├── 2018-2022_Handouts_QuesSols ├── BITSF312_201819_1_C.pdf ├── BITSF312_201819_1_H.pdf ├── BITSF312_201920_1_C.pdf ├── BITSF312_201920_1_H.pdf ├── CSF425_202122_1_C.pdf ├── CSF425_202122_1_H.pdf ├── CSF425_202122_2_C.pdf ├── CSF425_202122_2_H.pdf └── README.txt ├── DL_Lectures.zip ├── DL_handout.pdf ├── Demos └── vectorisation │ ├── matmul.py │ ├── matmul_gpu.py │ └── vec.py ├── Extras ├── Lecture3_hw.pdf ├── YisSampled.pdf ├── perceptron.pdf └── vectorisation.pdf ├── LICENSE ├── Lectures ├── AISymp22_GNNs.pdf ├── Lecture0.pdf ├── Lecture1.pdf ├── Lecture10.pdf ├── Lecture11.pdf ├── Lecture12.pdf ├── Lecture13.pdf ├── Lecture16.pdf ├── Lecture17.pdf ├── Lecture18.pdf ├── Lecture19.pdf ├── Lecture2.pdf ├── Lecture20.pdf ├── Lecture21.pdf ├── Lecture22.pdf ├── Lecture23.pdf ├── Lecture24.pdf ├── Lecture25.pdf ├── Lecture26.pdf ├── Lecture3.pdf ├── Lecture4.pdf ├── Lecture5.pdf ├── Lecture6.pdf ├── Lecture7.pdf ├── Lecture8.pdf └── Lecture9.pdf ├── Projects ├── CS_F425_DL_Assignment_1.pdf └── CS_F425_DL__Major_Project.pdf ├── README.md └── Tutorials ├── GNN.ipynb ├── NN_basics_Tut1.pdf ├── NN_basics_Tut2.pdf └── Opt_Tut1.pdf /2018-2022_Handouts_QuesSols/BITSF312_201819_1_C.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/BITSF312_201819_1_C.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/BITSF312_201819_1_H.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/BITSF312_201819_1_H.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/BITSF312_201920_1_C.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/BITSF312_201920_1_C.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/BITSF312_201920_1_H.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/BITSF312_201920_1_H.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/CSF425_202122_1_C.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/CSF425_202122_1_C.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/CSF425_202122_1_H.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/CSF425_202122_1_H.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/CSF425_202122_2_C.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/CSF425_202122_2_C.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/CSF425_202122_2_H.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/2018-2022_Handouts_QuesSols/CSF425_202122_2_H.pdf -------------------------------------------------------------------------------- /2018-2022_Handouts_QuesSols/README.txt: -------------------------------------------------------------------------------- 1 | This directory contains course files (mainly, Handouts and Question papers) for the courses taken by AS and TD. 2 | The courses are: Machine Learning, Deep Learning (or Neural Networks) and AI. 3 | 4 | --------------- 5 | Missing files: 6 | --------------- 7 | 2019-20 S1 ML (BITS F464) Compre (probably with Prof. Ashwin) 8 | 2021-22 S2 DL (CS F425) Handout (probably with Tanmay) 9 | 10 | 2022-23 S1, S2 Courses: I am not involved. 11 | 2023-24 S1, S2 Courses: I am not involved. 12 | -------------------------------------------------------------------------------- /DL_Lectures.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/DL_Lectures.zip -------------------------------------------------------------------------------- /DL_handout.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/DL_handout.pdf -------------------------------------------------------------------------------- /Demos/vectorisation/matmul.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import time 3 | 4 | n = 100000 5 | 6 | A = torch.rand(n, n) 7 | B = torch.rand(n, n) 8 | 9 | tic = time.time() 10 | Z = torch.matmul(A, B) 11 | toc = time.time() 12 | 13 | print('Time:',(toc-tic),'s.') 14 | -------------------------------------------------------------------------------- /Demos/vectorisation/matmul_gpu.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import time 3 | 4 | device = torch.cuda.current_device() 5 | 6 | n = 10000 7 | 8 | A = torch.rand(n, n).to(device) 9 | B = torch.rand(n, n).to(device) 10 | 11 | tic = time.time() 12 | Z = torch.matmul(A, B) 13 | toc = time.time() 14 | 15 | print('Time:',(toc-tic),'s.') 16 | 17 | -------------------------------------------------------------------------------- /Demos/vectorisation/vec.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import time 3 | 4 | n = 1000000000 5 | 6 | A = np.random.rand(n) 7 | B = np.random.rand(n) 8 | 9 | tic = time.time() 10 | C = np.dot(A, B) 11 | toc = time.time() 12 | 13 | print(C) 14 | print('Duration: ',(toc-tic),'s') 15 | 16 | 17 | tic = time.time() 18 | C = 0 19 | for i in range(n): 20 | C += A[i]*B[i] 21 | toc = time.time() 22 | 23 | print(C) 24 | print('Duration: ',(toc-tic),'s') 25 | -------------------------------------------------------------------------------- /Extras/Lecture3_hw.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Extras/Lecture3_hw.pdf -------------------------------------------------------------------------------- /Extras/YisSampled.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Extras/YisSampled.pdf -------------------------------------------------------------------------------- /Extras/perceptron.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Extras/perceptron.pdf -------------------------------------------------------------------------------- /Extras/vectorisation.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Extras/vectorisation.pdf -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 Tirtharaj Dash 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /Lectures/AISymp22_GNNs.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/AISymp22_GNNs.pdf -------------------------------------------------------------------------------- /Lectures/Lecture0.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture0.pdf -------------------------------------------------------------------------------- /Lectures/Lecture1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture1.pdf -------------------------------------------------------------------------------- /Lectures/Lecture10.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture10.pdf -------------------------------------------------------------------------------- /Lectures/Lecture11.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture11.pdf -------------------------------------------------------------------------------- /Lectures/Lecture12.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture12.pdf -------------------------------------------------------------------------------- /Lectures/Lecture13.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture13.pdf -------------------------------------------------------------------------------- /Lectures/Lecture16.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture16.pdf -------------------------------------------------------------------------------- /Lectures/Lecture17.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture17.pdf -------------------------------------------------------------------------------- /Lectures/Lecture18.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture18.pdf -------------------------------------------------------------------------------- /Lectures/Lecture19.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture19.pdf -------------------------------------------------------------------------------- /Lectures/Lecture2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture2.pdf -------------------------------------------------------------------------------- /Lectures/Lecture20.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture20.pdf -------------------------------------------------------------------------------- /Lectures/Lecture21.