├── .gitignore ├── README.md ├── caffe ├── .Doxyfile ├── .gitignore ├── .travis.yml ├── CMakeLists.txt ├── CONTRIBUTING.md ├── CONTRIBUTORS.md ├── INSTALL.md ├── LICENSE ├── License.txt ├── Makefile ├── Makefile.config.example ├── README.md ├── caffe.cloc ├── cmake │ ├── ConfigGen.cmake │ ├── Cuda.cmake │ ├── Dependencies.cmake │ ├── External │ │ ├── gflags.cmake │ │ └── glog.cmake │ ├── Misc.cmake │ ├── Modules │ │ ├── FindAtlas.cmake │ │ ├── FindGFlags.cmake │ │ ├── FindGlog.cmake │ │ ├── FindLAPACK.cmake │ │ ├── FindLMDB.cmake │ │ ├── FindLevelDB.cmake │ │ ├── FindMKL.cmake │ │ ├── FindMatlabMex.cmake │ │ ├── FindNumPy.cmake │ │ ├── FindOpenBLAS.cmake │ │ ├── FindSnappy.cmake │ │ └── FindvecLib.cmake │ ├── ProtoBuf.cmake │ ├── Summary.cmake │ ├── Targets.cmake │ ├── Templates │ │ ├── CaffeConfig.cmake.in │ │ ├── CaffeConfigVersion.cmake.in │ │ └── caffe_config.h.in │ ├── Utils.cmake │ └── lint.cmake ├── data │ ├── caltech-office │ │ ├── amazon_10_list.txt │ │ ├── caltech_256_list.txt │ │ ├── dslr_10_list.txt │ │ └── webcam_10_list.txt │ ├── ilsvrc12 │ │ ├── ._imagenet_mean.binaryproto │ │ ├── ._synset_words.txt │ │ ├── ._synsets.txt │ │ ├── ._test.txt │ │ ├── ._train.txt │ │ ├── ._val.txt │ │ ├── get_ilsvrc_aux.sh │ │ └── imagenet_mean.binaryproto │ ├── imagenet-caltech │ │ ├── caltech_256_list.txt │ │ ├── caltech_84_list.txt │ │ └── imagenet_val_84_list.txt │ └── office │ │ ├── amazon_10_list.txt │ │ ├── amazon_31_list.txt │ │ ├── dslr_10_list.txt │ │ ├── dslr_31_list.txt │ │ ├── webcam_10_list.txt │ │ └── webcam_31_list.txt ├── docker │ ├── Makefile │ ├── README.md │ ├── standalone │ │ ├── cpu │ │ │ └── Dockerfile │ │ └── gpu │ │ │ └── Dockerfile │ └── templates │ │ └── Dockerfile.template ├── docs │ ├── CMakeLists.txt │ ├── CNAME │ ├── README.md │ ├── _config.yml │ ├── _layouts │ │ └── default.html │ ├── development.md │ ├── images │ │ ├── GitHub-Mark-64px.png │ │ └── caffeine-icon.png │ ├── index.md │ ├── install_apt.md │ ├── install_osx.md │ ├── install_yum.md │ ├── installation.md │ ├── model_zoo.md │ ├── multigpu.md │ ├── performance_hardware.md │ ├── stylesheets │ │ ├── pygment_trac.css │ │ ├── reset.css │ │ └── styles.css │ └── tutorial │ │ ├── convolution.md │ │ ├── data.md │ │ ├── fig │ │ ├── .gitignore │ │ ├── backward.jpg │ │ ├── forward.jpg │ │ ├── forward_backward.png │ │ ├── layer.jpg │ │ └── logreg.jpg │ │ ├── forward_backward.md │ │ ├── index.md │ │ ├── interfaces.md │ │ ├── layers.md │ │ ├── loss.md │ │ ├── net_layer_blob.md │ │ └── solver.md ├── examples │ ├── 00-classification.ipynb │ ├── 01-learning-lenet.ipynb │ ├── 02-fine-tuning.ipynb │ ├── CMakeLists.txt │ ├── brewing-logreg.ipynb │ ├── cifar10 │ │ ├── cifar10_full.prototxt │ │ ├── cifar10_full_sigmoid_solver.prototxt │ │ ├── cifar10_full_sigmoid_solver_bn.prototxt │ │ ├── cifar10_full_sigmoid_train_test.prototxt │ │ ├── cifar10_full_sigmoid_train_test_bn.prototxt │ │ ├── cifar10_full_solver.prototxt │ │ ├── cifar10_full_solver_lr1.prototxt │ │ ├── cifar10_full_solver_lr2.prototxt │ │ ├── cifar10_full_train_test.prototxt │ │ ├── cifar10_quick.prototxt │ │ ├── cifar10_quick_solver.prototxt │ │ ├── cifar10_quick_solver_lr1.prototxt │ │ ├── cifar10_quick_train_test.prototxt │ │ ├── convert_cifar_data.cpp │ │ ├── create_cifar10.sh │ │ ├── readme.md │ │ ├── train_full.sh │ │ ├── train_full_sigmoid.sh │ │ ├── train_full_sigmoid_bn.sh │ │ └── train_quick.sh │ ├── cpp_classification │ │ ├── classification.cpp │ │ └── readme.md │ ├── detection.ipynb │ ├── feature_extraction │ │ ├── imagenet_val.prototxt │ │ └── readme.md │ ├── finetune_flickr_style │ │ ├── assemble_data.py │ │ ├── flickr_style.csv.gz │ │ ├── readme.md │ │ └── style_names.txt │ ├── finetune_pascal_detection │ │ ├── pascal_finetune_solver.prototxt │ │ └── pascal_finetune_trainval_test.prototxt │ ├── hdf5_classification │ │ ├── nonlinear_auto_test.prototxt │ │ ├── nonlinear_auto_train.prototxt │ │ ├── nonlinear_train_val.prototxt │ │ └── train_val.prototxt │ ├── imagenet │ │ ├── create_imagenet.sh │ │ ├── make_imagenet_mean.sh │ │ ├── readme.md │ │ ├── resume_training.sh │ │ └── train_caffenet.sh │ ├── images │ │ ├── cat gray.jpg │ │ ├── cat.jpg │ │ ├── cat_gray.jpg │ │ └── fish-bike.jpg │ ├── mnist │ │ ├── convert_mnist_data.cpp │ │ ├── create_mnist.sh │ │ ├── lenet.prototxt │ │ ├── lenet_adadelta_solver.prototxt │ │ ├── lenet_auto_solver.prototxt │ │ ├── lenet_consolidated_solver.prototxt │ │ ├── lenet_multistep_solver.prototxt │ │ ├── lenet_solver.prototxt │ │ ├── lenet_solver_adam.prototxt │ │ ├── lenet_solver_rmsprop.prototxt │ │ ├── lenet_train_test.prototxt │ │ ├── mnist_autoencoder.prototxt │ │ ├── mnist_autoencoder_solver.prototxt │ │ ├── mnist_autoencoder_solver_adadelta.prototxt │ │ ├── mnist_autoencoder_solver_adagrad.prototxt │ │ ├── mnist_autoencoder_solver_nesterov.prototxt │ │ ├── readme.md │ │ ├── train_lenet.sh │ │ ├── train_lenet_adam.sh │ │ ├── train_lenet_consolidated.sh │ │ ├── train_lenet_docker.sh │ │ ├── train_lenet_rmsprop.sh │ │ ├── train_mnist_autoencoder.sh │ │ ├── train_mnist_autoencoder_adadelta.sh │ │ ├── train_mnist_autoencoder_adagrad.sh │ │ └── train_mnist_autoencoder_nesterov.sh │ ├── net_surgery.ipynb │ ├── net_surgery │ │ ├── bvlc_caffenet_full_conv.prototxt │ │ └── conv.prototxt │ ├── pascal-multilabel-with-datalayer.ipynb │ ├── pycaffe │ │ ├── caffenet.py │ │ ├── layers │ │ │ ├── pascal_multilabel_datalayers.py │ │ │ └── pyloss.py │ │ ├── linreg.prototxt │ │ └── tools.py │ ├── siamese │ │ ├── convert_mnist_siamese_data.cpp │ │ ├── create_mnist_siamese.sh │ │ ├── mnist_siamese.ipynb │ │ ├── mnist_siamese.prototxt │ │ ├── mnist_siamese_solver.prototxt │ │ ├── mnist_siamese_train_test.prototxt │ │ ├── readme.md │ │ └── train_mnist_siamese.sh │ └── web_demo │ │ ├── app.py │ │ ├── exifutil.py │ │ ├── readme.md │ │ ├── requirements.txt │ │ └── templates │ │ └── index.html ├── include │ └── caffe │ │ ├── blob.hpp │ │ ├── caffe.hpp │ │ ├── common.hpp │ │ ├── data_reader.hpp │ │ ├── data_transformer.hpp │ │ ├── filler.hpp │ │ ├── internal_thread.hpp │ │ ├── layer.hpp │ │ ├── layer_factory.hpp │ │ ├── layers │ │ ├── absval_layer.hpp │ │ ├── accuracy_layer.hpp │ │ ├── add_layer.hpp │ │ ├── aggregate_weight_layer.hpp │ │ ├── argmax_layer.hpp │ │ ├── base_conv_layer.hpp │ │ ├── base_data_layer.hpp │ │ ├── batch_norm_layer.hpp │ │ ├── batch_reindex_layer.hpp │ │ ├── bias_layer.hpp │ │ ├── bilinear_layer.hpp │ │ ├── bnll_layer.hpp │ │ ├── concat_layer.hpp │ │ ├── contrastive_loss_layer.hpp │ │ ├── conv_layer.hpp │ │ ├── crop_layer.hpp │ │ ├── cross_entropy_loss_layer.hpp │ │ ├── cudnn_conv_layer.hpp │ │ ├── cudnn_lcn_layer.hpp │ │ ├── cudnn_lrn_layer.hpp │ │ ├── cudnn_pooling_layer.hpp │ │ ├── cudnn_relu_layer.hpp │ │ ├── cudnn_sigmoid_layer.hpp │ │ ├── cudnn_softmax_layer.hpp │ │ ├── cudnn_tanh_layer.hpp │ │ ├── data_layer.hpp │ │ ├── deconv_layer.hpp │ │ ├── dropout_layer.hpp │ │ ├── dummy_data_layer.hpp │ │ ├── eltwise_layer.hpp │ │ ├── elu_layer.hpp │ │ ├── embed_layer.hpp │ │ ├── entropy_loss_layer.hpp │ │ ├── euclidean_loss_layer.hpp │ │ ├── exp_layer.hpp │ │ ├── filter_layer.hpp │ │ ├── flatten_layer.hpp │ │ ├── gradient_scaler_layer.hpp │ │ ├── hdf5_data_layer.hpp │ │ ├── hdf5_output_layer.hpp │ │ ├── hinge_loss_layer.hpp │ │ ├── im2col_layer.hpp │ │ ├── image_data_layer.hpp │ │ ├── infogain_loss_layer.hpp │ │ ├── inner_product_layer.hpp │ │ ├── input_layer.hpp │ │ ├── l2_normalize_layer.hpp │ │ ├── log_layer.hpp │ │ ├── loss_layer.hpp │ │ ├── lrn_layer.hpp │ │ ├── lstm_layer.hpp │ │ ├── memory_data_layer.hpp │ │ ├── multinomial_logistic_loss_layer.hpp │ │ ├── mvn_layer.hpp │ │ ├── neuron_layer.hpp │ │ ├── outerproduct_layer.hpp │ │ ├── padding_layer.hpp │ │ ├── parameter_layer.hpp │ │ ├── pooling_layer.hpp │ │ ├── power_layer.hpp │ │ ├── prelu_layer.hpp │ │ ├── product_layer.hpp │ │ ├── python_layer.hpp │ │ ├── recurrent_layer.hpp │ │ ├── reduction_layer.hpp │ │ ├── relu_layer.hpp │ │ ├── reshape_layer.hpp │ │ ├── rnn_layer.hpp │ │ ├── scale_layer.hpp │ │ ├── sigmoid_cross_entropy_loss_layer.hpp │ │ ├── sigmoid_layer.hpp │ │ ├── silence_layer.hpp │ │ ├── slice_layer.hpp │ │ ├── softmax_layer.hpp │ │ ├── softmax_loss_layer.hpp │ │ ├── split_layer.hpp │ │ ├── spp_layer.hpp │ │ ├── tanh_layer.hpp │ │ ├── threshold_layer.hpp │ │ ├── tile_layer.hpp │ │ └── window_data_layer.hpp │ │ ├── messenger.hpp │ │ ├── net.hpp │ │ ├── parallel.hpp │ │ ├── sgd_solvers.hpp │ │ ├── solver.hpp │ │ ├── solver_factory.hpp │ │ ├── syncedmem.hpp │ │ ├── test │ │ ├── test_caffe_main.hpp │ │ └── test_gradient_check_util.hpp │ │ └── util │ │ ├── _kiss_fft_guts.h │ │ ├── benchmark.hpp │ │ ├── blocking_queue.hpp │ │ ├── cudnn.hpp │ │ ├── db.hpp │ │ ├── db_leveldb.hpp │ │ ├── db_lmdb.hpp │ │ ├── device_alternate.hpp │ │ ├── format.hpp │ │ ├── gpu_util.cuh │ │ ├── hdf5.hpp │ │ ├── im2col.hpp │ │ ├── insert_splits.hpp │ │ ├── io.hpp │ │ ├── kiss_fft.h │ │ ├── kiss_fftr.h │ │ ├── math_functions.hpp │ │ ├── mkl_alternate.hpp │ │ ├── output_matrix.hpp │ │ ├── rng.hpp │ │ ├── signal_handler.h │ │ └── upgrade_proto.hpp ├── matlab │ ├── +caffe │ │ ├── +test │ │ │ ├── test_io.m │ │ │ ├── test_net.m │ │ │ └── test_solver.m │ │ ├── Blob.m │ │ ├── Layer.m │ │ ├── Net.m │ │ ├── Solver.m │ │ ├── get_net.m │ │ ├── get_solver.m │ │ ├── imagenet │ │ │ └── ilsvrc_2012_mean.mat │ │ ├── io.m │ │ ├── private │ │ │ ├── CHECK.m │ │ │ ├── CHECK_FILE_EXIST.m │ │ │ ├── caffe_.cpp │ │ │ └── is_valid_handle.m │ │ ├── reset_all.m │ │ ├── run_tests.m │ │ ├── set_device.m │ │ ├── set_mode_cpu.m │ │ ├── set_mode_gpu.m │ │ └── version.m │ ├── CMakeLists.txt │ ├── demo │ │ └── classification_demo.m │ └── hdf5creation │ │ ├── .gitignore │ │ ├── demo.m │ │ └── store2hdf5.m ├── models │ ├── bvlc_alexnet │ │ ├── deploy.prototxt │ │ ├── readme.md │ │ ├── solver.prototxt │ │ └── train_val.prototxt │ ├── bvlc_googlenet │ │ ├── deploy.prototxt │ │ ├── quick_solver.prototxt │ │ ├── readme.md │ │ ├── solver.prototxt │ │ └── train_val.prototxt │ ├── bvlc_reference_caffenet │ │ ├── deploy.prototxt │ │ ├── readme.md │ │ ├── solver.prototxt │ │ └── train_val.prototxt │ ├── bvlc_reference_rcnn_ilsvrc13 │ │ ├── deploy.prototxt │ │ └── readme.md │ ├── finetune_flickr_style │ │ ├── deploy.prototxt │ │ ├── readme.md │ │ ├── solver.prototxt │ │ └── train_val.prototxt │ └── san │ │ ├── caltech-office │ │ ├── solver.prototxt │ │ └── train.prototxt │ │ ├── imagenet-caltech │ │ ├── solver_caltech.prototxt │ │ ├── solver_imagenet.prototxt │ │ ├── train_caltech.prototxt │ │ └── train_imagenet.prototxt │ │ └── office │ │ ├── solver.prototxt │ │ └── train.prototxt ├── python │ ├── CMakeLists.txt │ ├── caffe │ │ ├── __init__.py │ │ ├── _caffe.cpp │ │ ├── classifier.py │ │ ├── coord_map.py │ │ ├── detector.py │ │ ├── draw.py │ │ ├── imagenet │ │ │ └── ilsvrc_2012_mean.npy │ │ ├── io.py │ │ ├── net_spec.py │ │ ├── pycaffe.py │ │ └── test │ │ │ ├── test_coord_map.py │ │ │ ├── test_io.py │ │ │ ├── test_layer_type_list.py │ │ │ ├── test_net.py │ │ │ ├── test_net_spec.py │ │ │ ├── test_python_layer.py │ │ │ ├── test_python_layer_with_param_str.py │ │ │ └── test_solver.py │ ├── classify.py │ ├── detect.py │ ├── draw_net.py │ └── requirements.txt ├── src │ ├── caffe │ │ ├── CMakeLists.txt │ │ ├── blob.cpp │ │ ├── common.cpp │ │ ├── data_reader.cpp │ │ ├── data_transformer.cpp │ │ ├── internal_thread.cpp │ │ ├── layer.cpp │ │ ├── layer_factory.cpp │ │ ├── layers │ │ │ ├── absval_layer.cpp │ │ │ ├── absval_layer.cu │ │ │ ├── accuracy_layer.cpp │ │ │ ├── add_layer.cpp │ │ │ ├── add_layer.cu │ │ │ ├── aggregate_weight_layer.cpp │ │ │ ├── aggregate_weight_layer.cu │ │ │ ├── argmax_layer.cpp │ │ │ ├── base_conv_layer.cpp │ │ │ ├── base_data_layer.cpp │ │ │ ├── base_data_layer.cu │ │ │ ├── batch_norm_layer.cpp │ │ │ ├── batch_norm_layer.cu │ │ │ ├── batch_reindex_layer.cpp │ │ │ ├── batch_reindex_layer.cu │ │ │ ├── bias_layer.cpp │ │ │ ├── bias_layer.cu │ │ │ ├── bilinear_layer.cpp │ │ │ ├── bilinear_layer.cu │ │ │ ├── bnll_layer.cpp │ │ │ ├── bnll_layer.cu │ │ │ ├── concat_layer.cpp │ │ │ ├── concat_layer.cu │ │ │ ├── contrastive_loss_layer.cpp │ │ │ ├── contrastive_loss_layer.cu │ │ │ ├── conv_layer.cpp │ │ │ ├── conv_layer.cu │ │ │ ├── crop_layer.cpp │ │ │ ├── crop_layer.cu │ │ │ ├── cross_entropy_loss_layer.cpp │ │ │ ├── cross_entropy_loss_layer.cu │ │ │ ├── cudnn_conv_layer.cpp │ │ │ ├── cudnn_conv_layer.cu │ │ │ ├── cudnn_lcn_layer.cpp │ │ │ ├── cudnn_lcn_layer.cu │ │ │ ├── cudnn_lrn_layer.cpp │ │ │ ├── cudnn_lrn_layer.cu │ │ │ ├── cudnn_pooling_layer.cpp │ │ │ ├── cudnn_pooling_layer.cu │ │ │ ├── cudnn_relu_layer.cpp │ │ │ ├── cudnn_relu_layer.cu │ │ │ ├── cudnn_sigmoid_layer.cpp │ │ │ ├── cudnn_sigmoid_layer.cu │ │ │ ├── cudnn_softmax_layer.cpp │ │ │ ├── cudnn_softmax_layer.cu │ │ │ ├── cudnn_tanh_layer.cpp │ │ │ ├── cudnn_tanh_layer.cu │ │ │ ├── data_layer.cpp │ │ │ ├── deconv_layer.cpp │ │ │ ├── deconv_layer.cu │ │ │ ├── dropout_layer.cpp │ │ │ ├── dropout_layer.cu │ │ │ ├── dummy_data_layer.cpp │ │ │ ├── eltwise_layer.cpp │ │ │ ├── eltwise_layer.cu │ │ │ ├── elu_layer.cpp │ │ │ ├── elu_layer.cu │ │ │ ├── embed_layer.cpp │ │ │ ├── embed_layer.cu │ │ │ ├── entropy_loss_layer.cpp │ │ │ ├── entropy_loss_layer.cu │ │ │ ├── euclidean_loss_layer.cpp │ │ │ ├── euclidean_loss_layer.cu │ │ │ ├── exp_layer.cpp │ │ │ ├── exp_layer.cu │ │ │ ├── filter_layer.cpp │ │ │ ├── filter_layer.cu │ │ │ ├── flatten_layer.cpp │ │ │ ├── gradient_scaler_layer.cpp │ │ │ ├── gradient_scaler_layer.cu │ │ │ ├── hdf5_data_layer.cpp │ │ │ ├── hdf5_data_layer.cu │ │ │ ├── hdf5_output_layer.cpp │ │ │ ├── hdf5_output_layer.cu │ │ │ ├── hinge_loss_layer.cpp │ │ │ ├── im2col_layer.cpp │ │ │ ├── im2col_layer.cu │ │ │ ├── image_data_layer.cpp │ │ │ ├── infogain_loss_layer.cpp │ │ │ ├── inner_product_layer.cpp │ │ │ ├── inner_product_layer.cu │ │ │ ├── input_layer.cpp │ │ │ ├── l2_normalize_layer.cpp │ │ │ ├── l2_normalize_layer.cu │ │ │ ├── log_layer.cpp │ │ │ ├── log_layer.cu │ │ │ ├── loss_layer.cpp │ │ │ ├── lrn_layer.cpp │ │ │ ├── lrn_layer.cu │ │ │ ├── lstm_layer.cpp │ │ │ ├── lstm_unit_layer.cpp │ │ │ ├── lstm_unit_layer.cu │ │ │ ├── memory_data_layer.cpp │ │ │ ├── multinomial_logistic_loss_layer.cpp │ │ │ ├── mvn_layer.cpp │ │ │ ├── mvn_layer.cu │ │ │ ├── neuron_layer.cpp │ │ │ ├── outerproduct_layer.cpp │ │ │ ├── outerproduct_layer.cu │ │ │ ├── padding_layer.cpp │ │ │ ├── padding_layer.cu │ │ │ ├── parameter_layer.cpp │ │ │ ├── pooling_layer.cpp │ │ │ ├── pooling_layer.cu │ │ │ ├── power_layer.cpp │ │ │ ├── power_layer.cu │ │ │ ├── prelu_layer.cpp │ │ │ ├── prelu_layer.cu │ │ │ ├── product_layer.cpp │ │ │ ├── product_layer.cu │ │ │ ├── recurrent_layer.cpp │ │ │ ├── recurrent_layer.cu │ │ │ ├── reduction_layer.cpp │ │ │ ├── reduction_layer.cu │ │ │ ├── relu_layer.cpp │ │ │ ├── relu_layer.cu │ │ │ ├── reshape_layer.cpp │ │ │ ├── rnn_layer.cpp │ │ │ ├── scale_layer.cpp │ │ │ ├── scale_layer.cu │ │ │ ├── sigmoid_cross_entropy_loss_layer.cpp │ │ │ ├── sigmoid_cross_entropy_loss_layer.cu │ │ │ ├── sigmoid_layer.cpp │ │ │ ├── sigmoid_layer.cu │ │ │ ├── silence_layer.cpp │ │ │ ├── silence_layer.cu │ │ │ ├── slice_layer.cpp │ │ │ ├── slice_layer.cu │ │ │ ├── softmax_layer.cpp │ │ │ ├── softmax_layer.cu │ │ │ ├── softmax_loss_layer.cpp │ │ │ ├── softmax_loss_layer.cu │ │ │ ├── split_layer.cpp │ │ │ ├── split_layer.cu │ │ │ ├── spp_layer.cpp │ │ │ ├── tanh_layer.cpp │ │ │ ├── tanh_layer.cu │ │ │ ├── threshold_layer.cpp │ │ │ ├── threshold_layer.cu │ │ │ ├── tile_layer.cpp │ │ │ ├── tile_layer.cu │ │ │ └── window_data_layer.cpp │ │ ├── net.cpp │ │ ├── parallel.cpp │ │ ├── proto │ │ │ └── caffe.proto │ │ ├── solver.cpp │ │ ├── solvers │ │ │ ├── adadelta_solver.cpp │ │ │ ├── adadelta_solver.cu │ │ │ ├── adagrad_solver.cpp │ │ │ ├── adagrad_solver.cu │ │ │ ├── adam_solver.cpp │ │ │ ├── adam_solver.cu │ │ │ ├── nesterov_solver.cpp │ │ │ ├── nesterov_solver.cu │ │ │ ├── rmsprop_solver.cpp │ │ │ ├── rmsprop_solver.cu │ │ │ ├── sgd_solver.cpp │ │ │ └── sgd_solver.cu │ │ ├── syncedmem.cpp │ │ ├── test │ │ │ ├── CMakeLists.txt │ │ │ ├── test_accuracy_layer.cpp │ │ │ ├── test_argmax_layer.cpp │ │ │ ├── test_batch_norm_layer.cpp │ │ │ ├── test_batch_reindex_layer.cpp │ │ │ ├── test_benchmark.cpp │ │ │ ├── test_bias_layer.cpp │ │ │ ├── test_blob.cpp │ │ │ ├── test_caffe_main.cpp │ │ │ ├── test_common.cpp │ │ │ ├── test_concat_layer.cpp │ │ │ ├── test_contrastive_loss_layer.cpp │ │ │ ├── test_convolution_layer.cpp │ │ │ ├── test_crop_layer.cpp │ │ │ ├── test_data │ │ │ │ ├── generate_sample_data.py │ │ │ │ ├── sample_data.h5 │ │ │ │ ├── sample_data_2_gzip.h5 │ │ │ │ ├── sample_data_list.txt │ │ │ │ ├── solver_data.h5 │ │ │ │ └── solver_data_list.txt │ │ │ ├── test_data_layer.cpp │ │ │ ├── test_data_transformer.cpp │ │ │ ├── test_db.cpp │ │ │ ├── test_deconvolution_layer.cpp │ │ │ ├── test_dummy_data_layer.cpp │ │ │ ├── test_eltwise_layer.cpp │ │ │ ├── test_embed_layer.cpp │ │ │ ├── test_euclidean_loss_layer.cpp │ │ │ ├── test_filler.cpp │ │ │ ├── test_filter_layer.cpp │ │ │ ├── test_flatten_layer.cpp │ │ │ ├── test_gradient_based_solver.cpp │ │ │ ├── test_hdf5_output_layer.cpp │ │ │ ├── test_hdf5data_layer.cpp │ │ │ ├── test_hinge_loss_layer.cpp │ │ │ ├── test_im2col_kernel.cu │ │ │ ├── test_im2col_layer.cpp │ │ │ ├── test_image_data_layer.cpp │ │ │ ├── test_infogain_loss_layer.cpp │ │ │ ├── test_inner_product_layer.cpp │ │ │ ├── test_internal_thread.cpp │ │ │ ├── test_io.cpp │ │ │ ├── test_layer_factory.cpp │ │ │ ├── test_lrn_layer.cpp │ │ │ ├── test_lstm_layer.cpp │ │ │ ├── test_math_functions.cpp │ │ │ ├── test_maxpool_dropout_layers.cpp │ │ │ ├── test_memory_data_layer.cpp │ │ │ ├── test_multinomial_logistic_loss_layer.cpp │ │ │ ├── test_mvn_layer.cpp │ │ │ ├── test_net.cpp │ │ │ ├── test_neuron_layer.cpp │ │ │ ├── test_platform.cpp │ │ │ ├── test_pooling_layer.cpp │ │ │ ├── test_power_layer.cpp │ │ │ ├── test_protobuf.cpp │ │ │ ├── test_random_number_generator.cpp │ │ │ ├── test_reduction_layer.cpp │ │ │ ├── test_reshape_layer.cpp │ │ │ ├── test_rnn_layer.cpp │ │ │ ├── test_scale_layer.cpp │ │ │ ├── test_sigmoid_cross_entropy_loss_layer.cpp │ │ │ ├── test_slice_layer.cpp │ │ │ ├── test_softmax_layer.cpp │ │ │ ├── test_softmax_with_loss_layer.cpp │ │ │ ├── test_solver.cpp │ │ │ ├── test_solver_factory.cpp │ │ │ ├── test_split_layer.cpp │ │ │ ├── test_spp_layer.cpp │ │ │ ├── test_stochastic_pooling.cpp │ │ │ ├── test_syncedmem.cpp │ │ │ ├── test_tanh_layer.cpp │ │ │ ├── test_threshold_layer.cpp │ │ │ ├── test_tile_layer.cpp │ │ │ ├── test_upgrade_proto.cpp │ │ │ └── test_util_blas.cpp │ │ └── util │ │ │ ├── benchmark.cpp │ │ │ ├── blocking_queue.cpp │ │ │ ├── cudnn.cpp │ │ │ ├── db.cpp │ │ │ ├── db_leveldb.cpp │ │ │ ├── db_lmdb.cpp │ │ │ ├── hdf5.cpp │ │ │ ├── im2col.cpp │ │ │ ├── im2col.cu │ │ │ ├── insert_splits.cpp │ │ │ ├── io.cpp │ │ │ ├── kiss_fft.cpp │ │ │ ├── kiss_fftr.cpp │ │ │ ├── math_functions.cpp │ │ │ ├── math_functions.cu │ │ │ ├── output_matrix.cpp │ │ │ ├── signal_handler.cpp │ │ │ └── upgrade_proto.cpp │ └── gtest │ │ ├── CMakeLists.txt │ │ ├── gtest-all.cpp │ │ ├── gtest.h │ │ └── gtest_main.cc ├── tools │ ├── CMakeLists.txt │ ├── caffe.cpp │ ├── compute_image_mean.cpp │ ├── convert_imageset.cpp │ ├── device_query.cpp │ ├── extra │ │ ├── extract_seconds.py │ │ ├── launch_resize_and_crop_images.sh │ │ ├── parse_log.py │ │ ├── parse_log.sh │ │ ├── plot_log.gnuplot.example │ │ ├── plot_training_log.py.example │ │ ├── resize_and_crop_images.py │ │ └── summarize.py │ ├── extract_features.cpp │ ├── finetune_net.cpp │ ├── net_speed_benchmark.cpp │ ├── test_net.cpp │ ├── train_net.cpp │ ├── upgrade_net_proto_binary.cpp │ ├── upgrade_net_proto_text.cpp │ └── upgrade_solver_proto_text.cpp └── train.sh └── pytorch ├── README.md ├── data ├── imagenet-caltech │ ├── caltech_256_list.txt │ ├── caltech_84_list.txt │ └── imagenet_val_84_list.txt └── office │ ├── amazon_10_list.txt │ ├── amazon_31_list.txt │ ├── dslr_10_list.txt │ ├── dslr_31_list.txt │ ├── webcam_10_list.txt │ └── webcam_31_list.txt └── src ├── __init__.py ├── data_list.py ├── loss.py ├── lr_schedule.py ├── network.py ├── pre_process.py ├── train_san.py └── train_san_w_t.py /.gitignore: -------------------------------------------------------------------------------- 1 | ## General 2 | 3 | # Compiled Object files 4 | *.slo 5 | *.lo 6 | *.o 7 | *.cuo 8 | 9 | # Compiled Dynamic libraries 10 | *.so 11 | *.dylib 12 | 13 | # Compiled Static libraries 14 | *.lai 15 | *.la 16 | *.a 17 | 18 | # Compiled protocol buffers 19 | *.pb.h 20 | *.pb.cc 21 | *_pb2.py 22 | 23 | # Compiled python 24 | *.pyc 25 | 26 | # Compiled MATLAB 27 | *.mex* 28 | 29 | # IPython notebook checkpoints 30 | .ipynb_checkpoints 31 | 32 | # Editor temporaries 33 | *.swp 34 | *.swo 35 | *~ 36 | 37 | # Sublime Text settings 38 | *.sublime-workspace 39 | *.sublime-project 40 | 41 | # Eclipse Project settings 42 | *.*project 43 | .settings 44 | 45 | # QtCreator files 46 | *.user 47 | 48 | # PyCharm files 49 | .idea 50 | 51 | # Visual Studio Code files 52 | .vscode 53 | 54 | # OSX dir files 55 | .DS_Store 56 | 57 | ## Caffe 58 | 59 | # User's build configuration 60 | Makefile.config 61 | 62 | # Data and models are either 63 | # 1. reference, and not casually committed 64 | # 2. custom, and live on their own unless they're deliberated contributed 65 | *.caffemodel 66 | *.caffemodel.h5 67 | *.solverstate 68 | *.solverstate.h5 69 | *leveldb 70 | *lmdb 71 | 72 | # build, distribute, and bins (+ python proto bindings) 73 | build 74 | .build_debug/* 75 | .build_release/* 76 | distribute/* 77 | *.testbin 78 | *.bin 79 | python/caffe/proto/ 80 | cmake_build 81 | .cmake_build 82 | 83 | # Generated documentation 84 | docs/_site 85 | docs/gathered 86 | _site 87 | doxygen 88 | docs/dev 89 | 90 | # LevelDB files 91 | *.sst 92 | *.ldb 93 | LOCK 94 | LOG* 95 | CURRENT 96 | MANIFEST-* 97 | 98 | pytorch/snapshot/* 99 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # SAN 2 | SAN Library 3 | 4 | This is the code release for ["Partial Transfer Learning with Selective Adversarial Networks" (CVPR 2018)](http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Partial_Transfer_Learning_CVPR_2018_paper.pdf) 5 | 6 | The caffe version is in directory "caffe". Details of the codes are described in the README.md in "caffe" directory. Notes that the performance of SAN in the paper are achieved by the codes of Caffe framework. 7 | 8 | The pytorch version is in directory "pytorch". We have released the version test on PyTorch Version 0.3.1. Details of the codes are described in the README.md in "pytorch" directory. 9 | 10 | ## Citation 11 | If you use this code for your research, please consider citing: 12 | ``` 13 | @InProceedings{Cao_2018_CVPR, 14 | author = {Cao, Zhangjie and Long, Mingsheng and Wang, Jianmin and Jordan, Michael I.}, 15 | title = {Partial Transfer Learning With Selective Adversarial Networks}, 16 | booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 17 | month = {June}, 18 | year = {2018} 19 | } 20 | ``` 21 | 22 | ## Contact 23 | If you have any problem about our code, feel free to contact 24 | - caozhangjie14@gmail.com 25 | - longmingsheng@gmail.com 26 | 27 | or describe your problem in Issues. 28 | -------------------------------------------------------------------------------- /caffe/.gitignore: -------------------------------------------------------------------------------- 1 | ## General 2 | 3 | # Compiled Object files 4 | *.slo 5 | *.lo 6 | *.o 7 | *.cuo 8 | 9 | # Compiled Dynamic libraries 10 | *.so 11 | *.dylib 12 | 13 | # Compiled Static libraries 14 | *.lai 15 | *.la 16 | *.a 17 | 18 | # Compiled protocol buffers 19 | *.pb.h 20 | *.pb.cc 21 | *_pb2.py 22 | 23 | # Compiled python 24 | *.pyc 25 | 26 | # Compiled MATLAB 27 | *.mex* 28 | 29 | # IPython notebook checkpoints 30 | .ipynb_checkpoints 31 | 32 | # Editor temporaries 33 | *.swp 34 | *~ 35 | 36 | # Sublime Text settings 37 | *.sublime-workspace 38 | *.sublime-project 39 | 40 | # Eclipse Project settings 41 | *.