFRrJ6nHM64qniltBWOBD/vZxkzO7pF3ZziNWBBiQHtTDhdkln7BwYG4BP3ESYESQhI\nTgjakr1MkyXJdKYjcURYR4PYs2fPnj17Vq9e3blx0aJLJ5R59NFHA4/nzJnTy+H6ycc1p8us\nHckljpibttafuyVzpMPhOHv2bGA5LEZmV1ZWWiwddUMQQjk5OWL08/Tp0wMr4tTUVKVSCQBP\nr3/3+bvuRQg98sgjAIAIYsSIEYcOHRKPimHWnfvfv3//Bx984HB05MKnaTojIyMQ6h0gKyuL\n7JaaLuaafH+zjbW4AUA1LEFbOBAprpw8F5Q7FfP9LddycQTgQHCyjFnl6lTgCtPVo/6QGDe9\n5/MiA6GgFMn6BmvjX4Z/neAzZLvjmxX2Gk0b4tH68k8eHPUzqSfQytYkoDgSB98ouP3hb+TI\nAn05cOjQoe6icBG2bt0a1LJo0aKtW7eKvs+BfcJ9+/b1qVuJqHRYO6LxADDGH3z52W9fXFBX\nVxfIJaTX68VV7cyZM7OysrKyssSnRuPFfMtSJxdOXvnrE2+877c7ACCtcPTWjz4R1Rl6CLPm\nOK6+vl5cmwcW6YcPH/7Pf/4jZtgAAJ1OJ66yxUV3VlbW3LlztXptyr0zuXYXkIREzhtBtPu9\nb9Hmh1WKRC8h5htRJhukHprnfQSvJDhVpxU0kLxK3z7dTB2SdGgRY9H4w99UZXjix1uzecRX\nasSKYviMVdpiLgCAMcQIw0kIYcbhBXkFffnSOVndRRLXjRgxov9jib7PoqddwCe6/932E4OA\nMBag470jvYAefPDBwNI1LS1NoQhni7wgxpg179qsuXMc9U20VvOjUePy8y/hqEtRlCi+3e8e\nLBZL54V8ZWXlnj17PvjgA6vV+utf/3rlypUZGRl0wkC4UojsbK5xI+Gfo7xzG+hUN9mow7cu\nkTyJmN1WQ3I6IDvvRgoAKKGpCA2I1FB61TA/Hl2zQHQXua5t9N+HbZtpzq+fKnnGR4RACaEz\njSip8HdrZIEe8pAkmZ+f/+qrr/a/q4DvM8/zJEmuWLGis9ddtJjAUt80t2lSEgEgS6v/3/sf\nDXhG94erkzIPtzbuMzfqM9MAYE9b3cL0Yd2Dy3tJbGxsbGxs5yrGAIAx/vLLL3/84x/ffffd\nA5y5e1drPQDYGfxJjh8ACIDbVBLv0QGoNPGsog0JCgy4w6MOASA3CJr4poUel1ulCXOPt5fw\nFWf1dUzAu4gUiDtrZyZ7YxhC8ooqTm+PdgyrJ3z/GVmgBzsBy3KfrMx9JWD0mD59enFxsUSj\nhIcWkdvveXTjzm8LCkYN08V1L80ZHrzFvfAb+82sBgPYFPjVMe7PGioeGRHJZSZCKIPT//v+\nF2JPOD1Gkyp3IML5AMDHc2Zv14wlA5I0nCJVAOAyHNfYR3fsjGHCqzqtdYznSKq07tTkkZMl\nnQBXU4+BDHhbI4BkbwwAqG2Sv32To8dgercvfNO/LNBDBunUefDD+9k0ghmhj2TBQOvucobF\nYjx0vBfNaaT3qiMcSeg80aA/7boqdxxhZls/OZK0dLIyayCy5r9+5rCL7+LaFcsMREJkhtLr\nvGPtMYdBoAztMwHAFr/bHntA7difWPugkwm/dmov8TsEhrSzQsDU3qHLTLLkbnYxPcdz65Th\ny6wcqDJkcLvdK1euzM/P12g0fS3VOKQhSXLOnDkR367kLB7U6ZI3zE5ZWR8rRDJy0nWqCQCI\njnQiWHwqNT6B329qDGqMtQ1ERCjv4xIqb09snubWH68b9nLdsJftsQcAwK2r/D75P2NTJck9\n0mUCMRk04VLTLSTyo/N/XV1hmiqvDz6R4RGjpmJ7yMqflxy+a6O8gh4yPPzww++++260ZxEF\neJ7fuXNnxIPOkbrLl9/oRSqCoiKR6EOE87Bev8AyFN0RwteRhUNqCIBMJyqqVKa5iToN/0mu\nv1EtNJFcVU1jTlaqpENjjAleGWMeaTYeTa6fpXIluXUNrSmHMOIKNIZ4pfR1p0amNB8YTpNO\nkvAJAqmbmG2YOYxUS14xVkSrJC3OEDEpZD/+7vIKesiwadOm+++/v7y8nGVZHIpoT1ASXKea\njPtt5/70WewJJ2eP5D2yMrXLfiAtoNtyCiKloI5ay8kPDlrdrFNDuFU0IASANWOk1UcRkod7\ny5RpboLAkOEi7y9TkgK4aPx1XYXUQ1NKWp8V15D53+Gnl6VXz41vG5tRuSDv9FJCYEaobr70\n+f2GSdIn3DKBSMtAyRmGWSNirx81YOrcZvfXmUInwk2PC79Im7yCHjJwHPfKK69oNAPhRTtI\nYM0u0+cnSQETFGVy+yq2nRhx67RIda7KTbDurkAYMGCMgMiOWZB2sQJUfeL0d6dNqtodSZ/b\nSE8K4ZttnZJZf3VQPmiJsDS0a9iOCw2BQe9HSV6iSS20kwNh5ci8Pr/8G0pryxLHB4CY9hHp\nVfenLI58KteQqPISBsCg0Z0jVcG52kX0KirTGL5AyyvoIcOUKVOOHTsW7VkMKN7adhCwk8Z/\nG+15odDz+6SGV04d5CN0r8Ak640Lx5J6BSJJzYjk7IUTI9ItAGAAN+t8N+mzChDaBMUJVv+F\n4XBr2r76z0s4m+QbZXpD8CXcRWEMUJCSIvXQAEAyZJwq+JPUKnIVEoeYRx2rO7QvXV5SvzwL\nZYEeMjz33HO33nrrm2++2draGsgUMdjB2F3WbN5VvnPn4a/3HG49G7x5dXFIDQMAn2X6G7Qd\norynrf7rxspIzU5TkBIze7gyOw54wdcUfkmaIJys/4S22i+m3sAAALWcpjXpM4e23XG4NlKj\n9AQdq3YoL5hq9iWxdgZTGAE5QNvI42b+klO7AAEAxoA5is+6doBK1kaRnj7do9X2nhbXvUEW\n6CHD1Vdf3djY+OCDDyYlJZEkOSS8OBq3Htt48NBy/8kP/LXWs81nth8/9a8dgre3d/qqYYmK\nFH29RgiUw0AIVTqtkZqe80SD6fOTnkqTu6Kt9ZMj3hpzRLrVAFmu7WJPQAAY8Q5DCRtRM3pP\npIxMYwlsUeDSGP7TTBYDcAivrSw5YZE24acIzWiy7p6vyk8iDGo6Iz71jlnqxIELoYwWqGcp\nPVkbfvJCWaBlpMJltj+pqf40y+8j4NES1bRWKtNJqK1c43u9LaNl4/xnf5TGMCScN2tgjDM0\nESsb6DrVBAgAYxBwBN3gOC97c8twraAAAAQYAPJpOwGAMOHv9cWpP/BOn4+EMzG8k8F3VCgC\nl+5TNtPFTosclEGVePP4jIeuTrtjiirlMixn3B2r/yKfrZyL4wpgyPlpvF1b4qIxAhhvomL8\nF4K7eJuHs3so/SWMkmft7f97Yre1zVT16XZnbYM2My1n4Q0TcofPS41c2C7q+iRCbnD+arPR\nr3yo/radqf8xKetTSG8e7SAEpcY+0axpSo/IGBcZ3eapbmx5dbzHSwIAaFmU4EWtSgwARoW0\nkdZXMj5VNVhD1xUbmxn+DYQs0DJSccRtZni4oZHR+4OFD/Ui2f/aypLm0rLvHv8D7/WJYe5V\nG7Y+/e23fapJ6K0x2081f6Owm30OEqPc7LR5BQWBo9px6d5qs+gDBwi0Y9J63/NF4GweUsB6\n0C6sv8MWt9utO0s59LHmORQbg10RKEl+cb6pqziWyvrOf0hOCiMgAHCSUjMnaUDzgVxR5CZo\nS5pw95peCMHEnPDvIWSBHkrwPP/uu+9u3Ljx+PHjZrNZTHE5bdq09evXDxs27JKnDzAejp/d\nQqc7iQZNF4MsSwKhvXTkcYvHdWjVG4KfBYBly5YxDPPee+/9/Oc/P3XqVG9Gxxxv+qKkrsps\nY/xTnYgWAAALJXWf1VkX/miG+BrNqGSCJpwljYggdBMzFWlhZkoKQpEaozpQbdXj1ox/c5Qj\nsWEpxeoJngEADJLv7u70tbBKMVsRBgCEwEELAPCnCddcpNCBTD/JICaVQog9DNGEFvYOkSzQ\nQwaO4xYsWLB9+/ag9oMHD86aNeuHH34Y4Hxpl0QlQJKXcNGYwgSPgMQdSYK3p/lVbmea+hI1\nLjIQbauqEc13n3322dNPP83zfFlZWWtra2Ji4iVHN2094T7XGocgznvh10FgGHXcwd0gUGTH\nEl41LFE17NK99QlVrpG8yl8j/IXg1VlnnkL4wu0CRYXvEttLKJJqVAv4fKCz+D8NRWv6XbhL\n5iJ4esiIJGA4WecYF66VYwhsEhYXFzMMIzoqMAwTlGsNITRlypSgU6ZMmRLwaghydTAYDPPm\nzautldzbKeK8/PLL33///fLly/ft22e1XvBkaGhomDlz5h/+8Icozq07GHCOFU0wkRNN1NVN\nFEZwKoYrjeWKs30HkrjS5hD+djabbdeuXa+//vr9998/ZcqUd5b9OmAkvv322y0WC8MwGOPM\nzMzJkyffd999r7322vfff2+zhXCPEzys+1wrACAcfM9JYfDY3d1PiSBYwKe9bwkEazDP7KzO\nABCbJbkz8ryUnMVVTLajy7gujt3dWi/10Fcy8foebwpP14dfs3awX1SLi4uXLVu2YcOGoqKi\nwNN169aJT0UqKioaGxtTUzviaBsaGioru7jKBrbXBEFobm5+5ZVXHn744e5VRQY577zzzvr1\n62+55Zag9tTU1L/85S/XXnttVGbVEy0e16JaBS10yCOFIctJfpnhB0BOEje1tfvT/SdPniwt\nLT18+PDhw4dPnTolVqtSq9UTJkyYMWPGrBET//j8/55prhaw8OabbxIEwXJcVmbOc08+dej0\n8cOHD3/44YdutxsAYmNjCwoKxAIoo0ePHjNmDIV7vKVkEWhjpS1QZ/rvGQ/dCiAaf7vAGCRf\nQU9sZ0xtVKNaqNZ1rOnExXSt1QrJWVKPfsXS3nO60f54wA5qge4ux0VFRevWrQtqnD9//tat\nWx966CHx6datW+fPn79+/fruHRIEIcpZdnb2gLyDSFJdXb1gwYKQhzIyMkymAfKg6iUGnvR5\nO30xMWg4tKRKsTHPDwB7Nvzn/tlXizb05OTkyZMnP/roo6K8BqpoCx6/vsJ76xu/sXtdYnUr\nRqv52S+Xz0uaeNdDvwAAjuNqa2sDEr9x40axagFN08OHD//b7f8vnzZiCF5BW1SK/tgEe4O3\n0a5MzHZrKqxxe2Paulw4HXWWxAnS+nH4W+0AkOgh0Hn7RsfVqsoMAxRufSVyERerwevF0Xqk\nvv1sKyCIH5WcMK7PmWKWLl0aWDsHEDV66dKlfn/HJWvx4sXvvvtuQKC3bNly7733hhRoEaIX\nLgSDkIyMjM2bN995553dD23ZsiUtLTIeCJGCcIdw+MUIxprJAwms2uF68sknCwsLx48fn5OT\nEzLKhlAxs+5dtEMft3Hfl7X21rbcOPVPr7u2IZFt6yjbSlGUWKf1pptuAgCMcVVV1fHzbE/y\nK1ghyxH8t27V+DnMM0jC7TJWSSc0LGnKecvPtHnV1Up3duAQ55M8IQYdrwWAqW3U51k+L3lB\nODQt3n5tV8lcFKMutJbSFBqVFn7+HAkF2lTS1HSwBiHAAI17q0gFFTeib7sxLMsGqbNIUVFR\nQJ0BYN68effdd5/T6dRqtQ6HY+/evRs3bgzZIc/zDQ0NL7/88sSJEUu8MGDce++9P/vZz3bt\n2nXPPfeMHDkSAGw2W3l5+UcfffT6668/+eST0Z5gFxQJOpYEiu+ygMUY/ATOcBEvPPcnJvnS\nvkeagpThT/w4bW9sA+nI4tGNDXS2k2JGhk6+jhAS9bqoqGh3a13DF8d5FoJW0ARiK+LaZ/Nc\nn3z1+goVq6HNCZlnV/KkR3TeEOEYE8FJbuLQFqS4Tzd7KtsW1Co25XSUf4r3EuMdjKzO0pEW\nG/ovq+hHQUKQVKDtNe0A56s0IbBXt/dVoIMIWmcFLMt6vX769Onb3K0mFwAAIABJREFUtm1b\nsmTJtm3bZsyYodPpejpRqVROmTJlzZo1/ZlJVPjtb397/Pjxf/3rX//617/ElpiYDrewefPm\n/e53v4ve1EKB0O5UYU49ic5/AcTEFHuTOC8B9Wqhl9EmBo360euvby0+6ilvAwDaqI655hKl\nXQGgzG7O8qlo7Av84TECB40TBWupRqkgpb1xVMSroBwAEyTXZelE+eMIR/hpGXoLgRJ/OtHe\nZj96ZCctAAKUbyPvKFckzMiRfOgrGJoilAzp9QffITm9fHWbJzshzFxREn5TSYaCTmYwUtHf\nsQKK7PF41OouMVGLFy/esmXLkiVLtmzZsnjx4p5OHNJQFPXRRx8tXbr07bff/uGHH9rb2zUa\nzdixY++666777rtvENptZppoAvMAgAELgE7Ec98nc7Va3uBHh5vrc/W9djomUOItE9l2FwDQ\nsereLAPHI8NBPZnrqIOAcRCDhkXVGp2VESiJF5IxucaWA7WhvnMEP1DfxLXlJ6qU7DCX9+4G\nU4Kfbdcr6OGSFzS5wslLVJXWh0i7UdMPgZbwV20cmxr4IRAkMo7ps4MRTdMhC5h2D1VYtGjR\nF1984fV6v/zyy0WLFvV9skOGoqKizz77rKWlhWVZq9W6a9euBx54YBCqMwAw5z1DESASQ7mO\nr9XyAOAhsQH1+WpNx2noOE0vb9JHeRT1Ws2x+OxGjWBRYKtC4EkgARJdyhntSvIiiW0igafN\nSfRQOotnBmJb3sNzJU6Tihd+U9Wc4fGpeSHN6+E/K4bLYqUyaEmLDe1px/TDyiHh10WTrMtf\nMt5ythUQihuZGEZC2A0bNnR3qgOAl19+OahCXXp6enZ29p///OecnJzBtl12ZcJj7AccsL8K\nADNaaYOP+DrDr+LR9bmXNlP0Bwwwp6mVEnypLvG3cT6BPcC8xh6Le0aKltNnKFbgFSHM3Nr8\nCAfFdMfFsSsP75jZRE00Kbz8cES2qSgzAiAdDtbSTsdFsvCuTACXj99R2h7ykMUVfoYsaZcS\nyjh1ylXZKdOywkvXHXCqE9fRdrt99+7d8+fPLyws7B7ZvHjx4hdffLG7feOyYWgVjW3xuir1\nHSnMLQx+eZxn9VjP15l+EsOcZpokpf3iKVL1mXablwhxv+lIlDxzvMtt5kmCYYN/lgggaZrk\nnsjfN9XedFyY3URrWIIXGCeb5uNjAAAD7LG3ST36FUuz1ccLoW9Qmq09ukhfksF4a9yZgFMd\nQig9Pf2JJ574+c9/vnLlyry84OpEixcv9vv9l7F94+GHH161atW5c+fE6IxBTjyj9J//chXn\n+FpUAgBgAI6Aeo3k+SgcbY79Sf6NuX4v2eU3Y1aQLyU5pB6dJEiOIjmSYvwczV0otIEB7OWS\nS6TirNngQ50idbCP1wHAV0ZDvSX8xMQyF0ev6tEaoVWF7zI0qANVRIKc6kQ+//xz8UFgA7Cw\nsLDzZiDulEFY+jkOBGLR2JUrV2ZlZVGDPq+CgqTw+UV9vUboHNlnYbDZYo+PlTBNMAFQEiu4\nKRwUUtiswR7CYPV7YxgJ3d0S0kbVu39QeDL83SzOjkqzcYK0KVM0Dt5Ddg6cQNVq+pvMlGM6\n9W+ZKyI1c1RI0DMjUjRnmoKjuhHAdaPjwu52sK+gZQKIRWPz8vIGvzoDAGf32hmBRxgAEjwE\n6nSVjPERP1RVSTq6PjtBgUHLAtV1sZ7tIgEIl1fanJ/qHEbpDZ152e0M/263t8SrnfSFVYmf\ngLW55Amt5kctyqn5EauKK9OdOaGEONOoMurCrywuC/SQYWgVjSUUFEvA5hw/ACyuYTR8x0o2\n30YmeMEtcdZNHwWtSkHFEwDAk0ggCAwACEoMBoZjU7TSLiRd7TaMQzsRctJXVEmbmAMAxxK4\n/Ync7mR2XyL7WInyxYOqxPRERMvpRiXku1CbhLUmb4vNF3afskAPGYZW0VhCQWkN2hsaGABI\ndRP/75jqvjPKR0qV95YpzxiEOfnSZq/e19ZoZTAC7KdIjAhCNLFgmNpqjmUT+H6UIOoN7baT\nAKGlEElvcEvX6BOKxu/KAgA8q5me00wrePRDAn9MOxDlEK9kTI5Q6Q0An2kKf9NoCNwsy4hc\nffXVAPDggw8++OCDIV8w2Kzt6W4i9nwon4JDoywkALhVikX1vLPJFj9cwkKiFr8bAJpVuN5A\n5Jov/GwQ4Dw7Nvk8KSoJE9qpjGpX1yBzjHiESRALt0jPNGPqiczWjVTl1myWEIARwMbgDF/4\n6ziZ3mBQk+2uEGmTfP7wl1PyClpGKoRu7p9OjcrP0DGcurw+RD7oCHJtUhYA+Mnss4ZkoasD\nop3xJCrDT17TG9KMM6zG7wTS05yx1pSypTH7zepRf/QrmwCAHCgjQ7paBwA+AnsobGMwANS7\n7Q5Wegv4FYzbF/reLKcfnp2yQA8Z8KWI9gSDOWcIFmgCYwxgUSElJ+1CMk6hSqBTfFRuiUHv\nUTGBj8akhDMGOymxz7hrfwtCTZaE7c6Yo1bjTreujCe85qQvAIDWS54sSaTeHexNiAHa/bKV\nQ0La7CFMHLEaShZomUGHj+dc/uDvK81yAGBScIxR2pT5ADBcSFPzPMb4o2yywsi06uh9KXhV\noSfJ68M9BBRECrbFzpIel64MAk5+SGCZdgTAqCWPYwSAj6pPfdVY2b39sLl5AEa/YqHIEBd+\nl1foKYClN8gCPZTw+XyrVq2aMmWKXq9nGCYpKemGG25Ys2YN1ykaYpDg4Xkn3dX0hgAA3KSw\ny+gyqSQ3xWocpr/uPfLbY6dmNzj+b5jlxdG2T7I8PAg/aqZ9NmkXkqRWgRCpb58OAe9CjFSu\nYSTHKxMkvzKxAr+59mzIQ1a/5DXFr2SGp4TwrfTzwvHq8OODZIEeMrhcrjlz5qxcufLQoUMO\nh4Nl2dbW1h07djzwwAOzZ892OCQPkOsTMYziuJF3n7e4YgSAYXuqb2OaZbQZ5adKnJIC4xtK\n2mhBAIB8G/ngaaWaIwBwpovI9DC0Ony/1N6gHpXCeLJjzLMM7TPFkD61Mz++ZR5GBPX/27v3\ngKjK9HHgz5nLmftwvwiomIh3UBEVq9UiDXYTljUVlW67ZpYsGt++pF131/Kuv6zWXbU0yyTS\nHMESVu1bSoKmooStaYqKclWBAeZ+Ob8/Tp6m4QzgDIcZmOfzT3Nu7zyD8XDmPe/7vBLO76Db\nTEYrZfUxEpPrhfG3BCLLr38LY/w4rwTizW7eMbDed/xU43yCxlEcvcaKFSvOnDmzaNGiJ598\ncuTIkWKxuLGxsaKioqioaMuWLf/4xz/WrVvn7hh/RVmsIVre3+I0s66K4m8JgILbIuvoO0RS\nFWkBYiDBPo+ju7RdrLedohKt5k+pDfjivmAxdfv2fTzXK992TD4qTHolFJqJoOqZgTWpQFgJ\nKwkAVj5l4n6iivSOIfaOIP2KiLQCACTfoN4bqTfxqCRJv/EBnC9Z67VMFqtaxz7IXWt0/gsu\nJuheIzc3d/fu3bNmzWL2hIaGhoaGTps2LTExMTMz07MStNnqYyQeqhWNaBQAAAEQaOCBAQCA\nB2C+0yZQcPi4rElv34mhFSosPN8zgX7XoPIR7t74LmNrPzFhISgeQQmYJ/sUEG01LGuQdy+r\nwTznikh49019jMTfqgJ9Jw+WDQ/l+q292fkbbY6G17tSyAy7OHqN2traxx57jPXQQw89VF1d\n3cPxdMJqjbkjjLktELKNARX1d746QVfIgpU3ZL9WZLYQxImQAAACgFJbuX1rAGi91ljGv0pQ\nvHYr1lJW7p8WiPr5iICge7+tAM0kZQ5XyEb0w/WuOMU6S+UuTNBeICws7MiRI6yHvv3224AA\nz6rzy5OQg1t4rP9j6kiC4LjcqLBO83mU8WyAWSugbsisW4frNfxLBJgBCBH3i5pUn7uWoI6x\n/bU08OieDcLiy3k1O55YKBveDwCaRdaNMdoV47QvSa/861IZxfH8SS8nZSv/TXPlLyN2cfQa\nc+bMSU9Pf+GFF1JSUqKjo/39/VtbWysrK/fv379p06annnrK3QH+hsXBwGwKwGq1GloNIgX7\n8hPdQl/dnFJNng2w7Bryy/Q5gfU2abpiEA5NrL5VqwvidCahWa3h/fbW54aoIUoXYeGr+YNu\ncve+jIBHRwBFfWS+WiulV4KEr2uvjfAJnBIyoAfe3TtpdA7Xa48IdP6hNCboXuP1118vLi5e\nv379+vXr7Q6NHTv2rbfecktUjvAJol5m9TP+5raCAqCAkpqJhsra/rGR3L27ONx3yH9rL/ha\nbGZcUyJrwxMXIO52s97CbT+DiBRqf/vr6kuZ6iK3mgS3h2qzOH1rGiHkB86IuXqs0vam+Whd\nFSZo7txuZX/8SwA8GO38t1vs4ug15HL50aNH33///SlTpvj7+/P5fLlcPmHChPXr15eWljIr\nfHuOYNOvf/4pAppE1IkQ86YYA0VQQgu3xZ4UY/ubeaA0EnR2NvGCjYLBRn5QpaLBTFADZD6c\nvrv/IPvHcffdChlaPq/fzalywzBO39qW8LdLL97Ucb+guBejHPRjDOknlYv7dMF+xBAKhYsX\nL168eLG7A+mcVW/yb/v1/q1ebP1guL6JpMRmgqCIm2Ydp0MKLAD1EsvEBkFpiPmmPMrEj6D3\nfxcWOuXWpWiOH5f5xfWvPldNf3gCgLBaeVYKAALrY8ihPVGGUGcx/V/FmYGtmlYpab77YQUc\nL5Xr5cL9yLomlnJUN+64VKMK/80QJwj+b8Yw1MqsTSQFABRBFUQaayzczuUzWS25g00SKzHz\nWhCTnQHAyPPdMZTDvm8aT8hXDPCjPzzfYpJp9EyJM77ZYU9ld7nVor740ZYfqn4+JxOZCSLE\naJrc3AYAeovZ6nkFW/qM0QPYqzPqTRYzTvX2ElqtdtWqVePHj1coFCRJhoaGTp8+fcuWLe2X\nBHM/grAtvDj2tmBQK09AgZkH//WzDh3A7YyJBr2+Xmo18qiPh9qvIVIvJBq5n/EsDpDSoyYk\nOhPfpni3MIDbQnoA8OORA1ekojM+v7xRAymUWKxJt9Qao+FqC/uy08h1V+rZ7zkoCs5ddb5z\nCbs4eo2GhoapU6deuHCB2VNfX3/48OHDhw9v37790KFDPj7cdq3eE4vW/m9G5o8SCqBGZlXL\nxfIHuF3T5L8tzVagSkKgQSwmKAsFfCDoYswmvlUN3N9IBo0Oazp7zQRCrVgs0+p4FAUAkqhg\n2TDOZ4vIWltO+8oJ6pdeUQqgUkK+cblGYbbc+bl88PiHuQ7AO111kKAB4ORl9fjBTv5u4h10\nr/Hiiy9ev379jTfeOH36dEtLi9lsbmpqKikpycrKKisre/PNN90d4G/wlaJmkX0eJADCNbzh\nDWaFmdv/8eR8AIDCCJ3SqB9/u3n8rRukRc8HtcRcPrDNKhNyW4sDAARSMipeEWK+EgDX/MWX\nfEPUofMnBM8cC+xDw7uT2EyF642/1tGjoJ/BzKOoGQ1NkdfZiygh1xnNDv/qm1zo4sA76F7j\nwIEDn3322YwZM5g9vr6+CQkJCQkJEyZMWL58+TvvvOPG8OwQQHw8RP/cfyWidk/FCMrKv6GG\nkRx+2Q+TygFAaSL+eq5CabQCQKO47uMhwvvrDYcH8US8nqiaT8bFBfcLsVRdI5Q+gqEjgN9D\npfr76cx3BISAoujHgxQBJ31l/qaA2bV3FO1WGUfdRej4RxuEi8Z6A4qiEhMTWQ+lpaXdusX5\nFLV7VaOgVo/RmVj/z+W4jyHCKJCZBdNvChV3Vxvy01uXVhjMBBUscL56+r3ihUUIJz0gGDG6\nx7IzADSRvK+C/cwEwaN+uY22EMRXwb7XpKLvFWE9Foa3kTn44ycX8f80IcTpZjFB9xoTJ04s\nLi5mPXTs2LFhw3pugG0XDfEJaCGtu4YYmhUS23WneBKhZHAgp2/d1qTRCMz+BgEzkIT+78QG\n4f0NfXxla4qy3iEFAGAlmHLUQAGUy5V7CM97mNxXBCjZC8lqDI4m1XYJJuheY/Xq1fPnz1+3\nbt2ZM2eamprMZrNWq71w4cLatWtnz5790ksvuTtAewuHjFEIyPNK/Zrhd/410lDhb66WWW9H\nyUMzJvIk3PYC18qtFEFWKkOI3/5q8Cgw6D1ucYPu5WO2GNh6uil9oMHC+SA/rzUyXMZaFIkC\nKL7Q5HSz2CfVa8THxwNATk4O69GMjIyMjAxm0xOWKIyQKv81KemC+g7J4wl5gjsGbYRU0V/G\n7fgNWpDShwcB5nZ9zVYCvgrU/N5qFfL67K1JhUJqZPt0N5SGQI7X+vJmP9VqHfXcNbZbPbnr\nMEEjDon5grH+TAecX4+9b7BEep9FHKg3WIHgMb82BOwfaGgUWVvNRn+yhxZv7XmFwT6seeKO\nxDgZeq7/3du0Of5m5iNxPs322fuIvqfTVb09eYXvnvdy/MgGqZjJzhTAGX9zSag5WCztw9kZ\nAOrE7N1HASbz/Va8IePKHcdr5dwXiqt6I/Rb/nJyZnJ0ld8vZUWrZFbVIEOQRPbK6MnuDYxr\nVgcjrWfV3vaVcr5krdfSGRzeFQW6MMwO/6L2GgaDYcWKFXl5eTdu3DAYWCqw4I2znRAlGbLw\nfn1zW4veEBeovJ8v4HvBqiJ8CkwEZffAaqDOEGi0tA0e0nPdTF4mUCFkrTjKIyBA3kfHQbuy\nlhen79LBJdzFnJOT8/bbb1++fJk1OyNHxL7y4NAAmUDoDdkZAAiKsMvOBAXNQsGWgcE/tjW7\nK6o+L0jJnoWtFPxcp3G6WY9O0B7LLfequbm5y5cvb2pqwn5n1AGy3e80RYBawP9ZKha2Yklo\nrly77bAWR22z86M4MEH3Gs3Nza+88ooHFuZHHiVcbxJY7Ufkyi3WSK2hSt6Xn466V4vW4SiO\nerXz1RO5TNAUBStXwrBhMGIEuFYmYsaMGXv37mU2Dxw4MH36dPo1QRD79++PiYkRi8VDhgzZ\nt2/f1q1bo6KiRCLR+PHjy8vLmdMKCwvHjBlDkiRJkiqVyrb9nTt3Dh48mL7k/PnzzH6VSkWS\nJEEQdpfY9mPQ5/D5/EGDBm3evNmVj9mxyMhI5uMg5Ehsiz678vZ9Wr3CYhndohVTVgDQ8ng6\nPk/X0ODu6PosKelwhmpTm/Nzo7hM0Js3w6uvwqVL8NNP8OKLsHOn0y3NnTs3NzeX2fz000/n\nzp3LbP7973//8MMP79y5k52dPXPmzNzc3AMHDqjV6oULFy5cuJA5bcmSJVu3btXpdHl5eRkZ\nGbYJ99///ve+fftu3749c+bM559/nt6pUqkyMjLy8vIoimp/id05BoPhk08+2bBhg9OfsVNP\nPPHEE088cfDgwZYW/KKKHPLRa0dp1G/+XP3P89deulqbWtcMAFYCasTk8Ft33B1dnzWyv8MR\nMq50PhIc9l0mJcHhw0BXK+fzITUVvvjinhogiF/C02g0AwYMuHr1qlKpbGtro1/T5Y8Jgjhx\n4sTEiRMBwGg0ikSiS5cuDRkyBAAsFotMJtPr9fRpBw4ceOyxx+iWVSrVnDlz6Dr3BEGUl5fH\nxMQAgE6nCwwM1Gg0AECSZF5eXlpaGusldGB25xQVFSUnJ3P0Iy0rK4uLi+vghB7uhp4yZcrM\nmTOzsnpiFVTUdad2/HNkq5Z+bSWIH+SSjff141EwplUzQ+w7etqMji9HzjFZqHcLr7MeGhIq\nThnvZB1wLu+gfXyA6QqgKPBzfoSPTCabNm3avn37AEClUk2dOtW2OD2dWwGAJEkAiIqKojf5\nfL7tgIcHH3yQeZ2WlmYy/dpzP2LECPqFRCLRan/5n9tkMjGZt/0lrOckJCQ4/Rk7tXTpUu4a\nR33GDZuJKjyKqpaQACC2WpNuqcMnPuj4OuSSU1fUjg4ZzM4PH+IyQS9ZAkxNAKEQMjNdaYzp\n5di9e7dt/wYASCS/majjaKCbWOzwCYlA0D3jwc1mDgvxlJWVLVu2rKGhwWKx4CgO5EjdgP7M\n6xsSMj/Yn6BAy+e9PzDER+FBa+70MY1sg6BpLVrPHMUxeTKcPQs5ObBsGVRUwJgxrjSWnJxc\nVlZ2/vz5kydPMj0V9+TMmTPMa5VKJRSylwdkCIVC205n1kvszjl27JgTgXXdsmXLgoKCeH23\n0A9y3bzxUxtIoRWgTkS+NqS/nk/QZaFbBPwLp4+7O7o+KzLY4XxuH2knqaYDHP+qjxwJa9bA\nqlUwZIiLLZEkmZKSMn/+/D/+8Y92t8xd9Pzzz5eXl1ssFubJXsfn2z4YdHQJc47ZbD527Jij\nUnPdYuLEiSUlJdy1j/qGurbmrf2D1UI+AEX99svkoaY6NwXV943qr1A6KIr00Eh/p5vtTVO9\n586du3379m3btjl3+QsvvJCWlnb9+nU+n2/7ZM+RtLS0Xbt2zZkzx2QyCYVC1kuYcyiKGj58\n+HvvvZecnOxceJ168803Z8+evWbNmmnTpgUHB3dXtwzqY77/7utLvpL/GTYw2GT/pbtBiN+9\nOMTat9rPTxSgcP4O2qN/ye36VRsbG6dPnz5hwoQOzulg87nnnnvuuec6fRfbzbS0NHrYRgeX\n2J3DXV/wlClTAODpp592dMI9vfWJEyfWrFljsVj4fH5OTg7zeLO0tHTt2rXt96PeQm0xAUjM\nPKJGJLI7FCbBYkkc0hhY1kOobTKcuNQ8KdrJ+WW94y9qa2trfX393//+95UrV7o7lr7g5MmT\nGzZsyMnJKSgoyMnJ2bhxY2lpKQCUlpZu3Lix/X7Ui0it7ZbpvSswOKInI/EqFAVmC/sd0rnr\nbU432zsSdGBg4JgxY7KysjoeCNy3dWMN6HXr1mVlZdF3xwkJCdnZ2WvXrgWAtWvXZmdnt9+P\nehGKbeEl2jU1ziTkSpXjWhx6s/MrjXl0FwfD9fptOArNltFovP/++5nNhIQEi8UCABaLxbZP\ng9mPepEmAR/AvtwoTadxvqwa6lhFlcPbZInQ+XWKe0eCRjSDwbBp06Y9e/ZcvHhRr9f7+fmN\nHj16zpw5zzzzzD09MywoKLDdLC4uDg8P78qFixcvPnnyJP0aR/t5JiFYCYqg2uVnpdnKNzlf\ntQd1jM93+MVl1ADnu/4xQfcaGo0mMTGRyY8A0NDQ8PXXX3/99dfbt28/dOiQQqG41zaNRuO+\nffv279//j3/8o1uDRW4zulVf4qts/4Vxfs3tH4KdH++FOjZxsPK/1Rpg+6YuFjh/K4M3Qb3G\nihUrzpw5s2jRopKSErVabTAYamtrDx06lJ2dXVFR4USG/fbbbxctWnT+/Pl33nknOjq6K5f8\n5S9/WX0XPbEeeRrSag0yGgkKxqvb/tDQHNuiBQACwNdkDiOl7o6uz/JXkLMmBItFLL0ZF2ud\n71nCO+heIzc3d/fu3bNmzWL2hIaGhoaGTps2LTExMTMzc926dV1sSq/Xr169+ubNm/PmzXvk\nkUe6HsO4ceOY1ytWrOj6hajH1EtEDzS1hhpME5t/yQtfB/p8HB6YH+IXI8Tfdw79XKfVs420\nEwk8sxYH6la1tbWO5rg/9NBD1dXVXW9q165dI0aM+OCDD+yyM5/Ptx1XV1payuc7/3wDucVJ\nP+UlmZTJzgCQeFutMFuqxSRl4rBWDKq4wfKckABIcHYQNGCC7kXCwsKOHDnCeujbb78NCAjo\nelNnzpxhVjywxTom2rlokbtUkQJTuzltCrOllc/vR+DvO4csbB3QfnJhmJ/zC9ngV55eY86c\nOenp6S+88EJKSkp0dLS/v39ra2tlZeX+/fs3bdr01FNPdb2pW7duPfnkk3Y7CwoKmLHPOJOw\n97ICdU0iauPzZRYLAUABNAkFdSIhDyhJAC55xZV6tYGgWGrzu7KcCmCC7kVef/314uLi9evX\nr1+/3u7Q2LFj33rrra43Zbt+mJ2EhIT2C8egXoQAnp5vPekri1e3ySzUDTH5o1wioMDAI863\n/BQHD7s7wL7pcp3OwVQLl2ZgYILuNeRy+dGjR7du3bpnz56Kigq1Wi2RSEaMGDF79uzMzExR\nu8ILyDsFgOA2GAEgc+QgZucgnfGqhDQY8IkCV0wW9hn2FECTxuQnc7JeEibo3kQoFC5evHjx\n4sXuDgR5rkEWqpEHFQopD4DOGTyg1AIeADxChbk3tj4sMkhyppJ9sdDin5pT4oKcaxYfGiDU\npwgNGgsBBh7P5qs10cbnyayWsOAB7ourj7M4qJQEALdanK9UgQm6F7BYLKtWrerfv7/d/rCw\nsGeffbaystItUSHPNKWhaZhGd1UmIu5mDIoCI4+n4fGLb990a2h9GesQDpqExJmEfdq8efNe\neeWVmzftf7tqa2s/+OCD2NjYQ4cOuSUw5IECLNSDd1q0PJ6VWbH57osbeq27ourzgpUiR6uh\nyknne5IxQXu6vLy8zz//PD09vby83O5QZWXlpk2b/P39Z82adePGDbeEhzxNUGCoj5n9gVVY\ncEgPB+M9Km60OiqZyXNcR6lTmKA93fbt25988snc3NyYmBi7Q4MGDcrKyiovLx88ePCGDRvc\nEh7yNJLpv482GKO09oXrRuiM08c96JaQvEFTm8Olu4f2c74ECo7i8HRlZWXffPNNByf4+vq+\n8847Cxcu7LGQkCcjxGL/BZn/c7L408bai3KRQiCKtBIj/EOmjo53d2h9mY+MPZfyCSIqVOZ0\ns5igPV1zc3NUVFTH58THx1dVVfVMPKgXEAiD7n94qbuj8CpmM3v/hoWiLtZohoU7maOxi8PT\nKZXKxsbGjs9pa2vD8vkIuZHeZHXU0+xKuVH8rfZ0sbGxu3fv7vicgoKCYcOG9Uw8CKH2BgZJ\nHI2z05kcLuPbKUzQni4jI+Nvf/tbB93QZWVlL7/88pw5c3oyKoSQrVH95ZOH+LIu2Osjdn6G\nPSZoT/f000+PGzfukUcemT9/fkFBQVVVlV6vN5vN9fX1hw4dWrBgwaRJk0JCQnD+N0Lu5SNj\nr8wf4uf82kP4kNDT8Xi8AwcOpKen7969m7WvY8KECfn5+VKMQh+3AAAXPklEQVQprmaEkNv8\nXKctPHeb9VB/f4nTzeIddC/g4+NTWFhYUFDw+OOPR0REkCQplUoHDhw4e/bszz///MSJE6Gh\noe6OESGvduEmy3IqNIvV+YqjeAfda8yYMWPGjBnujgIhxMLgYJgdAAQonO/iwDtohBByVYiS\nveKzgMcT4lRvhBByozB/9hUzzFarzsiy1HcXYYJGCCFX+crY+zF4BJCCPlpulCCI+Hj7AgLx\n8fFMWT/CAdajPj4+SUlJOCUaIdTtzl5jX07FTybk8/puF8eVK1dqamqYzerqarv69BSb9kct\nFsuFCxdGjx6dmZnZc9EjhLxD1S378oE0vYPSr13k6Qk6OTm5oKCA2SwoKEhOTnaiHR6PFxYW\ntmrVqrKysu6LDiGEAByPpeM5qOLfRRwmaAqoPZX5L3z3P5nf/W/B9ULnGklNTc3Pz2c28/Pz\nU1NTnQ4JKwohhLgQ5sf+kHBAoNiVZjlMWIVVh3f9nFetqbupqfnwp0/+r+aYE40kJSUdP368\nra0NAFpbW0tKSpKSkpxox2KxVFVVvfjii+PGjXPicoQQ6sD4+5Ss+y/VaLQGjxzF8f2tMh4Q\nABQFFA943zeccaIRpVKZkJBQVFQEAEVFRZMnT1YoFLYndPCQ0PaoQCAYOnTo2bNn161b5+Ln\nQgghO9du61j3myxUdZPzq3pzOJNQJpACQQD9yI6g5EInS1bTvRyPP/44a/+Go3XAunIUIYS6\nhc5oBSAAWBIO34VuaA7voGcMTGJuZvk8wR8GPOpcOykpKQcPHtTr9YWFhSkpKd0XIEIIdY+B\ngWLW7AwAVsr5gRwc3kEP841+J2HVNzXFBBCPREwNkzpZ0CciIiIyMnLlypWDBg0KDw/v3iAR\nQsh194VIBXye2cKSi12olcRxsaQB8oinoue63k5qaurbb7/92muvud4UQgh1O4uVMlvYM/Gd\nVhP0c7LZ3jHsLDU11Wg0svZvdPyQECGEeoDeZGXt4iAIqG70yIeErmMe8cXGxtrND7R70fHl\nCCHEqUsOVoalKJDhklcIIeRGbXr2wc4EQUwY7ON0s5igEULIVY5mDA4LkwYo2EtFdwUmaIQQ\ncpWPRABsa3r/VKM1OXh42BWYoBFCyFWX63WsDwkpimrVmZ1uFhM0Qgi5qqOxYwTeQSOEkPsM\nCZUKHBTmb9F6ZLEkhBDyEgqxwOxgyqDe6PxUb0zQCCHkqltqo6NDvjLnp5tggkYIIVeZXKiI\n1AFM0Agh5CofscPBzqcq2deT7QpM0Agh5KqKG62ODt28w76ebFdggkYIIVcZTA67OIxGHMWB\nEELuU9vs+DbZwfC7rsAEjRBCrmp1UCwJAMRCrGaHEELu4y8jWfcTAAoJJmiEEHKfpDEBfLZs\nSgEMCZU63SwmaIQQcpVcLIgOY0/Eg4MlTjeLCRohhLpBdSP7ZMLvcRw0Qgi5l6OyoiYzVrND\nCCH3qVUbHK2BKhPhQ0KEEHKfc477MS7Xa51uFhM0Qgi56kajw4kqGsdDpDuFCRohhFzVQRbm\n8bAPGiGE3MjxmldyEdaDRggh96EcPSLscBZ4pzBBI4SQ6xzeQVscLIXVFZigEULIVYQLS3d3\nABM0Qgi5aoC/w/ncjnunO4cJGiGEXMV3PFTD+WkqmKARQsh1VQ4KcQAA4UKG9ugETRBEfHy8\n3c74+Hji7ncGot2XB7VaPX369D179vREfAghBAAdPgkUsdYh7RqPTtAAcOXKlZqaGmazurq6\nsrLS0cl1dXWPPfbYyy+/PGvWrB6JDiGEAAD4jnuazVTfXfIqOTm5oKCA2SwoKEhOTmY98/Ll\ny2lpaZs2bUpMTOyp6BBCCABA6HgyitnscD3ZTnGaoKmfbn50qGzWobL0yzWfOddEampqfn4+\ns5mfn5+amtr+tLKysieeeOKTTz4ZN26ck8EihJCz9EaHXRxmzxwHfaX2ix+v/6tVd6NVd638\n6v+73vCVE40kJSUdP368ra0NAFpbW0tKSpKSkuzO+eabb/7617+qVKqoqKhuiNu7lZaWpqWl\npaSkpKWllZaWujschHqHDmYSuoLDBF3bWEwQPAAKgALg1TYWO9GIUqlMSEgoKioCgKKiosmT\nJysUCtsTvvjiizfeeEOj0cjl8u6J24uVlpZu3LgxJyenoKAgJydn48aNmKMR6hIXBjt3gMME\nLRT8mjEJAoQCRQcnd4Dp5WDt3/jkk08OHTqUmZm5aNEip0NFtLVr12ZnZyckJABAQkJCdnb2\n2rVr3R0UQr0AN/mZywQdFTaHuNs+jxAM7ufkyIqUlJSDBw/q9frCwsKUlBS7o3v37pVIJAsW\nLLBYLDt27HApYq9nsVjo7ExLSEiwWJyv84KQ9xAJOMmlztfB61SAIiZxzCfXGw4SBC8yeIZc\n0t+5diIiIiIjI1euXDlo0KDw8HC7owLBLx9h69atDzzwwKRJk4YPH+5S3Mix7777rqGhgX5t\nNrOvwIaQF4oIEP9cx75yiis31xwmaABQSu8bHZnpejupqalvv/32a6+91sE5CoVi+/btTz75\nZHFxsVgsdv1NUXu5ubknT56kX/N4nj5GE6Eew3M8DtqVp4e943csNTXVaDS279+wExcXl5GR\nsWTJkp6JygtJpVLlXe2ncSLktRpaHE717mAOS6e4vYN2ETNyJTY21nYUC/O6/dAWzM6cWrdu\nHfN6ypQpbowEIY/SwW2yK181e8cdNOoZfD7fdlxdaWkpn+9KKS6EvIWfvIObXY+cqIJ6Hdux\nz8yYaHcHhVAv0KZz+Mzc4kItDo/u4kA9jBn7bLFY+Hx+Tk6O7ag7hJAjOqPDghsCFx7WYIJG\nv5GQkKBSqdwdBUK9TAflRmUi5/sJsYsDIYRcZTQ7TNBW7INGCCE3sjguKao3eWi5UYQQ8go8\nx2sSEvy+W7AfIYQ8H+F4qIYZ76ARQsiNSMdjNTro/egUJmiEEHJVuL/D+j+ulPLHBI0QQq4K\nUgi5aBYTNEIIueqnWvZaoy7CBI0QQq7SGR0ubcHn4SgOhBByH5PjR4Eu5GdM0Agh5DLC8cIp\nQhcKamCCRgghVxGO75MtVuziQAgh9+mgo1mAfdAIIeRG4b6ko0P9A51fIhUTNEIIuWr8YB/W\n/X4yYfKYQKebxXrQCCHkqogAcVJswJHzjWYLBQB8AsIDyIdHBQXIXZrAggkaIYS6wcj+ipH9\nFd3bJnZxIISQh8IEjRBCHgoTNEIIeShM0Agh5KEwQSOEkIfCBI0QQh4KEzRCCHkoTNAIIeSh\ncKIKcpLBYLh48eKRI0fcHQhCvRiPx5swYYJcLmc9SlCurGjIMYIgxo8ff+rUKdud8fHxp0+f\n9uSwvcTQoUNramqEQk6WYlMoFFKp1Gg0NjU1cdG+x+Lz+YGBgQDQ1NRkNBrdHU6P8vHxEYvF\nXviPvm3btpkzZ7Ie8vQE7efnd/78+bCwMHpPdXV1TExMY2OjJ4eNXLd69eq9e/fGxMRs377d\n3bH0qLq6usceewwAtmzZEhcX5+5wetTrr79eWFiYkJDw3nvvuTsWT+HpfdDJyckFBQXMZkFB\nQXJyshvjQQihHsNhgqYA9lVdzPr+8NJTh7+8edm5RlJTU/Pz85nN/Pz81NRU2xNUKhVJkgRB\nkCSpUqlcihghhDwJhwn6PzWVu6/+WKNrq9a2fnTlh2/rrzvRSFJS0vHjx9va2gCgtbW1pKQk\nKSmJOapSqTIyMvLy8iiKysvLy8jIwBzdN/j6+oaHh9O9sV6Fz+eHh4eHh4eLRCJ3x9LT/Pz8\nwsPDAwIC3B2IB+GwD/qtiuPljQ0UUADAIyA+IOx/R066pxYIgqAo6tFHH3322Wcff/zxPXv2\nfPjhh0VFRfR+ACBJMi8vLy0tjT5fpVLNmTPH2x6tIIT6Kg7voKV8IcAv2Z8CQi5wuCRMx5he\njvb9GyaTicnOAJCWlmYymZyNFyGEPAuHCfoPEYN5xC/tCwhecvhg59pJSUk5ePCgXq8vLCxM\nSUnpvgARQsijcThRZagyYH3cw0frqwiCeDh0YD8J+0jsTkVERERGRq5cuXLQoEHh4eG2h4RC\noUqlsu3i4GhYLkII9Txuh9n1lykz7hs1f9BIp7MzLTU1dc2aNXb9GwBg+2CQeWDoyhshT1Bd\nXZ2Tk2OxWNwdCEJu5ukTVejwysvLx4wZc+7cudjYWNv9cPfBoMlkEgqFtg8MUe9VWFi4c+fO\n9PT0P/7xj+6OpeeUl5fv3LnT19d3zJgxcXFxdl8W+zCv/eBd4dEJGnmnd999Nz4+fvPmze+/\n/76PD/tq9n3Mzp07v/vuu7lz5zY1NZ07d66ysnLz5s3e8Nk/+uij48ePe+EH7yJM0Mjj5OTk\nrFmzZseOHTqdbvHixe4Opyc888wzWVlZY8eOpTd37NhhNBqfe+4590bVA55++umlS5eOGTOG\n3vzoo480Go2X/KN3hadP9UbeRq/Xi0QigiDS09O///77q1evujsizlVXVzc3N48YMYLZM3To\n0ObmZjeG1DNu3LjR1tZm+8Fnz5596tSpa9euuS8oz4IJGnmWK1euDB48GACkUum8efO2bdt2\n8eLFvj28vampSalU2g5AOn36dL9+/dwYUs9oamry8fGx/eBSqXT+/Pnbtm1zY1QeBRM08iyX\nLl2Kjo6mX48bN+7y5csrV66sqalxb1ScGjVqVGxsbH19Pb158+bNkpKSGTNmuDeqHhATE9Ov\nX7///Oc/tjsfeeQRrVZ7/Phxd0XlUTBBI8/y888/R0dHG43GvLy8pUuXTp48mSTJPn87mZ2d\nzXzGLVu2TJ8+3c/Pz70h9Yxnn302NzdXq9Uye+jerU8//dSNUXkOTNDIs9y+ffvixYsvvPBC\nZWXlxo0bly5dGhUVtX//fnfH1UNOnDhRWVn5+OOPM3v69reHgQMHTpo0KTc313ZnXV1dcHCw\nu0LyKJigkadobGw0Go03b97My8tbsmTJ8uXLQ0JCAOCZZ56pqKjow8ONGhsbmVk5X3755Wuv\nvaZUKgHg2rVrr7766qZNm/rwZweA+fPnf/vtt9XV1cyes2fPMuM6vBwOs0PuZzQa9+/fX1BQ\n8Nprr0kkkv79+/N4XnHrYPvBhw0bBgALFiz45z//aTAYdu3adfLkyblz5z766KMEQbg7Um4V\nFBR8/vnnY8eOjY2NvXjx4vfff79q1SpmHSVvhgkaudnly5fXrFkTFRX1zDPPeNUXW9YPvm7d\nOoFAUFZWNmXKlHnz5kmlUvcG2TOsVuuPP/547ty5H374Yfjw4enp6V7ywTuFCRq5mVqtvnnz\n5siRI90dSE9j/eDnz5//4osvFixYgDOeEWCCRgghj+UVPX0IIdQbYYJGCCEPhQkaIYQ8FCZo\nhBDyUJigEULIQ2GCRgghD4UJGiGEPBQmaIQQ8lCYoBFCyENhgkYIIQ+FCRohhDwUJmiEnGS1\nWnfs2JGYmBgUFESSZHBwcFJS0ueff+7uuNyJIIiuF0dduHBhn6+k6iJM0Ag5Q61WT506