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture21.pdf -------------------------------------------------------------------------------- /Lectures/Lecture22.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture22.pdf -------------------------------------------------------------------------------- /Lectures/Lecture23.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture23.pdf -------------------------------------------------------------------------------- /Lectures/Lecture24.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture24.pdf -------------------------------------------------------------------------------- /Lectures/Lecture25.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture25.pdf -------------------------------------------------------------------------------- /Lectures/Lecture26.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture26.pdf -------------------------------------------------------------------------------- /Lectures/Lecture3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture3.pdf -------------------------------------------------------------------------------- /Lectures/Lecture4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture4.pdf -------------------------------------------------------------------------------- /Lectures/Lecture5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture5.pdf -------------------------------------------------------------------------------- /Lectures/Lecture6.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture6.pdf -------------------------------------------------------------------------------- /Lectures/Lecture7.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture7.pdf -------------------------------------------------------------------------------- /Lectures/Lecture8.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture8.pdf -------------------------------------------------------------------------------- /Lectures/Lecture9.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Lectures/Lecture9.pdf -------------------------------------------------------------------------------- /Projects/CS_F425_DL_Assignment_1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Projects/CS_F425_DL_Assignment_1.pdf -------------------------------------------------------------------------------- /Projects/CS_F425_DL__Major_Project.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Projects/CS_F425_DL__Major_Project.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## Welcome to CS F425 at BITS Pilani, Goa Campus! 2 | 3 | | Primary Instructor (IC) | [Tirtharaj Dash](https://www.bits-pilani.ac.in/goa/tirtharaj/profile) | 4 | |---------------------------|---| 5 | | Teaching Assistants (TAs) | [Atharv Sonwane](https://threewisemonkeys-as.github.io/)     [Anmol Agarwal](https://www.linkedin.com/in/anmol-agarwal-041098/)     [Ameya Laad](http://ameyalaad.github.io/)     [Akhilesh Adithya](https://akhileshadithya.github.io/)| 6 | 7 | Course handout can be found [here](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/DL_handout.pdf). 8 | 9 | 10 | ## Scope and Objective of the course 11 | 12 | Neural Networks has had a long and rich history, and the reincarnated 13 | viewpoint has shifted towards "Deep Neural Networks\" or "Deep 14 | Learning\", primarily due to, (a) availability of the large amount of 15 | data, (b) extensive use of powerful graphics processors, (c) 16 | availability of software libraries to facilitate deep network 17 | implementations, and (d) significant involvement of industrial research 18 | labs in deep learning research. 19 | 20 | This course on "Deep Learning" would focus on the conceptual and 21 | mathematical foundation and computational investigations of recent deep 22 | models as part of a series of laboratory experiments and projects. For 23 | instance, we will focus on newer convolutional neural networks such as 24 | VGG Net, ResNet; various sequence models including attention-based 25 | models such as transformers; and also we will touch upon graph 26 | representation learning using graph neural networks. 27 | 28 | At the end of this course, students should be able to (0) pose 29 | real-world problems in deep learning, (1) source and prepare datasets, 30 | (2) design suitable deep network architecture, (3) prepare input-output 31 | representation (and encodings), (4) decide and design a suitable loss 32 | function for training a deep network, (5) training and deploying deep 33 | models. 34 | 35 | ## Book(s) 36 | 37 | Primary textbooks: 38 | 39 | 1. A. Zhang, Z.C. Lipton, M. Li, A.J. Smola, [Dive into Deep 40 | Learning](https://d2l.ai/index.html). 41 | 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, [Deep 42 | Learning](http://www.deeplearningbook.org/front_matter.pdf), MIT 43 | Press. 44 | 3. Aggarwal, C. C. (2018). Neural networks and deep learning, Springer. 45 | 4. W.L. Hamilton, [Graph Representation Learning 46 | Book](https://www.cs.mcgill.ca/~wlh/grl_book/). 47 | 48 | Other good reference books include: 49 | 50 | 1. Graves, A. (2012). [Supervised sequence labelling with recurrent 51 | neural networks](https://www.cs.toronto.edu/~graves/preprint.pdf). 52 | 2. Francois Chollet, [Deep Learning with 53 | Python](http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep%20Learning%20with%20Python.pdf), 54 | Manning Publishers. 55 | 3. E. Stevens, L. Antiga, T. Viehmann, [Deep Learning with 56 | PyTorch](https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf), 57 | Manning Publishers. 58 | 59 | Textbook-3 is available in our library. Other books are available as 60 | e-books as href-ed.\ 61 | Additioanlly, we may also look at relevant papers from 62 | [NeurIPS](https://nips.cc/), [ICLR](https://iclr.cc/), 63 | [ICML](https://icml.cc/), [IJCAI](https://www.ijcai.org/), 64 | [AAAI](https://aaai.org/Conferences/AAAI/aaai.php). These will be 65 | primarily used during major and minor projects design. 66 | 67 | 68 | ## Theory Materials 69 | 70 | References to the relevent study materials are provided in the lecture slides and in some cases, 71 | these are made available separately. 72 | Duration of each lecture is 50 min, which may get extended by 10-15 min. I am thankful to 73 | my students for tolerating this aspect of my teaching. 74 | The recoded videos of live lectures are accessible to the registered students only. 75 | The slides and videos may not be in sync in some cases; that is, any slide may span 76 | over multiple lecture slots. 77 | 78 | 79 | | Lecture | In-class Lecture | Extra Materials | 80 | |-----------|------------------|-----------------| 81 | | Lecture 0: Introducing the course | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture0.pdf), [video](https://drive.google.com/file/d/1QXLGrSHwjWdS4gvDWeYjh9zj5Dihd3it/view?usp=sharing) | | 82 | | Tutorial 1: NN Basics | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Tutorials/NN_basics_Tut1.pdf), [video](https://drive.google.com/file/d/1s7uPfKM53_5PN30IbrK2chLIPqUvp4of/view?usp=sharing) | | 83 | | Tutorial 2: NN Basics | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Tutorials/NN_basics_Tut2.pdf), [video1](https://drive.google.com/file/d/1HXjtGyx_dSlF_XSmxj3xlZBliNeLYmQm/view?usp=sharing), [video2](https://drive.google.com/file/d/1zq0jROhsIK51DQhCP4m3x0x2Uiqn8QJJ/view?usp=sharing) | [A note on Perceptron](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Extras/perceptron.pdf) | 84 | | Tutorial 3: Optimisation Basics | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Tutorials/Opt_Tut1.pdf) | 85 | | Lecture 1: DL Components and a Bayesian view | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture1.pdf), [video](https://drive.google.com/file/d/1lYs0VouCJ-e2BPlDPV8r2O6v-aGTJh1u/view?usp=sharing) | | 