├── .ipynb_checkpoints
├── Aula_01 Jupyter-checkpoint.ipynb
├── Aula_02_ Exercício-checkpoint.ipynb
├── Aula_02_Python_Introdução-checkpoint.ipynb
├── Aula_03_Numpy-checkpoint.ipynb
├── Aula_03_Numpy_Exercicios-checkpoint.ipynb
├── Aula_04_Pandas-checkpoint.ipynb
├── Aula_04_Pandas_Exercicios-checkpoint.ipynb
├── Aula_05_Visualização-checkpoint.ipynb
├── Aula_06_01_Regressão Linear-checkpoint.ipynb
├── Aula_06_02_KNN-checkpoint.ipynb
├── Aula_06_03_SVR-checkpoint.ipynb
├── Untitled-checkpoint.ipynb
└── Untitled1-checkpoint.ipynb
├── Aula_01 Jupyter.ipynb
├── Aula_02_ Exercício.ipynb
├── Aula_02_Python_Introdução.ipynb
├── Aula_03_Numpy.ipynb
├── Aula_03_Numpy_Exercicios.ipynb
├── Aula_04_Pandas.ipynb
├── Aula_04_Pandas_Exercicios.ipynb
├── Aula_05_Visualização.ipynb
├── Aula_06_01_Regressão Linear.ipynb
├── Aula_06_02_KNN.ipynb
├── Aula_06_03_SVR.ipynb
├── Livros.pdf
├── Projeto
├── erbs.csv
├── medicoes.csv
├── projeto.odt
└── testLoc.csv
├── Untitled.ipynb
├── Untitled1.ipynb
├── cal_housing.data
├── fig1.jpg
├── imagens
├── jupyter-sq-text.png
└── white_nav_logo.svg
└── videos
└── video1.mp4
/.ipynb_checkpoints/Aula_01 Jupyter-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Jupyter\n",
8 | "---------------"
9 | ]
10 | },
11 | {
12 | "cell_type": "markdown",
13 | "metadata": {},
14 | "source": [
15 | "## Instalação e Execução\n",
16 | "------"
17 | ]
18 | },
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {},
22 | "source": [
23 | "* [Instalar Pacote Anaconda](https://www.anaconda.com/download/)\n",
24 | "* Ir para o diretório de dados \n",
25 | "* Executar no prompt de comando ´jupyter notebook`"
26 | ]
27 | },
28 | {
29 | "cell_type": "markdown",
30 | "metadata": {},
31 | "source": [
32 | "### Jupyter Kernels\n",
33 | "--------------------"
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "metadata": {},
39 | "source": [
40 | "* Python\n",
41 | "* Julia\n",
42 | "* R\n",
43 | "* C#\n",
44 | "* F#\n",
45 | "* Scala\n",
46 | "* Haskell\n",
47 | "* etc...\n",
48 | "\n",
49 | "Você pode verificar os Kernels em [Jupyter Kernels](https://github.com/jupyter/jupyter/wiki/Jupyter-kernels)"
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "## Jupyter Cells (Markdown vs Code)"
57 | ]
58 | },
59 | {
60 | "cell_type": "markdown",
61 | "metadata": {},
62 | "source": [
63 | "* Markdown (short cut = M)\n",
64 | "* Code (short cut = Y)\n",
65 | "* Executar Células (short cut = Shift + Enter)"
66 | ]
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "metadata": {},
71 | "source": [
72 | "### Latex Markdown\n",
73 | "\n",
74 | "$e^{i\\pi} + 1 = 0$"
75 | ]
76 | },
77 | {
78 | "cell_type": "markdown",
79 | "metadata": {},
80 | "source": [
81 | "### Código Markdown"
82 | ]
83 | },
84 | {
85 | "cell_type": "markdown",
86 | "metadata": {},
87 | "source": [
88 | "Exemplo : Python\n",
89 | "```python\n",
90 | "print \"Hello World\"\n",
91 | "```\n",
92 | "Exemplo : Javascript\n",
93 | "```javascript\n",
94 | "console.log(\"Hello World\")\n",
95 | "```"
96 | ]
97 | },
98 | {
