├── .DS_Store ├── README.md ├── arch.png ├── convert_fairseq_to_huggingface.py ├── docs ├── Makefile ├── _static │ └── theme_overrides.css ├── command_line_tools.rst ├── conf.py ├── criterions.rst ├── data.rst ├── docutils.conf ├── getting_started.rst ├── index.rst ├── lr_scheduler.rst ├── make.bat ├── models.rst ├── modules.rst ├── optim.rst ├── overview.rst ├── requirements.txt ├── tasks.rst ├── tutorial_classifying_names.rst └── tutorial_simple_lstm.rst ├── eval_lm.py ├── examples ├── .DS_Store ├── .gitignore ├── __init__.py └── roberta │ ├── .DS_Store │ ├── commonsense_qa │ ├── README.md │ ├── __init__.py │ ├── commonsense_qa_task.py │ └── download_cqa_data.sh │ ├── multiprocessing_bpe_encoder.py │ ├── train_base_to_base_plus.sh │ └── wsc │ ├── README.md │ ├── __init__.py │ ├── wsc_criterion.py │ ├── wsc_task.py │ └── wsc_utils.py ├── fairseq.egg-info ├── PKG-INFO ├── SOURCES.txt ├── dependency_links.txt ├── entry_points.txt ├── not-zip-safe ├── requires.txt └── top_level.txt ├── fairseq ├── __init__.py ├── __pycache__ │ ├── __init__.cpython-37.pyc │ ├── binarizer.cpython-37.pyc │ ├── checkpoint_utils.cpython-37.pyc │ ├── distributed_utils.cpython-37.pyc │ ├── file_utils.cpython-37.pyc │ ├── hub_utils.cpython-37.pyc │ ├── iterative_refinement_generator.cpython-37.pyc │ ├── legacy_distributed_data_parallel.cpython-37.pyc │ ├── meters.cpython-37.pyc │ ├── options.cpython-37.pyc │ ├── pdb.cpython-37.pyc │ ├── progress_bar.cpython-37.pyc │ ├── registry.cpython-37.pyc │ ├── search.cpython-37.pyc │ ├── sequence_generator.cpython-37.pyc │ ├── tokenizer.cpython-37.pyc │ ├── trainer.cpython-37.pyc │ └── utils.cpython-37.pyc ├── binarizer.py ├── bleu.py ├── checkpoint_utils.py ├── clib │ ├── libbleu │ │ ├── libbleu.cpp │ │ └── module.cpp │ └── libnat │ │ └── edit_dist.cpp ├── criterions │ ├── __init__.py │ ├── __pycache__ │ │ ├── __init__.cpython-37.pyc │ │ ├── adaptive_loss.cpython-37.pyc │ │ ├── binary_cross_entropy.cpython-37.pyc │ │ ├── composite_loss.cpython-37.pyc │ │ ├── cross_entropy.cpython-37.pyc │ │ ├── fairseq_criterion.cpython-37.pyc │ │ ├── label_smoothed_cross_entropy.cpython-37.pyc │ │ ├── label_smoothed_cross_entropy_with_alignment.cpython-37.pyc │ │ ├── legacy_masked_lm.cpython-37.pyc │ │ ├── masked_lm.cpython-37.pyc │ │ ├── masked_lm_distil.cpython-37.pyc │ │ ├── masked_lm_distil_H_half.cpython-37.pyc │ │ ├── nat_loss.cpython-37.pyc │ │ ├── sentence_prediction.cpython-37.pyc │ │ └── sentence_ranking.cpython-37.pyc │ ├── adaptive_loss.py │ ├── binary_cross_entropy.py │ ├── composite_loss.py │ ├── cross_entropy.py │ ├── fairseq_criterion.py │ ├── label_smoothed_cross_entropy.py │ ├── label_smoothed_cross_entropy_with_alignment.py │ ├── legacy_masked_lm.py │ ├── masked_lm.py │ ├── masked_lm_distil.py │ ├── masked_lm_distil_H_half.py │ ├── nat_loss.py │ ├── sentence_prediction.py │ └── sentence_ranking.py ├── data │ ├── __init__.py │ ├── __pycache__ │ │ ├── __init__.cpython-37.pyc │ │ ├── append_token_dataset.cpython-37.pyc │ │ ├── backtranslation_dataset.cpython-37.pyc │ │ ├── base_wrapper_dataset.cpython-37.pyc │ │ ├── colorize_dataset.cpython-37.pyc │ │ ├── concat_dataset.cpython-37.pyc │ │ ├── concat_sentences_dataset.cpython-37.pyc │ │ ├── data_utils.cpython-37.pyc │ │ ├── denoising_dataset.cpython-37.pyc │ │ ├── dictionary.cpython-37.pyc │ │ ├── fairseq_dataset.cpython-37.pyc │ │ ├── id_dataset.cpython-37.pyc │ │ ├── indexed_dataset.cpython-37.pyc │ │ ├── iterators.cpython-37.pyc │ │ ├── language_pair_dataset.cpython-37.pyc │ │ ├── list_dataset.cpython-37.pyc │ │ ├── lm_context_window_dataset.cpython-37.pyc │ │ ├── lru_cache_dataset.cpython-37.pyc │ │ ├── mask_tokens_dataset.cpython-37.pyc │ │ ├── monolingual_dataset.cpython-37.pyc │ │ ├── multi_corpus_sampled_dataset.cpython-37.pyc │ │ ├── nested_dictionary_dataset.cpython-37.pyc │ │ ├── noising.cpython-37.pyc │ │ ├── num_samples_dataset.cpython-37.pyc │ │ ├── numel_dataset.cpython-37.pyc │ │ ├── offset_tokens_dataset.cpython-37.pyc │ │ ├── pad_dataset.cpython-37.pyc │ │ ├── plasma_utils.cpython-37.pyc │ │ ├── prepend_dataset.cpython-37.pyc │ │ ├── prepend_token_dataset.cpython-37.pyc │ │ ├── raw_label_dataset.cpython-37.pyc │ │ ├── replace_dataset.cpython-37.pyc │ │ ├── resampling_dataset.cpython-37.pyc │ │ ├── roll_dataset.cpython-37.pyc │ │ ├── round_robin_zip_datasets.cpython-37.pyc │ │ ├── sharded_dataset.cpython-37.pyc │ │ ├── sort_dataset.cpython-37.pyc │ │ ├── strip_token_dataset.cpython-37.pyc │ │ ├── subsample_dataset.cpython-37.pyc │ │ ├── token_block_dataset.cpython-37.pyc │ │ ├── transform_eos_dataset.cpython-37.pyc │ │ ├── transform_eos_lang_pair_dataset.cpython-37.pyc │ │ └── truncate_dataset.cpython-37.pyc │ ├── append_token_dataset.py │ ├── audio │ │ ├── __init__.py │ │ ├── __pycache__ │ │ │ ├── __init__.cpython-37.pyc │ │ │ └── raw_audio_dataset.cpython-37.pyc │ │ └── raw_audio_dataset.py │ ├── backtranslation_dataset.py │ ├── base_wrapper_dataset.py │ ├── colorize_dataset.py │ ├── concat_dataset.py │ ├── concat_sentences_dataset.py │ ├── data_utils.py │ ├── data_utils_fast.cpp │ ├── data_utils_fast.cpython-37m-x86_64-linux-gnu.so │ ├── data_utils_fast.pyx │ ├── denoising_dataset.py │ ├── dictionary.py │ ├── encoders │ │ ├── __init__.py │ │ ├── __pycache__ │ │ │ ├── __init__.cpython-37.pyc │ │ │ ├── fastbpe.cpython-37.pyc │ │ │ ├── gpt2_bpe.cpython-37.pyc │ │ │ ├── gpt2_bpe_utils.cpython-37.pyc │ │ │ ├── hf_bert_bpe.cpython-37.pyc │ │ │ ├── moses_tokenizer.cpython-37.pyc │ │ │ ├── nltk_tokenizer.cpython-37.pyc │ │ │ ├── sentencepiece_bpe.cpython-37.pyc │ │ │ ├── space_tokenizer.cpython-37.pyc │ │ │ ├── subword_nmt_bpe.cpython-37.pyc │ │ │ └── utils.cpython-37.pyc │ │ ├── fastbpe.py │ │ ├── gpt2_bpe.py │ │ ├── gpt2_bpe_utils.py │ │ ├── hf_bert_bpe.py │ │ ├── moses_tokenizer.py │ │ ├── nltk_tokenizer.py │ │ ├── sentencepiece_bpe.py │ │ ├── space_tokenizer.py │ │ ├── subword_nmt_bpe.py │ │ └── utils.py │ ├── fairseq_dataset.py │ ├── id_dataset.py │ ├── indexed_dataset.py │ ├── iterators.py │ ├── language_pair_dataset.py │ ├── legacy │ │ ├── __init__.py │ │ ├── __pycache__ │ │ │ ├── __init__.cpython-37.pyc │ │ │ ├── block_pair_dataset.cpython-37.pyc │ │ │ ├── masked_lm_dataset.cpython-37.pyc │ │ │ └── masked_lm_dictionary.cpython-37.pyc │ │ ├── block_pair_dataset.py │ │ ├── masked_lm_dataset.py │ │ └── masked_lm_dictionary.py │ ├── list_dataset.py │ ├── lm_context_window_dataset.py │ ├── lru_cache_dataset.py │ ├── mask_tokens_dataset.py │ ├── monolingual_dataset.py │ ├── multi_corpus_sampled_dataset.py │ ├── nested_dictionary_dataset.py │ ├── noising.py │ ├── num_samples_dataset.py │ ├── numel_dataset.py │ ├── offset_tokens_dataset.py │ ├── pad_dataset.py │ ├── plasma_utils.py │ ├── prepend_dataset.py │ ├── prepend_token_dataset.py │ ├── raw_label_dataset.py │ ├── replace_dataset.py │ ├── resampling_dataset.py │ ├── roll_dataset.py │ ├── round_robin_zip_datasets.py │ ├── sharded_dataset.py │ ├── sort_dataset.py │ ├── strip_token_dataset.py │ ├── subsample_dataset.py │ ├── token_block_dataset.py │ ├── token_block_utils_fast.cpp │ ├── token_block_utils_fast.cpython-37m-x86_64-linux-gnu.so │ ├── token_block_utils_fast.pyx │ ├── transform_eos_dataset.py │ ├── transform_eos_lang_pair_dataset.py │ └── truncate_dataset.py ├── distributed_utils.py ├── file_utils.py ├── hub_utils.py ├── iterative_refinement_generator.py ├── legacy_distributed_data_parallel.py ├── libbleu.cpython-37m-x86_64-linux-gnu.so ├── libnat.cpython-37m-x86_64-linux-gnu.so ├── meters.py ├── models │ ├── __init__.py │ ├── __pycache__ │ │ ├── __init__.cpython-37.pyc │ │ ├── cmlm_transformer.cpython-37.pyc │ │ ├── composite_encoder.cpython-37.pyc │ │ ├── distributed_fairseq_model.cpython-37.pyc │ │ ├── fairseq_decoder.cpython-37.pyc │ │ ├── fairseq_encoder.cpython-37.pyc │ │ ├── fairseq_incremental_decoder.cpython-37.pyc │ │ ├── fairseq_model.cpython-37.pyc │ │ ├── fconv.cpython-37.pyc │ │ ├── fconv_lm.cpython-37.pyc │ │ ├── fconv_self_att.cpython-37.pyc │ │ ├── insertion_transformer.cpython-37.pyc │ │ ├── iterative_nonautoregressive_transformer.cpython-37.pyc │ │ ├── levenshtein_transformer.cpython-37.pyc │ │ ├── lightconv.cpython-37.pyc │ │ ├── lightconv_lm.cpython-37.pyc │ │ ├── lstm.cpython-37.pyc │ │ ├── masked_lm.cpython-37.pyc │ │ ├── model_utils.cpython-37.pyc │ │ ├── multilingual_transformer.cpython-37.pyc │ │ ├── nonautoregressive_ensembles.cpython-37.pyc │ │ ├── nonautoregressive_transformer.cpython-37.pyc │ │ ├── transformer.cpython-37.pyc │ │ ├── transformer_from_pretrained_xlm.cpython-37.pyc │ │ ├── transformer_lm.cpython-37.pyc │ │ └── wav2vec.cpython-37.pyc │ ├── bart │ │ ├── __init__.py │ │ ├── __pycache__ │ │ │ ├── __init__.cpython-37.pyc │ │ │ ├── hub_interface.cpython-37.pyc │ │ │ └── model.cpython-37.pyc │ │ ├── hub_interface.py │ │ └── model.py │ ├── cmlm_transformer.py │ ├── composite_encoder.py │ ├── distributed_fairseq_model.py │ ├── fairseq_decoder.py │ ├── fairseq_encoder.py │ ├── fairseq_incremental_decoder.py │ ├── fairseq_model.py │ ├── fconv.py │ ├── fconv_lm.py │ ├── fconv_self_att.py │ ├── insertion_transformer.py │ ├── iterative_nonautoregressive_transformer.py │ ├── levenshtein_transformer.py │ ├── lightconv.py │ ├── lightconv_lm.py │ ├── lstm.py │ ├── masked_lm.py │ ├── model_utils.py │ ├── multilingual_transformer.py │ ├── nonautoregressive_ensembles.py │ ├── nonautoregressive_transformer.py │ ├── roberta │ │ ├── __init__.py │ │ ├── __pycache__ │ │ │ ├── __init__.cpython-37.pyc │ │ │ ├── hub_interface.cpython-37.pyc │ │ │ └── model.cpython-37.pyc │ │ ├── alignment_utils.py │ │ ├── hub_interface.py │ │ └── model.py │ ├── transformer.py │ ├── transformer_from_pretrained_xlm.py │ ├── transformer_lm.py │ └── wav2vec.py ├── modules │ ├── __init__.py │ ├── __pycache__ │ │ ├── __init__.cpython-37.pyc │ │ ├── adaptive_input.cpython-37.pyc │ │ ├── adaptive_softmax.cpython-37.pyc │ │ ├── beamable_mm.cpython-37.pyc │ │ ├── character_token_embedder.cpython-37.pyc │ │ ├── conv_tbc.cpython-37.pyc │ │ ├── downsampled_multihead_attention.cpython-37.pyc │ │ ├── dynamic_convolution.cpython-37.pyc │ │ ├── gelu.cpython-37.pyc │ │ ├── grad_multiply.cpython-37.pyc │ │ ├── highway.cpython-37.pyc │ │ ├── layer_norm.cpython-37.pyc │ │ ├── learned_positional_embedding.cpython-37.pyc │ │ ├── lightweight_convolution.cpython-37.pyc │ │ ├── linearized_convolution.cpython-37.pyc │ │ ├── logsumexp_moe.cpython-37.pyc │ │ ├── mean_pool_gating_network.cpython-37.pyc │ │ ├── multihead_attention.cpython-37.pyc │ │ ├── positional_embedding.cpython-37.pyc │ │ ├── scalar_bias.cpython-37.pyc │ │ ├── sinusoidal_positional_embedding.cpython-37.pyc │ │ ├── transformer_layer.cpython-37.pyc │ │ ├── transformer_sentence_encoder.cpython-37.pyc │ │ ├── transformer_sentence_encoder_layer.cpython-37.pyc │ │ ├── unfold.cpython-37.pyc │ │ └── vggblock.cpython-37.pyc │ ├── adaptive_input.py │ ├── adaptive_softmax.py │ ├── beamable_mm.py │ ├── character_token_embedder.py │ ├── conv_tbc.py │ ├── cuda_utils.cu │ ├── downsampled_multihead_attention.py │ ├── dynamic_convolution.py │ ├── dynamicconv_layer │ │ ├── __init__.py │ │ ├── cuda_function_gen.py │ │ ├── dynamicconv_cuda.cpp │ │ ├── dynamicconv_cuda.cuh │ │ ├── dynamicconv_cuda_kernel.cu │ │ ├── dynamicconv_layer.py │ │ ├── dynamiconv_cpu.cpp │ │ └── setup.py │ ├── gelu.py │ ├── grad_multiply.py │ ├── highway.py │ ├── layer_norm.py │ ├── learned_positional_embedding.py │ ├── lightconv_layer │ │ ├── __init__.py │ │ ├── cuda_function_gen.py │ │ ├── lightconv_cuda.cpp │ │ ├── lightconv_cuda.cuh │ │ ├── lightconv_cuda_kernel.cu │ │ ├── lightconv_layer.py │ │ └── setup.py │ ├── lightweight_convolution.py │ ├── linearized_convolution.py │ ├── logsumexp_moe.py │ ├── mean_pool_gating_network.py │ ├── multihead_attention.py │ ├── positional_embedding.py │ ├── scalar_bias.py │ ├── sinusoidal_positional_embedding.py │ ├── sparse_multihead_attention.py │ ├── sparse_transformer_sentence_encoder.py │ ├── sparse_transformer_sentence_encoder_layer.py │ ├── transformer_layer.py │ ├── transformer_sentence_encoder.py │ ├── transformer_sentence_encoder_layer.py │ ├── unfold.py │ └── vggblock.py ├── optim │ ├── __init__.py │ ├── __pycache__ │ │ ├── __init__.cpython-37.pyc │ │ ├── adadelta.cpython-37.pyc │ │ ├── adafactor.cpython-37.pyc │ │ ├── adagrad.cpython-37.pyc │ │ ├── adam.cpython-37.pyc │ │ ├── adamax.cpython-37.pyc │ │ ├── bmuf.cpython-37.pyc │ │ ├── fairseq_optimizer.cpython-37.pyc │ │ ├── fp16_optimizer.cpython-37.pyc │ │ ├── nag.cpython-37.pyc │ │ └── sgd.cpython-37.pyc │ ├── adadelta.py │ ├── adafactor.py │ ├── adagrad.py │ ├── adam.py │ ├── adamax.py │ ├── bmuf.py │ ├── fairseq_optimizer.py │ ├── fp16_optimizer.py │ ├── lr_scheduler │ │ ├── __init__.py │ │ ├── __pycache__ │ │ │ ├── __init__.cpython-37.pyc │ │ │ ├── cosine_lr_scheduler.cpython-37.pyc │ │ │ ├── fairseq_lr_scheduler.cpython-37.pyc │ │ │ ├── fixed_schedule.cpython-37.pyc │ │ │ ├── inverse_square_root_schedule.cpython-37.pyc │ │ │ ├── polynomial_decay_schedule.cpython-37.pyc │ │ │ ├── reduce_lr_on_plateau.cpython-37.pyc │ │ │ ├── tri_stage_lr_scheduler.cpython-37.pyc │ │ │ └── triangular_lr_scheduler.cpython-37.pyc │ │ ├── cosine_lr_scheduler.py │ │ ├── fairseq_lr_scheduler.py │ │ ├── fixed_schedule.py │ │ ├── inverse_square_root_schedule.py │ │ ├── polynomial_decay_schedule.py │ │ ├── reduce_lr_on_plateau.py │ │ ├── tri_stage_lr_scheduler.py │ │ └── triangular_lr_scheduler.py │ ├── nag.py │ └── sgd.py ├── options.py ├── pdb.py ├── progress_bar.py ├── registry.py ├── search.py ├── sequence_generator.py ├── sequence_scorer.py ├── tasks │ ├── __init__.py │ ├── __pycache__ │ │ ├── __init__.cpython-37.pyc │ │ ├── audio_pretraining.cpython-37.pyc │ │ ├── back_distil.cpython-37.pyc │ │ ├── cross_lingual_lm.cpython-37.pyc │ │ ├── denoising.cpython-37.pyc │ │ ├── fairseq_task.cpython-37.pyc │ │ ├── language_modeling.cpython-37.pyc │ │ ├── legacy_masked_lm.cpython-37.pyc │ │ ├── masked_lm.cpython-37.pyc │ │ ├── multilingual_masked_lm.cpython-37.pyc │ │ ├── multilingual_translation.cpython-37.pyc │ │ ├── semisupervised_translation.cpython-37.pyc │ │ ├── sentence_prediction.cpython-37.pyc │ │ ├── sentence_ranking.cpython-37.pyc │ │ ├── translation.cpython-37.pyc │ │ ├── translation_from_pretrained_xlm.cpython-37.pyc │ │ ├── translation_lev.cpython-37.pyc │ │ └── translation_moe.cpython-37.pyc │ ├── audio_pretraining.py │ ├── back_distil.py │ ├── cross_lingual_lm.py │ ├── denoising.py │ ├── fairseq_task.py │ ├── language_modeling.py │ ├── legacy_masked_lm.py │ ├── masked_lm.py │ ├── multilingual_masked_lm.py │ ├── multilingual_translation.py │ ├── semisupervised_translation.py │ ├── sentence_prediction.py │ ├── sentence_ranking.py │ ├── translation.py │ ├── translation_from_pretrained_xlm.py │ ├── translation_lev.py │ └── translation_moe.py ├── tokenizer.py ├── trainer.py └── utils.py ├── fairseq_cli ├── __init__.py ├── eval_lm.py ├── generate.py ├── interactive.py ├── preprocess.py ├── score.py ├── setup.py └── train.py ├── generate.py ├── hubconf.py ├── interactive.py ├── preprocess.py ├── score.py ├── scripts ├── __init__.py ├── average_checkpoints.py ├── build_sym_alignment.py ├── compare_namespaces.py ├── compound_split_bleu.sh ├── convert_dictionary.lua ├── convert_model.lua ├── count_docs.py ├── read_binarized.py ├── rm_pt.py ├── sacrebleu_pregen.sh ├── shard_docs.py ├── split_train_valid_docs.py ├── spm_decode.py ├── spm_encode.py ├── spm_train.py ├── wav2vec_featurize.py └── wav2vec_manifest.py ├── setup.py ├── tests ├── __init__.py ├── speech_recognition │ ├── __init__.py │ ├── asr_test_base.py │ ├── test_collaters.py │ ├── test_cross_entropy.py │ └── test_vggtransformer.py ├── test_average_checkpoints.py ├── test_backtranslation_dataset.py ├── test_binaries.py ├── test_bmuf.py ├── test_character_token_embedder.py ├── test_concat_dataset.py ├── test_convtbc.py ├── test_dictionary.py ├── test_iterators.py ├── test_label_smoothing.py ├── test_memory_efficient_fp16.py ├── test_multi_corpus_sampled_dataset.py ├── test_multihead_attention.py ├── test_noising.py ├── test_reproducibility.py ├── test_resampling_dataset.py ├── test_sequence_generator.py ├── test_sequence_scorer.py ├── test_sparse_multihead_attention.py ├── test_token_block_dataset.py ├── test_train.py ├── test_utils.py └── utils.py ├── train.py └── validate.py /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/.DS_Store -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Knowledge-Inheritance 2 | 3 | Source code for our NAACL 2022 paper: Knowledge Inheritance for Pre-trained Language Models. 4 | 5 | The trained model parameters (in [Fairseq](https://github.com/pytorch/fairseq) format) can be downloaded from [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/d/aab1777a161545038c01/). Please follow [ELLE](https://github.com/thunlp/ELLE) to convert the trained checkpoint from Fairseq format into Huggingface [transformers](https://github.com/huggingface/transformers) format. 6 | 7 | We also provide the pre-training data (already processed in fairseq format) we use in [google drive](https://drive.google.com/drive/folders/1l1cuN9JQUqZTM_1NFNtetfiXMKWqGTUo?usp=sharing), covering five pre-training domains (WB, News, Reviews, BIO and CS). We sample around 3400M tokens for each domain. 8 | 9 | We refer the downstream performance evaluation to the implementation of [Fairseq](https://github.com/pytorch/fairseq) (GLUE tasks) and [Don't Stop Pre-training](https://github.com/allenai/dont-stop-pretraining) (ACL-ARC / CHEMPROT). For ACL-ARC / CHEMPROT, please refer to [ELLE](https://github.com/thunlp/ELLE) for easy implementation. 10 | 11 | If you have any question, feel free to contact me by email (yujiaqin16@gmail.com). 12 | 13 | ## Installation 14 | 15 | ``` bash 16 | git clone https://github.com/pytorch/fairseq 17 | cd fairseq 18 | pip install --editable ./ 19 | 20 | git clone https://github.com/NVIDIA/apex 21 | cd apex 22 | pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \ 23 | --global-option="--deprecated_fused_adam" --global-option="--xentropy" \ 24 | --global-option="--fast_multihead_attn" ./ 25 | ``` 26 | 27 | ## Pre-training under KI 28 | 29 | ``` bash 30 | cd examples/roberta 31 | bash train_base_to_base_plus.sh 32 | ``` 33 | 34 | ## Downstream evaluation 35 | 36 | For downstream evaluation, (1) GLUE: we refer to the implementation of [Fairseq](https://github.com/pytorch/fairseq); (2) ACL-ARC & CHEMPROT: first use convert_fairseq_to_huggingface.py to convert the Fairseq format into Huggingface's [transformers](https://github.com/huggingface/transformers) format, then test the performance using the implementation of [Don't Stop Pre-training](https://github.com/allenai/dont-stop-pretraining). 37 | -------------------------------------------------------------------------------- /arch.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/arch.png -------------------------------------------------------------------------------- /docs/Makefile: -------------------------------------------------------------------------------- 1 | # Minimal makefile for Sphinx documentation 2 | # 3 | 4 | # You can set these variables from the command line. 5 | SPHINXOPTS = 6 | SPHINXBUILD = python -msphinx 7 | SPHINXPROJ = fairseq 8 | SOURCEDIR = . 9 | BUILDDIR = _build 10 | 11 | # Put it first so that "make" without argument is like "make help". 12 | help: 13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 14 | 15 | .PHONY: help Makefile 16 | 17 | # Catch-all target: route all unknown targets to Sphinx using the new 18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). 