NTMz\n89FHHz179qxarT5y5EhgYOCcOXPS09OZAvzIEa1Wm5+f7+4oPJ3A3QEg1Culp6cfP3780KFD\niYmJ9J6YmJhdu3aZTKa8vLzY2Njly5e7N0KP1djYePLkyXXr1jU0NLg7Fo9HIYTu0YEDBwBg\n7ty57Q+Vl5cDQEREBLOnra1t+fLlgwYNIkly4MCBy5Yt02g0zFH61/Do0aMPP/ywXC6XyWS/\n+93vzpw589Zbbw0dOpQkyaCgoCVLluj1etvzT506lZiYqFAolEplRkZGQ0ODbQxdecdjx45N\nnTpVKpX6+Pj8+c9/tj3BZDKtWrUqKipKJBJFR0evXr3aZDJ15fIu5hZMQV2HPx2E7hm9qGt+\nfn6nZ5pMpgceeEAikeTn52s0mry8PIFAMGnSJLuEGxwc/OWXXzY1NS1btozeExkZWVxc3Nra\n+vLLLwPAq6++ant+QEBAUVGRRqMpKCiQSCSjRo3SarX39I5hYWHFxcVtbW0LFiwAgJycHCbm\n9PR0Pp//8ccfazSavXv3kiQ5ffp0s9nclcvvKedigu4U/nQQumcREREAcP369U7P3Lx5MwBk\nZ2czexYtWgQAa9asoTfpJLVjxw56k/nW/9VXX9F7mpqaACAqKsr2/LVr1zINvvHGGwCwatWq\ne3rHLVu20JuXL18GgCFDhtCb+/btA4CFCxcyl2dnZwPAtm3bunI5JujuhT8dhO4ZSZIAoNPp\nOj1zypQpdIcAs6ekpAQAxo8fT2/SSaq6upreZJ4uqtVq5hIAEIlEtuefPn2aOXr69GkAiIuL\nu6d3rK+vpzdNJhMASKVSevMPf/gDAJSUlDCXl5aWAsD06dO7cjkm6O6FS14hdM9kMplWqzWZ\nTAJBJ4/ZAwICGhsb6+rqQkJC6D0tLS0+Pj4KhaKlpQUA6HFmtk3Re2x/MW330K8bGxv9/Pzo\no62trUqlUi6Xt7a2dv0dLRYLs3S6bfshISENDQ227avVal9f35CQkLq6uk4vbx98B+7pZO/k\n0cPsCIJISkpi3d/zwSDECAoKAoA7d+50eqZarQYAf39/Zo9YLAYAvV5ve1qnid6OQqFgXtML\nYBsMhnt6Rya92mlsbKQvJ+7y9fWFdh/W0eWoe3n6T3nUqFEffPCBu6NA6DcmTpwIAPSADTtX\nr14lCCIsLIzelEgkAEDf29LoDMjcnzrHaDQyr+nGmQZdfEeZTAYAzc3Ndt+16a4M1MM8PUGv\nWLFiy5Yt1dXV7g4EoV/RozhYJw3SI/B+//vf05sjRowAgMrKSuaEiooKABg1apQrAVy/fp15\n/dNPPwFATExMt7zj6NGjAYB+9IfcjtsEbTp1Qv/Jh/pd283nzjjXgkQi2bhx4/PPP896VKVS\nkSRJEARJkiqVitlv1weCXSKoe82cOTM+Pv7jjz8uKyuz3d/c3LxhwwaZTPbKK6/Qe2bPng0A\n+/fvZ84pKipi9juN/jNAy8vLg7t/M1x/x4yMDAD47LPPmD01NTUEQUyYMKErl/P5/K6chrqK\nu+ePpvIyzaa1mk3rNO+u1Wxaa/pvxb22wISXmZn58ccf2+3ft2+fRCLZu3cv/Voqle7bt8/u\nQtZNhFxXU1MzfPjwwMDADz/88NatWzqd7ujRo+PGjVMoFEVFRcxper1+7Nixcrm8sLBQp9Md\nPHhQJpPFx8cbjUb6hPa/hh3voV8rlcqioiKtVrt7926BQDBhwgRmmLOL72g2m6dNmyYWiz/7\n7DOdTnfp0qU//elPwcHBFy9e7Mrlw4cPB4BTp0515WfIdQrqAzj86ej379G8u06zaa1m01rN\nu+v1X+6/1xaYf7y2tra4uLi6ujrb/UKhcPfu3czJ+/btEwqFdheybiLULTQazZo1a8aNGyeV\nSsVicXR0dFZWVvvB0Y2NjYsXLw4NDRUKhZGRkdnZ2bY9vM4l6F27do0ZM0YsFkdERGRlZdl1\nGbv4jnq9/s0334yMjBQKhWFhYU8//XRVVVUXLz98+HB0dDR9H93Jjw8TdBdwOMzOUFhguXwJ\n6PYJQjBiFJnIMiSjAwTxa3hff/31v//97z179jD7WTsuqLtjfWw/l90mQr0XDk3zKhz2QQvH\nxAGTQ3k8Qcw4V1pLTEz08/OjEzTDtkQArf2FWq3WlfdFCCF34TBB8/qFi+c+JYybIBw/UTL/\nGV5QsIsNrl+/fvXq1cx4TKFQaPsYXaVSMYNDhUIhMw7pzBknn08ihJB7cTuKgxcQKLx/inDy\n7whfl0Z90pRK5VtvvZWVlUVv5uXlLViwgC4doFKpnnjiCfpxNgCMHj16w4YNbW1tFy5ceOml\nl1x/a4QQcoOe7fK+N6zhPfXUU8x++sEgAAiFQtvSYqdOnYqJiSFJcvjw4SqViu6DRgih3gWf\nniGEkIfy9JmECCHktTBBI4SQh8IEjRBCHgoTNEIIeShM0Agh5KEwQSOEkIfCBI0QQh7q/wNp\nI3we6UfOsQAAAABJRU5ErkJggg==",
343 | "text/plain": [
344 | "plot without title"
345 | ]
346 | },
347 | "metadata": {},
348 | "output_type": "display_data"
349 | }
350 | ],
351 | "source": [
352 | "options(repr.plot.width=4, repr.plot.height=3)\n",
353 | "plot_complex_cell_trajectory(valid_subset_GSE72857_cds2, color_by = 'as.factor(cell_type2)', show_branch_points = T, \n",
354 | " cell_size = 0.5, cell_link_size = 0.3, root_states = c(15)) + scale_size(range = c(0.2, 0.2)) +\n",
355 | " theme(axis.text.x = element_text(angle = 30, hjust = 1)) +\n",
356 | " theme (legend.position=\"left\", legend.title=element_blank()) + scale_color_manual(values = detailed_cell_type_color)"
357 | ]
358 | },
359 | {
360 | "cell_type": "markdown",
361 | "metadata": {},
362 | "source": [
363 | "# Session Info"
364 | ]
365 | },
366 | {
367 | "cell_type": "code",
368 | "execution_count": 8,
369 | "metadata": {
370 | "collapsed": false
371 | },
372 | "outputs": [
373 | {
374 | "data": {
375 | "text/plain": [
376 | "R version 3.3.2 (2016-10-31)\n",
377 | "Platform: x86_64-apple-darwin13.4.0 (64-bit)\n",
378 | "Running under: macOS Sierra 10.12.5\n",
379 | "\n",
380 | "locale:\n",
381 | "[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8\n",
382 | "\n",
383 | "attached base packages:\n",
384 | " [1] splines stats4 parallel stats graphics grDevices utils \n",
385 | " [8] datasets methods base \n",
386 | "\n",
387 | "other attached packages:\n",
388 | " [1] destiny_2.0.8 dplyr_0.7.1 plyr_1.8.4 \n",
389 | " [4] monocle_2.2.0 L1Graph_0.1.0 lpSolveAPI_5.5.2.0-17\n",
390 | " [7] simplePPT_0.1.0 igraph_1.0.1 DDRTree_0.1.5 \n",
391 | "[10] irlba_2.2.1 VGAM_1.0-3 ggplot2_2.2.1 \n",
392 | "[13] Biobase_2.34.0 BiocGenerics_0.20.0 Matrix_1.2-10 \n",
393 | "\n",
394 | "loaded via a namespace (and not attached):\n",
395 | " [1] nlme_3.1-131 matrixStats_0.52.2 pbkrtest_0.4-7 \n",
396 | " [4] xts_0.9-7 RColorBrewer_1.1-2 repr_0.12.0 \n",
397 | " [7] tools_3.3.2 backports_1.1.0 R6_2.2.2 \n",
398 | "[10] rpart_4.1-11 Hmisc_4.0-3 lazyeval_0.2.0 \n",
399 | "[13] mgcv_1.8-17 colorspace_1.3-2 nnet_7.3-12 \n",
400 | "[16] sp_1.2-5 smoother_1.1 gridExtra_2.2.1 \n",
401 | "[19] quantreg_5.33 htmlTable_1.9 Cairo_1.5-9 \n",
402 | "[22] SparseM_1.77 labeling_0.3 slam_0.1-40 \n",
403 | "[25] scales_0.4.1 checkmate_1.8.2 DEoptimR_1.0-8 \n",
404 | "[28] lmtest_0.9-35 robustbase_0.92-7 proxy_0.4-17 \n",
405 | "[31] pbdZMQ_0.2-6 stringr_1.2.0 digest_0.6.12 \n",
406 | "[34] foreign_0.8-69 minqa_1.2.4 base64enc_0.1-3 \n",
407 | "[37] pkgconfig_2.0.1 htmltools_0.3.6 lme4_1.1-13 \n",
408 | "[40] limma_3.30.13 TTR_0.23-1 htmlwidgets_0.8 \n",
409 | "[43] rlang_0.1.1 FNN_1.1 bindr_0.1 \n",
410 | "[46] zoo_1.8-0 combinat_0.0-8 jsonlite_1.5 \n",
411 | "[49] acepack_1.4.1 car_2.1-4 magrittr_1.5 \n",
412 | "[52] Formula_1.2-1 Rcpp_0.12.11 IRkernel_0.8.6.9000 \n",
413 | "[55] munsell_0.4.3 scatterplot3d_0.3-40 stringi_1.1.5 \n",
414 | "[58] MASS_7.3-47 Rtsne_0.13 grid_3.3.2 \n",
415 | "[61] crayon_1.3.2 lattice_0.20-35 IRdisplay_0.4.4 \n",
416 | "[64] knitr_1.16 uuid_0.1-2 boot_1.3-19 \n",
417 | "[67] reshape2_1.4.2 glue_1.1.1 evaluate_0.10.1 \n",
418 | "[70] latticeExtra_0.6-28 data.table_1.10.4 laeken_0.4.6 \n",
419 | "[73] vcd_1.4-3 nloptr_1.0.4 MatrixModels_0.4-1 \n",
420 | "[76] VIM_4.7.0 gtable_0.2.0 assertthat_0.2.0 \n",
421 | "[79] RcppEigen_0.3.3.3.0 e1071_1.6-8 class_7.3-14 \n",
422 | "[82] survival_2.41-3 qlcMatrix_0.9.5 HSMMSingleCell_0.108.0\n",
423 | "[85] tibble_1.3.3 pheatmap_1.0.8 bindrcpp_0.2 \n",
424 | "[88] cluster_2.0.6 fastICA_1.2-1 densityClust_0.2.1 "
425 | ]
426 | },
427 | "metadata": {},
428 | "output_type": "display_data"
429 | }
430 | ],
431 | "source": [
432 | "sessionInfo()"
433 | ]
434 | }
435 | ],
436 | "metadata": {
437 | "anaconda-cloud": {},
438 | "kernelspec": {
439 | "display_name": "R",
440 | "language": "R",
441 | "name": "ir"
442 | },
443 | "language_info": {
444 | "codemirror_mode": "r",
445 | "file_extension": ".r",
446 | "mimetype": "text/x-r-source",
447 | "name": "R",
448 | "pygments_lexer": "r",
449 | "version": "3.3.2"
450 | }
451 | },
452 | "nbformat": 4,
453 | "nbformat_minor": 1
454 | }
455 |
--------------------------------------------------------------------------------
/comparisons/simulated_data/eclair/README.md:
--------------------------------------------------------------------------------
1 | # Comparison with ECLAIR [(Giecold *et al.*, Nucl. Acids Research, 2016)](https://doi.org/10.1093/nar/gkw452)
2 |
3 | ## Contents
4 |
5 | * [*eclair_plots*](eclair_plots.ipynb) visualizes the results of running eclair
6 | * [*logfile_run_X_krumsiek11_scaled.txt*](logfile_run_X_krumsiek11_scaled.txt) shows the logging output and the parameters that allow to reproduce the results discussed [here](../)
7 | * [*X_krumsiek11_scaled.txt*](X_krumsiek11_scaled.txt) contains the scaled data matrix for the simple tree, [*X_krumsiek11.txt*](X_krumsiek11.txt) contains the equivalent unscaled matrix and [*X_krumsiek11_blobs.txt*](X_krumsiek11_blobs.txt) contains the data describing tree and clusters; all in tab-separated format as required by ECLAIR. These files have been generated in [*../../comparisons_exports*](../../comparisons_exports.ipynb), which also provides visualizations of the data.
8 |
9 | ## Notes
10 |
11 | * See the discussion of the results [here](../).
12 |
13 | * We acknowledge help by G. Giecold and S. P. Garcia, who adviced to scale the data matrix and provided default parameters. Parst of the correspondence are archived here: https://github.com/GGiecold/ECLAIR/issues/3
14 |
15 | * The algorithm could not handle the unnormalized data matrices [*X_krumsiek11.txt*](X_krumsiek11.txt) and [*X_krumsiek11_blobs.txt*](X_krumsiek11_blobs.txt).
16 |
--------------------------------------------------------------------------------
/comparisons/simulated_data/eclair/logfile_run_X_krumsiek11_scaled.txt:
--------------------------------------------------------------------------------
1 | (py27) Alexs-MBP:eclair alexwolf$ python -m ECLAIR.Build_instance
2 |
3 | *****************************************
4 | *****************************************
5 | *** ECLAIR ***
6 | *****************************************
7 | *****************************************
8 |
9 |
10 | ECLAIR: provide the path to the file holding the data to be analyzed:
11 | ./X_krumsiek11_scaled.txt
12 |
13 | ECLAIR: how may rows count as header in this file? Enter '0' if the file is not adorned by any header:
14 | 1
15 |
16 | ECLAIR: which column of the data-file holds the names, tags or IDs of its samples? Enter '0' for the 1st column, '1' for the second, etc.:
17 | 0
18 |
19 | ECLAIR: does this data-set include some time information? [Y/n]
20 | n
21 |
22 | ECLAIR: you may choose to exclude some columns as features. If this option does not apply, simply press 'Enter'. Otherwise, provide a list of numbers:
23 |
24 |
25 | ECLAIR: please give an estimate of the number of samples in this data-set:
26 | 600
27 |
28 | ECLAIR: please enter the number of trees that will be bagged into a forest (a value of '50' is recommended):
29 | 50
30 |
31 | ECLAIR: how many points do you want to sample from the dataset? Please provide a fraction of the total number of cells:
32 | 0.8
33 |
34 | ECLAIR: choose the clustering algorithm to be applied to each of 50 subsamples from your data-set.
35 | Available methods: affinity propagation (1), DBSCAN (2), hierarchical clustering (3) & k-means (4)
36 |
37 | 4
38 |
39 | ECLAIR: how many centroids to generate for each run of k-means clustering?
40 | 5
41 |
42 | ECLAIR: the total number of consensus clusters defaults to the highest number of clusters encountered in each of the 50 independent runs of subsamplings and clusterings. Do you want to provide a value instead? [Y/n]
43 | n
44 |
45 |
46 |
47 | ECLAIR INFO 2017-09-15 09:09:31: ready to proceed!
48 |
49 |
50 |
51 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 1.
52 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0896 seconds.
53 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 2.
54 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0386 seconds.
55 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 3.
56 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.046 seconds.
57 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 4.
58 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0503 seconds.
59 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 5.
60 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0482 seconds.
61 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 6.
62 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0516 seconds.
63 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 7.
64 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0496 seconds.
65 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 8.
66 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0489 seconds.