99 | "cell_type": "markdown",
100 | "metadata": {},
101 | "source": [
102 | "### Tabelas\n",
103 | "\n",
104 | "| Aluno | Prova | Nota \n",
105 | "| :- |-------------: | :-:\n",
106 | "|Robson Dias | PCOM | 8.5\n",
107 | "| Daniel | PCOM | 10.0\n",
108 | "| Lizandro | PCOM2 | 10.0\n"
109 | ]
110 | },
111 | {
112 | "cell_type": "markdown",
113 | "metadata": {},
114 | "source": [
115 | "## Videos\n",
116 | ""
117 | ]
118 | },
119 | {
120 | "cell_type": "markdown",
121 | "metadata": {},
122 | "source": [
123 | "## Imagens\n",
124 | "\n",
125 | "
\n"
126 | ]
127 | },
128 | {
129 | "cell_type": "markdown",
130 | "metadata": {},
131 | "source": [
132 | "### Principais Atalhos"
133 | ]
134 | },
135 | {
136 | "cell_type": "markdown",
137 | "metadata": {},
138 | "source": [
139 | "* Executar Célula (CTR + ENTER)\n",
140 | "* Inserir Célula Acima (A)\n",
141 | "* Inserir Célula Abaixo (B)\n",
142 | "* Markdown (M)\n",
143 | "* Código (Y)\n",
144 | "* Apagar Céluda (D+D)\n",
145 | "* Retorna última Celula apagada (Z)\n",
146 | "* Copiar Cálula (C)\n"
147 | ]
148 | },
149 | {
150 | "cell_type": "markdown",
151 | "metadata": {},
152 | "source": [
153 | "## M"
154 | ]
155 | },
156 | {
157 | "cell_type": "code",
158 | "execution_count": null,
159 | "metadata": {
160 | "collapsed": true
161 | },
162 | "outputs": [],
163 | "source": []
164 | }
165 | ],
166 | "metadata": {
167 | "kernelspec": {
168 | "display_name": "Python 3",
169 | "language": "python",
170 | "name": "python3"
171 | },
172 | "language_info": {
173 | "codemirror_mode": {
174 | "name": "ipython",
175 | "version": 3
176 | },
177 | "file_extension": ".py",
178 | "mimetype": "text/x-python",
179 | "name": "python",
180 | "nbconvert_exporter": "python",
181 | "pygments_lexer": "ipython3",
182 | "version": "3.6.1"
183 | }
184 | },
185 | "nbformat": 4,
186 | "nbformat_minor": 2
187 | }
188 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/Aula_02_ Exercício-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "### Exercício \n",
8 | "------------------\n",
9 | "Faça uma função em Python que receba um string (frase) e:\n",
10 | "* a) Passe Todas as letras iniciais de palavras para maiúsculas;\n",
11 | "* b) Todas as outras letras devem ficar com exceção das inicias devem ficar em minusculas;\n",
12 | "* c) Os artigos isolados, exceto se for a primeira letra da frase, devem ficar em minúsculo.\n",
13 | "\n",
14 | "**Exemplo 1** : \n",
15 | "* entrada : \"a grande partidA\"\n",
16 | "* Saída : \"A Grande Partida\"\n",
17 | "\n",
18 | "**Exemplo 2** : \n",
19 | "* entrada : \"o livro E o garato\"\n",
20 | "* Saída : \"O Livro e o Garoto\"\n",
21 | "\n"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": null,
27 | "metadata": {
28 | "collapsed": true
29 | },
30 | "outputs": [],
31 | "source": []
32 | }
33 | ],
34 | "metadata": {
35 | "kernelspec": {
36 | "display_name": "Python 3",
37 | "language": "python",
38 | "name": "python3"
39 | },
40 | "language_info": {
41 | "codemirror_mode": {
42 | "name": "ipython",
43 | "version": 3
