├── data ├── __init__.py ├── goalpoints_toro_result.graph ├── goalpoints.graph ├── goalpointpath.b └── killian-v.dat ├── .gitignore ├── erroneous_goalpoints_result.png ├── matlabcode ├── t2v.m ├── v2t.m ├── LSSlamTest.m ├── read_graph.m └── ls_slam.m ├── README.md ├── demo.py ├── solvers.py ├── demo_goalpoints.py ├── utils.py └── posegraph.py /data/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | *.pyc 2 | .pydevproject 3 | .project 4 | *.mat -------------------------------------------------------------------------------- /erroneous_goalpoints_result.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tmadl/python-LS-SLAM/HEAD/erroneous_goalpoints_result.png -------------------------------------------------------------------------------- /matlabcode/t2v.m: -------------------------------------------------------------------------------- 1 | %%% 2 | %> @brief computes the pose vector v from an homogeneous transformation A 3 | %> param A homogeneous transformation 4 | %> return v pose vector 5 | %> @author Giorgio Grisetti 6 | %%% 7 | function v = t2v(A) 8 | % T2V homogeneous transformation to vector 9 | v(1:2,1) = A(1:2,3); 10 | v(3,1) = atan2(A(2,1), A(1,1)); 11 | end -------------------------------------------------------------------------------- /matlabcode/v2t.m: -------------------------------------------------------------------------------- 1 | %%% 2 | %> @brief computes the homogeneous transformation A of the pose vector v 3 | %> @param v pose vector 4 | %> @return A homogeneous transformation 5 | %> @author Giorgio Grisetti 6 | %%% 7 | function A = v2t(v) 8 | % V2T vector to homogeneous transformation 9 | c = cos(v(3)); 10 | s = sin(v(3)); 11 | A = [c, -s, v(1); 12 | s, c, v(2); 13 | 0 0 1]; 14 | end -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | Python Least Squares Graph SLAM 2 | ========= 3 | 4 | Python port of Giorgio Grisetti's Octave code. 5 | The original Octave version can be found [here] 6 | (http://www.dis.uniroma1.it/~grisetti/teaching/lectures-ls-slam-master/web/lectures/practicals/ls-slam.tgz). License information is included in the matlabcode folder. 7 | 8 | More information about [GraphSLAM](http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf) 9 | 10 | -------------------------------------------------------------------------------- /demo.py: -------------------------------------------------------------------------------- 1 | import posegraph 2 | import time 3 | from utils import * 4 | reload(posegraph) 5 | 6 | from posegraph import PoseGraph 7 | import matplotlib.pyplot as plt 8 | 9 | # Specify files to load 10 | vfile = 'data/killian-v.dat' 11 | efile = 'data/killian-e.dat' 12 | 13 | pg = PoseGraph() 14 | pg.readGraph(vfile, efile) 15 | 16 | """ 17 | pg.readGraph('data/goalpoints_toro_result.graph') 18 | cols = [(np.random.random(), np.random.random(), np.random.random()) for i in range(1000)] 19 | coords = pg.nodes[:, :2] 20 | uncertainties, path = get_uncertainties_and_path(coords) 21 | for j in range(len(path)): 22 | plt.scatter(pg.nodes[j, 0], pg.nodes[j, 1], s=1+np.min((200, 1000*(uncertainties[j][2][2])/ephi**2))) 23 | for e in [[20,8], [36,20], [98,36], [102,138], [112,128], [127,113]]: 24 | plt.scatter(pg.nodes[e[0], 0], pg.nodes[e[0], 1], s=80, c=cols[e[0]]) 25 | plt.text(pg.nodes[e[0], 0]+(np.random.random()*1-.5), pg.nodes[e[0], 1]+(np.random.random()*1-.5), str(e[0])) 26 | plt.scatter(pg.nodes[e[1], 0], pg.nodes[e[1], 1], s=80, c=cols[e[0]]) 27 | plt.text(pg.nodes[e[1], 0]+(np.random.random()*1-.5), pg.nodes[e[1], 1]+(np.random.random()*1-.5), str(e[1])) 28 | plt.show() 29 | """ 30 | 31 | plt.ion() 32 | plt.figure() 33 | plt.scatter(pg.nodes[:, 0], pg.nodes[:, 1]) 34 | plt.draw() 35 | time.sleep(1) 36 | 37 | # Do 5 iteration with visualization 38 | pg.optimize(5, plt) 39 | 40 | plt.show(block=True) -------------------------------------------------------------------------------- /matlabcode/LSSlamTest.m: -------------------------------------------------------------------------------- 1 | disp('least squares slam example\n'); 2 | disp('loading the graph file from the vertices and edge description\n'); 3 | 4 | [vmeans, eids, emeans, einfs] = read_graph('data/killian-v.dat', 'data/killian-e.dat'); 5 | 6 | %% this plots the input trajectory 7 | plot (vmeans(1,:),vmeans(2,:)) 8 | pause(1); 9 | 10 | %% get the vertices after 1 iteration of lse 11 | v = ls_slam(vmeans, eids, emeans, einfs, 1); 12 | 13 | %% this plots result 14 | plot (v(1,:),v(2,:)) 15 | pause(1); 16 | 17 | %% do another iteration (starting from the previous solution) 18 | v=ls_slam(v, eids, emeans, einfs, 1); 19 | plot (v(1,:),v(2,:)) 20 | pause(1); 21 | 22 | %% ok, now we finalize the process with 4 iterations 23 | v = ls_slam(v, eids, emeans, einfs, 4); 24 | plot (v(1,:),v(2,:)) 25 | pause(1); 26 | 27 | %% 28 | disp('example with small rotational information values (increased effect of non-linearities, takes longer to converge)\n'); 29 | disp('loading the graph file from the vertices and edge description\n'); 30 | % this loads the means of the vertices, the means of the edges, the edges ids and the edges information 31 | % from the dat files 32 | [vmeans, eids, emeans, einfs] = read_graph('data/killian-v.dat', 'data/killian-small-rot-inf-e.dat'); 33 | 34 | % this plots the input trajectory 35 | plot (vmeans(1,:),vmeans(2,:)); 36 | pause(1); 37 | 38 | % get the vertices after 1 iteration of lse 39 | v = ls_slam(vmeans, eids, emeans, einfs, 1); 40 | 41 | % this plots result 42 | plot (v(1,:),v(2,:)) 43 | pause(1); 44 | 45 | % do another iteration (starting from the previous solution) 46 | v = ls_slam(v, eids, emeans, einfs, 1); 47 | plot (v(1,:),v(2,:)) 48 | pause(1); 49 | 50 | % ok, now we finalize the process with 4 iterations 51 | v = ls_slam(v, eids, emeans, einfs, 4); 52 | plot (v(1,:),v(2,:)) 53 | pause(1); 54 | -------------------------------------------------------------------------------- /solvers.py: -------------------------------------------------------------------------------- 1 | from scipy.sparse import coo_matrix 2 | from scipy.sparse.linalg import spsolve 3 | import numpy as np 4 | from itertools import izip 5 | 6 | import time 7 | 8 | def gauss_seidel(A,b,initial_guess,sparse=False,backward_substitution=True,tolerance=1e-2,maxiter=20,verbose=False): 9 | v = np.array(initial_guess) 10 | tolCheck = np.infty 11 | iteration = 0 12 | while tolCheck > tolerance and iteration < maxiter: 13 | t1 = time.time() 14 | 15 | v2 = np.zeros(len(v)) 16 | indices = np.arange(len(v)-1, -1, -1) if backward_substitution else range(len(v)) # iterate forwards or backwards. default: backward substitution 17 | for i in indices: 18 | if sparse: 19 | Aslice = coo_matrix(A[i, :]) 20 | Asum = 0 21 | if backward_substitution: 22 | for c,d in izip(Aslice.col, Aslice.data): 23 | if c > i: Asum += d * v2[c] # backward substitution 24 | elif c < i: Asum += d * v[c] # backward substitution 25 | else: 26 | for c,d in izip(Aslice.col, Aslice.data): 27 | if c < i: Asum += d * v2[c] # forward substitution 28 | elif c > i: Asum += d * v[c] # forward substitution 29 | v2[i] = (1.0/A[i,i]) * (b[i] - Asum) 30 | else: 31 | Aslice = A[i, :] 32 | if backward_substitution: 33 | v2[i] = (1.0/A[i,i]) * (b[i] - np.sum(Aslice[(i+1):]*v2[(i+1):]) - np.sum(Aslice[:i]*v[:i])) # backward substitution 34 | else: 35 | v2[i] = (1.0/A[i,i]) * (b[i] - np.sum(Aslice[:i]*v2[:i]) - np.sum(Aslice[(i+1):]*v[(i+1):])) # forward substitution 36 | 37 | #tolCheck = np.max(np.abs(v2-v)) / np.max(np.abs(v)) 38 | tolCheck = np.sum(np.abs(v2-v)) / np.sum(np.abs(v)) 39 | v = v2 40 | iteration += 1 41 | if verbose: 42 | print "it ",iteration,"tol:",tolCheck," - t:",time.time()-t1 43 | return v 44 | 45 | 46 | if __name__ == "__main__": 47 | A = np.array([[16,3],[7,-11]]) 48 | b = np.array([11,13]) 49 | x = np.array([ 0.81218274, -0.66497462]) 50 | 51 | t1=time.time() 52 | print "linalg: t=",time.time()-t1 53 | xs = np.linalg.solve(A, b) 54 | print xs 55 | print np.abs(x-xs) 56 | 57 | t1=time.time() 58 | print "gauss-seidel: t=",time.time()-t1 59 | xs = gauss_seidel(A, b, [0.2, -0.1]) 60 | print xs 61 | print np.abs(x-xs) -------------------------------------------------------------------------------- /matlabcode/read_graph.m: -------------------------------------------------------------------------------- 1 | % This source code is part of the graph optimization package 2 | % deveoped for the lectures of robotics2 at the University of Freiburg. 