67 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 9.
68 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0468 seconds.
69 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 10.
70 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0479 seconds.
71 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 11.
72 | ECLAIR INFO 2017-09-15 09:09:31: done with this round of clustering; it took 0.0498 seconds.
73 | ECLAIR INFO 2017-09-15 09:09:31: starting run of clustering number 12.
74 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.048 seconds.
75 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 13.
76 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0505 seconds.
77 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 14.
78 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0546 seconds.
79 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 15.
80 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0499 seconds.
81 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 16.
82 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0489 seconds.
83 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 17.
84 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.044 seconds.
85 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 18.
86 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0456 seconds.
87 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 19.
88 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0472 seconds.
89 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 20.
90 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0508 seconds.
91 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 21.
92 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0442 seconds.
93 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 22.
94 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0487 seconds.
95 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 23.
96 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0489 seconds.
97 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 24.
98 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0489 seconds.
99 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 25.
100 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0454 seconds.
101 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 26.
102 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0485 seconds.
103 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 27.
104 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.048 seconds.
105 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 28.
106 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0515 seconds.
107 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 29.
108 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0501 seconds.
109 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 30.
110 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.0459 seconds.
111 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 31.
112 | ECLAIR INFO 2017-09-15 09:09:32: done with this round of clustering; it took 0.046 seconds.
113 | ECLAIR INFO 2017-09-15 09:09:32: starting run of clustering number 32.
114 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0423 seconds.
115 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 33.
116 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0441 seconds.
117 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 34.
118 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.047 seconds.
119 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 35.
120 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0457 seconds.
121 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 36.
122 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0509 seconds.
123 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 37.
124 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.051 seconds.
125 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 38.
126 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0536 seconds.
127 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 39.
128 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0467 seconds.
129 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 40.
130 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0459 seconds.
131 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 41.
132 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0487 seconds.
133 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 42.
134 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0511 seconds.
135 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 43.
136 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.047 seconds.
137 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 44.
138 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0457 seconds.
139 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 45.
140 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0428 seconds.
141 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 46.
142 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0444 seconds.
143 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 47.
144 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0469 seconds.
145 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 48.
146 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0524 seconds.
147 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 49.
148 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0457 seconds.
149 | ECLAIR INFO 2017-09-15 09:09:33: starting run of clustering number 50.
150 | ECLAIR INFO 2017-09-15 09:09:33: done with this round of clustering; it took 0.0502 seconds.
151 | *****
152 | INFO: Cluster_Ensembles: CSPA: consensus clustering using CSPA.
153 |
154 | #
155 | INFO: Cluster_Ensembles: wgraph: writing wgraph_CSPA.
156 | #
157 |
158 | #
159 | INFO: Cluster_Ensembles: sgraph: calling gpmetis for graph partitioning.
160 | ******************************************************************************
161 | METIS 5.0 Copyright 1998-13, Regents of the University of Minnesota
162 | (HEAD: , Built on: Sep 15 2017, 09:03:02)
163 | size of idx_t: 32bits, real_t: 32bits, idx_t *: 64bits
164 |
165 | Graph Information -----------------------------------------------------------
166 | Name: ./wgraph_CSPA, #Vertices: 640, #Edges: 48338, #Parts: 5
167 |
168 | Options ---------------------------------------------------------------------
169 | ptype=kway, objtype=cut, ctype=shem, rtype=greedy, iptype=metisrb
170 | dbglvl=0, ufactor=1.030, no2hop=NO, minconn=NO, contig=NO, nooutput=NO
171 | seed=-1, niter=10, ncuts=1
172 |
173 | Direct k-way Partitioning ---------------------------------------------------
174 | - Edgecut: 16419216, communication volume: 405.
175 |
176 | - Balance:
177 | constraint #0: 1.023 out of 0.008
178 |
179 | - Most overweight partition:
180 | pid: 4, actual: 131, desired: 128, ratio: 1.02.
181 |
182 | - Subdomain connectivity: max: 3, min: 0, avg: 1.60
183 |
184 | - The original graph had 5 connected components and the resulting
185 | partitioning after removing the cut edges has 8 components.
186 | Timing Information ----------------------------------------------------------
187 | I/O: 0.008 sec
188 | Partitioning: 0.003 sec (METIS time)
189 | Reporting: 0.001 sec
190 |
191 | Memory Information ----------------------------------------------------------
192 | Max memory used: 0.963 MB
193 | ******************************************************************************
194 | INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading wgraph_CSPA.part.5
195 | #
196 |
197 | INFO: Cluster_Ensembles: cluster_ensembles: CSPA at 0.776945860086.
198 | *****
199 |
200 | *****
201 | INFO: Cluster_Ensembles: HGPA: consensus clustering using HGPA.
202 |
203 | #
204 | INFO: Cluster_Ensembles: wgraph: writing wgraph_HGPA.
205 | INFO: Cluster_Ensembles: wgraph: 640 vertices and 250 non-zero hyper-edges.
206 | #
207 |
208 | #
209 | INFO: Cluster_Ensembles: sgraph: calling shmetis for hypergraph partitioning.
210 | *******************************************************************************
211 | HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota
212 |
213 | HyperGraph Information -----------------------------------------------------
214 | Name: ./wgraph_HGPA, #Vtxs: 640, #Hedges: 250, #Parts: 5, UBfactor: 0.15
215 | Options: HFC, FM, Reconst-False, V-cycles @ End, No Fixed Vertices
216 |
217 | Recursive Partitioning... --------------------------------------------------
218 |
219 | Bisecting a hgraph of size [vertices=640, hedges=250, balance=0.40]
220 | The mincut for this bisection = 32000, (average = 32000.0) (balance = 0.50)
221 |
222 | Bisecting a hgraph of size [vertices=320, hedges=0, balance=0.50]
223 | The mincut for this bisection = 0, (average = 0.0) (balance = 0.50)
224 |
225 | Bisecting a hgraph of size [vertices=320, hedges=0, balance=0.33]
226 | The mincut for this bisection = 0, (average = 0.0) (balance = 0.50)
227 |
228 | Bisecting a hgraph of size [vertices=160, hedges=0, balance=0.50]
229 | The mincut for this bisection = 0, (average = 0.0) (balance = 0.50)
230 |
231 | --------------------------------------------------------------------------
232 | Summary for the 5-way partition:
233 | Hyperedge Cut: 32000 (minimize)
234 | Sum of External Degrees: 160000 (minimize)
235 | Scaled Cost: 5.47e-01 (minimize)
236 | Absorption: 240.97 (maximize)
237 |
238 | Partition Sizes & External Degrees:
239 | 160[32000] 160[32000] 160[32000] 80[32000] 80[32000]
240 |
241 |
242 | Timing Information ---------------------------------------------------------
243 | Partitioning Time: 0.004sec
244 | I/O Time: 0.004sec
245 | *******************************************************************************
246 | INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading wgraph_HGPA.part.5
247 | #
248 |
249 | INFO: Cluster_Ensembles: cluster_ensembles: HGPA at 0.000178067785293.
250 | *****
251 |
252 | *****
253 | INFO: Cluster_Ensembles: MCLA: consensus clustering using MCLA.
254 | INFO: Cluster_Ensembles: MCLA: preparing graph for meta-clustering.
255 | INFO: Cluster_Ensembles: MCLA: done filling hypergraph adjacency matrix. Starting computation of Jaccard similarity matrix.
256 | INFO: Cluster_Ensembles: MCLA: starting computation of Jaccard similarity matrix.
257 | INFO: Cluster_Ensembles: MCLA: done computing the matrix of pairwise Jaccard similarity scores.
258 |
259 | #
260 | INFO: Cluster_Ensembles: wgraph: writing wgraph_MCLA.
261 | #
262 |
263 | #
264 | INFO: Cluster_Ensembles: sgraph: calling gpmetis for graph partitioning.
265 | ******************************************************************************
266 | METIS 5.0 Copyright 1998-13, Regents of the University of Minnesota
267 | (HEAD: , Built on: Sep 15 2017, 09:03:02)
268 | size of idx_t: 32bits, real_t: 32bits, idx_t *: 64bits
269 |
270 | Graph Information -----------------------------------------------------------
271 | Name: ./wgraph_MCLA, #Vertices: 250, #Edges: 6125, #Parts: 5
272 |
273 | Options ---------------------------------------------------------------------
274 | ptype=kway, objtype=cut, ctype=shem, rtype=greedy, iptype=metisrb
275 | dbglvl=0, ufactor=1.030, no2hop=NO, minconn=NO, contig=NO, nooutput=NO
276 | seed=-1, niter=10, ncuts=1
277 |
278 | Direct k-way Partitioning ---------------------------------------------------
279 | - Edgecut: 139000, communication volume: 150.