86 | | Lecture 2: Deep Feedforward Nets (MLPs) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture2.pdf), [video](https://drive.google.com/file/d/10eJe8EjPyaNCYiLHmFFEjQPlT1D9JOby/view?usp=sharing) | | 87 | | Lecture 3: Backpropagation in MLP(1) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture3.pdf), [video](https://drive.google.com/file/d/1-Eh_2lAW3m_WICtf4hOrZdiCU3f7KtOK/view?usp=sharing) | [Homework](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Extras/Lecture3_hw.pdf) | 88 | | Lecture 4: Backpropagation in MLP(2) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture4.pdf), [video](https://drive.google.com/file/d/1HCZ8ir6p_KqsMVePknsmWhFhwkDKPF4l/view?usp=sharing) | [Vectorisation](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Extras/vectorisation.pdf), [codes](https://github.com/tirtharajdash/CS-F425_Deep-Learning/tree/main/Demos/vectorisation) | 89 | | Lecture 5: Generalisation(1) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture5.pdf), [video](https://drive.google.com/file/d/1yR_s6YjoeFVe8SUQDjJDJmGyM1qnSwqt/view?usp=sharing) | [What is a dataset?](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Extras/YisSampled.pdf) | 90 | | Lecture 6: Generalisation(2) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture6.pdf), [video](https://drive.google.com/file/d/1VTaFv1TgZeriO9569Iffe-9huKCDFfSN/view?usp=sharing) | | 91 | | Lecture 7: Dropout, Early Stopping | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture7.pdf), [video](https://drive.google.com/file/d/1RzVKVfSRbPThViZxFBpwQHdkXlTtFpTU/view?usp=sharing) | [Dropout Paper](https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf) | 92 | | Lecture 8: Optimisation and Parameter Initialisation | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture8.pdf), [video](https://drive.google.com/file/d/1xbwu334-iVoIGiy11YXXOyD-ndrfjwWU/view?usp=sharing) | | 93 | | Lecture 9: Adaptive Optimisation Methods | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture9.pdf), [video](https://drive.google.com/file/d/1jAyfnim6WiHJM0kzsNnFS9S-Lxr1H72d/view?usp=sharing) | [Adam Paper](https://arxiv.org/pdf/1412.6980.pdf) | 94 | | Lecture 10: Template Matching and CNNs | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture10.pdf), [video](https://drive.google.com/file/d/1odQ-rnu1pTJ_wmw-6Me2GYVmQCF7UxV_/view?usp=sharing) | [Yann LeCun's CNN Paper](http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf) | 95 | | Lecture 11: Fully-Connected Layers to Convolutions | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture11.pdf), [video](https://drive.google.com/file/d/1rKlFf-TLDccHEXSxySr-_fDiJReq6HOd/view?usp=sharing) | | 96 | | Lecture 12: CNN Operators (Convolution, Pooling) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture12.pdf), [video](https://drive.google.com/file/d/1LzKvF1B8XiuFJ7C9kcgM8ZoAAqP5A6_4/view?usp=sharing) | | 97 | | Lecture 13: Gradient Computation in CNNs | [Notes](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture13.pdf), [video](https://drive.google.com/file/d/1ZDRPzNG70scT6pOV5VTa-XMK_gIaLeUP/view?usp=sharing) | | 98 | | Lecture 14: Modern Convolutional Neural Networks | [materials](https://d2l.ai/chapter_convolutional-modern/index.html), [video](https://drive.google.com/file/d/1xTd-igaWdmmdJ5YvSIp9VdOJblWkY2Nr/view?usp=drivesdk) | [AlexNet](https://colab.research.google.com/github/d2l-ai/d2l-pytorch-colab/blob/master/chapter_convolutional-modern/alexnet.ipynb), [VGG](https://colab.research.google.com/github/d2l-ai/d2l-pytorch-colab/blob/master/chapter_convolutional-modern/vgg.ipynb), [NiN](https://colab.research.google.com/github/d2l-ai/d2l-pytorch-colab/blob/master/chapter_convolutional-modern/nin.ipynb), [GoogLeNet](https://colab.research.google.com/github/d2l-ai/d2l-pytorch-colab/blob/master/chapter_convolutional-modern/googlenet.ipynb), [ResNet](https://colab.research.google.com/github/d2l-ai/d2l-pytorch-colab/blob/master/chapter_convolutional-modern/resnet.ipynb) 99 | | Lecture 15: Transfer Learning | [video](https://drive.google.com/file/d/1NfjxSbLdMHGFBC9-din6DBLPB3Phn97K/view?usp=sharing)|[Notebook](https://colab.research.google.com/drive/1D-8H41zXHnsmjeaoOaqcZqIJH08aSbtY?usp=sharing)| 100 | | Lecture 16: Sequence Learning | [materials:8.1-8.3](https://d2l.ai/chapter_recurrent-neural-networks/index.html), [video](https://drive.google.com/file/d/1jgUZhOKi4rV3kAfM47VhGHjPUZoaaoF_/view?usp=sharing) | [board](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture16.pdf) | 101 | | Lecture 17: Recurrent Neural Nets | [video](https://drive.google.com/file/d/1gz4SMrueMBxg-ccP63qi9wN1pV9YBiIg/view?usp=sharing) | [board]() | 102 | | Lecture 18: Backprop Through Time (BPTT) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture17.pdf), [video](https://drive.google.com/file/d/1uettbMlL2Q9KoS0LmyO6dK4ubiQPtM_1/view?usp=sharing) | | 103 | | Midsem solution discussion | [video](https://drive.google.com/file/d/14m0TA0YVqFAD5DyP5BqleFmoMIr18c47/view?usp=sharing) | | 104 | | Lecture 19: Dealing with Vanishing Gradients in RNN | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture18.pdf), [video](https://drive.google.com/file/d/1Bht-fF8Od2YFBBYwAGzablnONg-p72G5/view?usp=sharing) | | 105 | | Lecture 20: Seq-to-Seq Learning, Attention Mechanism | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture19.pdf), [video](https://drive.google.com/file/d/1rgtQA_7efylMz0ysqGQPk-MDQNusXyp6/view?usp=sharing) | | 106 | | Lecture 21: Attention and Self-attention | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture20.pdf), [video](https://drive.google.com/file/d/1elHRINYDPe3lRH818wL0bPDaGJtdxXSO/view?usp=sharing) | [Attention is all you need.](https://arxiv.org/abs/1706.03762) | 107 | | Lecture 22: Multi-head Attention and Transformer | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture21.pdf), [video](https://drive.google.com/file/d/1K--MH8oxbL4yj7OgjjlIMC-C8S1Wh08f/view?usp=sharing) | [Layer Normalisation](https://arxiv.org/abs/1607.06450) | 108 | | Lecture 23: Representation Learning | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture22.pdf), [video](https://drive.google.com/file/d/1W9EkIwCgGTWrIu2_wV7ffpm9ep58ryaa/view?usp=sharing) | | 109 | | Lecture 24: Representation Learning | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture23.pdf), [video](https://drive.google.com/file/d/1lgtMVD-jRiG7TbAWgNSsZSfHEym5q3Yb/view?usp=sharing) | | 110 | | Lecture 25: Generative Modelling (Intro. to VAE) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture24.pdf), [video](https://drive.google.com/file/d/1pjDez6Sk2rF5MK2fekuIJipI4e_lnajr/view?usp=sharing) | | 111 | | Lecture 26: Variational AE | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture25.pdf), [video](https://drive.google.com/file/d/1mqO0l54JsqqZYnIyOgb--6VYu5jDN-KA/view?usp=sharing) | | 112 | | Lecture 27: Generative Adversarial Network (GAN) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/Lecture26.pdf), [video](https://drive.google.com/file/d/1hY8JTKpTPIEIYhlujrEXcVTQN6E2_tDi/view?usp=sharing) | | 113 | | Lecture 28: Energy-based Generative Modelling (RBM) | [materials](https://www.deeplearningbook.org/contents/generative_models.html) | | 114 | | AI Symp 22: [Tutorial Talk on GNNs](https://sites.google.com/goa.bits-pilani.ac.in/aisymposium2022/home?authuser=0) | [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/AISymp22_GNNs.pdf), [video](https://youtu.be/rnM6WwJbkF8)| | 115 | 116 | 117 | 118 | These slides and videos are not really optimised for general public; so, please email me directly if you find 119 | any error or mistake in my lecture slides or videos. This will help me correct these the next time. I sincerely 120 | thank the [MathCha Editor](https://www.mathcha.io/editor) which I use extensively to draw most of the diagrams. 121 | 122 | 123 | ## Lab Materials 124 | 125 | All our labs will be based on PyTorch. See the official [PyTorch Tutorials](https://pytorch.org/tutorials/). 126 | We will also have 1 lab on basic Python and PyTorch. 127 | 128 | Update: According to students' votes, we are fixing the lab timing to be: **Wednesday 6-8 PM**. Please make sure to go through the reading materials (given below) before the lab. 129 | 130 | To run/edit the colab notebooks, please create a copy in your drive and work on that copy. 131 | 132 | | Lab | Reading Material | Recording | Exercise Material | 133 | |-------|------------------|-----------|-------------------| 134 | | Lab 0: Basics of Python and PyTorch | [Python Tutorial Series](https://pythonprogramming.net/introduction-learn-python-3-tutorials/) by Sentdex