19 | %: Makefile 20 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) -------------------------------------------------------------------------------- /docs/_static/theme_overrides.css: -------------------------------------------------------------------------------- 1 | .wy-table-responsive table td kbd { 2 | white-space: nowrap; 3 | } 4 | .wy-table-responsive table td { 5 | white-space: normal !important; 6 | } 7 | .wy-table-responsive { 8 | overflow: visible !important; 9 | } 10 | -------------------------------------------------------------------------------- /docs/command_line_tools.rst: -------------------------------------------------------------------------------- 1 | .. _Command-line Tools: 2 | 3 | Command-line Tools 4 | ================== 5 | 6 | Fairseq provides several command-line tools for training and evaluating models: 7 | 8 | - :ref:`fairseq-preprocess`: Data pre-processing: build vocabularies and binarize training data 9 | - :ref:`fairseq-train`: Train a new model on one or multiple GPUs 10 | - :ref:`fairseq-generate`: Translate pre-processed data with a trained model 11 | - :ref:`fairseq-interactive`: Translate raw text with a trained model 12 | - :ref:`fairseq-score`: BLEU scoring of generated translations against reference translations 13 | - :ref:`fairseq-eval-lm`: Language model evaluation 14 | 15 | 16 | .. _fairseq-preprocess: 17 | 18 | fairseq-preprocess 19 | ~~~~~~~~~~~~~~~~~~ 20 | .. automodule:: preprocess 21 | 22 | .. argparse:: 23 | :module: fairseq.options 24 | :func: get_preprocessing_parser 25 | :prog: fairseq-preprocess 26 | 27 | 28 | .. _fairseq-train: 29 | 30 | fairseq-train 31 | ~~~~~~~~~~~~~ 32 | .. automodule:: train 33 | 34 | .. argparse:: 35 | :module: fairseq.options 36 | :func: get_training_parser 37 | :prog: fairseq-train 38 | 39 | 40 | .. _fairseq-generate: 41 | 42 | fairseq-generate 43 | ~~~~~~~~~~~~~~~~ 44 | .. automodule:: generate 45 | 46 | .. argparse:: 47 | :module: fairseq.options 48 | :func: get_generation_parser 49 | :prog: fairseq-generate 50 | 51 | 52 | .. _fairseq-interactive: 53 | 54 | fairseq-interactive 55 | ~~~~~~~~~~~~~~~~~~~ 56 | .. automodule:: interactive 57 | 58 | .. argparse:: 59 | :module: fairseq.options 60 | :func: get_interactive_generation_parser 61 | :prog: fairseq-interactive 62 | 63 | 64 | .. _fairseq-score: 65 | 66 | fairseq-score 67 | ~~~~~~~~~~~~~ 68 | .. automodule:: score 69 | 70 | .. argparse:: 71 | :module: fairseq_cli.score 72 | :func: get_parser 73 | :prog: fairseq-score 74 | 75 | 76 | .. _fairseq-eval-lm: 77 | 78 | fairseq-eval-lm 79 | ~~~~~~~~~~~~~~~ 80 | .. automodule:: eval_lm 81 | 82 | .. argparse:: 83 | :module: fairseq.options 84 | :func: get_eval_lm_parser 85 | :prog: fairseq-eval-lm 86 | -------------------------------------------------------------------------------- /docs/criterions.rst: -------------------------------------------------------------------------------- 1 | .. role:: hidden 2 | :class: hidden-section 3 | 4 | .. _Criterions: 5 | 6 | Criterions 7 | ========== 8 | 9 | Criterions compute the loss function given the model and batch, roughly:: 10 | 11 | loss = criterion(model, batch) 12 | 13 | .. automodule:: fairseq.criterions 14 | :members: 15 | 16 | .. autoclass:: fairseq.criterions.FairseqCriterion 17 | :members: 18 | :undoc-members: 19 | 20 | .. autoclass:: fairseq.criterions.adaptive_loss.AdaptiveLoss 21 | :members: 22 | :undoc-members: 23 | .. autoclass:: fairseq.criterions.composite_loss.CompositeLoss 24 | :members: 25 | :undoc-members: 26 | .. autoclass:: fairseq.criterions.cross_entropy.CrossEntropyCriterion 27 | :members: 28 | :undoc-members: 29 | .. autoclass:: fairseq.criterions.label_smoothed_cross_entropy.LabelSmoothedCrossEntropyCriterion 30 | :members: 31 | :undoc-members: 32 | -------------------------------------------------------------------------------- /docs/data.rst: -------------------------------------------------------------------------------- 1 | .. role:: hidden 2 | :class: hidden-section 3 | 4 | .. module:: fairseq.data 5 | 6 | Data Loading and Utilities 7 | ========================== 8 | 9 | .. _datasets: 10 | 11 | Datasets 12 | -------- 13 | 14 | **Datasets** define the data format and provide helpers for creating 15 | mini-batches. 16 | 17 | .. autoclass:: fairseq.data.FairseqDataset 18 | :members: 19 | .. autoclass:: fairseq.data.LanguagePairDataset 20 | :members: 21 | .. autoclass:: fairseq.data.MonolingualDataset 22 | :members: 23 | 24 | **Helper Datasets** 25 | 26 | These datasets wrap other :class:`fairseq.data.FairseqDataset` instances and 27 | provide additional functionality: 28 | 29 | .. autoclass:: fairseq.data.BacktranslationDataset 30 | :members: 31 | .. autoclass:: fairseq.data.ConcatDataset 32 | :members: 33 | .. autoclass:: fairseq.data.ResamplingDataset 34 | :members: 35 | .. autoclass:: fairseq.data.RoundRobinZipDatasets 36 | :members: 37 | .. autoclass:: fairseq.data.TransformEosDataset 38 | :members: 39 | 40 | 41 | Dictionary 42 | ---------- 43 | 44 | .. autoclass:: fairseq.data.Dictionary 45 | :members: 46 | 47 | 48 | Iterators 49 | --------- 50 | 51 | .. autoclass:: fairseq.data.CountingIterator 52 | :members: 53 | .. autoclass:: fairseq.data.EpochBatchIterator 54 | :members: 55 | .. autoclass:: fairseq.data.GroupedIterator 56 | :members: 57 | .. autoclass:: fairseq.data.ShardedIterator 58 | :members: 59 | -------------------------------------------------------------------------------- /docs/docutils.conf: -------------------------------------------------------------------------------- 1 | [writers] 2 | option-limit=0 3 | -------------------------------------------------------------------------------- /docs/index.rst: -------------------------------------------------------------------------------- 1 | .. fairseq documentation master file, created by 2 | sphinx-quickstart on Fri Aug 17 21:45:30 2018. 3 | You can adapt this file completely to your liking, but it should at least 4 | contain the root `toctree` directive. 5 | 6 | :github_url: https://github.com/pytorch/fairseq 7 | 8 | 9 | fairseq documentation 10 | ===================== 11 | 12 | Fairseq is a sequence modeling toolkit written in `PyTorch 13 | `_ that allows researchers and developers to 14 | train custom models for translation, summarization, language modeling and other 15 | text generation tasks. 16 | 17 | .. toctree:: 18 | :maxdepth: 1 19 | :caption: Getting Started 20 | 21 | getting_started 22 | command_line_tools 23 | 24 | .. toctree:: 25 | :maxdepth: 1 26 | :caption: Extending Fairseq 27 | 28 | overview 29 | tutorial_simple_lstm 30 | tutorial_classifying_names 31 | 32 | .. toctree:: 33 | :maxdepth: 2 34 | :caption: Library Reference 35 | 36 | tasks 37 | models 38 | criterions 39 | optim 40 | lr_scheduler 41 | data 42 | modules 43 | 44 | 45 | Indices and tables 46 | ================== 47 | 48 | * :ref:`genindex` 49 | * :ref:`search` 50 | -------------------------------------------------------------------------------- /docs/lr_scheduler.rst: -------------------------------------------------------------------------------- 1 | .. role:: hidden 2 | :class: hidden-section 3 | 4 | .. _Learning Rate Schedulers: 5 | 6 | Learning Rate Schedulers 7 | ======================== 8 | 9 | Learning Rate Schedulers update the learning rate over the course of training. 10 | Learning rates can be updated after each update via :func:`step_update` or at 11 | epoch boundaries via :func:`step`. 12 | 13 | .. automodule:: fairseq.optim.lr_scheduler 14 | :members: 15 | 16 | .. autoclass:: fairseq.optim.lr_scheduler.FairseqLRScheduler 17 | :members: 18 | :undoc-members: 19 | 20 | .. autoclass:: fairseq.optim.lr_scheduler.cosine_lr_scheduler.CosineSchedule 21 | :members: 22 | :undoc-members: 23 | .. autoclass:: fairseq.optim.lr_scheduler.fixed_schedule.FixedSchedule 24 | :members: 25 | :undoc-members: 26 | .. autoclass:: fairseq.optim.lr_scheduler.inverse_square_root_schedule.InverseSquareRootSchedule 27 | :members: 28 | :undoc-members: 29 | .. autoclass:: fairseq.optim.lr_scheduler.reduce_lr_on_plateau.ReduceLROnPlateau 30 | :members: 31 | :undoc-members: 32 | .. autoclass:: fairseq.optim.lr_scheduler.triangular_lr_scheduler.TriangularSchedule 33 | :members: 34 | :undoc-members: 35 | -------------------------------------------------------------------------------- /docs/make.bat: -------------------------------------------------------------------------------- 1 | @ECHO OFF 2 | 3 | pushd %~dp0 4 | 5 | REM Command file for Sphinx documentation 6 | 7 | if "%SPHINXBUILD%" == "" ( 8 | set SPHINXBUILD=python -msphinx 9 | ) 10 | set SOURCEDIR=. 11 | set BUILDDIR=_build 12 | set SPHINXPROJ=fairseq 13 | 14 | if "%1" == "" goto help 15 | 16 | %SPHINXBUILD% >NUL 2>NUL 17 | if errorlevel 9009 ( 18 | echo. 19 | echo.The Sphinx module was not found. Make sure you have Sphinx installed, 20 | echo.then set the SPHINXBUILD environment variable to point to the full 21 | echo.path of the 'sphinx-build' executable. Alternatively you may add the 22 | echo.Sphinx directory to PATH. 23 | echo. 24 | echo.If you don't have Sphinx installed, grab it from 25 | echo.http://sphinx-doc.org/ 26 | exit /b 1 27 | ) 28 | 29 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% 30 | goto end 31 | 32 | :help 33 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% 34 | 35 | :end 36 | popd 37 | -------------------------------------------------------------------------------- /docs/modules.rst: -------------------------------------------------------------------------------- 1 | Modules 2 | ======= 3 | 4 | Fairseq provides several stand-alone :class:`torch.nn.Module` classes that may 5 | be helpful when implementing a new :class:`~fairseq.models.BaseFairseqModel`. 6 | 7 | .. automodule:: fairseq.modules 8 | :members: 9 | :undoc-members: 10 | -------------------------------------------------------------------------------- /docs/optim.rst: -------------------------------------------------------------------------------- 1 | .. role:: hidden 2 | :class: hidden-section 3 | 4 | .. _optimizers: 5 | 6 | Optimizers 7 | ========== 8 | 9 | Optimizers update the Model parameters based on the gradients. 10 | 11 | .. automodule:: fairseq.optim 12 | :members: 13 | 14 | .. autoclass:: fairseq.optim.FairseqOptimizer 15 | :members: 16 | :undoc-members: 17 | 18 | .. autoclass:: fairseq.optim.adadelta.Adadelta 19 | :members: 20 | :undoc-members: 21 | .. autoclass:: fairseq.optim.adagrad.Adagrad 22 | :members: 23 | :undoc-members: 24 | .. autoclass:: fairseq.optim.adafactor.FairseqAdafactor 25 | :members: 26 | :undoc-members: 27 | .. autoclass:: fairseq.optim.adam.FairseqAdam 28 | :members: 29 | :undoc-members: 30 | .. autoclass:: fairseq.optim.fp16_optimizer.FP16Optimizer 31 | :members: 32 | :undoc-members: 33 | .. autoclass:: fairseq.optim.nag.FairseqNAG 34 | :members: 35 | :undoc-members: 36 | .. autoclass:: fairseq.optim.sgd.SGD 37 | :members: 38 | :undoc-members: 39 | -------------------------------------------------------------------------------- /docs/requirements.txt: -------------------------------------------------------------------------------- 1 | sphinx<2.0 2 | sphinx-argparse 3 | -------------------------------------------------------------------------------- /docs/tasks.rst: -------------------------------------------------------------------------------- 1 | .. role:: hidden 2 | :class: hidden-section 3 | 4 | .. module:: fairseq.tasks 5 | 6 | .. _Tasks: 7 | 8 | Tasks 9 | ===== 10 | 11 | Tasks store dictionaries and provide helpers for loading/iterating over 12 | Datasets, initializing the Model/Criterion and calculating the loss. 13 | 14 | Tasks can be selected via the ``--task`` command-line argument. Once selected, a 15 | task may expose additional command-line arguments for further configuration. 16 | 17 | Example usage:: 18 | 19 | # setup the task (e.g., load dictionaries) 20 | task = fairseq.tasks.setup_task(args) 21 | 22 | # build model and criterion 23 | model = task.build_model(args) 24 | criterion = task.build_criterion(args) 25 | 26 | # load datasets 27 | task.load_dataset('train') 28 | task.load_dataset('valid') 29 | 30 | # iterate over mini-batches of data 31 | batch_itr = task.get_batch_iterator( 32 | task.dataset('train'), max_tokens=4096, 33 | ) 34 | for batch in batch_itr: 35 | # compute the loss 36 | loss, sample_size, logging_output = task.get_loss( 37 | model, criterion, batch, 38 | ) 39 | loss.backward() 40 | 41 | 42 | Translation 43 | ----------- 44 | 45 | .. autoclass:: fairseq.tasks.translation.TranslationTask 46 | 47 | .. _language modeling: 48 | 49 | Language Modeling 50 | ----------------- 51 | 52 | .. autoclass:: fairseq.tasks.language_modeling.LanguageModelingTask 53 | 54 | 55 | Adding new tasks 56 | ---------------- 57 | 58 | .. autofunction:: fairseq.tasks.register_task 59 | .. autoclass:: fairseq.tasks.FairseqTask 60 | :members: 61 | :undoc-members: 62 | -------------------------------------------------------------------------------- /examples/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/examples/.DS_Store -------------------------------------------------------------------------------- /examples/.gitignore: -------------------------------------------------------------------------------- 1 | !*/*.sh 2 | !*/*.md 3 | -------------------------------------------------------------------------------- /examples/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | __version__ = '0.9.0' 7 | 8 | import examples.noisychannel # noqa 9 | -------------------------------------------------------------------------------- /examples/roberta/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/examples/roberta/.DS_Store -------------------------------------------------------------------------------- /examples/roberta/commonsense_qa/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import commonsense_qa_task # noqa 7 | -------------------------------------------------------------------------------- /examples/roberta/commonsense_qa/download_cqa_data.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | OUTDIR=data/CommonsenseQA 8 | 9 | mkdir -p $OUTDIR 10 | 11 | wget -O $OUTDIR/train.jsonl https://s3.amazonaws.com/commensenseqa/train_rand_split.jsonl 12 | wget -O $OUTDIR/valid.jsonl https://s3.amazonaws.com/commensenseqa/dev_rand_split.jsonl 13 | wget -O $OUTDIR/test.jsonl https://s3.amazonaws.com/commensenseqa/test_rand_split_no_answers.jsonl 14 | wget -O $OUTDIR/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt 15 | -------------------------------------------------------------------------------- /examples/roberta/train_base_to_base_plus.sh: -------------------------------------------------------------------------------- 1 | TOTAL_UPDATES=125000 # Total number of training steps 2 | TOTAL_UPDATES_DISTIL=55000 # Total number of distillation training steps 3 | WARMUP_UPDATES=11000 # Warmup the learning rate over this many updates 4 | PEAK_LR=0.00035 # Peak learning rate, adjust as needed 5 | TOKENS_PER_SAMPLE=512 # Max sequence length 6 | MAX_POSITIONS=512 # Num. positional embeddings (usually same as above) 7 | MAX_SENTENCES=16 # Number of sequences per batch (batch size) 8 | UPDATE_FREQ=16 # Increase the batch size 16x 9 | arch=roberta_base_plus 10 | arch_distil_from=roberta_base 11 | restore_file_distil_from=***your-teacher-model-path*** 12 | restore_file_checkpoint_distil_from=checkpoint_last.pt 13 | logdir=log_base_to_base_plus 14 | save_dir=checkpoint_base_to_base_plus 15 | DATA_DIR=data-bin/corpus_all 16 | 17 | python ../../fairseq_cli/train.py --fp16 $DATA_DIR \ 18 | --task back_distil --criterion masked_lm_distil \ 19 | --arch $arch --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \ 20 | --optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \ 21 | --lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \ 22 | --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ 23 | --batch-size $MAX_SENTENCES --update-freq $UPDATE_FREQ \ 24 | --max-update $TOTAL_UPDATES --log-format json --log-interval 100 \ 25 | --max-update-distil $TOTAL_UPDATES_DISTIL \ 26 | --tensorboard-logdir $logdir \ 27 | --skip-invalid-size-inputs-valid-test \ 28 | --save-dir $save_dir \ 29 | --fixed-validation-seed 0 \ 30 | --ddp-backend no_c10d \ 31 | --arch_distil_from $arch_distil_from \ 32 | --restore-file-distil-from $restore_file_distil_from \ 33 | --restore-file-checkpoint-distil-from $restore_file_checkpoint_distil_from \ 34 | --temperature_distil 2 \ 35 | --restrict_ce_to_mask \ 36 | --save-interval-updates 2500 37 | -------------------------------------------------------------------------------- /examples/roberta/wsc/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import wsc_criterion # noqa 7 | from . import wsc_task # noqa 8 | -------------------------------------------------------------------------------- /fairseq.egg-info/dependency_links.txt: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /fairseq.egg-info/entry_points.txt: -------------------------------------------------------------------------------- 1 | [console_scripts] 2 | fairseq-eval-lm = fairseq_cli.eval_lm:cli_main 3 | fairseq-generate = fairseq_cli.generate:cli_main 4 | fairseq-interactive = fairseq_cli.interactive:cli_main 5 | fairseq-preprocess = fairseq_cli.preprocess:cli_main 6 | fairseq-score = fairseq_cli.score:main 7 | fairseq-train = fairseq_cli.train:cli_main 8 | fairseq-validate = fairseq_cli.validate:cli_main 9 | 10 | -------------------------------------------------------------------------------- /fairseq.egg-info/not-zip-safe: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /fairseq.egg-info/requires.txt: -------------------------------------------------------------------------------- 1 | cffi 2 | cython 3 | numpy 4 | regex 5 | sacrebleu 6 | torch 7 | tqdm 8 | -------------------------------------------------------------------------------- /fairseq.egg-info/top_level.txt: -------------------------------------------------------------------------------- 1 | examples 2 | fairseq 3 | fairseq_cli 4 | tests 5 | -------------------------------------------------------------------------------- /fairseq/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | __all__ = ['pdb'] 7 | __version__ = '0.9.0' 8 | 9 | import fairseq.criterions # noqa 10 | import fairseq.models # noqa 11 | import fairseq.modules # noqa 12 | import fairseq.optim # noqa 13 | import fairseq.optim.lr_scheduler # noqa 14 | import fairseq.pdb # noqa 15 | import fairseq.tasks # noqa 16 | -------------------------------------------------------------------------------- /fairseq/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/binarizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/binarizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/checkpoint_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/checkpoint_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/distributed_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/distributed_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/file_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/file_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/hub_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/hub_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/iterative_refinement_generator.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/iterative_refinement_generator.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/legacy_distributed_data_parallel.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/legacy_distributed_data_parallel.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/meters.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/meters.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/options.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/options.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/pdb.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/pdb.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/progress_bar.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/progress_bar.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/registry.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/registry.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/search.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/search.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/sequence_generator.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/sequence_generator.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/tokenizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/tokenizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/trainer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/trainer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/__pycache__/utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/__pycache__/utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/clib/libbleu/module.cpp: -------------------------------------------------------------------------------- 1 | /** 2 | * Copyright 2017-present, Facebook, Inc. 3 | * All rights reserved. 4 | * 5 | * This source code is licensed under the license found in the 6 | * LICENSE file in the root directory of this source tree. 7 | */ 8 | 9 | #include 10 | 11 | 12 | static PyMethodDef method_def[] = { 13 | {NULL, NULL, 0, NULL} 14 | }; 15 | 16 | static struct PyModuleDef module_def = { 17 | PyModuleDef_HEAD_INIT, 18 | "libbleu", /* name of module */ 19 | NULL, /* module documentation, may be NULL */ 20 | -1, /* size of per-interpreter state of the module, 21 | or -1 if the module keeps state in global variables. */ 22 | method_def 23 | }; 24 | 25 | 26 | #if PY_MAJOR_VERSION == 2 27 | PyMODINIT_FUNC init_libbleu() 28 | #else 29 | PyMODINIT_FUNC PyInit_libbleu() 30 | #endif 31 | { 32 | PyObject *m = PyModule_Create(&module_def); 33 | if (!m) { 34 | return NULL; 35 | } 36 | return m; 37 | } 38 | -------------------------------------------------------------------------------- /fairseq/criterions/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import importlib 7 | import os 8 | 9 | from fairseq import registry 10 | from fairseq.criterions.fairseq_criterion import FairseqCriterion 11 | 12 | 13 | build_criterion, register_criterion, CRITERION_REGISTRY = registry.setup_registry( 14 | '--criterion', 15 | base_class=FairseqCriterion, 16 | default='cross_entropy', 17 | ) 18 | 19 | 20 | # automatically import any Python files in the criterions/ directory 21 | for file in os.listdir(os.path.dirname(__file__)): 22 | if file.endswith('.py') and not file.startswith('_'): 23 | module = file[:file.find('.py')] 24 | importlib.import_module('fairseq.criterions.' + module) 25 | -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/adaptive_loss.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/adaptive_loss.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/binary_cross_entropy.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/binary_cross_entropy.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/composite_loss.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/composite_loss.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/cross_entropy.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/cross_entropy.