*project 42 | .settings 43 | 44 | # QtCreator files 45 | *.user 46 | 47 | # PyCharm files 48 | .idea 49 | 50 | # Visual Studio Code files 51 | .vscode 52 | 53 | # OSX dir files 54 | .DS_Store 55 | 56 | ## Caffe 57 | 58 | # User's build configuration 59 | Makefile.config 60 | 61 | # Data and models are either 62 | # 1. reference, and not casually committed 63 | # 2. custom, and live on their own unless they're deliberated contributed 64 | *.caffemodel 65 | *.caffemodel.h5 66 | *.solverstate 67 | *.solverstate.h5 68 | *leveldb 69 | *lmdb 70 | 71 | # build, distribute, and bins (+ python proto bindings) 72 | build 73 | .build_debug/* 74 | .build_release/* 75 | distribute/* 76 | *.testbin 77 | *.bin 78 | python/caffe/proto/ 79 | cmake_build 80 | .cmake_build 81 | 82 | # Generated documentation 83 | docs/_site 84 | docs/gathered 85 | _site 86 | doxygen 87 | docs/dev 88 | 89 | # LevelDB files 90 | *.sst 91 | *.ldb 92 | LOCK 93 | LOG* 94 | CURRENT 95 | MANIFEST-* 96 | -------------------------------------------------------------------------------- /caffe/CONTRIBUTORS.md: -------------------------------------------------------------------------------- 1 | # Contributors 2 | 3 | Caffe is developed by a core set of BVLC members and the open-source community. 4 | 5 | We thank all of our [contributors](https://github.com/BVLC/caffe/graphs/contributors)! 6 | 7 | **For the detailed history of contributions** of a given file, try 8 | 9 | git blame file 10 | 11 | to see line-by-line credits and 12 | 13 | git log --follow file 14 | 15 | to see the change log even across renames and rewrites. 16 | 17 | Please refer to the [acknowledgements](http://caffe.berkeleyvision.org/#acknowledgements) on the Caffe site for further details. 18 | 19 | **Copyright** is held by the original contributor according to the versioning history; see LICENSE. 20 | -------------------------------------------------------------------------------- /caffe/INSTALL.md: -------------------------------------------------------------------------------- 1 | # Installation 2 | 3 | See http://caffe.berkeleyvision.org/installation.html for the latest 4 | installation instructions. 5 | 6 | Check the users group in case you need help: 7 | https://groups.google.com/forum/#!forum/caffe-users 8 | -------------------------------------------------------------------------------- /caffe/License.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/License.txt -------------------------------------------------------------------------------- /caffe/caffe.cloc: -------------------------------------------------------------------------------- 1 | Bourne Shell 2 | filter remove_matches ^\s*# 3 | filter remove_inline #.*$ 4 | extension sh 5 | script_exe sh 6 | C 7 | filter remove_matches ^\s*// 8 | filter call_regexp_common C 9 | filter remove_inline //.*$ 10 | extension c 11 | extension ec 12 | extension pgc 13 | C++ 14 | filter remove_matches ^\s*// 15 | filter remove_inline //.*$ 16 | filter call_regexp_common C 17 | extension C 18 | extension cc 19 | extension cpp 20 | extension cxx 21 | extension pcc 22 | C/C++ Header 23 | filter remove_matches ^\s*// 24 | filter call_regexp_common C 25 | filter remove_inline //.*$ 26 | extension H 27 | extension h 28 | extension hh 29 | extension hpp 30 | CUDA 31 | filter remove_matches ^\s*// 32 | filter remove_inline //.*$ 33 | filter call_regexp_common C 34 | extension cu 35 | Python 36 | filter remove_matches ^\s*# 37 | filter docstring_to_C 38 | filter call_regexp_common C 39 | filter remove_inline #.*$ 40 | extension py 41 | make 42 | filter remove_matches ^\s*# 43 | filter remove_inline #.*$ 44 | extension Gnumakefile 45 | extension Makefile 46 | extension am 47 | extension gnumakefile 48 | extension makefile 49 | filename Gnumakefile 50 | filename Makefile 51 | filename gnumakefile 52 | filename makefile 53 | script_exe make 54 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindGlog.cmake: -------------------------------------------------------------------------------- 1 | # - Try to find Glog 2 | # 3 | # The following variables are optionally searched for defaults 4 | # GLOG_ROOT_DIR: Base directory where all GLOG components are found 5 | # 6 | # The following are set after configuration is done: 7 | # GLOG_FOUND 8 | # GLOG_INCLUDE_DIRS 9 | # GLOG_LIBRARIES 10 | # GLOG_LIBRARYRARY_DIRS 11 | 12 | include(FindPackageHandleStandardArgs) 13 | 14 | set(GLOG_ROOT_DIR "" CACHE PATH "Folder contains Google glog") 15 | 16 | if(WIN32) 17 | find_path(GLOG_INCLUDE_DIR glog/logging.h 18 | PATHS ${GLOG_ROOT_DIR}/src/windows) 19 | else() 20 | find_path(GLOG_INCLUDE_DIR glog/logging.h 21 | PATHS ${GLOG_ROOT_DIR}) 22 | endif() 23 | 24 | if(MSVC) 25 | find_library(GLOG_LIBRARY_RELEASE libglog_static 26 | PATHS ${GLOG_ROOT_DIR} 27 | PATH_SUFFIXES Release) 28 | 29 | find_library(GLOG_LIBRARY_DEBUG libglog_static 30 | PATHS ${GLOG_ROOT_DIR} 31 | PATH_SUFFIXES Debug) 32 | 33 | set(GLOG_LIBRARY optimized ${GLOG_LIBRARY_RELEASE} debug ${GLOG_LIBRARY_DEBUG}) 34 | else() 35 | find_library(GLOG_LIBRARY glog 36 | PATHS ${GLOG_ROOT_DIR} 37 | PATH_SUFFIXES lib lib64) 38 | endif() 39 | 40 | find_package_handle_standard_args(Glog DEFAULT_MSG GLOG_INCLUDE_DIR GLOG_LIBRARY) 41 | 42 | if(GLOG_FOUND) 43 | set(GLOG_INCLUDE_DIRS ${GLOG_INCLUDE_DIR}) 44 | set(GLOG_LIBRARIES ${GLOG_LIBRARY}) 45 | message(STATUS "Found glog (include: ${GLOG_INCLUDE_DIR}, library: ${GLOG_LIBRARY})") 46 | mark_as_advanced(GLOG_ROOT_DIR GLOG_LIBRARY_RELEASE GLOG_LIBRARY_DEBUG 47 | GLOG_LIBRARY GLOG_INCLUDE_DIR) 48 | endif() 49 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindLMDB.cmake: -------------------------------------------------------------------------------- 1 | # Try to find the LMBD libraries and headers 2 | # LMDB_FOUND - system has LMDB lib 3 | # LMDB_INCLUDE_DIR - the LMDB include directory 4 | # LMDB_LIBRARIES - Libraries needed to use LMDB 5 | 6 | # FindCWD based on FindGMP by: 7 | # Copyright (c) 2006, Laurent Montel, 8 | # 9 | # Redistribution and use is allowed according to the terms of the BSD license. 10 | 11 | # Adapted from FindCWD by: 12 | # Copyright 2013 Conrad Steenberg 13 | # Aug 31, 2013 14 | 15 | find_path(LMDB_INCLUDE_DIR NAMES lmdb.h PATHS "$ENV{LMDB_DIR}/include") 16 | find_library(LMDB_LIBRARIES NAMES lmdb PATHS "$ENV{LMDB_DIR}/lib" ) 17 | 18 | include(FindPackageHandleStandardArgs) 19 | find_package_handle_standard_args(LMDB DEFAULT_MSG LMDB_INCLUDE_DIR LMDB_LIBRARIES) 20 | 21 | if(LMDB_FOUND) 22 | message(STATUS "Found lmdb (include: ${LMDB_INCLUDE_DIR}, library: ${LMDB_LIBRARIES})") 23 | mark_as_advanced(LMDB_INCLUDE_DIR LMDB_LIBRARIES) 24 | 25 | caffe_parse_header(${LMDB_INCLUDE_DIR}/lmdb.h 26 | LMDB_VERSION_LINES MDB_VERSION_MAJOR MDB_VERSION_MINOR MDB_VERSION_PATCH) 27 | set(LMDB_VERSION "${MDB_VERSION_MAJOR}.${MDB_VERSION_MINOR}.${MDB_VERSION_PATCH}") 28 | endif() 29 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindSnappy.cmake: -------------------------------------------------------------------------------- 1 | # Find the Snappy libraries 2 | # 3 | # The following variables are optionally searched for defaults 4 | # Snappy_ROOT_DIR: Base directory where all Snappy components are found 5 | # 6 | # The following are set after configuration is done: 7 | # SNAPPY_FOUND 8 | # Snappy_INCLUDE_DIR 9 | # Snappy_LIBRARIES 10 | 11 | find_path(Snappy_INCLUDE_DIR NAMES snappy.h 12 | PATHS ${SNAPPY_ROOT_DIR} ${SNAPPY_ROOT_DIR}/include) 13 | 14 | find_library(Snappy_LIBRARIES NAMES snappy 15 | PATHS ${SNAPPY_ROOT_DIR} ${SNAPPY_ROOT_DIR}/lib) 16 | 17 | include(FindPackageHandleStandardArgs) 18 | find_package_handle_standard_args(Snappy DEFAULT_MSG Snappy_INCLUDE_DIR Snappy_LIBRARIES) 19 | 20 | if(SNAPPY_FOUND) 21 | message(STATUS "Found Snappy (include: ${Snappy_INCLUDE_DIR}, library: ${Snappy_LIBRARIES})") 22 | mark_as_advanced(Snappy_INCLUDE_DIR Snappy_LIBRARIES) 23 | 24 | caffe_parse_header(${Snappy_INCLUDE_DIR}/snappy-stubs-public.h 25 | SNAPPY_VERION_LINES SNAPPY_MAJOR SNAPPY_MINOR SNAPPY_PATCHLEVEL) 26 | set(Snappy_VERSION "${SNAPPY_MAJOR}.${SNAPPY_MINOR}.${SNAPPY_PATCHLEVEL}") 27 | endif() 28 | 29 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindvecLib.cmake: -------------------------------------------------------------------------------- 1 | # Find the vecLib libraries as part of Accelerate.framework or as standalon framework 2 | # 3 | # The following are set after configuration is done: 4 | # VECLIB_FOUND 5 | # vecLib_INCLUDE_DIR 6 | # vecLib_LINKER_LIBS 7 | 8 | 9 | if(NOT APPLE) 10 | return() 11 | endif() 12 | 13 | set(__veclib_include_suffix "Frameworks/vecLib.framework/Versions/Current/Headers") 14 | 15 | find_path(vecLib_INCLUDE_DIR vecLib.h 16 | DOC "vecLib include directory" 17 | PATHS /System/Library/Frameworks/Accelerate.framework/Versions/Current/${__veclib_include_suffix} 18 | /System/Library/${__veclib_include_suffix} 19 | /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ 20 | NO_DEFAULT_PATH) 21 | 22 | include(FindPackageHandleStandardArgs) 23 | find_package_handle_standard_args(vecLib DEFAULT_MSG vecLib_INCLUDE_DIR) 24 | 25 | if(VECLIB_FOUND) 26 | if(vecLib_INCLUDE_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*") 27 | set(vecLib_LINKER_LIBS -lcblas "-framework vecLib") 28 | message(STATUS "Found standalone vecLib.framework") 29 | else() 30 | set(vecLib_LINKER_LIBS -lcblas "-framework Accelerate") 31 | message(STATUS "Found vecLib as part of Accelerate.framework") 32 | endif() 33 | 34 | mark_as_advanced(vecLib_INCLUDE_DIR) 35 | endif() 36 | -------------------------------------------------------------------------------- /caffe/cmake/Templates/CaffeConfigVersion.cmake.in: -------------------------------------------------------------------------------- 1 | set(PACKAGE_VERSION "@Caffe_VERSION@") 2 | 3 | # Check whether the requested PACKAGE_FIND_VERSION is compatible 4 | if("${PACKAGE_VERSION}" VERSION_LESS "${PACKAGE_FIND_VERSION}") 5 | set(PACKAGE_VERSION_COMPATIBLE FALSE) 6 | else() 7 | set(PACKAGE_VERSION_COMPATIBLE TRUE) 8 | if ("${PACKAGE_VERSION}" VERSION_EQUAL "${PACKAGE_FIND_VERSION}") 9 | set(PACKAGE_VERSION_EXACT TRUE) 10 | endif() 11 | endif() 12 | -------------------------------------------------------------------------------- /caffe/cmake/Templates/caffe_config.h.in: -------------------------------------------------------------------------------- 1 | /* Sources directory */ 2 | #define SOURCE_FOLDER "${PROJECT_SOURCE_DIR}" 3 | 4 | /* Binaries directory */ 5 | #define BINARY_FOLDER "${PROJECT_BINARY_DIR}" 6 | 7 | /* NVIDA Cuda */ 8 | #cmakedefine HAVE_CUDA 9 | 10 | /* NVIDA cuDNN */ 11 | #cmakedefine HAVE_CUDNN 12 | #cmakedefine USE_CUDNN 13 | 14 | /* NVIDA cuDNN */ 15 | #cmakedefine CPU_ONLY 16 | 17 | /* Test device */ 18 | #define CUDA_TEST_DEVICE ${CUDA_TEST_DEVICE} 19 | 20 | /* Temporary (TODO: remove) */ 21 | #if 1 22 | #define CMAKE_SOURCE_DIR SOURCE_FOLDER "/src/" 23 | #define EXAMPLES_SOURCE_DIR BINARY_FOLDER "/examples/" 24 | #define CMAKE_EXT ".gen.cmake" 25 | #else 26 | #define CMAKE_SOURCE_DIR "src/" 27 | #define EXAMPLES_SOURCE_DIR "examples/" 28 | #define CMAKE_EXT "" 29 | #endif 30 | 31 | /* Matlab */ 32 | #cmakedefine HAVE_MATLAB 33 | 34 | /* IO libraries */ 35 | #cmakedefine USE_OPENCV 36 | #cmakedefine USE_LEVELDB 37 | #cmakedefine USE_LMDB 38 | #cmakedefine ALLOW_LMDB_NOLOCK 39 | -------------------------------------------------------------------------------- /caffe/cmake/lint.cmake: -------------------------------------------------------------------------------- 1 | 2 | set(CMAKE_SOURCE_DIR ..) 3 | set(LINT_COMMAND ${CMAKE_SOURCE_DIR}/scripts/cpp_lint.py) 4 | set(SRC_FILE_EXTENSIONS h hpp hu c cpp cu cc) 5 | set(EXCLUDE_FILE_EXTENSTIONS pb.h pb.cc) 6 | set(LINT_DIRS include src/caffe examples tools python matlab) 7 | 8 | cmake_policy(SET CMP0009 NEW) # suppress cmake warning 9 | 10 | # find all files of interest 11 | foreach(ext ${SRC_FILE_EXTENSIONS}) 12 | foreach(dir ${LINT_DIRS}) 13 | file(GLOB_RECURSE FOUND_FILES ${CMAKE_SOURCE_DIR}/${dir}/*.${ext}) 14 | set(LINT_SOURCES ${LINT_SOURCES} ${FOUND_FILES}) 15 | endforeach() 16 | endforeach() 17 | 18 | # find all files that should be excluded 19 | foreach(ext ${EXCLUDE_FILE_EXTENSTIONS}) 20 | file(GLOB_RECURSE FOUND_FILES ${CMAKE_SOURCE_DIR}/*.${ext}) 21 | set(EXCLUDED_FILES ${EXCLUDED_FILES} ${FOUND_FILES}) 22 | endforeach() 23 | 24 | # exclude generated pb files 25 | list(REMOVE_ITEM LINT_SOURCES ${EXCLUDED_FILES}) 26 | 27 | execute_process( 28 | COMMAND ${LINT_COMMAND} ${LINT_SOURCES} 29 | ERROR_VARIABLE LINT_OUTPUT 30 | ERROR_STRIP_TRAILING_WHITESPACE 31 | ) 32 | 33 | string(REPLACE "\n" ";" LINT_OUTPUT ${LINT_OUTPUT}) 34 | 35 | list(GET LINT_OUTPUT -1 LINT_RESULT) 36 | list(REMOVE_AT LINT_OUTPUT -1) 37 | string(REPLACE " " ";" LINT_RESULT ${LINT_RESULT}) 38 | list(GET LINT_RESULT -1 NUM_ERRORS) 39 | if(NUM_ERRORS GREATER 0) 40 | foreach(msg ${LINT_OUTPUT}) 41 | string(FIND ${msg} "Done" result) 42 | if(result LESS 0) 43 | message(STATUS ${msg}) 44 | endif() 45 | endforeach() 46 | message(FATAL_ERROR "Lint found ${NUM_ERRORS} errors!") 47 | else() 48 | message(STATUS "Lint did not find any errors!") 49 | endif() 50 | 51 | -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/._imagenet_mean.binaryproto: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/._imagenet_mean.binaryproto -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/._synset_words.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/._synset_words.txt -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/._synsets.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/._synsets.txt -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/._test.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/._test.txt -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/._train.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/._train.txt -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/._val.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/._val.txt -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/get_ilsvrc_aux.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # 3 | # N.B. This does not download the ilsvrcC12 data set, as it is gargantuan. 4 | # This script downloads the imagenet example auxiliary files including: 5 | # - the ilsvrc12 image mean, binaryproto 6 | # - synset ids and words 7 | # - Python pickle-format data of ImageNet graph structure and relative infogain 8 | # - the training splits with labels 9 | 10 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 11 | cd "$DIR" 12 | 13 | echo "Downloading..." 14 | 15 | wget -c http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz 16 | 17 | echo "Unzipping..." 18 | 19 | tar -xf caffe_ilsvrc12.tar.gz && rm -f caffe_ilsvrc12.tar.gz 20 | 21 | echo "Done." 22 | -------------------------------------------------------------------------------- /caffe/data/ilsvrc12/imagenet_mean.binaryproto: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/data/ilsvrc12/imagenet_mean.binaryproto -------------------------------------------------------------------------------- /caffe/docker/Makefile: -------------------------------------------------------------------------------- 1 | # A makefile to build the docker images for caffe. 2 | # Two caffe images will be built: 3 | # caffe:cpu --> A CPU-only build of caffe. 4 | # caffe:gpu --> A GPU-enabled build using the latest CUDA and CUDNN versions. 5 | 6 | DOCKER ?= docker 7 | 8 | all: docker_files standalone 9 | 10 | .PHONY: standalone devel 11 | 12 | standalone: cpu_standalone gpu_standalone 13 | 14 | 15 | cpu_standalone: standalone/cpu/Dockerfile 16 | $(DOCKER) build -t caffe:cpu standalone/cpu 17 | 18 | gpu_standalone: standalone/gpu/Dockerfile 19 | $(DOCKER) build -t caffe:gpu standalone/gpu 20 | 21 | docker_files: standalone_files 22 | 23 | standalone_files: standalone/cpu/Dockerfile standalone/gpu/Dockerfile 24 | 25 | FROM_GPU = "nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04" 26 | FROM_CPU = "ubuntu:14.04" 27 | GPU_CMAKE_ARGS = -DUSE_CUDNN=1 28 | CPU_CMAKE_ARGS = -DCPU_ONLY=1 29 | 30 | # A make macro to select the CPU or GPU base image. 31 | define from_image 32 | $(if $(strip $(findstring gpu,$@)),$(FROM_GPU),$(FROM_CPU)) 33 | endef 34 | 35 | # A make macro to select the CPU or GPU build args. 36 | define build_args 37 | $(if $(strip $(findstring gpu,$@)),$(GPU_CMAKE_ARGS),$(CPU_CMAKE_ARGS)) 38 | endef 39 | 40 | # A make macro to construct the CPU or GPU Dockerfile from the template 41 | define create_docker_file 42 | @echo creating $@ 43 | @echo "FROM "$(from_image) > $@ 44 | @cat $^ | sed 's/$${CMAKE_ARGS}/$(build_args)/' >> $@ 45 | endef 46 | 47 | 48 | standalone/%/Dockerfile: templates/Dockerfile.template 49 | $(create_docker_file) 50 | 51 | -------------------------------------------------------------------------------- /caffe/docker/standalone/cpu/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM ubuntu:14.04 2 | MAINTAINER caffe-maint@googlegroups.com 3 | 4 | RUN apt-get update && apt-get install -y --no-install-recommends \ 5 | build-essential \ 6 | cmake \ 7 | git \ 8 | wget \ 9 | libatlas-base-dev \ 10 | libboost-all-dev \ 11 | libgflags-dev \ 12 | libgoogle-glog-dev \ 13 | libhdf5-serial-dev \ 14 | libleveldb-dev \ 15 | liblmdb-dev \ 16 | libopencv-dev \ 17 | libprotobuf-dev \ 18 | libsnappy-dev \ 19 | protobuf-compiler \ 20 | python-dev \ 21 | python-numpy \ 22 | python-pip \ 23 | python-scipy && \ 24 | rm -rf /var/lib/apt/lists/* 25 | 26 | ENV CAFFE_ROOT=/opt/caffe 27 | WORKDIR $CAFFE_ROOT 28 | 29 | # FIXME: clone a specific git tag and use ARG instead of ENV once DockerHub supports this. 30 | ENV CLONE_TAG=master 31 | 32 | RUN git clone -b ${CLONE_TAG} --depth 1 https://github.com/BVLC/caffe.git . && \ 33 | for req in $(cat python/requirements.txt) pydot; do pip install $req; done && \ 34 | mkdir build && cd build && \ 35 | cmake -DCPU_ONLY=1 .. && \ 36 | make -j"$(nproc)" 37 | 38 | ENV PYCAFFE_ROOT $CAFFE_ROOT/python 39 | ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH 40 | ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH 41 | RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig 42 | 43 | WORKDIR /workspace 44 | -------------------------------------------------------------------------------- /caffe/docker/standalone/gpu/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04 2 | MAINTAINER caffe-maint@googlegroups.com 3 | 4 | RUN apt-get update && apt-get install -y --no-install-recommends \ 5 | build-essential \ 6 | cmake \ 7 | git \ 8 | wget \ 9 | libatlas-base-dev \ 10 | libboost-all-dev \ 11 | libgflags-dev \ 12 | libgoogle-glog-dev \ 13 | libhdf5-serial-dev \ 14 | libleveldb-dev \ 15 | liblmdb-dev \ 16 | libopencv-dev \ 17 | libprotobuf-dev \ 18 | libsnappy-dev \ 19 | protobuf-compiler \ 20 | python-dev \ 21 | python-numpy \ 22 | python-pip \ 23 | python-scipy && \ 24 | rm -rf /var/lib/apt/lists/* 25 | 26 | ENV CAFFE_ROOT=/opt/caffe 27 | WORKDIR $CAFFE_ROOT 28 | 29 | # FIXME: clone a specific git tag and use ARG instead of ENV once DockerHub supports this. 30 | ENV CLONE_TAG=master 31 | 32 | RUN git clone -b ${CLONE_TAG} --depth 1 https://github.com/BVLC/caffe.git . && \ 33 | for req in $(cat python/requirements.txt) pydot; do pip install $req; done && \ 34 | mkdir build && cd build && \ 35 | cmake -DUSE_CUDNN=1 .. && \ 36 | make -j"$(nproc)" 37 | 38 | ENV PYCAFFE_ROOT $CAFFE_ROOT/python 39 | ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH 40 | ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH 41 | RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig 42 | 43 | WORKDIR /workspace 44 | -------------------------------------------------------------------------------- /caffe/docker/templates/Dockerfile.template: -------------------------------------------------------------------------------- 1 | MAINTAINER caffe-maint@googlegroups.com 2 | 3 | RUN apt-get update && apt-get install -y --no-install-recommends \ 4 | build-essential \ 5 | cmake \ 6 | git \ 7 | wget \ 8 | libatlas-base-dev \ 9 | libboost-all-dev \ 10 | libgflags-dev \ 11 | libgoogle-glog-dev \ 12 | libhdf5-serial-dev \ 13 | libleveldb-dev \ 14 | liblmdb-dev \ 15 | libopencv-dev \ 16 | libprotobuf-dev \ 17 | libsnappy-dev \ 18 | protobuf-compiler \ 19 | python-dev \ 20 | python-numpy \ 21 | python-pip \ 22 | python-scipy && \ 23 | rm -rf /var/lib/apt/lists/* 24 | 25 | ENV CAFFE_ROOT=/opt/caffe 26 | WORKDIR $CAFFE_ROOT 27 | 28 | # FIXME: clone a specific git tag and use ARG instead of ENV once DockerHub supports this. 29 | ENV CLONE_TAG=master 30 | 31 | RUN git clone -b ${CLONE_TAG} --depth 1 https://github.com/BVLC/caffe.git . && \ 32 | for req in $(cat python/requirements.txt) pydot; do pip install $req; done && \ 33 | mkdir build && cd build && \ 34 | cmake ${CMAKE_ARGS} .. && \ 35 | make -j"$(nproc)" 36 | 37 | ENV PYCAFFE_ROOT $CAFFE_ROOT/python 38 | ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH 39 | ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH 40 | RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig 41 | 42 | WORKDIR /workspace 43 | -------------------------------------------------------------------------------- /caffe/docs/CNAME: -------------------------------------------------------------------------------- 1 | caffe.berkeleyvision.org 2 | -------------------------------------------------------------------------------- /caffe/docs/README.md: -------------------------------------------------------------------------------- 1 | # Caffe Documentation 2 | 3 | To generate the documentation, run `$CAFFE_ROOT/scripts/build_docs.sh`. 4 | 5 | To push your changes to the documentation to the gh-pages branch of your or the BVLC repo, run `$CAFFE_ROOT/scripts/deploy_docs.sh `. 6 | -------------------------------------------------------------------------------- /caffe/docs/_config.yml: -------------------------------------------------------------------------------- 1 | defaults: 2 | - 3 | scope: 4 | path: "" # an empty string here means all files in the project 5 | values: 6 | layout: "default" 7 | 8 | -------------------------------------------------------------------------------- /caffe/docs/images/GitHub-Mark-64px.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/images/GitHub-Mark-64px.png -------------------------------------------------------------------------------- /caffe/docs/images/caffeine-icon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/images/caffeine-icon.png -------------------------------------------------------------------------------- /caffe/docs/stylesheets/reset.css: -------------------------------------------------------------------------------- 1 | /* MeyerWeb Reset */ 2 | 3 | html, body, div, span, applet, object, iframe, 4 | h1, h2, h3, h4, h5, h6, p, blockquote, pre, 5 | a, abbr, acronym, address, big, cite, code, 6 | del, dfn, em, img, ins, kbd, q, s, samp, 7 | small, strike, strong, sub, sup, tt, var, 8 | b, u, i, center, 9 | dl, dt, dd, ol, ul, li, 10 | fieldset, form, label, legend, 11 | table, caption, tbody, tfoot, thead, tr, th, td, 12 | article, aside, canvas, details, embed, 13 | figure, figcaption, footer, header, hgroup, 14 | menu, nav, output, ruby, section, summary, 15 | time, mark, audio, video { 16 | margin: 0; 17 | padding: 0; 18 | border: 0; 19 | font: inherit; 20 | vertical-align: baseline; 21 | } 22 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/convolution.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Convolution 3 | --- 4 | # Caffeinated Convolution 5 | 6 | The Caffe strategy for convolution is to reduce the problem to matrix-matrix multiplication. 7 | This linear algebra computation is highly-tuned in BLAS libraries and efficiently computed on GPU devices. 8 | 9 | For more details read Yangqing's [Convolution in Caffe: a memo](https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo). 10 | 11 | As it turns out, this same reduction was independently explored in the context of conv. nets by 12 | 13 | > K. Chellapilla, S. Puri, P. Simard, et al. High performance convolutional neural networks for document processing. In Tenth International Workshop on Frontiers in Handwriting Recognition, 2006. 14 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/.gitignore: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/tutorial/fig/.gitignore -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/backward.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/tutorial/fig/backward.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/forward.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/tutorial/fig/forward.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/forward_backward.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/tutorial/fig/forward_backward.png -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/layer.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/tutorial/fig/layer.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/logreg.