3 | % 4 | % Copyright (c) 2007 Giorgio Grisetti, Gian Diego Tipaldi 5 | % 6 | % It is licences under the Common Creative License, 7 | % Attribution-NonCommercial-ShareAlike 3.0 8 | % 9 | % You are free: 10 | % - to Share - to copy, distribute and transmit the work 11 | % - to Remix - to adapt the work 12 | % 13 | % Under the following conditions: 14 | % 15 | % - Attribution. You must attribute the work in the manner specified 16 | % by the author or licensor (but not in any way that suggests that 17 | % they endorse you or your use of the work). 18 | % 19 | % - Noncommercial. You may not use this work for commercial purposes. 20 | % 21 | % - Share Alike. If you alter, transform, or build upon this work, 22 | % you may distribute the resulting work only under the same or 23 | % similar license to this one. 24 | % 25 | % Any of the above conditions can be waived if you get permission 26 | % from the copyright holder. Nothing in this license impairs or 27 | % restricts the author's moral rights. 28 | % 29 | % This software is distributed in the hope that it will be useful, 30 | % but WITHOUT ANY WARRANTY; without even the implied 31 | % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 32 | % PURPOSE. 33 | 34 | %loads a graph file in a list 35 | %vfile: the input vertex file 36 | % every line is made as follows 37 | % VERTEX2 id pose.x pose.y pose.theta 38 | %efile: the input edge file 39 | % every line is made as follows 40 | % EDGE2 idFrom idTo mean.x mean.y mean.theta inf.xx inf.xy inf.yy inf.xt inf.yt inf.tt 41 | %vmeans: matrix containing the column vectors of the poses of the vertices 42 | % the vertices are odrered such that vmeans[i] corresponds to the ith id 43 | %eids: matrix containing the column vectors [idFrom, idTo]' of the ids of the vertices 44 | % eids[k] corresponds to emeans[k] and einfs[k]. 45 | %emeans: matrix containing the column vectors of the poses of the edges 46 | %einfs: 3d matrix containing the information matrices of the edges 47 | % einfs(:,:,k) refers to the information matrix of the k-th edge. 48 | %IMPORTANT: the ids in the file start with 0, the ids in matlab/octave start with 1 49 | 50 | function [vmeans, eids, emeans, einfs]=read_graph(vfile, efile) 51 | ef = fopen(efile); 52 | vf = fopen(vfile); 53 | vertices = fscanf(vf, 'VERTEX2 %d %f %f %f\n', [4,Inf]); 54 | edges = fscanf(ef,'EDGE2 %d %d %f %f %f %f %f %f %f %f %f \n',[11,Inf]); 55 | 56 | % Xi 57 | vmeans = vertices(2:4, vertices(1,:)+1); 58 | 59 | % [i, j] 60 | eids = edges(1:2,:) + 1; 61 | 62 | % Zij 63 | emeans = edges(3:5,:); 64 | 65 | % Information matrix 66 | einfs(1,1,:) = edges(6,:); 67 | einfs(2,1,:) = edges(7,:); 68 | einfs(1,2,:) = edges(7,:); 69 | einfs(2,2,:) = edges(8,:); 70 | einfs(3,3,:) = edges(9,:); 71 | einfs(1,3,:) = edges(10,:); 72 | einfs(3,1,:) = edges(10,:); 73 | einfs(3,2,:) = edges(11,:); 74 | einfs(2,3,:) = edges(11,:); 75 | end 76 | 77 | -------------------------------------------------------------------------------- /demo_goalpoints.py: -------------------------------------------------------------------------------- 1 | import time 2 | import numpy as np 3 | import matplotlib.pyplot as plt 4 | from utils import * 5 | from posegraph import PoseGraph, PoseEdge 6 | 7 | cols = [(np.random.random(), np.random.random(), np.random.random()) for i in range(1000)] 8 | 9 | coords = [] 10 | loopedges = [] 11 | 12 | def runslam(coords, loopedges): 13 | uncertainties, path = get_uncertainties_and_path(coords, linear_uncertainty=ex, angular_uncertainty=ephi) 14 | 15 | pg = PoseGraph() # LS-SLAM pose graph 16 | edges = [] 17 | # populate with data - path 18 | for p in range(len(path)): 19 | pg.nodes.append(path[p]) 20 | if p > 0: 21 | covm = uncertainties[p]#+uncertainties[p-1] 22 | try: 23 | infm=np.linalg.inv(covm) 24 | except: 25 | infm=np.linalg.inv(covm) 26 | edge = [p-1, p, get_motion_vector(path[p], path[p-1]), infm] 27 | edges.append(edge) 28 | pg.edges.append(PoseEdge(*edge)) 29 | pg.nodes = np.array(pg.nodes) 30 | # populate with data - loop closures 31 | for idpair in loopedges: 32 | sx = minex 33 | sy = miney 34 | st = minephi+ephi*np.sum([np.abs(path[p][2]-path[p-1][2]) for p in range(idpair[1], idpair[0]+1)]) 35 | cov_prec = [ 36 | [sx**2,0,0], 37 | [0,sy**2,0], 38 | [0,0,st**2] 39 | ] 40 | 41 | d = get_motion_vector([0,0]+[pg.nodes[idpair[0]][2]], [0,0]+[pg.nodes[idpair[1]][2]]) 42 | print "inserting loop closure vector btw. ",idpair,": ", d, np.rad2deg(d[2]), "\t theta uncertainty:", cov_prec[2][2] 43 | try: 44 | edge = [idpair[0], idpair[1], d, np.linalg.inv(cov_prec)] 45 | except: 46 | edge = [idpair[0], idpair[1], d, np.linalg.inv(cov_prec)] 47 | edges.append(edge) 48 | pg.edges.append(PoseEdge(*edge)) 49 | 50 | writePoseGraph(pg.nodes, edges, 'data/goalpoints.graph') # write graph in g2o format for TORO 51 | 52 | # run SLAM 53 | plt.clf() 54 | #plt.subplot(1,3,1) 55 | plt.title('path (before SLAM)') 56 | for j in range(len(path)): 57 | plt.scatter(pg.nodes[j, 0], pg.nodes[j, 1], s=1+np.min((200, 1000*(uncertainties[j][2][2])/ephi**2))) 58 | #plt.text(pg.nodes[j, 0]+30*float(j)/len(path)+np.random.random()*2-1, pg.nodes[j, 1]+np.random.random()*2-1, str(j)) 59 | for e in loopedges: 60 | plt.scatter(pg.nodes[e[0], 0], pg.nodes[e[0], 1], s=80, c=cols[e[0]]) 61 | plt.text(pg.nodes[e[0], 0]+(np.random.random()*1-.5), pg.nodes[e[0], 1]+(np.random.random()*1-.5), str(e[0])) 62 | plt.scatter(pg.nodes[e[1], 0], pg.nodes[e[1], 1], s=80, c=cols[e[0]]) 63 | plt.text(pg.nodes[e[1], 0]+(np.random.random()*1-.5), pg.nodes[e[1], 1]+(np.random.random()*1-.5), str(e[1])) 64 | plt.draw() 65 | time.sleep(1) 66 | print "optimization step (1)" 67 | pg.optimize(1) 68 | 69 | for k in range(2): 70 | plt.subplot(1,2,k+1) 71 | plt.title('path (after '+str(k+1)+' SLAM steps)') 72 | plt.scatter(path[:, 0], path[:, 1], s=1) 73 | plt.hold(True) 74 | 75 | for j in range(len(path)): 76 | plt.scatter(pg.nodes[j, 0], pg.nodes[j, 1], s=1+np.min((200, 1000*(uncertainties[j][2][2])/ephi**2))) 77 | #plt.text(pg.nodes[j, 0], pg.nodes[j, 1], str(j)) 78 | plt.draw() 79 | print "optimization step (5)" 80 | pg.optimize(5) 81 | 82 | plt.show(block=True) 83 | 84 | 85 | if __name__ == "__main__": 86 | import pickle 87 | with open('data/goalpointpath.b', 'rb') as f: 88 | coords = pickle.load(f) 89 | coords = np.array(coords) 90 | plt.ion() 91 | plt.figure() 92 | plt.show() 93 | plt.scatter(coords[:, 0], coords[:,1]) 94 | plt.title('ground truth') 95 | plt.draw() 96 | time.sleep(1) 97 | #loopedges = getloops(coords) 98 | loopedges = [[20,8], [36,20], [98,36], [102,138], [112,128], [127,113]] 99 | loopedges.reverse() 100 | runslam(coords, loopedges) -------------------------------------------------------------------------------- /utils.