280 |
281 | - Balance:
282 | constraint #0: 1.020 out of 0.037
283 |
284 | - Most overweight partition:
285 | pid: 0, actual: 652500, desired: 640000, ratio: 1.02.
286 |
287 | - Subdomain connectivity: max: 3, min: 0, avg: 1.60
288 |
289 | - The original graph had 5 connected components and the resulting
290 | partitioning after removing the cut edges has 8 components.
291 | Timing Information ----------------------------------------------------------
292 | I/O: 0.001 sec
293 | Partitioning: 0.001 sec (METIS time)
294 | Reporting: 0.000 sec
295 |
296 | Memory Information ----------------------------------------------------------
297 | Max memory used: 0.232 MB
298 | ******************************************************************************
299 | INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading wgraph_MCLA.part.5
300 | #
301 | INFO: Cluster_Ensembles: MCLA: delivering 4 clusters.
302 | INFO: Cluster_Ensembles: MCLA: average posterior probability is 0.360500625232
303 |
304 | INFO: Cluster_Ensembles: cluster_ensembles: MCLA at 0.935544511804.
305 | *****
306 |
307 | ECLAIR INFO 2017-09-15 09:09:35: done with computing the means and variances for the pair of distances along each minimum spanning tree between the groups of cells underlying each cluster of the ensemble clustering. The full probability distributions are available and stored in HDF5 format and available for further analysis.
308 |
309 | ECLAIR INFO 2017-09-15 09:09:35: the various runs of subsampling and clustering took 2.5613 seconds, ensemble clustering took 1.0971 seconds, while calculating the distribution of pairwise distances took 0.4174 seconds. The whole process lasted 4.5862 seconds
310 |
311 | *****************************************
312 | *****************************************
--------------------------------------------------------------------------------
/comparisons/simulated_data/stemID/README.md:
--------------------------------------------------------------------------------
1 | # Comparison with stemID 2
2 |
3 | Reproduce the comparison with stemID 2, the successor of stemID [(Grün *et al.*, Cell. Stem Cell,
4 | 2016)](https://doi.org/10.1016/j.stem.2016.05.010),
5 | by running [*RaceID3_StemID2_sample.R*](RaceID3_StemID2_sample.R).
6 | ```
7 | time Rscript RaceID3_StemID2_sample.R
8 | ```
9 | See [*logfile_X_krumsiek11_blobs_shifted.txt*](*logfile_X_krumsiek11_blobs_shifted.txt*) for the logging output that we produced.
10 |
11 | We acknowledge D. Grün for providing the code via Email; parameters were chosen
12 | by D. Grün so that stemID would produce sensible results. The code is an
13 | improved version of the original stemID, which is available from https://github.com/dgrun/StemID/.
14 |
15 | We note that we also tried running the code on the simpler data file *X_krumsiek11_shifted.csv* with the same parameters, but were not able to do so as this resulted in errors.
--------------------------------------------------------------------------------
/comparisons/simulated_data/stemID/logfile_X_krumsiek11_blobs_shifted.txt:
--------------------------------------------------------------------------------
1 | (py35) Alexs-MBP:stemID alexwolf$ time Rscript RaceID3_StemID2_sample.R
2 | Loading required package: tsne
3 | Loading required package: pheatmap
4 | Loading required package: MASS
5 | Loading required package: cluster
6 | Loading required package: mclust
7 | Package 'mclust' version 5.3
8 | Type 'citation("mclust")' for citing this R package in publications.
9 | Loading required package: flexmix
10 | Loading required package: lattice
11 | Loading required package: fpc
12 | Loading required package: amap
13 | Loading required package: RColorBrewer
14 | Loading required package: locfit
15 | locfit 1.5-9.1 2013-03-22
16 | Loading required package: vegan
17 | Loading required package: permute
18 | This is vegan 2.4-4
19 | Loading required package: Rtsne
20 | Loading required package: scran
21 | Loading required package: BiocParallel
22 | Loading required package: methods
23 | Loading required package: scater
24 | Loading required package: Biobase
25 | Loading required package: BiocGenerics
26 | Loading required package: parallel
27 |
28 | Attaching package: ‘BiocGenerics’
29 |
30 | The following objects are masked from ‘package:parallel’:
31 |
32 | clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
33 | clusterExport, clusterMap, parApply, parCapply, parLapply,
34 | parLapplyLB, parRapply, parSapply, parSapplyLB
35 |
36 | The following object is masked from ‘package:flexmix’:
37 |
38 | unique
39 |
40 | The following objects are masked from ‘package:stats’:
41 |
42 | IQR, mad, xtabs
43 |
44 | The following objects are masked from ‘package:base’:
45 |
46 | anyDuplicated, append, as.data.frame, cbind, colnames, do.call,
47 | duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect,
48 | is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
49 | paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
50 | Reduce, rownames, sapply, setdiff, sort, table, tapply, union,
51 | unique, unsplit, which, which.max, which.min
52 |
53 | Welcome to Bioconductor
54 |
55 | Vignettes contain introductory material; view with
56 | 'browseVignettes()'. To cite Bioconductor, see
57 | 'citation("Biobase")', and for packages 'citation("pkgname")'.
58 |
59 | Loading required package: ggplot2
60 |
61 | Attaching package: ‘scater’
62 |
63 | The following object is masked from ‘package:stats’:
64 |
65 | filter
66 |
67 | Loading required package: DESeq2
68 | Loading required package: S4Vectors
69 | Loading required package: stats4
70 |
71 | Attaching package: ‘S4Vectors’
72 |
73 | The following object is masked from ‘package:scater’:
74 |
75 | rename
76 |
77 | The following objects are masked from ‘package:base’:
78 |
79 | colMeans, colSums, expand.grid, rowMeans, rowSums
80 |
81 | Loading required package: IRanges
82 | Loading required package: GenomicRanges
83 | Loading required package: GenomeInfoDb
84 | Loading required package: SummarizedExperiment
85 |
86 | Attaching package: ‘DESeq2’
87 |
88 | The following object is masked from ‘package:scater’:
89 |
90 | fpkm
91 |
92 | Loading required package: randomForest
93 | randomForest 4.6-12
94 | Type rfNews() to see new features/changes/bug fixes.
95 |
96 | Attaching package: ‘randomForest’
97 |
98 | The following object is masked from ‘package:ggplot2’:
99 |
100 | margin
101 |
102 | The following object is masked from ‘package:Biobase’:
103 |
104 | combine
105 |
106 | The following object is masked from ‘package:BiocGenerics’:
107 |
108 | combine
109 |
110 | Warning messages:
111 | 1: package ‘BiocParallel’ was built under R version 3.3.3
112 | 2: package ‘S4Vectors’ was built under R version 3.3.3
113 | 3: package ‘IRanges’ was built under R version 3.3.3
114 | 4: package ‘GenomicRanges’ was built under R version 3.3.3
115 | k = 1
116 | k = 2
117 | k = 3
118 | k = 4
119 | k = 5
120 | k = 6
121 | k = 7
122 | k = 8
123 | k = 9
124 | k = 10
125 | k = 11
126 | k = 12
127 | k = 13
128 | k = 14
129 | k = 15
130 | k = 16
131 | k = 17
132 | k = 18
133 | k = 19
134 | k = 20
135 | k = 21
136 | k = 22
137 | k = 23
138 | k = 24
139 | k = 25
140 | k = 26
141 | k = 27
142 | k = 28
143 | k = 29
144 | k = 30
145 | boot 1
146 | boot 2
147 | boot 3
148 | boot 4
149 | boot 5
150 | boot 6
151 | boot 7
152 | boot 8
153 | boot 9
154 | boot 10
155 | boot 11
156 | boot 12
157 | boot 13
158 | boot 14
159 | boot 15
160 | boot 16
161 | boot 17
162 | boot 18
163 | boot 19
164 | boot 20
165 | boot 21
166 | boot 22
167 | boot 23
168 | boot 24
169 | boot 25
170 | boot 26
171 | boot 27
172 | boot 28
173 | boot 29
174 | boot 30
175 | boot 31
176 | boot 32
177 | boot 33
178 | boot 34
179 | boot 35
180 | boot 36
181 | boot 37
182 | boot 38
183 | boot 39
184 | boot 40
185 | boot 41
186 | boot 42
187 | boot 43
188 | boot 44
189 | boot 45
190 | boot 46
191 | boot 47
192 | boot 48
193 | boot 49
194 | boot 50
195 | pdishuffle: 1
196 | pdishuffle: 2
197 | pdishuffle: 3
198 | pdishuffle: 4
199 | pdishuffle: 5
200 | pdishuffle: 6
201 | pdishuffle: 7
202 | pdishuffle: 8
203 | pdishuffle: 9
204 | pdishuffle: 10
205 | pdishuffle: 11
206 | pdishuffle: 12
207 | pdishuffle: 13
208 | pdishuffle: 14
209 | pdishuffle: 15
210 | pdishuffle: 16
211 | pdishuffle: 17
212 | pdishuffle: 18
213 | pdishuffle: 19
214 | pdishuffle: 20
215 | pdishuffle: 21
216 | pdishuffle: 22
217 | pdishuffle: 23
218 | pdishuffle: 24
219 | pdishuffle: 25
220 | pdishuffle: 26
221 | pdishuffle: 27
222 | pdishuffle: 28
223 | pdishuffle: 29
224 | pdishuffle: 30
225 | pdishuffle: 31
226 | pdishuffle: 32
227 | pdishuffle: 33
228 | pdishuffle: 34
229 | pdishuffle: 35
230 | pdishuffle: 36
231 | pdishuffle: 37
232 | pdishuffle: 38
233 | pdishuffle: 39
234 | pdishuffle: 40
235 | pdishuffle: 41
236 | pdishuffle: 42
237 | pdishuffle: 43
238 | pdishuffle: 44
239 | pdishuffle: 45
240 | pdishuffle: 46
241 | pdishuffle: 47
242 | pdishuffle: 48
243 | pdishuffle: 49
244 | pdishuffle: 50
245 | pdishuffle: 51
246 | pdishuffle: 52
247 | pdishuffle: 53
248 | pdishuffle: 54
249 | pdishuffle: 55
250 | pdishuffle: 56
251 | pdishuffle: 57
252 | pdishuffle: 58
253 | pdishuffle: 59
254 | pdishuffle: 60
255 | pdishuffle: 61
256 | pdishuffle: 62
257 | pdishuffle: 63
258 | pdishuffle: 64
259 | pdishuffle: 65
260 | pdishuffle: 66
261 | pdishuffle: 67
262 | pdishuffle: 68
263 | pdishuffle: 69
264 | pdishuffle: 70
265 | pdishuffle: 71
266 | pdishuffle: 72
267 | pdishuffle: 73
268 | pdishuffle: 74
269 | pdishuffle: 75
270 | pdishuffle: 76
271 | pdishuffle: 77
272 | pdishuffle: 78
273 | pdishuffle: 79
274 | pdishuffle: 80
275 | pdishuffle: 81
276 | pdishuffle: 82
277 | pdishuffle: 83
278 | pdishuffle: 84
279 | pdishuffle: 85
280 | pdishuffle: 86
281 | pdishuffle: 87
282 | pdishuffle: 88
283 | pdishuffle: 89
284 | pdishuffle: 90
285 | pdishuffle: 91
286 | pdishuffle: 92
287 | pdishuffle: 93
288 | pdishuffle: 94
289 | pdishuffle: 95
290 | pdishuffle: 96
291 | pdishuffle: 97
292 | pdishuffle: 98
293 | pdishuffle: 99
294 | pdishuffle: 100
295 | pdishuffle: 101
296 | pdishuffle: 102
297 | pdishuffle: 103
298 | pdishuffle: 104
299 | pdishuffle: 105
300 | pdishuffle: 106
301 | pdishuffle: 107
302 | pdishuffle: 108
303 | pdishuffle: 109
304 | pdishuffle: 110
305 | pdishuffle: 111
306 | pdishuffle: 112
307 | pdishuffle: 113
308 | pdishuffle: 114
309 | pdishuffle: 115
310 | pdishuffle: 116
311 | pdishuffle: 117
312 | pdishuffle: 118
313 | pdishuffle: 119
314 | pdishuffle: 120
315 | pdishuffle: 121
316 | pdishuffle: 122
317 | pdishuffle: 123
318 | pdishuffle: 124
319 | pdishuffle: 125
320 | pdishuffle: 126
321 | pdishuffle: 127
322 | pdishuffle: 128
323 | pdishuffle: 129
324 | pdishuffle: 130
325 | pdishuffle: 131
326 | pdishuffle: 132
327 | pdishuffle: 133
328 | pdishuffle: 134
329 | pdishuffle: 135
330 | pdishuffle: 136
331 | pdishuffle: 137
332 | pdishuffle: 138
333 | pdishuffle: 139
334 | pdishuffle: 140
335 | pdishuffle: 141
336 | pdishuffle: 142
337 | pdishuffle: 143
338 | pdishuffle: 144
339 | pdishuffle: 145
340 | pdishuffle: 146
341 | pdishuffle: 147
342 | pdishuffle: 148
343 | pdishuffle: 149
344 | pdishuffle: 150
345 | pdishuffle: 151
346 | pdishuffle: 152
347 | pdishuffle: 153
348 | pdishuffle: 154
349 | pdishuffle: 155
350 | pdishuffle: 156
351 | pdishuffle: 157
352 | pdishuffle: 158
353 | pdishuffle: 159
354 | pdishuffle: 160
355 | pdishuffle: 161
356 | pdishuffle: 162
357 | pdishuffle: 163
358 | pdishuffle: 164
359 | pdishuffle: 165
360 | pdishuffle: 166
361 | pdishuffle: 167
362 | pdishuffle: 168
363 | pdishuffle: 169
364 | pdishuffle: 170
365 | pdishuffle: 171
366 | pdishuffle: 172
367 | pdishuffle: 173
368 | pdishuffle: 174
369 | pdishuffle: 175
370 | pdishuffle: 176
371 | pdishuffle: 177
372 | pdishuffle: 178
373 | pdishuffle: 179
374 | pdishuffle: 180
375 | pdishuffle: 181
376 | pdishuffle: 182
377 | pdishuffle: 183
378 | pdishuffle: 184
379 | pdishuffle: 185
380 | pdishuffle: 186
381 | pdishuffle: 187
382 | pdishuffle: 188
383 | pdishuffle: 189
384 | pdishuffle: 190
385 | pdishuffle: 191
386 | pdishuffle: 192
387 | pdishuffle: 193
388 | pdishuffle: 194
389 | pdishuffle: 195
390 | pdishuffle: 196
391 | pdishuffle: 197
392 | pdishuffle: 198
393 | pdishuffle: 199
394 | pdishuffle: 200
395 | pdishuffle: 201
396 | pdishuffle: 202
397 | pdishuffle: 203
398 | pdishuffle: 204
399 | pdishuffle: 205
400 | pdishuffle: 206
401 | pdishuffle: 207
402 | pdishuffle: 208
403 | pdishuffle: 209
404 | pdishuffle: 210
405 | pdishuffle: 211
406 | pdishuffle: 212
407 | pdishuffle: 213
408 | pdishuffle: 214
409 | pdishuffle: 215
410 | pdishuffle: 216
411 | pdishuffle: 217
412 | pdishuffle: 218
413 | pdishuffle: 219
414 | pdishuffle: 220
415 | pdishuffle: 221
416 | pdishuffle: 222
417 | pdishuffle: 223
418 | pdishuffle: 224
419 | pdishuffle: 225
420 | pdishuffle: 226
421 | pdishuffle: 227
422 | pdishuffle: 228
423 | pdishuffle: 229
424 | pdishuffle: 230
425 | pdishuffle: 231
426 | pdishuffle: 232
427 | pdishuffle: 233
428 | pdishuffle: 234
429 | pdishuffle: 235
430 | pdishuffle: 236
431 | pdishuffle: 237
432 | pdishuffle: 238
433 | pdishuffle: 239
434 | pdishuffle: 240
435 | pdishuffle: 241
436 | pdishuffle: 242
437 | pdishuffle: 243
438 | pdishuffle: 244
439 | pdishuffle: 245
440 | pdishuffle: 246
441 | pdishuffle: 247
442 | pdishuffle: 248
443 | pdishuffle: 249
444 | pdishuffle: 250
445 | pdishuffle: 251
446 | pdishuffle: 252
447 | pdishuffle: 253
448 | pdishuffle: 254
449 | pdishuffle: 255
450 | pdishuffle: 256
451 | pdishuffle: 257
452 | pdishuffle: 258
453 | pdishuffle: 259