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/docs/tutorial/fig/logreg.jpg -------------------------------------------------------------------------------- /caffe/examples/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | file(GLOB_RECURSE examples_srcs "${PROJECT_SOURCE_DIR}/examples/*.cpp") 2 | 3 | foreach(source_file ${examples_srcs}) 4 | # get file name 5 | get_filename_component(name ${source_file} NAME_WE) 6 | 7 | # get folder name 8 | get_filename_component(path ${source_file} PATH) 9 | get_filename_component(folder ${path} NAME_WE) 10 | 11 | add_executable(${name} ${source_file}) 12 | target_link_libraries(${name} ${Caffe_LINK}) 13 | caffe_default_properties(${name}) 14 | 15 | # set back RUNTIME_OUTPUT_DIRECTORY 16 | set_target_properties(${name} PROPERTIES 17 | RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/examples/${folder}") 18 | 19 | caffe_set_solution_folder(${name} examples) 20 | 21 | # install 22 | install(TARGETS ${name} DESTINATION bin) 23 | 24 | if(UNIX OR APPLE) 25 | # Funny command to make tutorials work 26 | # TODO: remove in future as soon as naming is standartaized everywhere 27 | set(__outname ${PROJECT_BINARY_DIR}/examples/${folder}/${name}${Caffe_POSTFIX}) 28 | add_custom_command(TARGET ${name} POST_BUILD 29 | COMMAND ln -sf "${__outname}" "${__outname}.bin") 30 | endif() 31 | endforeach() 32 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_sigmoid_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid_bn" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 60000 22 | # snapshot intermediate results 23 | snapshot: 10000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.0001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 65000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_solver_lr2.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.00001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 70000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 4000 21 | # snapshot intermediate results 22 | snapshot: 4000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_quick_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.0001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 5000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/create_cifar10.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the cifar data into leveldb format. 3 | set -e 4 | 5 | EXAMPLE=examples/cifar10 6 | DATA=data/cifar10 7 | DBTYPE=lmdb 8 | 9 | echo "Creating $DBTYPE..." 10 | 11 | rm -rf $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/cifar10_test_$DBTYPE 12 | 13 | ./build/examples/cifar10/convert_cifar_data.bin $DATA $EXAMPLE $DBTYPE 14 | 15 | echo "Computing image mean..." 16 | 17 | ./build/tools/compute_image_mean -backend=$DBTYPE \ 18 | $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/mean.binaryproto 19 | 20 | echo "Done." 21 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_full.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate.h5 $@ 13 | 14 | # reduce learning rate by factor of 10 15 | $TOOLS/caffe train \ 16 | --solver=examples/cifar10/cifar10_full_solver_lr2.prototxt \ 17 | --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate.h5 $@ 18 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_full_sigmoid.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_full_sigmoid_bn.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_quick.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_quick_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 after 8 epochs 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate.h5 $@ 13 | -------------------------------------------------------------------------------- /caffe/examples/finetune_flickr_style/flickr_style.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/examples/finetune_flickr_style/flickr_style.csv.gz -------------------------------------------------------------------------------- /caffe/examples/finetune_flickr_style/style_names.txt: -------------------------------------------------------------------------------- 1 | Detailed 2 | Pastel 3 | Melancholy 4 | Noir 5 | HDR 6 | Vintage 7 | Long Exposure 8 | Horror 9 | Sunny 10 | Bright 11 | Hazy 12 | Bokeh 13 | Serene 14 | Texture 15 | Ethereal 16 | Macro 17 | Depth of Field 18 | Geometric Composition 19 | Minimal 20 | Romantic 21 | -------------------------------------------------------------------------------- /caffe/examples/finetune_pascal_detection/pascal_finetune_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/finetune_pascal_detection/pascal_finetune_trainval_test.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | base_lr: 0.001 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 20000 8 | display: 20 9 | max_iter: 100000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "examples/finetune_pascal_detection/pascal_det_finetune" 14 | -------------------------------------------------------------------------------- /caffe/examples/hdf5_classification/nonlinear_auto_test.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/test.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /caffe/examples/hdf5_classification/nonlinear_auto_train.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/train.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /caffe/examples/hdf5_classification/train_val.prototxt: -------------------------------------------------------------------------------- 1 | name: "LogisticRegressionNet" 2 | layer { 3 | name: "data" 4 | type: "HDF5Data" 5 | top: "data" 6 | top: "label" 7 | include { 8 | phase: TRAIN 9 | } 10 | hdf5_data_param { 11 | source: "examples/hdf5_classification/data/train.txt" 12 | batch_size: 10 13 | } 14 | } 15 | layer { 16 | name: "data" 17 | type: "HDF5Data" 18 | top: "data" 19 | top: "label" 20 | include { 21 | phase: TEST 22 | } 23 | hdf5_data_param { 24 | source: "examples/hdf5_classification/data/test.txt" 25 | batch_size: 10 26 | } 27 | } 28 | layer { 29 | name: "fc1" 30 | type: "InnerProduct" 31 | bottom: "data" 32 | top: "fc1" 33 | param { 34 | lr_mult: 1 35 | decay_mult: 1 36 | } 37 | param { 38 | lr_mult: 2 39 | decay_mult: 0 40 | } 41 | inner_product_param { 42 | num_output: 2 43 | weight_filler { 44 | type: "xavier" 45 | } 46 | bias_filler { 47 | type: "constant" 48 | value: 0 49 | } 50 | } 51 | } 52 | layer { 53 | name: "loss" 54 | type: "SoftmaxWithLoss" 55 | bottom: "fc1" 56 | bottom: "label" 57 | top: "loss" 58 | } 59 | layer { 60 | name: "accuracy" 61 | type: "Accuracy" 62 | bottom: "fc1" 63 | bottom: "label" 64 | top: "accuracy" 65 | include { 66 | phase: TEST 67 | } 68 | } 69 | -------------------------------------------------------------------------------- /caffe/examples/imagenet/make_imagenet_mean.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # Compute the mean image from the imagenet training lmdb 3 | # N.B. this is available in data/ilsvrc12 4 | 5 | EXAMPLE=examples/imagenet 6 | DATA=data/ilsvrc12 7 | TOOLS=build/tools 8 | 9 | $TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \ 10 | $DATA/imagenet_mean.binaryproto 11 | 12 | echo "Done." 13 | -------------------------------------------------------------------------------- /caffe/examples/imagenet/resume_training.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt \ 6 | --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 \ 7 | $@ 8 | -------------------------------------------------------------------------------- /caffe/examples/imagenet/train_caffenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/images/cat gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/examples/images/cat gray.jpg -------------------------------------------------------------------------------- /caffe/examples/images/cat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/examples/images/cat.jpg -------------------------------------------------------------------------------- /caffe/examples/images/cat_gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/examples/images/cat_gray.jpg -------------------------------------------------------------------------------- /caffe/examples/images/fish-bike.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/examples/images/fish-bike.jpg -------------------------------------------------------------------------------- /caffe/examples/mnist/create_mnist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into lmdb/leveldb format, 3 | # depending on the value assigned to $BACKEND. 4 | set -e 5 | 6 | EXAMPLE=examples/mnist 7 | DATA=data/mnist 8 | BUILD=build/examples/mnist 9 | 10 | BACKEND="lmdb" 11 | 12 | echo "Creating ${BACKEND}..." 13 | 14 | rm -rf $EXAMPLE/mnist_train_${BACKEND} 15 | rm -rf $EXAMPLE/mnist_test_${BACKEND} 16 | 17 | $BUILD/convert_mnist_data.bin $DATA/train-images-idx3-ubyte \ 18 | $DATA/train-labels-idx1-ubyte $EXAMPLE/mnist_train_${BACKEND} --backend=${BACKEND} 19 | $BUILD/convert_mnist_data.bin $DATA/t10k-images-idx3-ubyte \ 20 | $DATA/t10k-labels-idx1-ubyte $EXAMPLE/mnist_test_${BACKEND} --backend=${BACKEND} 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_adadelta_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 1.0 11 | lr_policy: "fixed" 12 | momentum: 0.95 13 | weight_decay: 0.0005 14 | # Display every 100 iterations 15 | display: 100 16 | # The maximum number of iterations 17 | max_iter: 10000 18 | # snapshot intermediate results 19 | snapshot: 5000 20 | snapshot_prefix: "examples/mnist/lenet_adadelta" 21 | # solver mode: CPU or GPU 22 | solver_mode: GPU 23 | type: "AdaDelta" 24 | delta: 1e-6 25 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_auto_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | train_net: "mnist/lenet_auto_train.prototxt" 3 | test_net: "mnist/lenet_auto_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # The base learning rate, momentum and the weight decay of the network. 11 | base_lr: 0.01 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | # The learning rate policy 15 | lr_policy: "inv" 16 | gamma: 0.0001 17 | power: 0.75 18 | # Display every 100 iterations 19 | display: 100 20 | # The maximum number of iterations 21 | max_iter: 10000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_prefix: "mnist/lenet" 25 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_multistep_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "multistep" 15 | gamma: 0.9 16 | stepvalue: 5000 17 | stepvalue: 7000 18 | stepvalue: 8000 19 | stepvalue: 9000 20 | stepvalue: 9500 21 | # Display every 100 iterations 22 | display: 100 23 | # The maximum number of iterations 24 | max_iter: 10000 25 | # snapshot intermediate results 26 | snapshot: 5000 27 | snapshot_prefix: "examples/mnist/lenet_multistep" 28 | # solver mode: CPU or GPU 29 | solver_mode: GPU 30 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_solver_adam.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | # this follows "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION" 3 | net: "examples/mnist/lenet_train_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # All parameters are from the cited paper above 11 | base_lr: 0.001 12 | momentum: 0.9 13 | momentum2: 0.999 14 | # since Adam dynamically changes the learning rate, we set the base learning 15 | # rate to a fixed value 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | type: "Adam" 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_solver_rmsprop.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.0 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet_rmsprop" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | type: "RMSProp" 27 | rms_decay: 0.98 28 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder" 17 | momentum: 0.9 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 1.0 9 | lr_policy: "fixed" 10 | momentum: 0.95 11 | delta: 1e-8 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adadelta_train" 17 | # solver mode: CPU or GPU 18 | solver_mode: GPU 19 | type: "AdaDelta" 20 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "fixed" 10 | display: 100 11 | max_iter: 65000 12 | weight_decay: 0.0005 13 | snapshot: 10000 14 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train" 15 | # solver mode: CPU or GPU 16 | solver_mode: GPU 17 | type: "AdaGrad" 18 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train" 17 | momentum: 0.95 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | type: "Nesterov" 21 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@ 5 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet_adam.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt $@ 5 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet_consolidated.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_consolidated_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet_rmsprop.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_solver_rmsprop.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder_adadelta.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder_adagrad.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder_nesterov.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/net_surgery/conv.prototxt: -------------------------------------------------------------------------------- 1 | # Simple single-layer network to showcase editing model parameters. 2 | name: "convolution" 3 | layer { 4 | name: "data" 5 | type: "Input" 6 | top: "data" 7 | input_param { shape: { dim: 1 dim: 1 dim: 100 dim: 100 } } 8 | } 9 | layer { 10 | name: "conv" 11 | type: "Convolution" 12 | bottom: "data" 13 | top: "conv" 14 | convolution_param { 15 | num_output: 3 16 | kernel_size: 5 17 | stride: 1 18 | weight_filler { 19 | type: "gaussian" 20 | std: 0.01 21 | } 22 | bias_filler { 23 | type: "constant" 24 | value: 0 25 | } 26 | } 27 | } 28 | -------------------------------------------------------------------------------- /caffe/examples/pycaffe/layers/pyloss.py: -------------------------------------------------------------------------------- 1 | import caffe 2 | import numpy as np 3 | 4 | 5 | class EuclideanLossLayer(caffe.Layer): 6 | """ 7 | Compute the Euclidean Loss in the same manner as the C++ EuclideanLossLayer 8 | to demonstrate the class interface for developing layers in Python. 9 | """ 10 | 11 | def setup(self, bottom, top): 12 | # check input pair 13 | if len(bottom) != 2: 14 | raise Exception("Need two inputs to compute distance.") 15 | 16 | def reshape(self, bottom, top): 17 | # check input dimensions match 18 | if bottom[0].count != bottom[1].count: 19 | raise Exception("Inputs must have the same dimension.") 20 | # difference is shape of inputs 21 | self.diff = np.zeros_like(bottom[0].data, dtype=np.float32) 22 | # loss output is scalar 23 | top[0].reshape(1) 24 | 25 | def forward(self, bottom, top): 26 | self.diff[...] = bottom[0].data - bottom[1].data 27 | top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2. 28 | 29 | def backward(self, top, propagate_down, bottom): 30 | for i in range(2): 31 | if not propagate_down[i]: 32 | continue 33 | if i == 0: 34 | sign = 1 35 | else: 36 | sign = -1 37 | bottom[i].diff[...] = sign * self.diff / bottom[i].num 38 | -------------------------------------------------------------------------------- /caffe/examples/pycaffe/linreg.prototxt: -------------------------------------------------------------------------------- 1 | name: 'LinearRegressionExample' 2 | # define a simple network for linear regression on dummy data 3 | # that computes the loss by a PythonLayer. 4 | layer { 5 | type: 'DummyData' 6 | name: 'x' 7 | top: 'x' 8 | dummy_data_param { 9 | shape: { dim: 10 dim: 3 dim: 2 } 10 | data_filler: { type: 'gaussian' } 11 | } 12 | } 13 | layer { 14 | type: 'DummyData' 15 | name: 'y' 16 | top: 'y' 17 | dummy_data_param { 18 | shape: { dim: 10 dim: 3 dim: 2 } 19 | data_filler: { type: 'gaussian' } 20 | } 21 | } 22 | # include InnerProduct layers for parameters 23 | # so the net will need backward 24 | layer { 25 | type: 'InnerProduct' 26 | name: 'ipx' 27 | top: 'ipx' 28 | bottom: 'x' 29 | inner_product_param { 30 | num_output: 10 31 | weight_filler { type: 'xavier' } 32 | } 33 | } 34 | layer { 35 | type: 'InnerProduct' 36 | name: 'ipy' 37 | top: 'ipy' 38 | bottom: 'y' 39 | inner_product_param { 40 | num_output: 10 41 | weight_filler { type: 'xavier' } 42 | } 43 | } 44 | layer { 45 | type: 'Python' 46 | name: 'loss' 47 | top: 'loss' 48 | bottom: 'ipx' 49 | bottom: 'ipy' 50 | python_param { 51 | # the module name -- usually the filename -- that needs to be in $PYTHONPATH 52 | module: 'pyloss' 53 | # the layer name -- the class name in the module 54 | layer: 'EuclideanLossLayer' 55 | } 56 | # set loss weight so Caffe knows this is a loss layer. 57 | # since PythonLayer inherits directly from Layer, this isn't automatically 58 | # known to Caffe 59 | loss_weight: 1 60 | } 61 | -------------------------------------------------------------------------------- /caffe/examples/siamese/create_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into leveldb format. 3 | set -e 4 | 5 | EXAMPLES=./build/examples/siamese 6 | DATA=./data/mnist 7 | 8 | echo "Creating leveldb..." 9 | 10 | rm -rf ./examples/siamese/mnist_siamese_train_leveldb 11 | rm -rf ./examples/siamese/mnist_siamese_test_leveldb 12 | 13 | $EXAMPLES/convert_mnist_siamese_data.bin \ 14 | $DATA/train-images-idx3-ubyte \ 15 | $DATA/train-labels-idx1-ubyte \ 16 | ./examples/siamese/mnist_siamese_train_leveldb 17 | $EXAMPLES/convert_mnist_siamese_data.bin \ 18 | $DATA/t10k-images-idx3-ubyte \ 19 | $DATA/t10k-labels-idx1-ubyte \ 20 | ./examples/siamese/mnist_siamese_test_leveldb 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /caffe/examples/siamese/mnist_siamese_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/siamese/mnist_siamese_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0000 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 50000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/siamese/mnist_siamese" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /caffe/examples/siamese/train_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt $@ 7 | -------------------------------------------------------------------------------- /caffe/examples/web_demo/exifutil.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script handles the skimage exif problem. 3 | """ 4 | 5 | from PIL import Image 6 | import numpy as np 7 | 8 | ORIENTATIONS = { # used in apply_orientation 9 | 2: (Image.FLIP_LEFT_RIGHT,), 10 | 3: (Image.ROTATE_180,), 11 | 4: (Image.FLIP_TOP_BOTTOM,), 12 | 5: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_90), 13 | 6: (Image.ROTATE_270,), 14 | 7: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_270), 15 | 8: (Image.ROTATE_90,) 16 | } 17 | 18 | 19 | def open_oriented_im(im_path): 20 | im = Image.open(im_path) 21 | if hasattr(im, '_getexif'): 22 | exif = im._getexif() 23 | if exif is not None and 274 in exif: 24 | orientation = exif[274] 25 | im = apply_orientation(im, orientation) 26 | img = np.asarray(im).astype(np.float32) / 255. 27 | if img.ndim == 2: 28 | img = img[:, :, np.newaxis] 29 | img = np.tile(img, (1, 1, 3)) 30 | elif img.shape[2] == 4: 31 | img = img[:, :, :3] 32 | return img 33 | 34 | 35 | def apply_orientation(im, orientation): 36 | if orientation in ORIENTATIONS: 37 | for method in ORIENTATIONS[orientation]: 38 | im = im.transpose(method) 39 | return im 40 | -------------------------------------------------------------------------------- /caffe/examples/web_demo/requirements.txt: -------------------------------------------------------------------------------- 1 | werkzeug 2 | flask 3 | tornado 4 | numpy 5 | pandas 6 | pillow 7 | pyyaml 8 | -------------------------------------------------------------------------------- /caffe/include/caffe/caffe.hpp: -------------------------------------------------------------------------------- 1 | // caffe.hpp is the header file that you need to include in your code. It wraps 2 | // all the internal caffe header files into one for simpler inclusion. 3 | 4 | #ifndef CAFFE_CAFFE_HPP_ 5 | #define CAFFE_CAFFE_HPP_ 6 | 7 | #include "caffe/blob.hpp" 8 | #include "caffe/common.hpp" 9 | #include "caffe/filler.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layer_factory.hpp" 12 | #include "caffe/net.hpp" 13 | #include "caffe/parallel.hpp" 14 | #include "caffe/proto/caffe.pb.h" 15 | #include "caffe/solver.hpp" 16 | #include "caffe/solver_factory.hpp" 17 | #include "caffe/util/benchmark.hpp" 18 | #include "caffe/util/io.hpp" 19 | #include "caffe/util/upgrade_proto.hpp" 20 | 21 | #endif // CAFFE_CAFFE_HPP_ 22 | -------------------------------------------------------------------------------- /caffe/include/caffe/internal_thread.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_INTERNAL_THREAD_HPP_ 2 | #define CAFFE_INTERNAL_THREAD_HPP_ 3 | 4 | #include "caffe/common.hpp" 5 | 6 | /** 7 | Forward declare boost::thread instead of including boost/thread.hpp 8 | to avoid a boost/NVCC issues (#1009, #1010) on OSX. 9 | */ 10 | namespace boost { class thread; } 11 | 12 | namespace caffe { 13 | 14 | /** 15 | * Virtual class encapsulate boost::thread for use in base class 16 | * The child class will acquire the ability to run a single thread, 17 | * by reimplementing the virtual function InternalThreadEntry. 18 | */ 19 | class InternalThread { 20 | public: 21 | InternalThread() : thread_() {} 22 | virtual ~InternalThread(); 23 | 24 | /** 25 | * Caffe's thread local state will be initialized using the current 26 | * thread values, e.g. device id, solver index etc. The random seed 27 | * is initialized using caffe_rng_rand. 28 | */ 29 | void StartInternalThread(); 30 | 31 | /** Will not return until the internal thread has exited. */ 32 | void StopInternalThread(); 33 | 34 | bool is_started() const; 35 | 36 | protected: 37 | /* Implement this method in your subclass 38 | with the code you want your thread to run. */ 39 | virtual void InternalThreadEntry() {} 40 | 41 | /* Should be tested when running loops to exit when requested. */ 42 | bool must_stop(); 43 | 44 | private: 45 | void entry(int device, Caffe::Brew mode, int rand_seed, int solver_count, 46 | bool root_solver); 47 | 48 | shared_ptr thread_; 49 | }; 50 | 51 | } // namespace caffe 52 | 53 | #endif // CAFFE_INTERNAL_THREAD_HPP_ 54 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/add_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_ADD_LAYER_HPP_ 2 | #define CAFFE_ADD_LAYER_HPP_ 3 | 4 | #include 5 | #include "caffe/blob.hpp" 6 | #include "caffe/layer.hpp" 7 | #include "caffe/proto/caffe.pb.h" 8 | 9 | #include "caffe/layers/neuron_layer.hpp" 10 | 11 | namespace caffe { 12 | 13 | template 14 | class AddLayer : public NeuronLayer { 15 | public: 16 | explicit AddLayer(const LayerParameter& param) 17 | : NeuronLayer(param) {} 18 | ~AddLayer(){delete contribution_weight_;} 19 | virtual void LayerSetUp(const vector*>& bottom, 20 | const vector*>& top); 21 | virtual void Reshape(const vector*>& bottom, 22 | const vector*>& top); 23 | virtual inline const char* type() const { return "Add"; } 24 | virtual inline int ExactNumBottomBlobs() const { return -1; } 25 | 26 | 27 | protected: 28 | virtual void Forward_cpu(const vector*>& bottom, 29 | const vector*>& top); 30 | virtual void Forward_gpu(const vector*>& bottom, 31 | const vector*>& top); 32 | virtual void Backward_cpu(const vector*>& top, 33 | const vector& propagate_down, const vector*>& bottom); 34 | virtual void Backward_gpu(const vector*>& top, 35 | const vector& propagate_down, const vector*>& bottom); 36 | int num_; 37 | int bottom_number_; 38 | Dtype* contribution_weight_; 39 | Dtype weight_rate_; 40 | bool direct_add_; 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_TANH_LAYER_HPP_ 46 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cross_entropy_loss_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CROSS_ENTROPY_LOSS_LAYER_HPP_ 2 | #define CAFFE_CROSS_ENTROPY_LOSS_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/loss_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | template 15 | class CrossEntropyLossLayer : public LossLayer { 16 | public: 17 | explicit CrossEntropyLossLayer(const LayerParameter& param) 18 | : LossLayer(param) {} 19 | virtual void LayerSetUp(const vector*>& bottom, 20 | const vector*>& top); 21 | virtual void Reshape(const vector*>& bottom, 22 | const vector*>& top); 23 | 24 | virtual inline const char* type() const { return "CrossEntropyLoss"; } 25 | 26 | protected: 27 | virtual void Forward_cpu(const vector*>& bottom, 28 | const vector*>& top); 29 | 30 | virtual void Backward_cpu(const vector*>& top, 31 | const vector& propagate_down, const vector*>& bottom); 32 | virtual void Backward_gpu(const vector*>& top, 33 | const vector& propagate_down, const vector*>& bottom); 34 | }; 35 | 36 | } // namespace caffe 37 | 38 | #endif // CAFFE_CROSS_ENTROPY_LOSS_LAYER_HPP_ 39 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cudnn_lcn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_LCN_LAYER_HPP_ 2 | #define CAFFE_CUDNN_LCN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/lrn_layer.hpp" 11 | #include "caffe/layers/power_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | template 17 | class CuDNNLCNLayer : public LRNLayer { 18 | public: 19 | explicit CuDNNLCNLayer(const LayerParameter& param) 20 | : LRNLayer(param), handles_setup_(false), tempDataSize(0), 21 | tempData1(NULL), tempData2(NULL) {} 22 | virtual void LayerSetUp(const vector*>& bottom, 23 | const vector*>& top); 24 | virtual void Reshape(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual ~CuDNNLCNLayer(); 27 | 28 | protected: 29 | virtual void Forward_gpu(const vector*>& bottom, 30 | const vector*>& top); 31 | virtual void Backward_gpu(const vector*>& top, 32 | const vector& propagate_down, const vector*>& bottom); 33 | 34 | bool handles_setup_; 35 | cudnnHandle_t handle_; 36 | cudnnLRNDescriptor_t norm_desc_; 37 | cudnnTensorDescriptor_t bottom_desc_, top_desc_; 38 | 39 | int size_, pre_pad_; 40 | Dtype alpha_, beta_, k_; 41 | 42 | size_t tempDataSize; 43 | void *tempData1, *tempData2; 44 | }; 45 | #endif 46 | 47 | } // namespace caffe 48 | 49 | #endif // CAFFE_CUDNN_LCN_LAYER_HPP_ 50 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cudnn_lrn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_LRN_LAYER_HPP_ 2 | #define CAFFE_CUDNN_LRN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/lrn_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | template 16 | class CuDNNLRNLayer : public LRNLayer { 17 | public: 18 | explicit CuDNNLRNLayer(const LayerParameter& param) 19 | : LRNLayer(param), handles_setup_(false) {} 20 | virtual void LayerSetUp(const vector*>& bottom, 21 | const vector*>& top); 22 | virtual void Reshape(const vector*>& bottom, 23 | const vector*>& top); 24 | virtual ~CuDNNLRNLayer(); 25 | 26 | protected: 27 | virtual void Forward_gpu(const vector*>& bottom, 28 | const vector*>& top); 29 | virtual void Backward_gpu(const vector*>& top, 30 | const vector& propagate_down, const vector*>& bottom); 31 | 32 | bool handles_setup_; 33 | cudnnHandle_t handle_; 34 | cudnnLRNDescriptor_t norm_desc_; 35 | cudnnTensorDescriptor_t bottom_desc_, top_desc_; 36 | 37 | int size_; 38 | Dtype alpha_, beta_, k_; 39 | }; 40 | #endif 41 | 42 | } // namespace caffe 43 | 44 | #endif // CAFFE_CUDNN_LRN_LAYER_HPP_ 45 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cudnn_relu_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_RELU_LAYER_HPP_ 2 | #define CAFFE_CUDNN_RELU_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/relu_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of ReLULayer. 