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import scipy.spatial 3 | 4 | 5 | def t2v(A): 6 | # T2V homogeneous transformation to vector 7 | v = np.zeros((3,1), dtype=np.float64) 8 | v[:2, 0] = A[:2,2] 9 | v[2] = np.arctan2(A[1,0], A[0,0]) 10 | return v 11 | 12 | def v2t(v): 13 | # V2T vector to homogeneous transformation 14 | c = np.cos(v[2]) 15 | s = np.sin(v[2]) 16 | A = np.array([[c, -s, v[0]], 17 | [s, c, v[1]], 18 | [0, 0, 1]], dtype=np.float64) 19 | return A 20 | 21 | # see g2o.pdf in https://github.com/RainerKuemmerle/g2o/tree/master/doc 22 | def apply_motion_vector(pose, motion): 23 | return np.array([(pose[0]+motion[0]*np.cos(motion[2])-motion[1]*np.sin(motion[2])), \ 24 | (pose[1]+motion[0]*np.sin(motion[2])+motion[1]*np.cos(motion[2])), \ 25 | np.mod(pose[2]+motion[2], 2*np.pi)-np.pi]) 26 | 27 | def get_motion_vector(pose1, pose2): 28 | return np.array([((pose1[0]-pose2[0])*np.cos(pose2[2])+(pose1[1]-pose2[1])*np.sin(pose2[2])),\ 29 | (-(pose1[0]-pose2[0])*np.sin(pose2[2])+(pose1[1]-pose2[1])*np.cos(pose2[2])),\ 30 | np.mod(pose2[2]-pose1[2], 2*np.pi)-np.pi]) 31 | 32 | ### 33 | 34 | def getloops(points, loopmaxdist = 1, loopmininterval = 20): 35 | p = np.copy(np.round(points,2)).tolist() 36 | D = scipy.spatial.distance.squareform(scipy.spatial.distance.pdist(p)) 37 | D[range(len(p)), range(len(p))] = np.infty 38 | pindex = [] 39 | lastloop = -np.infty 40 | 41 | loopedges = [] 42 | for i in range(len(p)): 43 | D2 = np.copy(D) 44 | D2[(i-20):(i+20), (i-20):(i+20)] = np.infty # exclude self 45 | closesti = np.argmin(D2[i, :]) 46 | condition = D2[i, closesti] < loopmaxdist and closesti < i and (i-lastloop)>loopmininterval # exclude self 47 | #condition = D2[i, closesti] < loopmaxdist 48 | if condition: 49 | pindex.append(closesti) 50 | lastloop = i 51 | loopedges.append([i, closesti]) 52 | else: 53 | pindex.append(i) 54 | return loopedges 55 | 56 | ex, ey, ephi = 1e-1,1e-1,1e-1 # error standard deviations 57 | minex, miney, minephi = 1e-6,1e-6,1e-6 # min.error standard deviations (otherwise can't invert Sigma) 58 | def get_uncertainties_and_path(points,linear_uncertainty=ex,angular_uncertainty=ephi,ex=ex,ey=ey,ephi=ephi,minex=minex,miney=miney,minephi=minephi): 59 | prevtheta = 0 60 | uncertainties = [0]*(len(points)-1) 61 | path = [list(points[0])+[0]] 62 | 63 | for i in range(1, len(points)): 64 | dx = points[i][0]-points[i-1][0] 65 | dy = points[i][1]-points[i-1][1] 66 | try: 67 | if points[i][0] == points[i-1][0] and points[i][1] == points[i-1][1]: theta = 0 68 | else: theta = np.arctan2(dy, dx) 69 | except Exception,e: 70 | print e 71 | theta = 0 72 | dtheta = np.mod(theta - prevtheta + np.pi, np.pi*2) - np.pi 73 | 74 | sx = abs(dx)*ex+minex 75 | sy = abs(dy)*ey+miney 76 | st = abs(dtheta)*ephi+minephi 77 | csigma = [ 78 | [sx**2,0,0], 79 | [0,sy**2,0], 80 | [0,0,st**2] 81 | ] 82 | uncertainties[i-1] = csigma 83 | prevtheta = theta 84 | 85 | v = np.sqrt(dx**2+dy**2) 86 | v *= 1+(linear_uncertainty*np.random.random()-linear_uncertainty/2) 87 | dtheta *= 1+(angular_uncertainty*np.random.random()-angular_uncertainty/2)/2 88 | 89 | ctheta = path[-1][2] + dtheta 90 | path.append([path[-1][0]+v*np.cos(ctheta), path[-1][1]+v*np.sin(ctheta), ctheta]) 91 | 92 | sx = minex 93 | sy = miney 94 | st = minephi 95 | uncertainties.append([ 96 | [sx**2,0,0], 97 | [0,sy**2,0], 98 | [0,0,st**2] 99 | ]) 100 | path = np.array(path) 101 | path -= path[0, :] 102 | return np.array(uncertainties), path 103 | 104 | def readPoseGraph(pfile): 105 | # Reads graph from vertex and edge file (g2o format - see https://github.com/RainerKuemmerle/g2o) 106 | # vertex file 107 | #lines = np.genfromtxt(pfile) 108 | with open(pfile, 'r') as f: 109 | lines = f.readlines() 110 | odometry_poses = [] 111 | constraints = [] 112 | for i in range(len(lines)): 113 | lines[i] = lines[i].split(' ') 114 | typ = str(lines[i][0]).lower() 115 | if 'vertex' in typ: 116 | odometry_poses.append([float(l) for l in lines[i][2:5]]) 117 | elif 'edge' in typ: 118 | line = [0] + [float(l) for l in lines[i][1:]] 119 | 120 | mean = line[2:5] 121 | infm = np.zeros((3,3), dtype=np.float64) 122 | # edges[i, 5:11] ... upper-triangular block of the information matrix (inverse cov.matrix) in row-major order 123 | infm[0,0] = line[5] 124 | infm[1,0] = infm[0,1] = line[6] 125 | infm[1,1] = line[7] 126 | infm[2,2] = line[8] 127 | infm[0,2] = infm[2,0] = line[9] 128 | infm[1,2] = infm[2,1] = line[10] 129 | constraints.append([int(line[0]), int(line[1]), mean, infm]) 130 | odometry_poses = np.array(odometry_poses) 131 | return odometry_poses, constraints 132 | 133 | def writePoseGraph(odometry, constraints, pfile): 134 | with open(pfile, 'w') as f: 135 | vi = 0 136 | for o in odometry: 137 | f.write('VERTEX2 '+str(vi)+' '+str(o[0])+' '+str(o[1])+' '+str(o[2])+'\n') 138 | vi += 1 139 | for e in constraints: 140 | s = 'EDGE2 '+str(e[0])+' '+str(e[1])+' ' # first FROM then TO 141 | for m in e[2]: s+=str(m)+' ' 142 | infm = e[3] 143 | s+=str(infm[0,0])+' ' 144 | s+=str(infm[1,0])+' ' 145 | s+=str(infm[1,1])+' ' 146 | s+=str(infm[2,2])+' ' 147 | s+=str(infm[0,2])+' ' 148 | s+=str(infm[1,2])+'\n' 149 | f.write(s) -------------------------------------------------------------------------------- /matlabcode/ls_slam.m: -------------------------------------------------------------------------------- 1 | % This source code is part of the graph optimization package 2 | % deveoped for the lectures of robotics2 at the University of Freiburg. 3 | % 4 | % Copyright (c) 2007 Giorgio Grisetti, Gian Diego Tipaldi 5 | % 6 | % It is licences under the Common Creative License, 7 | % Attribution-NonCommercial-ShareAlike 3.0 8 | % 9 | % You are free: 10 | % - to Share - to copy, distribute and transmit the work 11 | % - to Remix - to adapt the work 12 | % 13 | % Under the following conditions: 14 | % 15 | % - Attribution. You must attribute the work in the manner specified 16 | % by the author or licensor (but not in any way that suggests that 17 | % they endorse you or your use of the work). 18 | % 19 | % - Noncommercial. You may not use this work for commercial purposes. 20 | % 21 | % - Share Alike. If you alter, transform, or build upon this work, 22 | % you may distribute the resulting work only under the same or 23 | % similar license to this one. 24 | % 25 | % Any of the above conditions can be waived if you get permission 26 | % from the copyright holder. Nothing in this license impairs or 27 | % restricts the author's moral rights. 28 | % 29 | % This software is distributed in the hope that it will be useful, 30 | % but WITHOUT ANY WARRANTY; without even the implied 31 | % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 32 | % PURPOSE. 33 | 34 | 35 | %ls-slam.m 36 | %this file is released under the creative common license 37 | 38 | %solves a graph-based slam problem via least squares 39 | %vmeans: matrix containing the column vectors of the poses of the vertices 40 | % the vertices are odrered such that vmeans[i] corresponds to the ith id 41 | %eids: matrix containing the column vectors [idFrom, idTo]' of the ids of the vertices 42 | % eids[k] corresponds to emeans[k] and einfs[k]. 43 | %emeans: matrix containing the column vectors of the poses of the edges 44 | %einfs: 3d matrix containing the information matrices of the edges 45 | % einfs(:,:,k) refers to the information matrix of the k-th edge. 46 | %n: number of iterations 47 | %newmeans: matrix containing the column vectors of the updated vertices positions 48 | 49 | function newmeans = ls_slam(vmeans, eids, emeans, einfs, n) 50 | 51 | for i = 1:n 52 | vmeans = linearize_and_solve(vmeans, eids, emeans, einfs); 53 | end 54 | 55 | newmeans = vmeans; 56 | 57 | end 58 | 59 | 60 | %computes the taylor expansion of the error function of the k_th edge 61 | %vmeans: vertices positions 62 | %eids: edge ids 63 | %emeans: edge means 64 | %k: edge number 65 | %e: e_k(x) 66 | %A: d e_k(x) / d(x_i) 67 | %B: d e_k(x) / d(x_j) 68 | function [e, A, B] = linear_factors(vmeans, eids, emeans, k) 69 | %extract the ids of the vertices connected by the kth edge 70 | id_i = eids(1,k); 71 | id_j = eids(2,k); 72 | %extract the poses of the vertices and the mean of the edge 73 | v_i = vmeans(:,id_i); 74 | v_j = vmeans(:,id_j); 75 | z_ij = emeans(:,k); 76 | 77 | %compute the homoeneous transforms of the previous solutions 78 | zt_ij = v2t(z_ij); 79 | vt_i = v2t(v_i); 80 | vt_j = v2t(v_j); 81 | 82 | %compute the displacement between x_i and x_j 83 | f_ij=(inv(vt_i) * vt_j); 84 | 85 | %this below is too long to explain, to understand