454 | pdishuffle: 260
455 | pdishuffle: 261
456 | pdishuffle: 262
457 | pdishuffle: 263
458 | pdishuffle: 264
459 | pdishuffle: 265
460 | pdishuffle: 266
461 | pdishuffle: 267
462 | pdishuffle: 268
463 | pdishuffle: 269
464 | pdishuffle: 270
465 | pdishuffle: 271
466 | pdishuffle: 272
467 | pdishuffle: 273
468 | pdishuffle: 274
469 | pdishuffle: 275
470 | pdishuffle: 276
471 | pdishuffle: 277
472 | pdishuffle: 278
473 | pdishuffle: 279
474 | pdishuffle: 280
475 | pdishuffle: 281
476 | pdishuffle: 282
477 | pdishuffle: 283
478 | pdishuffle: 284
479 | pdishuffle: 285
480 | pdishuffle: 286
481 | pdishuffle: 287
482 | pdishuffle: 288
483 | pdishuffle: 289
484 | pdishuffle: 290
485 | pdishuffle: 291
486 | pdishuffle: 292
487 | pdishuffle: 293
488 | pdishuffle: 294
489 | pdishuffle: 295
490 | pdishuffle: 296
491 | pdishuffle: 297
492 | pdishuffle: 298
493 | pdishuffle: 299
494 | pdishuffle: 300
495 | pdishuffle: 301
496 | pdishuffle: 302
497 | pdishuffle: 303
498 | pdishuffle: 304
499 | pdishuffle: 305
500 | pdishuffle: 306
501 | pdishuffle: 307
502 | pdishuffle: 308
503 | pdishuffle: 309
504 | pdishuffle: 310
505 | pdishuffle: 311
506 | pdishuffle: 312
507 | pdishuffle: 313
508 | pdishuffle: 314
509 | pdishuffle: 315
510 | pdishuffle: 316
511 | pdishuffle: 317
512 | pdishuffle: 318
513 | pdishuffle: 319
514 | pdishuffle: 320
515 | pdishuffle: 321
516 | pdishuffle: 322
517 | pdishuffle: 323
518 | pdishuffle: 324
519 | pdishuffle: 325
520 | pdishuffle: 326
521 | pdishuffle: 327
522 | pdishuffle: 328
523 | pdishuffle: 329
524 | pdishuffle: 330
525 | pdishuffle: 331
526 | pdishuffle: 332
527 | pdishuffle: 333
528 | pdishuffle: 334
529 | pdishuffle: 335
530 | pdishuffle: 336
531 | pdishuffle: 337
532 | pdishuffle: 338
533 | pdishuffle: 339
534 | pdishuffle: 340
535 | pdishuffle: 341
536 | pdishuffle: 342
537 | pdishuffle: 343
538 | pdishuffle: 344
539 | pdishuffle: 345
540 | pdishuffle: 346
541 | pdishuffle: 347
542 | pdishuffle: 348
543 | pdishuffle: 349
544 | pdishuffle: 350
545 | pdishuffle: 351
546 | pdishuffle: 352
547 | pdishuffle: 353
548 | pdishuffle: 354
549 | pdishuffle: 355
550 | pdishuffle: 356
551 | pdishuffle: 357
552 | pdishuffle: 358
553 | pdishuffle: 359
554 | pdishuffle: 360
555 | pdishuffle: 361
556 | pdishuffle: 362
557 | pdishuffle: 363
558 | pdishuffle: 364
559 | pdishuffle: 365
560 | pdishuffle: 366
561 | pdishuffle: 367
562 | pdishuffle: 368
563 | pdishuffle: 369
564 | pdishuffle: 370
565 | pdishuffle: 371
566 | pdishuffle: 372
567 | pdishuffle: 373
568 | pdishuffle: 374
569 | pdishuffle: 375
570 | pdishuffle: 376
571 | pdishuffle: 377
572 | pdishuffle: 378
573 | pdishuffle: 379
574 | pdishuffle: 380
575 | pdishuffle: 381
576 | pdishuffle: 382
577 | pdishuffle: 383
578 | pdishuffle: 384
579 | pdishuffle: 385
580 | pdishuffle: 386
581 | pdishuffle: 387
582 | pdishuffle: 388
583 | pdishuffle: 389
584 | pdishuffle: 390
585 | pdishuffle: 391
586 | pdishuffle: 392
587 | pdishuffle: 393
588 | pdishuffle: 394
589 | pdishuffle: 395
590 | pdishuffle: 396
591 | pdishuffle: 397
592 | pdishuffle: 398
593 | pdishuffle: 399
594 | pdishuffle: 400
595 | pdishuffle: 401
596 | pdishuffle: 402
597 | pdishuffle: 403
598 | pdishuffle: 404
599 | pdishuffle: 405
600 | pdishuffle: 406
601 | pdishuffle: 407
602 | pdishuffle: 408
603 | pdishuffle: 409
604 | pdishuffle: 410
605 | pdishuffle: 411
606 | pdishuffle: 412
607 | pdishuffle: 413
608 | pdishuffle: 414
609 | pdishuffle: 415
610 | pdishuffle: 416
611 | pdishuffle: 417
612 | pdishuffle: 418
613 | pdishuffle: 419
614 | pdishuffle: 420
615 | pdishuffle: 421
616 | pdishuffle: 422
617 | pdishuffle: 423
618 | pdishuffle: 424
619 | pdishuffle: 425
620 | pdishuffle: 426
621 | pdishuffle: 427
622 | pdishuffle: 428
623 | pdishuffle: 429
624 | pdishuffle: 430
625 | pdishuffle: 431
626 | pdishuffle: 432
627 | pdishuffle: 433
628 | pdishuffle: 434
629 | pdishuffle: 435
630 | pdishuffle: 436
631 | pdishuffle: 437
632 | pdishuffle: 438
633 | pdishuffle: 439
634 | pdishuffle: 440
635 | pdishuffle: 441
636 | pdishuffle: 442
637 | pdishuffle: 443
638 | pdishuffle: 444
639 | pdishuffle: 445
640 | pdishuffle: 446
641 | pdishuffle: 447
642 | pdishuffle: 448
643 | pdishuffle: 449
644 | pdishuffle: 450
645 | pdishuffle: 451
646 | pdishuffle: 452
647 | pdishuffle: 453
648 | pdishuffle: 454
649 | pdishuffle: 455
650 | pdishuffle: 456
651 | pdishuffle: 457
652 | pdishuffle: 458
653 | pdishuffle: 459
654 | pdishuffle: 460
655 | pdishuffle: 461
656 | pdishuffle: 462
657 | pdishuffle: 463
658 | pdishuffle: 464
659 | pdishuffle: 465
660 | pdishuffle: 466
661 | pdishuffle: 467
662 | pdishuffle: 468
663 | pdishuffle: 469
664 | pdishuffle: 470
665 | pdishuffle: 471
666 | pdishuffle: 472
667 | pdishuffle: 473
668 | pdishuffle: 474
669 | pdishuffle: 475
670 | pdishuffle: 476
671 | pdishuffle: 477
672 | pdishuffle: 478
673 | pdishuffle: 479
674 | pdishuffle: 480
675 | pdishuffle: 481
676 | pdishuffle: 482
677 | pdishuffle: 483
678 | pdishuffle: 484
679 | pdishuffle: 485
680 | pdishuffle: 486
681 | pdishuffle: 487
682 | pdishuffle: 488
683 | pdishuffle: 489
684 | pdishuffle: 490
685 | pdishuffle: 491
686 | pdishuffle: 492
687 | pdishuffle: 493
688 | pdishuffle: 494
689 | pdishuffle: 495
690 | pdishuffle: 496
691 | pdishuffle: 497
692 | pdishuffle: 498
693 | pdishuffle: 499
694 | pdishuffle: 500
695 | pdishuffle: 501
696 | pdishuffle: 502
697 | pdishuffle: 503
698 | pdishuffle: 504
699 | pdishuffle: 505
700 | pdishuffle: 506
701 | pdishuffle: 507
702 | pdishuffle: 508
703 | pdishuffle: 509
704 | pdishuffle: 510
705 | pdishuffle: 511
706 | pdishuffle: 512
707 | pdishuffle: 513
708 | pdishuffle: 514
709 | pdishuffle: 515
710 | pdishuffle: 516
711 | pdishuffle: 517
712 | pdishuffle: 518
713 | pdishuffle: 519
714 | pdishuffle: 520
715 | pdishuffle: 521
716 | pdishuffle: 522
717 | pdishuffle: 523
718 | pdishuffle: 524
719 | pdishuffle: 525
720 | pdishuffle: 526
721 | pdishuffle: 527
722 | pdishuffle: 528
723 | pdishuffle: 529
724 | pdishuffle: 530
725 | pdishuffle: 531
726 | pdishuffle: 532
727 | pdishuffle: 533
728 | pdishuffle: 534
729 | pdishuffle: 535
730 | pdishuffle: 536
731 | pdishuffle: 537
732 | pdishuffle: 538
733 | pdishuffle: 539
734 | pdishuffle: 540
735 | pdishuffle: 541
736 | pdishuffle: 542
737 | pdishuffle: 543
738 | pdishuffle: 544
739 | pdishuffle: 545
740 | pdishuffle: 546
741 | pdishuffle: 547
742 | pdishuffle: 548
743 | pdishuffle: 549
744 | pdishuffle: 550
745 | pdishuffle: 551
746 | pdishuffle: 552
747 | pdishuffle: 553
748 | pdishuffle: 554
749 | pdishuffle: 555
750 | pdishuffle: 556
751 | pdishuffle: 557
752 | pdishuffle: 558
753 | pdishuffle: 559
754 | pdishuffle: 560
755 | pdishuffle: 561
756 | pdishuffle: 562
757 | pdishuffle: 563
758 | pdishuffle: 564
759 | pdishuffle: 565
760 | pdishuffle: 566
761 | pdishuffle: 567
762 | pdishuffle: 568
763 | pdishuffle: 569
764 | pdishuffle: 570
765 | pdishuffle: 571
766 | pdishuffle: 572
767 | pdishuffle: 573
768 | pdishuffle: 574
769 | pdishuffle: 575
770 | pdishuffle: 576
771 | pdishuffle: 577
772 | pdishuffle: 578
773 | pdishuffle: 579
774 | pdishuffle: 580
775 | pdishuffle: 581
776 | pdishuffle: 582
777 | pdishuffle: 583
778 | pdishuffle: 584
779 | pdishuffle: 585
780 | pdishuffle: 586
781 | pdishuffle: 587
782 | pdishuffle: 588
783 | pdishuffle: 589
784 | pdishuffle: 590
785 | pdishuffle: 591
786 | pdishuffle: 592
787 | pdishuffle: 593
788 | pdishuffle: 594
789 | pdishuffle: 595
790 | pdishuffle: 596
791 | pdishuffle: 597
792 | pdishuffle: 598
793 | pdishuffle: 599
794 | pdishuffle: 600
795 | pdishuffle: 601
796 | pdishuffle: 602
797 | pdishuffle: 603
798 | pdishuffle: 604
799 | pdishuffle: 605
800 | pdishuffle: 606
801 | pdishuffle: 607
802 | pdishuffle: 608
803 | pdishuffle: 609
804 | pdishuffle: 610
805 | pdishuffle: 611
806 | pdishuffle: 612
807 | pdishuffle: 613
808 | pdishuffle: 614
809 | pdishuffle: 615
810 | pdishuffle: 616
811 | pdishuffle: 617
812 | pdishuffle: 618
813 | pdishuffle: 619
814 | pdishuffle: 620
815 | pdishuffle: 621
816 | pdishuffle: 622
817 | pdishuffle: 623
818 | pdishuffle: 624
819 | pdishuffle: 625
820 | pdishuffle: 626
821 | pdishuffle: 627
822 | pdishuffle: 628
823 | pdishuffle: 629
824 | pdishuffle: 630
825 | pdishuffle: 631
826 | pdishuffle: 632
827 | pdishuffle: 633
828 | pdishuffle: 634
829 | pdishuffle: 635
830 | pdishuffle: 636
831 | pdishuffle: 637
832 | pdishuffle: 638
833 | pdishuffle: 639
834 | pdishuffle: 640
835 | pdishuffle: 641
836 | pdishuffle: 642
837 | pdishuffle: 643
838 | pdishuffle: 644
839 | pdishuffle: 645
840 | pdishuffle: 646
841 | pdishuffle: 647
842 | pdishuffle: 648
843 | pdishuffle: 649
844 | pdishuffle: 650
845 | pdishuffle: 651
846 | pdishuffle: 652
847 | pdishuffle: 653
848 | pdishuffle: 654
849 | pdishuffle: 655
850 | pdishuffle: 656
851 | pdishuffle: 657
852 | pdishuffle: 658
853 | pdishuffle: 659
854 | pdishuffle: 660
855 | pdishuffle: 661
856 | pdishuffle: 662
857 | pdishuffle: 663
858 | pdishuffle: 664
859 | pdishuffle: 665
860 | pdishuffle: 666
861 | pdishuffle: 667
862 | pdishuffle: 668
863 | pdishuffle: 669
864 | pdishuffle: 670
865 | pdishuffle: 671
866 | pdishuffle: 672
867 | pdishuffle: 673
868 | pdishuffle: 674
869 | pdishuffle: 675
870 | pdishuffle: 676
871 | pdishuffle: 677
872 | pdishuffle: 678
873 | pdishuffle: 679
874 | pdishuffle: 680
875 | pdishuffle: 681
876 | pdishuffle: 682
877 | pdishuffle: 683
878 | pdishuffle: 684
879 | pdishuffle: 685
880 | pdishuffle: 686
881 | pdishuffle: 687
882 | pdishuffle: 688
883 | pdishuffle: 689
884 | pdishuffle: 690
885 | pdishuffle: 691
886 | pdishuffle: 692
887 | pdishuffle: 693
888 | pdishuffle: 694
889 | pdishuffle: 695
890 | pdishuffle: 696
891 | pdishuffle: 697
892 | pdishuffle: 698
893 | pdishuffle: 699
894 | pdishuffle: 700
895 | pdishuffle: 701
896 | pdishuffle: 702
897 | pdishuffle: 703
898 | pdishuffle: 704
899 | pdishuffle: 705
900 | pdishuffle: 706
901 | pdishuffle: 707
902 | pdishuffle: 708
903 | pdishuffle: 709
904 | pdishuffle: 710
905 | pdishuffle: 711
906 | pdishuffle: 712
907 | pdishuffle: 713
908 | pdishuffle: 714
909 | pdishuffle: 715
910 | pdishuffle: 716
911 | pdishuffle: 717
912 | pdishuffle: 718
913 | pdishuffle: 719
914 | pdishuffle: 720
915 | pdishuffle: 721
916 | pdishuffle: 722
917 | pdishuffle: 723
918 | pdishuffle: 724
919 | pdishuffle: 725
920 | pdishuffle: 726
921 | pdishuffle: 727
922 | pdishuffle: 728
923 | pdishuffle: 729
924 | pdishuffle: 730
925 | pdishuffle: 731
926 | pdishuffle: 732
927 | pdishuffle: 733
928 | pdishuffle: 734
929 | pdishuffle: 735
930 | pdishuffle: 736
931 | pdishuffle: 737
932 | pdishuffle: 738
933 | pdishuffle: 739
934 | pdishuffle: 740
935 | pdishuffle: 741
936 | pdishuffle: 742
937 | pdishuffle: 743
938 | pdishuffle: 744
939 | pdishuffle: 745
940 | pdishuffle: 746
941 | pdishuffle: 747
942 | pdishuffle: 748
943 | pdishuffle: 749
944 | pdishuffle: 750
945 | pdishuffle: 751
946 | pdishuffle: 752
947 | pdishuffle: 753
948 | pdishuffle: 754
949 | pdishuffle: 755
950 | pdishuffle: 756
951 | pdishuffle: 757
952 | pdishuffle: 758
953 | pdishuffle: 759
954 | pdishuffle: 760
955 | pdishuffle: 761
956 | pdishuffle: 762
957 | pdishuffle: 763
958 | pdishuffle: 764
959 | pdishuffle: 765
960 | pdishuffle: 766
961 | pdishuffle: 767
962 | pdishuffle: 768
963 | pdishuffle: 769
964 | pdishuffle: 770
965 | pdishuffle: 771
966 | pdishuffle: 772
967 | pdishuffle: 773
968 | pdishuffle: 774
969 | pdishuffle: 775
970 | pdishuffle: 776
971 | pdishuffle: 777
972 | pdishuffle: 778
973 | pdishuffle: 779
974 | pdishuffle: 780
975 | pdishuffle: 781
976 | pdishuffle: 782
977 | pdishuffle: 783
978 | pdishuffle: 784
979 | pdishuffle: 785
980 | pdishuffle: 786
981 | pdishuffle: 787
982 | pdishuffle: 788
983 | pdishuffle: 789
984 | pdishuffle: 790
985 | pdishuffle: 791
986 | pdishuffle: 792
987 | pdishuffle: 793
988 | pdishuffle: 794
989 | pdishuffle: 795
990 | pdishuffle: 796
991 | pdishuffle: 797
992 | pdishuffle: 798
993 | pdishuffle: 799
994 | pdishuffle: 800
995 | pdishuffle: 801
996 | pdishuffle: 802
997 | pdishuffle: 803
998 | pdishuffle: 804
999 | pdishuffle: 805
1000 | pdishuffle: 806
1001 | pdishuffle: 807
1002 | pdishuffle: 808
1003 | pdishuffle: 809
1004 | pdishuffle: 810
1005 | pdishuffle: 811
1006 | pdishuffle: 812
1007 | pdishuffle: 813
1008 | pdishuffle: 814
1009 | pdishuffle: 815
1010 | pdishuffle: 816
1011 | pdishuffle: 817
1012 | pdishuffle: 818
1013 | pdishuffle: 819
1014 | pdishuffle: 820
1015 | pdishuffle: 821
1016 | pdishuffle: 822
1017 | pdishuffle: 823
1018 | pdishuffle: 824
1019 | pdishuffle: 825
1020 | pdishuffle: 826
1021 | pdishuffle: 827
1022 | pdishuffle: 828
1023 | pdishuffle: 829
1024 | pdishuffle: 830
1025 | pdishuffle: 831
1026 | pdishuffle: 832
1027 | pdishuffle: 833
1028 | pdishuffle: 834
1029 | pdishuffle: 835
1030 | pdishuffle: 836
1031 | pdishuffle: 837
1032 | pdishuffle: 838
1033 | pdishuffle: 839
1034 | pdishuffle: 840
1035 | pdishuffle: 841
1036 | pdishuffle: 842
1037 | pdishuffle: 843
1038 | pdishuffle: 844
1039 | pdishuffle: 845
1040 | pdishuffle: 846
1041 | pdishuffle: 847
1042 | pdishuffle: 848
1043 | pdishuffle: 849
1044 | pdishuffle: 850
1045 | pdishuffle: 851
1046 | pdishuffle: 852
1047 | pdishuffle: 853
1048 | pdishuffle: 854
1049 | pdishuffle: 855
1050 | pdishuffle: 856
1051 | pdishuffle: 857
1052 | pdishuffle: 858
1053 | pdishuffle: 859
1054 | pdishuffle: 860
1055 | pdishuffle: 861
1056 | pdishuffle: 862
1057 | pdishuffle: 863
1058 | pdishuffle: 864
1059 | pdishuffle: 865
1060 | pdishuffle: 866
1061 | pdishuffle: 867
1062 | pdishuffle: 868
1063 | pdishuffle: 869
1064 | pdishuffle: 870
1065 | pdishuffle: 871
1066 | pdishuffle: 872