18 | */ 19 | template 20 | class CuDNNReLULayer : public ReLULayer { 21 | public: 22 | explicit CuDNNReLULayer(const LayerParameter& param) 23 | : ReLULayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNReLULayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_RELU_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cudnn_sigmoid_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 2 | #define CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/sigmoid_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of SigmoidLayer. 18 | */ 19 | template 20 | class CuDNNSigmoidLayer : public SigmoidLayer { 21 | public: 22 | explicit CuDNNSigmoidLayer(const LayerParameter& param) 23 | : SigmoidLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNSigmoidLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cudnn_softmax_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 2 | #define CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/softmax_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | /** 16 | * @brief cuDNN implementation of SoftmaxLayer. 17 | * Fallback to SoftmaxLayer for CPU mode. 18 | */ 19 | template 20 | class CuDNNSoftmaxLayer : public SoftmaxLayer { 21 | public: 22 | explicit CuDNNSoftmaxLayer(const LayerParameter& param) 23 | : SoftmaxLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNSoftmaxLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | }; 41 | #endif 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 46 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/cudnn_tanh_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_TANH_LAYER_HPP_ 2 | #define CAFFE_CUDNN_TANH_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/tanh_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of TanHLayer. 18 | */ 19 | template 20 | class CuDNNTanHLayer : public TanHLayer { 21 | public: 22 | explicit CuDNNTanHLayer(const LayerParameter& param) 23 | : TanHLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNTanHLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_TANH_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_DATA_LAYER_HPP_ 2 | #define CAFFE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/data_reader.hpp" 8 | #include "caffe/data_transformer.hpp" 9 | #include "caffe/internal_thread.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layers/base_data_layer.hpp" 12 | #include "caffe/proto/caffe.pb.h" 13 | #include "caffe/util/db.hpp" 14 | 15 | namespace caffe { 16 | 17 | template 18 | class DataLayer : public BasePrefetchingDataLayer { 19 | public: 20 | explicit DataLayer(const LayerParameter& param); 21 | virtual ~DataLayer(); 22 | virtual void DataLayerSetUp(const vector*>& bottom, 23 | const vector*>& top); 24 | // DataLayer uses DataReader instead for sharing for parallelism 25 | virtual inline bool ShareInParallel() const { return false; } 26 | virtual inline const char* type() const { return "Data"; } 27 | virtual inline int ExactNumBottomBlobs() const { return 0; } 28 | virtual inline int MinTopBlobs() const { return 1; } 29 | virtual inline int MaxTopBlobs() const { return 2; } 30 | 31 | protected: 32 | virtual void load_batch(Batch* batch); 33 | 34 | DataReader reader_; 35 | }; 36 | 37 | } // namespace caffe 38 | 39 | #endif // CAFFE_DATA_LAYER_HPP_ 40 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/image_data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_IMAGE_DATA_LAYER_HPP_ 2 | #define CAFFE_IMAGE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | #include "caffe/blob.hpp" 9 | #include "caffe/data_transformer.hpp" 10 | #include "caffe/internal_thread.hpp" 11 | #include "caffe/layer.hpp" 12 | #include "caffe/layers/base_data_layer.hpp" 13 | #include "caffe/proto/caffe.pb.h" 14 | 15 | namespace caffe { 16 | 17 | /** 18 | * @brief Provides data to the Net from image files. 19 | * 20 | * TODO(dox): thorough documentation for Forward and proto params. 21 | */ 22 | template 23 | class ImageDataLayer : public BasePrefetchingDataLayer { 24 | public: 25 | explicit ImageDataLayer(const LayerParameter& param) 26 | : BasePrefetchingDataLayer(param) {} 27 | virtual ~ImageDataLayer(); 28 | virtual void DataLayerSetUp(const vector*>& bottom, 29 | const vector*>& top); 30 | 31 | virtual inline const char* type() const { return "ImageData"; } 32 | virtual inline int ExactNumBottomBlobs() const { return 0; } 33 | virtual inline int ExactNumTopBlobs() const { return 2; } 34 | 35 | protected: 36 | shared_ptr prefetch_rng_; 37 | virtual void ShuffleImages(); 38 | virtual void load_batch(Batch* batch); 39 | 40 | vector > lines_; 41 | int lines_id_; 42 | }; 43 | 44 | 45 | } // namespace caffe 46 | 47 | #endif // CAFFE_IMAGE_DATA_LAYER_HPP_ 48 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/input_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_INPUT_LAYER_HPP_ 2 | #define CAFFE_INPUT_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Provides data to the Net by assigning tops directly. 14 | * 15 | * This data layer is a container that merely holds the data assigned to it; 16 | * forward, backward, and reshape are all no-ops. 17 | */ 18 | template 19 | class InputLayer : public Layer { 20 | public: 21 | explicit InputLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void LayerSetUp(const vector*>& bottom, 24 | const vector*>& top); 25 | // Data layers should be shared by multiple solvers in parallel 26 | virtual inline bool ShareInParallel() const { return true; } 27 | // Data layers have no bottoms, so reshaping is trivial. 28 | virtual void Reshape(const vector*>& bottom, 29 | const vector*>& top) {} 30 | 31 | virtual inline const char* type() const { return "Input"; } 32 | virtual inline int ExactNumBottomBlobs() const { return 0; } 33 | virtual inline int MinTopBlobs() const { return 1; } 34 | 35 | protected: 36 | virtual void Forward_cpu(const vector*>& bottom, 37 | const vector*>& top) {} 38 | virtual void Backward_cpu(const vector*>& top, 39 | const vector& propagate_down, const vector*>& bottom) {} 40 | }; 41 | 42 | } // namespace caffe 43 | 44 | #endif // CAFFE_INPUT_LAYER_HPP_ 45 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/mvn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_MVN_LAYER_HPP_ 2 | #define CAFFE_MVN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Normalizes the input to have 0-mean and/or unit (1) variance. 14 | * 15 | * TODO(dox): thorough documentation for Forward, Backward, and proto params. 16 | */ 17 | template 18 | class MVNLayer : public Layer { 19 | public: 20 | explicit MVNLayer(const LayerParameter& param) 21 | : Layer(param) {} 22 | virtual void Reshape(const vector*>& bottom, 23 | const vector*>& top); 24 | 25 | virtual inline const char* type() const { return "MVN"; } 26 | virtual inline int ExactNumBottomBlobs() const { return 1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | 29 | protected: 30 | virtual void Forward_cpu(const vector*>& bottom, 31 | const vector*>& top); 32 | virtual void Forward_gpu(const vector*>& bottom, 33 | const vector*>& top); 34 | virtual void Backward_cpu(const vector*>& top, 35 | const vector& propagate_down, const vector*>& bottom); 36 | virtual void Backward_gpu(const vector*>& top, 37 | const vector& propagate_down, const vector*>& bottom); 38 | 39 | Blob mean_, variance_, temp_; 40 | 41 | /// sum_multiplier is used to carry out sum using BLAS 42 | Blob sum_multiplier_; 43 | Dtype eps_; 44 | }; 45 | 46 | } // namespace caffe 47 | 48 | #endif // CAFFE_MVN_LAYER_HPP_ 49 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/neuron_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_NEURON_LAYER_HPP_ 2 | #define CAFFE_NEURON_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief An interface for layers that take one blob as input (@f$ x @f$) 14 | * and produce one equally-sized blob as output (@f$ y @f$), where 15 | * each element of the output depends only on the corresponding input 16 | * element. 17 | */ 18 | template 19 | class NeuronLayer : public Layer { 20 | public: 21 | explicit NeuronLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void Reshape(const vector*>& bottom, 24 | const vector*>& top); 25 | 26 | virtual inline int ExactNumBottomBlobs() const { return 1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | }; 29 | 30 | } // namespace caffe 31 | 32 | #endif // CAFFE_NEURON_LAYER_HPP_ 33 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/outerproduct_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_OUTERPRODUCT_LAYER_HPP_ 2 | #define CAFFE_OUTERPRODUCT_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | 12 | 13 | namespace caffe { 14 | 15 | template 16 | class OuterProductLayer : public Layer { 17 | public: 18 | explicit OuterProductLayer(const LayerParameter& param) 19 | : Layer(param) {} 20 | virtual void LayerSetUp(const vector*>& bottom, 21 | const vector*>& top); 22 | virtual void Reshape(const vector*>& bottom, 23 | const vector*>& top); 24 | 25 | virtual inline const char* type() const { return "OuterProduct"; } 26 | virtual inline int ExactNumBottomBlobs() const { return -1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | virtual inline int MinTopBlobs() const { return 1; } 29 | 30 | protected: 31 | virtual void Forward_cpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Forward_gpu(const vector*>& bottom, 34 | const vector*>& top); 35 | virtual void Backward_cpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | virtual void Backward_gpu(const vector*>& top, 38 | const vector& propagate_down, const vector*>& bottom); 39 | protected: 40 | Dtype loss_weight_; 41 | }; 42 | 43 | } 44 | 45 | #endif 46 | 47 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/padding_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_PADDING_LAYER_HPP_ 2 | #define CAFFE_PADDING_LAYER_HPP_ 3 | 4 | #include 5 | #include "caffe/blob.hpp" 6 | #include "caffe/layer.hpp" 7 | #include "caffe/proto/caffe.pb.h" 8 | 9 | #include "caffe/layers/neuron_layer.hpp" 10 | 11 | namespace caffe { 12 | 13 | template 14 | class PaddingLayer : public NeuronLayer { 15 | public: 16 | explicit PaddingLayer(const LayerParameter& param) 17 | : NeuronLayer(param) {} 18 | ~PaddingLayer(){} 19 | virtual void LayerSetUp(const vector*>& bottom, 20 | const vector*>& top); 21 | virtual void Reshape(const vector*>& bottom, 22 | const vector*>& top); 23 | virtual inline const char* type() const { return "Padding"; } 24 | virtual inline int ExactNumBottomBlobs() const { return -1; } 25 | 26 | 27 | protected: 28 | virtual void Forward_cpu(const vector*>& bottom, 29 | const vector*>& top); 30 | virtual void Forward_gpu(const vector*>& bottom, 31 | const vector*>& top); 32 | virtual void Backward_cpu(const vector*>& top, 33 | const vector& propagate_down, const vector*>& bottom); 34 | virtual void Backward_gpu(const vector*>& top, 35 | const vector& propagate_down, const vector*>& bottom); 36 | 37 | vector< vector > padding_size_; 38 | }; 39 | 40 | } // namespace caffe 41 | 42 | #endif // CAFFE_TANH_LAYER_HPP_ 43 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/parameter_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_PARAMETER_LAYER_HPP_ 2 | #define CAFFE_PARAMETER_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | class ParameterLayer : public Layer { 12 | public: 13 | explicit ParameterLayer(const LayerParameter& param) 14 | : Layer(param) {} 15 | virtual void LayerSetUp(const vector*>& bottom, 16 | const vector*>& top) { 17 | if (this->blobs_.size() > 0) { 18 | LOG(INFO) << "Skipping parameter initialization"; 19 | } else { 20 | this->blobs_.resize(1); 21 | this->blobs_[0].reset(new Blob()); 22 | this->blobs_[0]->Reshape(this->layer_param_.parameter_param().shape()); 23 | } 24 | top[0]->Reshape(this->layer_param_.parameter_param().shape()); 25 | } 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top) { } 28 | virtual inline const char* type() const { return "Parameter"; } 29 | virtual inline int ExactNumBottomBlobs() const { return 0; } 30 | virtual inline int ExactNumTopBlobs() const { return 1; } 31 | 32 | protected: 33 | virtual void Forward_cpu(const vector*>& bottom, 34 | const vector*>& top) { 35 | top[0]->ShareData(*(this->blobs_[0])); 36 | top[0]->ShareDiff(*(this->blobs_[0])); 37 | } 38 | virtual void Backward_cpu(const vector*>& top, 39 | const vector& propagate_down, const vector*>& bottom) 40 | { } 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif 46 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/rnn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_RNN_LAYER_HPP_ 2 | #define CAFFE_RNN_LAYER_HPP_ 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | #include "caffe/blob.hpp" 9 | #include "caffe/common.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layers/recurrent_layer.hpp" 12 | #include "caffe/net.hpp" 13 | #include "caffe/proto/caffe.pb.h" 14 | 15 | namespace caffe { 16 | 17 | template class RecurrentLayer; 18 | 19 | /** 20 | * @brief Processes time-varying inputs using a simple recurrent neural network 21 | * (RNN). Implemented as a network unrolling the RNN computation in time. 22 | * 23 | * Given time-varying inputs @f$ x_t @f$, computes hidden state @f$ 24 | * h_t := \tanh[ W_{hh} h_{t_1} + W_{xh} x_t + b_h ] 25 | * @f$, and outputs @f$ 26 | * o_t := \tanh[ W_{ho} h_t + b_o ] 27 | * @f$. 28 | */ 29 | template 30 | class RNNLayer : public RecurrentLayer { 31 | public: 32 | explicit RNNLayer(const LayerParameter& param) 33 | : RecurrentLayer(param) {} 34 | 35 | virtual inline const char* type() const { return "RNN"; } 36 | 37 | protected: 38 | virtual void FillUnrolledNet(NetParameter* net_param) const; 39 | virtual void RecurrentInputBlobNames(vector* names) const; 40 | virtual void RecurrentOutputBlobNames(vector* names) const; 41 | virtual void RecurrentInputShapes(vector* shapes) const; 42 | virtual void OutputBlobNames(vector* names) const; 43 | }; 44 | 45 | } // namespace caffe 46 | 47 | #endif // CAFFE_RNN_LAYER_HPP_ 48 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/silence_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_SILENCE_LAYER_HPP_ 2 | #define CAFFE_SILENCE_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Ignores bottom blobs while producing no top blobs. (This is useful 14 | * to suppress outputs during testing.) 15 | */ 16 | template 17 | class SilenceLayer : public Layer { 18 | public: 19 | explicit SilenceLayer(const LayerParameter& param) 20 | : Layer(param) {} 21 | virtual void Reshape(const vector*>& bottom, 22 | const vector*>& top) {} 23 | 24 | virtual inline const char* type() const { return "Silence"; } 25 | virtual inline int MinBottomBlobs() const { return 1; } 26 | virtual inline int ExactNumTopBlobs() const { return 0; } 27 | 28 | protected: 29 | virtual void Forward_cpu(const vector*>& bottom, 30 | const vector*>& top) {} 31 | // We can't define Forward_gpu here, since STUB_GPU will provide 32 | // its own definition for CPU_ONLY mode. 33 | virtual void Forward_gpu(const vector*>& bottom, 34 | const vector*>& top); 35 | virtual void Backward_cpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | virtual void Backward_gpu(const vector*>& top, 38 | const vector& propagate_down, const vector*>& bottom); 39 | }; 40 | 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_SILENCE_LAYER_HPP_ 44 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/split_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_SPLIT_LAYER_HPP_ 2 | #define CAFFE_SPLIT_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Creates a "split" path in the network by copying the bottom Blob 14 | * into multiple top Blob%s to be used by multiple consuming layers. 15 | * 16 | * TODO(dox): thorough documentation for Forward, Backward, and proto params. 17 | */ 18 | template 19 | class SplitLayer : public Layer { 20 | public: 21 | explicit SplitLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void Reshape(const vector*>& bottom, 24 | const vector*>& top); 25 | 26 | virtual inline const char* type() const { return "Split"; } 27 | virtual inline int ExactNumBottomBlobs() const { return 1; } 28 | virtual inline int MinTopBlobs() const { return 1; } 29 | 30 | protected: 31 | virtual void Forward_cpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Forward_gpu(const vector*>& bottom, 34 | const vector*>& top); 35 | virtual void Backward_cpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | virtual void Backward_gpu(const vector*>& top, 38 | const vector& propagate_down, const vector*>& bottom); 39 | 40 | int count_; 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_SPLIT_LAYER_HPP_ 46 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/tile_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_TILE_LAYER_HPP_ 2 | #define CAFFE_TILE_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Copy a Blob along specified dimensions. 14 | */ 15 | template 16 | class TileLayer : public Layer { 17 | public: 18 | explicit TileLayer(const LayerParameter& param) 19 | : Layer(param) {} 20 | virtual void Reshape(const vector*>& bottom, 21 | const vector*>& top); 22 | 23 | virtual inline const char* type() const { return "Tile"; } 24 | virtual inline int ExactNumBottomBlobs() const { return 1; } 25 | virtual inline int ExactNumTopBlobs() const { return 1; } 26 | 27 | protected: 28 | virtual void Forward_cpu(const vector*>& bottom, 29 | const vector*>& top); 30 | virtual void Forward_gpu(const vector*>& bottom, 31 | const vector*>& top); 32 | 33 | virtual void Backward_cpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | virtual void Backward_gpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | 38 | unsigned int axis_, tiles_, outer_dim_, inner_dim_; 39 | }; 40 | 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_TILE_LAYER_HPP_ 44 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/benchmark.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BENCHMARK_H_ 2 | #define CAFFE_UTIL_BENCHMARK_H_ 3 | 4 | #include 5 | 6 | #include "caffe/util/device_alternate.hpp" 7 | 8 | namespace caffe { 9 | 10 | class Timer { 11 | public: 12 | Timer(); 13 | virtual ~Timer(); 14 | virtual void Start(); 15 | virtual void Stop(); 16 | virtual float MilliSeconds(); 17 | virtual float MicroSeconds(); 18 | virtual float Seconds(); 19 | 20 | inline bool initted() { return initted_; } 21 | inline bool running() { return running_; } 22 | inline bool has_run_at_least_once() { return has_run_at_least_once_; } 23 | 24 | protected: 25 | void Init(); 26 | 27 | bool initted_; 28 | bool running_; 29 | bool has_run_at_least_once_; 30 | #ifndef CPU_ONLY 31 | cudaEvent_t start_gpu_; 32 | cudaEvent_t stop_gpu_; 33 | #endif 34 | boost::posix_time::ptime start_cpu_; 35 | boost::posix_time::ptime stop_cpu_; 36 | float elapsed_milliseconds_; 37 | float elapsed_microseconds_; 38 | }; 39 | 40 | class CPUTimer : public Timer { 41 | public: 42 | explicit CPUTimer(); 43 | virtual ~CPUTimer() {} 44 | virtual void Start(); 45 | virtual void Stop(); 46 | virtual float MilliSeconds(); 47 | virtual float MicroSeconds(); 48 | }; 49 | 50 | } // namespace caffe 51 | 52 | #endif // CAFFE_UTIL_BENCHMARK_H_ 53 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/blocking_queue.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 2 | #define CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | namespace caffe { 8 | 9 | template 10 | class BlockingQueue { 11 | public: 12 | explicit BlockingQueue(); 13 | 14 | void push(const T& t); 15 | 16 | bool try_pop(T* t); 17 | 18 | // This logs a message if the threads needs to be blocked 19 | // useful for detecting e.g. when data feeding is too slow 20 | T pop(const string& log_on_wait = ""); 21 | 22 | bool try_peek(T* t); 23 | 24 | // Return element without removing it 25 | T peek(); 26 | 27 | size_t size() const; 28 | 29 | protected: 30 | /** 31 | Move synchronization fields out instead of including boost/thread.hpp 32 | to avoid a boost/NVCC issues (#1009, #1010) on OSX. Also fails on 33 | Linux CUDA 7.0.18. 34 | */ 35 | class sync; 36 | 37 | std::queue queue_; 38 | shared_ptr sync_; 39 | 40 | DISABLE_COPY_AND_ASSIGN(BlockingQueue); 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif 46 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/db.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_DB_HPP 2 | #define CAFFE_UTIL_DB_HPP 3 | 4 | #include 5 | 6 | #include "caffe/common.hpp" 7 | #include "caffe/proto/caffe.pb.h" 8 | 9 | namespace caffe { namespace db { 10 | 11 | enum Mode { READ, WRITE, NEW }; 12 | 13 | class Cursor { 14 | public: 15 | Cursor() { } 16 | virtual ~Cursor() { } 17 | virtual void SeekToFirst() = 0; 18 | virtual void Next() = 0; 19 | virtual string key() = 0; 20 | virtual string value() = 0; 21 | virtual bool valid() = 0; 22 | 23 | DISABLE_COPY_AND_ASSIGN(Cursor); 24 | }; 25 | 26 | class Transaction { 27 | public: 28 | Transaction() { } 29 | virtual ~Transaction() { } 30 | virtual void Put(const string& key, const string& value) = 0; 31 | virtual void Commit() = 0; 32 | 33 | DISABLE_COPY_AND_ASSIGN(Transaction); 34 | }; 35 | 36 | class DB { 37 | public: 38 | DB() { } 39 | virtual ~DB() { } 40 | virtual void Open(const string& source, Mode mode) = 0; 41 | virtual void Close() = 0; 42 | virtual Cursor* NewCursor() = 0; 43 | virtual Transaction* NewTransaction() = 0; 44 | 45 | DISABLE_COPY_AND_ASSIGN(DB); 46 | }; 47 | 48 | DB* GetDB(DataParameter::DB backend); 49 | DB* GetDB(const string& backend); 50 | 51 | } // namespace db 52 | } // namespace caffe 53 | 54 | #endif // CAFFE_UTIL_DB_HPP 55 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/format.