it derive it by hand 86 | theta_i = v_i(3); 87 | ti = v_i(1:2,1); 88 | tj = v_j(1:2,1); 89 | dt_ij = tj-ti; 90 | 91 | si = sin(theta_i); 92 | ci = cos(theta_i); 93 | 94 | A= [-ci, -si, [-si, ci]*dt_ij; si, -ci, [-ci, -si]*dt_ij; 0, 0, -1 ]; 95 | B =[ ci, si, 0 ; -si, ci, 0 ; 0, 0, 1 ]; 96 | 97 | ztinv = inv(zt_ij); 98 | e = t2v(ztinv * f_ij); 99 | ztinv(1:2,3) = 0; 100 | A = ztinv*A; 101 | B = ztinv*B; 102 | end 103 | 104 | 105 | %linearizes and solves one time the ls-slam problem specified by the input 106 | %vmeans: vertices positions at the linearization point 107 | %eids: edge ids 108 | %emeans: edge means 109 | %einfs: edge information matrices 110 | %newmeans: new solution computed from the initial guess in vmeans 111 | function newmeans = linearize_and_solve(vmeans, eids, emeans, einfs) 112 | disp('allocating workspace...'); 113 | % H and b are respectively the system matrix and the system vector 114 | H = zeros(size(vmeans,2)*3); 115 | b = zeros(size(vmeans,2)*3,1); 116 | 117 | disp('linearizing'); 118 | % this loop constructs the global system by accumulating in H and b the contributions 119 | % of all edges (see lecture) 120 | for k = 1:size(eids,2), 121 | id_i = eids(1,k); 122 | id_j = eids(2,k); 123 | [e, A, B] = linear_factors(vmeans, eids, emeans, k); 124 | omega = einfs(:,:,k); 125 | %compute the blocks of H^k 126 | b_i = -A' * omega * e; 127 | b_j = -B' * omega * e; 128 | H_ii= A' * omega * A; 129 | H_ij= A' * omega * B; 130 | H_jj= B' * omega * B; 131 | 132 | %accumulate the blocks in H and b 133 | H((id_i-1)*3+1:id_i*3,(id_i-1)*3+1:id_i*3) = ... 134 | H((id_i-1)*3+1:id_i*3,(id_i-1)*3+1:id_i*3)+ H_ii; 135 | H((id_j-1)*3+1:id_j*3,(id_j-1)*3+1:id_j*3) = ... 136 | H((id_j-1)*3+1:id_j*3,(id_j-1)*3+1:id_j*3) + H_jj; 137 | H((id_i-1)*3+1:id_i*3,(id_j-1)*3+1:id_j*3) = ... 138 | H((id_i-1)*3+1:id_i*3,(id_j-1)*3+1:id_j*3) + H_ij; 139 | H((id_j-1)*3+1:id_j*3,(id_i-1)*3+1:id_i*3) = ... 140 | H((id_j-1)*3+1:id_j*3,(id_i-1)*3+1:id_i*3) + H_ij'; 141 | b((id_i-1)*3+1:id_i*3,1) = ... 142 | b((id_i-1)*3+1:id_i*3,1) + b_i; 143 | b((id_j-1)*3+1:id_j*3,1) = ... 144 | b((id_j-1)*3+1:id_j*3,1) + b_j; 145 | 146 | %NOTE on Matlab compatibility: note that we use the += operator which is octave specific 147 | %using H=H+.... results in a tremendous overhead since the matrix would be entirely copied every time 148 | %and the matrix is huge 149 | end; 150 | disp('Done'); 151 | %note that the system (H b) is obtained only from 152 | %relative constraints. H is not full rank. 153 | %we solve the problem by anchoring the position of 154 | %the the first vertex. 155 | %this can be expressed by adding the equation 156 | % deltax(1:3,1)=0; 157 | %which is equivalent to the following 158 | H(1:3,1:3) = H(1:3,1:3) + eye(3); 159 | 160 | SH = sparse(H); 161 | disp('System size: '),disp(size(H)); 162 | disp('solving (may take some time) ...'); 163 | deltax = SH\b; 164 | disp('Done! '); 165 | 166 | %split the increments in nice 3x1 vectors and sum them up to the original matrix 167 | newmeans = vmeans + reshape(deltax, 3, size(vmeans,2)); 168 | 169 | disp('Normalizing the angles'); 170 | %normalize the angles between -PI and PI 171 | for i = 1:size(newmeans,2) 172 | s = sin(newmeans(3,i)); 173 | c = cos(newmeans(3,i)); 174 | newmeans(3,i) = atan2(s,c); 175 | end 176 | disp('Done'); 177 | end 178 | -------------------------------------------------------------------------------- /posegraph.py: -------------------------------------------------------------------------------- 1 | from utils import t2v, v2t, readPoseGraph 2 | from solvers import * 3 | 4 | import numpy as np 5 | from scipy.sparse import csr_matrix 6 | from numpy.linalg import inv 7 | import time 8 | 9 | class PoseEdge(object): 10 | def __init__(self, id_from = None, id_to = None, mean = None, infm = None): 11 | self.id_from = id_from # viewing frame of this edge 12 | self.id_to = id_to # pose being observed from the viewing frame 13 | self.mean = mean.flatten() if type(mean) == np.ndarray else mean # Predicted virtual measurement 14 | self.infm = infm # Information matrix of this edge 15 | 16 | class PoseGraph(object): 17 | #POSEGRAPH A class for doing pose graph optimization 18 | 19 | def __init__(self, nodes=[], edges=[], verbose=False): 20 | # Constructor of PoseGraph 21 | self.nodes = nodes # Pose nodes in graph. Each row has 3 values: x,y,yaw 22 | self.edges = [] # Edges in graph 23 | self.H = [] # Information matrix 24 | self.b = [] # Information vector 25 | # if x contains correct poses, then H*x = b 26 | self.verbose = verbose 27 | if len(edges)>0: 28 | for e in edges: 29 | self.edges.append(PoseEdge(*e)) 30 | 31 | def readGraph(self, vfile, efile=None, from_to_order=True): 32 | # Reads graph from vertex and edge file (g2o format - see https://github.com/RainerKuemmerle/g2o) 33 | if efile is None: 34 | self.nodes, constraints = readPoseGraph(vfile) 35 | self.nodes = np.array(self.nodes) 36 | for e in constraints: 37 | self.edges.append(PoseEdge(*e)) 38 | else: 39 | # vertex file 40 | vertices = np.loadtxt(vfile, usecols=range(1,5)) 41 | for i in range(vertices.shape[0]): 42 | self.nodes.append(vertices[i, 1:4]) 43 | self.nodes = np.array(self.nodes, dtype=np.float64) 44 | 45 | # edge file 46 | edges = np.loadtxt(efile, usecols=range(1,12)) 47 | for i in range(edges.shape[0]): 48 | mean = edges[i, 2:5] 49 | infm = np.zeros((3,3), dtype=np.float64) 50 | # edges[i, 5:11] ... upper-triangular block of the information matrix (inverse cov.matrix) in row-major order 51 | infm[0,0] = edges[i, 5] 52 | infm[1,0] = infm[0,1] = edges[i, 6] 53 | infm[1,1] = edges[i, 7] 54 | infm[2,2] = edges[i, 8] 55 | infm[0,2] = infm[2,0] = edges[i, 9] 56 | infm[1,2] = infm[2,1] = edges[i, 10] 57 | if from_to_order: 58 | edge = PoseEdge(int(edges[i,0]), int(edges[i,1]), mean, infm) 59 | else: 60 | edge = PoseEdge(int(edges[i,1]), int(edges[i,0]), mean, infm) 61 | self.edges.append(edge) 62 | 63 | def plot(self, plt=None, title=''): 64 | if plt is not None: 65 | plt.clf() 66 | plt.scatter(self.nodes[:, 0], self.nodes[:, 1]) 67 | plt.title(title) 68 | time.sleep(0.1) 69 | plt.draw() 70 | 71 | def optimize(self, n_iter=1, plt=None): 72 | # Pose graph optimization 73 | 74 | for i_iter in range(n_iter): 75 | if self.verbose: print('Pose Graph Optimization, Iteration %d.\n' % i_iter) 76 | 77 | # Create new H and b matrices each time 78 | self.H = np.zeros((len(self.nodes)*3,len(self.nodes)*3), dtype=np.float64) # 3n x 3n square matrix 79 | self.b = np.zeros((len(self.nodes)*3,1), dtype=np.float64) # 3n x 1 column vector 80 | 81 | if self.verbose: print('Linearizing.\n') 82 | self.linearize() 83 | 84 | if self.verbose: print ('Solving.\n') 85 | self.solve(i_iter) 86 | 87 | if plt is not None: 88 | self.plot(plt, str(i_iter)) 89 | 90 | def linearize(self): 91 | # Linearize error functions and formulate a linear system 92 | for i_edge in range(len(self.edges)): 93 | ei = self.edges[i_edge] 94 | # Get edge information 95 | i_node = ei.id_from 96 | j_node = ei.id_to 97 | try: 98 | T_z = v2t(ei.mean) 99 | except: 100 | T_z = v2t(ei.mean) 101 | omega = ei.infm 102 | 103 | # Get node information 104 | v_i = self.nodes[i_node] 105 | v_j = self.nodes[j_node] 106 | 107 | T_i = v2t(v_i) 108 | T_j = v2t(v_j) 109 | R_i = T_i[:2,:2] 110 | R_z = T_z[:2,:2] 111 | 112 | si = np.sin(v_i[2]) 113 | ci = np.cos(v_i[2]) 114 | dR_i = np.array([[-si, ci], [-ci, -si]], dtype=np.float64).T 115 | dt_ij = np.array([v_j[:2] - v_i[:2]], dtype=np.float64).T 116 | 117 | # Caluclate jacobians 118 | A = np.vstack((np.hstack((np.dot(-R_z.T,R_i.T), np.dot(np.dot(R_z.T, dR_i.T), dt_ij))), [0, 0, -1])) 119 | B = np.vstack((np.hstack((np.dot(R_z.T,R_i.T), np.zeros((2,1), dtype=np.float64))), [0, 0, 1])) 120 | 121 | # Calculate error vector 122 | e = t2v(np.dot(np.dot(inv(T_z), inv(T_i)), T_j)) 123 | 124 | 125 | # Formulate blocks 126 | H_ii = np.dot(np.dot(A.T , omega), A) 127 | H_ij = np.dot(np.dot(A.T , omega), B) 128 | H_jj = np.dot(np.dot(B.T , omega), B) 129 | b_i = np.dot(np.dot(-A.T , omega), e) 130 | b_j = np.dot(np.dot(-B.T , omega), e) 131 | 132 | # Update H and b matrix 133 | # #(3*(id)):(3*(id+1)) converts id to indices in H and b 134 | self.H[(3*i_node):(3*(i_node+1)),(3*i_node):(3*(i_node+1))] += H_ii 135 | self.H[(3*i_node):(3*(i_node+1)),(3*j_node):(3*(j_node+1))] += H_ij 136 | self.H[(3*j_node):(3*(j_node+1)),(3*i_node):(3*(i_node+1))] += H_ij.T 137 | self.H[(3*j_node):(3*(j_node+1)),(3*j_node):(3*(j_node+1))] += H_jj 138 | self.b[(3*i_node):(3*(i_node+1))] += b_i 139 | self.b[(3*j_node):(3*(j_node+1))] += b_j 140 | 141 | def solve(self, i_iter=0): 142 | # Solves the linear system and update all pose nodes 143 | if self.verbose: print('Poses: %d, Edges: %d\n', len(self.nodes), len(self.edges)) 144 | # The system (H b) is obtained only from relative constraints. 