44 | },
45 | "file_extension": ".py",
46 | "mimetype": "text/x-python",
47 | "name": "python",
48 | "nbconvert_exporter": "python",
49 | "pygments_lexer": "ipython3",
50 | "version": "3.6.1"
51 | }
52 | },
53 | "nbformat": 4,
54 | "nbformat_minor": 2
55 | }
56 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/Aula_02_Python_Introdução-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Python\n",
8 | "\n",
9 | "\n",
10 | "Sumário\n",
11 | "\n",
12 | "* Tipos de Dados\n",
13 | " * Numbers\n",
14 | " * Strings\n",
15 | " * Printing\n",
16 | " * Lists\n",
17 | " * Dictionaries\n",
18 | " * Booleans\n",
19 | " * Tuples \n",
20 | " * Sets\n",
21 | "* Comparadores\n",
22 | "* if,elif, else Statements\n",
23 | "* for Loops\n",
24 | "* while Loops\n",
25 | "* range()\n",
26 | "* list comprehension\n",
27 | "* Funções\n",
28 | "* lambda expressions\n",
29 | "* Mapa e Filtros\n",
30 | "* Métodos\n",
31 | "____"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "## Tipos de Dados\n",
39 | "\n",
40 | "### Números"
41 | ]
42 | },
43 | {
44 | "cell_type": "code",
45 | "execution_count": null,
46 | "metadata": {},
47 | "outputs": [],
48 | "source": [
49 | "1 + 5"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {},
56 | "outputs": [],
57 | "source": [
58 | "2 * 3"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": null,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": [
67 | "1 / 4"
68 | ]
69 | },
70 | {
71 | "cell_type": "code",
72 | "execution_count": null,
73 | "metadata": {},
74 | "outputs": [],
75 | "source": [
76 | "2 ** 3"
77 | ]
78 | },
79 | {
80 | "cell_type": "code",
81 | "execution_count": null,
82 | "metadata": {},
83 | "outputs": [],
84 | "source": [
85 | "16 % 2"
86 | ]
87 | },
88 | {
89 | "cell_type": "code",
90 | "execution_count": null,
91 | "metadata": {},
92 | "outputs": [],
93 | "source": [
94 | "5 % 3"
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": null,
100 | "metadata": {},
101 | "outputs": [],
102 | "source": [
103 | "(2 + 4) * (4 + 5)"
104 | ]
105 | },
106 | {
107 | "cell_type": "markdown",
108 | "metadata": {},
109 | "source": [
110 | "### Variáveis"
111 | ]
112 | },
113 | {
114 | "cell_type": "code",
115 | "execution_count": null,
116 | "metadata": {
117 | "collapsed": true
118 | },
119 | "outputs": [],
120 | "source": [
121 | "# Não pode iniciar com números e caracteres especiais \n",
122 | "var1 = 2"
123 | ]
124 | },
125 | {
126 | "cell_type": "code",
127 | "execution_count": null,
128 | "metadata": {
129 | "collapsed": true
130 | },
131 | "outputs": [],
132 | "source": [
133 | "x = 2\n",
134 | "y = 3"
135 | ]
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": null,
140 | "metadata": {},
141 | "outputs": [],
142 | "source": [
143 | "z = (x^2 + y^2)**(0.5)\n",
144 | "z"
145 | ]
146 | },
147 | {
148 | "cell_type": "code",
149 | "execution_count": null,
150 | "metadata": {},
151 | "outputs": [],
152 | "source": [
153 | "z"
154 | ]
155 | },
156 | {
157 | "cell_type": "markdown",
158 | "metadata": {},
159 | "source": [