1067 | pdishuffle: 873
1068 | pdishuffle: 874
1069 | pdishuffle: 875
1070 | pdishuffle: 876
1071 | pdishuffle: 877
1072 | pdishuffle: 878
1073 | pdishuffle: 879
1074 | pdishuffle: 880
1075 | pdishuffle: 881
1076 | pdishuffle: 882
1077 | pdishuffle: 883
1078 | pdishuffle: 884
1079 | pdishuffle: 885
1080 | pdishuffle: 886
1081 | pdishuffle: 887
1082 | pdishuffle: 888
1083 | pdishuffle: 889
1084 | pdishuffle: 890
1085 | pdishuffle: 891
1086 | pdishuffle: 892
1087 | pdishuffle: 893
1088 | pdishuffle: 894
1089 | pdishuffle: 895
1090 | pdishuffle: 896
1091 | pdishuffle: 897
1092 | pdishuffle: 898
1093 | pdishuffle: 899
1094 | pdishuffle: 900
1095 | pdishuffle: 901
1096 | pdishuffle: 902
1097 | pdishuffle: 903
1098 | pdishuffle: 904
1099 | pdishuffle: 905
1100 | pdishuffle: 906
1101 | pdishuffle: 907
1102 | pdishuffle: 908
1103 | pdishuffle: 909
1104 | pdishuffle: 910
1105 | pdishuffle: 911
1106 | pdishuffle: 912
1107 | pdishuffle: 913
1108 | pdishuffle: 914
1109 | pdishuffle: 915
1110 | pdishuffle: 916
1111 | pdishuffle: 917
1112 | pdishuffle: 918
1113 | pdishuffle: 919
1114 | pdishuffle: 920
1115 | pdishuffle: 921
1116 | pdishuffle: 922
1117 | pdishuffle: 923
1118 | pdishuffle: 924
1119 | pdishuffle: 925
1120 | pdishuffle: 926
1121 | pdishuffle: 927
1122 | pdishuffle: 928
1123 | pdishuffle: 929
1124 | pdishuffle: 930
1125 | pdishuffle: 931
1126 | pdishuffle: 932
1127 | pdishuffle: 933
1128 | pdishuffle: 934
1129 | pdishuffle: 935
1130 | pdishuffle: 936
1131 | pdishuffle: 937
1132 | pdishuffle: 938
1133 | pdishuffle: 939
1134 | pdishuffle: 940
1135 | pdishuffle: 941
1136 | pdishuffle: 942
1137 | pdishuffle: 943
1138 | pdishuffle: 944
1139 | pdishuffle: 945
1140 | pdishuffle: 946
1141 | pdishuffle: 947
1142 | pdishuffle: 948
1143 | pdishuffle: 949
1144 | pdishuffle: 950
1145 | pdishuffle: 951
1146 | pdishuffle: 952
1147 | pdishuffle: 953
1148 | pdishuffle: 954
1149 | pdishuffle: 955
1150 | pdishuffle: 956
1151 | pdishuffle: 957
1152 | pdishuffle: 958
1153 | pdishuffle: 959
1154 | pdishuffle: 960
1155 | pdishuffle: 961
1156 | pdishuffle: 962
1157 | pdishuffle: 963
1158 | pdishuffle: 964
1159 | pdishuffle: 965
1160 | pdishuffle: 966
1161 | pdishuffle: 967
1162 | pdishuffle: 968
1163 | pdishuffle: 969
1164 | pdishuffle: 970
1165 | pdishuffle: 971
1166 | pdishuffle: 972
1167 | pdishuffle: 973
1168 | pdishuffle: 974
1169 | pdishuffle: 975
1170 | pdishuffle: 976
1171 | pdishuffle: 977
1172 | pdishuffle: 978
1173 | pdishuffle: 979
1174 | pdishuffle: 980
1175 | pdishuffle: 981
1176 | pdishuffle: 982
1177 | pdishuffle: 983
1178 | pdishuffle: 984
1179 | pdishuffle: 985
1180 | pdishuffle: 986
1181 | pdishuffle: 987
1182 | pdishuffle: 988
1183 | pdishuffle: 989
1184 | pdishuffle: 990
1185 | pdishuffle: 991
1186 | pdishuffle: 992
1187 | pdishuffle: 993
1188 | pdishuffle: 994
1189 | pdishuffle: 995
1190 | pdishuffle: 996
1191 | pdishuffle: 997
1192 | pdishuffle: 998
1193 | pdishuffle: 999
1194 | pdishuffle: 1000
1195 | pdishuffle: 1001
1196 | pdishuffle: 1002
1197 | pdishuffle: 1003
1198 | pdishuffle: 1004
1199 | pdishuffle: 1005
1200 | pdishuffle: 1006
1201 | pdishuffle: 1007
1202 | pdishuffle: 1008
1203 | pdishuffle: 1009
1204 | pdishuffle: 1010
1205 | pdishuffle: 1011
1206 | pdishuffle: 1012
1207 | pdishuffle: 1013
1208 | pdishuffle: 1014
1209 | pdishuffle: 1015
1210 | pdishuffle: 1016
1211 | pdishuffle: 1017
1212 | pdishuffle: 1018
1213 | pdishuffle: 1019
1214 | pdishuffle: 1020
1215 | pdishuffle: 1021
1216 | pdishuffle: 1022
1217 | pdishuffle: 1023
1218 | pdishuffle: 1024
1219 | pdishuffle: 1025
1220 | pdishuffle: 1026
1221 | pdishuffle: 1027
1222 | pdishuffle: 1028
1223 | pdishuffle: 1029
1224 | pdishuffle: 1030
1225 | pdishuffle: 1031
1226 | pdishuffle: 1032
1227 | pdishuffle: 1033
1228 | pdishuffle: 1034
1229 | pdishuffle: 1035
1230 | pdishuffle: 1036
1231 | pdishuffle: 1037
1232 | pdishuffle: 1038
1233 | pdishuffle: 1039
1234 | pdishuffle: 1040
1235 | pdishuffle: 1041
1236 | pdishuffle: 1042
1237 | pdishuffle: 1043
1238 | pdishuffle: 1044
1239 | pdishuffle: 1045
1240 | pdishuffle: 1046
1241 | pdishuffle: 1047
1242 | pdishuffle: 1048
1243 | pdishuffle: 1049
1244 | pdishuffle: 1050
1245 | pdishuffle: 1051
1246 | pdishuffle: 1052
1247 | pdishuffle: 1053
1248 | pdishuffle: 1054
1249 | pdishuffle: 1055
1250 | pdishuffle: 1056
1251 | pdishuffle: 1057
1252 | pdishuffle: 1058
1253 | pdishuffle: 1059
1254 | pdishuffle: 1060
1255 | pdishuffle: 1061
1256 | pdishuffle: 1062
1257 | pdishuffle: 1063
1258 | pdishuffle: 1064
1259 | pdishuffle: 1065
1260 | pdishuffle: 1066
1261 | pdishuffle: 1067
1262 | pdishuffle: 1068
1263 | pdishuffle: 1069
1264 | pdishuffle: 1070
1265 | pdishuffle: 1071
1266 | pdishuffle: 1072
1267 | pdishuffle: 1073
1268 | pdishuffle: 1074
1269 | pdishuffle: 1075
1270 | pdishuffle: 1076
1271 | pdishuffle: 1077
1272 | pdishuffle: 1078
1273 | pdishuffle: 1079
1274 | pdishuffle: 1080
1275 | pdishuffle: 1081
1276 | pdishuffle: 1082
1277 | pdishuffle: 1083
1278 | pdishuffle: 1084
1279 | pdishuffle: 1085
1280 | pdishuffle: 1086
1281 | pdishuffle: 1087
1282 | pdishuffle: 1088
1283 | pdishuffle: 1089
1284 | pdishuffle: 1090
1285 | pdishuffle: 1091
1286 | pdishuffle: 1092
1287 | pdishuffle: 1093
1288 | pdishuffle: 1094
1289 | pdishuffle: 1095
1290 | pdishuffle: 1096
1291 | pdishuffle: 1097
1292 | pdishuffle: 1098
1293 | pdishuffle: 1099
1294 | pdishuffle: 1100
1295 | pdishuffle: 1101
1296 | pdishuffle: 1102
1297 | pdishuffle: 1103
1298 | pdishuffle: 1104
1299 | pdishuffle: 1105
1300 | pdishuffle: 1106
1301 | pdishuffle: 1107
1302 | pdishuffle: 1108
1303 | pdishuffle: 1109
1304 | pdishuffle: 1110
1305 | pdishuffle: 1111
1306 | pdishuffle: 1112
1307 | pdishuffle: 1113
1308 | pdishuffle: 1114
1309 | pdishuffle: 1115
1310 | pdishuffle: 1116
1311 | pdishuffle: 1117
1312 | pdishuffle: 1118
1313 | pdishuffle: 1119
1314 | pdishuffle: 1120
1315 | pdishuffle: 1121
1316 | pdishuffle: 1122
1317 | pdishuffle: 1123
1318 | pdishuffle: 1124
1319 | pdishuffle: 1125
1320 | pdishuffle: 1126
1321 | pdishuffle: 1127
1322 | pdishuffle: 1128
1323 | pdishuffle: 1129
1324 | pdishuffle: 1130
1325 | pdishuffle: 1131
1326 | pdishuffle: 1132
1327 | pdishuffle: 1133
1328 | pdishuffle: 1134
1329 | pdishuffle: 1135
1330 | pdishuffle: 1136
1331 | pdishuffle: 1137
1332 | pdishuffle: 1138
1333 | pdishuffle: 1139
1334 | pdishuffle: 1140
1335 | pdishuffle: 1141
1336 | pdishuffle: 1142
1337 | pdishuffle: 1143
1338 | pdishuffle: 1144
1339 | pdishuffle: 1145
1340 | pdishuffle: 1146
1341 | pdishuffle: 1147
1342 | pdishuffle: 1148
1343 | pdishuffle: 1149
1344 | pdishuffle: 1150
1345 | pdishuffle: 1151
1346 | pdishuffle: 1152
1347 | pdishuffle: 1153
1348 | pdishuffle: 1154
1349 | pdishuffle: 1155
1350 | pdishuffle: 1156
1351 | pdishuffle: 1157
1352 | pdishuffle: 1158
1353 | pdishuffle: 1159
1354 | pdishuffle: 1160
1355 | pdishuffle: 1161
1356 | pdishuffle: 1162
1357 | pdishuffle: 1163
1358 | pdishuffle: 1164
1359 | pdishuffle: 1165
1360 | pdishuffle: 1166
1361 | pdishuffle: 1167
1362 | pdishuffle: 1168
1363 | pdishuffle: 1169
1364 | pdishuffle: 1170
1365 | pdishuffle: 1171
1366 | pdishuffle: 1172
1367 | pdishuffle: 1173
1368 | pdishuffle: 1174
1369 | pdishuffle: 1175
1370 | pdishuffle: 1176
1371 | pdishuffle: 1177
1372 | pdishuffle: 1178
1373 | pdishuffle: 1179
1374 | pdishuffle: 1180
1375 | pdishuffle: 1181
1376 | pdishuffle: 1182
1377 | pdishuffle: 1183
1378 | pdishuffle: 1184
1379 | pdishuffle: 1185
1380 | pdishuffle: 1186
1381 | pdishuffle: 1187
1382 | pdishuffle: 1188
1383 | pdishuffle: 1189
1384 | pdishuffle: 1190
1385 | pdishuffle: 1191
1386 | pdishuffle: 1192
1387 | pdishuffle: 1193
1388 | pdishuffle: 1194
1389 | pdishuffle: 1195
1390 | pdishuffle: 1196
1391 | pdishuffle: 1197
1392 | pdishuffle: 1198
1393 | pdishuffle: 1199
1394 | pdishuffle: 1200
1395 | pdishuffle: 1201
1396 | pdishuffle: 1202
1397 | pdishuffle: 1203
1398 | pdishuffle: 1204
1399 | pdishuffle: 1205
1400 | pdishuffle: 1206
1401 | pdishuffle: 1207
1402 | pdishuffle: 1208
1403 | pdishuffle: 1209
1404 | pdishuffle: 1210
1405 | pdishuffle: 1211
1406 | pdishuffle: 1212
1407 | pdishuffle: 1213
1408 | pdishuffle: 1214
1409 | pdishuffle: 1215
1410 | pdishuffle: 1216
1411 | pdishuffle: 1217
1412 | pdishuffle: 1218
1413 | pdishuffle: 1219
1414 | pdishuffle: 1220
1415 | pdishuffle: 1221
1416 | pdishuffle: 1222
1417 | pdishuffle: 1223
1418 | pdishuffle: 1224
1419 | pdishuffle: 1225
1420 | pdishuffle: 1226
1421 | pdishuffle: 1227
1422 | pdishuffle: 1228
1423 | pdishuffle: 1229
1424 | pdishuffle: 1230
1425 | pdishuffle: 1231
1426 | pdishuffle: 1232
1427 | pdishuffle: 1233
1428 | pdishuffle: 1234
1429 | pdishuffle: 1235
1430 | pdishuffle: 1236
1431 | pdishuffle: 1237
1432 | pdishuffle: 1238
1433 | pdishuffle: 1239
1434 | pdishuffle: 1240
1435 | pdishuffle: 1241
1436 | pdishuffle: 1242
1437 | pdishuffle: 1243
1438 | pdishuffle: 1244
1439 | pdishuffle: 1245
1440 | pdishuffle: 1246
1441 | pdishuffle: 1247
1442 | pdishuffle: 1248
1443 | pdishuffle: 1249
1444 | pdishuffle: 1250
1445 | pdishuffle: 1251
1446 | pdishuffle: 1252
1447 | pdishuffle: 1253
1448 | pdishuffle: 1254
1449 | pdishuffle: 1255
1450 | pdishuffle: 1256
1451 | pdishuffle: 1257
1452 | pdishuffle: 1258
1453 | pdishuffle: 1259
1454 | pdishuffle: 1260
1455 | pdishuffle: 1261
1456 | pdishuffle: 1262
1457 | pdishuffle: 1263
1458 | pdishuffle: 1264
1459 | pdishuffle: 1265
1460 | pdishuffle: 1266
1461 | pdishuffle: 1267
1462 | pdishuffle: 1268
1463 | pdishuffle: 1269
1464 | pdishuffle: 1270
1465 | pdishuffle: 1271
1466 | pdishuffle: 1272
1467 | pdishuffle: 1273
1468 | pdishuffle: 1274
1469 | pdishuffle: 1275
1470 | pdishuffle: 1276
1471 | pdishuffle: 1277
1472 | pdishuffle: 1278
1473 | pdishuffle: 1279
1474 | pdishuffle: 1280
1475 | pdishuffle: 1281
1476 | pdishuffle: 1282
1477 | pdishuffle: 1283
1478 | pdishuffle: 1284
1479 | pdishuffle: 1285
1480 | pdishuffle: 1286
1481 | pdishuffle: 1287
1482 | pdishuffle: 1288
1483 | pdishuffle: 1289
1484 | pdishuffle: 1290
1485 | pdishuffle: 1291
1486 | pdishuffle: 1292
1487 | pdishuffle: 1293
1488 | pdishuffle: 1294
1489 | pdishuffle: 1295
1490 | pdishuffle: 1296
1491 | pdishuffle: 1297
1492 | pdishuffle: 1298
1493 | pdishuffle: 1299
1494 | pdishuffle: 1300
1495 | pdishuffle: 1301
1496 | pdishuffle: 1302
1497 | pdishuffle: 1303
1498 | pdishuffle: 1304
1499 | pdishuffle: 1305
1500 | pdishuffle: 1306
1501 | pdishuffle: 1307
1502 | pdishuffle: 1308
1503 | pdishuffle: 1309
1504 | pdishuffle: 1310
1505 | pdishuffle: 1311
1506 | pdishuffle: 1312
1507 | pdishuffle: 1313
1508 | pdishuffle: 1314
1509 | pdishuffle: 1315
1510 | pdishuffle: 1316
1511 | pdishuffle: 1317
1512 | pdishuffle: 1318
1513 | pdishuffle: 1319
1514 | pdishuffle: 1320
1515 | pdishuffle: 1321
1516 | pdishuffle: 1322
1517 | pdishuffle: 1323
1518 | pdishuffle: 1324
1519 | pdishuffle: 1325
1520 | pdishuffle: 1326
1521 | pdishuffle: 1327
1522 | pdishuffle: 1328
1523 | pdishuffle: 1329
1524 | pdishuffle: 1330
1525 | pdishuffle: 1331
1526 | pdishuffle: 1332
1527 | pdishuffle: 1333
1528 | pdishuffle: 1334
1529 | pdishuffle: 1335
1530 | pdishuffle: 1336
1531 | pdishuffle: 1337
1532 | pdishuffle: 1338
1533 | pdishuffle: 1339
1534 | pdishuffle: 1340
1535 | pdishuffle: 1341
1536 | pdishuffle: 1342
1537 | pdishuffle: 1343
1538 | pdishuffle: 1344
1539 | pdishuffle: 1345
1540 | pdishuffle: 1346
1541 | pdishuffle: 1347
1542 | pdishuffle: 1348
1543 | pdishuffle: 1349
1544 | pdishuffle: 1350
1545 | pdishuffle: 1351
1546 | pdishuffle: 1352
1547 | pdishuffle: 1353
1548 | pdishuffle: 1354
1549 | pdishuffle: 1355
1550 | pdishuffle: 1356
1551 | pdishuffle: 1357
1552 | pdishuffle: 1358
1553 | pdishuffle: 1359
1554 | pdishuffle: 1360
1555 | pdishuffle: 1361
1556 | pdishuffle: 1362
1557 | pdishuffle: 1363
1558 | pdishuffle: 1364
1559 | pdishuffle: 1365
1560 | pdishuffle: 1366
1561 | pdishuffle: 1367
1562 | pdishuffle: 1368
1563 | pdishuffle: 1369
1564 | pdishuffle: 1370
1565 | pdishuffle: 1371
1566 | pdishuffle: 1372
1567 | pdishuffle: 1373
1568 | pdishuffle: 1374
1569 | pdishuffle: 1375
1570 | pdishuffle: 1376
1571 | pdishuffle: 1377
1572 | pdishuffle: 1378
1573 | pdishuffle: 1379
1574 | pdishuffle: 1380
1575 | pdishuffle: 1381
1576 | pdishuffle: 1382
1577 | pdishuffle: 1383
1578 | pdishuffle: 1384
1579 | pdishuffle: 1385
1580 | pdishuffle: 1386
1581 | pdishuffle: 1387
1582 | pdishuffle: 1388
1583 | pdishuffle: 1389
1584 | pdishuffle: 1390
1585 | pdishuffle: 1391
1586 | pdishuffle: 1392
1587 | pdishuffle: 1393
1588 | pdishuffle: 1394
1589 | pdishuffle: 1395
1590 | pdishuffle: 1396
1591 | pdishuffle: 1397
1592 | pdishuffle: 1398
1593 | pdishuffle: 1399
1594 | pdishuffle: 1400
1595 | pdishuffle: 1401
1596 | pdishuffle: 1402
1597 | pdishuffle: 1403
1598 | pdishuffle: 1404
1599 | pdishuffle: 1405
1600 | pdishuffle: 1406
1601 | pdishuffle: 1407
1602 | pdishuffle: 1408
1603 | pdishuffle: 1409
1604 | pdishuffle: 1410
1605 | pdishuffle: 1411
1606 | pdishuffle: 1412
1607 | pdishuffle: 1413
1608 | pdishuffle: 1414
1609 | pdishuffle: 1415
1610 | pdishuffle: 1416
1611 | pdishuffle: 1417
1612 | pdishuffle: 1418
1613 | pdishuffle: 1419
1614 | pdishuffle: 1420
1615 | pdishuffle: 1421
1616 | pdishuffle: 1422
1617 | pdishuffle: 1423
1618 | pdishuffle: 1424
1619 | pdishuffle: 1425
1620 | pdishuffle: 1426
1621 | pdishuffle: 1427
1622 | pdishuffle: 1428
1623 | pdishuffle: 1429
1624 | pdishuffle: 1430
1625 | pdishuffle: 1431
1626 | pdishuffle: 1432
1627 | pdishuffle: 1433
1628 | pdishuffle: 1434
1629 | pdishuffle: 1435
1630 | pdishuffle: 1436
1631 | pdishuffle: 1437
1632 | pdishuffle: 1438
1633 | pdishuffle: 1439
1634 | pdishuffle: 1440
1635 | pdishuffle: 1441
1636 | pdishuffle: 1442