145 | # H is not full rank. 146 | # We solve this by anchoring the position of the 1st vertex 147 | # This can be expressed by adding teh equation 148 | # dx(1:3,1) = 0 149 | # which is equivalent to the following 150 | self.H[:3,:3] += np.eye(3) 151 | 152 | H_sparse = csr_matrix(self.H) # coo_matrix 153 | 154 | dx = spsolve(H_sparse, self.b) 155 | #dx = gauss_seidel(H_sparse, self.b, np.random.random(len(dx)), sparse=True) 156 | 157 | dx[:3] = [0,0,0] 158 | dx[np.isnan(dx)] = 0 159 | dpose = np.reshape(dx, (len(self.nodes), 3)) 160 | 161 | self.nodes += dpose # update -------------------------------------------------------------------------------- /data/goalpoints_toro_result.graph: -------------------------------------------------------------------------------- 1 | VERTEX 0 0 0 0 2 | VERTEX 1 2.20801 47.0243 1.61772 3 | VERTEX 2 0.926875 74.2679 -1.52395 4 | VERTEX 3 2.60377 36.4853 1.62014 5 | VERTEX 4 1.26088 68.243 -1.51437 6 | VERTEX 5 4.00977 18.3725 1.62859 7 | VERTEX 6 2.52577 44.4806 -1.51198 8 | VERTEX 7 4.07608 18.1523 1.62961 9 | VERTEX 8 2.02399 52.857 -1.51223 10 | VERTEX 9 3.62215 18.2715 1.62928 11 | VERTEX 10 2.01697 45.7885 -1.51209 12 | VERTEX 11 3.49639 20.6178 1.6295 13 | VERTEX 12 0.429142 47.4071 -1.56738 14 | VERTEX 13 -4.4557 19.8201 1.62994 15 | VERTEX 14 -6.0381 46.5462 -0.334774 16 | VERTEX 15 -30.0716 54.9928 -0.331583 17 | VERTEX 16 -4.08434 46.0455 2.81001 18 | VERTEX 17 -28.3669 52.946 -0.386291 19 | VERTEX 18 -4.4537 41.6463 2.81044 20 | VERTEX 19 -28.3636 49.8669 -0.331153 21 | VERTEX 20 2.02399 52.857 -2.92995 22 | VERTEX 21 -15.2613 77.4749 1.39418 23 | VERTEX 22 -2.83396 100.124 -1.42218 24 | VERTEX 23 1.06135 74.106 1.71941 25 | VERTEX 24 -2.8754 100.4 -1.42218 26 | VERTEX 25 0.923723 75.0252 1.71941 27 | VERTEX 26 -3.24528 102.871 -1.42218 28 | VERTEX 27 0.536589 77.611 1.71941 29 | VERTEX 28 -4.70486 112.59 -1.23218 30 | VERTEX 29 -16.3592 143.005 -1.25949 31 | VERTEX 30 -7.74631 116.226 1.88222 32 | VERTEX 31 -15.844 141.382 -1.25937 33 | VERTEX 32 -7.74036 116.208 1.88222 34 | VERTEX 33 -15.9154 141.604 -1.25937 35 | VERTEX 34 -8.06199 117.207 1.88222 36 | VERTEX 35 1.41681 81.6354 -1.25937 37 | VERTEX 36 2.02399 52.857 -4.62065 38 | VERTEX 37 13.3358 75.4073 -0.922821 39 | VERTEX 38 35.2373 61.4321 -4.41927 40 | VERTEX 39 27.6189 86.6744 -1.27768 41 | VERTEX 40 34.9628 61.7081 -4.41927 42 | VERTEX 41 20.9365 114.855 -1.2426 43 | VERTEX 42 29.3044 87.2952 -4.35213 44 | VERTEX 43 20.6753 124.58 -1.07638 45 | VERTEX 44 29.2888 79.3064 -3.89376 46 | VERTEX 45 1.62668 105.69 -0.497429 47 | VERTEX 46 35.3887 75.6376 -3.42694 48 | VERTEX 47 15.02 77.3566 -0.200034 49 | VERTEX 48 46.0779 70.3538 -3.34158 50 | VERTEX 49 30.237 70.2284 -0.200045 51 | VERTEX 50 61.2291 70.1413 -3.62456 52 | VERTEX 51 10.7394 83.1632 -0.699811 53 | VERTEX 52 37.6762 66.071 -3.987 54 | VERTEX 53 24.5815 78.9355 -0.845405 55 | VERTEX 54 61.0367 37.3569 -3.98694 56 | VERTEX 55 33.5177 68.7117 -0.841275 57 | VERTEX 56 50.8467 48.4343 -3.97935 58 | VERTEX 57 27.0926 75.2693 -0.822155 59 | VERTEX 58 51.9501 51.184 -4.01664 60 | VERTEX 59 25.2152 75.9364 -1.00318 61 | VERTEX 60 47.8718 46.8045 -4.23816 62 | VERTEX 61 30.9793 71.6687 -1.2191 63 | VERTEX 62 37.9964 57.9948 -4.48735 64 | VERTEX 63 32.743 87.3123 -1.29799 65 | VERTEX 64 40.3883 59.8186 -4.44066 66 | VERTEX 65 32.6365 87.6407 -1.29907 67 | VERTEX 66 40.1325 60.4552 -4.34904 68 | VERTEX 67 49.6498 34.5433 -4.339 69 | VERTEX 68 39.5553 60.3099 -1.19741 70 | VERTEX 69 49.9438 33.6166 -4.339 71 | VERTEX 70 38.4653 63.0116 -1.1963 72 | VERTEX 71 44.9356 47.5394 -4.38555 73 | VERTEX 72 34.3059 72.6751 -1.3172 74 | VERTEX 73 37.1685 36.5141 -4.2842 75 | VERTEX 74 31.8101 55.636 -0.974417 76 | VERTEX 75 59.462 7.93083 -4.03665 77 | VERTEX 76 32.1428 51.4876 -0.782448 78 | VERTEX 77 55.9496 24.7144 -3.87726 79 | VERTEX 78 18.9832 57.9773 -0.73549 80 | VERTEX 79 44.6639 33.5523 -3.87691 81 | VERTEX 80 9.23376 65.835 -0.732043 82 | VERTEX 81 29.1061 46.2548 -3.86964 83 | VERTEX 82 1.53927 74.374 -0.626713 84 | VERTEX 83 22.0942 54.4646 -3.63746 85 | VERTEX 84 8.5675 63.8202 -0.329586 86 | VERTEX 85 22.2321 55.0633 -3.30953 87 | VERTEX 86 2.52109 56.4954 -0.142936 88 | VERTEX 87 24.0223 51.3881 -3.23282 89 | VERTEX 88 7.54882 50.8081 -0.0909341 90 | VERTEX 89 27.8305 46.9929 -3.28072 91 | VERTEX 90 -2.82461 46.5958 -0.197167 92 | VERTEX 91 28.8731 48.1293 -3.59149 93 | VERTEX 92 -6.83312 54.5934 -0.720697 94 | VERTEX 93 24.3213 39.1444 -4.12264 95 | VERTEX 94 -1.8529 68.4984 -1.11949 96 | VERTEX 95 20.2501 21.3275 -4.24797 97 | VERTEX 96 1.43376 67.0533 -1.03234 98 | VERTEX 97 12.8873 44.5225 -4.11104 99 | VERTEX 98 2.02399 52.857 -0.524298 100 | VERTEX 99 5.08363 90.4738 -5.67983 101 | VERTEX 100 27.4267 105.974 -2.53799 102 | VERTEX 101 6.79585 90.2345 -5.67958 103 | VERTEX 102 9.45175 126.969 -3.433 104 | VERTEX 103 -16.9274 117.528 -1.06023 105 | VERTEX 104 -1.61686 90.1931 -4.20182 106 | VERTEX 105 -15.5901 115.141 -1.06023 107 | VERTEX 106 -0.815364 88.7621 -4.20182 108 | VERTEX 107 -14.9449 113.989 -1.06023 109 | VERTEX 108 -1.01736 89.1228 -4.20182 110 | VERTEX 109 -16.1502 116.141 -1.06023 111 | VERTEX 110 -1.18304 89.4186 -4.20182 112 | VERTEX 111 -16.4747 116.72 -1.06023 113 | VERTEX 112 1.73238 85.6461 -4.22126 114 | VERTEX 113 -8.28004 100.399 -1.07022 115 | VERTEX 114 10.6813 68.1479 -4.22288 116 | VERTEX 115 -2.36257 92.1803 -1.08904 117 | VERTEX 116 10.618 67.3536 -4.23063 118 | VERTEX 117 -1.72711 90.9649 -1.08904 119 | VERTEX 118 10.8201 66.9671 -4.23063 120 | VERTEX 119 -1.75614 91.0205 -1.08904 121 | VERTEX 120 11.2995 66.0501 -6.62868 122 | VERTEX 121 -14.1063 73.4082 -6.69227 123 | VERTEX 122 9.875 63.0111 -3.55068 124 | VERTEX 123 -16.1868 74.3102 -6.69227 125 | VERTEX 124 8.20835 63.7337 -3.55068 126 | VERTEX 125 -16.1773 74.3061 -6.69227 127 | VERTEX 126 8.89275 63.437 -3.55068 128 | VERTEX 127 -8.28004 100.399 -0.99537 129 | VERTEX 128 1.73238 85.6461 -4.15808 130 | VERTEX 129 -16.3611 114.792 -1.01775 131 | VERTEX 130 -0.365007 87.767 -4.14074 132 | VERTEX 131 -15.9437 111.984 -0.999145 133 | VERTEX 132 -0.2922 87.6539 -4.14074 134 | VERTEX 133 -16.3671 112.642 -0.999145 135 | VERTEX 134 -0.780076 88.4122 -4.14074 136 | VERTEX 135 -16.3641 112.637 -0.999145 137 | VERTEX 136 0.639449 86.2056 -4.14074 138 | VERTEX 137 -14.9019 110.364 -0.999145 139 | VERTEX 138 9.45175 126.969 -2.59891 140 | VERTEX 139 -7.80972 90.067 -6.33108 141 | VERTEX 140 13.9872 113.576 -4.04244 142 | VERTEX 141 -7.94758 140.663 -0.90803 143 | VERTEX 142 9.08339 118.952 -4.05205 144 | EDGE 0 1 2.20801 47.0243 1.61772 74.6077 0 0.138363 1.52832e+10 0 0 145 | EDGE 1 2 27.2737 0.00192171 3.14152 36.3479 0 0.0753887 1.62205e+07 0 0 146 | EDGE 2 3 37.8197 -0.0944015 -3.1391 35.8649 0 0.0997717 1.93225e+06 0 0 147 | EDGE 3 4 31.7853 -0.225218 -3.13451 14.3063 0 0.041848 5.50796e+07 0 0 148 | EDGE 4 5 49.9462 -0.0682493 -3.14023 45.9642 0 0.139631 9.27261e+07 0 0 149 | EDGE 5 6 26.1502 -0.0266224 -3.14057 45.9642 0 0.139631 1e+12 0 0 150 | EDGE 8 9 36.2082 0.00300129 3.14151 47.7491 0 0.14448 1.95186e+09 0 0 151 | EDGE 6 7 26.3739 -9.10383e-15 3.14159 25.6128 0 0.077124 1.58063e+09 0 0 152 | EDGE 7 8 34.7653 0.0085229 3.14135 26.3498 0 0.0791013 1.14446e+10 0 0 153 | EDGE 11 12 26.9231 1.49013 3.0863 47.7491 0 0.14448 33104 0 0 154 | EDGE 9 10 27.5638 -0.00606337 -3.14137 47.7491 0 0.14448 1e+12 0 0 155 | EDGE 10 11 25.2141 1.28786e-14 -3.14159 1e+12 0 0.14448 33104 0 0 156 | EDGE 12 13 27.5819 -1.53851 -3.08587 47.7491 0 0.14448 1e+12 0 0 157 | EDGE 15 16 27.4844 -4.66294e-15 3.14159 1e+12 0 0.14448 33104 0 0 158 | EDGE 13 14 26.7729 -1.9984e-15 3.14159 47.7491 0 0.14448 10.1321 0 0 159 | EDGE 14 15 -25.4744 0.0812813 0.00319069 47.7491 0 0.14448 1e+12 0 0 160 | EDGE 16 17 25.2062 1.38036 3.08688 47.7491 0 0.14448 33104 0 0 161 | EDGE 19 20 37.001 0.00794403 3.14138 0.13381 0 1.12145 71.397 0 0 162 | EDGE 17 18 26.4083 -1.45759 -3.08645 47.7491 0 0.14448 1e+12 0 0 163 | EDGE 18 19 25.2836 -9.76996e-15 3.14159 26.3498 0 0.0791013 1.95186e+09 0 0 164 | EDGE 20 21 11.7186 -27.7426 -1.97047 0.138852 0 2605.15 944.982 0 0 165 | EDGE 21 22 24.4799 -8.25469 -2.81636 0.138852 0 2605.15 1e+12 0 0 166 | EDGE 22 23 26.3077 -1.89293e-14 3.14159 0.138852 0 2605.15 1e+12 0 0 167 | EDGE 23 24 26.5876 -2.38143e-14 3.14159 0.138852 0 2605.15 1e+12 0 0 168 | EDGE 24 25 25.6581 -3.9968e-15 3.14159 0.138852 0 2605.15 1e+12 0 0 169 | EDGE 25 26 28.1561 -1.67644e-14 3.14159 0.138852 0 2605.15 1e+12 0 0 170 | EDGE 28 29 -32.5586 -0.889481 -0.0273126 0.138852 0 2605.15 5.67878e+09 0 0 171 | EDGE 26 27 25.5415 -5.93969e-15 3.14159 0.0876217 0 1590.09 5.67878e+09 0 0 172 | EDGE 27 28 35.37 0.00435307 3.14147 0.0876217 0 1590.09 10.1321 0 0 173 | EDGE 29 30 28.1296 -0.00337123 -3.14147 0.138852 0 2605.15 1e+12 0 0 174 | EDGE 30 31 26.4273 -3.9968e-15 3.14159 0.138852 0 2605.15 1e+12 0 0 175 | EDGE 31 32 26.4468 4.21885e-15 3.14159 0.138852 0 2605.15 1e+12 0 0 176 | EDGE 32 33 26.6795 -1.28786e-14 3.14159 0.138852 0 2605.15 1e+12 0 0 177 | EDGE 33 34 25.6298 8.43769e-15 3.14159 0.138852 0 2605.15 1e+12 0 0 178 | EDGE 36 37 21.669 -13.4452 -2.58625 0.143789 0 9.33754 814.317 0 0 179 | EDGE 34 35 26.6725 1.95399e-14 3.14159 0.13381 0 1.12145 944.982 0 0 180 | EDGE 35 36 27.9444 9.21053 2.8232 0.149412 0 2.80149 319.375 0 0 181 | EDGE 37 38 24.3617 9.02714 2.78673 0.143789 0 9.33754 1e+12 0 0 182 | EDGE 40 41 54.933 -1.92798 -3.10651 0.119069 0 39.6447 92655.4 0 0 183 | EDGE 38 39 26.3669 7.81597e-14 -3.14159 0.143789 0 9.33754 1e+12 0 0 184 | EDGE 39 40 25.4171 -3.95239e-14 3.14159 0.032639 0 4.2325 77672.6 0 0 185 | EDGE 41 42 28.6596 -0.919221 -3.10953 0.0450078 0 7.52012 5742.1 0 0 186 | EDGE 44 45 41.7973 -10.8837 -2.88686 0.132342 0 0.0951 2177.93 0 0 187 | EDGE 42 43 46.198 -6.23515 -3.00744 0.0778781 0 0.430887 947.997 0 0 188 | EDGE 43 44 36.487 -12.2624 -2.81738 0.0920408 0 0.157053 1582.26 0 0 189 | EDGE 45 46 43.5039 -9.36734 -2.92951 0.671385 0 0.33829 13562.3 0 0 190 | EDGE 46 47 21.0715 -1.80202 -3.05628 0.296108 0 0.149171 3.19914e+10 0 0 191 | EDGE 49 50 32.0258 9.31045 2.85867 0.0407143 0 0.172555 2193.65 0 0 192 | EDGE 47 48 31.8201 -0.00143202 -3.14155 1.13017 0 0.569481 2.31716e+10 0 0 193 | EDGE 48 49 15.6106 0.000884511 3.14154 0.157367 0 0.255213 1207.14 0 0 194 | EDGE 50 51 52.7133 11.6133 2.92475 0.131418 0 1.28211 4935.46 0 0 195 | EDGE 51 52 29.9496 4.39156 2.996 0.131418 0 1.28211 1e+12 0 0 196 | EDGE 54 55 43.0241 -0.175028 -3.13752 0.234093 0 2.16806 8.07028e+06 0 0 197 | EDGE 52 53 28.5545 2.66454e-15 3.14159 0.0474482 0 0.462709 1.98797e+10 0 0 198 | EDGE 53 54 50.2612 -0.0031142 -3.14153 0.0657748 0 0.623838 6.03481e+06 0 0 199 | EDGE 57 58 34.5518 1.82917 3.0887 0.0845163 0 3.42042 6386.63 0 0 200 | EDGE 55 56 21.1317 -0.0744023 -3.13807 0.0738034 0 0.615432 395386 0 0 201 | EDGE 56 57 40.3347 -0.629226 -3.12599 0.0911766 0 1.0941 36496.3 0 0 202 | EDGE 58 59 36.1354 4.65563 3.01346 0.0736994 0 18.9689 11396.1 0 0 203 | EDGE 59 60 36.7443 3.4416 3.0482 0.101475 0 26.0553 6442.51 0 0 204 | EDGE 60 61 29.8343 3.67408 3.01906 0.445417 0 12.3584 6369.68 0 0 205 | EDGE 61 62 15.122 1.9256 3.01494 0.10502 0 5.30588 43670.7 0 0 206 | EDGE 62 63 29.757 -1.42257 -3.09382 0.128909 0 6.41085 8.22453e+07 0 0 207 | EDGE 65 66 27.9286 7.01661e-14 -3.14159 0.128909 0 6.41085 10.1321 0 0 208 | EDGE 63 64 28.2664 0.0304765 3.14051 0.128909 0 6.41085 1e+12 0 0 209 | EDGE 64 65 28.8818 -5.32907e-14 3.14159 0.128909 0 6.41085 1e+12 0 0 210 | EDGE 66 67 -27.5056 0.276281 0.0100442 0.128909 0 6.41085 1e+12 0 0 211 | EDGE 67 68 27.6733 -4.35207e-14 3.14159 0.128909 0 6.41085 1e+12 0 0 212 | EDGE 68 69 28.4791 6.12843e-14 -3.14159 0.10502 0 5.30588 8.22453e+07 0 0 213 | EDGE 69 70 31.5567 -0.0349787 -3.14048 0.445417 0 12.3584 43670.7 0 0 214 | EDGE 70 71 15.7739 0.752313 3.09394 0.133728 0 1.85481 17911.2 0 0 215 | EDGE 71 72 27.2178 1.99714 3.06835 0.0768639 0 9.17332 3417.84 0 0 216 | EDGE 72 73 35.7226 -6.3012 -2.967 0.233339 0 39.6471 3549.06 0 0 217 | EDGE 73 74 20.5486 -3.48896 -2.97341 0.0472152 0 1.87611 15327.6 0 0 218 | EDGE 76 77 25.9921 -1.21673 -3.09482 0.0399984 0 0.381519 2.6823e+09 0 0 219 | EDGE 74 75 44.8982 -3.57071 -3.06223 0.0402519 0 0.536845 8271.61 0 0 220 | EDGE 75 76 53.2057 -6.01679 -3.02899 0.166275 0 1.58798 47896.5 0 0 221 | EDGE 77 78 51.8087 -0.00936182 -3.14141 0.154061 0 1.46772 2.88398e+09 0 0 222 | EDGE 78 79 27.4822 -0.00479213 -3.14142 0.0462518 0 0.430906 9.19074e+06 0 0 223 | EDGE 79 80 49.1135 -0.160753 -3.13832 0.226308 0 2.05278 6.29314e+06 0 0 224 | EDGE 80 81 22.7926 -0.0911234 -3.13759 0.0739077 0 0.367276 9781.31 0 0 225 | EDGE 81 82 41.4422 -4.21385 -3.04026 0.175307 0 0.458785 5740.05 0 0 226 | EDGE 82 83 28.0507 -3.6915 -3.01074 0.647931 0 0.833211 3499.72 0 0 227 | EDGE 83 84 16.5094 -2.77073 -2.97531 0.904592 0 0.605453 3790.24 0 0 228 | EDGE 84 85 15.6439 -2.55105 -2.97995 0.691846 0 0.418324 162964 0 0 229 | EDGE 87 88 16.2782 -0.00478893 -3.1413 0.609654 0 0.364378 41580.5 0 0 230 | EDGE 85 86 19.6805 -0.492185 -3.11659 0.690566 0 0.33645 37626.5 0 0 231 | EDGE 86 87 22.0112 -1.13916 -3.08989 1.11429 0 0.542209 1.0777e+09 0 0 232 | EDGE 88 89 20.8107 1.00369 3.0934 0.273726 0 0.208448 28353.8 0 0 233 | EDGE 89 90 30.1451 1.75161 3.08355 0.139749 0 0.305429 1495.57 0 0 234 | EDGE 90 91 31.5857 8.15705 2.88886 0.0869471 0 0.766024 1374.01 0 0 235 | EDGE 91 92 34.9642 9.70678 2.87079 0.0800012 0 17.62 1505.92 0 0 236 | EDGE 92 93 33.6027 8.95157 2.88124 0.0592338 0 12.29 5358.97 0 0 237 | EDGE 93 94 38.9524 5.42753 3.00315 0.0382696 0 12.2227 554807 0 0 238 | EDGE 96 97 22.93 -1.44422 -3.07869 0.204528 0 0.812902 679.721 0 0 239 | EDGE 94 95 52.0881 -0.683108 -3.12848 0.0380318 0 126.775 18649.9 0 0 240 | EDGE 95 96 49.3105 -3.65737 -3.06756 0.195567 0 29.4026 24363.2 0 0 241 | EDGE 97 98 21.7731 -8.92266 -2.75266 25.6128 0 0.077124 25.4841 0 0 242 | EDGE 98 99 -16.1825 34.0956 1.12766 45.9642 0 0.139631 1.58063e+09 0 0 243 | EDGE 99 100 27.1883 -0.0067213 -3.14135 45.9642 0 0.139631 1e+12 0 0 244 | EDGE 102 103 21.3487 20.6522 2.37278 0.11152 0 65.0799 1e+12 0 0 245 | EDGE 100 101 25.772 -1.22125e-15 3.14159 0.123375 0 0.153523 124.835 0 0 246 | EDGE 101 102 23.0378 28.736 2.24658 0.11152 0 65.0799 167.689 0 0 247 | EDGE 103 104 31.3308 -1.95399e-14 3.14159 0.11152 0 65.0799 1e+12 0 0 248 | EDGE 104 105 28.5943 -1.33227e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 249 | EDGE 107 108 28.5007 -4.08562e-14 3.14159 0.11152 0 65.0799 1e+12 0 0 250 | EDGE 105 106 30.2345 -1.33227e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 251 | EDGE 106 107 28.914 2.30926e-14 -3.14159 0.11152 0 65.0799 1e+12 0 0 252 | EDGE 108 109 30.9673 1.77636e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 253 | EDGE 111 112 36.0082 0.700139 3.12215 0.342931 0 97.8539 6.20934e+07 0 0 254 | EDGE 109 110 30.6282 -9.76996e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 255 | EDGE 