160 | "### Strings"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": null,
166 | "metadata": {},
167 | "outputs": [],
168 | "source": [
169 | "'aspas simples'"
170 | ]
171 | },
172 | {
173 | "cell_type": "code",
174 | "execution_count": null,
175 | "metadata": {},
176 | "outputs": [],
177 | "source": [
178 | "\"aspas duplas\""
179 | ]
180 | },
181 | {
182 | "cell_type": "code",
183 | "execution_count": null,
184 | "metadata": {},
185 | "outputs": [],
186 | "source": [
187 | "\"robson's car is broken\""
188 | ]
189 | },
190 | {
191 | "cell_type": "markdown",
192 | "metadata": {},
193 | "source": [
194 | "### Impressão"
195 | ]
196 | },
197 | {
198 | "cell_type": "code",
199 | "execution_count": null,
200 | "metadata": {
201 | "collapsed": true
202 | },
203 | "outputs": [],
204 | "source": [
205 | "x = 'hello word!'"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": null,
211 | "metadata": {},
212 | "outputs": [],
213 | "source": [
214 | "x"
215 | ]
216 | },
217 | {
218 | "cell_type": "code",
219 | "execution_count": null,
220 | "metadata": {},
221 | "outputs": [],
222 | "source": [
223 | "print(x)"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": null,
229 | "metadata": {
230 | "collapsed": true
231 | },
232 | "outputs": [],
233 | "source": [
234 | "nrTitulo = 5\n",
235 | "pais = 'Brasil'"
236 | ]
237 | },
238 | {
239 | "cell_type": "code",
240 | "execution_count": null,
241 | "metadata": {},
242 | "outputs": [],
243 | "source": [
244 | "print('O {pais} foi campeão {nrTitulo} vezes'.format(pais=pais,nrTitulo=nrTitulo))"
245 | ]
246 | },
247 | {
248 | "cell_type": "code",
249 | "execution_count": null,
250 | "metadata": {},
251 | "outputs": [],
252 | "source": [
253 | "print('A {} foi campeão {} vezes'.format(pais,nrTitulo))"
254 | ]
255 | },
256 | {
257 | "cell_type": "markdown",
258 | "metadata": {},
259 | "source": [
260 | "### Listas"
261 | ]
262 | },
263 | {
264 | "cell_type": "code",
265 | "execution_count": null,
266 | "metadata": {},
267 | "outputs": [],
268 | "source": [
269 | "[2,4,8]"
270 | ]
271 | },
272 | {
273 | "cell_type": "code",
274 | "execution_count": null,
275 | "metadata": {},
276 | "outputs": [],
277 | "source": [
278 | "['Oi',1,[1,2],\"a\"]"
279 | ]
280 | },
281 | {
282 | "cell_type": "code",
283 | "execution_count": null,
284 | "metadata": {
285 | "collapsed": true
286 | },
287 | "outputs": [],
288 | "source": [
289 | "lista1 = ['a','b','c','d']"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": null,
295 | "metadata": {
296 | "collapsed": true
297 | },
298 | "outputs": [],
299 | "source": [
300 | "lista1.append('e')"
301 | ]
302 | },
303 | {
304 | "cell_type": "code",
305 | "execution_count": null,
306 | "metadata": {},
307 | "outputs": [],
308 | "source": [
309 | "lista1[0]"
310 | ]
311 | },
312 | {
313 | "cell_type": "code",
314 | "execution_count": null,
315 | "metadata": {},
316 | "outputs": [],
317 | "source": [
318 | "lista1[1:]"
319 | ]
320 | },
321 | {
322 | "cell_type": "code",
323 | "execution_count": null,
324 | "metadata": {},