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/fairseq_criterion.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/fairseq_criterion.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/label_smoothed_cross_entropy_with_alignment.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/label_smoothed_cross_entropy_with_alignment.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/legacy_masked_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/legacy_masked_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/masked_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/masked_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/masked_lm_distil.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/masked_lm_distil.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/masked_lm_distil_H_half.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/masked_lm_distil_H_half.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/nat_loss.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/nat_loss.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/sentence_prediction.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/sentence_prediction.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/__pycache__/sentence_ranking.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/criterions/__pycache__/sentence_ranking.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/criterions/fairseq_criterion.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from torch.nn.modules.loss import _Loss 7 | 8 | 9 | class FairseqCriterion(_Loss): 10 | 11 | def __init__(self, args, task): 12 | super().__init__() 13 | self.args = args 14 | self.task = task 15 | self.padding_idx = task.target_dictionary.pad() if task.target_dictionary is not None else -100 16 | 17 | @staticmethod 18 | def add_args(parser): 19 | """Add criterion-specific arguments to the parser.""" 20 | pass 21 | 22 | @classmethod 23 | def build_criterion(cls, args, task): 24 | return cls(args, task) 25 | 26 | def forward(self, model, sample, reduce=True): 27 | """Compute the loss for the given sample. 28 | 29 | Returns a tuple with three elements: 30 | 1) the loss 31 | 2) the sample size, which is used as the denominator for the gradient 32 | 3) logging outputs to display while training 33 | """ 34 | raise NotImplementedError 35 | 36 | @staticmethod 37 | def aggregate_logging_outputs(logging_outputs): 38 | """Aggregate logging outputs from data parallel training.""" 39 | raise NotImplementedError 40 | 41 | @staticmethod 42 | def grad_denom(sample_sizes): 43 | """Compute the gradient denominator for a set of sample sizes.""" 44 | return sum(sample_sizes) 45 | -------------------------------------------------------------------------------- /fairseq/data/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/append_token_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/append_token_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/backtranslation_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/backtranslation_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/base_wrapper_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/base_wrapper_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/colorize_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/colorize_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/concat_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/concat_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/concat_sentences_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/concat_sentences_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/data_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/data_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/denoising_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/denoising_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/dictionary.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/dictionary.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/fairseq_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/fairseq_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/id_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/id_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/indexed_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/indexed_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/iterators.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/iterators.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/language_pair_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/language_pair_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/list_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/list_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/lm_context_window_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/lm_context_window_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/lru_cache_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/lru_cache_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/mask_tokens_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/mask_tokens_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/monolingual_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/monolingual_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/multi_corpus_sampled_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/multi_corpus_sampled_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/nested_dictionary_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/nested_dictionary_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/noising.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/noising.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/num_samples_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/num_samples_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/numel_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/numel_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/offset_tokens_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/offset_tokens_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/pad_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/pad_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/plasma_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/plasma_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/prepend_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/prepend_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/prepend_token_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/prepend_token_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/raw_label_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/raw_label_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/replace_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/replace_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/resampling_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/resampling_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/roll_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/roll_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/round_robin_zip_datasets.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/round_robin_zip_datasets.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/sharded_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/sharded_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/sort_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/sort_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/strip_token_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/strip_token_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/subsample_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/subsample_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/token_block_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/token_block_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/transform_eos_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/transform_eos_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/transform_eos_lang_pair_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/transform_eos_lang_pair_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/__pycache__/truncate_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/__pycache__/truncate_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/append_token_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | import torch 8 | 9 | from . import BaseWrapperDataset 10 | 11 | 12 | class AppendTokenDataset(BaseWrapperDataset): 13 | 14 | def __init__(self, dataset, token=None): 15 | super().__init__(dataset) 16 | self.token = token 17 | if token is not None: 18 | self._sizes = np.array(dataset.sizes) + 1 19 | else: 20 | self._sizes = dataset.sizes 21 | 22 | def __getitem__(self, idx): 23 | item = self.dataset[idx] 24 | if self.token is not None: 25 | item = torch.cat([item, item.new([self.token])]) 26 | return item 27 | 28 | @property 29 | def sizes(self): 30 | return self._sizes 31 | 32 | def num_tokens(self, index): 33 | n = self.dataset.num_tokens(index) 34 | if self.token is not None: 35 | n += 1 36 | return n 37 | 38 | def size(self, index): 39 | n = self.dataset.size(index) 40 | if self.token is not None: 41 | n += 1 42 | return n 43 | -------------------------------------------------------------------------------- /fairseq/data/audio/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/audio/__init__.py -------------------------------------------------------------------------------- /fairseq/data/audio/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/audio/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/audio/__pycache__/raw_audio_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/audio/__pycache__/raw_audio_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/base_wrapper_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from torch.utils.data.dataloader import default_collate 7 | 8 | from . import FairseqDataset 9 | 10 | 11 | class BaseWrapperDataset(FairseqDataset): 12 | 13 | def __init__(self, dataset): 14 | super().__init__() 15 | self.dataset = dataset 16 | 17 | def __getitem__(self, index): 18 | return self.dataset[index] 19 | 20 | def __len__(self): 21 | return len(self.dataset) 22 | 23 | def collater(self, samples): 24 | if hasattr(self.dataset, 'collater'): 25 | return self.dataset.collater(samples) 26 | else: 27 | return default_collate(samples) 28 | 29 | @property 30 | def sizes(self): 31 | return self.dataset.sizes 32 | 33 | def num_tokens(self, index): 34 | return self.dataset.num_tokens(index) 35 | 36 | def size(self, index): 37 | return self.dataset.size(index) 38 | 39 | def ordered_indices(self): 40 | return self.dataset.ordered_indices() 41 | 42 | @property 43 | def supports_prefetch(self): 44 | return getattr(self.dataset, 'supports_prefetch', False) 45 | 46 | def prefetch(self, indices): 47 | self.dataset.prefetch(indices) 48 | 49 | def set_epoch(self, epoch): 50 | super().set_epoch(epoch) 51 | if hasattr(self.dataset, 'set_epoch'): 52 | self.dataset.set_epoch(epoch) 53 | -------------------------------------------------------------------------------- /fairseq/data/colorize_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class ColorizeDataset(BaseWrapperDataset): 12 | """ Adds 'colors' property to net input that is obtained from the provided color getter for use by models """ 13 | def __init__(self, dataset, color_getter): 14 | super().__init__(dataset) 15 | self.color_getter = color_getter 16 | 17 | def collater(self, samples): 18 | base_collate = super().collater(samples) 19 | if len(base_collate) > 0: 20 | base_collate["net_input"]["colors"] = torch.tensor( 21 | list(self.color_getter(self.dataset, s["id"]) for s in samples), 22 | dtype=torch.long, 23 | ) 24 | return base_collate 25 | -------------------------------------------------------------------------------- /fairseq/data/concat_sentences_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | from . import FairseqDataset 9 | 10 | 11 | class ConcatSentencesDataset(FairseqDataset): 12 | 13 | def __init__(self, *datasets): 14 | super().__init__() 15 | self.datasets = datasets 16 | assert all(len(ds) == len(datasets[0]) for ds in datasets), \ 17 | 'datasets must have the same length' 18 | 19 | def __getitem__(self, index): 20 | return torch.cat([ds[index] for ds in self.datasets]) 21 | 22 | def __len__(self): 23 | return len(self.datasets[0]) 24 | 25 | def collater(self, samples): 26 | return self.datasets[0].collater(samples) 27 | 28 | @property 29 | def sizes(self): 30 | return sum(ds.sizes for ds in self.datasets) 31 | 32 | def num_tokens(self, index): 33 | return sum(ds.num_tokens(index) for ds in self.datasets) 34 | 35 | def size(self, index): 36 | return sum(ds.size(index) for ds in self.datasets) 37 | 38 | def ordered_indices(self): 39 | return self.datasets[0].ordered_indices() 40 | 41 | @property 42 | def supports_prefetch(self): 43 | return any( 44 | getattr(ds, 'supports_prefetch', False) for ds in self.datasets 45 | ) 46 | 47 | def prefetch(self, indices): 48 | for ds in self.datasets: 49 | if getattr(ds, 'supports_prefetch', False): 50 | ds.prefetch(indices) 51 | 52 | def set_epoch(self, epoch): 53 | super().set_epoch(epoch) 54 | for ds in self.datasets: 55 | if hasattr(ds, 'set_epoch'): 56 | ds.set_epoch(epoch) 57 | -------------------------------------------------------------------------------- /fairseq/data/data_utils_fast.cpython-37m-x86_64-linux-gnu.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/data_utils_fast.cpython-37m-x86_64-linux-gnu.so -------------------------------------------------------------------------------- /fairseq/data/data_utils_fast.pyx: -------------------------------------------------------------------------------- 1 | # cython: language_level=3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | import numpy as np 8 | 9 | cimport cython 10 | cimport numpy as np 11 | 12 | DTYPE = np.int64 13 | ctypedef np.int64_t DTYPE_t 14 | 15 | 16 | cdef _is_batch_full(list batch, long num_tokens, long max_tokens, long max_sentences): 17 | if len(batch) == 0: 18 | return 0 19 | if max_sentences > 0 and len(batch) == max_sentences: 20 | return 1 21 | if max_tokens > 0 and num_tokens > max_tokens: 22 | return 1 23 | return 0 24 | 25 | 26 | @cython.cdivision(True) 27 | cpdef list batch_by_size_fast( 28 | np.ndarray[DTYPE_t, ndim=1] indices, 29 | num_tokens_fn, 30 | long max_tokens, 31 | long max_sentences, 32 | int bsz_mult, 33 | ): 34 | cdef long sample_len = 0 35 | cdef list sample_lens = [] 36 | cdef list batch = [] 37 | cdef list batches = [] 38 | cdef long mod_len 39 | cdef long i 40 | cdef long idx 41 | cdef long num_tokens 42 | cdef DTYPE_t[:] indices_view = indices 43 | 44 | for i in range(len(indices_view)): 45 | idx = indices_view[i] 46 | num_tokens = num_tokens_fn(idx) 47 | sample_lens.append(num_tokens) 48 | sample_len = max(sample_len, num_tokens) 49 | 50 | assert max_tokens <= 0 or sample_len <= max_tokens, ( 51 | "sentence at index {} of size {} exceeds max_tokens " 52 | "limit of {}!".format(idx, sample_len, max_tokens) 53 | ) 54 | num_tokens = (len(batch) + 1) * sample_len 55 | 56 | if _is_batch_full(batch, num_tokens, max_tokens, max_sentences): 57 | mod_len = max( 58 | bsz_mult * (len(batch) // bsz_mult), 59 | len(batch) % bsz_mult, 60 | ) 61 | batches.append(batch[:mod_len]) 62 | batch = batch[mod_len:] 63 | sample_lens = sample_lens[mod_len:] 64 | sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 65 | batch.append(idx) 66 | if len(batch) > 0: 67 | batches.append(batch) 68 | return batches 69 | -------------------------------------------------------------------------------- /fairseq/data/encoders/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | 7 | import importlib 8 | import os 9 | 10 | from fairseq import registry 11 | 12 | 13 | build_tokenizer, register_tokenizer, TOKENIZER_REGISTRY = registry.setup_registry( 14 | '--tokenizer', 15 | default=None, 16 | ) 17 | 18 | 19 | build_bpe, register_bpe, BPE_REGISTRY = registry.setup_registry( 20 | '--bpe', 21 | default=None, 22 | ) 23 | 24 | 25 | # automatically import any Python files in the encoders/ directory 26 | for file in os.listdir(os.path.dirname(__file__)): 27 | if file.endswith('.py') and not file.startswith('_'): 28 | module = file[:file.find('.py')] 29 | importlib.import_module('fairseq.data.encoders.' + module) 30 | -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/fastbpe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/fastbpe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/gpt2_bpe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/gpt2_bpe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/gpt2_bpe_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/gpt2_bpe_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/hf_bert_bpe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/hf_bert_bpe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/moses_tokenizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/moses_tokenizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/nltk_tokenizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/nltk_tokenizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/sentencepiece_bpe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/sentencepiece_bpe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/space_tokenizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/space_tokenizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/subword_nmt_bpe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/subword_nmt_bpe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/__pycache__/utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/encoders/__pycache__/utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/encoders/fastbpe.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq import file_utils 7 | from fairseq.data.encoders import register_bpe 8 | 9 | 10 | @register_bpe('fastbpe') 11 | class fastBPE(object): 12 | 13 | @staticmethod 14 | def add_args(parser): 15 | # fmt: off 16 | parser.add_argument('--bpe-codes', type=str, 17 | help='path to fastBPE BPE') 18 | # fmt: on 19 | 20 | def __init__(self, args): 21 | if args.bpe_codes is None: 22 | raise ValueError('--bpe-codes is required for --bpe=subword_nmt') 23 | codes = file_utils.cached_path(args.bpe_codes) 24 | try: 25 | import fastBPE 26 | self.bpe = fastBPE.fastBPE(codes) 27 | self.bpe_symbol = "@@ " 28 | except ImportError: 29 | raise ImportError('Please install fastBPE with: pip install fastBPE') 30 | 31 | def encode(self, x: str) -> str: 32 | return self.bpe.apply([x])[0] 33 | 34 | def decode(self, x: str) -> str: 35 | return (x + ' ').replace(self.bpe_symbol, '').rstrip() 36 | -------------------------------------------------------------------------------- /fairseq/data/encoders/gpt2_bpe.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq import file_utils 7 | from fairseq.data.encoders import register_bpe 8 | 9 | from .gpt2_bpe_utils import get_encoder 10 | 11 | 12 | DEFAULT_ENCODER_JSON = 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json' 13 | DEFAULT_VOCAB_BPE = 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe' 14 | 15 | 16 | @register_bpe('gpt2') 17 | class GPT2BPE(object): 18 | 19 | @staticmethod 20 | def add_args(parser): 21 | # fmt: off 22 | parser.add_argument('--gpt2-encoder-json', type=str, 23 | default=DEFAULT_ENCODER_JSON, 24 | help='path to encoder.json') 25 | parser.add_argument('--gpt2-vocab-bpe', type=str, 26 | default=DEFAULT_VOCAB_BPE, 27 | help='path to vocab.bpe') 28 | # fmt: on 29 | 30 | def __init__(self, args): 31 | encoder_json = file_utils.cached_path( 32 | getattr(args, 'gpt2_encoder_json', DEFAULT_ENCODER_JSON) 33 | ) 34 | vocab_bpe = file_utils.cached_path( 35 | getattr(args, 'gpt2_vocab_bpe', DEFAULT_VOCAB_BPE) 36 | ) 37 | self.bpe = get_encoder(encoder_json, vocab_bpe) 38 | 39 | def encode(self, x: str) -> str: 40 | return ' '.join(map(str, self.bpe.encode(x))) 41 | 42 | def decode(self, x: str) -> str: 43 | return self.bpe.decode(map(int, x.split())) 44 | 45 | def is_beginning_of_word(self, x: str) -> bool: 46 | return self.decode(x).startswith(' ') 47 | -------------------------------------------------------------------------------- /fairseq/data/encoders/hf_bert_bpe.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.data.encoders import register_bpe 7 | 8 | 9 | @register_bpe('bert') 10 | class BertBPE(object): 11 | 12 | @staticmethod 13 | def add_args(parser): 14 | # fmt: off 15 | parser.add_argument('--bpe-cased', action='store_true', 16 | help='set for cased BPE', 17 | default=False) 18 | parser.add_argument('--bpe-vocab-file', type=str, 19 | help='bpe vocab file.') 20 | # fmt: on 21 | 22 | def __init__(self, args): 23 | try: 24 | from pytorch_transformers import BertTokenizer 25 | from pytorch_transformers.tokenization_utils import clean_up_tokenization 26 | except ImportError: 27 | raise ImportError( 28 | 'Please install 1.0.0 version of pytorch_transformers' 29 | 'with: pip install pytorch-transformers' 30 | ) 31 | 32 | if 'bpe_vocab_file' in args: 33 | self.bert_tokenizer = BertTokenizer( 34 | args.bpe_vocab_file, 35 | do_lower_case=not args.bpe_cased 36 | ) 37 | else: 38 | vocab_file_name = 'bert-base-cased' if args.bpe_cased else 'bert-base-uncased' 39 | self.bert_tokenizer = BertTokenizer.from_pretrained(vocab_file_name) 40 | self.clean_up_tokenization = clean_up_tokenization 41 | 42 | def encode(self, x: str) -> str: 43 | return ' '.join(self.bert_tokenizer.tokenize(x)) 44 | 45 | def decode(self, x: str) -> str: 46 | return self.clean_up_tokenization( 47 | self.bert_tokenizer.convert_tokens_to_string(x.split(' ')) 48 | ) 49 | 50 | def is_beginning_of_word(self, x: str) -> bool: 51 | return not x.startswith('##') 52 | -------------------------------------------------------------------------------- /fairseq/data/encoders/moses_tokenizer.