110 111 31.2922 6.21725e-15 -3.14159 0.0846532 0 23.1566 276225 0 0 256 | EDGE 112 113 17.5375 -0.0216834 -3.14036 0.0633881 0 67.9982 122109 0 0 257 | EDGE 113 114 38.2529 -1.07349 -3.11354 0.136492 0 92.4034 1.6015e+06 0 0 258 | EDGE 114 115 27.3432 0.212052 3.13384 0.136492 0 92.4034 1e+12 0 0 259 | EDGE 115 116 28.0153 -3.01981e-14 3.14159 0.136492 0 92.4034 1e+12 0 0 260 | EDGE 116 117 26.6439 2.70894e-14 3.14159 0.136492 0 92.4034 1e+12 0 0 261 | EDGE 117 118 27.08 3.9968e-15 3.14159 0.136492 0 92.4034 1e+12 0 0 262 | EDGE 118 119 27.1427 1.33227e-14 3.14159 0.136492 0 92.4034 1e+12 0 0 263 | EDGE 119 120 28.1775 1.06581e-14 3.14159 0.136492 0 92.4034 10.1321 0 0 264 | EDGE 120 121 -26.3965 -1.68083 -0.0635905 0.136492 0 92.4034 1e+12 0 0 265 | EDGE 121 122 26.1382 9.76996e-15 3.14159 0.136492 0 92.4034 1e+12 0 0 266 | EDGE 122 123 28.4057 -3.19744e-14 3.14159 0.136492 0 92.4034 1e+12 0 0 267 | EDGE 123 124 26.5892 -1.24345e-14 3.14159 0.136492 0 92.4034 1e+12 0 0 268 | EDGE 124 125 26.5789 3.01981e-14 3.14159 0.136492 0 92.4034 1e+12 0 0 269 | EDGE 127 128 17.8222 0.520388 3.1124 0.0846532 0 23.1566 6.20934e+07 0 0 270 | EDGE 125 126 27.3249 -8.88178e-16 3.14159 0.0633881 0 67.9982 1.6015e+06 0 0 271 | EDGE 126 127 40.8218 -0.329132 -3.13353 0.342931 0 97.8539 122109 0 0 272 | EDGE 128 129 34.3053 0.0432336 3.14033 0.11152 0 65.0799 276225 0 0 273 | EDGE 131 132 28.9295 -2.66454e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 274 | EDGE 129 130 31.3987 -0.584196 -3.12299 0.11152 0 65.0799 1e+12 0 0 275 | EDGE 130 131 28.7949 -4.35207e-14 3.14159 0.11152 0 65.0799 1e+12 0 0 276 | EDGE 134 135 28.8048 -4.88498e-14 3.14159 0.11152 0 65.0799 1e+12 0 0 277 | EDGE 132 133 29.7121 4.44089e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 278 | EDGE 133 134 28.8104 3.90799e-14 -3.14159 0.11152 0 65.0799 1e+12 0 0 279 | EDGE 137 138 30.7685 5.9508e-14 -3.14159 0.103298 0 0.183228 275.312 0 0 280 | EDGE 135 136 31.4286 -8.88178e-16 3.14159 0.11152 0 65.0799 1e+12 0 0 281 | EDGE 136 137 28.726 4.44089e-15 3.14159 0.11152 0 65.0799 1e+12 0 0 282 | EDGE 138 139 33.8392 22.6859 2.55101 35.8649 0 0.0997717 130.89 0 0 283 | EDGE 139 140 20.6864 23.6885 2.28864 36.3479 0 0.0753887 1.93225e+06 0 0 284 | EDGE 140 141 34.8095 0.250057 3.13441 74.6077 0 0.138363 1.62205e+07 0 0 285 | EDGE 141 142 27.5935 0.0668647 3.13917 1e+12 0 1e+12 1e+12 0 0 286 | EDGE 113 127 0 0 0.0352275 1e+12 -7.62939e-06 1e+12 10.2523 0 0 287 | EDGE 112 128 -0 -0 0.0631816 1e+12 0 1e+12 1e+12 0 0 288 | EDGE 102 138 -0 -0 0.834097 1e+12 0 1e+12 1e+12 0 0 289 | EDGE 36 98 0 0 -0.806033 1e+12 -6.10352e-05 1e+12 1.08172 0 0 290 | EDGE 20 36 0 0 -1.15065 1e+12 -6.10352e-05 1e+12 4.11525 0 0 291 | EDGE 8 20 0 0 -0.00397476 1e+12 0 1e+12 8.82398 0 0 -------------------------------------------------------------------------------- /data/goalpoints.graph: -------------------------------------------------------------------------------- 1 | VERTEX2 0 0.0 0.0 0.0 2 | VERTEX2 1 2.20801114001 47.0243256541 1.52387613058 3 | VERTEX2 2 3.48530794088 74.2680683624 1.52394659085 4 | VERTEX2 3 5.35079934623 112.041819763 1.52145049995 5 | VERTEX2 4 7.14358026901 143.77734827 1.51436501557 6 | VERTEX2 5 10.0287550324 193.640197567 1.51299856017 7 | VERTEX2 6 11.565914557 219.745189472 1.51198050253 8 | VERTEX2 7 13.1162218776 246.073465365 1.51198050253 9 | VERTEX2 8 15.1512874748 280.779197335 1.51222565745 10 | VERTEX2 9 17.2678178759 316.92549047 1.51230854717 11 | VERTEX2 10 18.8850982961 344.441820247 1.51208857157 12 | VERTEX2 11 20.3645124383 369.612499931 1.51208857157 13 | VERTEX2 12 20.4566401115 396.576623108 1.56737966406 14 | VERTEX2 13 22.089382477 424.153063374 1.51165749474 15 | VERTEX2 14 23.6717774877 450.879154652 1.51165749474 16 | VERTEX2 15 22.0849874496 425.454049865 -1.63312584882 17 | VERTEX2 16 20.3730067738 398.023018016 -1.63312584882 18 | VERTEX2 17 20.1806112791 372.779784618 -1.57841784526 19 | VERTEX2 18 18.5217910128 346.383379896 -1.6335564554 20 | VERTEX2 19 16.9360275802 321.149510857 -1.6335564554 21 | VERTEX2 20 14.6232901933 284.22082072 -1.63334175787 22 | VERTEX2 21 -13.7975272559 274.259183854 -2.80446807137 23 | VERTEX2 22 -39.6299232947 273.951868928 -3.12969672148 24 | VERTEX2 23 -65.9357615542 273.638921699 -3.12969672148 25 | VERTEX2 24 -92.5214406992 273.322645346 -3.12969672148 26 | VERTEX2 25 -118.177710884 273.0174257 -3.12969672148 27 | VERTEX2 26 -146.331825394 272.682490465 -3.12969672148 28 | VERTEX2 27 -171.871548131 272.378657325 -3.12969672148 29 | VERTEX2 28 -207.23899065 271.953555406 -3.12957364914 30 | VERTEX2 29 -174.693474328 273.234284614 -6.24385366141 31 | VERTEX2 30 -146.58545222 274.337015975 -6.24397350759 32 | VERTEX2 31 -120.178433177 275.373013739 -6.24397350759 33 | VERTEX2 32 -93.7519928536 276.409773438 -6.24397350759 34 | VERTEX2 33 -67.0929992937 277.455656643 -6.24397350759 35 | VERTEX2 34 -41.4828795974 278.460390525 -6.24397350759 36 | VERTEX2 35 -14.8309113593 279.505998113 -6.24397350759 37 | VERTEX2 36 12.7309117784 289.804916577 -5.92558461184 38 | VERTEX2 37 37.7353403709 284.79500318 -6.48092799982 39 | VERTEX2 38 63.3957156097 288.860211176 -6.12606751241 40 | VERTEX2 39 89.4378132392 292.985892991 -6.12606751241 41 | VERTEX2 40 114.541882559 296.962969022 -6.12606751241 42 | VERTEX2 41 169.0998693 303.654216446 -6.16115005444 43 | VERTEX2 42 197.658216884 306.230637335 -6.19321283783 44 | VERTEX2 43 244.229583093 304.171653368 -6.32736790644 45 | VERTEX2 44 280.139392226 290.309631002 -6.65158502914 46 | VERTEX2 45 315.212837534 265.104038385 -6.90631984674 47 | VERTEX2 46 345.073712087 232.109085938 -7.11840358496 48 | VERTEX2 47 357.876916469 215.276599481 -7.20371534433 49 | VERTEX2 48 377.139619652 189.949387187 -7.20376034796 50 | VERTEX2 49 386.590387187 177.524679804 -7.20370368699 51 | VERTEX2 50 413.389373446 157.671486417 -6.92078451977 52 | VERTEX2 51 462.659008062 135.624531939 -6.70393787648 53 | VERTEX2 52 491.790199586 127.40021968 -6.5583438649 54 | VERTEX2 53 519.270560731 119.641969529 -6.5583438649 55 | VERTEX2 54 567.640208247 105.983024236 -6.55840582511 56 | VERTEX2 55 608.99754864 94.1223886956 -6.56247393647 57 | VERTEX2 56 629.28991921 88.2254541472 -6.56599480697 58 | VERTEX2 57 667.846713107 76.3656474568 -6.58159367808 59 | VERTEX2 58 701.409281243 67.9557735492 -6.52870320631 60 | VERTEX2 59 737.592618338 63.6887667373 -6.40057055524 61 | VERTEX2 60 774.487136821 62.803345488 -6.30717942234 62 | VERTEX2 61 804.401016294 65.7605933452 -6.18464676137 63 | VERTEX2 62 819.260184439 69.1645351624 -6.05799064298 64 | VERTEX2 63 848.583458888 74.4225021809 -6.10576044209 65 | VERTEX2 64 876.400737742 79.4413911547 -6.10468225401 66 | VERTEX2 65 904.823651033 84.5695507733 -6.10468225401 67 | VERTEX2 66 932.308499922 89.5284615913 -6.10468225401 68 | VERTEX2 67 905.190871083 84.9165472235 -9.25631908134 69 | VERTEX2 68 877.909282376 80.2767480846 -9.25631908134 70 | VERTEX2 69 849.833342154 75.5018530202 -9.25631908134 71 | VERTEX2 70 818.717513272 70.2454428677 -9.2574275209 72 | VERTEX2 71 803.289329191 66.8761809047 -9.20976998152 73 | VERTEX2 72 777.124364728 59.1179781502 -9.1365250449 74 | VERTEX2 73 741.084326726 55.0040715796 -9.31112166681 75 | VERTEX2 74 720.272570562 56.1400641758 -9.4793080252 76 | VERTEX2 75 675.635742383 62.1525511964 -9.55866998412 77 | VERTEX2 76 623.709432554 75.2180415677 -9.67127698576 78 | VERTEX2 77 598.799903188 82.7403292735 -9.71805425201 79 | VERTEX2 78 549.206066416 97.7266705635 -9.71823495188 80 | VERTEX2 79 522.900084413 105.680858499 -9.71840932369 81 | VERTEX2 80 475.935236876 120.049646611 -9.7216824091 82 | VERTEX2 81 454.166526645 126.8050267 -9.72568032248 83 | VERTEX2 82 415.835244422 143.11227365 -9.82701209312 84 | VERTEX2 83 391.468455443 157.490291211 -9.9578611447 85 | VERTEX2 84 378.65790967 168.26648224 -10.1241391026 86 | VERTEX2 85 368.328515696 