[Python Intro](https://cs231n.github.io/python-numpy-tutorial) by Justin Johnson
Section 2.1-2.3 of [d2l.ai](http://d2l.ai/) | [video](https://drive.google.com/file/d/1Be1aqGczs2d8pLkyvPESxyGjYSNonnZK/view?usp=sharing) | [Notebook1](https://colab.research.google.com/drive/1HvAnGuGy6PaZyBtPNtYGUmvH-6CVDn5H?usp=sharing)
[Notebook2](https://colab.research.google.com/drive/1UQYTwZ6_y3ifZBfgIbn0INC87EmjPPtD?usp=sharing) | 135 | | Lab 1: Autograd and MLP | Section 2.4 - 2.5 of [d2l.ai](http://d2l.ai/)
[Intro to Autograd](https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py) | [video](https://drive.google.com/file/d/19YQLqth--2q7xdBER-632GW-kNmT9ayG/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/15L51sdwIeylKQV-BZm2wCEfR9dJT7-Zi?usp=sharing) | 136 | | Lab 2: Regularisation | Section 4.5.2 - 4.5.3 of [d2l.ai](http://d2l.ai/) | [video](https://drive.google.com/file/d/1F8XRs73Tqsat2rtUyNye6ZY9s6EMpNOt/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1X4kl7nGtj_q1rumvZHEsUeSzX1BJ9kJ6?usp=sharing) | 137 | | Lab 3: Hyperparameter Tuning | Section 4.4, 4.6 and 7.5 from [d2l.ai](http://d2l.ai/)
[Hyperparameter tuning](https://www.oreilly.com/library/view/evaluating-machine-learning/9781492048756/ch04.html) | [video](https://drive.google.com/file/d/1fIfybjRUXG4btOvBM9E_90Cpx7YLlvjN/view?usp=sharing) | [Notebook 1](https://colab.research.google.com/drive/1S0Y8xiaBaI6p1Y74MiNnCio6IuOE4Eto?usp=sharing)
[Notebook 2](https://colab.research.google.com/drive/1UHsM00OTT19FexEHwSkrydo13pfvUKXO?usp=sharing) | 138 | | Lab 4: Intro to CNNs | Section 6 from [d2l.ai](http://d2l.ai/) | [video](https://drive.google.com/file/d/1ScRQRsN3zt_Ye6mMD0uC1SHouQCkJyZJ/view?usp=sharing) |[Notebook](https://colab.research.google.com/drive/10afSD0wjQinhHug8RPlPSvooK8ZGfVgc?usp=sharing) | 139 | | Lab 5: Intro to CNNs (Continued) | Section 6 from [d2l.ai](http://d2l.ai/) | [video](https://drive.google.com/file/d/1xNE06_1z7p1POk7BkG9QhJYMM_H1r9gd/view?usp=sharing) |[Notebook](https://colab.research.google.com/drive/10afSD0wjQinhHug8RPlPSvooK8ZGfVgc?usp=sharing) | 140 | | Lab 6: Intro to RNNs | Section 8 from [d2l.ai](http://d2l.ai/) | [part 1](https://drive.google.com/file/d/1ckNOAf1_GfDcQzI-wwqfu6YLIJjttMN4/view?usp=sharing) |[Intro](https://colab.research.google.com/drive/1r4zC-g578oCFTzu8MNmRUQ6aKKrM56mZ?usp=sharing), [Exercises](https://colab.research.google.com/drive/1r4zC-g578oCFTzu8MNmRUQ6aKKrM56mZ?usp=sharing) | 141 | | Lab 7: Intro to Transformers and BERT | NeurIPS Paper: [Attention is all you need](https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf) | [video](https://drive.google.com/file/d/1eZg5a9SPZVN5wwOW63nidjCLKOJdP7b2/view?usp=sharing) |[Official Pytorch Notebook](https://colab.research.google.com/github/pytorch/pytorch.github.io/blob/master/assets/hub/huggingface_pytorch-transformers.ipynb) | 142 | | Extra 1: AI Symposium 2022 Talk-GNNs |Presentation: [slides](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Lectures/AISymp22_GNNs.pdf)| [video](https://youtu.be/rnM6WwJbkF8) |[Official Pytorch Notebook](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Tutorials/GNN.ipynb) | 143 | 144 | 145 | ## Lab Projects 146 | 147 | | Lab Project | Details | Submission Date | Submission Link | 148 | |-------------|---------|-----------------|-----------------| 149 | | Project 1: Residual MLPs | [Assignment 1](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Projects/CS_F425_DL_Assignment_1.pdf) | **Sep 25, 11:59 PM IST** | [Google Classroom](https://classroom.google.com/c/MzgzNTE2MTc5NzE5/a/Mzk4ODI1MzU2MTAw/details) | 150 | | Project 2: Major Project | [Assignment 2](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/Projects/CS_F425_DL__Major_Project.pdf) | **Dec 7, 11:59 PM IST** | [Google Classroom](https://classroom.google.com/u/1/c/MzgzNTE2MTc5NzE5/a/NDM2NTM4NjQ4MDE4/details) | 151 | 152 | ## Previous year Questions and Solutions 153 | 154 | Handouts, Questions and Solutions from previous years (2018-2022) are available [here](https://github.com/tirtharajdash/CS-F425_Deep-Learning/blob/main/2018-2022_Handouts_QuesSols/). 155 | 156 | 157 | ## Using our course materials 158 | 159 | Non-profitable usage of the materials from this course is absolutely free. However, 160 | if you are tech-blogger or a course instructor or a student outside BITS Pilani (Goa Campus) 161 | and you are using our course materials for any non-profitable purposes, 162 | please credit this course page by providing a proper reference to this page. 163 | Any profitable usage of these materials needs permission from the owner ([Tirtharaj Dash](https://tirtharajdash.github.io/)). 164 | Refer the license for more details. 165 | -------------------------------------------------------------------------------- /Tutorials/GNN.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "collapsed_sections": [] 8 | }, 9 | "kernelspec": { 10 | "name": "python3", 11 | "display_name": "Python 3" 12 | }, 13 | "language_info": { 14 | "name": "python" 15 | } 16 | }, 17 | "cells": [ 18 | { 19 | "cell_type": "markdown", 20 | "source": [ 21 | "# Installing Pytorch Geometric" 22 | ], 23 | "metadata": { 24 | "id": "wif3_5wnQsfL" 25 | } 26 | }, 27 | { 28 | "cell_type": "code", 29 | "source": [ 30 | "import os\n", 31 | "import torch\n", 32 | "os.environ['TORCH'] = torch.__version__\n", 33 | "print(torch.__version__)\n", 34 | "\n", 35 | "!pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-${TORCH}.html" 36 | ], 37 | "metadata": { 38 | "colab": { 39 | "base_uri": "https://localhost:8080/" 40 | }, 41 | "id": "Fcme4GOqEfU8", 42 | "outputId": "f85d4581-ecf4-45ac-ff36-9ea9646be5ec" 43 | }, 44 | "execution_count": null, 45 | "outputs": [ 46 | { 47 | "output_type": "stream", 48 | "name": "stdout", 49 | "text": [ 50 | "1.12.1+cu113\n", 51 | "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", 52 | "Looking in links: https://data.pyg.org/whl/torch-1.12.1+cu113.html\n", 53 | "Collecting torch-scatter\n", 54 | " Downloading https://data.pyg.org/whl/torch-1.12.0%2Bcu113/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl (7.9 MB)\n", 55 | "\u001b[K |████████████████████████████████| 7.9 MB 1.7 MB/s \n", 56 | "\u001b[?25hCollecting torch-sparse\n", 57 | " Downloading https://data.pyg.org/whl/torch-1.12.0%2Bcu113/torch_sparse-0.6.15-cp37-cp37m-linux_x86_64.whl (3.5 MB)\n", 58 | "\u001b[K |████████████████████████████████| 3.5 MB 48.5 MB/s \n", 59 | "\u001b[?25hCollecting torch-cluster\n", 60 | " Downloading https://data.pyg.org/whl/torch-1.12.0%2Bcu113/torch_cluster-1.6.0-cp37-cp37m-linux_x86_64.whl (2.4 MB)\n", 61 | "\u001b[K |████████████████████████████████| 2.4 MB 59.8 MB/s \n", 62 | "\u001b[?25hCollecting torch-spline-conv\n", 63 | " Downloading https://data.pyg.org/whl/torch-1.12.0%2Bcu113/torch_spline_conv-1.2.1-cp37-cp37m-linux_x86_64.whl (709 kB)\n", 64 | "\u001b[K |████████████████████████████████| 709 kB 51.0 MB/s \n", 65 | "\u001b[?25hCollecting torch-geometric\n", 66 | " Downloading torch_geometric-2.1.0.post1.tar.gz (467 kB)\n", 67 | "\u001b[K |████████████████████████████████| 467 kB 6.5 MB/s \n", 68 | "\u001b[?25hRequirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from torch-sparse) (1.7.3)\n", 69 | "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (4.64.1)\n", 70 | "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (1.21.6)\n", 71 | "Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (2.11.3)\n", 72 | "Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (2.23.0)\n", 73 | "Requirement already satisfied: pyparsing in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (3.0.9)\n", 74 | "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (1.0.2)\n", 75 | "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->torch-geometric) (2.0.1)\n", 76 | "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (3.0.4)\n", 77 | "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (1.24.3)\n", 78 | "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (2.10)\n", 79 | "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (2022.9.24)\n", 80 | "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->torch-geometric) (1.2.0)\n", 81 | "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->torch-geometric) (3.1.0)\n", 82 | "Building wheels for collected packages: torch-geometric\n", 83 | " Building wheel for torch-geometric (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 84 | " Created wheel for torch-geometric: filename=torch_geometric-2.1.0.post1-py3-none-any.whl size=689859 sha256=83b564b9b300929ddf05da8ffb37aafa7214bc2a976174a1fe70169298cd8c7f\n", 85 | " Stored in directory: /root/.cache/pip/wheels/d1/cb/43/f7f2e472de4d7cff31bceddadc36d634e1e545fbc17961c282\n", 86 | "Successfully built torch-geometric\n", 87 | "Installing collected packages: torch-spline-conv, torch-sparse, torch-scatter, torch-geometric, torch-cluster\n", 88 | "Successfully installed torch-cluster-1.6.0 torch-geometric-2.1.0.post1 torch-scatter-2.0.9 torch-sparse-0.6.15 torch-spline-conv-1.2.1\n" 89 | ] 90 | } 91 | ] 92 | }, 93 | { 94 | "cell_type": "markdown", 95 | "source": [ 96 | "# Data Handling" 97 | ], 98 | "metadata": { 99 | "id": "FaldyXENaiEG" 100 | } 101 | }, 102 | { 103 | "cell_type": "code", 104 | "source": [ 105 | "from torch_geometric.data import Data\n", 106 | "\n", 107 | "edge_index = torch.tensor([[0, 0, 0, 1, 2, 3, 4],\n", 108 | " [2, 1, 3, 2, 1, 3, 1]], dtype=torch.long)\n", 109 | "x = torch.tensor([[10], [0], [1],[6], [3]], dtype=torch.float)\n", 110 | "\n", 111 | "data = Data(x=x, edge_index=edge_index.contiguous())\n", 112 | "print(data)" 113 | ], 114 | "metadata": { 115 | "colab": { 116 | "base_uri": "https://localhost:8080/" 117 | }, 118 | "id": "oSSqMPplKfDV", 119 | "outputId": "ca23fc1a-9ef0-4c86-a1f8-747abae196ce" 120 | }, 121 | "execution_count": null, 122 | "outputs": [ 123 | { 124 | "output_type": "stream", 125 | "name": "stdout", 126 | "text": [ 127 | "Data(x=[5, 1], edge_index=[2, 7])\n" 128 | ] 129 | } 130 | ] 131 | }, 132 | { 133 | "cell_type": "code", 134 | "source": [ 135 | "import networkx as nx\n", 136 | "from torch_geometric.utils import to_networkx\n", 137 | "G = to_networkx(data,to_undirected=data.is_undirected())\n", 138 | "pos = nx.shell_layout(G)\n", 139 | "nx.draw(G, pos, with_labels=True, font_weight='bold') #self loop on 3; bidirectional " 140 | ], 141 | "metadata": { 142 | "colab": { 143 | "base_uri": "https://localhost:8080/", 144 | "height": 319 145 | }, 146 | "id": "gEUBljY76P0o", 147 | "outputId": "25aedb33-8f79-4164-8989-78788b5aa55e" 148 | }, 149 | "execution_count": null, 150 | "outputs": [ 151 | { 152 | "output_type": "display_data", 153 | "data": { 154 | "text/plain": [ 155 | "
" 156 | ], 157 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhU5fk+8HsyWSYrCSEQQgIBshMmy8xYFhFsASEssiSIEFyRKopSRVtL3aHVSxG01a+CdsP6UzaVJS6sgiI1eyBkBQIJZIUkk22SWc7vD8zU4wTCksyZydyf6/KCnpw580w79c77nvd5j0wQBAFEREQOwknqAoiIiKyJwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA6FwUdERA7FWeoCiHpCXXM7tmVWoLBKC63OAB+FM6ICfZCiCoa/l5vU5RGRDZEJgiBIXQTRjcotb8A7h0rxbXEtAKDdYDL/TOHsBAHApMgALJ8YhrgQX4mqJCJbwuAju/XRsTKsTSuEzmDE1b7FMhmgcJZjdVIUUseEWq0+IrJNnOoku3Q59ArQpjd1e64gAG16I9amFQAAw4/IwXHER3Ynt7wBCzcdQ5veaPGzlpPfom7n6wAAb/Vs9J+8TPRzdxc5Pl02BspgTnsSOSqu6iS7886hUugMlqFn0Nbh0tfvAk7yK75WZzDi3UOlvVkeEdk4Bh/ZlbrmdnxbXGtxT08QBFzc8ybk3v7wiBx3xdcLAnCwqBYXm9t7uVIislUMPrIr2zIrujzelP4FdBUnMWDWKsjkrle9hgzAtqyur0NEfR+Dj+xKYZVW1LIAAB21Zaj/9l/wnZAK10Ejur2GzmBCYWVTb5VIRDaOqzrJrmh1BotjrUVHAaMBunPH0V6ej46aMwCAtpL/ot7ZFX6T7uviOvreLpWIbBSDj+yKj6KLr6wgABCgO50pOmxorEb7+cIrXMelF6ojInvA4CO7EhXoAzfnKtF0p++ExfCdsNj8n+t2r0fLif1dtjMAl3d0iRrsbZV6icj28B4f2ZVkVfBNX0MAkJx489chIvvEBnayO8s2Z2BvQfVVtym7EpkMuCNmEN5LVfd8YURkFzjiI7vz6KQwKJyv3KR+NQpnOZZPCuvhiojInjD4yO7EhfhidVIU3F2u7+vr7uKE1UlR3K6MyMFxcQvZpc6Npvl0BiK6XrzHR3Ytr6IB7x4qxcGiWshwuTm9U+fz+G6PDMDySWEc6RERAAYf9REXm9uxLasC6z78BKNVv8LQQQMQNdgbyYl8AjsRiTH4qE9RqVTYuHEjVCqV1KUQkY3i4hYiInIoDD4iInIoDD4iInIoDD4iInIoDD4iInIoDD4iInIoDD4iInIoDD4iInIoDD4iIurWhAkTMH78ePzwww9Sl3LTGHxERNSt2tpaHD16FJMnT8bYsWNx6NAhGI1GtLa2wmg0Sl3edWHwERHRFQmCgMOHD6OmpgYA0NraimPHjuH222/HI488An9/f7i5uSE8PBxz5szBc889h8zMTNjybpgMPiIismA0GvHOO+8gOjoaDz/8MORyOZycnODm5oaFCxfi1KlT2LhxI9ra2tDW1oadO3ciNTUVBoMBKSkpGD16NP72t79Br9dL/VEscJNq6lO4STXRzSssLMT9998PhUKBNWvWYNy4cUhOToabmxvWrFmDESNGXPX1JpMJ3333HV555RXU1NTg/fffx5gxY6xUfff4IFoiIjI7duwYZs+ejRdeeAGPPPIInJwuTwxu3779mq/h5OSE2267Dd988w0++eQTzJkzB+vWrcPixYt7q+zrwuAjIiIAQE5ODmbPno1//vOfSEpKuunryWQy3H333VAqlZg6dSo6Ojpw//3390ClN4fBR0RE6OjoQGpqKt58880eCb2fGzVqFA4ePIjx48dDrVZj9OjRPXr968XFLUREhHXr1iE0NLTXpiMjIiLw6quv4p577pG8/YHBR0Tk4PR6Pd5++228/vrrkMlkvfY+DzzwAFxcXJCWltZr73EtGHxERA7u66+/xvDhwxEdHd2r7yOTybBixQr87W9/69X36Q6Dj4jIwR04cAB33nmnVd4rOTkZR44cgU6ns8r7dYXBR0Tk4PLz8xEbG2uV93J3d0d4eDjy8vKs8n5dYfARETm48+fPY+jQoVZ7v4iICJw+fdpq7/dLDD4iIgfn4uICg8FgtfeTy+VWe6+uMPiIiBycp6cnGhoarPZ+bW1tcHV1tdr7/RKDj4jIwSUmJiIzM9Nq75ebm2u1e4pd4c4tREQObsyYMfjkk0+watWqazq/rrkd2zIrUFilhVZngI/CGVGBPkhRBcPfy+2qr71w4QIaGhoQFhbWE6XfEAYfEZGDmzVrFlasWIFz585ddZFLbnkD3jlUim+LawEA7QaT+WcK5yqs31eMSZEBWD4xDHEhvl1e44MPPsDChQvNm19LgVOdREQOztvbG/fccw/WrVt3xXM+OlaGhZuOYW9BNdoNJlHoAYDup2PfnKzGwk3H8NGxMotrNDc34/3338ejjz7a0x/hujD4iIgIf/zjH7F161YcPnzY4mcfHSvD2rQCtOmN6O4JroIAtOmNWJtWYBF+q1atwpQpUyTfpJpTnUREhICAAGzatAmpqak4fPgwQkNDAVye3lybVog2/f9GeHW734SuLAfGNi2cXD3gGhgGv4n3wjVwpPmcNr0Ja9MKoQz2hTLYF5s3b8aXX34paeN6J474iIgIADBjxgw888wzuO2221BYWAgAeOdQKXQG8dMUDI01cBs6Gl7KKXBy94buTBZqdqyxuJ7OYMS7h0qxceNGPPvss0hLS0O/fv2s8lmuhiM+IiIye+yxx+Dt7Y1bb70VT/z+TzikjbSY3gxc/Kr57+1Vpaj650oYmy5CMBogk/8vVgQB+Pr4eezd9Q4OHTok6UrOn2PwERGRyL333otx48Zh4UsfomNwKODsYnGONnMX9HXl0J3NBQD43DJHFHqdnJxk+N3bn9pM6AGc6iQioi6Eh4djwqy7ugw9AGgt/B7N2WkwXDoPufcAuA2J6fI8I+Q4dVG6JzF0hcFHROTgioqKsGfPHjQ1NYmOa3VX3r8zcPGrGLpqBwLm/QnG5kuo/fwvMDTWdHmuVqfv0XpvFoOPiMjBbdmyBXPmzIG/vz+USiVWrFiB/fv3w0dhOXVp0rdDMF1e7CJzdoX7CBVkrgrAZIShoarL6/souh41SoX3+IiIHFhlZSWMRiPkcjna29tx/PhxHD9+HNnZ2Uhd+y+4OVeJmtU7LhShbtcbcAsZBSeFF9rL8yG0t8LJox9cB420uL7C2QlRg72t+ZG6xeAjInIQly5dQmZmJtLT083/tLW1IS4uzvxYIoVCgeeeew7PPvssLrZ0YP2+YtE15N7+cPYLgu5MDkwdbZB7+MAj6lb0G78QTgpPi/cUACQnBlvj410zBh8RUR/U0tKCrKwsUcjV1NQgMTERGo0GCxcuxLp16zB8+HDIZDIMGjQIbW1t2LFjByZPngwAGODlhokRAdhbUG1uaXDpP0TUznA1Mhlwe2RAtxtXWxuDj4jIzrW3tyMvL88ccBkZGTh9+jRiY2Oh0Wgwbdo0PPfcc4iMjLziQ2A3b96MyMhIDBs2THT80UlhOFJShza9scvXXY3CWY7lk2ynjaETg4+IyI4YjUYUFBSIRnInT55EWFgYNBoNxowZgxUrViA2Nva6HvY6derULo/HhfhidVLUT3t1mro8pyvuLk5YnRQFZXDXT2mQEoOPiMhGCYKAU6dOiUIuJycHQUFB0Gg00Gg0WLx4MRISEuDh4dFrdaSOCQUArE0rhM5w9Y2qZbLLI73VSVHm19kaBh8RkQ0QBAHnz58XhVxmZia8vLzMIffiiy9CpVLB19f6o6jUMaFQBvvi3UOlOFhUCxkuP4qok8LZCQIu39NbPinMJkd6nRh8REQSqKurM9+P6ww6o9FoDrmVK1dCrVZj0KBBUpdqpgz2xXupalxsbse2rAoUVjZBq9PDR+GCqMHeSE7s/gnstoDBR0TUy5qamizaCOrr66FSqaDRaHDPPffgr3/9K4YOHQqZTCZ1ud3y93LDb2+z7NmzFww+IqIepNPpkJOTIwq5c+fOIS4uDhqNBrNnz8Yrr7yC8PBwODlx8ywpMPiIiG6QXq9Hfn6+aMqysLAQUVFR0Gg0uO222/DUU08hJiYGLi62tW2XI2PwERFdA5PJhJKSEtFILi8vD0OHDoVGo4Farcb999+PuLg4uLu7S10uXQWDj4joFwRBwLlz50Qhl5WVhf79+0OtVkOj0WDu3LlITEyEj4+P1OXSdWLwEZHDq66uFu16kp6eDrlcbl5h+cwzz0CtVmPAgAFSl0o9gMFHRA6loaHBYoVlc3Mz1Go11Go1li5divfffx9DhgyxixWWdP0YfETUZ7W2tiI7O1sUcpWVlYiPj4dGo0FycjJee+01jBw5kiHnQBh8RNQndHR04Pjx46Ipy5KSEowaNQoajQaTJ0/Gs88+i+jo6Ctu1EyOgcFHRHbHaDSiqKhINJI7ceIERowYYV5h+fDDD0OpVMLNzfZ3EiHrYvARkU0TBAFnzpwRhVx2djYGDhxoXnxy1113ISEhAV5eXlKXS3aAwUdENuXChQui6cqMjAwoFApzyP3pT3+CSqVC//79pS6V7BSDj4gkc+nSJdEmzenp6WhvbzdPVy5fvhwajQaDBw+WulTqQxh8RGQVzc3NyMrKEoVcbW0tEhMTodFosGjRIqxfvx6hoaFcYUm9isFHRD2uvb0dubm5opArKyvD6NGjodFokJSUhBdeeAERERFcYUlWx+AjoptiMBhw8uRJ0a4nJ0+eREREBDQaDcaOHYvHH38csbGxcHV1lbpcIgYfEV07QRBQWloqGsnl5ORgyJAh5sUnS5YsQXx8PDw8PKQul6hLDD4i6pIgCKioqBCFXGZmJnx8fMwh9/LLLyMxMRG+vr5Sl0t0zRh8RAQAqK2tFU1XpqenQxAE8wrL3/3ud9BoNBg4cKDUpRLdFAYfkQPSarUWGzU3NDRApVJBo9HgvvvuwzvvvIOQkBCusKQ+h8FH1Me1tbUhJydHFHIVFRWIi4uDRqPBnDlzsGbNGoSHh8PJyUnqcol6HYOPqA/R6/U4ceKEaOeToqIiREdHQ6PRYOLEiVi1ahVGjRoFZ2f+358cE7/5RHbKZDKhqKhIdE8uLy8Pw4YNMy8+Wbp0KeLi4qBQKKQul8hmMPiI7IAgCDh79qxoujIrKwv+/v7mkJs/fz4SExPh7e0tdblENo3BR2SDqqqqRNOV6enpcHFxMa+w/P3vfw+1Wo0BAwZIXSqR3WHwEUmsvr7eYoVlS0sL1Go1NBoNli1bhk2bNmHIkCFSl0rUJzD4iKyopaUF2dnZopCrqqpCQkICNBoNFixYgNdffx0jRoxgGwFRL2HwEfWSjo4O5OXliaYsS0tLERsbC7VajSlTpuCPf/wjoqOjuVEzkRUx+Ih6gNFoREFBgWiF5YkTJzBy5Ejz4pPly5dj9OjRcHNzk7pcIofG4CO6ToIg4PTp06LpyuzsbAQGBppD7u6770ZCQgI8PT2lLpeIfoHBR9SN8+fPi6YrMzIy4OHhYV588txzz0GtVsPPz0/qUonoGjD4iH7m4sWLFhs1d3R0mEdyjz32GNRqNQYPHix1qUR0gxh85LCampqQlZUlmrKsq6szb9ScmpqKDRs2IDQ0lCssifoQBh85BJ1Oh9zcXNGUZVlZGZRKJdRqNWbMmIEXX3wRkZGR3KiZqI9j8FGfYzAYkJubK5quLCgoQEREBDQaDcaPH4+VK1ciNjYWLi4uUpdLRFYmEwRBkLoIohtlMplQWlpqDrgPPvgARqNRtFGzWq1GfHw8PDw8pC6XiGwAR3xkNwRBQHl5uWi6MjMzE/369TMHXFBQEDZt2oSJEydKXS4R2SgGH9msmpoa0XRleno6AJhHck8++STUajUGDhxofs2WLVvg5eUlVclEZAcYfGQTGhsbLTZqbmxsNPfKPfDAA/i///s/BAcHc4UlEd0UBh9ZXVtbm3mj5s4RXUVFBeLj46FWqzF37lz8+c9/RlhYGFdYElGPY/BRr9Lr9Thx4oRoJFdcXIzo6GhoNBpMmjQJTz/9NGJiYuDszK8jEfU+/puGeozJZEJRUZEo5I4fP47Q0FDzfbmHHnoISqUSCoVC6nKJyEEx+OiGCIKAsrIy0QrLrKwsDBgwwHxfLjk5GYmJifD29pa6XCIiMwYfXZOqqirRSC4jIwMuLi7mkdwf/vAHqNVq+Pv7S10qEdFVMfjIQn19vUUbQWtrqznkHn74YajVagwZMkTqUomIrhuDz8G1tLSYN2ruDLuqqiokJCRAo9HgrrvuwhtvvIERI0awjYCI+gQGnwPp6OhAXl6eaCR36tQpxMbGQqPRYOrUqVi9ejWioqIgl8ulLpeIqFcw+Pooo9GIgoICUcjl5+cjLCwMGo0Gt9xyC5YvXw6lUglXV1epyyUishoGXx8gCAJOnTolWniSnZ2NwYMHm1dYLlq0CAkJCfD09JS6XCIiSTH47ND58+ctVlh6enqaF588//zzUKlU8PPzk7pUIiKbw+CzcRcvXrQIOb1ebw65FStWQKPRIDAwUOpSiYjsAoPPhjQ1NZk3au5cYXnx4kWoVCqo1WosWbIEb7/9NoYNG8YVlkREN4jBJxGdTofc3FzRaO7s2bNQKpXQaDSYOXMmXnrpJURERHCjZiKiHsTgswKDwYD8/HxRyBUWFiIyMhIajQa33norVq5cidjYWLi4uEhdLhFRn8bg62EmkwklJSWi6crc3FyEhISYV1jed999iI+Ph7u7u9TlEhE5HLsJvrrmdmzLrEBhlRZanQE+CmdEBfogRRUMfy83SWoSBAHl5eWikVxmZiZ8fX3Ni0/WrFkDlUoFHx8fSWokIiIxmw++3PIGvHOoFN8W1wIA2g0m888UzlVYv68YkyIDsHxiGOJCfHu1lpqaGosVljKZzBxyq1atglqtRkBAQK/WQUREN86mg++jY2VYm1YIncEIQbD8ue6nEPzmZDUOF9dhdVIUUseE9sh7NzY2IiMjQ7RZc2Njo3m68sEHH8R7772H4OBgrrAkIrIjNht8l0OvAG16U7fnCgLQpjdibVoBAFx3+LW2tiInJ0c0mjt//jzi4+Oh0Wgwb948/OUvf8HIkSO5wpKIyM7ZZPDlljdgbVqhKPQEQwfqD/wdLYVHIHS0wXXQSPj9ZincgiLN57TpTVibVghlsC+UwV1Pe+r1ehw/flwUciUlJYiJiYFGo8Gvf/1rPPPMM4iJiYGzs03+10NERDfBJv/N/s6hUugMRtGxS/s2ojnnK7gEDIPLsDi0FhxB9Sd/wpCHP4Dco5/5PJ3BiHcPleK9VDWMRiOKiopE05XHjx9HaGio+b7csmXLoFQqoVAorP0xiYhIAjYXfHXN7fi2uFZ0T8/Y0oDmvH2AzAmDFq6F3NMXdU5ytOQfRFPmbvhOWGw+VxCAb05cwITJ05H74/cICAgwh1xKSgoSExPh5eUlwScjIiJbYHPBty2zwuKYvu4cYDJA3m8Q5J6XpzBdA8PQkn8QHTVnLM6XyWS45a4V+PzTj+Dv79/rNRMRkf2wuZUahVVaUcsCABhb6gEATq7/m46U/fT3zp+JzocTTD5BDD0iIrJgc8Gn1Rksjsk9Lz9ex9ShMx8Tfvp7588sr6PvheqIiMje2dxUp4/CsiSXASGAkzOM2loYW+oh9/RDe2UxAMB14PAur5P93+/xlwv7oNFooFar4evbu83tRERkH2wu+KICfeDmXCWa7pR7+sFr9G/QnPs1qv/fargEDENrwXeQubrDWzXT4hquchl+FRmC2rPf46WXXkJ2djaCgoLMi1w0Gg0SEhLg4eFhzY9GREQ2wOaCL1kVjPX7ii2O+01eBsid0VpwBPr6SrgNiYTfrx8UtTJ0kslkWPPgTPh7zQcAGI1GFBQUmFsa/vOf/yA/Px9hYWGiMBw9ejRcXV17/TMSEZF0ZILQ1WZg0lq2OQN7C6q73KasOzIZcEfMILyXqr7qee3t7cjLyxP1+J0+fRqxsbHmbck0Gg2ioqIgl8tv8JOQtalUKmzcuBEqlUrqUojIRtlk8OWWN2DhpmNo0xu7P/kX3Jxl2PrbcVfcueVqmpubkZ2dLdqEurq6GgkJCeYgVKvVGDFiBPfntFEMPiLqjs1NdQJAXIgvVidFXfNenZ2cYULb958AKcHADQSfl5cXJkyYgAkTJpiP1dfXm0eFn3zyCZ566im0tbWJRoUajQZBQUHX/X5ERGR9Nhl8wP82mr7a0xk6yWSAwlmO1Umj4BzXgsmTJ+Pjjz/G5MmTb7oOPz8/TJkyBVOmTDEfq6ysNI8I33vvPTz44INwc3Mzjwg7/2QfIRGR7bHJqc6fy6towLuHSnGwqBYy/O9RRACgcHaCAOD2yAAsnxRmnt48fPgwUlJS8Nprr+G+++7r9RoFQUBZWZlo4+usrCzRdmkajYbbpVkBpzqJqDs2H3ydLja3Y1tWBQorm6DV6eGjcEHUYG8kJ3b9BPbCwkIkJSXh3nvvxfPPP2/1e3ImkwlFRUWiMPzlBtkajQZxcXFwc5PmCfJ9EYOPiLpjN8F3I6qrqzFz5kzExsZi48aNcHFxkbSejo4O5Ofni8KwuLgYMTExonuGfCTSjWPwEVF3+nTwAUBLSwsWLlyI9vZ2bNu2DT4+PlKXJPLzh+B2LqKpqKgwPwS38x8+BPfaMPiIqDt9PvgAwGAw4PHHH8f333+PPXv2IDg4WOqSrqqxsRGZmZmikaFWq4VKpRKFYXBwMNsqfoHBR0TdcYjgAy4vQHnjjTfw17/+Fbt374ZSqZS6pOtSU1MjarZPT0+HTCazaKsICAiQulRJMfiIqDsOE3ydPv30U6xYsQL/+c9/RC0K9kYQBJSXl4ua7TMyMuDr62uxkrRfP8tt3foqBh8Rdcfhgg8Ajhw5guTkZKu1O1iLyWRCaWmpaFSYm5uL4OBgURjGx8fD3d1d6nJ7BYOPiLrjkMEHSN/uYC0GgwEnT54UhWFBQQEiIyNF06SxsbGSr3rtCQw+IuqOwwYfIG53eP/99x3myQw6nQ65ubmie4ZlZWVQKpWiPUkjIyPtbiUpg4+IuuPQwQdcbne4++670dbWhm3btjnU/bCfa2pqQlZWluieYV1dHRITE0XTpMOGDbPp0TGDj4i64/DBB1x+Xt/jjz+OI0eOIC0tzebbHazl4sWLFitJ9Xq9aE9SjUaDwMBAqUs1Y/ARUXcYfD/pbHd4++23sXv3bsTFxUldkk06f/68qNk+PT0dnp6eolGhSqWCn5+fJPUx+IioOwy+X+hsd/joo48wdepUqcuxeYIg4PTp06JRYXZ2NgIDA0VhmJCQAE9Pz16vh8FHRN1h8HWhs93h1Vdfxf333y91OXbHaDSisLBQFIb5+fkYOXKkaJpUqVT2+IIiBh8RdYfBdwWd7Q733HMPXnjhBZte0GEPOjo6kJeXJ5oiPXXqFEaNGiUaGUZFRUEul9/w+zD4iKg7DL6rqK6uxqxZsxATE4ONGzc6TLuDtbS0tCA7O1u0krSyshIJCQmiMBwxYsQ1/+LB4COi7jD4usF2B+uqr6+32KC7tbUVarVatJJ0yJAhXb6ewUdE3WHwXQO2O0irqqrKoq3CxcVFNCpUq9Xw9/dn8BFRtxh810gQBKxbtw5vvfUW2x0kJggCzp49K5oizczMhL+/PxoaGnDPPfdg7ty5SExMhLe3t9TlEpGNYfBdpy1btuCxxx5ju4ONMZlMKC4uxvTp0/GrX/0KZ8+eRV5eHkJDQ0VTpHFxcVAoFFKXS0QSYvDdgCNHjiAlJQV/+ctf2O5gY34+1anX65Gfny+aIi0qKkJ0dLRomjQmJgbOzs5Sl05EVsLgu0FFRUVISkpCamoqXnzxRbY72Iju7vG1tbUhJydHtPtMeXk54uLiRGEYFhZmdxt0E9G1YfDdhM52h+joaGzatIntDjbgRha3aLVai5WkjY2NUKlUomnSkJAQ/oJD1Acw+G5SZ7tDa2srtm/fznYHifXUqs7a2lqLlaSCIFisJB04cGAPVU5E1sLg6wFGoxFPPPEEvv32W6SlpSEkJETqkhxWb7UzCIKAiooK0UrSjIwM+Pj4WGzQzV9+iGwbg6+HCIKAN998Exs2bGC7g4Ss2cdnMplw6tQp0agwJycHwcHBoj1JExIS4O7u3uv1ENG1YfD1MLY7SEvqBnaDwYCCggJRGJ48eRIRERGikWFsbCxcXFwkqZHI0TH4esF3332H5ORk/PnPf8YDDzwgdTkORerg60p7eztyc3NF9wzPnDmD0aNHi8IwMjKSK0mJrIDB10s62x0WL16Ml156iasBrcQWg68rzc3NyMrKEt0zrK2tRWJiomglaWhoKL87RD2MwdeLOtsdoqKi8MEHH7DdwQrsJfi6cunSJYuVpB0dHaIg1Gg0CAwMlLpUIrvG4OtlLS0tWLRoEZqbm7Fjxw6u+Otl9hx8Xblw4YKo2T49PR3u7u4WbRV+fn5Sl0pkNxh8VsB2B+vpa8H3S4Ig4MyZM6JRYXZ2NgYNGiRaSZqYmAhPT0+pyyWySQw+K+lsd1i/fj12796N+Ph4qUvqk/p68HXFaDSiqKhIFIYnTpzAiBEjRKNCpVIJNzc3qcslkhyDz8q2bt2KRx99FJs3b8Ydd9whdTl9jiMGX1c6Ojpw/Phx0TRpaWkpYmJiRNOk0dHRkMvlUpdLZFUMPgl0tjusXbsWDz74oNTl9CkMvitrbW1Fdna2aGRYWVmJ+Ph4URiOHDmSK0mpT2PwSYTtDr2DwXd9GhoaLDbobm5uFq0kVavVGDJkCL+j1Gcw+CRUU1ODWbNmITIyku0OPYTBd/Oqq6stVpLK5XKLlaQDBgyQulSiG8Lgk1hraysWLVqEpqYmbN++Hb6+vlKXZHmsqTcAABXsSURBVNcYfD1PEAScO3dONCrMzMyEv7+/aGSoUqng7e0tdblE3WLw2QCj0YiVK1fi4MGD+PLLL9nucBMYfNZhMplQUlIiCsO8vDwMHTpUNCqMj4+HQqGQulwiEQafjRAEAevXr8f69euxa9cutjvcIAafdPR6PfLz80XTpIWFhYiKihJNk44aNQrOzs5Sl0sOjMFnY7Zu3Yrly5dj8+bNmDZtmtTl2B0Gn21pa2tDbm6uaGRYXl4OpVIpCsPw8HBu0E1Ww+CzQd9//z3mz5/PdocbwOCzfVqtVrRBd3p6Ourr66FSqUT3DIcOHcqVpNQrGHw2qri4GNOnT8eiRYvw8ssv818A14jBZ59qa2vNT7XvDEOj0SgaFWo0GgwcOFDqUqkPYPDZMLY7XD8GX98gCALOnz8vGhVmZGTA29vboq2CG7/T9WLw2bjOdgetVosdO3aw3aEbDL6+SxAEnDp1ShSGOTk5CAoKEm3QnZCQAA8PD6nLJRvG4LMDRqMRv/vd73DgwAGkpaVh6NChUpdksxh8jsVgMKCgoEC0kjQ/Px/h4eGikWFsbCxnTMiMwWcnOtsd3nzzTezatQsJCQlSl2STGHzU3t6OvLw80cjwzJkziI2NFYVhZGQkN+h2UAw+O7Nt2zY88sgj+Pe//43p06dLXY7NYfBRV5qbmy026K6pqUFCQoIoDIcPH86FZA6AwWeHOtsd1qxZg