325 | "outputs": [],
326 | "source": [
327 | "my_list[:1] # último não incluído"
328 | ]
329 | },
330 | {
331 | "cell_type": "code",
332 | "execution_count": null,
333 | "metadata": {
334 | "collapsed": true
335 | },
336 | "outputs": [],
337 | "source": [
338 | "lista1[0] = 'Novo'"
339 | ]
340 | },
341 | {
342 | "cell_type": "code",
343 | "execution_count": null,
344 | "metadata": {
345 | "collapsed": true
346 | },
347 | "outputs": [],
348 | "source": [
349 | "# Lista Encadeiada\n",
350 | "lista2 = [1,2,3,[4,5,['alvo']]]"
351 | ]
352 | },
353 | {
354 | "cell_type": "code",
355 | "execution_count": null,
356 | "metadata": {},
357 | "outputs": [],
358 | "source": [
359 | "lista2[3]"
360 | ]
361 | },
362 | {
363 | "cell_type": "code",
364 | "execution_count": null,
365 | "metadata": {},
366 | "outputs": [],
367 | "source": [
368 | "lista2[3][2]"
369 | ]
370 | },
371 | {
372 | "cell_type": "code",
373 | "execution_count": null,
374 | "metadata": {
375 | "scrolled": false
376 | },
377 | "outputs": [],
378 | "source": [
379 | "lista2[3][2][0]"
380 | ]
381 | },
382 | {
383 | "cell_type": "code",
384 | "execution_count": null,
385 | "metadata": {
386 | "collapsed": true
387 | },
388 | "outputs": [],
389 | "source": [
390 | "'x' in ['x','y','z']"
391 | ]
392 | },
393 | {
394 | "cell_type": "markdown",
395 | "metadata": {},
396 | "source": [
397 | "### Dicionários"
398 | ]
399 | },
400 | {
401 | "cell_type": "code",
402 | "execution_count": 80,
403 | "metadata": {
404 | "collapsed": true
405 | },
406 | "outputs": [],
407 | "source": [
408 | "dic = {'key1':'item1','key2':'item2'}"
409 | ]
410 | },
411 | {
412 | "cell_type": "code",
413 | "execution_count": null,
414 | "metadata": {},
415 | "outputs": [],
416 | "source": [
417 | "dic"
418 | ]
419 | },
420 | {
421 | "cell_type": "code",
422 | "execution_count": null,
423 | "metadata": {},
424 | "outputs": [],
425 | "source": [
426 | "dic['key1']"
427 | ]
428 | },
429 | {
430 | "cell_type": "code",
431 | "execution_count": 81,
432 | "metadata": {},
433 | "outputs": [
434 | {
435 | "data": {
436 | "text/plain": [
437 | "dict_keys(['key1', 'key2'])"
438 | ]
439 | },
440 | "execution_count": 81,
441 | "metadata": {},
442 | "output_type": "execute_result"
443 | }
444 | ],
445 | "source": [
446 | "dic.keys()"
447 | ]
448 | },
449 | {
450 | "cell_type": "code",
451 | "execution_count": null,
452 | "metadata": {
453 | "collapsed": true
454 | },
455 | "outputs": [],
456 | "source": [
457 | "dic.items()"
458 | ]
459 | },
460 | {
461 | "cell_type": "markdown",
462 | "metadata": {},
463 | "source": [
464 | "### Booleans"
465 | ]
466 | },
467 | {
468 | "cell_type": "code",
469 | "execution_count": null,
470 | "metadata": {},
471 | "outputs": [],
472 | "source": [
473 | "True"
474 | ]
475 | },
476 | {
477 | "cell_type": "code",
478 | "execution_count": null,
479 | "metadata": {},
480 | "outputs": [],
481 | "source": [
482 | "False"
483 | ]
484 | },
485 | {
486 | "cell_type": "markdown",
487 | "metadata": {},
488 | "source": [
489 | "### Tuplas "
490 | ]