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.data.encoders import register_tokenizer 7 | 8 | 9 | @register_tokenizer('moses') 10 | class MosesTokenizer(object): 11 | 12 | @staticmethod 13 | def add_args(parser): 14 | # fmt: off 15 | parser.add_argument('--moses-source-lang', metavar='SRC', 16 | help='source language') 17 | parser.add_argument('--moses-target-lang', metavar='TARGET', 18 | help='target language') 19 | parser.add_argument('--moses-no-dash-splits', action='store_true', default=False, 20 | help='don\'t apply dash split rules') 21 | parser.add_argument('--moses-no-escape', action='store_true', default=False, 22 | help='don\'t perform HTML escaping on apostrophy, quotes, etc.') 23 | # fmt: on 24 | 25 | def __init__(self, args): 26 | self.args = args 27 | 28 | if getattr(args, 'moses_source_lang', None) is None: 29 | args.moses_source_lang = getattr(args, 'source_lang', 'en') 30 | if getattr(args, 'moses_target_lang', None) is None: 31 | args.moses_target_lang = getattr(args, 'target_lang', 'en') 32 | 33 | try: 34 | from sacremoses import MosesTokenizer, MosesDetokenizer 35 | self.tok = MosesTokenizer(args.moses_source_lang) 36 | self.detok = MosesDetokenizer(args.moses_target_lang) 37 | except ImportError: 38 | raise ImportError('Please install Moses tokenizer with: pip install sacremoses') 39 | 40 | def encode(self, x: str) -> str: 41 | return self.tok.tokenize( 42 | x, 43 | aggressive_dash_splits=(not self.args.moses_no_dash_splits), 44 | return_str=True, 45 | escape=(not self.args.moses_no_escape), 46 | ) 47 | 48 | def decode(self, x: str) -> str: 49 | return self.detok.detokenize(x.split()) 50 | -------------------------------------------------------------------------------- /fairseq/data/encoders/nltk_tokenizer.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.data.encoders import register_tokenizer 7 | 8 | 9 | @register_tokenizer('nltk') 10 | class NLTKTokenizer(object): 11 | 12 | def __init__(self, source_lang=None, target_lang=None): 13 | try: 14 | from nltk.tokenize import word_tokenize 15 | self.word_tokenize = word_tokenize 16 | except ImportError: 17 | raise ImportError('Please install nltk with: pip install nltk') 18 | 19 | def encode(self, x: str) -> str: 20 | return ' '.join(self.word_tokenize(x)) 21 | 22 | def decode(self, x: str) -> str: 23 | return x 24 | -------------------------------------------------------------------------------- /fairseq/data/encoders/sentencepiece_bpe.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq import file_utils 7 | from fairseq.data.encoders import register_bpe 8 | 9 | 10 | @register_bpe('sentencepiece') 11 | class SentencepieceBPE(object): 12 | 13 | @staticmethod 14 | def add_args(parser): 15 | # fmt: off 16 | parser.add_argument('--sentencepiece-vocab', type=str, 17 | help='path to sentencepiece vocab') 18 | # fmt: on 19 | 20 | def __init__(self, args): 21 | vocab = file_utils.cached_path(args.sentencepiece_vocab) 22 | try: 23 | import sentencepiece as spm 24 | self.sp = spm.SentencePieceProcessor() 25 | self.sp.Load(vocab) 26 | except ImportError: 27 | raise ImportError('Please install sentencepiece with: pip install sentencepiece') 28 | 29 | def encode(self, x: str) -> str: 30 | return ' '.join(self.sp.EncodeAsPieces(x)) 31 | 32 | def decode(self, x: str) -> str: 33 | return x.replace(' ', '').replace('\u2581', ' ').strip() 34 | 35 | def is_beginning_of_word(self, x: str) -> bool: 36 | if x in ['', '', '', '']: 37 | # special elements are always considered beginnings 38 | # HACK: this logic is already present in fairseq/tasks/masked_lm.py 39 | # but these special tokens are also contained in the sentencepiece 40 | # vocabulary which causes duplicate special tokens. This hack makes 41 | # sure that they are all taken into account. 42 | return True 43 | return x.startswith('\u2581') 44 | -------------------------------------------------------------------------------- /fairseq/data/encoders/space_tokenizer.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import re 7 | 8 | from fairseq.data.encoders import register_tokenizer 9 | 10 | 11 | @register_tokenizer('space') 12 | class SpaceTokenizer(object): 13 | 14 | def __init__(self, source_lang=None, target_lang=None): 15 | self.space_tok = re.compile(r"\s+") 16 | 17 | def encode(self, x: str) -> str: 18 | return self.space_tok.sub(' ', x) 19 | 20 | def decode(self, x: str) -> str: 21 | return x 22 | -------------------------------------------------------------------------------- /fairseq/data/encoders/subword_nmt_bpe.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq import file_utils 7 | from fairseq.data.encoders import register_bpe 8 | 9 | 10 | @register_bpe('subword_nmt') 11 | class SubwordNMTBPE(object): 12 | 13 | @staticmethod 14 | def add_args(parser): 15 | # fmt: off 16 | parser.add_argument('--bpe-codes', type=str, 17 | help='path to subword NMT BPE') 18 | parser.add_argument('--bpe-separator', default='@@', 19 | help='BPE separator') 20 | # fmt: on 21 | 22 | def __init__(self, args): 23 | if args.bpe_codes is None: 24 | raise ValueError('--bpe-codes is required for --bpe=subword_nmt') 25 | codes = file_utils.cached_path(args.bpe_codes) 26 | try: 27 | from subword_nmt import apply_bpe 28 | bpe_parser = apply_bpe.create_parser() 29 | bpe_args = bpe_parser.parse_args([ 30 | '--codes', codes, 31 | '--separator', args.bpe_separator, 32 | ]) 33 | self.bpe = apply_bpe.BPE( 34 | bpe_args.codes, 35 | bpe_args.merges, 36 | bpe_args.separator, 37 | None, 38 | bpe_args.glossaries, 39 | ) 40 | self.bpe_symbol = bpe_args.separator + ' ' 41 | except ImportError: 42 | raise ImportError('Please install subword_nmt with: pip install subword-nmt') 43 | 44 | def encode(self, x: str) -> str: 45 | return self.bpe.process_line(x) 46 | 47 | def decode(self, x: str) -> str: 48 | return (x + ' ').replace(self.bpe_symbol, '').rstrip() 49 | -------------------------------------------------------------------------------- /fairseq/data/encoders/utils.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | from fairseq.data import encoders 8 | 9 | 10 | def get_whole_word_mask(args, dictionary): 11 | bpe = encoders.build_bpe(args) 12 | if bpe is not None: 13 | def is_beginning_of_word(i): 14 | if i < dictionary.nspecial: 15 | # special elements are always considered beginnings 16 | return True 17 | tok = dictionary[i] 18 | if tok.startswith('madeupword'): 19 | return True 20 | try: 21 | return bpe.is_beginning_of_word(tok) 22 | except ValueError: 23 | return True 24 | mask_whole_words = torch.ByteTensor(list( 25 | map(is_beginning_of_word, range(len(dictionary))) 26 | )) 27 | return mask_whole_words 28 | return None 29 | -------------------------------------------------------------------------------- /fairseq/data/id_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | from . import FairseqDataset 9 | 10 | 11 | class IdDataset(FairseqDataset): 12 | 13 | def __getitem__(self, index): 14 | return index 15 | 16 | def __len__(self): 17 | return 0 18 | 19 | def collater(self, samples): 20 | return torch.tensor(samples) 21 | -------------------------------------------------------------------------------- /fairseq/data/legacy/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .masked_lm_dictionary import BertDictionary, MaskedLMDictionary 7 | from .block_pair_dataset import BlockPairDataset 8 | from .masked_lm_dataset import MaskedLMDataset 9 | 10 | __all__ = [ 11 | 'BertDictionary', 12 | 'BlockPairDataset', 13 | 'MaskedLMDataset', 14 | 'MaskedLMDictionary', 15 | ] 16 | -------------------------------------------------------------------------------- /fairseq/data/legacy/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/legacy/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/legacy/__pycache__/block_pair_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/legacy/__pycache__/block_pair_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/legacy/__pycache__/masked_lm_dataset.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/legacy/__pycache__/masked_lm_dataset.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/legacy/__pycache__/masked_lm_dictionary.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/legacy/__pycache__/masked_lm_dictionary.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/data/legacy/masked_lm_dictionary.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.data import Dictionary 7 | 8 | 9 | class MaskedLMDictionary(Dictionary): 10 | """ 11 | Dictionary for Masked Language Modelling tasks. This extends Dictionary by 12 | adding the mask symbol. 13 | """ 14 | def __init__( 15 | self, 16 | pad='', 17 | eos='', 18 | unk='', 19 | mask='', 20 | ): 21 | super().__init__(pad, eos, unk) 22 | self.mask_word = mask 23 | self.mask_index = self.add_symbol(mask) 24 | self.nspecial = len(self.symbols) 25 | 26 | def mask(self): 27 | """Helper to get index of mask symbol""" 28 | return self.mask_index 29 | 30 | 31 | class BertDictionary(MaskedLMDictionary): 32 | """ 33 | Dictionary for BERT task. This extends MaskedLMDictionary by adding support 34 | for cls and sep symbols. 35 | """ 36 | def __init__( 37 | self, 38 | pad='', 39 | eos='', 40 | unk='', 41 | mask='', 42 | cls='', 43 | sep='' 44 | ): 45 | super().__init__(pad, eos, unk, mask) 46 | self.cls_word = cls 47 | self.sep_word = sep 48 | self.cls_index = self.add_symbol(cls) 49 | self.sep_index = self.add_symbol(sep) 50 | self.nspecial = len(self.symbols) 51 | 52 | def cls(self): 53 | """Helper to get index of cls symbol""" 54 | return self.cls_index 55 | 56 | def sep(self): 57 | """Helper to get index of sep symbol""" 58 | return self.sep_index 59 | -------------------------------------------------------------------------------- /fairseq/data/list_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import BaseWrapperDataset 7 | 8 | 9 | class ListDataset(BaseWrapperDataset): 10 | 11 | def __init__(self, dataset, sizes=None): 12 | super().__init__(dataset) 13 | self._sizes = sizes 14 | 15 | def __iter__(self): 16 | for x in self.dataset: 17 | yield x 18 | 19 | def collater(self, samples): 20 | return samples 21 | 22 | @property 23 | def sizes(self): 24 | return self._sizes 25 | 26 | def num_tokens(self, index): 27 | return self.sizes[index] 28 | 29 | def size(self, index): 30 | return self.sizes[index] 31 | 32 | def set_epoch(self, epoch): 33 | pass 34 | -------------------------------------------------------------------------------- /fairseq/data/lru_cache_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from functools import lru_cache 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class LRUCacheDataset(BaseWrapperDataset): 12 | 13 | def __init__(self, dataset, token=None): 14 | super().__init__(dataset) 15 | 16 | @lru_cache(maxsize=8) 17 | def __getitem__(self, index): 18 | return self.dataset[index] 19 | 20 | @lru_cache(maxsize=8) 21 | def collater(self, samples): 22 | return self.dataset.collater(samples) 23 | -------------------------------------------------------------------------------- /fairseq/data/num_samples_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import FairseqDataset 7 | 8 | 9 | class NumSamplesDataset(FairseqDataset): 10 | 11 | def __getitem__(self, index): 12 | return 1 13 | 14 | def __len__(self): 15 | return 0 16 | 17 | def collater(self, samples): 18 | return sum(samples) 19 | -------------------------------------------------------------------------------- /fairseq/data/numel_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | import torch 8 | 9 | from . import BaseWrapperDataset 10 | 11 | 12 | class NumelDataset(BaseWrapperDataset): 13 | 14 | def __init__(self, dataset, reduce=False): 15 | super().__init__(dataset) 16 | self.reduce = reduce 17 | 18 | def __getitem__(self, index): 19 | item = self.dataset[index] 20 | if torch.is_tensor(item): 21 | return torch.numel(item) 22 | else: 23 | return np.size(item) 24 | 25 | def __len__(self): 26 | return len(self.dataset) 27 | 28 | def collater(self, samples): 29 | if self.reduce: 30 | return sum(samples) 31 | else: 32 | return torch.tensor(samples) 33 | -------------------------------------------------------------------------------- /fairseq/data/offset_tokens_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import BaseWrapperDataset 7 | 8 | 9 | class OffsetTokensDataset(BaseWrapperDataset): 10 | 11 | def __init__(self, dataset, offset): 12 | super().__init__(dataset) 13 | self.offset = offset 14 | 15 | def __getitem__(self, idx): 16 | return self.dataset[idx] + self.offset 17 | -------------------------------------------------------------------------------- /fairseq/data/pad_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.data import data_utils 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class PadDataset(BaseWrapperDataset): 12 | 13 | def __init__(self, dataset, pad_idx, left_pad): 14 | super().__init__(dataset) 15 | self.pad_idx = pad_idx 16 | self.left_pad = left_pad 17 | 18 | def collater(self, samples): 19 | return data_utils.collate_tokens(samples, self.pad_idx, left_pad=self.left_pad) 20 | 21 | 22 | class LeftPadDataset(PadDataset): 23 | 24 | def __init__(self, dataset, pad_idx): 25 | super().__init__(dataset, pad_idx, left_pad=True) 26 | 27 | 28 | class RightPadDataset(PadDataset): 29 | 30 | def __init__(self, dataset, pad_idx): 31 | super().__init__(dataset, pad_idx, left_pad=False) 32 | -------------------------------------------------------------------------------- /fairseq/data/prepend_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | import torch 8 | 9 | from . import BaseWrapperDataset 10 | 11 | 12 | class PrependDataset(BaseWrapperDataset): 13 | def __init__(self, dataset, prepend_getter, ensure_first_token_is=None): 14 | super().__init__(dataset) 15 | self.prepend_getter = prepend_getter 16 | self.ensure_first_token = ensure_first_token_is 17 | 18 | def __getitem__(self, idx): 19 | item = self.dataset[idx] 20 | is_tuple = isinstance(item, tuple) 21 | src = item[0] if is_tuple else item 22 | 23 | assert self.ensure_first_token is None or src[0] == self.ensure_first_token 24 | prepend_idx = self.prepend_getter(self.dataset, idx) 25 | assert isinstance(prepend_idx, int) 26 | src[0] = prepend_idx 27 | item = tuple((src,) + item[1:]) if is_tuple else src 28 | return item 29 | -------------------------------------------------------------------------------- /fairseq/data/prepend_token_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | import torch 8 | 9 | from . import BaseWrapperDataset 10 | 11 | 12 | class PrependTokenDataset(BaseWrapperDataset): 13 | 14 | def __init__(self, dataset, token=None): 15 | super().__init__(dataset) 16 | self.token = token 17 | if token is not None: 18 | self._sizes = np.array(dataset.sizes) + 1 19 | else: 20 | self._sizes = dataset.sizes 21 | 22 | def __getitem__(self, idx): 23 | item = self.dataset[idx] 24 | if self.token is not None: 25 | item = torch.cat([item.new([self.token]), item]) 26 | return item 27 | 28 | @property 29 | def sizes(self): 30 | return self._sizes 31 | 32 | def num_tokens(self, index): 33 | n = self.dataset.num_tokens(index) 34 | if self.token is not None: 35 | n += 1 36 | return n 37 | 38 | def size(self, index): 39 | n = self.dataset.size(index) 40 | if self.token is not None: 41 | n += 1 42 | return n 43 | -------------------------------------------------------------------------------- /fairseq/data/raw_label_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | from . import FairseqDataset 9 | 10 | 11 | class RawLabelDataset(FairseqDataset): 12 | 13 | def __init__(self, labels): 14 | super().__init__() 15 | self.labels = labels 16 | 17 | def __getitem__(self, index): 18 | return self.labels[index] 19 | 20 | def __len__(self): 21 | return len(self.labels) 22 | 23 | def collater(self, samples): 24 | return torch.tensor(samples) 25 | -------------------------------------------------------------------------------- /fairseq/data/replace_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import BaseWrapperDataset 7 | 8 | 9 | class ReplaceDataset(BaseWrapperDataset): 10 | """Replaces tokens found in the dataset by a specified replacement token 11 | 12 | Args: 13 | dataset (~torch.utils.data.Dataset): dataset to replace tokens in 14 | replace_map(Dictionary[int,int]): map of token to replace -> replacement token 15 | offsets (List[int]): do not replace tokens before (from left if pos, right if neg) this offset. should be 16 | as many as the number of objects returned by the underlying dataset __getitem__ method. 17 | """ 18 | 19 | def __init__(self, dataset, replace_map, offsets): 20 | super().__init__(dataset) 21 | assert len(replace_map) > 0 22 | self.replace_map = replace_map 23 | self.offsets = offsets 24 | 25 | def __getitem__(self, index): 26 | item = self.dataset[index] 27 | is_tuple = isinstance(item, tuple) 28 | srcs = item if is_tuple else [item] 29 | 30 | for offset, src in zip(self.offsets, srcs): 31 | for k, v in self.replace_map.items(): 32 | src_off = src[offset:] if offset >= 0 else src[:offset] 33 | src_off.masked_fill_(src_off == k, v) 34 | 35 | item = srcs if is_tuple else srcs[0] 36 | return item 37 | -------------------------------------------------------------------------------- /fairseq/data/roll_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class RollDataset(BaseWrapperDataset): 12 | 13 | def __init__(self, dataset, shifts): 14 | super().__init__(dataset) 15 | self.shifts = shifts 16 | 17 | def __getitem__(self, index): 18 | item = self.dataset[index] 19 | return torch.roll(item, self.shifts) 20 | -------------------------------------------------------------------------------- /fairseq/data/sharded_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import itertools 7 | import os 8 | import random 9 | 10 | from . import BaseWrapperDataset 11 | from fairseq.data import data_utils 12 | 13 | 14 | class ShardedDataset(BaseWrapperDataset): 15 | """A :class:`~fairseq.data.FairseqDataset` wrapper that appends/prepends/strips EOS. 16 | 17 | Loads a dataset which has been sharded into multiple files. each shard is only loaded for each specific epoch 18 | 19 | """ 20 | 21 | def __init__( 22 | self, 23 | dictionary, 24 | dataset_impl: str, 25 | path: str, 26 | split: str, 27 | epoch: int, 28 | name: str = None, 29 | combine: bool = False, 30 | seed: int = 0, 31 | ): 32 | self._name = name if name is not None else os.path.basename(path) 33 | num_shards = 0 34 | for i in itertools.count(): 35 | if not os.path.exists(os.path.join(path, "shard" + str(i))): 36 | break 37 | num_shards += 1 38 | 39 | if num_shards > 0 and split == "train": 40 | random.seed(seed ^ epoch) 41 | shard = random.randint(0, num_shards - 1) 42 | split_path = os.path.join(path, "shard" + str(shard), split) 43 | else: 44 | split_path = os.path.join(path, split) 45 | if os.path.isdir(split_path): 46 | split_path = os.path.join(split_path, split) 47 | 48 | dataset = data_utils.load_indexed_dataset( 49 | split_path, dictionary, dataset_impl, combine=combine 50 | ) 51 | if dataset is None: 52 | raise FileNotFoundError( 53 | "Dataset not found: {} ({})".format(split, split_path) 54 | ) 55 | 56 | super().__init__(dataset) 57 | 58 | @property 59 | def name(self): 60 | return self._name 61 | -------------------------------------------------------------------------------- /fairseq/data/sort_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class SortDataset(BaseWrapperDataset): 12 | 13 | def __init__(self, dataset, sort_order): 14 | super().__init__(dataset) 15 | if not isinstance(sort_order, (list, tuple)): 16 | sort_order = [sort_order] 17 | self.sort_order = sort_order 18 | 19 | assert all(len(so) == len(dataset) for so in sort_order) 20 | 21 | def ordered_indices(self): 22 | return np.lexsort(self.sort_order) 23 | -------------------------------------------------------------------------------- /fairseq/data/strip_token_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from . import BaseWrapperDataset 7 | 8 | 9 | class StripTokenDataset(BaseWrapperDataset): 10 | 11 | def __init__(self, dataset, id_to_strip): 12 | super().__init__(dataset) 13 | self.id_to_strip = id_to_strip 14 | 15 | def __getitem__(self, index): 16 | item = self.dataset[index] 17 | return item[item.ne(self.id_to_strip)] 18 | -------------------------------------------------------------------------------- /fairseq/data/subsample_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class SubsampleDataset(BaseWrapperDataset): 12 | """Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples 13 | 14 | Args: 15 | dataset (~torch.utils.data.Dataset): dataset to subsample 16 | size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive) 17 | """ 18 | 19 | def __init__(self, dataset, size_ratio): 20 | super().