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_FORMAT_H_ 2 | #define CAFFE_UTIL_FORMAT_H_ 3 | 4 | #include // NOLINT(readability/streams) 5 | #include // NOLINT(readability/streams) 6 | #include 7 | 8 | namespace caffe { 9 | 10 | inline std::string format_int(int n, int numberOfLeadingZeros = 0 ) { 11 | std::ostringstream s; 12 | s << std::setw(numberOfLeadingZeros) << std::setfill('0') << n; 13 | return s.str(); 14 | } 15 | 16 | } 17 | 18 | #endif // CAFFE_UTIL_FORMAT_H_ 19 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/gpu_util.cuh: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_GPU_UTIL_H_ 2 | #define CAFFE_UTIL_GPU_UTIL_H_ 3 | 4 | namespace caffe { 5 | 6 | template 7 | inline __device__ Dtype caffe_gpu_atomic_add(const Dtype val, Dtype* address); 8 | 9 | template <> 10 | inline __device__ 11 | float caffe_gpu_atomic_add(const float val, float* address) { 12 | return atomicAdd(address, val); 13 | } 14 | 15 | // double atomicAdd implementation taken from: 16 | // http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3PVCpVsEG 17 | template <> 18 | inline __device__ 19 | double caffe_gpu_atomic_add(const double val, double* address) { 20 | unsigned long long int* address_as_ull = // NOLINT(runtime/int) 21 | // NOLINT_NEXT_LINE(runtime/int) 22 | reinterpret_cast(address); 23 | unsigned long long int old = *address_as_ull; // NOLINT(runtime/int) 24 | unsigned long long int assumed; // NOLINT(runtime/int) 25 | do { 26 | assumed = old; 27 | old = atomicCAS(address_as_ull, assumed, 28 | __double_as_longlong(val + __longlong_as_double(assumed))); 29 | } while (assumed != old); 30 | return __longlong_as_double(old); 31 | } 32 | 33 | } // namespace caffe 34 | 35 | #endif // CAFFE_UTIL_GPU_UTIL_H_ 36 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/hdf5.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_HDF5_H_ 2 | #define CAFFE_UTIL_HDF5_H_ 3 | 4 | #include 5 | 6 | #include "hdf5.h" 7 | #include "hdf5_hl.h" 8 | 9 | #include "caffe/blob.hpp" 10 | 11 | namespace caffe { 12 | 13 | template 14 | void hdf5_load_nd_dataset_helper( 15 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 16 | Blob* blob); 17 | 18 | template 19 | void hdf5_load_nd_dataset( 20 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 21 | Blob* blob); 22 | 23 | template 24 | void hdf5_save_nd_dataset( 25 | const hid_t file_id, const string& dataset_name, const Blob& blob, 26 | bool write_diff = false); 27 | 28 | int hdf5_load_int(hid_t loc_id, const string& dataset_name); 29 | void hdf5_save_int(hid_t loc_id, const string& dataset_name, int i); 30 | string hdf5_load_string(hid_t loc_id, const string& dataset_name); 31 | void hdf5_save_string(hid_t loc_id, const string& dataset_name, 32 | const string& s); 33 | 34 | int hdf5_get_num_links(hid_t loc_id); 35 | string hdf5_get_name_by_idx(hid_t loc_id, int idx); 36 | 37 | } // namespace caffe 38 | 39 | #endif // CAFFE_UTIL_HDF5_H_ 40 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/insert_splits.hpp: -------------------------------------------------------------------------------- 1 | #ifndef _CAFFE_UTIL_INSERT_SPLITS_HPP_ 2 | #define _CAFFE_UTIL_INSERT_SPLITS_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/proto/caffe.pb.h" 7 | 8 | namespace caffe { 9 | 10 | // Copy NetParameters with SplitLayers added to replace any shared bottom 11 | // blobs with unique bottom blobs provided by the SplitLayer. 12 | void InsertSplits(const NetParameter& param, NetParameter* param_split); 13 | 14 | void ConfigureSplitLayer(const string& layer_name, const string& blob_name, 15 | const int blob_idx, const int split_count, const float loss_weight, 16 | LayerParameter* split_layer_param); 17 | 18 | string SplitLayerName(const string& layer_name, const string& blob_name, 19 | const int blob_idx); 20 | 21 | string SplitBlobName(const string& layer_name, const string& blob_name, 22 | const int blob_idx, const int split_idx); 23 | 24 | } // namespace caffe 25 | 26 | #endif // CAFFE_UTIL_INSERT_SPLITS_HPP_ 27 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/kiss_fftr.h: -------------------------------------------------------------------------------- 1 | #ifndef KISS_FTR_H 2 | #define KISS_FTR_H 3 | 4 | #include "kiss_fft.h" 5 | #ifdef __cplusplus 6 | extern "C" { 7 | #endif 8 | 9 | 10 | /* 11 | 12 | Real optimized version can save about 45% cpu time vs. complex fft of a real seq. 13 | 14 | 15 | 16 | */ 17 | 18 | typedef struct kiss_fftr_state *kiss_fftr_cfg; 19 | 20 | 21 | kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem, size_t * lenmem); 22 | /* 23 | nfft must be even 24 | 25 | If you don't care to allocate space, use mem = lenmem = NULL 26 | */ 27 | 28 | 29 | void kiss_fftr(kiss_fftr_cfg cfg,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata); 30 | /* 31 | input timedata has nfft scalar points 32 | output freqdata has nfft/2+1 complex points 33 | */ 34 | 35 | void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata); 36 | /* 37 | input freqdata has nfft/2+1 complex points 38 | output timedata has nfft scalar points 39 | */ 40 | 41 | #define kiss_fftr_free free 42 | 43 | #ifdef __cplusplus 44 | } 45 | #endif 46 | #endif 47 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/output_matrix.hpp: -------------------------------------------------------------------------------- 1 | #include "glog/logging.h" 2 | #include "caffe/common.hpp" 3 | #include "caffe/util/device_alternate.hpp" 4 | 5 | namespace caffe{ 6 | 7 | template 8 | void write_to_file(string filename, const int R, const int C, const Dtype* A); 9 | 10 | template 11 | void print_gpu_matrix(const Dtype* M, int row, int col, int row_end, int col_end); 12 | 13 | template 14 | void print_gpu_matrix(const Dtype* M, int row, int col, int row_start, 15 | int row_end, int col_start, int col_end); 16 | 17 | template 18 | int check_nan_error(const int n, const Dtype* M); 19 | 20 | } 21 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/rng.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_RNG_CPP_HPP_ 2 | #define CAFFE_RNG_CPP_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | #include "boost/random/mersenne_twister.hpp" 8 | #include "boost/random/uniform_int.hpp" 9 | 10 | #include "caffe/common.hpp" 11 | 12 | namespace caffe { 13 | 14 | typedef boost::mt19937 rng_t; 15 | 16 | inline rng_t* caffe_rng() { 17 | return static_cast(Caffe::rng_stream().generator()); 18 | } 19 | 20 | // Fisher–Yates algorithm 21 | template 22 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end, 23 | RandomGenerator* gen) { 24 | typedef typename std::iterator_traits::difference_type 25 | difference_type; 26 | typedef typename boost::uniform_int dist_type; 27 | 28 | difference_type length = std::distance(begin, end); 29 | if (length <= 0) return; 30 | 31 | for (difference_type i = length - 1; i > 0; --i) { 32 | dist_type dist(0, i); 33 | std::iter_swap(begin + i, begin + dist(*gen)); 34 | } 35 | } 36 | 37 | template 38 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end) { 39 | shuffle(begin, end, caffe_rng()); 40 | } 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_RNG_HPP_ 44 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/signal_handler.h: -------------------------------------------------------------------------------- 1 | #ifndef INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 2 | #define INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 3 | 4 | #include "caffe/proto/caffe.pb.h" 5 | #include "caffe/solver.hpp" 6 | 7 | namespace caffe { 8 | 9 | class SignalHandler { 10 | public: 11 | // Contructor. Specify what action to take when a signal is received. 12 | SignalHandler(SolverAction::Enum SIGINT_action, 13 | SolverAction::Enum SIGHUP_action); 14 | ~SignalHandler(); 15 | ActionCallback GetActionFunction(); 16 | private: 17 | SolverAction::Enum CheckForSignals() const; 18 | SolverAction::Enum SIGINT_action_; 19 | SolverAction::Enum SIGHUP_action_; 20 | }; 21 | 22 | } // namespace caffe 23 | 24 | #endif // INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 25 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/+test/test_io.m: -------------------------------------------------------------------------------- 1 | classdef test_io < matlab.unittest.TestCase 2 | methods (Test) 3 | function test_read_write_mean(self) 4 | % randomly generate mean data 5 | width = 200; 6 | height = 300; 7 | channels = 3; 8 | mean_data_write = 255 * rand(width, height, channels, 'single'); 9 | % write mean data to binary proto 10 | mean_proto_file = tempname(); 11 | caffe.io.write_mean(mean_data_write, mean_proto_file); 12 | % read mean data from saved binary proto and test whether they are equal 13 | mean_data_read = caffe.io.read_mean(mean_proto_file); 14 | self.verifyEqual(mean_data_write, mean_data_read) 15 | delete(mean_proto_file); 16 | end 17 | end 18 | end 19 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/+test/test_solver.m: -------------------------------------------------------------------------------- 1 | classdef test_solver < matlab.unittest.TestCase 2 | 3 | properties 4 | num_output 5 | solver 6 | end 7 | 8 | methods 9 | function self = test_solver() 10 | self.num_output = 13; 11 | model_file = caffe.test.test_net.simple_net_file(self.num_output); 12 | solver_file = tempname(); 13 | 14 | fid = fopen(solver_file, 'w'); 15 | fprintf(fid, [ ... 16 | 'net: "' model_file '"\n' ... 17 | 'test_iter: 10 test_interval: 10 base_lr: 0.01 momentum: 0.9\n' ... 18 | 'weight_decay: 0.0005 lr_policy: "inv" gamma: 0.0001 power: 0.75\n' ... 19 | 'display: 100 max_iter: 100 snapshot_after_train: false\n' ]); 20 | fclose(fid); 21 | 22 | self.solver = caffe.Solver(solver_file); 23 | % also make sure get_solver runs 24 | caffe.get_solver(solver_file); 25 | caffe.set_mode_cpu(); 26 | % fill in valid labels 27 | self.solver.net.blobs('label').set_data(randi( ... 28 | self.num_output - 1, self.solver.net.blobs('label').shape)); 29 | self.solver.test_nets(1).blobs('label').set_data(randi( ... 30 | self.num_output - 1, self.solver.test_nets(1).blobs('label').shape)); 31 | 32 | delete(solver_file); 33 | delete(model_file); 34 | end 35 | end 36 | methods (Test) 37 | function test_solve(self) 38 | self.verifyEqual(self.solver.iter(), 0) 39 | self.solver.step(30); 40 | self.verifyEqual(self.solver.iter(), 30) 41 | self.solver.solve() 42 | self.verifyEqual(self.solver.iter(), 100) 43 | end 44 | end 45 | end 46 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/Layer.m: -------------------------------------------------------------------------------- 1 | classdef Layer < handle 2 | % Wrapper class of caffe::Layer in matlab 3 | 4 | properties (Access = private) 5 | hLayer_self 6 | attributes 7 | % attributes fields: 8 | % hBlob_blobs 9 | end 10 | properties (SetAccess = private) 11 | params 12 | end 13 | 14 | methods 15 | function self = Layer(hLayer_layer) 16 | CHECK(is_valid_handle(hLayer_layer), 'invalid Layer handle'); 17 | 18 | % setup self handle and attributes 19 | self.hLayer_self = hLayer_layer; 20 | self.attributes = caffe_('layer_get_attr', self.hLayer_self); 21 | 22 | % setup weights 23 | self.params = caffe.Blob.empty(); 24 | for n = 1:length(self.attributes.hBlob_blobs) 25 | self.params(n) = caffe.Blob(self.attributes.hBlob_blobs(n)); 26 | end 27 | end 28 | function layer_type = type(self) 29 | layer_type = caffe_('layer_get_type', self.hLayer_self); 30 | end 31 | end 32 | end 33 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/get_net.m: -------------------------------------------------------------------------------- 1 | function net = get_net(varargin) 2 | % net = get_net(model_file, phase_name) or 3 | % net = get_net(model_file, weights_file, phase_name) 4 | % Construct a net from model_file, and load weights from weights_file 5 | % phase_name can only be 'train' or 'test' 6 | 7 | CHECK(nargin == 2 || nargin == 3, ['usage: ' ... 8 | 'net = get_net(model_file, phase_name) or ' ... 9 | 'net = get_net(model_file, weights_file, phase_name)']); 10 | if nargin == 3 11 | model_file = varargin{1}; 12 | weights_file = varargin{2}; 13 | phase_name = varargin{3}; 14 | elseif nargin == 2 15 | model_file = varargin{1}; 16 | phase_name = varargin{2}; 17 | end 18 | 19 | CHECK(ischar(model_file), 'model_file must be a string'); 20 | CHECK(ischar(phase_name), 'phase_name must be a string'); 21 | CHECK_FILE_EXIST(model_file); 22 | CHECK(strcmp(phase_name, 'train') || strcmp(phase_name, 'test'), ... 23 | sprintf('phase_name can only be %strain%s or %stest%s', ... 24 | char(39), char(39), char(39), char(39))); 25 | 26 | % construct caffe net from model_file 27 | hNet = caffe_('get_net', model_file, phase_name); 28 | net = caffe.Net(hNet); 29 | 30 | % load weights from weights_file 31 | if nargin == 3 32 | CHECK(ischar(weights_file), 'weights_file must be a string'); 33 | CHECK_FILE_EXIST(weights_file); 34 | net.copy_from(weights_file); 35 | end 36 | 37 | end 38 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/get_solver.m: -------------------------------------------------------------------------------- 1 | function solver = get_solver(solver_file) 2 | % solver = get_solver(solver_file) 3 | % Construct a Solver object from solver_file 4 | 5 | CHECK(ischar(solver_file), 'solver_file must be a string'); 6 | CHECK_FILE_EXIST(solver_file); 7 | pSolver = caffe_('get_solver', solver_file); 8 | solver = caffe.Solver(pSolver); 9 | 10 | end 11 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat -------------------------------------------------------------------------------- /caffe/matlab/+caffe/private/CHECK.m: -------------------------------------------------------------------------------- 1 | function CHECK(expr, error_msg) 2 | 3 | if ~expr 4 | error(error_msg); 5 | end 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/private/CHECK_FILE_EXIST.m: -------------------------------------------------------------------------------- 1 | function CHECK_FILE_EXIST(filename) 2 | 3 | if exist(filename, 'file') == 0 4 | error('%s does not exist', filename); 5 | end 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/private/is_valid_handle.m: -------------------------------------------------------------------------------- 1 | function valid = is_valid_handle(hObj) 2 | % valid = is_valid_handle(hObj) or is_valid_handle('get_new_init_key') 3 | % Check if a handle is valid (has the right data type and init_key matches) 4 | % Use is_valid_handle('get_new_init_key') to get new init_key from C++; 5 | 6 | % a handle is a struct array with the following fields 7 | % (uint64) ptr : the pointer to the C++ object 8 | % (double) init_key : caffe initialization key 9 | 10 | persistent init_key; 11 | if isempty(init_key) 12 | init_key = caffe_('get_init_key'); 13 | end 14 | 15 | % is_valid_handle('get_new_init_key') to get new init_key from C++; 16 | if ischar(hObj) && strcmp(hObj, 'get_new_init_key') 17 | init_key = caffe_('get_init_key'); 18 | return 19 | else 20 | % check whether data types are correct and init_key matches 21 | valid = isstruct(hObj) ... 22 | && isscalar(hObj.ptr) && isa(hObj.ptr, 'uint64') ... 23 | && isscalar(hObj.init_key) && isa(hObj.init_key, 'double') ... 24 | && hObj.init_key == init_key; 25 | end 26 | 27 | end 28 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/reset_all.m: -------------------------------------------------------------------------------- 1 | function reset_all() 2 | % reset_all() 3 | % clear all solvers and stand-alone nets and reset Caffe to initial status 4 | 5 | caffe_('reset'); 6 | is_valid_handle('get_new_init_key'); 7 | 8 | end 9 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/run_tests.m: -------------------------------------------------------------------------------- 1 | function results = run_tests() 2 | % results = run_tests() 3 | % run all tests in this caffe matlab wrapper package 4 | 5 | % use CPU for testing 6 | caffe.set_mode_cpu(); 7 | 8 | % reset caffe before testing 9 | caffe.reset_all(); 10 | 11 | % put all test cases here 12 | results = [... 13 | run(caffe.test.test_net) ... 14 | run(caffe.test.test_solver) ... 15 | run(caffe.test.test_io) ]; 16 | 17 | % reset caffe after testing 18 | caffe.reset_all(); 19 | 20 | end 21 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/set_device.m: -------------------------------------------------------------------------------- 1 | function set_device(device_id) 2 | % set_device(device_id) 3 | % set Caffe's GPU device ID 4 | 5 | CHECK(isscalar(device_id) && device_id >= 0, ... 6 | 'device_id must be non-negative integer'); 7 | device_id = double(device_id); 8 | 9 | caffe_('set_device', device_id); 10 | 11 | end 12 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/set_mode_cpu.m: -------------------------------------------------------------------------------- 1 | function set_mode_cpu() 2 | % set_mode_cpu() 3 | % set Caffe to CPU mode 4 | 5 | caffe_('set_mode_cpu'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/set_mode_gpu.m: -------------------------------------------------------------------------------- 1 | function set_mode_gpu() 2 | % set_mode_gpu() 3 | % set Caffe to GPU mode 4 | 5 | caffe_('set_mode_gpu'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/version.m: -------------------------------------------------------------------------------- 1 | function version_str = version() 2 | % version() 3 | % show Caffe's version. 4 | 5 | version_str = caffe_('version'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/hdf5creation/.gitignore: -------------------------------------------------------------------------------- 1 | *.h5 2 | list.txt 3 | -------------------------------------------------------------------------------- /caffe/models/bvlc_alexnet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC AlexNet Model 3 | caffemodel: bvlc_alexnet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel 5 | license: unrestricted 6 | sha1: 9116a64c0fbe4459d18f4bb6b56d647b63920377 7 | caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 8 | --- 9 | 10 | This model is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication. 11 | 12 | Differences: 13 | - not training with the relighting data-augmentation; 14 | - initializing non-zero biases to 0.1 instead of 1 (found necessary for training, as initialization to 1 gave flat loss). 15 | 16 | The bundled model is the iteration 360,000 snapshot. 17 | The best validation performance during training was iteration 358,000 with validation accuracy 57.258% and loss 1.83948. 18 | This model obtains a top-1 accuracy 57.1% and a top-5 accuracy 80.2% on the validation set, using just the center crop. 19 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.) 20 | 21 | This model was trained by Evan Shelhamer @shelhamer 22 | 23 | ## License 24 | 25 | This model is released for unrestricted use. 26 | -------------------------------------------------------------------------------- /caffe/models/bvlc_alexnet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_alexnet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 1000 4 | base_lr: 0.01 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 100000 8 | display: 20 9 | max_iter: 450000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train" 14 | solver_mode: GPU 15 | -------------------------------------------------------------------------------- /caffe/models/bvlc_googlenet/quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_googlenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 4000 4 | test_initialization: false 5 | display: 40 6 | average_loss: 40 7 | base_lr: 0.01 8 | lr_policy: "poly" 9 | power: 0.5 10 | max_iter: 2400000 11 | momentum: 0.9 12 | weight_decay: 0.0002 13 | snapshot: 40000 14 | snapshot_prefix: "models/bvlc_googlenet/bvlc_googlenet_quick" 15 | solver_mode: GPU 16 | -------------------------------------------------------------------------------- /caffe/models/bvlc_googlenet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC GoogleNet Model 3 | caffemodel: bvlc_googlenet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel 5 | license: unrestricted 6 | sha1: 405fc5acd08a3bb12de8ee5e23a96bec22f08204 7 | caffe_commit: bc614d1bd91896e3faceaf40b23b72dab47d44f5 8 | --- 9 | 10 | This model is a replication of the model described in the [GoogleNet](http://arxiv.org/abs/1409.4842) publication. We would like to thank Christian Szegedy for all his help in the replication of GoogleNet model. 11 | 12 | Differences: 13 | - not training with the relighting data-augmentation; 14 | - not training with the scale or aspect-ratio data-augmentation; 15 | - uses "xavier" to initialize the weights instead of "gaussian"; 16 | - quick_solver.prototxt uses a different learning rate decay policy than the original solver.prototxt, that allows a much faster training (60 epochs vs 250 epochs); 17 | 18 | The bundled model is the iteration 2,400,000 snapshot (60 epochs) using quick_solver.prototxt 19 | 20 | This bundled model obtains a top-1 accuracy 68.7% (31.3% error) and a top-5 accuracy 88.9% (11.1% error) on the validation set, using just the center crop. 21 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.) 22 | 23 | Timings for bvlc_googlenet with cuDNN using batch_size:128 on a K40c: 24 | - Average Forward pass: 562.841 ms. 25 | - Average Backward pass: 1123.84 ms. 26 | - Average Forward-Backward: 1688.8 ms. 27 | 28 | This model was trained by Sergio Guadarrama @sguada 29 | 30 | ## License 31 | 32 | This model is released for unrestricted use. 33 | -------------------------------------------------------------------------------- /caffe/models/bvlc_googlenet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_googlenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 4000 4 | test_initialization: false 5 | display: 40 6 | average_loss: 40 7 | base_lr: 0.01 8 | lr_policy: "step" 9 | stepsize: 320000 10 | gamma: 0.96 11 | max_iter: 10000000 12 | momentum: 0.9 13 | weight_decay: 0.0002 14 | snapshot: 40000 15 | snapshot_prefix: "models/bvlc_googlenet/bvlc_googlenet" 16 | solver_mode: GPU 17 | -------------------------------------------------------------------------------- /caffe/models/bvlc_reference_caffenet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC CaffeNet Model 3 | caffemodel: bvlc_reference_caffenet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel 5 | license: unrestricted 6 | sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46 7 | caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 8 | --- 9 | 10 | This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html). 11 | It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: 12 | 13 | - not training with the relighting data-augmentation; 14 | - the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). 15 | 16 | This model is snapshot of iteration 310,000. 17 | The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328. 18 | This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop. 19 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) 20 | 21 | This model was trained by Jeff Donahue @jeffdonahue 22 | 23 | ## License 24 | 25 | This model is released for unrestricted use. 26 | -------------------------------------------------------------------------------- /caffe/models/bvlc_reference_caffenet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_reference_caffenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 1000 4 | base_lr: 0.01 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 100000 8 | display: 20 9 | max_iter: 450000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train" 14 | solver_mode: GPU 15 | -------------------------------------------------------------------------------- /caffe/models/bvlc_reference_rcnn_ilsvrc13/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC Reference RCNN ILSVRC13 Model 3 | caffemodel: bvlc_reference_rcnn_ilsvrc13.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_rcnn_ilsvrc13.caffemodel 5 | license: unrestricted 6 | sha1: bdd8abb885819cba5e2fe1eb36235f2319477e64 7 | caffe_commit: a7e397abbda52c0b90323c23ab95bdeabee90a98 8 | --- 9 | 10 | The pure Caffe instantiation of the [R-CNN](https://github.com/rbgirshick/rcnn) model for ILSVRC13 detection. 11 | This model was made by transplanting the R-CNN SVM classifiers into a `fc-rcnn` classification layer, provided here as an off-the-shelf Caffe detector. 