491 | },
492 | {
493 | "cell_type": "code",
494 | "execution_count": null,
495 | "metadata": {
496 | "collapsed": true
497 | },
498 | "outputs": [],
499 | "source": [
500 | "vogais = ('a','e','i','o','u')"
501 | ]
502 | },
503 | {
504 | "cell_type": "code",
505 | "execution_count": null,
506 | "metadata": {},
507 | "outputs": [],
508 | "source": [
509 | "vogais[0]"
510 | ]
511 | },
512 | {
513 | "cell_type": "code",
514 | "execution_count": null,
515 | "metadata": {},
516 | "outputs": [],
517 | "source": [
518 | "vogais[0] = 'Nova'"
519 | ]
520 | },
521 | {
522 | "cell_type": "markdown",
523 | "metadata": {},
524 | "source": [
525 | "### Sets "
526 | ]
527 | },
528 | {
529 | "cell_type": "code",
530 | "execution_count": null,
531 | "metadata": {},
532 | "outputs": [],
533 | "source": [
534 | "{1,2,3}"
535 | ]
536 | },
537 | {
538 | "cell_type": "code",
539 | "execution_count": null,
540 | "metadata": {},
541 | "outputs": [],
542 | "source": [
543 | "{1,2,2,1,2,1,2,3,3,2,3,2,2,2,1,2,4}"
544 | ]
545 | },
546 | {
547 | "cell_type": "markdown",
548 | "metadata": {},
549 | "source": [
550 | "## Comparadores"
551 | ]
552 | },
553 | {
554 | "cell_type": "code",
555 | "execution_count": null,
556 | "metadata": {},
557 | "outputs": [],
558 | "source": [
559 | "4 > 4"
560 | ]
561 | },
562 | {
563 | "cell_type": "code",
564 | "execution_count": null,
565 | "metadata": {},
566 | "outputs": [],
567 | "source": [
568 | "1 < 4"
569 | ]
570 | },
571 | {
572 | "cell_type": "code",
573 | "execution_count": null,
574 | "metadata": {},
575 | "outputs": [],
576 | "source": [
577 | "1 >= 1"
578 | ]
579 | },
580 | {
581 | "cell_type": "code",
582 | "execution_count": null,
583 | "metadata": {},
584 | "outputs": [],
585 | "source": [
586 | "1 <= 4"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": null,
592 | "metadata": {},
593 | "outputs": [],
594 | "source": [
595 | "1 == 4"
596 | ]
597 | },
598 | {
599 | "cell_type": "code",
600 | "execution_count": null,
601 | "metadata": {},
602 | "outputs": [],
603 | "source": [
604 | "'ok' == 'bye'"
605 | ]
606 | },
607 | {
608 | "cell_type": "markdown",
609 | "metadata": {},
610 | "source": [
611 | "## Operadores Lógicos"
612 | ]
613 | },
614 | {
615 | "cell_type": "code",
616 | "execution_count": null,
617 | "metadata": {},
618 | "outputs": [],
619 | "source": [
620 | "(1 > 2) and (2 < 3)"
621 | ]
622 | },
623 | {
624 | "cell_type": "code",
625 | "execution_count": null,
626 | "metadata": {},
627 | "outputs": [],
628 | "source": [
629 | "(1 > 2) or (2 < 3)"
630 | ]
631 | },
632 | {
633 | "cell_type": "code",
634 | "execution_count": null,
635 | "metadata": {},
636 | "outputs": [],
637 | "source": [
638 | "(1 == 2) or (2 == 3) or (4 == 4)"
639 | ]
640 | },
641 | {
642 | "cell_type": "markdown",
643 | "metadata": {},
644 | "source": [
645 | "## if,elif, else Statements"
646 | ]
647 | },
648 | {
649 | "cell_type": "code",
650 | "execution_count": null,
651 | "metadata": {},
652 | "outputs": [],
653 | "source": [
654 | "if 1 < 2:\n",
655 | " print('Ok!')"