__init__(dataset) 21 | assert size_ratio < 1 22 | self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int) 23 | self.indices = np.random.choice( 24 | list(range(len(self.dataset))), self.actual_size, replace=False 25 | ) 26 | print( 27 | "subsampled dataset from {} to {} (ratio={})".format( 28 | len(self.dataset), self.actual_size, size_ratio 29 | ) 30 | ) 31 | 32 | def __getitem__(self, index): 33 | return self.dataset[self.indices[index]] 34 | 35 | def __len__(self): 36 | return self.actual_size 37 | 38 | def collater(self, samples): 39 | return self.dataset.collater(samples) 40 | 41 | @property 42 | def sizes(self): 43 | return self.dataset.sizes[self.indices] 44 | 45 | @property 46 | def name(self): 47 | return self.dataset.name 48 | 49 | def num_tokens(self, index): 50 | return self.dataset.num_tokens(self.indices[index]) 51 | 52 | def size(self, index): 53 | return self.dataset.size(self.indices[index]) 54 | 55 | def ordered_indices(self): 56 | """Return an ordered list of indices. Batches will be constructed based 57 | on this order.""" 58 | if self.shuffle: 59 | order = [np.random.permutation(len(self))] 60 | else: 61 | order = [np.arange(len(self))] 62 | order.append(self.sizes) 63 | return np.lexsort(order) 64 | 65 | def prefetch(self, indices): 66 | self.dataset.prefetch(self.indices[indices]) 67 | -------------------------------------------------------------------------------- /fairseq/data/token_block_utils_fast.cpython-37m-x86_64-linux-gnu.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/data/token_block_utils_fast.cpython-37m-x86_64-linux-gnu.so -------------------------------------------------------------------------------- /fairseq/data/truncate_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import numpy as np 7 | 8 | from . import BaseWrapperDataset 9 | 10 | 11 | class TruncateDataset(BaseWrapperDataset): 12 | 13 | def __init__(self, dataset, truncation_length): 14 | super().__init__(dataset) 15 | assert truncation_length is not None 16 | self.truncation_length = truncation_length 17 | self.dataset = dataset 18 | 19 | def __getitem__(self, index): 20 | item = self.dataset[index] 21 | item_len = item.size(0) 22 | if item_len > self.truncation_length: 23 | item = item[:self.truncation_length] 24 | return item 25 | 26 | @property 27 | def sizes(self): 28 | return np.minimum(self.dataset.sizes, self.truncation_length) 29 | 30 | def __len__(self): 31 | return len(self.dataset) 32 | -------------------------------------------------------------------------------- /fairseq/libbleu.cpython-37m-x86_64-linux-gnu.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/libbleu.cpython-37m-x86_64-linux-gnu.so -------------------------------------------------------------------------------- /fairseq/libnat.cpython-37m-x86_64-linux-gnu.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/libnat.cpython-37m-x86_64-linux-gnu.so -------------------------------------------------------------------------------- /fairseq/meters.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import time 7 | 8 | 9 | class AverageMeter(object): 10 | """Computes and stores the average and current value""" 11 | def __init__(self): 12 | self.reset() 13 | 14 | def reset(self): 15 | self.val = 0 16 | self.avg = 0 17 | self.sum = 0 18 | self.count = 0 19 | 20 | def update(self, val, n=1): 21 | self.val = val 22 | self.sum += val * n 23 | self.count += n 24 | self.avg = self.sum / self.count 25 | 26 | 27 | class TimeMeter(object): 28 | """Computes the average occurrence of some event per second""" 29 | def __init__(self, init=0): 30 | self.reset(init) 31 | 32 | def reset(self, init=0): 33 | self.init = init 34 | self.start = time.time() 35 | self.n = 0 36 | 37 | def update(self, val=1): 38 | self.n += val 39 | 40 | @property 41 | def avg(self): 42 | return self.n / self.elapsed_time 43 | 44 | @property 45 | def elapsed_time(self): 46 | return self.init + (time.time() - self.start) 47 | 48 | 49 | class StopwatchMeter(object): 50 | """Computes the sum/avg duration of some event in seconds""" 51 | def __init__(self): 52 | self.reset() 53 | 54 | def start(self): 55 | self.start_time = time.time() 56 | 57 | def stop(self, n=1): 58 | if self.start_time is not None: 59 | delta = time.time() - self.start_time 60 | self.sum += delta 61 | self.n += n 62 | self.start_time = None 63 | 64 | def reset(self): 65 | self.sum = 0 66 | self.n = 0 67 | self.start_time = None 68 | 69 | @property 70 | def avg(self): 71 | return self.sum / self.n 72 | -------------------------------------------------------------------------------- /fairseq/models/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/cmlm_transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/cmlm_transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/composite_encoder.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/composite_encoder.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/distributed_fairseq_model.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/distributed_fairseq_model.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fairseq_decoder.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fairseq_decoder.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fairseq_encoder.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fairseq_encoder.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fairseq_incremental_decoder.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fairseq_incremental_decoder.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fairseq_model.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fairseq_model.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fconv.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fconv.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fconv_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fconv_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/fconv_self_att.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/fconv_self_att.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/insertion_transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/insertion_transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/iterative_nonautoregressive_transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/iterative_nonautoregressive_transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/levenshtein_transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/levenshtein_transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/lightconv.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/lightconv.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/lightconv_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/lightconv_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/lstm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/lstm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/masked_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/masked_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/model_utils.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/model_utils.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/multilingual_transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/multilingual_transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/nonautoregressive_ensembles.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/nonautoregressive_ensembles.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/nonautoregressive_transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/nonautoregressive_transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/transformer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/transformer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/transformer_from_pretrained_xlm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/transformer_from_pretrained_xlm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/transformer_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/transformer_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/__pycache__/wav2vec.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/__pycache__/wav2vec.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/bart/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .hub_interface import * # noqa 7 | from .model import * # noqa 8 | -------------------------------------------------------------------------------- /fairseq/models/bart/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/bart/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/bart/__pycache__/hub_interface.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/bart/__pycache__/hub_interface.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/bart/__pycache__/model.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/bart/__pycache__/model.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/composite_encoder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.models import FairseqEncoder 7 | 8 | 9 | class CompositeEncoder(FairseqEncoder): 10 | """ 11 | A wrapper around a dictionary of :class:`FairseqEncoder` objects. 12 | 13 | We run forward on each encoder and return a dictionary of outputs. The first 14 | encoder's dictionary is used for initialization. 15 | 16 | Args: 17 | encoders (dict): a dictionary of :class:`FairseqEncoder` objects. 18 | """ 19 | 20 | def __init__(self, encoders): 21 | super().__init__(next(iter(encoders.values())).dictionary) 22 | self.encoders = encoders 23 | for key in self.encoders: 24 | self.add_module(key, self.encoders[key]) 25 | 26 | def forward(self, src_tokens, src_lengths): 27 | """ 28 | Args: 29 | src_tokens (LongTensor): tokens in the source language of shape 30 | `(batch, src_len)` 31 | src_lengths (LongTensor): lengths of each source sentence of shape 32 | `(batch)` 33 | 34 | Returns: 35 | dict: 36 | the outputs from each Encoder 37 | """ 38 | encoder_out = {} 39 | for key in self.encoders: 40 | encoder_out[key] = self.encoders[key](src_tokens, src_lengths) 41 | return encoder_out 42 | 43 | def reorder_encoder_out(self, encoder_out, new_order): 44 | """Reorder encoder output according to new_order.""" 45 | for key in self.encoders: 46 | encoder_out[key] = self.encoders[key].reorder_encoder_out(encoder_out[key], new_order) 47 | return encoder_out 48 | 49 | def max_positions(self): 50 | return min([self.encoders[key].max_positions() for key in self.encoders]) 51 | 52 | def upgrade_state_dict(self, state_dict): 53 | for key in self.encoders: 54 | self.encoders[key].upgrade_state_dict(state_dict) 55 | return state_dict 56 | -------------------------------------------------------------------------------- /fairseq/models/fairseq_encoder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.nn as nn 7 | 8 | 9 | class FairseqEncoder(nn.Module): 10 | """Base class for encoders.""" 11 | 12 | def __init__(self, dictionary): 13 | super().__init__() 14 | self.dictionary = dictionary 15 | 16 | def forward(self, src_tokens, src_lengths=None, **kwargs): 17 | """ 18 | Args: 19 | src_tokens (LongTensor): tokens in the source language of shape 20 | `(batch, src_len)` 21 | src_lengths (LongTensor): lengths of each source sentence of shape 22 | `(batch)` 23 | """ 24 | raise NotImplementedError 25 | 26 | def reorder_encoder_out(self, encoder_out, new_order): 27 | """ 28 | Reorder encoder output according to `new_order`. 29 | 30 | Args: 31 | encoder_out: output from the ``forward()`` method 32 | new_order (LongTensor): desired order 33 | 34 | Returns: 35 | `encoder_out` rearranged according to `new_order` 36 | """ 37 | raise NotImplementedError 38 | 39 | def max_positions(self): 40 | """Maximum input length supported by the encoder.""" 41 | return 1e6 # an arbitrary large number 42 | 43 | def upgrade_state_dict(self, state_dict): 44 | """Upgrade a (possibly old) state dict for new versions of fairseq.""" 45 | return state_dict 46 | -------------------------------------------------------------------------------- /fairseq/models/roberta/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .hub_interface import * # noqa 7 | from .model import * # noqa 8 | -------------------------------------------------------------------------------- /fairseq/models/roberta/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/roberta/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/roberta/__pycache__/hub_interface.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/roberta/__pycache__/hub_interface.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/models/roberta/__pycache__/model.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/models/roberta/__pycache__/model.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .adaptive_input import AdaptiveInput 7 | from .adaptive_softmax import AdaptiveSoftmax 8 | from .beamable_mm import BeamableMM 9 | from .character_token_embedder import CharacterTokenEmbedder 10 | from .conv_tbc import ConvTBC 11 | from .downsampled_multihead_attention import DownsampledMultiHeadAttention 12 | from .dynamic_convolution import DynamicConv, DynamicConv1dTBC 13 | from .gelu import gelu, gelu_accurate 14 | from .grad_multiply import GradMultiply 15 | from .highway import Highway 16 | from .layer_norm import LayerNorm 17 | from .learned_positional_embedding import LearnedPositionalEmbedding 18 | from .lightweight_convolution import LightweightConv, LightweightConv1dTBC 19 | from .linearized_convolution import LinearizedConvolution 20 | from .logsumexp_moe import LogSumExpMoE 21 | from .mean_pool_gating_network import MeanPoolGatingNetwork 22 | from .multihead_attention import MultiheadAttention 23 | from .positional_embedding import PositionalEmbedding 24 | from .scalar_bias import ScalarBias 25 | from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding 26 | from .transformer_sentence_encoder_layer import TransformerSentenceEncoderLayer 27 | from .transformer_sentence_encoder import TransformerSentenceEncoder 28 | from .unfold import unfold1d 29 | from .transformer_layer import TransformerDecoderLayer, TransformerEncoderLayer 30 | from .vggblock import VGGBlock 31 | 32 | __all__ = [ 33 | 'AdaptiveInput', 34 | 'AdaptiveSoftmax', 35 | 'BeamableMM', 36 | 'CharacterTokenEmbedder', 37 | 'ConvTBC', 38 | 'DownsampledMultiHeadAttention', 39 | 'DynamicConv1dTBC', 40 | 'DynamicConv', 41 | 'gelu', 42 | 'gelu_accurate', 43 | 'GradMultiply', 44 | 'Highway', 45 | 'LayerNorm', 46 | 'LearnedPositionalEmbedding', 47 | 'LightweightConv1dTBC', 48 | 'LightweightConv', 49 | 'LinearizedConvolution', 50 | 'LogSumExpMoE', 51 | 'MeanPoolGatingNetwork', 52 | 'MultiheadAttention', 53 | 'PositionalEmbedding', 54 | 'ScalarBias', 55 | 'SinusoidalPositionalEmbedding', 56 | 'TransformerSentenceEncoderLayer', 57 | 'TransformerSentenceEncoder', 58 | 'TransformerDecoderLayer', 59 | 'TransformerEncoderLayer', 60 | 'VGGBlock', 61 | 'unfold1d', 62 | ] 63 | -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/adaptive_input.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/adaptive_input.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/adaptive_softmax.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/adaptive_softmax.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/beamable_mm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/beamable_mm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/character_token_embedder.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/character_token_embedder.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/conv_tbc.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/conv_tbc.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/downsampled_multihead_attention.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/downsampled_multihead_attention.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/dynamic_convolution.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/dynamic_convolution.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/gelu.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/gelu.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/grad_multiply.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/grad_multiply.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/highway.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/highway.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/layer_norm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/layer_norm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/learned_positional_embedding.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/learned_positional_embedding.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/lightweight_convolution.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/lightweight_convolution.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/linearized_convolution.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/linearized_convolution.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/logsumexp_moe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/logsumexp_moe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/mean_pool_gating_network.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/mean_pool_gating_network.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/multihead_attention.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/multihead_attention.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/positional_embedding.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/positional_embedding.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/scalar_bias.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/scalar_bias.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/sinusoidal_positional_embedding.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/sinusoidal_positional_embedding.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/transformer_layer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/transformer_layer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/transformer_sentence_encoder.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/transformer_sentence_encoder.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/transformer_sentence_encoder_layer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/transformer_sentence_encoder_layer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/unfold.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/unfold.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/__pycache__/vggblock.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/modules/__pycache__/vggblock.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/modules/beamable_mm.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | import torch.nn as nn 8 | 9 | 10 | class BeamableMM(nn.Module): 11 | """This module provides an optimized MM for beam decoding with attention. 12 | 13 | It leverage the fact that the source-side of the input is replicated beam 14 | times and the target-side of the input is of width one. This layer speeds up 15 | inference by replacing the inputs {(bsz x 1 x nhu), (bsz x sz2 x nhu)} 16 | with smaller inputs {(bsz/beam x beam x nhu), (bsz/beam x sz2 x nhu)}. 17 | """ 18 | def __init__(self, beam_size=None): 19 | super(BeamableMM, self).__init__() 20 | self.beam_size = beam_size 21 | 22 | def forward(self, input1, input2): 23 | if ( 24 | not self.training and # test mode 25 | self.beam_size is not None and # beam size is set 26 | input1.dim() == 3 and # only support batched input 27 | input1.size(1) == 1 # single time step update 28 | ): 29 | bsz, beam = input1.size(0), self.beam_size 30 | 31 | # bsz x 1 x nhu --> bsz/beam x beam x nhu 32 | input1 = input1[:, 0, :].unfold(0, beam, beam).transpose(2, 1) 33 | 34 | # bsz x sz2 x nhu --> bsz/beam x sz2 x nhu 35 | input2 = input2.unfold(0, beam, beam)[:, :, :, 0] 36 | 37 | # use non batched operation if bsz = beam 38 | if input1.size(0) == 1: 39 | output = torch.mm(input1[0, :, :], input2[0, :, :]) 40 | else: 41 | output = input1.bmm(input2) 42 | return output.view(bsz, 1, -1) 43 | else: 44 | return input1.bmm(input2) 45 | 46 | def set_beam_size(self, beam_size): 47 | self.beam_size = beam_size 48 | -------------------------------------------------------------------------------- /fairseq/modules/conv_tbc.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | from torch.nn.modules.utils import _single 8 | 9 | 10 | class ConvTBC(torch.nn.Module): 11 | """1D convolution over an input of shape (time x batch x channel) 12 | 13 | The implementation uses gemm to perform the convolution. This implementation 14 | is faster than cuDNN for small kernel sizes. 15 | """ 16 | def __init__(self, in_channels, out_channels, kernel_size, padding=0): 17 | super(ConvTBC, self).__init__() 18 | self.in_channels = in_channels 19 | self.out_channels = out_channels 20 | self.kernel_size = _single(kernel_size) 21 | self.padding = _single(padding) 22 | 23 | self.weight = torch.nn.Parameter(torch.Tensor( 24 | self.kernel_size[0], in_channels, out_channels)) 25 | self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) 26 | 27 | def forward(self, input): 28 | return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding[0]) 29 | 30 | def __repr__(self): 31 | s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}' 32 | ', padding={padding}') 33 | if self.bias is None: 34 | s += ', bias=False' 35 | s += ')' 36 | return s.format(name=self.__class__.__name__, **self.