1637 | pdishuffle: 1443
1638 | pdishuffle: 1444
1639 | pdishuffle: 1445
1640 | pdishuffle: 1446
1641 | pdishuffle: 1447
1642 | pdishuffle: 1448
1643 | pdishuffle: 1449
1644 | pdishuffle: 1450
1645 | pdishuffle: 1451
1646 | pdishuffle: 1452
1647 | pdishuffle: 1453
1648 | pdishuffle: 1454
1649 | pdishuffle: 1455
1650 | pdishuffle: 1456
1651 | pdishuffle: 1457
1652 | pdishuffle: 1458
1653 | pdishuffle: 1459
1654 | pdishuffle: 1460
1655 | pdishuffle: 1461
1656 | pdishuffle: 1462
1657 | pdishuffle: 1463
1658 | pdishuffle: 1464
1659 | pdishuffle: 1465
1660 | pdishuffle: 1466
1661 | pdishuffle: 1467
1662 | pdishuffle: 1468
1663 | pdishuffle: 1469
1664 | pdishuffle: 1470
1665 | pdishuffle: 1471
1666 | pdishuffle: 1472
1667 | pdishuffle: 1473
1668 | pdishuffle: 1474
1669 | pdishuffle: 1475
1670 | pdishuffle: 1476
1671 | pdishuffle: 1477
1672 | pdishuffle: 1478
1673 | pdishuffle: 1479
1674 | pdishuffle: 1480
1675 | pdishuffle: 1481
1676 | pdishuffle: 1482
1677 | pdishuffle: 1483
1678 | pdishuffle: 1484
1679 | pdishuffle: 1485
1680 | pdishuffle: 1486
1681 | pdishuffle: 1487
1682 | pdishuffle: 1488
1683 | pdishuffle: 1489
1684 | pdishuffle: 1490
1685 | pdishuffle: 1491
1686 | pdishuffle: 1492
1687 | pdishuffle: 1493
1688 | pdishuffle: 1494
1689 | pdishuffle: 1495
1690 | pdishuffle: 1496
1691 | pdishuffle: 1497
1692 | pdishuffle: 1498
1693 | pdishuffle: 1499
1694 | pdishuffle: 1500
1695 | pdishuffle: 1501
1696 | pdishuffle: 1502
1697 | pdishuffle: 1503
1698 | pdishuffle: 1504
1699 | pdishuffle: 1505
1700 | pdishuffle: 1506
1701 | pdishuffle: 1507
1702 | pdishuffle: 1508
1703 | pdishuffle: 1509
1704 | pdishuffle: 1510
1705 | pdishuffle: 1511
1706 | pdishuffle: 1512
1707 | pdishuffle: 1513
1708 | pdishuffle: 1514
1709 | pdishuffle: 1515
1710 | pdishuffle: 1516
1711 | pdishuffle: 1517
1712 | pdishuffle: 1518
1713 | pdishuffle: 1519
1714 | pdishuffle: 1520
1715 | pdishuffle: 1521
1716 | pdishuffle: 1522
1717 | pdishuffle: 1523
1718 | pdishuffle: 1524
1719 | pdishuffle: 1525
1720 | pdishuffle: 1526
1721 | pdishuffle: 1527
1722 | pdishuffle: 1528
1723 | pdishuffle: 1529
1724 | pdishuffle: 1530
1725 | pdishuffle: 1531
1726 | pdishuffle: 1532
1727 | pdishuffle: 1533
1728 | pdishuffle: 1534
1729 | pdishuffle: 1535
1730 | pdishuffle: 1536
1731 | pdishuffle: 1537
1732 | pdishuffle: 1538
1733 | pdishuffle: 1539
1734 | pdishuffle: 1540
1735 | pdishuffle: 1541
1736 | pdishuffle: 1542
1737 | pdishuffle: 1543
1738 | pdishuffle: 1544
1739 | pdishuffle: 1545
1740 | pdishuffle: 1546
1741 | pdishuffle: 1547
1742 | pdishuffle: 1548
1743 | pdishuffle: 1549
1744 | pdishuffle: 1550
1745 | pdishuffle: 1551
1746 | pdishuffle: 1552
1747 | pdishuffle: 1553
1748 | pdishuffle: 1554
1749 | pdishuffle: 1555
1750 | pdishuffle: 1556
1751 | pdishuffle: 1557
1752 | pdishuffle: 1558
1753 | pdishuffle: 1559
1754 | pdishuffle: 1560
1755 | pdishuffle: 1561
1756 | pdishuffle: 1562
1757 | pdishuffle: 1563
1758 | pdishuffle: 1564
1759 | pdishuffle: 1565
1760 | pdishuffle: 1566
1761 | pdishuffle: 1567
1762 | pdishuffle: 1568
1763 | pdishuffle: 1569
1764 | pdishuffle: 1570
1765 | pdishuffle: 1571
1766 | pdishuffle: 1572
1767 | pdishuffle: 1573
1768 | pdishuffle: 1574
1769 | pdishuffle: 1575
1770 | pdishuffle: 1576
1771 | pdishuffle: 1577
1772 | pdishuffle: 1578
1773 | pdishuffle: 1579
1774 | pdishuffle: 1580
1775 | pdishuffle: 1581
1776 | pdishuffle: 1582
1777 | pdishuffle: 1583
1778 | pdishuffle: 1584
1779 | pdishuffle: 1585
1780 | pdishuffle: 1586
1781 | pdishuffle: 1587
1782 | pdishuffle: 1588
1783 | pdishuffle: 1589
1784 | pdishuffle: 1590
1785 | pdishuffle: 1591
1786 | pdishuffle: 1592
1787 | pdishuffle: 1593
1788 | pdishuffle: 1594
1789 | pdishuffle: 1595
1790 | pdishuffle: 1596
1791 | pdishuffle: 1597
1792 | pdishuffle: 1598
1793 | pdishuffle: 1599
1794 | pdishuffle: 1600
1795 | pdishuffle: 1601
1796 | pdishuffle: 1602
1797 | pdishuffle: 1603
1798 | pdishuffle: 1604
1799 | pdishuffle: 1605
1800 | pdishuffle: 1606
1801 | pdishuffle: 1607
1802 | pdishuffle: 1608
1803 | pdishuffle: 1609
1804 | pdishuffle: 1610
1805 | pdishuffle: 1611
1806 | pdishuffle: 1612
1807 | pdishuffle: 1613
1808 | pdishuffle: 1614
1809 | pdishuffle: 1615
1810 | pdishuffle: 1616
1811 | pdishuffle: 1617
1812 | pdishuffle: 1618
1813 | pdishuffle: 1619
1814 | pdishuffle: 1620
1815 | pdishuffle: 1621
1816 | pdishuffle: 1622
1817 | pdishuffle: 1623
1818 | pdishuffle: 1624
1819 | pdishuffle: 1625
1820 | pdishuffle: 1626
1821 | pdishuffle: 1627
1822 | pdishuffle: 1628
1823 | pdishuffle: 1629
1824 | pdishuffle: 1630
1825 | pdishuffle: 1631
1826 | pdishuffle: 1632
1827 | pdishuffle: 1633
1828 | pdishuffle: 1634
1829 | pdishuffle: 1635
1830 | pdishuffle: 1636
1831 | pdishuffle: 1637
1832 | pdishuffle: 1638
1833 | pdishuffle: 1639
1834 | pdishuffle: 1640
1835 | pdishuffle: 1641
1836 | pdishuffle: 1642
1837 | pdishuffle: 1643
1838 | pdishuffle: 1644
1839 | pdishuffle: 1645
1840 | pdishuffle: 1646
1841 | pdishuffle: 1647
1842 | pdishuffle: 1648
1843 | pdishuffle: 1649
1844 | pdishuffle: 1650
1845 | pdishuffle: 1651
1846 | pdishuffle: 1652
1847 | pdishuffle: 1653
1848 | pdishuffle: 1654
1849 | pdishuffle: 1655
1850 | pdishuffle: 1656
1851 | pdishuffle: 1657
1852 | pdishuffle: 1658
1853 | pdishuffle: 1659
1854 | pdishuffle: 1660
1855 | pdishuffle: 1661
1856 | pdishuffle: 1662
1857 | pdishuffle: 1663
1858 | pdishuffle: 1664
1859 | pdishuffle: 1665
1860 | pdishuffle: 1666
1861 | pdishuffle: 1667
1862 | pdishuffle: 1668
1863 | pdishuffle: 1669
1864 | pdishuffle: 1670
1865 | pdishuffle: 1671
1866 | pdishuffle: 1672
1867 | pdishuffle: 1673
1868 | pdishuffle: 1674
1869 | pdishuffle: 1675
1870 | pdishuffle: 1676
1871 | pdishuffle: 1677
1872 | pdishuffle: 1678
1873 | pdishuffle: 1679
1874 | pdishuffle: 1680
1875 | pdishuffle: 1681
1876 | pdishuffle: 1682
1877 | pdishuffle: 1683
1878 | pdishuffle: 1684
1879 | pdishuffle: 1685
1880 | pdishuffle: 1686
1881 | pdishuffle: 1687
1882 | pdishuffle: 1688
1883 | pdishuffle: 1689
1884 | pdishuffle: 1690
1885 | pdishuffle: 1691
1886 | pdishuffle: 1692
1887 | pdishuffle: 1693
1888 | pdishuffle: 1694
1889 | pdishuffle: 1695
1890 | pdishuffle: 1696
1891 | pdishuffle: 1697
1892 | pdishuffle: 1698
1893 | pdishuffle: 1699
1894 | pdishuffle: 1700
1895 | pdishuffle: 1701
1896 | pdishuffle: 1702
1897 | pdishuffle: 1703
1898 | pdishuffle: 1704
1899 | pdishuffle: 1705
1900 | pdishuffle: 1706
1901 | pdishuffle: 1707
1902 | pdishuffle: 1708
1903 | pdishuffle: 1709
1904 | pdishuffle: 1710
1905 | pdishuffle: 1711
1906 | pdishuffle: 1712
1907 | pdishuffle: 1713
1908 | pdishuffle: 1714
1909 | pdishuffle: 1715
1910 | pdishuffle: 1716
1911 | pdishuffle: 1717
1912 | pdishuffle: 1718
1913 | pdishuffle: 1719
1914 | pdishuffle: 1720
1915 | pdishuffle: 1721
1916 | pdishuffle: 1722
1917 | pdishuffle: 1723
1918 | pdishuffle: 1724
1919 | pdishuffle: 1725
1920 | pdishuffle: 1726
1921 | pdishuffle: 1727
1922 | pdishuffle: 1728
1923 | pdishuffle: 1729
1924 | pdishuffle: 1730
1925 | pdishuffle: 1731
1926 | pdishuffle: 1732
1927 | pdishuffle: 1733
1928 | pdishuffle: 1734
1929 | pdishuffle: 1735
1930 | pdishuffle: 1736
1931 | pdishuffle: 1737
1932 | pdishuffle: 1738
1933 | pdishuffle: 1739
1934 | pdishuffle: 1740
1935 | pdishuffle: 1741
1936 | pdishuffle: 1742
1937 | pdishuffle: 1743
1938 | pdishuffle: 1744
1939 | pdishuffle: 1745
1940 | pdishuffle: 1746
1941 | pdishuffle: 1747
1942 | pdishuffle: 1748
1943 | pdishuffle: 1749
1944 | pdishuffle: 1750
1945 | pdishuffle: 1751
1946 | pdishuffle: 1752
1947 | pdishuffle: 1753
1948 | pdishuffle: 1754
1949 | pdishuffle: 1755
1950 | pdishuffle: 1756
1951 | pdishuffle: 1757
1952 | pdishuffle: 1758
1953 | pdishuffle: 1759
1954 | pdishuffle: 1760
1955 | pdishuffle: 1761
1956 | pdishuffle: 1762
1957 | pdishuffle: 1763
1958 | pdishuffle: 1764
1959 | pdishuffle: 1765
1960 | pdishuffle: 1766
1961 | pdishuffle: 1767
1962 | pdishuffle: 1768
1963 | pdishuffle: 1769
1964 | pdishuffle: 1770
1965 | pdishuffle: 1771
1966 | pdishuffle: 1772
1967 | pdishuffle: 1773
1968 | pdishuffle: 1774
1969 | pdishuffle: 1775
1970 | pdishuffle: 1776
1971 | pdishuffle: 1777
1972 | pdishuffle: 1778
1973 | pdishuffle: 1779
1974 | pdishuffle: 1780
1975 | pdishuffle: 1781
1976 | pdishuffle: 1782
1977 | pdishuffle: 1783
1978 | pdishuffle: 1784
1979 | pdishuffle: 1785
1980 | pdishuffle: 1786
1981 | pdishuffle: 1787
1982 | pdishuffle: 1788
1983 | pdishuffle: 1789
1984 | pdishuffle: 1790
1985 | pdishuffle: 1791
1986 | pdishuffle: 1792
1987 | pdishuffle: 1793
1988 | pdishuffle: 1794
1989 | pdishuffle: 1795
1990 | pdishuffle: 1796
1991 | pdishuffle: 1797
1992 | pdishuffle: 1798
1993 | pdishuffle: 1799
1994 | pdishuffle: 1800
1995 | pdishuffle: 1801
1996 | pdishuffle: 1802
1997 | pdishuffle: 1803
1998 | pdishuffle: 1804
1999 | pdishuffle: 1805
2000 | pdishuffle: 1806
2001 | pdishuffle: 1807
2002 | pdishuffle: 1808
2003 | pdishuffle: 1809
2004 | pdishuffle: 1810
2005 | pdishuffle: 1811
2006 | pdishuffle: 1812
2007 | pdishuffle: 1813
2008 | pdishuffle: 1814
2009 | pdishuffle: 1815
2010 | pdishuffle: 1816
2011 | pdishuffle: 1817
2012 | pdishuffle: 1818
2013 | pdishuffle: 1819
2014 | pdishuffle: 1820
2015 | pdishuffle: 1821
2016 | pdishuffle: 1822
2017 | pdishuffle: 1823
2018 | pdishuffle: 1824
2019 | pdishuffle: 1825
2020 | pdishuffle: 1826
2021 | pdishuffle: 1827
2022 | pdishuffle: 1828
2023 | pdishuffle: 1829
2024 | pdishuffle: 1830
2025 | pdishuffle: 1831
2026 | pdishuffle: 1832
2027 | pdishuffle: 1833
2028 | pdishuffle: 1834
2029 | pdishuffle: 1835
2030 | pdishuffle: 1836
2031 | pdishuffle: 1837
2032 | pdishuffle: 1838
2033 | pdishuffle: 1839
2034 | pdishuffle: 1840
2035 | pdishuffle: 1841
2036 | pdishuffle: 1842
2037 | pdishuffle: 1843
2038 | pdishuffle: 1844
2039 | pdishuffle: 1845
2040 | pdishuffle: 1846
2041 | pdishuffle: 1847
2042 | pdishuffle: 1848
2043 | pdishuffle: 1849
2044 | pdishuffle: 1850
2045 | pdishuffle: 1851
2046 | pdishuffle: 1852
2047 | pdishuffle: 1853
2048 | pdishuffle: 1854
2049 | pdishuffle: 1855
2050 | pdishuffle: 1856
2051 | pdishuffle: 1857
2052 | pdishuffle: 1858
2053 | pdishuffle: 1859
2054 | pdishuffle: 1860
2055 | pdishuffle: 1861
2056 | pdishuffle: 1862
2057 | pdishuffle: 1863
2058 | pdishuffle: 1864
2059 | pdishuffle: 1865
2060 | pdishuffle: 1866
2061 | pdishuffle: 1867
2062 | pdishuffle: 1868
2063 | pdishuffle: 1869
2064 | pdishuffle: 1870
2065 | pdishuffle: 1871
2066 | pdishuffle: 1872
2067 | pdishuffle: 1873
2068 | pdishuffle: 1874
2069 | pdishuffle: 1875
2070 | pdishuffle: 1876
2071 | pdishuffle: 1877
2072 | pdishuffle: 1878
2073 | pdishuffle: 1879
2074 | pdishuffle: 1880
2075 | pdishuffle: 1881
2076 | pdishuffle: 1882
2077 | pdishuffle: 1883
2078 | pdishuffle: 1884
2079 | pdishuffle: 1885
2080 | pdishuffle: 1886
2081 | pdishuffle: 1887
2082 | pdishuffle: 1888
2083 | pdishuffle: 1889
2084 | pdishuffle: 1890
2085 | pdishuffle: 1891
2086 | pdishuffle: 1892
2087 | pdishuffle: 1893
2088 | pdishuffle: 1894
2089 | pdishuffle: 1895
2090 | pdishuffle: 1896
2091 | pdishuffle: 1897
2092 | pdishuffle: 1898
2093 | pdishuffle: 1899
2094 | pdishuffle: 1900
2095 | pdishuffle: 1901
2096 | pdishuffle: 1902
2097 | pdishuffle: 1903
2098 | pdishuffle: 1904
2099 | pdishuffle: 1905
2100 | pdishuffle: 1906
2101 | pdishuffle: 1907
2102 | pdishuffle: 1908
2103 | pdishuffle: 1909
2104 | pdishuffle: 1910
2105 | pdishuffle: 1911
2106 | pdishuffle: 1912
2107 | pdishuffle: 1913
2108 | pdishuffle: 1914
2109 | pdishuffle: 1915
2110 | pdishuffle: 1916
2111 | pdishuffle: 1917
2112 | pdishuffle: 1918
2113 | pdishuffle: 1919
2114 | pdishuffle: 1920
2115 | pdishuffle: 1921
2116 | pdishuffle: 1922
2117 | pdishuffle: 1923
2118 | pdishuffle: 1924
2119 | pdishuffle: 1925
2120 | pdishuffle: 1926
2121 | pdishuffle: 1927
2122 | pdishuffle: 1928
2123 | pdishuffle: 1929
2124 | pdishuffle: 1930
2125 | pdishuffle: 1931
2126 | pdishuffle: 1932
2127 | pdishuffle: 1933
2128 | pdishuffle: 1934
2129 | pdishuffle: 1935
2130 | pdishuffle: 1936
2131 | pdishuffle: 1937
2132 | pdishuffle: 1938
2133 | pdishuffle: 1939
2134 | pdishuffle: 1940
2135 | pdishuffle: 1941
2136 | pdishuffle: 1942
2137 | pdishuffle: 1943
2138 | pdishuffle: 1944
2139 | pdishuffle: 1945
2140 | pdishuffle: 1946
2141 | pdishuffle: 1947
2142 | pdishuffle: 1948
2143 | pdishuffle: 1949
2144 | pdishuffle: 1950
2145 | pdishuffle: 1951
2146 | pdishuffle: 1952
2147 | pdishuffle: 1953
2148 | pdishuffle: 1954
2149 | pdishuffle: 1955
2150 | pdishuffle: 1956
2151 | pdishuffle: 1957
2152 | pdishuffle: 1958
2153 | pdishuffle: 1959
2154 | pdishuffle: 1960
2155 | pdishuffle: 1961
2156 | pdishuffle: 1962
2157 | pdishuffle: 1963
2158 | pdishuffle: 1964
2159 | pdishuffle: 1965
2160 | pdishuffle: 1966
2161 | pdishuffle: 1967
2162 | pdishuffle: 1968
2163 | pdishuffle: 1969
2164 | pdishuffle: 1970
2165 | pdishuffle: 1971
2166 | pdishuffle: 1972
2167 | pdishuffle: 1973
2168 | pdishuffle: 1974
2169 | pdishuffle: 1975
2170 | pdishuffle: 1976
2171 | pdishuffle: 1977
2172 | pdishuffle: 1978
2173 | pdishuffle: 1979
2174 | pdishuffle: 1980
2175 | pdishuffle: 1981
2176 | pdishuffle: 1982
2177 | pdishuffle: 1983
2178 | pdishuffle: 1984
2179 | pdishuffle: 1985
2180 | pdishuffle: 1986
2181 | pdishuffle: 1987
2182 | pdishuffle: 1988
2183 | pdishuffle: 1989
2184 | pdishuffle: 1990
2185 | pdishuffle: 1991
2186 | pdishuffle: 1992
2187 | pdishuffle: 1993
2188 | pdishuffle: 1994
2189 | pdishuffle: 1995
2190 | pdishuffle: 1996
2191 | pdishuffle: 1997
2192 | pdishuffle: 1998
2193 | pdishuffle: 1999
2194 | pdishuffle: 2000
2195 |
2196 | real 17m40.559s
2197 | user 16m16.743s
2198 | sys 1m12.594s
--------------------------------------------------------------------------------