656 | ]
657 | },
658 | {
659 | "cell_type": "code",
660 | "execution_count": null,
661 | "metadata": {},
662 | "outputs": [],
663 | "source": [
664 | "if 1 < 2:\n",
665 | " print('Não OK')"
666 | ]
667 | },
668 | {
669 | "cell_type": "code",
670 | "execution_count": null,
671 | "metadata": {},
672 | "outputs": [],
673 | "source": [
674 | "if 1 < 2:\n",
675 | " print('1º')\n",
676 | "else:\n",
677 | " print('2º')"
678 | ]
679 | },
680 | {
681 | "cell_type": "code",
682 | "execution_count": null,
683 | "metadata": {},
684 | "outputs": [],
685 | "source": [
686 | "if 1 > 2:\n",
687 | " print('1º')\n",
688 | "else:\n",
689 | " print('2º')"
690 | ]
691 | },
692 | {
693 | "cell_type": "code",
694 | "execution_count": null,
695 | "metadata": {},
696 | "outputs": [],
697 | "source": [
698 | "if 1 == 2:\n",
699 | " print('1º')\n",
700 | "elif 3 == 3:\n",
701 | " print('2º')\n",
702 | "else:\n",
703 | " print('3º')"
704 | ]
705 | },
706 | {
707 | "cell_type": "markdown",
708 | "metadata": {},
709 | "source": [
710 | "## for Loops"
711 | ]
712 | },
713 | {
714 | "cell_type": "code",
715 | "execution_count": null,
716 | "metadata": {},
717 | "outputs": [],
718 | "source": [
719 | "seq = [1,2,3,4,5,6]"
720 | ]
721 | },
722 | {
723 | "cell_type": "code",
724 | "execution_count": null,
725 | "metadata": {
726 | "scrolled": true
727 | },
728 | "outputs": [],
729 | "source": [
730 | "for n in seq:\n",
731 | " print(n)"
732 | ]
733 | },
734 | {
735 | "cell_type": "code",
736 | "execution_count": null,
737 | "metadata": {},
738 | "outputs": [],
739 | "source": [
740 | "for n in seq:\n",
741 | " print('OK')"
742 | ]
743 | },
744 | {
745 | "cell_type": "code",
746 | "execution_count": null,
747 | "metadata": {},
748 | "outputs": [],
749 | "source": [
750 | "for m in seq:\n",
751 | " print(m**2)"
752 | ]
753 | },
754 | {
755 | "cell_type": "markdown",
756 | "metadata": {},
757 | "source": [
758 | "## while Loops"
759 | ]
760 | },
761 | {
762 | "cell_type": "code",
763 | "execution_count": 53,
764 | "metadata": {},
765 | "outputs": [
766 | {
767 | "name": "stdout",
768 | "output_type": "stream",
769 | "text": [
770 | "i é igual a : 1\n",
771 | "i é igual a : 2\n",
772 | "i é igual a : 3\n",
773 | "i é igual a : 4\n"
774 | ]
775 | }
776 | ],
777 | "source": [
778 | "i = 1\n",
779 | "while i < 5:\n",
780 | " print('i é igual a : {}'.format(i))\n",
781 | " i = i+1"
782 | ]
783 | },
784 | {
785 | "cell_type": "markdown",
786 | "metadata": {},
787 | "source": [
788 | "## range()"
789 | ]
790 | },
791 | {
792 | "cell_type": "code",
793 | "execution_count": 59,
794 | "metadata": {},
795 | "outputs": [
796 | {
797 | "data": {
798 | "text/plain": [
799 | "4"
800 | ]
801 | },
802 | "execution_count": 59,
803 | "metadata": {},
804 | "output_type": "execute_result"
805 | }
806 | ],
807 | "source": [
808 | "range(1,5)"
809 | ]
810 | },
811 | {
812 | "cell_type": "code",
813 | "execution_count": null,
814 | "metadata": {},
815 | "outputs": [],
816 | "source": [
817 | "for i in range(5):\n",
818 | " print(i)"
819 | ]