12 | Try the [detection example](http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb) to see it in action. 13 | 14 | *N.B. For research purposes, make use of the official R-CNN package and not this example.* 15 | 16 | This model was trained by Ross Girshick @rbgirshick 17 | 18 | ## License 19 | 20 | This model is released for unrestricted use. 21 | -------------------------------------------------------------------------------- /caffe/models/finetune_flickr_style/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: Finetuning CaffeNet on Flickr Style 3 | caffemodel: finetune_flickr_style.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/finetune_flickr_style.caffemodel 5 | license: non-commercial 6 | sha1: b61b5cef7d771b53b0c488e78d35ccadc073e9cf 7 | caffe_commit: 737ea5e936821b5c69f9c3952d72693ae5843370 8 | gist_id: 034c6ac3865563b69e60 9 | --- 10 | 11 | This model is trained exactly as described in `docs/finetune_flickr_style/readme.md`, using all 80000 images. 12 | The final performance: 13 | 14 | I1017 07:36:17.370688 31333 solver.cpp:228] Iteration 100000, loss = 0.757952 15 | I1017 07:36:17.370730 31333 solver.cpp:247] Iteration 100000, Testing net (#0) 16 | I1017 07:36:34.248730 31333 solver.cpp:298] Test net output #0: accuracy = 0.3916 17 | 18 | This model was trained by Sergey Karayev @sergeyk 19 | 20 | ## License 21 | 22 | The Flickr Style dataset contains only URLs to images. 23 | Some of the images may have copyright. 24 | Training a category-recognition model for research/non-commercial use may constitute fair use of this data, but the result should not be used for commercial purposes. 25 | -------------------------------------------------------------------------------- /caffe/models/finetune_flickr_style/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/finetune_flickr_style/train_val.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | # lr for fine-tuning should be lower than when starting from scratch 5 | base_lr: 0.001 6 | lr_policy: "step" 7 | gamma: 0.1 8 | # stepsize should also be lower, as we're closer to being done 9 | stepsize: 20000 10 | display: 20 11 | max_iter: 100000 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | snapshot: 10000 15 | snapshot_prefix: "models/finetune_flickr_style/finetune_flickr_style" 16 | # uncomment the following to default to CPU mode solving 17 | # solver_mode: CPU 18 | -------------------------------------------------------------------------------- /caffe/models/san/caltech-office/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "./models/san/caltech-office/train.prototxt" 2 | test_iter: 958 # amazon as target 3 | #test_iter: 295 # webcam as target 4 | #test_iter: 157 # dslr as target 5 | test_interval: 500 6 | base_lr: 0.0003 7 | momentum: 0.9 8 | lr_policy: "inv" 9 | gamma: 0.0003 10 | power: 0.75 11 | display: 500 12 | max_iter: 20000 13 | snapshot: 10000 14 | snapshot_prefix: "./models/san/caffemodel/caltech-amazon" 15 | solver_mode: GPU 16 | snapshot_after_train: false 17 | -------------------------------------------------------------------------------- /caffe/models/san/imagenet-caltech/solver_caltech.prototxt: -------------------------------------------------------------------------------- 1 | net: "./models/san/imagenet-caltech/train_caltech.prototxt" 2 | test_iter: 140 3 | test_interval: 500 4 | base_lr: 0.0003 5 | momentum: 0.9 6 | lr_policy: "inv" 7 | gamma: 0.0003 8 | power: 0.75 9 | display: 500 10 | max_iter: 200000 11 | snapshot: 10000 12 | snapshot_prefix: "./models/san/caffemodel/caltech" 13 | solver_mode: GPU 14 | snapshot_after_train: false 15 | -------------------------------------------------------------------------------- /caffe/models/san/imagenet-caltech/solver_imagenet.prototxt: -------------------------------------------------------------------------------- 1 | net: "./models/san/imagenet-caltech/train_imagenet.prototxt" 2 | test_iter: 9257 3 | test_interval: 2000 4 | base_lr: 0.0003 5 | momentum: 0.9 6 | lr_policy: "inv" 7 | gamma: 0.0003 8 | power: 0.75 9 | display: 2000 10 | max_iter: 30000 11 | snapshot: 5000 12 | snapshot_prefix: "./models/san/caffemodel/imagenet" 13 | solver_mode: GPU 14 | -------------------------------------------------------------------------------- /caffe/models/san/office/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "./models/san/office/train.prototxt" 2 | #test_iter: 295 # webcam as target 3 | test_iter: 157 # dslr as target 4 | #test_iter: 958 # amazon as target 5 | test_interval: 500 6 | #base_lr: 0.003 # for task amazon->dslr 7 | base_lr: 0.001 # for other tasks 8 | momentum: 0.9 9 | lr_policy: "inv" 10 | gamma: 0.001 11 | power: 0.75 12 | display: 500 13 | max_iter: 10000 14 | snapshot: 5000 15 | snapshot_prefix: "./models/san/caffemodel/office-aw" 16 | solver_mode: GPU 17 | -------------------------------------------------------------------------------- /caffe/python/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | if(NOT HAVE_PYTHON) 2 | message(STATUS "Python interface is disabled or not all required dependencies found. Building without it...") 3 | return() 4 | endif() 5 | 6 | include_directories(${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} ${Boost_INCLUDE_DIRS}) 7 | file(GLOB_RECURSE python_srcs ${PROJECT_SOURCE_DIR}/python/*.cpp) 8 | 9 | add_library(pycaffe SHARED ${python_srcs}) 10 | target_link_libraries(pycaffe ${Caffe_LINK} ${PYTHON_LIBRARIES} ${Boost_LIBRARIES}) 11 | set_target_properties(pycaffe PROPERTIES PREFIX "" OUTPUT_NAME "_caffe") 12 | caffe_default_properties(pycaffe) 13 | 14 | if(UNIX OR APPLE) 15 | set(__linkname "${PROJECT_SOURCE_DIR}/python/caffe/_caffe.so") 16 | add_custom_command(TARGET pycaffe POST_BUILD 17 | COMMAND ln -sf $ "${__linkname}" 18 | COMMAND ${CMAKE_COMMAND} -E make_directory ${PROJECT_SOURCE_DIR}/python/caffe/proto 19 | COMMAND touch ${PROJECT_SOURCE_DIR}/python/caffe/proto/__init__.py 20 | COMMAND cp ${proto_gen_folder}/*.py ${PROJECT_SOURCE_DIR}/python/caffe/proto/ 21 | COMMENT "Creating symlink ${__linkname} -> ${PROJECT_BINARY_DIR}/lib/_caffe${Caffe_POSTFIX}.so") 22 | endif() 23 | 24 | # ---[ Install 25 | # scripts 26 | file(GLOB python_files *.py requirements.txt) 27 | install(FILES ${python_files} DESTINATION python) 28 | 29 | # module 30 | install(DIRECTORY caffe 31 | DESTINATION python 32 | FILES_MATCHING 33 | PATTERN "*.py" 34 | PATTERN "ilsvrc_2012_mean.npy" 35 | PATTERN "test" EXCLUDE 36 | ) 37 | 38 | # _caffe.so 39 | install(TARGETS pycaffe DESTINATION python/caffe) 40 | 41 | -------------------------------------------------------------------------------- /caffe/python/caffe/__init__.py: -------------------------------------------------------------------------------- 1 | from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver 2 | from ._caffe import set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed 3 | from ._caffe import __version__ 4 | from .proto.caffe_pb2 import TRAIN, TEST 5 | from .classifier import Classifier 6 | from .detector import Detector 7 | from . import io 8 | from .net_spec import layers, params, NetSpec, to_proto 9 | -------------------------------------------------------------------------------- /caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy -------------------------------------------------------------------------------- /caffe/python/caffe/test/test_layer_type_list.py: -------------------------------------------------------------------------------- 1 | import unittest 2 | 3 | import caffe 4 | 5 | class TestLayerTypeList(unittest.TestCase): 6 | 7 | def test_standard_types(self): 8 | #removing 'Data' from list 9 | for type_name in ['Data', 'Convolution', 'InnerProduct']: 10 | self.assertIn(type_name, caffe.layer_type_list(), 11 | '%s not in layer_type_list()' % type_name) 12 | -------------------------------------------------------------------------------- /caffe/python/requirements.txt: -------------------------------------------------------------------------------- 1 | Cython>=0.19.2 2 | numpy>=1.7.1 3 | scipy>=0.13.2 4 | scikit-image>=0.9.3 5 | matplotlib>=1.3.1 6 | ipython>=3.0.0 7 | h5py>=2.2.0 8 | leveldb>=0.191 9 | networkx>=1.8.1 10 | nose>=1.3.0 11 | pandas>=0.12.0 12 | python-dateutil>=1.4,<2 13 | protobuf>=2.5.0 14 | python-gflags>=2.0 15 | pyyaml>=3.10 16 | Pillow>=2.3.0 17 | six>=1.1.0 -------------------------------------------------------------------------------- /caffe/src/caffe/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # generate protobuf sources 2 | file(GLOB proto_files proto/*.proto) 3 | caffe_protobuf_generate_cpp_py(${proto_gen_folder} proto_srcs proto_hdrs proto_python ${proto_files}) 4 | 5 | # include python files either to force generation 6 | add_library(proto STATIC ${proto_hdrs} ${proto_srcs} ${proto_python}) 7 | set(Caffe_LINKER_LIBS proto ${Caffe_LINKER_LIBS}) # note, crucial to prepend! 8 | caffe_default_properties(proto) 9 | 10 | # --[ Caffe library 11 | 12 | # creates 'test_srcs', 'srcs', 'test_cuda', 'cuda' lists 13 | caffe_pickup_caffe_sources(${PROJECT_SOURCE_DIR}) 14 | 15 | if(HAVE_CUDA) 16 | caffe_cuda_compile(cuda_objs ${cuda}) 17 | list(APPEND srcs ${cuda_objs} ${cuda}) 18 | endif() 19 | 20 | add_library(caffe ${srcs}) 21 | target_link_libraries(caffe proto ${Caffe_LINKER_LIBS}) 22 | caffe_default_properties(caffe) 23 | set_target_properties(caffe PROPERTIES 24 | VERSION ${CAFFE_TARGET_VERSION} 25 | SOVERSION ${CAFFE_TARGET_SOVERSION} 26 | ) 27 | 28 | # ---[ Tests 29 | add_subdirectory(test) 30 | 31 | # ---[ Install 32 | install(DIRECTORY ${Caffe_INCLUDE_DIR}/caffe DESTINATION include) 33 | install(FILES ${proto_hdrs} DESTINATION include/caffe/proto) 34 | install(TARGETS caffe proto EXPORT CaffeTargets DESTINATION lib) 35 | 36 | file(WRITE ${PROJECT_BINARY_DIR}/__init__.py) 37 | list(APPEND proto_python ${PROJECT_BINARY_DIR}/__init__.py) 38 | install(PROGRAMS ${proto_python} DESTINATION python/caffe/proto) 39 | 40 | 41 | -------------------------------------------------------------------------------- /caffe/src/caffe/layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include "caffe/layer.hpp" 3 | 4 | namespace caffe { 5 | 6 | template 7 | void Layer::InitMutex() { 8 | forward_mutex_.reset(new boost::mutex()); 9 | } 10 | 11 | template 12 | void Layer::Lock() { 13 | if (IsShared()) { 14 | forward_mutex_->lock(); 15 | } 16 | } 17 | 18 | template 19 | void Layer::Unlock() { 20 | if (IsShared()) { 21 | forward_mutex_->unlock(); 22 | } 23 | } 24 | 25 | INSTANTIATE_CLASS(Layer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/absval_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | NeuronLayer::LayerSetUp(bottom, top); 12 | CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " 13 | "allow in-place computation."; 14 | } 15 | 16 | template 17 | void AbsValLayer::Forward_cpu( 18 | const vector*>& bottom, const vector*>& top) { 19 | const int count = top[0]->count(); 20 | Dtype* top_data = top[0]->mutable_cpu_data(); 21 | caffe_abs(count, bottom[0]->cpu_data(), top_data); 22 | } 23 | 24 | template 25 | void AbsValLayer::Backward_cpu(const vector*>& top, 26 | const vector& propagate_down, const vector*>& bottom) { 27 | const int count = top[0]->count(); 28 | const Dtype* top_diff = top[0]->cpu_diff(); 29 | if (propagate_down[0]) { 30 | const Dtype* bottom_data = bottom[0]->cpu_data(); 31 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 32 | caffe_cpu_sign(count, bottom_data, bottom_diff); 33 | caffe_mul(count, bottom_diff, top_diff, bottom_diff); 34 | } 35 | } 36 | 37 | #ifdef CPU_ONLY 38 | STUB_GPU(AbsValLayer); 39 | #endif 40 | 41 | INSTANTIATE_CLASS(AbsValLayer); 42 | REGISTER_LAYER_CLASS(AbsVal); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/absval_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::Forward_gpu( 10 | const vector*>& bottom, const vector*>& top) { 11 | const int count = top[0]->count(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | caffe_gpu_abs(count, bottom[0]->gpu_data(), top_data); 14 | } 15 | 16 | template 17 | void AbsValLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | const int count = top[0]->count(); 20 | const Dtype* top_diff = top[0]->gpu_diff(); 21 | if (propagate_down[0]) { 22 | const Dtype* bottom_data = bottom[0]->gpu_data(); 23 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 24 | caffe_gpu_sign(count, bottom_data, bottom_diff); 25 | caffe_gpu_mul(count, bottom_diff, top_diff, bottom_diff); 26 | } 27 | } 28 | 29 | INSTANTIATE_LAYER_GPU_FUNCS(AbsValLayer); 30 | 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/aggregate_weight_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/filler.hpp" 4 | #include "caffe/layers/aggregate_weight_layer.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | namespace caffe { 8 | 9 | template 10 | void AggregateWeightLayer::LayerSetUp(const vector*>& bottom, 11 | const vector*>& top) { 12 | //bias_term_ = this->layer_param_.inner_product_param().bias_term(); 13 | num_output_ = top.size(); 14 | class_blob_.Reshape(num_output_, 1, 1, 1); 15 | caffe_gpu_set(num_output_, Dtype(0), class_blob_.mutable_gpu_data()); 16 | } 17 | 18 | template 19 | void AggregateWeightLayer::Reshape(const vector*>& bottom, 20 | const vector*>& top) { 21 | num_data_ = bottom[0]->shape(0); 22 | for(int i = 0; i < num_output_; i++){ 23 | top[i]->Reshape(num_data_+1, 1,1,1); 24 | } 25 | weight_blob_.Reshape(num_output_, num_data_+1,1,1); 26 | } 27 | 28 | template 29 | void AggregateWeightLayer::Forward_cpu(const vector*>& bottom, 30 | const vector*>& top) { 31 | } 32 | 33 | template 34 | void AggregateWeightLayer::Backward_cpu(const vector*>& top, 35 | const vector& propagate_down, 36 | const vector*>& bottom) { 37 | } 38 | 39 | #ifdef CPU_ONLY 40 | STUB_GPU(AggregateWeightLayer); 41 | #endif 42 | 43 | INSTANTIATE_CLASS(AggregateWeightLayer); 44 | REGISTER_LAYER_CLASS(AggregateWeight); 45 | 46 | } // namespace caffe 47 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/base_data_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/base_data_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void BasePrefetchingDataLayer::Forward_gpu( 9 | const vector*>& bottom, const vector*>& top) { 10 | Batch* batch = prefetch_full_.pop("Data layer prefetch queue empty"); 11 | // Reshape to loaded data. 12 | top[0]->ReshapeLike(batch->data_); 13 | // Copy the data 14 | caffe_copy(batch->data_.count(), batch->data_.gpu_data(), 15 | top[0]->mutable_gpu_data()); 16 | if (this->output_labels_) { 17 | // Reshape to loaded labels. 18 | top[1]->ReshapeLike(batch->label_); 19 | // Copy the labels. 20 | caffe_copy(batch->label_.count(), batch->label_.gpu_data(), 21 | top[1]->mutable_gpu_data()); 22 | } 23 | // Ensure the copy is synchronous wrt the host, so that the next batch isn't 24 | // copied in meanwhile. 25 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault)); 26 | prefetch_free_.push(batch); 27 | } 28 | 29 | INSTANTIATE_LAYER_GPU_FORWARD(BasePrefetchingDataLayer); 30 | 31 | } // namespace caffe 32 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/bnll_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/bnll_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | const float kBNLL_THRESHOLD = 50.; 9 | 10 | template 11 | void BNLLLayer::Forward_cpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->cpu_data(); 14 | Dtype* top_data = top[0]->mutable_cpu_data(); 15 | const int count = bottom[0]->count(); 16 | for (int i = 0; i < count; ++i) { 17 | top_data[i] = bottom_data[i] > 0 ? 18 | bottom_data[i] + log(1. + exp(-bottom_data[i])) : 19 | log(1. + exp(bottom_data[i])); 20 | } 21 | } 22 | 23 | template 24 | void BNLLLayer::Backward_cpu(const vector*>& top, 25 | const vector& propagate_down, 26 | const vector*>& bottom) { 27 | if (propagate_down[0]) { 28 | const Dtype* bottom_data = bottom[0]->cpu_data(); 29 | const Dtype* top_diff = top[0]->cpu_diff(); 30 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 31 | const int count = bottom[0]->count(); 32 | Dtype expval; 33 | for (int i = 0; i < count; ++i) { 34 | expval = exp(std::min(bottom_data[i], Dtype(kBNLL_THRESHOLD))); 35 | bottom_diff[i] = top_diff[i] * expval / (expval + 1.); 36 | } 37 | } 38 | } 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(BNLLLayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(BNLLLayer); 45 | REGISTER_LAYER_CLASS(BNLL); 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_lcn_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_lcn_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNLCNLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | 14 | CUDNN_CHECK(cudnnDivisiveNormalizationForward( 15 | handle_, norm_desc_, CUDNN_DIVNORM_PRECOMPUTED_MEANS, 16 | cudnn::dataType::one, 17 | bottom_desc_, bottom_data, 18 | NULL, // srcMeansData 19 | this->tempData1, this->tempData2, 20 | cudnn::dataType::zero, 21 | top_desc_, top_data) ); 22 | } 23 | 24 | template 25 | void CuDNNLCNLayer::Backward_gpu(const vector*>& top, 26 | const vector& propagate_down, const vector*>& bottom) { 27 | const Dtype* top_diff = top[0]->gpu_diff(); 28 | const Dtype* top_data = top[0]->gpu_data(); 29 | const Dtype* bottom_data = bottom[0]->gpu_data(); 30 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 31 | 32 | CUDNN_CHECK(cudnnDivisiveNormalizationBackward( 33 | handle_, norm_desc_, CUDNN_DIVNORM_PRECOMPUTED_MEANS, 34 | cudnn::dataType::one, 35 | bottom_desc_, bottom_data, 36 | NULL, top_diff, // NULL - srcMeansData 37 | this->tempData1, this->tempData2, 38 | cudnn::dataType::zero, 39 | bottom_desc_, bottom_diff, 40 | NULL) ); 41 | } 42 | 43 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLCNLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_lrn_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_lrn_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNLRNLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | 14 | CUDNN_CHECK(cudnnLRNCrossChannelForward( 15 | handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, 16 | cudnn::dataType::one, 17 | bottom_desc_, bottom_data, 18 | cudnn::dataType::zero, 19 | top_desc_, top_data) ); 20 | } 21 | 22 | template 23 | void CuDNNLRNLayer::Backward_gpu(const vector*>& top, 24 | const vector& propagate_down, const vector*>& bottom) { 25 | const Dtype* top_diff = top[0]->gpu_diff(); 26 | const Dtype* top_data = top[0]->gpu_data(); 27 | const Dtype* bottom_data = bottom[0]->gpu_data(); 28 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 29 | 30 | CUDNN_CHECK(cudnnLRNCrossChannelBackward( 31 | handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, 32 | cudnn::dataType::one, 33 | top_desc_, top_data, 34 | top_desc_, top_diff, 35 | bottom_desc_, bottom_data, 36 | cudnn::dataType::zero, 37 | bottom_desc_, bottom_diff) ); 38 | } 39 | 40 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLRNLayer); 41 | 42 | }; // namespace caffe 43 | 44 | #endif 45 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_pooling_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_pooling_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNPoolingLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | CUDNN_CHECK(cudnnPoolingForward(handle_, pooling_desc_, 14 | cudnn::dataType::one, 15 | bottom_desc_, bottom_data, 16 | cudnn::dataType::zero, 17 | top_desc_, top_data)); 18 | } 19 | 20 | template 21 | void CuDNNPoolingLayer::Backward_gpu(const vector*>& top, 22 | const vector& propagate_down, const vector*>& bottom) { 23 | if (!propagate_down[0]) { 24 | return; 25 | } 26 | const Dtype* top_diff = top[0]->gpu_diff(); 27 | const Dtype* top_data = top[0]->gpu_data(); 28 | const Dtype* bottom_data = bottom[0]->gpu_data(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | CUDNN_CHECK(cudnnPoolingBackward(handle_, pooling_desc_, 31 | cudnn::dataType::one, 32 | top_desc_, top_data, top_desc_, top_diff, 33 | bottom_desc_, bottom_data, 34 | cudnn::dataType::zero, 35 | bottom_desc_, bottom_diff)); 36 | } 37 | 38 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNPoolingLayer); 39 | 40 | } // namespace caffe 41 | #endif 42 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_relu_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_relu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNReLULayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | ReLULayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_RELU); 17 | handles_setup_ = true; 18 | } 19 | 20 | template 21 | void CuDNNReLULayer::Reshape(const vector*>& bottom, 22 | const vector*>& top) { 23 | ReLULayer::Reshape(bottom, top); 24 | const int N = bottom[0]->num(); 25 | const int K = bottom[0]->channels(); 26 | const int H = bottom[0]->height(); 27 | const int W = bottom[0]->width(); 28 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 29 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 30 | } 31 | 32 | template 33 | CuDNNReLULayer::~CuDNNReLULayer() { 34 | // Check that handles have been setup before destroying. 35 | if (!handles_setup_) { return; } 36 | 37 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 38 | cudnnDestroyTensorDescriptor(this->top_desc_); 39 | cudnnDestroy(this->handle_); 40 | } 41 | 42 | INSTANTIATE_CLASS(CuDNNReLULayer); 43 | 44 | } // namespace caffe 45 | #endif 46 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_sigmoid_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_sigmoid_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNSigmoidLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | SigmoidLayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, 17 | CUDNN_ACTIVATION_SIGMOID); 18 | handles_setup_ = true; 19 | } 20 | 21 | template 22 | void CuDNNSigmoidLayer::Reshape(const vector*>& bottom, 23 | const vector*>& top) { 24 | SigmoidLayer::Reshape(bottom, top); 25 | const int N = bottom[0]->num(); 26 | const int K = bottom[0]->channels(); 27 | const int H = bottom[0]->height(); 28 | const int W = bottom[0]->width(); 29 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 30 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 31 | } 32 | 33 | template 34 | CuDNNSigmoidLayer::~CuDNNSigmoidLayer() { 35 | // Check that handles have been setup before destroying. 36 | if (!handles_setup_) { return; } 37 | 38 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 39 | cudnnDestroyTensorDescriptor(this->top_desc_); 40 | cudnnDestroy(this->handle_); 41 | } 42 | 43 | INSTANTIATE_CLASS(CuDNNSigmoidLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_softmax_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "thrust/device_vector.h" 5 | 6 | #include "caffe/layers/cudnn_softmax_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void CuDNNSoftmaxLayer::LayerSetUp(const vector*>& bottom, 12 | const vector*>& top) { 13 | SoftmaxLayer::LayerSetUp(bottom, top); 14 | // Initialize CUDNN. 15 | CUDNN_CHECK(cudnnCreate(&handle_)); 16 | cudnn::createTensor4dDesc(&bottom_desc_); 17 | cudnn::createTensor4dDesc(&top_desc_); 18 | handles_setup_ = true; 19 | } 20 | 21 | template 22 | void CuDNNSoftmaxLayer::Reshape(const vector*>& bottom, 23 | const vector*>& top) { 24 | SoftmaxLayer::Reshape(bottom, top); 25 | int N = this->outer_num_; 26 | int K = bottom[0]->shape(this->softmax_axis_); 27 | int H = this->inner_num_; 28 | int W = 1; 29 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 30 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 31 | } 32 | 33 | template 34 | CuDNNSoftmaxLayer::~CuDNNSoftmaxLayer() { 35 | // Check that handles have been setup before destroying. 