__dict__) 37 | -------------------------------------------------------------------------------- /fairseq/modules/dynamicconv_layer/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .dynamicconv_layer import DynamicconvLayer # noqa 7 | -------------------------------------------------------------------------------- /fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cpp: -------------------------------------------------------------------------------- 1 | /** 2 | * Copyright (c) Facebook, Inc. and its affiliates. 3 | * 4 | * This source code is licensed under the MIT license found in the 5 | * LICENSE file in the root directory of this source tree. 6 | */ 7 | 8 | #include 9 | #include 10 | 11 | std::vector dynamicconv_cuda_forward( 12 | at::Tensor input, 13 | at::Tensor filters, 14 | int padding_l); 15 | 16 | std::vector dynamicconv_cuda_backward( 17 | at::Tensor gradOutput, 18 | int padding_l, 19 | at::Tensor input, 20 | at::Tensor filters); 21 | 22 | 23 | #define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") 24 | #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") 25 | #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) 26 | 27 | std::vector dynamicconv_forward( 28 | at::Tensor input, 29 | at::Tensor filters, 30 | int padding_l) { 31 | 32 | CHECK_INPUT(input); 33 | CHECK_INPUT(filters); 34 | 35 | return dynamicconv_cuda_forward(input, filters, 36 | padding_l); 37 | } 38 | 39 | std::vector dynamicconv_backward( 40 | at::Tensor gradOutput, 41 | int padding_l, 42 | at::Tensor input, 43 | at::Tensor filters) { 44 | 45 | CHECK_INPUT(gradOutput); 46 | CHECK_INPUT(input); 47 | CHECK_INPUT(filters); 48 | 49 | return dynamicconv_cuda_backward(gradOutput, padding_l, 50 | input, filters); 51 | } 52 | 53 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 54 | m.def("forward", &dynamicconv_forward, "dynamicconv forward (CUDA)"); 55 | m.def("backward", &dynamicconv_backward, "dynamicconv backward (CUDA)"); 56 | } 57 | -------------------------------------------------------------------------------- /fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cuh: -------------------------------------------------------------------------------- 1 | /** 2 | * Copyright (c) Facebook, Inc. and its affiliates. 3 | * 4 | * This source code is licensed under the MIT license found in the 5 | * LICENSE file in the root directory of this source tree. 6 | */ 7 | 8 | #include 9 | #include 10 | 11 | #include 12 | #include 13 | #include 14 | 15 | #include 16 | #include 17 | #include 18 | #include 19 | #include 20 | #include 21 | 22 | #include 23 | #include 24 | #include 25 | 26 | #define SHFL_MASK 0xffffffff 27 | 28 | template 29 | __global__ 30 | void dynamicconv_forward_kernel(const scalar_t* input, 31 | const scalar_t* weight, 32 | int minibatch, 33 | int sequenceLength, 34 | int numFeatures, 35 | int numFiltersInBlock, 36 | int numHeads, 37 | scalar_t* output); 38 | 39 | template 40 | __global__ 41 | void dynamicconv_backward_kernel( 42 | const scalar_t* gradOutput, // B * C * T 43 | const scalar_t* input, // B * C * T 44 | const scalar_t* weight, 45 | int minibatch, 46 | int sequenceLength, 47 | int numFeatures, 48 | int numFiltersInBlock, 49 | int numHeads, 50 | scalar_t* gradWeight, 51 | scalar_t* gradInput); // B * H * k * T 52 | -------------------------------------------------------------------------------- /fairseq/modules/dynamicconv_layer/dynamiconv_cpu.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | std::vector dynamicconv_cpu_forward( 5 | float* input, 6 | float* filters, 7 | int padding_l); 8 | 9 | std::vector dynamicconv_cpu_backward( 10 | float* gradOutput, 11 | int padding_l, 12 | float* input, 13 | float* filters); 14 | 15 | std::vector dynamicconv_forward( 16 | float* input, 17 | float* filters, 18 | int padding_l) { 19 | 20 | return dynamicconv_cpu_forward(input, filters, padding_l); 21 | } 22 | 23 | std::vector dynamicconv_backward( 24 | float* gradOutput, 25 | int padding_l, 26 | float* input, 27 | float* filters) { 28 | 29 | return dynamicconv_cpu_backward(gradOutput, padding_l, input, filters); 30 | } 31 | 32 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 33 | m.def("forward", &dynamicconv_forward, "dynamicconv forward (CPU)"); 34 | m.def("backward", &dynamicconv_backward, "dynamicconv backward (CPU)"); 35 | } 36 | -------------------------------------------------------------------------------- /fairseq/modules/dynamicconv_layer/setup.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | from setuptools import setup 8 | from torch.utils.cpp_extension import CUDAExtension, BuildExtension 9 | 10 | setup( 11 | name='dynamicconv_layer', 12 | ext_modules=[ 13 | CUDAExtension( 14 | name='dynamicconv_cuda', 15 | sources=[ 16 | 'dynamicconv_cuda.cpp', 17 | 'dynamicconv_cuda_kernel.cu', 18 | ], 19 | ), 20 | ], 21 | cmdclass={ 22 | 'build_ext': BuildExtension 23 | }) 24 | -------------------------------------------------------------------------------- /fairseq/modules/gelu.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | """ 6 | See "Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel with 7 | the corresponding GitHub repo: https://github.com/hendrycks/GELUs 8 | """ 9 | 10 | import math 11 | 12 | import torch 13 | 14 | 15 | def gelu_accurate(x): 16 | if not hasattr(gelu_accurate, "_a"): 17 | gelu_accurate._a = math.sqrt(2 / math.pi) 18 | return 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) 19 | 20 | 21 | def gelu(x: torch.Tensor) -> torch.Tensor: 22 | if hasattr(torch.nn.functional, 'gelu'): 23 | return torch.nn.functional.gelu(x.float()).type_as(x) 24 | else: 25 | return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) 26 | -------------------------------------------------------------------------------- /fairseq/modules/grad_multiply.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | 9 | class GradMultiply(torch.autograd.Function): 10 | @staticmethod 11 | def forward(ctx, x, scale): 12 | ctx.scale = scale 13 | res = x.new(x) 14 | return res 15 | 16 | @staticmethod 17 | def backward(ctx, grad): 18 | return grad * ctx.scale, None 19 | -------------------------------------------------------------------------------- /fairseq/modules/highway.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | from torch import nn 9 | 10 | 11 | class Highway(torch.nn.Module): 12 | """ 13 | A `Highway layer `_. 14 | Adopted from the AllenNLP implementation. 15 | """ 16 | 17 | def __init__( 18 | self, 19 | input_dim: int, 20 | num_layers: int = 1 21 | ): 22 | super(Highway, self).__init__() 23 | self.input_dim = input_dim 24 | self.layers = nn.ModuleList([nn.Linear(input_dim, input_dim * 2) 25 | for _ in range(num_layers)]) 26 | self.activation = nn.ReLU() 27 | 28 | self.reset_parameters() 29 | 30 | def reset_parameters(self): 31 | for layer in self.layers: 32 | # As per comment in AllenNLP: 33 | # We should bias the highway layer to just carry its input forward. We do that by 34 | # setting the bias on `B(x)` to be positive, because that means `g` will be biased to 35 | # be high, so we will carry the input forward. The bias on `B(x)` is the second half 36 | # of the bias vector in each Linear layer. 37 | nn.init.constant_(layer.bias[self.input_dim:], 1) 38 | 39 | nn.init.constant_(layer.bias[:self.input_dim], 0) 40 | nn.init.xavier_normal_(layer.weight) 41 | 42 | def forward( 43 | self, 44 | x: torch.Tensor 45 | ): 46 | for layer in self.layers: 47 | projection = layer(x) 48 | proj_x, gate = projection.chunk(2, dim=-1) 49 | proj_x = self.activation(proj_x) 50 | gate = torch.sigmoid(gate) 51 | x = gate * x + (gate.new_tensor([1]) - gate) * proj_x 52 | return x 53 | -------------------------------------------------------------------------------- /fairseq/modules/layer_norm.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | 9 | def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): 10 | if not export and torch.cuda.is_available(): 11 | try: 12 | from apex.normalization import FusedLayerNorm 13 | return FusedLayerNorm(normalized_shape, eps, elementwise_affine) 14 | except ImportError: 15 | pass 16 | return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) 17 | -------------------------------------------------------------------------------- /fairseq/modules/learned_positional_embedding.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.nn as nn 7 | 8 | from fairseq import utils 9 | 10 | 11 | class LearnedPositionalEmbedding(nn.Embedding): 12 | """ 13 | This module learns positional embeddings up to a fixed maximum size. 14 | Padding ids are ignored by either offsetting based on padding_idx 15 | or by setting padding_idx to None and ensuring that the appropriate 16 | position ids are passed to the forward function. 17 | """ 18 | 19 | def __init__( 20 | self, 21 | num_embeddings: int, 22 | embedding_dim: int, 23 | padding_idx: int, 24 | ): 25 | super().__init__(num_embeddings, embedding_dim, padding_idx) 26 | self.onnx_trace = False 27 | 28 | def forward(self, input, incremental_state=None, positions=None): 29 | """Input is expected to be of size [bsz x seqlen].""" 30 | assert ( 31 | (positions is None) or (self.padding_idx is None) 32 | ), "If positions is pre-computed then padding_idx should not be set." 33 | 34 | if positions is None: 35 | if incremental_state is not None: 36 | # positions is the same for every token when decoding a single step 37 | # Without the int() cast, it doesn't work in some cases when exporting to ONNX 38 | positions = input.data.new(1, 1).fill_(int(self.padding_idx + input.size(1))) 39 | else: 40 | positions = utils.make_positions( 41 | input, self.padding_idx, onnx_trace=self.onnx_trace, 42 | ) 43 | return super().forward(positions) 44 | 45 | def max_positions(self): 46 | """Maximum number of supported positions.""" 47 | if self.padding_idx is not None: 48 | return self.num_embeddings - self.padding_idx - 1 49 | else: 50 | return self.num_embeddings 51 | -------------------------------------------------------------------------------- /fairseq/modules/lightconv_layer/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .lightconv_layer import LightconvLayer # noqa 7 | -------------------------------------------------------------------------------- /fairseq/modules/lightconv_layer/lightconv_cuda.cpp: -------------------------------------------------------------------------------- 1 | /** 2 | * Copyright (c) Facebook, Inc. and its affiliates. 3 | * 4 | * This source code is licensed under the MIT license found in the 5 | * LICENSE file in the root directory of this source tree. 6 | */ 7 | 8 | #include 9 | #include 10 | 11 | std::vector lightconv_cuda_forward( 12 | at::Tensor input, 13 | at::Tensor filters, 14 | int padding_l); 15 | 16 | std::vector lightconv_cuda_backward( 17 | at::Tensor gradOutput, 18 | int padding_l, 19 | at::Tensor input, 20 | at::Tensor filters); 21 | 22 | 23 | #define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") 24 | #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") 25 | #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) 26 | 27 | std::vector lightconv_forward( 28 | at::Tensor input, 29 | at::Tensor filters, 30 | int padding_l) { 31 | 32 | CHECK_INPUT(input); 33 | CHECK_INPUT(filters); 34 | 35 | return lightconv_cuda_forward(input, filters, padding_l); 36 | } 37 | 38 | std::vector lightconv_backward( 39 | at::Tensor gradOutput, 40 | int padding_l, 41 | at::Tensor input, 42 | at::Tensor filters) { 43 | 44 | CHECK_INPUT(gradOutput); 45 | CHECK_INPUT(input); 46 | CHECK_INPUT(filters); 47 | 48 | return lightconv_cuda_backward(gradOutput, padding_l, input, filters); 49 | } 50 | 51 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 52 | m.def("forward", &lightconv_forward, "lighconv forward (CUDA)"); 53 | m.def("backward", &lightconv_backward, "lighconv backward (CUDA)"); 54 | } 55 | -------------------------------------------------------------------------------- /fairseq/modules/lightconv_layer/setup.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | from setuptools import setup 8 | from torch.utils.cpp_extension import CUDAExtension, BuildExtension 9 | 10 | setup( 11 | name='lightconv_layer', 12 | ext_modules=[ 13 | CUDAExtension('lightconv_cuda', [ 14 | 'lightconv_cuda.cpp', 15 | 'lightconv_cuda_kernel.cu', 16 | ]), 17 | ], 18 | cmdclass={ 19 | 'build_ext': BuildExtension 20 | }) 21 | -------------------------------------------------------------------------------- /fairseq/modules/logsumexp_moe.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | 8 | 9 | class LogSumExpMoE(torch.autograd.Function): 10 | """Standard LogSumExp forward pass, but use *posterior* for the backward. 11 | 12 | See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" 13 | (Shen et al., 2019) `_. 14 | """ 15 | 16 | @staticmethod 17 | def forward(ctx, logp, posterior, dim=-1): 18 | ctx.save_for_backward(posterior) 19 | ctx.dim = dim 20 | return torch.logsumexp(logp, dim=dim) 21 | 22 | @staticmethod 23 | def backward(ctx, grad_output): 24 | posterior, = ctx.saved_tensors 25 | grad_logp = grad_output.unsqueeze(ctx.dim) * posterior 26 | return grad_logp, None, None 27 | -------------------------------------------------------------------------------- /fairseq/modules/mean_pool_gating_network.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | import torch.nn.functional as F 8 | 9 | 10 | class MeanPoolGatingNetwork(torch.nn.Module): 11 | """A simple mean-pooling gating network for selecting experts. 12 | 13 | This module applies mean pooling over an encoder's output and returns 14 | reponsibilities for each expert. The encoder format is expected to match 15 | :class:`fairseq.models.transformer.TransformerEncoder`. 16 | """ 17 | 18 | def __init__(self, embed_dim, num_experts, dropout=None): 19 | super().__init__() 20 | self.embed_dim = embed_dim 21 | self.num_experts = num_experts 22 | 23 | self.fc1 = torch.nn.Linear(embed_dim, embed_dim) 24 | self.dropout = torch.nn.Dropout(dropout) if dropout is not None else None 25 | self.fc2 = torch.nn.Linear(embed_dim, num_experts) 26 | 27 | def forward(self, encoder_out): 28 | if not ( 29 | hasattr(encoder_out, 'encoder_out') 30 | and hasattr(encoder_out, 'encoder_padding_mask') 31 | and encoder_out.encoder_out.size(2) == self.embed_dim 32 | ): 33 | raise ValueError('Unexpected format for encoder_out') 34 | 35 | # mean pooling over time 36 | encoder_padding_mask = encoder_out.encoder_padding_mask # B x T 37 | encoder_out = encoder_out.encoder_out.transpose(0, 1) # B x T x C 38 | if encoder_padding_mask is not None: 39 | encoder_out = encoder_out.clone() # required because of transpose above 40 | encoder_out[encoder_padding_mask] = 0 41 | ntokens = torch.sum(~encoder_padding_mask, dim=1, keepdim=True) 42 | x = torch.sum(encoder_out, dim=1) / ntokens.type_as(encoder_out) 43 | else: 44 | x = torch.mean(encoder_out, dim=1) 45 | 46 | x = torch.tanh(self.fc1(x)) 47 | if self.dropout is not None: 48 | x = self.dropout(x) 49 | x = self.fc2(x) 50 | return F.log_softmax(x, dim=-1, dtype=torch.float32).type_as(x) 51 | -------------------------------------------------------------------------------- /fairseq/modules/positional_embedding.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.nn as nn 7 | 8 | from .learned_positional_embedding import LearnedPositionalEmbedding 9 | from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding 10 | 11 | 12 | def PositionalEmbedding( 13 | num_embeddings: int, 14 | embedding_dim: int, 15 | padding_idx: int, 16 | learned: bool = False, 17 | ): 18 | if learned: 19 | # if padding_idx is specified then offset the embedding ids by 20 | # this index and adjust num_embeddings appropriately 21 | # TODO: The right place for this offset would be inside 22 | # LearnedPositionalEmbedding. Move this there for a cleaner implementation. 23 | if padding_idx is not None: 24 | num_embeddings = num_embeddings + padding_idx + 1 25 | m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) 26 | nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) 27 | if padding_idx is not None: 28 | nn.init.constant_(m.weight[padding_idx], 0) 29 | else: 30 | m = SinusoidalPositionalEmbedding( 31 | embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, 32 | ) 33 | return m 34 | -------------------------------------------------------------------------------- /fairseq/modules/scalar_bias.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | # 6 | 7 | import torch 8 | 9 | 10 | class ScalarBias(torch.autograd.Function): 11 | """ 12 | Adds a vector of scalars, used in self-attention mechanism to allow 13 | the model to optionally attend to this vector instead of the past 14 | """ 15 | 16 | @staticmethod 17 | def forward(ctx, input, dim, bias_init): 18 | size = list(input.size()) 19 | size[dim] += 1 20 | output = input.new(*size).fill_(bias_init) 21 | output.narrow(dim, 1, size[dim] - 1).copy_(input) 22 | ctx.dim = dim 23 | return output 24 | 25 | @staticmethod 26 | def backward(ctx, grad): 27 | return grad.narrow(ctx.dim, 1, grad.size(ctx.dim) - 1), None, None 28 | 29 | 30 | def scalar_bias(input, dim, bias_init=0): 31 | return ScalarBias.apply(input, dim, bias_init) 32 | -------------------------------------------------------------------------------- /fairseq/modules/sparse_transformer_sentence_encoder_layer.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.modules import TransformerSentenceEncoderLayer 7 | from fairseq.modules.sparse_multihead_attention import SparseMultiheadAttention 8 | 9 | 10 | class SparseTransformerSentenceEncoderLayer(TransformerSentenceEncoderLayer): 11 | """ 12 | Implements a Sprase Transformer Encoder Layer (see SparseMultiheadAttention) 13 | """ 14 | 15 | def __init__( 16 | self, 17 | embedding_dim: int = 768, 18 | ffn_embedding_dim: int = 3072, 19 | num_attention_heads: int = 8, 20 | dropout: float = 0.1, 21 | attention_dropout: float = 0.1, 22 | activation_dropout: float = 0.1, 23 | activation_fn: str = 'relu', 24 | add_bias_kv: bool = False, 25 | add_zero_attn: bool = False, 26 | export: bool = False, 27 | is_bidirectional: bool = True, 28 | stride: int = 32, 29 | expressivity: int = 8, 30 | ) -> None: 31 | 32 | super().__init__( 33 | embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, 34 | attention_dropout, activation_dropout, activation_fn, add_bias_kv, 35 | add_zero_attn, export 36 | ) 37 | 38 | self.self_attn = SparseMultiheadAttention( 39 | self.embedding_dim, 40 | num_attention_heads, 41 | dropout=attention_dropout, 42 | add_bias_kv=add_bias_kv, 43 | add_zero_attn=add_zero_attn, 44 | self_attention=True, 45 | is_bidirectional=is_bidirectional, 46 | stride=stride, 47 | expressivity=expressivity, 48 | ) 49 | -------------------------------------------------------------------------------- /fairseq/modules/unfold.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.nn.functional as F 7 | 8 | 9 | def unfold1d(x, kernel_size, padding_l, pad_value=0): 10 | '''unfold T x B x C to T x B x C x K''' 11 | if kernel_size > 1: 12 | T, B, C = x.size() 13 | x = F.pad(x, (0, 0, 0, 0, padding_l, kernel_size - 1 - padding_l), value=pad_value) 14 | x = x.as_strided((T, B, C, kernel_size), (B*C, C, 1, B*C)) 15 | else: 16 | x = x.unsqueeze(3) 17 | return x 18 | -------------------------------------------------------------------------------- /fairseq/optim/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import importlib 7 | import os 8 | 9 | from fairseq import registry 10 | from fairseq.optim.fairseq_optimizer import FairseqOptimizer 11 | from fairseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer 12 | from fairseq.optim.bmuf import FairseqBMUF # noqa 13 | 14 | 15 | __all__ = [ 16 | 'FairseqOptimizer', 17 | 'FP16Optimizer', 18 | 'MemoryEfficientFP16Optimizer', 19 | ] 20 | 21 | 22 | build_optimizer, register_optimizer, OPTIMIZER_REGISTRY = registry.setup_registry( 23 | '--optimizer', 24 | base_class=FairseqOptimizer, 25 | default='nag', 26 | ) 27 | 28 | 29 | # automatically import any Python files in the optim/ directory 30 | for file in os.listdir(os.path.dirname(__file__)): 31 | if file.endswith('.py') and not file.startswith('_'): 32 | module = file[:file.find('.py')] 33 | importlib.import_module('fairseq.optim.' + module) 34 | -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/adadelta.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/adadelta.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/adafactor.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/adafactor.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/adagrad.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/adagrad.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/adam.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/adam.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/adamax.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/adamax.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/bmuf.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/bmuf.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/fairseq_optimizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/fairseq_optimizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/fp16_optimizer.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/fp16_optimizer.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/nag.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/nag.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/__pycache__/sgd.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/__pycache__/sgd.