820 | },
821 | {
822 | "cell_type": "code",
823 | "execution_count": null,
824 | "metadata": {},
825 | "outputs": [],
826 | "source": [
827 | "list(range(5))"
828 | ]
829 | },
830 | {
831 | "cell_type": "markdown",
832 | "metadata": {},
833 | "source": [
834 | "## list comprehension"
835 | ]
836 | },
837 | {
838 | "cell_type": "code",
839 | "execution_count": null,
840 | "metadata": {
841 | "collapsed": true
842 | },
843 | "outputs": [],
844 | "source": [
845 | "x = [1,2,3,4]"
846 | ]
847 | },
848 | {
849 | "cell_type": "code",
850 | "execution_count": null,
851 | "metadata": {},
852 | "outputs": [],
853 | "source": [
854 | "out = []\n",
855 | "for item in x:\n",
856 | " out.append(item**2)\n",
857 | "print(out)"
858 | ]
859 | },
860 | {
861 | "cell_type": "code",
862 | "execution_count": null,
863 | "metadata": {},
864 | "outputs": [],
865 | "source": [
866 | "[item**2 for item in x]"
867 | ]
868 | },
869 | {
870 | "cell_type": "markdown",
871 | "metadata": {},
872 | "source": [
873 | "## Funções"
874 | ]
875 | },
876 | {
877 | "cell_type": "code",
878 | "execution_count": 60,
879 | "metadata": {
880 | "collapsed": true
881 | },
882 | "outputs": [],
883 | "source": [
884 | "def pot(n=2):\n",
885 | " \"\"\"\n",
886 | " Potência do Número\n",
887 | " \"\"\"\n",
888 | " return n**2"
889 | ]
890 | },
891 | {
892 | "cell_type": "code",
893 | "execution_count": null,
894 | "metadata": {
895 | "scrolled": true
896 | },
897 | "outputs": [],
898 | "source": [
899 | "y = pot(2)"
900 | ]
901 | },
902 | {
903 | "cell_type": "markdown",
904 | "metadata": {},
905 | "source": [
906 | "## lambda expressions"
907 | ]
908 | },
909 | {
910 | "cell_type": "code",
911 | "execution_count": 63,
912 | "metadata": {
913 | "collapsed": true
914 | },
915 | "outputs": [],
916 | "source": [
917 | "def dobrar(x):\n",
918 | " return x*2"
919 | ]
920 | },
921 | {
922 | "cell_type": "code",
923 | "execution_count": 64,
924 | "metadata": {},
925 | "outputs": [
926 | {
927 | "data": {
928 | "text/plain": [
929 | "4"
930 | ]
931 | },
932 | "execution_count": 64,
933 | "metadata": {},
934 | "output_type": "execute_result"
935 | }
936 | ],
937 | "source": [
938 | "dobrar(2)"
939 | ]
940 | },
941 | {
942 | "cell_type": "code",
943 | "execution_count": 69,
944 | "metadata": {},
945 | "outputs": [
946 | {
947 | "data": {
948 | "text/plain": [
949 | "4"
950 | ]
951 | },
952 | "execution_count": 69,
953 | "metadata": {},
954 | "output_type": "execute_result"
955 | }
956 | ],
957 | "source": [
958 | "dobrar =lambda x=2: x*2\n",
959 | "dobrar(2)"
960 | ]
961 | },
962 | {
963 | "cell_type": "markdown",
964 | "metadata": {},
965 | "source": [
966 | "## Mapas e Filtros"
967 | ]
968 | },
969 | {
970 | "cell_type": "code",
971 | "execution_count": 70,
972 | "metadata": {
973 | "collapsed": true
974 | },
975 | "outputs": [],
976 | "source": [
977 | "seq = [1,2,3]"
978 | ]
979 | },
980 | {
981 | "cell_type": "code",
982 | "execution_count": 71,
983 | "metadata": {},
984 | "outputs": [
985 | {
986 | "data": {
987 | "text/plain": [
988 | "