36 | if (!handles_setup_) { return; } 37 | 38 | cudnnDestroyTensorDescriptor(bottom_desc_); 39 | cudnnDestroyTensorDescriptor(top_desc_); 40 | cudnnDestroy(handle_); 41 | } 42 | 43 | INSTANTIATE_CLASS(CuDNNSoftmaxLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_softmax_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "thrust/device_vector.h" 5 | 6 | #include "caffe/layers/cudnn_softmax_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void CuDNNSoftmaxLayer::Forward_gpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->gpu_data(); 14 | Dtype* top_data = top[0]->mutable_gpu_data(); 15 | CUDNN_CHECK(cudnnSoftmaxForward(handle_, CUDNN_SOFTMAX_ACCURATE, 16 | CUDNN_SOFTMAX_MODE_CHANNEL, 17 | cudnn::dataType::one, 18 | bottom_desc_, bottom_data, 19 | cudnn::dataType::zero, 20 | top_desc_, top_data)); 21 | } 22 | 23 | template 24 | void CuDNNSoftmaxLayer::Backward_gpu(const vector*>& top, 25 | const vector& propagate_down, const vector*>& bottom) { 26 | if (propagate_down[0]) { 27 | const Dtype* top_data = top[0]->gpu_data(); 28 | const Dtype* top_diff = top[0]->gpu_diff(); 29 | const Dtype* bottom_data = bottom[0]->gpu_data(); 30 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 31 | 32 | CUDNN_CHECK(cudnnSoftmaxBackward(handle_, CUDNN_SOFTMAX_ACCURATE, 33 | CUDNN_SOFTMAX_MODE_CHANNEL, 34 | cudnn::dataType::one, 35 | top_desc_, top_data, top_desc_, top_diff, 36 | cudnn::dataType::zero, 37 | bottom_desc_, bottom_diff)); 38 | } 39 | } 40 | 41 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNSoftmaxLayer); 42 | 43 | } // namespace caffe 44 | #endif 45 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/cudnn_tanh_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_tanh_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNTanHLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | TanHLayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_TANH); 17 | handles_setup_ = true; 18 | } 19 | 20 | template 21 | void CuDNNTanHLayer::Reshape(const vector*>& bottom, 22 | const vector*>& top) { 23 | TanHLayer::Reshape(bottom, top); 24 | const int N = bottom[0]->num(); 25 | const int K = bottom[0]->channels(); 26 | const int H = bottom[0]->height(); 27 | const int W = bottom[0]->width(); 28 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 29 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 30 | } 31 | 32 | template 33 | CuDNNTanHLayer::~CuDNNTanHLayer() { 34 | // Check that handles have been setup before destroying. 35 | if (!handles_setup_) { return; } 36 | 37 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 38 | cudnnDestroyTensorDescriptor(this->top_desc_); 39 | cudnnDestroy(this->handle_); 40 | } 41 | 42 | INSTANTIATE_CLASS(CuDNNTanHLayer); 43 | 44 | } // namespace caffe 45 | #endif 46 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/elu_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/elu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ELULayer::Forward_cpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->cpu_data(); 12 | Dtype* top_data = top[0]->mutable_cpu_data(); 13 | const int count = bottom[0]->count(); 14 | Dtype alpha = this->layer_param_.elu_param().alpha(); 15 | for (int i = 0; i < count; ++i) { 16 | top_data[i] = std::max(bottom_data[i], Dtype(0)) 17 | + alpha * (exp(std::min(bottom_data[i], Dtype(0))) - Dtype(1)); 18 | } 19 | } 20 | 21 | template 22 | void ELULayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* bottom_data = bottom[0]->cpu_data(); 27 | const Dtype* top_data = top[0]->cpu_data(); 28 | const Dtype* top_diff = top[0]->cpu_diff(); 29 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 30 | const int count = bottom[0]->count(); 31 | Dtype alpha = this->layer_param_.elu_param().alpha(); 32 | for (int i = 0; i < count; ++i) { 33 | bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0) 34 | + (alpha + top_data[i]) * (bottom_data[i] <= 0)); 35 | } 36 | } 37 | } 38 | 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(ELULayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(ELULayer); 45 | REGISTER_LAYER_CLASS(ELU); 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/entropy_loss_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | 5 | #include "caffe/layers/entropy_loss_layer.hpp" 6 | namespace caffe { 7 | 8 | template 9 | void EntropyLossLayer::LayerSetUp( 10 | const vector*>& bottom, const vector*>& top) { 11 | LossLayer::LayerSetUp(bottom, top); 12 | data_num_ = bottom[0]->count(0,1); 13 | label_num_ = bottom[0]->count(1); 14 | ignore_label_ = this->layer_param_.entropy_param().ignore_label(); 15 | threshold_ = this->layer_param_.entropy_param().threshold(); 16 | prob_pow_ = this->layer_param_.entropy_param().prob_pow(); 17 | loss_weight_ = this->layer_param_.loss_weight(0); 18 | } 19 | 20 | template 21 | void EntropyLossLayer::Reshape( 22 | const vector*>& bottom, const vector*>& top) { 23 | LossLayer::Reshape(bottom, top); 24 | normalized_bottom_data_.Reshape(1, 1, data_num_, label_num_); 25 | } 26 | 27 | template 28 | void EntropyLossLayer::Forward_cpu( 29 | const vector*>& bottom, const vector*>& top) { 30 | } 31 | 32 | template 33 | void EntropyLossLayer::Backward_cpu( 34 | const vector*>& top, const vector& propagate_down, 35 | const vector*>& bottom) { 36 | 37 | } 38 | 39 | #ifdef CPU_ONLY 40 | STUB_GPU(EntropyLossLayer); 41 | #endif 42 | 43 | INSTANTIATE_CLASS(EntropyLossLayer); 44 | REGISTER_LAYER_CLASS(EntropyLoss); 45 | 46 | } // namespace caffe 47 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/euclidean_loss_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/euclidean_loss_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void EuclideanLossLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | int count = bottom[0]->count(); 12 | caffe_gpu_sub( 13 | count, 14 | bottom[0]->gpu_data(), 15 | bottom[1]->gpu_data(), 16 | diff_.mutable_gpu_data()); 17 | Dtype dot; 18 | caffe_gpu_dot(count, diff_.gpu_data(), diff_.gpu_data(), &dot); 19 | Dtype loss = dot / bottom[0]->num() / Dtype(2); 20 | top[0]->mutable_cpu_data()[0] = loss; 21 | } 22 | 23 | template 24 | void EuclideanLossLayer::Backward_gpu(const vector*>& top, 25 | const vector& propagate_down, const vector*>& bottom) { 26 | for (int i = 0; i < 2; ++i) { 27 | if (propagate_down[i]) { 28 | const Dtype sign = (i == 0) ? 1 : -1; 29 | const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num(); 30 | caffe_gpu_axpby( 31 | bottom[i]->count(), // count 32 | alpha, // alpha 33 | diff_.gpu_data(), // a 34 | Dtype(0), // beta 35 | bottom[i]->mutable_gpu_diff()); // b 36 | } 37 | } 38 | } 39 | 40 | INSTANTIATE_LAYER_GPU_FUNCS(EuclideanLossLayer); 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/exp_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/exp_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ExpLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const int count = bottom[0]->count(); 12 | const Dtype* bottom_data = bottom[0]->gpu_data(); 13 | Dtype* top_data = top[0]->mutable_gpu_data(); 14 | if (inner_scale_ == Dtype(1)) { 15 | caffe_gpu_exp(count, bottom_data, top_data); 16 | } else { 17 | caffe_gpu_scale(count, inner_scale_, bottom_data, top_data); 18 | caffe_gpu_exp(count, top_data, top_data); 19 | } 20 | if (outer_scale_ != Dtype(1)) { 21 | caffe_gpu_scal(count, outer_scale_, top_data); 22 | } 23 | } 24 | 25 | template 26 | void ExpLayer::Backward_gpu(const vector*>& top, 27 | const vector& propagate_down, const vector*>& bottom) { 28 | if (!propagate_down[0]) { return; } 29 | const int count = bottom[0]->count(); 30 | const Dtype* top_data = top[0]->gpu_data(); 31 | const Dtype* top_diff = top[0]->gpu_diff(); 32 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 33 | caffe_gpu_mul(count, top_data, top_diff, bottom_diff); 34 | if (inner_scale_ != Dtype(1)) { 35 | caffe_gpu_scal(count, inner_scale_, bottom_diff); 36 | } 37 | } 38 | 39 | INSTANTIATE_LAYER_GPU_FUNCS(ExpLayer); 40 | 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/flatten_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/flatten_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void FlattenLayer::Reshape(const vector*>& bottom, 9 | const vector*>& top) { 10 | CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " 11 | "allow in-place computation."; 12 | const int start_axis = bottom[0]->CanonicalAxisIndex( 13 | this->layer_param_.flatten_param().axis()); 14 | const int end_axis = bottom[0]->CanonicalAxisIndex( 15 | this->layer_param_.flatten_param().end_axis()); 16 | vector top_shape; 17 | for (int i = 0; i < start_axis; ++i) { 18 | top_shape.push_back(bottom[0]->shape(i)); 19 | } 20 | const int flattened_dim = bottom[0]->count(start_axis, end_axis + 1); 21 | top_shape.push_back(flattened_dim); 22 | for (int i = end_axis + 1; i < bottom[0]->num_axes(); ++i) { 23 | top_shape.push_back(bottom[0]->shape(i)); 24 | } 25 | top[0]->Reshape(top_shape); 26 | CHECK_EQ(top[0]->count(), bottom[0]->count()); 27 | } 28 | 29 | template 30 | void FlattenLayer::Forward_cpu(const vector*>& bottom, 31 | const vector*>& top) { 32 | top[0]->ShareData(*bottom[0]); 33 | } 34 | 35 | template 36 | void FlattenLayer::Backward_cpu(const vector*>& top, 37 | const vector& propagate_down, const vector*>& bottom) { 38 | bottom[0]->ShareDiff(*top[0]); 39 | } 40 | 41 | INSTANTIATE_CLASS(FlattenLayer); 42 | REGISTER_LAYER_CLASS(Flatten); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/gradient_scaler_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include 5 | 6 | namespace caffe { 7 | 8 | template 9 | void GradientScalerLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | top[0]->ShareData(*bottom[0]); 12 | } 13 | 14 | template 15 | void GradientScalerLayer::Backward_gpu(const vector*>& top, 16 | const vector& propagate_down, const vector*>& bottom) { 17 | if (propagate_down[0]) { 18 | const int count = top[0]->count(); 19 | const Dtype* top_diff = top[0]->gpu_diff(); 20 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 21 | caffe_gpu_scale(count, Dtype(-coeff_), top_diff, bottom_diff); 22 | //LOG(INFO) << "coeff: " << coeff_; 23 | } 24 | } 25 | 26 | INSTANTIATE_LAYER_GPU_FUNCS(GradientScalerLayer); 27 | 28 | } // namespace caffe 29 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/hdf5_output_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "hdf5.h" 4 | #include "hdf5_hl.h" 5 | 6 | #include "caffe/layers/hdf5_output_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void HDF5OutputLayer::Forward_gpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | CHECK_GE(bottom.size(), 2); 14 | CHECK_EQ(bottom[0]->num(), bottom[1]->num()); 15 | data_blob_.Reshape(bottom[0]->num(), bottom[0]->channels(), 16 | bottom[0]->height(), bottom[0]->width()); 17 | label_blob_.Reshape(bottom[1]->num(), bottom[1]->channels(), 18 | bottom[1]->height(), bottom[1]->width()); 19 | const int data_datum_dim = bottom[0]->count() / bottom[0]->num(); 20 | const int label_datum_dim = bottom[1]->count() / bottom[1]->num(); 21 | 22 | for (int i = 0; i < bottom[0]->num(); ++i) { 23 | caffe_copy(data_datum_dim, &bottom[0]->gpu_data()[i * data_datum_dim], 24 | &data_blob_.mutable_cpu_data()[i * data_datum_dim]); 25 | caffe_copy(label_datum_dim, &bottom[1]->gpu_data()[i * label_datum_dim], 26 | &label_blob_.mutable_cpu_data()[i * label_datum_dim]); 27 | } 28 | SaveBlobs(); 29 | } 30 | 31 | template 32 | void HDF5OutputLayer::Backward_gpu(const vector*>& top, 33 | const vector& propagate_down, const vector*>& bottom) { 34 | return; 35 | } 36 | 37 | INSTANTIATE_LAYER_GPU_FUNCS(HDF5OutputLayer); 38 | 39 | } // namespace caffe 40 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/input_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/input_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void InputLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | const int num_top = top.size(); 11 | const InputParameter& param = this->layer_param_.input_param(); 12 | const int num_shape = param.shape_size(); 13 | CHECK(num_shape == 0 || num_shape == 1 || num_shape == num_top) 14 | << "Must specify 'shape' once, once per top blob, or not at all: " 15 | << num_top << " tops vs. " << num_shape << " shapes."; 16 | if (num_shape > 0) { 17 | for (int i = 0; i < num_top; ++i) { 18 | const int shape_index = (param.shape_size() == 1) ? 0 : i; 19 | top[i]->Reshape(param.shape(shape_index)); 20 | } 21 | } 22 | } 23 | 24 | INSTANTIATE_CLASS(InputLayer); 25 | REGISTER_LAYER_CLASS(Input); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/loss_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/loss_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void LossLayer::LayerSetUp( 9 | const vector*>& bottom, const vector*>& top) { 10 | // LossLayers have a non-zero (1) loss by default. 11 | if (this->layer_param_.loss_weight_size() == 0) { 12 | this->layer_param_.add_loss_weight(Dtype(1)); 13 | } 14 | } 15 | 16 | template 17 | void LossLayer::Reshape( 18 | const vector*>& bottom, const vector*>& top) { 19 | //CHECK_EQ(bottom[0]->shape(0), bottom[1]->shape(0)) 20 | // << "The data and label should have the same first dimension."; 21 | vector loss_shape(0); // Loss layers output a scalar; 0 axes. 22 | top[0]->Reshape(loss_shape); 23 | } 24 | 25 | INSTANTIATE_CLASS(LossLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/neuron_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/neuron_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void NeuronLayer::Reshape(const vector*>& bottom, 9 | const vector*>& top) { 10 | top[0]->ReshapeLike(*bottom[0]); 11 | } 12 | 13 | INSTANTIATE_CLASS(NeuronLayer); 14 | 15 | } // namespace caffe 16 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/outerproduct_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/outerproduct_layer.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | namespace caffe { 8 | 9 | template 10 | void OuterProductLayer::LayerSetUp(const vector*>& bottom, 11 | const vector*>& top) { 12 | loss_weight_ = this->layer_param_.outer_product_param().loss_weight(); 13 | vector temp_shape; 14 | temp_shape.push_back(bottom[0]->shape(0)); 15 | temp_shape.push_back(bottom[0]->shape(1)); 16 | temp_shape.push_back(bottom[1]->shape(1)); 17 | temp_shape.push_back(1); 18 | top[0]->Reshape(temp_shape); 19 | } 20 | 21 | template 22 | void OuterProductLayer::Reshape(const vector*>& bottom, 23 | const vector*>& top) { 24 | vector temp_shape; 25 | temp_shape.push_back(bottom[0]->shape(0)); 26 | temp_shape.push_back(bottom[0]->shape(1)); 27 | temp_shape.push_back(bottom[1]->shape(1)); 28 | temp_shape.push_back(1); 29 | top[0]->Reshape(temp_shape); 30 | } 31 | 32 | template 33 | void OuterProductLayer::Forward_cpu(const vector*>& bottom, 34 | const vector*>& top) { 35 | } 36 | 37 | template 38 | void OuterProductLayer::Backward_cpu(const vector*>& top, 39 | const vector& propagate_down, const vector*>& bottom) { 40 | } 41 | 42 | #ifdef CPU_ONLY 43 | STUB_GPU(OuterProductLayer); 44 | #endif 45 | 46 | INSTANTIATE_CLASS(OuterProductLayer); 47 | REGISTER_LAYER_CLASS(OuterProduct); 48 | 49 | } // namespace caffe 50 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/padding_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/padding_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void PaddingLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | int bottom_size = bottom.size(); 11 | const PaddingParameter& param = this->layer_param_.padding_param(); 12 | CHECK_EQ(bottom_size, param.all_pad_size()) << "The number of padding shapes should match the number of bottom layers."; 13 | CHECK_EQ(bottom_size, top.size()) << "Bottom and top blobs should match."; 14 | for(int i = 0; i < bottom_size; i++){ 15 | padding_size_.push_back(vector()); 16 | int temp_size = param.all_pad(i).pad_size(); 17 | for(int j = 0; j < temp_size; j ++){ 18 | padding_size_[i].push_back(param.all_pad(i).pad(j)); 19 | } 20 | } 21 | for(int i = 0; i < bottom_size; i ++){ 22 | top[i]->Reshape(padding_size_[i]); 23 | } 24 | } 25 | 26 | template 27 | void PaddingLayer::Reshape(const vector*>& bottom, 28 | const vector*>& top) { 29 | } 30 | 31 | template 32 | void PaddingLayer::Forward_cpu(const vector*>& bottom, 33 | const vector*>& top) { 34 | } 35 | 36 | template 37 | void PaddingLayer::Backward_cpu(const vector*>& top, 38 | const vector& propagate_down, const vector*>& bottom) { 39 | } 40 | 41 | #ifdef CPU_ONLY 42 | STUB_GPU(PaddingLayer); 43 | #endif 44 | 45 | INSTANTIATE_CLASS(PaddingLayer); 46 | REGISTER_LAYER_CLASS(Padding); 47 | 48 | } // namespace caffe 49 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/parameter_layer.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/layers/parameter_layer.hpp" 2 | 3 | namespace caffe { 4 | 5 | INSTANTIATE_CLASS(ParameterLayer); 6 | REGISTER_LAYER_CLASS(Parameter); 7 | 8 | } // namespace caffe 9 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/product_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/filler.hpp" 4 | #include "caffe/layers/product_layer.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | namespace caffe { 8 | 9 | template 10 | void ProductLayer::LayerSetUp(const vector*>& bottom, 11 | const vector*>& top) { 12 | loss_weight_ = this->layer_param_.product_param().loss_weight(); 13 | bottom_pair_num_ = bottom.size() / 2; 14 | } 15 | 16 | template 17 | void ProductLayer::Reshape(const vector*>& bottom, 18 | const vector*>& top) { 19 | top[0]->ReshapeLike(*bottom[0]); 20 | } 21 | 22 | template 23 | void ProductLayer::Forward_cpu(const vector*>& bottom, 24 | const vector*>& top) { 25 | } 26 | 27 | template 28 | void ProductLayer::Backward_cpu(const vector*>& top, 29 | const vector& propagate_down, 30 | const vector*>& bottom) { 31 | if (this->param_propagate_down_[0]) { 32 | } 33 | } 34 | 35 | #ifdef CPU_ONLY 36 | STUB_GPU(ProductLayer); 37 | #endif 38 | 39 | INSTANTIATE_CLASS(ProductLayer); 40 | REGISTER_LAYER_CLASS(Product); 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/recurrent_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/blob.hpp" 4 | #include "caffe/common.hpp" 5 | #include "caffe/filler.hpp" 6 | #include "caffe/layer.hpp" 7 | #include "caffe/layers/recurrent_layer.hpp" 8 | #include "caffe/util/math_functions.hpp" 9 | 10 | namespace caffe { 11 | 12 | template 13 | void RecurrentLayer::Forward_gpu(const vector*>& bottom, 14 | const vector*>& top) { 15 | // Hacky fix for test time... reshare all the shared blobs. 16 | // TODO: somehow make this work non-hackily. 17 | if (this->phase_ == TEST) { 18 | unrolled_net_->ShareWeights(); 19 | } 20 | 21 | DCHECK_EQ(recur_input_blobs_.size(), recur_output_blobs_.size()); 22 | if (!expose_hidden_) { 23 | for (int i = 0; i < recur_input_blobs_.size(); ++i) { 24 | const int count = recur_input_blobs_[i]->count(); 25 | DCHECK_EQ(count, recur_output_blobs_[i]->count()); 26 | const Dtype* timestep_T_data = recur_output_blobs_[i]->gpu_data(); 27 | Dtype* timestep_0_data = recur_input_blobs_[i]->mutable_gpu_data(); 28 | caffe_copy(count, timestep_T_data, timestep_0_data); 29 | } 30 | } 31 | 32 | unrolled_net_->ForwardTo(last_layer_index_); 33 | 34 | if (expose_hidden_) { 35 | const int top_offset = output_blobs_.size(); 36 | for (int i = top_offset, j = 0; i < top.size(); ++i, ++j) { 37 | top[i]->ShareData(*recur_output_blobs_[j]); 38 | } 39 | } 40 | } 41 | 42 | INSTANTIATE_LAYER_GPU_FORWARD(RecurrentLayer); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/relu_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/relu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ReLULayer::Forward_cpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->cpu_data(); 12 | Dtype* top_data = top[0]->mutable_cpu_data(); 13 | const int count = bottom[0]->count(); 14 | Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); 15 | for (int i = 0; i < count; ++i) { 16 | top_data[i] = std::max(bottom_data[i], Dtype(0)) 17 | + negative_slope * std::min(bottom_data[i], Dtype(0)); 18 | } 19 | } 20 | 21 | template 22 | void ReLULayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* bottom_data = bottom[0]->cpu_data(); 27 | const Dtype* top_diff = top[0]->cpu_diff(); 28 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 29 | const int count = bottom[0]->count(); 30 | Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); 31 | for (int i = 0; i < count; ++i) { 32 | bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0) 33 | + negative_slope * (bottom_data[i] <= 0)); 34 | } 35 | } 36 | } 37 | 38 | 39 | #ifdef CPU_ONLY 40 | STUB_GPU(ReLULayer); 41 | #endif 42 | 43 | INSTANTIATE_CLASS(ReLULayer); 44 | 45 | } // namespace caffe 46 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/sigmoid_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/sigmoid_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | inline Dtype sigmoid(Dtype x) { 10 | return 1. / (1. + exp(-x)); 11 | } 12 | 13 | template 14 | void SigmoidLayer::Forward_cpu(const vector*>& bottom, 15 | const vector*>& top) { 16 | const Dtype* bottom_data = bottom[0]->cpu_data(); 17 | Dtype* top_data = top[0]->mutable_cpu_data(); 18 | const int count = bottom[0]->count(); 19 | for (int i = 0; i < count; ++i) { 20 | top_data[i] = sigmoid(bottom_data[i]); 21 | } 22 | } 23 | 24 | template 25 | void SigmoidLayer::Backward_cpu(const vector*>& top, 26 | const vector& propagate_down, 27 | const vector*>& bottom) { 28 | if (propagate_down[0]) { 29 | const Dtype* top_data = top[0]->cpu_data(); 30 | const Dtype* top_diff = top[0]->cpu_diff(); 31 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 32 | const int count = bottom[0]->count(); 33 | for (int i = 0; i < count; ++i) { 34 | const Dtype sigmoid_x = top_data[i]; 35 | bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x); 36 | } 37 | } 38 | } 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(SigmoidLayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(SigmoidLayer); 45 | 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/silence_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Backward_cpu(const vector*>& top, 10 | const vector& propagate_down, const vector*>& bottom) { 11 | for (int i = 0; i < bottom.size(); ++i) { 12 | if (propagate_down[i]) { 13 | caffe_set(bottom[i]->count(), Dtype(0), 14 | bottom[i]->mutable_cpu_diff()); 15 | } 16 | } 17 | } 18 | 19 | #ifdef CPU_ONLY 20 | STUB_GPU(SilenceLayer); 21 | #endif 22 | 23 | INSTANTIATE_CLASS(SilenceLayer); 24 | REGISTER_LAYER_CLASS(Silence); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/silence_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | // Do nothing. 12 | } 13 | 14 | template 15 | void SilenceLayer::Backward_gpu(const vector*>& top, 16 | const vector& propagate_down, const vector*>& bottom) { 17 | for (int i = 0; i < bottom.size(); ++i) { 18 | if (propagate_down[i]) { 19 | caffe_gpu_set(bottom[i]->count(), Dtype(0), 20 | bottom[i]->mutable_gpu_diff()); 21 | } 22 | } 23 | } 24 | 25 | INSTANTIATE_LAYER_GPU_FUNCS(SilenceLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/split_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/split_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SplitLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | for (int i = 0; i < top.size(); ++i) { 12 | top[i]->ShareData(*bottom[0]); 13 | } 14 | } 15 | 16 | template 17 | void SplitLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | if (!propagate_down[0]) { return; } 20 | if (top.size() == 1) { 21 | caffe_copy(count_, top[0]->gpu_diff(), bottom[0]->mutable_gpu_diff()); 22 | return; 23 | } 24 | caffe_gpu_add(count_, top[0]->gpu_diff(), top[1]->gpu_diff(), 25 | bottom[0]->mutable_gpu_diff()); 26 | // Add remaining top blob diffs. 27 | for (int i = 2; i < top.size(); ++i) { 28 | const Dtype* top_diff = top[i]->gpu_diff(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | caffe_gpu_axpy(count_, Dtype(1.), top_diff, bottom_diff); 31 | } 32 | } 33 | 34 | 35 | INSTANTIATE_LAYER_GPU_FUNCS(SplitLayer); 36 | 37 | } // namespace caffe 38 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/tanh_layer.cpp: -------------------------------------------------------------------------------- 1 | // TanH neuron activation function layer. 2 | // Adapted from ReLU layer code written by Yangqing Jia 3 | 4 | #include 5 | 6 | #include "caffe/layers/tanh_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void TanHLayer::Forward_cpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->cpu_data(); 14 | Dtype* top_data = top[0]->mutable_cpu_data(); 15 | const int count = bottom[0]->count(); 16 | for (int i = 0; i < count; ++i) { 17 | top_data[i] = tanh(bottom_data[i]); 18 | } 19 | } 20 | 21 | template 22 | void TanHLayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* top_data = top[0]->cpu_data(); 27 | const Dtype* top_diff = top[0]->cpu_diff(); 28 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 29 | const int count = bottom[0]->count(); 30 | Dtype tanhx; 31 | for (int i = 0; i < count; ++i) { 32 | tanhx = top_data[i]; 33 | bottom_diff[i] = top_diff[i] * (1 - tanhx * tanhx); 34 | } 35 | } 36 | } 37 | 38 | #ifdef CPU_ONLY 39 | STUB_GPU(TanHLayer); 40 | #endif 41 | 42 | INSTANTIATE_CLASS(TanHLayer); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/threshold_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void ThresholdLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | NeuronLayer::LayerSetUp(bottom, top); 11 | threshold_ = this->layer_param_.threshold_param().threshold(); 12 | } 13 | 14 | template 15 | void ThresholdLayer::Forward_cpu(const vector*>& bottom, 16 | const vector*>& top) { 17 | const Dtype* bottom_data = bottom[0]->cpu_data(); 18 | Dtype* top_data = top[0]->mutable_cpu_data(); 19 | const int count = bottom[0]->count(); 20 | for (int i = 0; i < count; ++i) { 21 | top_data[i] = (bottom_data[i] > threshold_) ? Dtype(1) : Dtype(0); 22 | } 23 | } 24 | 25 | #ifdef CPU_ONLY 26 | STUB_GPU_FORWARD(ThresholdLayer, Forward); 27 | #endif 28 | 29 | INSTANTIATE_CLASS(ThresholdLayer); 30 | REGISTER_LAYER_CLASS(Threshold); 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/threshold_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | __global__ void ThresholdForward(const int n, const Dtype threshold, 9 | const Dtype* in, Dtype* out) { 10 | CUDA_KERNEL_LOOP(index, n) { 11 | out[index] = in[index] > threshold ? 