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/adadelta.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.optim 7 | 8 | from . import FairseqOptimizer, register_optimizer 9 | 10 | 11 | @register_optimizer('adadelta') 12 | class Adadelta(FairseqOptimizer): 13 | def __init__(self, args, params): 14 | super().__init__(args) 15 | self._optimizer = torch.optim.Adadelta(params, **self.optimizer_config) 16 | 17 | @staticmethod 18 | def add_args(parser): 19 | """Add optimizer-specific arguments to the parser.""" 20 | # fmt: off 21 | parser.add_argument('--adadelta-rho', type=float, default=0.9, metavar='RHO', 22 | help='coefficient used for computing a running average of squared gradients') 23 | parser.add_argument('--adadelta-eps', type=float, default=1e-6, metavar='EPS', 24 | help='term added to the denominator to improve numerical stability') 25 | parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', 26 | help='weight decay') 27 | parser.add_argument('--anneal-eps', action='store_true', help='flag to anneal eps') 28 | # fmt: on 29 | 30 | @property 31 | def optimizer_config(self): 32 | """ 33 | Return a kwarg dictionary that will be used to override optimizer 34 | args stored in checkpoints. This allows us to load a checkpoint and 35 | resume training using a different set of optimizer args, e.g., with a 36 | different learning rate. 37 | """ 38 | return { 39 | 'lr': self.args.lr[0], 40 | 'rho': self.args.adadelta_rho, 41 | 'eps': self.args.adadelta_eps, 42 | 'weight_decay': self.args.weight_decay, 43 | } 44 | -------------------------------------------------------------------------------- /fairseq/optim/adagrad.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.optim 7 | 8 | from . import FairseqOptimizer, register_optimizer 9 | 10 | 11 | @register_optimizer('adagrad') 12 | class Adagrad(FairseqOptimizer): 13 | def __init__(self, args, params): 14 | super().__init__(args) 15 | self._optimizer = torch.optim.Adagrad(params, **self.optimizer_config) 16 | 17 | @staticmethod 18 | def add_args(parser): 19 | """Add optimizer-specific arguments to the parser.""" 20 | # fmt: off 21 | parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', 22 | help='weight decay') 23 | # fmt: on 24 | 25 | @property 26 | def optimizer_config(self): 27 | """ 28 | Return a kwarg dictionary that will be used to override optimizer 29 | args stored in checkpoints. This allows us to load a checkpoint and 30 | resume training using a different set of optimizer args, e.g., with a 31 | different learning rate. 32 | """ 33 | return { 34 | 'lr': self.args.lr[0], 35 | 'weight_decay': self.args.weight_decay, 36 | } 37 | -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import importlib 7 | import os 8 | 9 | from fairseq import registry 10 | from fairseq.optim.lr_scheduler.fairseq_lr_scheduler import FairseqLRScheduler 11 | 12 | 13 | build_lr_scheduler, register_lr_scheduler, LR_SCHEDULER_REGISTRY = registry.setup_registry( 14 | '--lr-scheduler', 15 | base_class=FairseqLRScheduler, 16 | default='fixed', 17 | ) 18 | 19 | # automatically import any Python files in the optim/lr_scheduler/ directory 20 | for file in os.listdir(os.path.dirname(__file__)): 21 | if file.endswith('.py') and not file.startswith('_'): 22 | module = file[:file.find('.py')] 23 | importlib.import_module('fairseq.optim.lr_scheduler.' + module) 24 | -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/cosine_lr_scheduler.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/cosine_lr_scheduler.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/fairseq_lr_scheduler.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/fairseq_lr_scheduler.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/fixed_schedule.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/fixed_schedule.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/inverse_square_root_schedule.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/inverse_square_root_schedule.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/polynomial_decay_schedule.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/polynomial_decay_schedule.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/reduce_lr_on_plateau.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/reduce_lr_on_plateau.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/tri_stage_lr_scheduler.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/tri_stage_lr_scheduler.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/__pycache__/triangular_lr_scheduler.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/optim/lr_scheduler/__pycache__/triangular_lr_scheduler.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/optim/lr_scheduler/fairseq_lr_scheduler.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from .. import FairseqOptimizer 7 | 8 | 9 | class FairseqLRScheduler(object): 10 | 11 | def __init__(self, args, optimizer): 12 | super().__init__() 13 | if not isinstance(optimizer, FairseqOptimizer): 14 | raise ValueError('optimizer must be an instance of FairseqOptimizer') 15 | self.args = args 16 | self.optimizer = optimizer 17 | self.best = None 18 | 19 | @staticmethod 20 | def add_args(parser): 21 | """Add arguments to the parser for this LR scheduler.""" 22 | pass 23 | 24 | def state_dict(self): 25 | """Return the LR scheduler state dict.""" 26 | return {'best': self.best} 27 | 28 | def load_state_dict(self, state_dict): 29 | """Load an LR scheduler state dict.""" 30 | self.best = state_dict['best'] 31 | 32 | def step(self, epoch, val_loss=None): 33 | """Update the learning rate at the end of the given epoch.""" 34 | if val_loss is not None: 35 | if self.best is None: 36 | self.best = val_loss 37 | else: 38 | self.best = min(self.best, val_loss) 39 | 40 | def step_update(self, num_updates): 41 | """Update the learning rate after each update.""" 42 | return self.optimizer.get_lr() 43 | -------------------------------------------------------------------------------- /fairseq/optim/sgd.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch.optim 7 | 8 | from . import FairseqOptimizer, register_optimizer 9 | 10 | 11 | @register_optimizer('sgd') 12 | class SGD(FairseqOptimizer): 13 | def __init__(self, args, params): 14 | super().__init__(args) 15 | self._optimizer = torch.optim.SGD(params, **self.optimizer_config) 16 | 17 | @staticmethod 18 | def add_args(parser): 19 | """Add optimizer-specific arguments to the parser.""" 20 | # fmt: off 21 | parser.add_argument('--momentum', default=0.0, type=float, metavar='M', 22 | help='momentum factor') 23 | parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', 24 | help='weight decay') 25 | # fmt: on 26 | 27 | @property 28 | def optimizer_config(self): 29 | """ 30 | Return a kwarg dictionary that will be used to override optimizer 31 | args stored in checkpoints. This allows us to load a checkpoint and 32 | resume training using a different set of optimizer args, e.g., with a 33 | different learning rate. 34 | """ 35 | return { 36 | 'lr': self.args.lr[0], 37 | 'momentum': self.args.momentum, 38 | 'weight_decay': self.args.weight_decay, 39 | } 40 | -------------------------------------------------------------------------------- /fairseq/pdb.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import multiprocessing 7 | import os 8 | import pdb 9 | import sys 10 | 11 | 12 | __all__ = ['set_trace'] 13 | 14 | 15 | _stdin = [None] 16 | _stdin_lock = multiprocessing.Lock() 17 | try: 18 | _stdin_fd = sys.stdin.fileno() 19 | except Exception: 20 | _stdin_fd = None 21 | 22 | 23 | class MultiprocessingPdb(pdb.Pdb): 24 | """A Pdb wrapper that works in a multiprocessing environment. 25 | 26 | Usage: `from fairseq import pdb; pdb.set_trace()` 27 | """ 28 | 29 | def __init__(self): 30 | pdb.Pdb.__init__(self, nosigint=True) 31 | 32 | def _cmdloop(self): 33 | stdin_bak = sys.stdin 34 | with _stdin_lock: 35 | try: 36 | if _stdin_fd is not None: 37 | if not _stdin[0]: 38 | _stdin[0] = os.fdopen(_stdin_fd) 39 | sys.stdin = _stdin[0] 40 | self.cmdloop() 41 | finally: 42 | sys.stdin = stdin_bak 43 | 44 | 45 | def set_trace(): 46 | pdb = MultiprocessingPdb() 47 | pdb.set_trace(sys._getframe().f_back) 48 | -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/audio_pretraining.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/audio_pretraining.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/back_distil.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/back_distil.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/cross_lingual_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/cross_lingual_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/denoising.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/denoising.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/fairseq_task.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/fairseq_task.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/language_modeling.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/language_modeling.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/legacy_masked_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/legacy_masked_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/masked_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/masked_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/multilingual_masked_lm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/multilingual_masked_lm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/multilingual_translation.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/multilingual_translation.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/semisupervised_translation.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/semisupervised_translation.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/sentence_prediction.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/sentence_prediction.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/sentence_ranking.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/sentence_ranking.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/translation.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/translation.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/translation_from_pretrained_xlm.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/translation_from_pretrained_xlm.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/translation_lev.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/translation_lev.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/__pycache__/translation_moe.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq/tasks/__pycache__/translation_moe.cpython-37.pyc -------------------------------------------------------------------------------- /fairseq/tasks/audio_pretraining.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import os 7 | 8 | from fairseq.data import FileAudioDataset 9 | from . import FairseqTask, register_task 10 | 11 | 12 | @register_task('audio_pretraining') 13 | class AudioPretrainingTask(FairseqTask): 14 | """ 15 | 16 | """ 17 | 18 | @staticmethod 19 | def add_args(parser): 20 | """Add task-specific arguments to the parser.""" 21 | parser.add_argument('data', help='path to data directory') 22 | parser.add_argument('--sample-rate', default=16000, type=int, 23 | help='target sample rate. audio files will be up/down sampled to this rate') 24 | parser.add_argument('--max-sample-size', default=None, type=int, 25 | help='max sample size to crop to for batching. default = min sample length') 26 | parser.add_argument('--min-sample-size', default=None, type=int, 27 | help='min sample size to crop to for batching. default = same as --max-sample-size') 28 | 29 | def __init__(self, args): 30 | super().__init__(args) 31 | 32 | @classmethod 33 | def setup_task(cls, args, **kwargs): 34 | """Setup the task (e.g., load dictionaries). 35 | 36 | Args: 37 | args (argparse.Namespace): parsed command-line arguments 38 | """ 39 | return cls(args) 40 | 41 | def load_dataset(self, split, **kwargs): 42 | """Load a given dataset split. 43 | 44 | Args: 45 | split (str): name of the split (e.g., train, valid, test) 46 | """ 47 | 48 | manifest = os.path.join(self.args.data, '{}.tsv'.format(split)) 49 | self.datasets[split] = FileAudioDataset(manifest, 50 | sample_rate=self.args.sample_rate, 51 | max_sample_size=self.args.max_sample_size, 52 | min_sample_size=self.args.min_sample_size) 53 | 54 | @property 55 | def target_dictionary(self): 56 | """Return the :class:`~fairseq.data.Dictionary` for the language 57 | model.""" 58 | return None 59 | -------------------------------------------------------------------------------- /fairseq/tasks/translation_from_pretrained_xlm.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary 7 | from fairseq.tasks.translation import TranslationTask 8 | 9 | from . import register_task 10 | 11 | 12 | @register_task("translation_from_pretrained_xlm") 13 | class TranslationFromPretrainedXLMTask(TranslationTask): 14 | """ 15 | Same as TranslationTask except use the MaskedLMDictionary class so that 16 | we can load data that was binarized with the MaskedLMDictionary class. 17 | 18 | This task should be used for the entire training pipeline when we want to 19 | train an NMT model from a pretrained XLM checkpoint: binarizing NMT data, 20 | training NMT with the pretrained XLM checkpoint, and subsequent evaluation 21 | of that trained model. 22 | """ 23 | 24 | @classmethod 25 | def load_dictionary(cls, filename): 26 | """Load the masked LM dictionary from the filename 27 | 28 | Args: 29 | filename (str): the filename 30 | """ 31 | return MaskedLMDictionary.load(filename) 32 | -------------------------------------------------------------------------------- /fairseq/tokenizer.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import re 7 | 8 | SPACE_NORMALIZER = re.compile(r"\s+") 9 | 10 | 11 | def tokenize_line(line): 12 | line = SPACE_NORMALIZER.sub(" ", line) 13 | line = line.strip() 14 | return line.split() 15 | -------------------------------------------------------------------------------- /fairseq_cli/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/fairseq_cli/__init__.py -------------------------------------------------------------------------------- /hubconf.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import functools 7 | 8 | from fairseq.hub_utils import BPEHubInterface as bpe # noqa 9 | from fairseq.hub_utils import TokenizerHubInterface as tokenizer # noqa 10 | from fairseq.models import MODEL_REGISTRY 11 | 12 | 13 | dependencies = [ 14 | 'numpy', 15 | 'regex', 16 | 'requests', 17 | 'torch', 18 | ] 19 | 20 | 21 | # torch.hub doesn't build Cython components, so if they are not found then try 22 | # to build them here 23 | try: 24 | import fairseq.data.token_block_utils_fast 25 | except (ImportError, ModuleNotFoundError): 26 | try: 27 | import cython 28 | import os 29 | from setuptools import sandbox 30 | sandbox.run_setup( 31 | os.path.join(os.path.dirname(__file__), 'setup.py'), 32 | ['build_ext', '--inplace'], 33 | ) 34 | except (ImportError, ModuleNotFoundError): 35 | print( 36 | 'Unable to build Cython components. Please make sure Cython is ' 37 | 'installed if the torch.hub model you are loading depends on it.' 38 | ) 39 | 40 | 41 | for _model_type, _cls in MODEL_REGISTRY.items(): 42 | for model_name in _cls.hub_models().keys(): 43 | globals()[model_name] = functools.partial( 44 | _cls.from_pretrained, 45 | model_name, 46 | ) 47 | # to simplify the interface we only expose named models 48 | # globals()[_model_type] = _cls.from_pretrained 49 | -------------------------------------------------------------------------------- /scripts/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/scripts/__init__.py -------------------------------------------------------------------------------- /scripts/compare_namespaces.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | """Helper script to compare two argparse.Namespace objects.""" 3 | 4 | from argparse import Namespace # noqa 5 | 6 | 7 | def main(): 8 | 9 | ns1 = eval(input('Namespace 1: ')) 10 | ns2 = eval(input('Namespace 2: ')) 11 | 12 | def keys(ns): 13 | ks = set() 14 | for k in dir(ns): 15 | if not k.startswith('_'): 16 | ks.add(k) 17 | return ks 18 | 19 | k1 = keys(ns1) 20 | k2 = keys(ns2) 21 | 22 | def print_keys(ks, ns1, ns2=None): 23 | for k in ks: 24 | if ns2 is None: 25 | print('{}\t{}'.format(k, getattr(ns1, k, None))) 26 | else: 27 | print('{}\t{}\t{}'.format(k, getattr(ns1, k, None), getattr(ns2, k, None))) 28 | 29 | print('Keys unique to namespace 1:') 30 | print_keys(k1 - k2, ns1) 31 | print() 32 | 33 | print('Keys unique to namespace 2:') 34 | print_keys(k2 - k1, ns2) 35 | print() 36 | 37 | print('Overlapping keys with different values:') 38 | ks = [k for k in k1 & k2 if getattr(ns1, k, 'None') != getattr(ns2, k, 'None')] 39 | print_keys(ks, ns1, ns2) 40 | print() 41 | 42 | 43 | if __name__ == '__main__': 44 | main() 45 | -------------------------------------------------------------------------------- /scripts/compound_split_bleu.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | if [ $# -ne 1 ]; then 4 | echo "usage: $0 GENERATE_PY_OUTPUT" 5 | exit 1 6 | fi 7 | 8 | GEN=$1 9 | 10 | SYS=$GEN.sys 11 | REF=$GEN.ref 12 | 13 | if [ $(tail -n 1 $GEN | grep BLEU | wc -l) -ne 1 ]; then 14 | echo "not done generating" 15 | exit 16 | fi 17 | 18 | grep ^H $GEN | cut -f3- | perl -ple 's{(\S)-(\S)}{$1 ##AT##-##AT## $2}g' > $SYS 19 | grep ^T $GEN | cut -f2- | perl -ple 's{(\S)-(\S)}{$1 ##AT##-##AT## $2}g' > $REF 20 | fairseq-score --sys $SYS --ref $REF 21 | -------------------------------------------------------------------------------- /scripts/convert_dictionary.lua: -------------------------------------------------------------------------------- 1 | -- Copyright (c) Facebook, Inc. and its affiliates. 2 | -- 3 | -- This source code is licensed under the MIT license found in the 4 | -- LICENSE file in the root directory of this source tree. 5 | -- 6 | -- Usage: convert_dictionary.lua 7 | require 'fairseq' 8 | require 'torch' 9 | require 'paths' 10 | 11 | if #arg < 1 then 12 | print('usage: convert_dictionary.lua ') 13 | os.exit(1) 14 | end 15 | if not paths.filep(arg[1]) then 16 | print('error: file does not exit: ' .. arg[1]) 17 | os.exit(1) 18 | end 19 | 20 | dict = torch.load(arg[1]) 21 | dst = paths.basename(arg[1]):gsub('.th7', '.txt') 22 | assert(dst:match('.txt$')) 23 | 24 | f = io.open(dst, 'w') 25 | for idx, symbol in ipairs(dict.index_to_symbol) do 26 | if idx > dict.cutoff then 27 | break 28 | end 29 | f:write(symbol) 30 | f:write(' ') 31 | f:write(dict.index_to_freq[idx]) 32 | f:write('\n') 33 | end 34 | f:close() 35 | -------------------------------------------------------------------------------- /scripts/count_docs.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | """ 7 | Count the number of documents and average number of lines and tokens per 8 | document in a large file. Documents should be separated by a single empty line. 9 | """ 10 | 11 | import argparse 12 | import gzip 13 | import sys 14 | 15 | import numpy as np 16 | 17 | 18 | def main(): 19 | parser = argparse.ArgumentParser() 20 | parser.add_argument('input') 21 | parser.add_argument('--gzip', action='store_true') 22 | args = parser.parse_args() 23 | 24 | def gopen(): 25 | if args.gzip: 26 | return gzip.open(args.input, 'r') 27 | else: 28 | return open(args.input, 'r', encoding='utf-8') 29 | 30 | num_lines = [] 31 | num_toks = [] 32 | with gopen() as h: 33 | num_docs = 1 34 | num_lines_in_doc = 0 35 | num_toks_in_doc = 0 36 | for i, line in enumerate(h): 37 | if len(line.strip()) == 0: # empty line indicates new document 38 | num_docs += 1 39 | num_lines.append(num_lines_in_doc) 40 | num_toks.append(num_toks_in_doc) 41 | num_lines_in_doc = 0 42 | num_toks_in_doc = 0 43 | else: 44 | num_lines_in_doc += 1 45 | num_toks_in_doc += len(line.rstrip().split()) 46 | if i % 1000000 == 0: 47 | print(i, file=sys.stderr, end="", flush=True) 48 | elif i % 100000 == 0: 49 | print(".", file=sys.stderr, end="", flush=True) 50 | print(file=sys.stderr, flush=True) 51 | 52 | print("found {} docs".format(num_docs)) 53 | print("average num lines per doc: {}".format(np.mean(num_lines))) 54 | print("average num toks per doc: {}".format(np.mean(num_toks))) 55 | 56 | 57 | if __name__ == '__main__': 58 | main() 59 | -------------------------------------------------------------------------------- /scripts/read_binarized.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | import argparse 8 | 9 | from fairseq.data import data_utils, Dictionary, indexed_dataset 10 | 11 | 12 | def get_parser(): 13 | parser = argparse.ArgumentParser( 14 | description='writes text from binarized file to stdout') 15 | # fmt: off 16 | parser.add_argument('--dataset-impl', help='dataset implementation', 17 | choices=indexed_dataset.get_available_dataset_impl()) 18 | parser.add_argument('--dict', metavar='FP', help='dictionary containing known words', default=None) 19 | parser.add_argument('--input', metavar='FP', required=True, help='binarized file to read') 20 | # fmt: on 21 | 22 | return parser 23 | 24 | 25 | def main(): 26 | parser = get_parser() 27 | args = parser.parse_args() 28 | 29 | dictionary = Dictionary.load(args.dict) if args.dict is not None else None 30 | dataset = data_utils.load_indexed_dataset( 31 | args.input, 32 | dictionary, 33 | dataset_impl=args.dataset_impl, 34 | default='lazy', 35 | ) 36 | 37 | for tensor_line in dataset: 38 | if dictionary is None: 39 | line = ' '.join([str(int(x)) for x in tensor_line]) 40 | else: 41 | line = dictionary.string(tensor_line) 42 | 43 | print(line) 44 | 45 | 46 | if __name__ == '__main__': 47 | main() 48 | -------------------------------------------------------------------------------- /scripts/sacrebleu_pregen.