6VLl0pdjk1h8NG1unTpknl6tPNPnU5nvlfY+WdQUJDUpVIPY/DZqeLiYiQlJWHhwoV45ZVX+FvqTxh8dDMqKytFo8L09HQoFAqLlaT9+/eXulS6CQw+O1ZTU4PZs2cjPDwcH374IW/eg8FHPUsQBJSVlYmCMCsrCwMHDhQ12ycmJsLLy0vqcukaMfjsXGtrKxYvXozGxka2O4DBR73PaDSiqKhI1F94/PhxDB8+XDQqjIuLg5ubm9TlUhcYfH0A2x3+h8FHUujo6MCJEydEI8OSkhLExMSIpkmjo6O5QbcNYPD1EYIgYMOGDVi3bp1Dtzsw+MhWtLa2IicnRxSG58+fR3x8vCgMw8LCeI/eyhh8fYyjtzsw+MiWNTQ0IDMzU7SSVKvVWqwkDQ4OZhj2IgZfH3T06FHMmzcPr7zyCh566CGpy7EqBh/Zm+rqatHm3Onp6XBycrJYSRoQECB1qWZ1ze3YllmBwiottDoDfBTOiAr0QYoqGP5etn9fk8HXRzlquwODj+ydIAgoLy8XBWFmZiZ8fX1FYahSqeDj42PV2nLLG/DOoVJ8W1wLAGg3mMw/Uzg7QQAwKTIAyyeGIS7EdhfaMfj6sNraWsyaNcuh2h0YfNQXmUwmlJSUiFaS5ubmIiQkRNRWER8fD3d3916p4aNjZVibVgidwYirpYZMBiic5VidFIXUMaG9UsvNYvD1cY7W7sDgI0dhMBiQn58vGhkWFhYiMjJSNDIcNWoUXFxcbuq9LodeAdr0pu5P/om7ixNWJ0XbZPgx+ByA0WjEk08+iX379uHLL7/s0+0ODD5yZDqdDrm5uaIwPHv2LJRKpSgMIyIi4OTkJHrtkiVLoFQqsWrVKtGtkdzyBizcdAxteqP52MW0t6E7fxJGbR1kche4BkXA7/b74RoQKrqmu4scny4bA2Wwbf3CzeBzIBs2bMAbb7zRp9sdGHxEYlqtFllZWaKVpBcvXoRKpTJPk6pUKsTExMDJyQlTpkzBxx9/DE9PTwDAss0Z2FtQLZrePPvqTLgGRcI1YBjaynJhbKyG3NsfQ367CTLn/91SkcmAO2IG4b1UtbU/9lUx+BzM9u3b8fDDD/fZdgcGH1H36urqRCtJf/jhB9TV1QEAnJ2d4e/vjz179mBYZCzGv3ZAtIgFANqrSuEWGAYAMDRU4/x7DwIAAu/bYD7eyc3ZCUd//2ubWu3p1P0p1JfMnz8fX3zxBe6//35s2rRJ6nKISAIDBgzAtGnT8Nxzz2Hnzp1Yt26deXs1JycnVFdXY9myZdiWWdHl638eboLJcPkvMifIvSw375YB2JbV9XWkwuBzQOPGjcORI0fw2muvYfXq1eCgn8ixVVZWwsPDA8nJyfjwww9x4cIFZGZmorBKazHa+zlTRxsu7tkAAPC5ZQ6cuwg+ncGEwsqmXqv9RnDTOAcVHh6OH374AbNmzcLZs2fx97//3SHaHYjIUmpqKqZMmYL4+HjRohetznDF1xhbG1Gz5UV0VJXAK+4O+E66/4rnanX6Hq33ZnHE58ACAgJw4MABtLa2Ytq0aWhoaJC6JCKSwKZNm6DRaNCvXz/MnDkT69atw8cff4y2xotdnm9orEHVR8+go6oEPmNT4D99xVU3yfBR3Fw7RU9j8Dk4Dw8PbN26FaNHj8b48eNx9uxZqUsiIitqbm5GQ0MDnJyc0NzcjD179mDVqlVYunQpZI2VcHO2jImqzatguHQecp8ACPp2XNq3EZf2bUT7hSKLcxXOToga7G2Nj3LNONVJkMvleOutt7BhwwaMGzcOu3btQmJiotRlEVEP6+jowJ49e7B79278+OOPOHPmDFpaWuDq6gqD4fK0pqurK1JTU/Hee++hsd2E8a8dsLiOsfnS5T+1tWjK2Gk+7jpwBNyCIkXnCgCSE4N770PdAAYfma1cuRIhISGYNm0a/vWvf/XJdgciR2EymXDo0CF8/vnnOHr0KEpKSqDVauHi4oKgoCDEx8fjkUceQXJyMgYOHAg/Pz/odDp88MEHWLx4MQBggAswMSLAoo9v2B92X1MNMhlwe2SATbUyAAw++oX58+dj8ODBmDdvHl5++WUsW7ZM6pKI6BpkZGRg+/btOHz4MIqKinDp0iU4OTlh4MCBiI2NxbPPPou77roLw4cP7/L1b7/9NuLi4qBUKkXHH50UhiMldaKdW66VwlmO5ZPCuj/Ryhh8ZKGz3WH69Ok4e/Ys1qxZ4zBPdyCyByUlJdiyZQsOHjyI/Px81NTUQBAE+Pv7Izo6Go888ghSUlIsQuxqlixZ0uXxuBBfrE6KusG9OqNsbrsygMFHV9DZ7jB79mwsWbIEH374obnBlYis58KFC9i6dSv27t2LvLw8VFZWwmAwwNfXF+Hh4bj77rsxd+5cjB8/3mL/zZ7SudE0n85ADqG1tRWpqamor6/Hjh074OfnJ3VJV8Uty8ieNTQ0YPv27fjqq6+QlZWFiooKdHR0wMvLCyNGjMCYMWMwa9YsTJs2Dc7O1h+35FU04N1DpThYVAsZLjend+p8Ht/tkQFYPinMJkd6nTjio6vqbHd46qmncOuttyItLQ3Dhg2Tuiwiu6fT6bBr1y7s3r0b6enpKCsrQ1tbGxQKBYYNG4axY8dixowZuPPOO+Hh4SF1uQAAZbAv3ktV42JzO7ZlVaCwsglanR4+ChdEDfZGcqJ9PIGdwUfdksvl2LBhAzZs2IDx48dj586dbHcgug4GgwH79+/HF198gR9++AGnTp1CU1MTXF1dMWTIECQkJGDlypVITk5G//6W237ZGn8vN/z2tpFSl3HDGHx0zTrbHe64444++3QHoptlMpnw3//+Fzt27MB3332HoqIi1NfXQy6XIzAwEEqlEqmpqUhJSenTz8a0ZQw+ui7z589HUFAQ5s2bh5deeontDuTwTp48iS1btuDbb7/FyZMnUVtbC+DyloAxMTF44oknkJycjFGjRklcKXVi8NF1Gzt2LA4fPoykpCS2O5BDOXfuHLZu3Yp9+/bh+PHjqKqqgtFohJ+fHyIjI3Hvvfdi/vz50Gg0vbbCkm4eg49uSHh4OI4ePYrZs2cjNTUVf//739nuQH3KpUuXsHXrVnz99dfIzs7GhQsX0NHRAW9vb4SFheHOO+/E7Nmz8Zvf/EaSFZZ04/i/Ft2wzqc7LF68GNOmTbOLdgeirrS2tuLzzz9HWloaMjIycPbsWeh0Onh4eCA0NBQTJ07EzJkzMXPmTCgUCqnLpZvE4KOb4u7ujq1bt2LVqlUYP348vvzyS7Y7kE0zGAz46quvsHPnThw7dgynT59GS0sL3NzcEBwcjMTERPz+97/H3Llz4etru71odOMYfHTT5HI51q9fz6c7kM0xmUz47rvv8Nlnn+H7779HcXExGhsb4ezsjMGDByMuLg5Lly5FSkoKBg8eLHW5ZCUMPuoxK1euxNChQ3HHHXfgX//6F5KSkqQuiRxMbm4utm7disOHD6OgoAAXL16ETCbDwIEDMWrUKDz99NNYsGABwsPDpS6VJMTgox41b94889Md2O5AvenMmTP49NNPceDAAZw4cQI1NTUwmUzo378/oqKi8NBDDyE5OZmzD2SBwUc9buzYseanO5SVlWHNmjVc2k03paamBlu3bsU333yDnJwcVFZWQq/Xo1+/fggLC0NKSgrmzJmDiRMn8rtG3WLwUa8ICwsztzssWbKE7Q50zZqamrBjxw58+eWXyMrKwrlz59De3g5PT08MHz4cU6ZMwaxZszB9+nS4urpKXS7ZIQYf9ZrOdofU1FTccccd+Oyzz9juQCIdHR3Ys2cPdu3ahR9//BFnzpxBa2srFAoFQkJCoFar8fzzz2POnDnw8vKSulzqIxh81Kvc3d2xZcsWtjsQTCYTDh48iM8//xxHjx5FaWkptFotXFxcEBQUhISEBCxfvhwpKSkICAiQulzqwxh81Os62x3eeustjBs3Djt37uTz8vo4QRCQkZGB7du348iRIygsLER9fT2cnJwwaNAgjB49GnfddRcWLFiA0NBQqcslB8PgI6t54oknEBISgmnTprHdoY8pLi7Gli1bcPDgQeTn56O2thaCIGDAgAGIjo7Go48+ipSUFIwePVrqUokYfGRdbHewfxcuXMCWLVuwd+9e5OXloaqqCgaDAb6+voiIiMDixYsxd+5cjBs3jissySYx+Mjq2O5gPxoaGrB9+3Z89dVXyMrKQkVFBTo6OuDl5YWRI0dixowZmD17NqZOncqNmslu8JtKkggLC8MPP/zAdgcbotPpsHPnTuzZswc//vgjzp49i7a2Nri7u2PYsGEYP348ZsyYgVmzZsHDw0PqcoluGIOPJDNgwADs37+f7Q4SMBgM2Lt3r3mj5lOnTqGpqQmurq4IDg5GQkICnnzyScyfPx/9+/eXulyiHsXgI0l1tjs8/fTTGD9+PNLS0rjKr4eZTCYcO3YMO3bswHfffYfi4mLU19dDLpdj8ODBUCqVWLJkCRYsWIDg4GCpyyXqdQw+kpxcLsebb75pnk67kXaH3bt3m5+I/Y9//AOHDh3C8uXL4e7u3ktV264TJ05g27ZtOHToEE6ePIm6ujrIZDIMGDAAo0aNwsqVK5GSkoLo6GipSyWShEwQBEHqIog6ffbZZ1i2bNl1tzssWrQIn376KUwmE2QyGVxdXVFdXY1+/fr1YrXSO3fuHD799FPs378fx48fR3V1NUwmE/z8/BAZGYkJEyZg/vz5UKvVXEBE9BMGH9mcY8eOYe7cudfV7lBSUgKlUgmdTgdXV1c8/vjjeP3113u5Uuuqq6sTbdR8/vx56PV6+Pj4YOTIkRg7dizmzJmD3/zmNww5oqtg8JFNKi0txfTp05GSkmJudzhz5gxCQ0Mhk8m6fE1KSgq2bdsGhUKBiooK+Pv7W7nqntPS0oLPP/8caWlpyMjIwLlz56DT6eDh4YHQ0FDccsstmDlzJmbMmAGFQiF1uUR2hcFHNquurg6zZ89GaGgo7r77bsyZMwdffPEFZs6c2eX5JSUliIiIwJIlS/Dvf//bytXeuI6ODnz11VfYtWsX/vvf/+L06dNoaWmBm5sbQkJCoFKpMG3aNMybNw8+Pj5Sl0tk9xh8ZNPa2towa9YsHDx4ECaTCRMmTMDhw4eveP7TTz+NlStXYsiQIVas8tqZTCYcPnwYn332GY4ePYqSkhI0NjbC2dkZQUFBUCqVmDp1KlJSUhAYGCh1uUR9EoOPbFpFRQWUSiXq6+sBAG5ubigsLLRoeahrbse2zAoUVmmh1Rngo3BGVKAPUlTB8PeSrjE+Ozsb27Ztw+HDh1FQUIBLly5BJpNh4MCBiI2Nxa9//WssWLAAI0eOlKxGIkfD4CObtm/fPtx1113Q6XTQ6/XQ6/VITU3F5s2bAQC55Q1451Apvi2uBQC0G0zm1yqcnSAAmBQZgOUTwxAX4turtZ46dQpbtmzBgQMHcOLECdTU1EAQBPTv3x/R0dG47bbbMH/+fCQmJvZqHUR0dQw+snmCIKCkpAT79+/Hxo0b0draiqKiInx0rAxr0wqhMxhxtW+xTAYonOVYnRSF1DGhPVJTVVUVtm7dir179yI3NxcXLlyAwWBAv379EB4ejnHjxmHu3Lm47bbbuMKSyMYw+MguXQ69ArTpTd2f/BN3FyesToq2CL99+/ZBo9FcsedPq9Vix44d+Oqrr5CZmYny8nK0t7fD09MTI0aMwK9+9SvMmjUL06ZNg6ur6818LCKyAgYf2Z3c8gYs3HQMbXqj+Zg2/Qs05+2Fvu4cIJjQb/zd8J2w2OK17i5yfLpsDJTBvtDr9VixYgXef/99bNq0CUuXLoVOp8OePXuwe/du/PjjjygrK0NraysUCgWGDh0KtVqN6dOnY86cOfDy8rLmxyaiHsLgI7uzbHMG9hZUi6Y363atg0FbC0NjDYzamisGn0wG3BEzCC9ODkZSUhJOnjyJ9vZ2+Pn5wWg0QqvVwsXFBUOGDEF8fLx5heWAAQOs+AmJqDdxr06yK3XN7fi2uNbint6AWU8BAGq2r0GbtuaKrxcE4JsTF/DBbyfD2NpoPq7T6fDSSy9hwYIFGDZsWK/UTkS2gcFHdmVbZsVNX0MmAzQLVkBWtB+5ubmQyWRoa2vDihUruAsKkQNg8JFdKazSiloWboQRcoyZNh/r//EKjEYjsrOzkZ2dzYUpRA6CwUd2Rasz9NB19AAuPxJJrVZDrVb3yHWJyPaxwYjsio+iZ35X81G49Mh1iMj+cMRHdiUq0AduzlUW051NuV+jvfwkOqpPAQBaS47B0FgDj4gx8IgYKzpX4eyEqMHeVquZiGwLR3xkV5JVwV0eby8/iZYT+2HUXt66TF9zBi0n9qOj+rTFuQKA5MSur0NEfR/7+MjudNXHd606+/jeS+U9PSJHxREf2Z1HJ4VB4Sy/odcqnOVYPimshysiInvC4CO7Exfii9VJUXB3ub6v7+W9OqOgDO7dpzQQkW3j4hayS50bTUv1dAYisl+8x0d2La+iAe8eKsXBolrIAOi6eB7f7ZEBWD4pjCM9IgLA4KM+4mJzO7ZlVaCwsglanR4+ChdEDfZGcqK0T2AnItvD4CMiIofCxS1ERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQGHxERORQ/j/ueTUGvWlLUAAAAABJRU5ErkJggg==\n" 158 | }, 159 | "metadata": {} 160 | } 161 | ] 162 | }, 163 | { 164 | "cell_type": "code", 165 | "source": [ 166 | "print(f\"Keys: {data.keys}\")\n", 167 | "print(f\"Edge_attr: {'edge_attr' in data}\")\n", 168 | "print(f\"Number of Nodes: {data.num_nodes}\")\n", 169 | "print(f\"Number of Edges: {data.num_edges}\")\n", 170 | "print(f\"Number of Node features: {data.num_node_features}\")\n", 171 | "print(f\"Isolated Nodes: {data.has_isolated_nodes()}\")\n", 172 | "print(f\"Self Loops: {data.has_self_loops()}\")\n", 173 | "print(f\"Directed graph: {data.is_directed()}\")" 174 | ], 175 | "metadata": { 176 | "colab": { 177 | "base_uri": "https://localhost:8080/" 178 | }, 179 | "id": "QY0rcLAMNDUk", 180 | "outputId": "9295cc43-d504-4a13-de32-d06fd9149975" 181 | }, 182 | "execution_count": null, 183 | "outputs": [ 184 | { 185 | "output_type": "stream", 186 | "name": "stdout", 187 | "text": [ 188 | "Keys: ['x', 'edge_index']\n", 189 | "Edge_attr: False\n", 190 | "Number of Nodes: 3\n", 191 | "Number of Edges: 4\n", 