1 : 0; 12 | } 13 | } 14 | 15 | template 16 | void ThresholdLayer::Forward_gpu(const vector*>& bottom, 17 | const vector*>& top) { 18 | const Dtype* bottom_data = bottom[0]->gpu_data(); 19 | Dtype* top_data = top[0]->mutable_gpu_data(); 20 | const int count = bottom[0]->count(); 21 | // NOLINT_NEXT_LINE(whitespace/operators) 22 | ThresholdForward<<>>( 23 | count, threshold_, bottom_data, top_data); 24 | CUDA_POST_KERNEL_CHECK; 25 | } 26 | 27 | 28 | INSTANTIATE_LAYER_GPU_FORWARD(ThresholdLayer); 29 | 30 | 31 | } // namespace caffe 32 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/adadelta_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaDeltaUpdate(int N, Dtype* g, Dtype* h, Dtype* h2, 8 | Dtype momentum, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = momentum * h[i] + (1-momentum) * gi * gi; 12 | gi = gi * sqrt((h2[i] + delta) / (hi + delta)); 13 | h2[i] = momentum * h2[i] + (1-momentum) * gi * gi; 14 | g[i] = local_rate * gi; 15 | } 16 | } 17 | template 18 | void adadelta_update_gpu(int N, Dtype* g, Dtype* h, Dtype* h2, Dtype momentum, 19 | Dtype delta, Dtype local_rate) { 20 | AdaDeltaUpdate // NOLINT_NEXT_LINE(whitespace/operators) 21 | <<>>( 22 | N, g, h, h2, momentum, delta, local_rate); 23 | CUDA_POST_KERNEL_CHECK; 24 | } 25 | template void adadelta_update_gpu(int , float*, float*, float*, 26 | float, float, float); 27 | template void adadelta_update_gpu(int, double*, double*, double*, 28 | double, double, double); 29 | 30 | } // namespace caffe 31 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/adagrad_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaGradUpdate(int N, Dtype* g, Dtype* h, Dtype delta, 8 | Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = h[i] + gi*gi; 12 | g[i] = local_rate * gi / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta, 17 | Dtype local_rate) { 18 | AdaGradUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void adagrad_update_gpu(int, float*, float*, float, float); 24 | template void adagrad_update_gpu(int, double*, double*, double, double); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/adam_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdamUpdate(int N, Dtype* g, Dtype* m, Dtype* v, 8 | Dtype beta1, Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float mi = m[i] = m[i]*beta1 + gi*(1-beta1); 12 | float vi = v[i] = v[i]*beta2 + gi*gi*(1-beta2); 13 | g[i] = corrected_local_rate * mi / (sqrt(vi) + eps_hat); 14 | } 15 | } 16 | template 17 | void adam_update_gpu(int N, Dtype* g, Dtype* m, Dtype* v, Dtype beta1, 18 | Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 19 | AdamUpdate // NOLINT_NEXT_LINE(whitespace/operators) 20 | <<>>( 21 | N, g, m, v, beta1, beta2, eps_hat, corrected_local_rate); 22 | CUDA_POST_KERNEL_CHECK; 23 | } 24 | template void adam_update_gpu(int, float*, float*, float*, 25 | float, float, float, float); 26 | template void adam_update_gpu(int, double*, double*, double*, 27 | double, double, double, double); 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/nesterov_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void NesterovUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float hi = h[i]; 11 | float hi_new = h[i] = momentum * hi + local_rate * g[i]; 12 | g[i] = (1+momentum) * hi_new - momentum * hi; 13 | } 14 | } 15 | template 16 | void nesterov_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 17 | Dtype local_rate) { 18 | NesterovUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, momentum, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void nesterov_update_gpu(int, float*, float*, float, float); 24 | template void nesterov_update_gpu(int, double*, double*, double, 25 | double); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/rmsprop_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void RMSPropUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype rms_decay, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = rms_decay*h[i] + (1-rms_decay)*gi*gi; 12 | g[i] = local_rate * g[i] / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void rmsprop_update_gpu(int N, Dtype* g, Dtype* h, Dtype rms_decay, 17 | Dtype delta, Dtype local_rate) { 18 | RMSPropUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, rms_decay, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void rmsprop_update_gpu(int, float*, float*, float, float, 24 | float); 25 | template void rmsprop_update_gpu(int, double*, double*, double, double, 26 | double); 27 | 28 | } // namespace caffe 29 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/sgd_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void SGDUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | g[i] = h[i] = momentum*h[i] + local_rate*g[i]; 11 | } 12 | } 13 | template 14 | void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 15 | Dtype local_rate) { 16 | SGDUpdate // NOLINT_NEXT_LINE(whitespace/operators) 17 | <<>>( 18 | N, g, h, momentum, local_rate); 19 | CUDA_POST_KERNEL_CHECK; 20 | } 21 | template void sgd_update_gpu(int, float*, float*, float, float); 22 | template void sgd_update_gpu(int, double*, double*, double, double); 23 | 24 | } // namespace caffe 25 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # The option allows to include in build only selected test files and exclude all others 2 | # Usage example: 3 | # cmake -DBUILD_only_tests="common,net,blob,im2col_kernel" 4 | set(BUILD_only_tests "" CACHE STRING "Blank or comma-separated list of test files to build without 'test_' prefix and extention") 5 | caffe_leave_only_selected_tests(test_srcs ${BUILD_only_tests}) 6 | caffe_leave_only_selected_tests(test_cuda ${BUILD_only_tests}) 7 | 8 | # For 'make runtest' target we don't need to embed test data paths to 9 | # source files, because test target is executed in source directory 10 | # That's why the lines below are commented. TODO: remove them 11 | 12 | # definition needed to include CMake generated files 13 | #add_definitions(-DCMAKE_BUILD) 14 | 15 | # generates test_data/sample_data_list.txt.gen.cmake 16 | #caffe_configure_testdatafile(test_data/sample_data_list.txt) 17 | 18 | set(the_target test.testbin) 19 | set(test_args --gtest_shuffle) 20 | 21 | if(HAVE_CUDA) 22 | caffe_cuda_compile(test_cuda_objs ${test_cuda}) 23 | list(APPEND test_srcs ${test_cuda_objs} ${test_cuda}) 24 | else() 25 | list(APPEND test_args --gtest_filter="-*GPU*") 26 | endif() 27 | 28 | # ---[ Adding test target 29 | add_executable(${the_target} EXCLUDE_FROM_ALL ${test_srcs}) 30 | target_link_libraries(${the_target} gtest ${Caffe_LINK}) 31 | caffe_default_properties(${the_target}) 32 | caffe_set_runtime_directory(${the_target} "${PROJECT_BINARY_DIR}/test") 33 | 34 | # ---[ Adding runtest 35 | add_custom_target(runtest COMMAND ${the_target} ${test_args} 36 | WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}) 37 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_caffe_main.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | #include "caffe/test/test_caffe_main.hpp" 3 | 4 | namespace caffe { 5 | #ifndef CPU_ONLY 6 | cudaDeviceProp CAFFE_TEST_CUDA_PROP; 7 | #endif 8 | } 9 | 10 | #ifndef CPU_ONLY 11 | using caffe::CAFFE_TEST_CUDA_PROP; 12 | #endif 13 | 14 | int main(int argc, char** argv) { 15 | ::testing::InitGoogleTest(&argc, argv); 16 | caffe::GlobalInit(&argc, &argv); 17 | #ifndef CPU_ONLY 18 | // Before starting testing, let's first print out a few cuda defice info. 19 | int device; 20 | cudaGetDeviceCount(&device); 21 | cout << "Cuda number of devices: " << device << endl; 22 | if (argc > 1) { 23 | // Use the given device 24 | device = atoi(argv[1]); 25 | cudaSetDevice(device); 26 | cout << "Setting to use device " << device << endl; 27 | } else if (CUDA_TEST_DEVICE >= 0) { 28 | // Use the device assigned in build configuration; but with a lower priority 29 | device = CUDA_TEST_DEVICE; 30 | } 31 | cudaGetDevice(&device); 32 | cout << "Current device id: " << device << endl; 33 | cudaGetDeviceProperties(&CAFFE_TEST_CUDA_PROP, device); 34 | cout << "Current device name: " << CAFFE_TEST_CUDA_PROP.name << endl; 35 | #endif 36 | // invoke the test. 37 | return RUN_ALL_TESTS(); 38 | } 39 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/sample_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/src/caffe/test/test_data/sample_data.h5 -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/sample_data_2_gzip.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/src/caffe/test/test_data/sample_data_2_gzip.h5 -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/sample_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/sample_data.h5 2 | src/caffe/test/test_data/sample_data_2_gzip.h5 3 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/solver_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/caffe/src/caffe/test/test_data/solver_data.h5 -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/solver_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/solver_data.h5 2 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_internal_thread.cpp: -------------------------------------------------------------------------------- 1 | #include "glog/logging.h" 2 | #include "gtest/gtest.h" 3 | 4 | #include "caffe/internal_thread.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | #include "caffe/test/test_caffe_main.hpp" 8 | 9 | namespace caffe { 10 | 11 | 12 | class InternalThreadTest : public ::testing::Test {}; 13 | 14 | TEST_F(InternalThreadTest, TestStartAndExit) { 15 | InternalThread thread; 16 | EXPECT_FALSE(thread.is_started()); 17 | thread.StartInternalThread(); 18 | EXPECT_TRUE(thread.is_started()); 19 | thread.StopInternalThread(); 20 | EXPECT_FALSE(thread.is_started()); 21 | } 22 | 23 | class TestThreadA : public InternalThread { 24 | void InternalThreadEntry() { 25 | EXPECT_EQ(4244559767, caffe_rng_rand()); 26 | } 27 | }; 28 | 29 | class TestThreadB : public InternalThread { 30 | void InternalThreadEntry() { 31 | EXPECT_EQ(1726478280, caffe_rng_rand()); 32 | } 33 | }; 34 | 35 | TEST_F(InternalThreadTest, TestRandomSeed) { 36 | TestThreadA t1; 37 | Caffe::set_random_seed(9658361); 38 | t1.StartInternalThread(); 39 | t1.StopInternalThread(); 40 | 41 | TestThreadA t2; 42 | Caffe::set_random_seed(9658361); 43 | t2.StartInternalThread(); 44 | t2.StopInternalThread(); 45 | 46 | TestThreadB t3; 47 | Caffe::set_random_seed(3435563); 48 | t3.StartInternalThread(); 49 | t3.StopInternalThread(); 50 | } 51 | 52 | } // namespace caffe 53 | 54 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_layer_factory.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "boost/scoped_ptr.hpp" 5 | #include "gtest/gtest.h" 6 | 7 | #include "caffe/common.hpp" 8 | #include "caffe/layer.hpp" 9 | #include "caffe/layer_factory.hpp" 10 | #include "caffe/util/db.hpp" 11 | #include "caffe/util/io.hpp" 12 | 13 | #include "caffe/test/test_caffe_main.hpp" 14 | 15 | namespace caffe { 16 | 17 | template 18 | class LayerFactoryTest : public MultiDeviceTest {}; 19 | 20 | TYPED_TEST_CASE(LayerFactoryTest, TestDtypesAndDevices); 21 | 22 | TYPED_TEST(LayerFactoryTest, TestCreateLayer) { 23 | typedef typename TypeParam::Dtype Dtype; 24 | typename LayerRegistry::CreatorRegistry& registry = 25 | LayerRegistry::Registry(); 26 | shared_ptr > layer; 27 | for (typename LayerRegistry::CreatorRegistry::iterator iter = 28 | registry.begin(); iter != registry.end(); ++iter) { 29 | // Special case: PythonLayer is checked by pytest 30 | if (iter->first == "Python") { continue; } 31 | LayerParameter layer_param; 32 | // Data layers expect a DB 33 | if (iter->first == "Data") { 34 | #ifdef USE_LEVELDB 35 | string tmp; 36 | MakeTempDir(&tmp); 37 | boost::scoped_ptr db(db::GetDB(DataParameter_DB_LEVELDB)); 38 | db->Open(tmp, db::NEW); 39 | db->Close(); 40 | layer_param.mutable_data_param()->set_source(tmp); 41 | #else 42 | continue; 43 | #endif // USE_LEVELDB 44 | } 45 | layer_param.set_type(iter->first); 46 | layer = LayerRegistry::CreateLayer(layer_param); 47 | EXPECT_EQ(iter->first, layer->type()); 48 | } 49 | } 50 | 51 | } // namespace caffe 52 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_protobuf.cpp: -------------------------------------------------------------------------------- 1 | // This is simply a script that tries serializing protocol buffer in text 2 | // format. Nothing special here and no actual code is being tested. 3 | #include 4 | 5 | #include "google/protobuf/text_format.h" 6 | #include "gtest/gtest.h" 7 | 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/test/test_caffe_main.hpp" 11 | 12 | namespace caffe { 13 | 14 | class ProtoTest : public ::testing::Test {}; 15 | 16 | TEST_F(ProtoTest, TestSerialization) { 17 | LayerParameter param; 18 | param.set_name("test"); 19 | param.set_type("Test"); 20 | std::cout << "Printing in binary format." << std::endl; 21 | std::cout << param.SerializeAsString() << std::endl; 22 | std::cout << "Printing in text format." << std::endl; 23 | std::string str; 24 | google::protobuf::TextFormat::PrintToString(param, &str); 25 | std::cout << str << std::endl; 26 | EXPECT_TRUE(true); 27 | } 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_solver_factory.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "boost/scoped_ptr.hpp" 5 | #include "google/protobuf/text_format.h" 6 | #include "gtest/gtest.h" 7 | 8 | #include "caffe/common.hpp" 9 | #include "caffe/solver.hpp" 10 | #include "caffe/solver_factory.hpp" 11 | 12 | #include "caffe/test/test_caffe_main.hpp" 13 | 14 | namespace caffe { 15 | 16 | template 17 | class SolverFactoryTest : public MultiDeviceTest { 18 | protected: 19 | SolverParameter simple_solver_param() { 20 | const string solver_proto = 21 | "train_net_param { " 22 | " layer { " 23 | " name: 'data' type: 'DummyData' top: 'data' " 24 | " dummy_data_param { shape { dim: 1 } } " 25 | " } " 26 | "} "; 27 | SolverParameter solver_param; 28 | CHECK(google::protobuf::TextFormat::ParseFromString( 29 | solver_proto, &solver_param)); 30 | return solver_param; 31 | } 32 | }; 33 | 34 | TYPED_TEST_CASE(SolverFactoryTest, TestDtypesAndDevices); 35 | 36 | TYPED_TEST(SolverFactoryTest, TestCreateSolver) { 37 | typedef typename TypeParam::Dtype Dtype; 38 | typename SolverRegistry::CreatorRegistry& registry = 39 | SolverRegistry::Registry(); 40 | shared_ptr > solver; 41 | SolverParameter solver_param = this->simple_solver_param(); 42 | for (typename SolverRegistry::CreatorRegistry::iterator iter = 43 | registry.begin(); iter != registry.end(); ++iter) { 44 | solver_param.set_type(iter->first); 45 | solver.reset(SolverRegistry::CreateSolver(solver_param)); 46 | EXPECT_EQ(iter->first, solver->type()); 47 | } 48 | } 49 | 50 | } // namespace caffe 51 | -------------------------------------------------------------------------------- /caffe/src/caffe/util/cudnn.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include "caffe/util/cudnn.hpp" 3 | 4 | namespace caffe { 5 | namespace cudnn { 6 | 7 | float dataType::oneval = 1.0; 8 | float dataType::zeroval = 0.0; 9 | const void* dataType::one = 10 | static_cast(&dataType::oneval); 11 | const void* dataType::zero = 12 | static_cast(&dataType::zeroval); 13 | 14 | double dataType::oneval = 1.0; 15 | double dataType::zeroval = 0.0; 16 | const void* dataType::one = 17 | static_cast(&dataType::oneval); 18 | const void* dataType::zero = 19 | static_cast(&dataType::zeroval); 20 | 21 | } // namespace cudnn 22 | } // namespace caffe 23 | #endif 24 | -------------------------------------------------------------------------------- /caffe/src/caffe/util/db.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/util/db.hpp" 2 | #include "caffe/util/db_leveldb.hpp" 3 | #include "caffe/util/db_lmdb.hpp" 4 | 5 | #include 6 | 7 | namespace caffe { namespace db { 8 | 9 | DB* GetDB(DataParameter::DB backend) { 10 | switch (backend) { 11 | #ifdef USE_LEVELDB 12 | case DataParameter_DB_LEVELDB: 13 | return new LevelDB(); 14 | #endif // USE_LEVELDB 15 | #ifdef USE_LMDB 16 | case DataParameter_DB_LMDB: 17 | return new LMDB(); 18 | #endif // USE_LMDB 19 | default: 20 | LOG(FATAL) << "Unknown database backend"; 21 | return NULL; 22 | } 23 | } 24 | 25 | DB* GetDB(const string& backend) { 26 | #ifdef USE_LEVELDB 27 | if (backend == "leveldb") { 28 | return new LevelDB(); 29 | } 30 | #endif // USE_LEVELDB 31 | #ifdef USE_LMDB 32 | if (backend == "lmdb") { 33 | return new LMDB(); 34 | } 35 | #endif // USE_LMDB 36 | LOG(FATAL) << "Unknown database backend"; 37 | return NULL; 38 | } 39 | 40 | } // namespace db 41 | } // namespace caffe 42 | -------------------------------------------------------------------------------- /caffe/src/caffe/util/db_leveldb.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_LEVELDB 2 | #include "caffe/util/db_leveldb.hpp" 3 | 4 | #include 5 | 6 | namespace caffe { namespace db { 7 | 8 | void LevelDB::Open(const string& source, Mode mode) { 9 | leveldb::Options options; 10 | options.block_size = 65536; 11 | options.write_buffer_size = 268435456; 12 | options.max_open_files = 100; 13 | options.error_if_exists = mode == NEW; 14 | options.create_if_missing = mode != READ; 15 | leveldb::Status status = leveldb::DB::Open(options, source, &db_); 16 | CHECK(status.ok()) << "Failed to open leveldb " << source 17 | << std::endl << status.ToString(); 18 | LOG(INFO) << "Opened leveldb " << source; 19 | } 20 | 21 | } // namespace db 22 | } // namespace caffe 23 | #endif // USE_LEVELDB 24 | -------------------------------------------------------------------------------- /caffe/src/gtest/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | add_library(gtest STATIC EXCLUDE_FROM_ALL gtest.h gtest-all.cpp) 2 | caffe_default_properties(gtest) 3 | 4 | #add_library(gtest_main gtest_main.cc) 5 | #target_link_libraries(gtest_main gtest) 6 | -------------------------------------------------------------------------------- /caffe/tools/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # Collect source files 2 | file(GLOB_RECURSE srcs ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) 3 | 4 | # Build each source file independently 5 | foreach(source ${srcs}) 6 | get_filename_component(name ${source} NAME_WE) 7 | 8 | # caffe target already exits 9 | if(name MATCHES "caffe") 10 | set(name ${name}.bin) 11 | endif() 12 | 13 | # target 14 | add_executable(${name} ${source}) 15 | target_link_libraries(${name} ${Caffe_LINK}) 16 | caffe_default_properties(${name}) 17 | 18 | # set back RUNTIME_OUTPUT_DIRECTORY 19 | caffe_set_runtime_directory(${name} "${PROJECT_BINARY_DIR}/tools") 20 | caffe_set_solution_folder(${name} tools) 21 | 22 | # restore output name without suffix 23 | if(name MATCHES "caffe.bin") 24 | set_target_properties(${name} PROPERTIES OUTPUT_NAME caffe) 25 | endif() 26 | 27 | # Install 28 | install(TARGETS ${name} DESTINATION bin) 29 | endforeach(source) 30 | -------------------------------------------------------------------------------- /caffe/tools/device_query.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/common.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe device_query " 5 | "[--device_id=0] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/extra/launch_resize_and_crop_images.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | #### https://github.com/Yangqing/mincepie/wiki/Launch-Your-Mapreducer 3 | 4 | # If you encounter error that the address already in use, kill the process. 5 | # 11235 is the port of server process 6 | # https://github.com/Yangqing/mincepie/blob/master/mincepie/mince.py 7 | # sudo netstat -ap | grep 11235 8 | # The last column of the output is PID/Program name 9 | # kill -9 PID 10 | # Second solution: 11 | # nmap localhost 12 | # fuser -k 11235/tcp 13 | # Or just wait a few seconds. 14 | 15 | ## Launch your Mapreduce locally 16 | # num_clients: number of processes 17 | # image_lib: OpenCV or PIL, case insensitive. The default value is the faster OpenCV. 18 | # input: the file containing one image path relative to input_folder each line 19 | # input_folder: where are the original images 20 | # output_folder: where to save the resized and cropped images 21 | ./resize_and_crop_images.py --num_clients=8 --image_lib=opencv --input=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images.txt --input_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train/ --output_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train_resized/ 22 | 23 | ## Launch your Mapreduce with MPI 24 | # mpirun -n 8 --launch=mpi resize_and_crop_images.py --image_lib=opencv --input=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images.txt --input_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train/ --output_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train_resized/ 25 | -------------------------------------------------------------------------------- /caffe/tools/finetune_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... " 5 | "[--weights=...] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/net_speed_benchmark.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe time --model=... " 5 | "[--iterations=50] [--gpu] [--device_id=0]"; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/test_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe test --model=... " 5 | "--weights=... instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/train_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... " 5 | "[--snapshot=...] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/train.sh: -------------------------------------------------------------------------------- 1 | WEIGHTS=/home/caozhangjie/run-czj/icml-hash/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 2 | 3 | ./build/tools/caffe train \ 4 | -solver ./models/san/office/solver.prototxt\ 5 | -weights $WEIGHTS\ 6 | -gpu 6 7 | -------------------------------------------------------------------------------- /pytorch/src/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thuml/SAN/91cd09200f35688516982bd8d5e1512e0b24720d/pytorch/src/__init__.py -------------------------------------------------------------------------------- /pytorch/src/loss.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import torch 3 | import torch.nn as nn 4 | from torch.autograd import Variable 5 | 6 | def EntropyLoss(input_): 7 | mask = input_.ge(0.000001) 8 | mask_out = torch.masked_select(input_, mask) 9 | entropy = -(torch.sum(mask_out * torch.log(mask_out))) 10 | return entropy / float(input_.size(0)) 11 | 12 | def SAN(input_list, ad_net_list, grl_layer_list, class_weight, use_gpu=True): 13 | loss = 0 14 | outer_product_out = torch.bmm(input_list[0].unsqueeze(2), input_list[1].unsqueeze(1)) 15 | batch_size = input_list[0].size(0) // 2 16 | dc_target = Variable(torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float()) 17 | if use_gpu: 18 | dc_target = dc_target.cuda() 19 | for i in range(len(ad_net_list)): 20 | ad_out = ad_net_list[i](grl_layer_list[i](outer_product_out.narrow(2, i, 1).squeeze(2))) 21 | loss += nn.BCELoss()(ad_out.view(-1), dc_target.view(-1)) 22 | return loss 23 | -------------------------------------------------------------------------------- /pytorch/src/lr_schedule.py: -------------------------------------------------------------------------------- 1 | def inv_lr_scheduler(param_lr, optimizer, iter_num, gamma, power, init_lr=0.001): 2 | """Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs.""" 3 | lr = init_lr * (1 + gamma * iter_num) ** (-power) 4 | 5 | i=0 6 | for param_group in optimizer.param_groups: 7 | param_group['lr'] = lr * param_lr[i] 8 | i+=1 9 | 10 | return optimizer 11 | 12 | 13 | schedule_dict = {"inv":inv_lr_scheduler} 14 | --------------------------------------------------------------------------------