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | if [ $# -ne 4 ]; then 4 | echo "usage: $0 TESTSET SRCLANG TGTLANG GEN" 5 | exit 1 6 | fi 7 | 8 | TESTSET=$1 9 | SRCLANG=$2 10 | TGTLANG=$3 11 | 12 | GEN=$4 13 | 14 | echo 'Cloning Moses github repository (for tokenization scripts)...' 15 | git clone https://github.com/moses-smt/mosesdecoder.git 16 | 17 | SCRIPTS=mosesdecoder/scripts 18 | DETOKENIZER=$SCRIPTS/tokenizer/detokenizer.perl 19 | 20 | grep ^H $GEN \ 21 | | sed 's/^H\-//' \ 22 | | sort -n -k 1 \ 23 | | cut -f 3 \ 24 | | perl $DETOKENIZER -l $TGTLANG \ 25 | | sed "s/ - /-/g" \ 26 | > $GEN.sorted.detok 27 | 28 | sacrebleu --test-set $TESTSET --language-pair "${SRCLANG}-${TGTLANG}" < $GEN.sorted.detok 29 | -------------------------------------------------------------------------------- /scripts/shard_docs.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | """ 7 | Split a large file into shards while respecting document boundaries. Documents 8 | should be separated by a single empty line. 9 | """ 10 | 11 | import argparse 12 | import contextlib 13 | 14 | 15 | def main(): 16 | parser = argparse.ArgumentParser() 17 | parser.add_argument('input') 18 | parser.add_argument('--num-shards', type=int) 19 | args = parser.parse_args() 20 | 21 | assert args.num_shards is not None and args.num_shards > 1 22 | 23 | with open(args.input, 'r', encoding='utf-8') as h: 24 | with contextlib.ExitStack() as stack: 25 | outputs = [ 26 | stack.enter_context(open(args.input + ".shard" + str(i), "w", encoding="utf-8")) 27 | for i in range(args.num_shards) 28 | ] 29 | 30 | doc = [] 31 | first_doc = [True]*args.num_shards 32 | def output_doc(i): 33 | if not first_doc[i]: 34 | outputs[i].write("\n") 35 | first_doc[i] = False 36 | for line in doc: 37 | outputs[i].write(line) 38 | doc.clear() 39 | 40 | num_docs = 0 41 | for line in h: 42 | if line.strip() == "": # empty line indicates new document 43 | output_doc(num_docs % args.num_shards) 44 | num_docs += 1 45 | else: 46 | doc.append(line) 47 | output_doc(num_docs % args.num_shards) 48 | 49 | 50 | if __name__ == '__main__': 51 | main() 52 | -------------------------------------------------------------------------------- /scripts/spm_decode.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # All rights reserved. 4 | # 5 | # This source code is licensed under the license found in the 6 | # LICENSE file in the root directory of this source tree. 7 | 8 | from __future__ import absolute_import, division, print_function, unicode_literals 9 | 10 | import argparse 11 | 12 | import sentencepiece as spm 13 | 14 | 15 | def main(): 16 | parser = argparse.ArgumentParser() 17 | parser.add_argument("--model", required=True, 18 | help="sentencepiece model to use for decoding") 19 | parser.add_argument("--input", required=True, help="input file to decode") 20 | parser.add_argument("--input_format", choices=["piece", "id"], default="piece") 21 | args = parser.parse_args() 22 | 23 | sp = spm.SentencePieceProcessor() 24 | sp.Load(args.model) 25 | 26 | if args.input_format == "piece": 27 | def decode(l): 28 | return "".join(sp.DecodePieces(l)) 29 | elif args.input_format == "id": 30 | def decode(l): 31 | return "".join(sp.DecodeIds(l)) 32 | else: 33 | raise NotImplementedError 34 | 35 | def tok2int(tok): 36 | # remap reference-side (represented as <>) to 0 37 | return int(tok) if tok != "<>" else 0 38 | 39 | with open(args.input, "r", encoding="utf-8") as h: 40 | for line in h: 41 | print(decode(list(map(tok2int, line.rstrip().split())))) 42 | 43 | 44 | if __name__ == "__main__": 45 | main() 46 | -------------------------------------------------------------------------------- /scripts/spm_train.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # All rights reserved. 4 | # 5 | # This source code is licensed under the license found in the 6 | # LICENSE file in the root directory of this source tree. 7 | 8 | from __future__ import absolute_import, division, print_function, unicode_literals 9 | 10 | import sys 11 | 12 | import sentencepiece as spm 13 | 14 | 15 | if __name__ == "__main__": 16 | spm.SentencePieceTrainer.Train(" ".join(sys.argv[1:])) 17 | -------------------------------------------------------------------------------- /scripts/wav2vec_manifest.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | """ 7 | Data pre-processing: build vocabularies and binarize training data. 8 | """ 9 | 10 | import argparse 11 | import glob 12 | import os 13 | import soundfile 14 | import random 15 | 16 | 17 | def get_parser(): 18 | parser = argparse.ArgumentParser() 19 | parser.add_argument('root', metavar='DIR', help='root directory containing flac files to index') 20 | parser.add_argument('--valid-percent', default=0.01, type=float, metavar='D', 21 | help='percentage of data to use as validation set (between 0 and 1)') 22 | parser.add_argument('--dest', default='.', type=str, metavar='DIR', help='output directory') 23 | parser.add_argument('--ext', default='flac', type=str, metavar='EXT', help='extension to look for') 24 | parser.add_argument('--seed', default=42, type=int, metavar='N', help='random seed') 25 | parser.add_argument('--path-must-contain', default=None, type=str, metavar='FRAG', 26 | help='if set, path must contain this substring for a file to be included in the manifest') 27 | return parser 28 | 29 | 30 | def main(args): 31 | assert args.valid_percent >= 0 and args.valid_percent <= 1. 32 | 33 | dir_path = os.path.realpath(args.root) 34 | search_path = os.path.join(dir_path, '**/*.' + args.ext) 35 | rand = random.Random(args.seed) 36 | 37 | with open(os.path.join(args.dest, 'train.tsv'), 'w') as train_f, open( 38 | os.path.join(args.dest, 'valid.tsv'), 'w') as valid_f: 39 | print(dir_path, file=train_f) 40 | print(dir_path, file=valid_f) 41 | 42 | for fname in glob.iglob(search_path, recursive=True): 43 | file_path = os.path.realpath(fname) 44 | 45 | if args.path_must_contain and args.path_must_contain not in file_path: 46 | continue 47 | 48 | frames = soundfile.info(fname).frames 49 | dest = train_f if rand.random() > args.valid_percent else valid_f 50 | print('{}\t{}'.format(os.path.relpath(file_path, dir_path), frames), file=dest) 51 | 52 | 53 | if __name__ == '__main__': 54 | parser = get_parser() 55 | args = parser.parse_args() 56 | main(args) 57 | -------------------------------------------------------------------------------- /tests/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/tests/__init__.py -------------------------------------------------------------------------------- /tests/speech_recognition/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/thunlp/Knowledge-Inheritance/0d16ff135834ff2cace0b9769b0d3501c2dd5cbe/tests/speech_recognition/__init__.py -------------------------------------------------------------------------------- /tests/speech_recognition/test_collaters.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | import unittest 8 | 9 | import numpy as np 10 | import torch 11 | from examples.speech_recognition.data.collaters import Seq2SeqCollater 12 | 13 | 14 | class TestSeq2SeqCollator(unittest.TestCase): 15 | def test_collate(self): 16 | 17 | eos_idx = 1 18 | pad_idx = 0 19 | collater = Seq2SeqCollater( 20 | feature_index=0, label_index=1, pad_index=pad_idx, eos_index=eos_idx 21 | ) 22 | 23 | # 2 frames in the first sample and 3 frames in the second one 24 | frames1 = np.array([[7, 8], [9, 10]]) 25 | frames2 = np.array([[1, 2], [3, 4], [5, 6]]) 26 | target1 = np.array([4, 2, 3, eos_idx]) 27 | target2 = np.array([3, 2, eos_idx]) 28 | sample1 = {"id": 0, "data": [frames1, target1]} 29 | sample2 = {"id": 1, "data": [frames2, target2]} 30 | batch = collater.collate([sample1, sample2]) 31 | 32 | # collate sort inputs by frame's length before creating the batch 33 | self.assertTensorEqual(batch["id"], torch.tensor([1, 0])) 34 | self.assertEqual(batch["ntokens"], 7) 35 | self.assertTensorEqual( 36 | batch["net_input"]["src_tokens"], 37 | torch.tensor( 38 | [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [pad_idx, pad_idx]]] 39 | ), 40 | ) 41 | self.assertTensorEqual( 42 | batch["net_input"]["prev_output_tokens"], 43 | torch.tensor([[eos_idx, 3, 2, pad_idx], [eos_idx, 4, 2, 3]]), 44 | ) 45 | self.assertTensorEqual(batch["net_input"]["src_lengths"], torch.tensor([3, 2])) 46 | self.assertTensorEqual( 47 | batch["target"], 48 | torch.tensor([[3, 2, eos_idx, pad_idx], [4, 2, 3, eos_idx]]), 49 | ) 50 | self.assertEqual(batch["nsentences"], 2) 51 | 52 | def assertTensorEqual(self, t1, t2): 53 | self.assertEqual(t1.size(), t2.size(), "size mismatch") 54 | self.assertEqual(t1.ne(t2).long().sum(), 0) 55 | 56 | 57 | if __name__ == "__main__": 58 | unittest.main() 59 | -------------------------------------------------------------------------------- /tests/speech_recognition/test_cross_entropy.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # 4 | # This source code is licensed under the MIT license found in the 5 | # LICENSE file in the root directory of this source tree. 6 | 7 | from examples.speech_recognition.criterions.cross_entropy_acc import CrossEntropyWithAccCriterion 8 | from .asr_test_base import CrossEntropyCriterionTestBase 9 | 10 | 11 | class CrossEntropyWithAccCriterionTest(CrossEntropyCriterionTestBase): 12 | def setUp(self): 13 | self.criterion_cls = CrossEntropyWithAccCriterion 14 | super().setUp() 15 | 16 | def test_cross_entropy_all_correct(self): 17 | sample = self.get_test_sample(correct=True, soft_target=False, aggregate=False) 18 | loss, sample_size, logging_output = self.criterion( 19 | self.model, sample, "sum", log_probs=True 20 | ) 21 | assert logging_output["correct"] == 20 22 | assert logging_output["total"] == 20 23 | assert logging_output["sample_size"] == 20 24 | assert logging_output["ntokens"] == 20 25 | 26 | def test_cross_entropy_all_wrong(self): 27 | sample = self.get_test_sample(correct=False, soft_target=False, aggregate=False) 28 | loss, sample_size, logging_output = self.criterion( 29 | self.model, sample, "sum", log_probs=True 30 | ) 31 | assert logging_output["correct"] == 0 32 | assert logging_output["total"] == 20 33 | assert logging_output["sample_size"] == 20 34 | assert logging_output["ntokens"] == 20 35 | -------------------------------------------------------------------------------- /tests/test_character_token_embedder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | import unittest 8 | 9 | from fairseq.data import Dictionary 10 | from fairseq.modules import CharacterTokenEmbedder 11 | 12 | 13 | class TestCharacterTokenEmbedder(unittest.TestCase): 14 | def test_character_token_embedder(self): 15 | vocab = Dictionary() 16 | vocab.add_symbol('hello') 17 | vocab.add_symbol('there') 18 | 19 | embedder = CharacterTokenEmbedder(vocab, [(2, 16), (4, 32), (8, 64), (16, 2)], 64, 5, 2) 20 | 21 | test_sents = [['hello', 'unk', 'there'], ['there'], ['hello', 'there']] 22 | max_len = max(len(s) for s in test_sents) 23 | input = torch.LongTensor(len(test_sents), max_len + 2).fill_(vocab.pad()) 24 | for i in range(len(test_sents)): 25 | input[i][0] = vocab.eos() 26 | for j in range(len(test_sents[i])): 27 | input[i][j + 1] = vocab.index(test_sents[i][j]) 28 | input[i][j + 2] = vocab.eos() 29 | embs = embedder(input) 30 | 31 | assert embs.size() == (len(test_sents), max_len + 2, 5) 32 | self.assertAlmostEqual(embs[0][0], embs[1][0]) 33 | self.assertAlmostEqual(embs[0][0], embs[0][-1]) 34 | self.assertAlmostEqual(embs[0][1], embs[2][1]) 35 | self.assertAlmostEqual(embs[0][3], embs[1][1]) 36 | 37 | embs.sum().backward() 38 | assert embedder.char_embeddings.weight.grad is not None 39 | 40 | def assertAlmostEqual(self, t1, t2): 41 | self.assertEqual(t1.size(), t2.size(), "size mismatch") 42 | self.assertLess((t1 - t2).abs().max(), 1e-6) 43 | 44 | 45 | if __name__ == '__main__': 46 | unittest.main() 47 | -------------------------------------------------------------------------------- /tests/test_concat_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import unittest 7 | 8 | import torch 9 | from fairseq.data import LanguagePairDataset, TokenBlockDataset 10 | from fairseq.data.concat_dataset import ConcatDataset 11 | from tests.test_train import mock_dict 12 | 13 | 14 | class TestConcatDataset(unittest.TestCase): 15 | def setUp(self): 16 | d = mock_dict() 17 | tokens_1 = torch.LongTensor([1]).view(1, -1) 18 | tokens_ds1 = TokenBlockDataset( 19 | tokens_1, 20 | sizes=[tokens_1.size(-1)], 21 | block_size=1, 22 | pad=0, 23 | eos=1, 24 | include_targets=False, 25 | ) 26 | self.dataset_1 = LanguagePairDataset( 27 | tokens_ds1, tokens_ds1.sizes, d, shuffle=False 28 | ) 29 | tokens_2 = torch.LongTensor([2]).view(1, -1) 30 | tokens_ds2 = TokenBlockDataset( 31 | tokens_2, 32 | sizes=[tokens_2.size(-1)], 33 | block_size=1, 34 | pad=0, 35 | eos=1, 36 | include_targets=False, 37 | ) 38 | self.dataset_2 = LanguagePairDataset( 39 | tokens_ds2, tokens_ds2.sizes, d, shuffle=False 40 | ) 41 | 42 | def test_concat_dataset_basics(self): 43 | d = ConcatDataset( 44 | [self.dataset_1, self.dataset_2] 45 | ) 46 | assert(len(d) == 2) 47 | assert(d[0]['source'][0] == 1) 48 | assert(d[1]['source'][0] == 2) 49 | 50 | d = ConcatDataset( 51 | [self.dataset_1, self.dataset_2], sample_ratios=[1, 2] 52 | ) 53 | assert(len(d) == 3) 54 | assert(d[0]['source'][0] == 1) 55 | assert(d[1]['source'][0] == 2) 56 | assert(d[2]['source'][0] == 2) 57 | 58 | d = ConcatDataset( 59 | [self.dataset_1, self.dataset_2], sample_ratios=[2, 1] 60 | ) 61 | assert(len(d) == 3) 62 | assert(d[0]['source'][0] == 1) 63 | assert(d[1]['source'][0] == 1) 64 | assert(d[2]['source'][0] == 2) 65 | -------------------------------------------------------------------------------- /tests/test_convtbc.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | import unittest 8 | from fairseq.modules import ConvTBC 9 | import torch.nn as nn 10 | 11 | 12 | class TestConvTBC(unittest.TestCase): 13 | 14 | def test_convtbc(self): 15 | # ksz, in_channels, out_channels 16 | conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1) 17 | # out_channels, in_channels, ksz 18 | conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1) 19 | 20 | conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2)) 21 | conv_tbc.bias.data.copy_(conv1d.bias.data) 22 | 23 | input_tbc = torch.randn(7, 2, 4, requires_grad=True) 24 | input1d = input_tbc.data.transpose(0, 1).transpose(1, 2) 25 | input1d.requires_grad = True 26 | 27 | output_tbc = conv_tbc(input_tbc) 28 | output1d = conv1d(input1d) 29 | 30 | self.assertAlmostEqual(output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data) 31 | 32 | grad_tbc = torch.randn(output_tbc.size()) 33 | grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous() 34 | 35 | output_tbc.backward(grad_tbc) 36 | output1d.backward(grad1d) 37 | 38 | self.assertAlmostEqual(conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data) 39 | self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data) 40 | self.assertAlmostEqual(input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data) 41 | 42 | def assertAlmostEqual(self, t1, t2): 43 | self.assertEqual(t1.size(), t2.size(), "size mismatch") 44 | self.assertLess((t1 - t2).abs().max(), 1e-4) 45 | 46 | 47 | if __name__ == '__main__': 48 | unittest.main() 49 | -------------------------------------------------------------------------------- /tests/test_dictionary.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import tempfile 7 | import unittest 8 | 9 | import torch 10 | 11 | from fairseq.data import Dictionary 12 | 13 | 14 | class TestDictionary(unittest.TestCase): 15 | 16 | def test_finalize(self): 17 | txt = [ 18 | 'A B C D', 19 | 'B C D', 20 | 'C D', 21 | 'D', 22 | ] 23 | ref_ids1 = list(map(torch.IntTensor, [ 24 | [4, 5, 6, 7, 2], 25 | [5, 6, 7, 2], 26 | [6, 7, 2], 27 | [7, 2], 28 | ])) 29 | ref_ids2 = list(map(torch.IntTensor, [ 30 | [7, 6, 5, 4, 2], 31 | [6, 5, 4, 2], 32 | [5, 4, 2], 33 | [4, 2], 34 | ])) 35 | 36 | # build dictionary 37 | d = Dictionary() 38 | for line in txt: 39 | d.encode_line(line, add_if_not_exist=True) 40 | 41 | def get_ids(dictionary): 42 | ids = [] 43 | for line in txt: 44 | ids.append(dictionary.encode_line(line, add_if_not_exist=False)) 45 | return ids 46 | 47 | def assertMatch(ids, ref_ids): 48 | for toks, ref_toks in zip(ids, ref_ids): 49 | self.assertEqual(toks.size(), ref_toks.size()) 50 | self.assertEqual(0, (toks != ref_toks).sum().item()) 51 | 52 | ids = get_ids(d) 53 | assertMatch(ids, ref_ids1) 54 | 55 | # check finalized dictionary 56 | d.finalize() 57 | finalized_ids = get_ids(d) 58 | assertMatch(finalized_ids, ref_ids2) 59 | 60 | # write to disk and reload 61 | with tempfile.NamedTemporaryFile(mode='w') as tmp_dict: 62 | d.save(tmp_dict.name) 63 | d = Dictionary.load(tmp_dict.name) 64 | reload_ids = get_ids(d) 65 | assertMatch(reload_ids, ref_ids2) 66 | assertMatch(finalized_ids, reload_ids) 67 | 68 | 69 | if __name__ == '__main__': 70 | unittest.main() 71 | -------------------------------------------------------------------------------- /tests/test_iterators.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import unittest 7 | 8 | from fairseq.data import iterators 9 | 10 | 11 | class TestIterators(unittest.TestCase): 12 | 13 | def test_counting_iterator(self): 14 | x = list(range(10)) 15 | itr = iterators.CountingIterator(x) 16 | self.assertTrue(itr.has_next()) 17 | self.assertEqual(next(itr), 0) 18 | self.assertEqual(next(itr), 1) 19 | itr.skip(3) 20 | self.assertEqual(next(itr), 5) 21 | itr.skip(3) 22 | self.assertEqual(next(itr), 9) 23 | self.assertFalse(itr.has_next()) 24 | 25 | 26 | if __name__ == '__main__': 27 | unittest.main() 28 | -------------------------------------------------------------------------------- /tests/test_memory_efficient_fp16.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import argparse 7 | import unittest 8 | 9 | import torch 10 | 11 | from fairseq.optim.adam import FairseqAdam 12 | from fairseq.optim.fp16_optimizer import MemoryEfficientFP16Optimizer 13 | 14 | 15 | class TestMemoryEfficientFP16(unittest.TestCase): 16 | 17 | def test_load_state_dict(self): 18 | # define simple FP16 model 19 | model = torch.nn.Linear(5, 5).cuda().half() 20 | params = list(model.parameters()) 21 | 22 | # initialize memory efficient FP16 optimizer 23 | optimizer = FairseqAdam( 24 | argparse.Namespace( 25 | lr=[0.00001], 26 | adam_betas='(0.9, 0.999)', 27 | adam_eps=1e-8, 28 | weight_decay=0.0, 29 | ), 30 | params, 31 | ) 32 | me_optimizer = MemoryEfficientFP16Optimizer( 33 | argparse.Namespace( 34 | fp16_init_scale=1, 35 | fp16_scale_window=1, 36 | fp16_scale_tolerance=1, 37 | threshold_loss_scale=1, 38 | min_loss_scale=1e-4, 39 | ), 40 | params, 41 | optimizer, 42 | ) 43 | 44 | # optimizer state is created in the first step 45 | loss = model(torch.rand(5).cuda().half()).sum() 46 | me_optimizer.backward(loss) 47 | me_optimizer.step() 48 | 49 | # reload state 50 | state = me_optimizer.state_dict() 51 | me_optimizer.load_state_dict(state) 52 | for k, v in me_optimizer.optimizer.state.items(): 53 | self.assertTrue(k.dtype == torch.float16) 54 | for v_i in v.values(): 55 | if torch.is_tensor(v_i): 56 | self.assertTrue(v_i.dtype == torch.float32) 57 | 58 | 59 | if __name__ == '__main__': 60 | unittest.main() 61 | -------------------------------------------------------------------------------- /tests/test_multihead_attention.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | import torch 7 | import unittest 8 | from fairseq.modules.multihead_attention import MultiheadAttention 9 | 10 | 11 | class TestMultiheadAttention(unittest.TestCase): 12 | def test_append_prev_key_padding_mask(self): 13 | bsz = 1 14 | src_len = 4 15 | 16 | cases = [ 17 | # no padding mask 18 | (None, None, None), 19 | # current padding mask only 20 | ( 21 | torch.tensor([[1]]).bool(), 22 | None, 23 | torch.tensor([[0, 0, 0, 1]]).bool(), 24 | ), 25 | # previous padding mask only 26 | ( 27 | None, 28 | torch.tensor([[0, 1, 0]]).bool(), 29 | torch.tensor([[0, 1, 0, 0]]).bool(), 30 | ), 31 | # both padding masks 32 | ( 33 | torch.tensor([[1]]).bool(), 34 | torch.tensor([[0, 1, 0]]).bool(), 35 | torch.tensor([[0, 1, 0, 1]]).bool(), 36 | ), 37 | ] 38 | for c in cases: 39 | key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( 40 | c[0], 41 | c[1], 42 | batch_size=bsz, 43 | src_len=src_len, 44 | static_kv=False, 45 | ) 46 | 47 | if key_padding_mask is not None: 48 | self.assertTrue( 49 | torch.all(torch.eq(key_padding_mask, c[2])), 50 | f'Unexpected resultant key padding mask: {key_padding_mask}' 51 | f' given current: {c[0]} and previous: {c[1]}', 52 | ) 53 | self.assertEqual(key_padding_mask.size(0), bsz) 54 | self.assertEqual(key_padding_mask.size(1), src_len) 55 | else: 56 | self.assertIsNone(c[2]) 57 | 58 | 59 | if __name__ == '__main__': 60 | unittest.main() 61 | --------------------------------------------------------------------------------