192 | "Number of Node features: 1\n", 193 | "Isolated Nodes: False\n", 194 | "Self Loops: False\n", 195 | "Directed graph: False\n" 196 | ] 197 | } 198 | ] 199 | }, 200 | { 201 | "cell_type": "markdown", 202 | "source": [ 203 | "# Common Benchmark Datasets\n" 204 | ], 205 | "metadata": { 206 | "id": "Q2mocCG3Qeeo" 207 | } 208 | }, 209 | { 210 | "cell_type": "markdown", 211 | "source": [ 212 | "\n", 213 | "\n", 214 | "> torch_geometric also supports some common datasets. One of such dataset is `Enzymes`. `Enzyme` contains total 600 graphs with 6 classes. We will split this data into training set and test set. Training set contains 540 graphs (90%) and test set contains 60 graphs (10%). \n", 215 | "\n", 216 | "\n", 217 | "\n" 218 | ], 219 | "metadata": { 220 | "id": "SlRRI6d-16vQ" 221 | } 222 | }, 223 | { 224 | "cell_type": "code", 225 | "source": [ 226 | "from torch_geometric.datasets import TUDataset\n", 227 | "\n", 228 | "dataset = TUDataset(root='ENZYMES', name='ENZYMES')\n", 229 | "dataset = dataset.shuffle()\n", 230 | "train_dataset = dataset[:540]\n", 231 | "test_dataset = dataset[540:]" 232 | ], 233 | "metadata": { 234 | "colab": { 235 | "base_uri": "https://localhost:8080/" 236 | }, 237 | "id": "pzwGM7i6Ntsx", 238 | "outputId": "7e8626e8-4ad5-4cf1-d496-d1a6b9e381e8" 239 | }, 240 | "execution_count": null, 241 | "outputs": [ 242 | { 243 | "output_type": "stream", 244 | "name": "stderr", 245 | "text": [ 246 | "Downloading https://www.chrsmrrs.com/graphkerneldatasets/ENZYMES.zip\n", 247 | "Extracting ENZYMES/ENZYMES/ENZYMES.zip\n", 248 | "Processing...\n", 249 | "Done!\n" 250 | ] 251 | } 252 | ] 253 | }, 254 | { 255 | "cell_type": "markdown", 256 | "source": [ 257 | "# Mini-Batch & Dataloader" 258 | ], 259 | "metadata": { 260 | "id": "IbF-1cQ8bBft" 261 | } 262 | }, 263 | { 264 | "cell_type": "markdown", 265 | "source": [ 266 | " > We will use the dataloader to split the training and testing set into batches. This is exactly same as normal pytorch dataloader." 267 | ], 268 | "metadata": { 269 | "id": "0unTSrsG2xHN" 270 | } 271 | }, 272 | { 273 | "cell_type": "code", 274 | "source": [ 275 | "from torch_geometric.loader import DataLoader\n", 276 | "train_loader = DataLoader(dataset = train_dataset, batch_size = 128)\n", 277 | "test_loader = DataLoader(dataset = test_dataset, batch_size = 1)" 278 | ], 279 | "metadata": { 280 | "id": "l1zPTJrVN5yA" 281 | }, 282 | "execution_count": null, 283 | "outputs": [] 284 | }, 285 | { 286 | "cell_type": "markdown", 287 | "source": [ 288 | "# Training GNN" 289 | ], 290 | "metadata": { 291 | "id": "haAuh0BGO6qT" 292 | } 293 | }, 294 | { 295 | "cell_type": "markdown", 296 | "source": [ 297 | "> Now we will train a simple Graph Neural Network on Cora dataset, Cora dataset is supported by torch_geometric" 298 | ], 299 | "metadata": { 300 | "id": "MQkSnkL_6zfY" 301 | } 302 | }, 303 | { 304 | "cell_type": "code", 305 | "source": [ 306 | "from torch_geometric.datasets import Planetoid\n", 307 | "\n", 308 | "dataset = Planetoid(root='data', name='Cora')" 309 | ], 310 | "metadata": { 311 | "id": "l_8xaXnuJKnc", 312 | "colab": { 313 | "base_uri": "https://localhost:8080/" 314 | }, 315 | "outputId": "e94062c5-b950-49f4-88b2-71ff6091995a" 316 | }, 317 | "execution_count": null, 318 | "outputs": [ 319 | { 320 | "output_type": "stream", 321 | "name": "stderr", 322 | "text": [ 323 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.x\n", 324 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.tx\n", 325 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.allx\n", 326 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.y\n", 327 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ty\n", 328 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ally\n", 329 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.graph\n", 330 | "Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.test.index\n", 331 | "Processing...\n", 332 | "Done!\n" 333 | ] 334 | } 335 | ] 336 | }, 337 | { 338 | "cell_type": "markdown", 339 | "source": [ 340 | " > What is Graph Convolution? and How is it different from Convolutions. \n", 341 | "\n", 342 | "\n", 343 | " ![gcn_vs_cnn.png]()\n", 344 | "\n" 345 | ], 346 | "metadata": { 347 | "id": "nsHIiW7h8ZrJ" 348 | } 349 | }, 350 | { 351 | "cell_type": "code", 352 | "source": [ 353 | "import torch\n", 354 | "import torch.nn.functional as F\n", 355 | "from torch_geometric.nn import GCNConv\n", 356 | "\n", 357 | "class GCN(torch.nn.Module):\n", 358 | " def __init__(self):\n", 359 | " super().__init__()\n", 360 | " self.conv1 = GCNConv(dataset.num_node_features, 16)\n", 361 | " self.conv2 = GCNConv(16, dataset.num_classes)\n", 362 | "\n", 363 | " def forward(self, data):\n", 364 | " x, edge_index = data.x, data.edge_index\n", 365 | "\n", 366 | " x = self.conv1(x, edge_index)\n", 367 | " x = F.relu(x)\n", 368 | " x = F.dropout(x, training=self.training)\n", 369 | " x = self.conv2(x, edge_index)\n", 370 | "\n", 371 | " return F.log_softmax(x, dim=1)\n" 372 | ], 373 | "metadata": { 374 | "id": "NtYP8WqlMgPD" 375 | }, 376 | "execution_count": null, 377 | "outputs": [] 378 | }, 379 | { 380 | "cell_type": "code", 381 | "source": [ 382 | "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", 383 | "model = GCN().to(device)\n", 384 | "data = dataset[0].to(device)\n", 385 | "optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)\n", 386 | "\n", 387 | "for epoch in range(200):\n", 388 | " model.train()\n", 389 | " optimizer.zero_grad()\n", 390 | " out = model(data)\n", 391 | " loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])\n", 392 | " loss.backward()\n", 393 | " optimizer.step()\n", 394 | " model.eval()\n", 395 | " pred = model(data).argmax(dim=1)\n", 396 | " correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()\n", 397 | " acc = int(correct) / int(data.test_mask.sum())\n", 398 | " if epoch%20==0:\n", 399 | " print(f'Epoch: {epoch} Accuracy: {acc:.4f}')\n" 400 | ], 401 | "metadata": { 402 | "colab": { 403 | "base_uri": "https://localhost:8080/" 404 | }, 405 | "id": "LtQDIhp1ReIU", 406 | "outputId": "bdd81d54-1847-4526-953f-d896da95b588" 407 | }, 408 | "execution_count": null, 409 | "outputs": [ 410 | { 411 | "output_type": "stream", 412 | "name": "stdout", 413 | "text": [ 414 | "Epoch: 0 Accuracy: 0.3140\n", 415 | "Epoch: 20 Accuracy: 0.8130\n", 416 | "Epoch: 40 Accuracy: 0.7950\n", 417 | "Epoch: 60 Accuracy: 0.7910\n", 418 | "Epoch: 80 Accuracy: 0.7970\n", 419 | "Epoch: 100 Accuracy: 0.8020\n", 420 | "Epoch: 120 Accuracy: 0.7990\n", 421 | "Epoch: 140 Accuracy: 0.8130\n", 422 | "Epoch: 160 Accuracy: 0.8040\n", 423 | "Epoch: 180 Accuracy: 0.8110\n" 424 | ] 425 | } 426 | ] 427 | }, 428 | { 429 | "cell_type": "markdown", 430 | "source": [ 431 | "Paper:\n", 432 | "* [DeepWalk: Online Learning of Social Representation](https://arxiv.org/pdf/1403.6652.pdf) \n", 433 | "* [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/pdf/1607.00653.pdf) " 434 | ], 435 | "metadata": { 436 | "id": "N0TI1NFxn71f" 437 | } 438 | } 439 | ] 440 | } -------------------------------------------------------------------------------- /Tutorials/NN_basics_Tut1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Tutorials/NN_basics_Tut1.pdf -------------------------------------------------------------------------------- /Tutorials/NN_basics_Tut2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Tutorials/NN_basics_Tut2.pdf -------------------------------------------------------------------------------- /Tutorials/Opt_Tut1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tirtharajdash/CS-F425_Deep-Learning/39bf555a77f8624f00b9bfccaa79c881c56c8d63/Tutorials/Opt_Tut1.pdf --------------------------------------------------------------------------------