180.289141292 -10.2857860525 87 | VERTEX2 86 355.876569032 195.537559291 -10.3107895532 88 | VERTEX2 87 342.83666029 213.307016075 -10.3624971287 89 | VERTEX2 88 333.20986937 226.433518717 -10.3627913211 90 | VERTEX2 89 320.093271263 242.621346891 -10.3145992181 91 | VERTEX2 90 299.754489295 264.940112712 -10.2565586258 92 | VERTEX2 91 272.450498472 282.791808569 -10.0038287921 93 | VERTEX2 92 237.874207479 293.800872427 -9.73302813903 94 | VERTEX2 93 203.139543276 295.466000069 -9.47267978716 95 | VERTEX2 94 163.971945295 291.909877169 -9.33423374145 96 | VERTEX2 95 112.035405941 287.880347927 -9.34734744503 97 | VERTEX2 96 62.5897057824 287.712432792 -9.42138202362 98 | VERTEX2 97 39.6549087798 289.07877434 -9.48428267385 99 | VERTEX2 98 18.4509797485 299.280479638 -9.87321052879 100 | VERTEX2 99 18.2512273211 261.539972508 -7.85927437054 101 | VERTEX2 100 18.1006064338 234.352118028 -7.85952158368 102 | VERTEX2 101 17.957831776 208.580548821 -7.85952158368 103 | VERTEX2 102 46.565740953 185.383950949 -6.96450453461 104 | VERTEX2 103 76.1553242685 187.979615985 -6.1956870301 105 | VERTEX2 104 107.366257596 190.717509503 -6.1956870301 106 | VERTEX2 105 135.851181106 193.216271287 -6.1956870301 107 | VERTEX2 106 165.969986337 195.858360864 -6.1956870301 108 | VERTEX2 107 194.773412336 198.385062405 -6.1956870301 109 | VERTEX2 108 223.165056169 200.875641486 -6.1956870301 110 | VERTEX2 109 254.01384442 203.581766821 -6.1956870301 111 | VERTEX2 110 284.524897025 206.258265222 -6.1956870301 112 | VERTEX2 111 315.697411719 208.992788571 -6.1956870301 113 | VERTEX2 112 351.50669461 212.836887159 -6.17624561818 114 | VERTEX2 113 368.946292269 214.687206361 -6.17748202321 115 | VERTEX2 114 407.098926616 217.655639146 -6.20553759788 116 | VERTEX2 115 434.34331141 219.988057537 -6.19778256998 117 | VERTEX2 116 462.256541497 222.377736427 -6.19778256998 118 | VERTEX2 117 488.803290953 224.650429576 -6.19778256998 119 | VERTEX2 118 515.784634169 226.96032872 -6.19778256998 120 | VERTEX2 119 542.828413855 229.275573112 -6.19778256998 121 | VERTEX2 120 570.903185663 231.679081746 -6.19778256998 122 | VERTEX2 121 544.746264044 227.752781021 -9.27578472683 123 | VERTEX2 122 518.897677997 223.872763195 -9.27578472683 124 | VERTEX2 123 490.806690913 219.65614839 -9.27578472683 125 | VERTEX2 124 464.512120436 215.709185798 -9.27578472683 126 | VERTEX2 125 438.227687781 211.763744951 -9.27578472683 127 | VERTEX2 126 411.205566332 207.707572876 -9.27578472683 128 | VERTEX2 127 370.787153274 201.973361082 -9.28384718974 129 | VERTEX2 128 353.214721455 198.954739151 -9.25465667527 130 | VERTEX2 129 319.412011084 193.104185801 -9.25339641456 131 | VERTEX2 130 288.373642051 188.3249649 -9.27199999728 132 | VERTEX2 131 259.914154727 183.942834623 -9.27199999728 133 | VERTEX2 132 231.321661705 179.540224417 -9.27199999728 134 | VERTEX2 133 201.955607726 175.018502969 -9.27199999728 135 | VERTEX2 134 173.480817851 170.634016439 -9.27199999728 136 | VERTEX2 135 145.01151086 166.250374151 -9.27199999728 137 | VERTEX2 136 113.948978166 161.467432581 -9.27199999728 138 | VERTEX2 137 85.5576019789 157.09578991 -9.27199999728 139 | VERTEX2 138 55.1475302714 152.413312871 -9.27199999728 140 | VERTEX2 139 25.1549663267 124.84190389 -8.68141526899 141 | VERTEX2 140 25.9572933502 93.4026285369 -7.82846727632 142 | VERTEX2 141 27.0953130714 58.6108831295 -7.82128381704 143 | VERTEX2 142 28.0642281959 31.0343283422 -7.81886061476 144 | EDGE2 0 1 2.20801114001 47.0243256541 1.61771652301 74.607656195 0.0 0.138363057918 15283213045.7 0.0 0.0 145 | EDGE2 1 2 27.2736686235 0.00192170988322 3.14152219333 36.3479401575 0.0 0.0753886676383 16220499.9986 0.0 0.0 146 | EDGE2 2 3 37.8196700327 -0.0944015299449 -3.1390965627 35.8649193148 0.0 0.0997717343162 1932252.45495 0.0 0.0 147 | EDGE2 3 4 31.7853285306 -0.225218217837 -3.13450716921 14.3062913365 0.0 0.041847995198 55079577.5309 0.0 0.0 148 | EDGE2 4 5 49.9462042156 -0.0682493030143 -3.14022619819 45.9642240322 0.0 0.139630569353 92726094.5818 0.0 0.0 149 | EDGE2 5 6 26.150196041 -0.0266224162289 -3.14057459594 45.9642240322 0.0 0.139630569353 1e+12 0.0 0.0 150 | EDGE2 6 7 26.3738803418 -9.10382880193e-15 -3.14159265359 25.612765125 0.0 0.0771239759592 1580631604.22 0.0 0.0 151 | EDGE2 7 8 34.7653455455 0.00852289588931 3.14134749866 26.3497816848 0.0 0.0791013168803 11444646795.3 0.0 0.0 152 | EDGE2 8 9 36.2082062439 0.00300128810664 3.14150976387 47.7490649215 0.0 0.144479533342 1951862709.11 0.0 0.0 153 | EDGE2 9 10 27.5638162011 -0.00606336715572 -3.14137267799 47.7490649215 0.0 0.144479533342 999999999822.0 0.0 0.0 154 | EDGE2 10 11 25.2141187026 1.28785870857e-14 3.14159265359 1e+12 0.0 0.144479533342 33104.0451922 0.0 0.0 155 | EDGE2 11 12 26.9230747435 1.49012501493 3.0863015611 47.7490649215 0.0 0.144479533342 33104.0451922 0.0 0.0 156 | EDGE2 12 13 27.5818578278 -1.53851362308 -3.08587048426 47.7490649215 0.0 0.144479533342 1e+12 0.0 0.0 157 | EDGE2 13 14 26.7728954165 -1.99840144433e-15 -3.14159265359 47.7490649215 0.0 0.144479533342 10.1320538615 0.0 0.0 158 | EDGE2 14 15 -25.4744430637 0.0812813258364 0.0031906899713 47.7490649215 0.0 0.144479533342 1e+12 0.0 0.0 159 | EDGE2 15 16 27.4844025977 -4.66293670343e-15 -3.14159265359 1e+12 0.0 0.144479533342 33104.0451922 0.0 0.0 160 | EDGE2 16 17 25.2061988335 1.3803582121 3.08688465002 47.7490649215 0.0 0.144479533342 33104.0451922 0.0 0.0 161 | EDGE2 17 18 26.4082806809 -1.45759334993 -3.08645404344 47.7490649215 0.0 0.144479533342 999999999822.0 0.0 0.0 162 | EDGE2 18 19 25.2836467371 -9.7699626167e-15 -3.14159265359 26.3497816848 0.0 0.0791013168803 1951862709.11 0.0 0.0 163 | EDGE2 19 20 37.0010384497 0.00794403175326 3.14137795606 0.133810118296 0.0 1.1214532064 71.3969576177 0.0 0.0 164 | EDGE2 20 21 11.7185921356 -27.7425967043 -1.97046634009 0.138852244163 0.0 2605.15022898 944.982418956 0.0 0.0 165 | EDGE2 21 22 24.4799343049 -8.25469224125 -2.81636400348 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 166 | EDGE2 22 23 26.307699681 -1.89293025699e-14 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 167 | EDGE2 23 24 26.5875603681 -2.38142838782e-14 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 168 | EDGE2 24 25 25.6580856424 -3.99680288865e-15 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 169 | EDGE2 25 26 28.1561067169 -1.67643676718e-14 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 170 | EDGE2 26 27 25.5415299469 -5.93969318174e-15 -3.14159265359 0.0876216607822 0.0 1590.09309284 5678778064.04 0.0 0.0 171 | EDGE2 27 28 35.3699969332 0.00435306833196 3.14146958125 0.0876216607822 0.0 1590.09309284 10.1320538615 0.0 0.0 172 | EDGE2 28 29 -32.5585583646 -0.889481415832 -0.0273126413127 0.138852244163 0.0 2605.15022898 5678778064.04 0.0 0.0 173 | EDGE2 29 30 28.1296447171 -0.00337123050033 -3.14147280741 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 174 | EDGE2 30 31 26.4273333144 -3.99680288865e-15 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 175 | EDGE2 31 32 26.4467695347 4.21884749358e-15 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 176 | EDGE2 32 33 26.679501669 -1.28785870857e-14 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 177 | EDGE2 33 34 25.6298209325 8.43769498715e-15 -3.14159265359 0.138852244163 0.0 2605.15022898 1e+12 0.0 0.0 178 | EDGE2 34 35 26.6724709428 1.95399252334e-14 -3.14159265359 0.133810118296 0.0 1.1214532064 944.982418956 0.0 0.0 179 | EDGE2 35 36 27.9443724487 9.21053009614 2.82320375784 0.14941183332 0.0 2.8014886328 319.375448799 0.0 0.0 180 | EDGE2 36 37 21.6690234303 -13.4452261067 -2.58624926561 0.143789484597 0.0 9.33754310808 814.316701423 0.0 0.0 181 | EDGE2 37 38 24.3616830628 9.02713530377 2.78673216618 0.143789484597 0.0 9.33754310808 999999999556.0 0.0 0.0 182 | EDGE2 38 39 26.3668750402 7.81597009336e-14 3.14159265359 0.143789484597 0.0 9.33754310808 999999999556.0 0.0 0.0 183 | EDGE2 39 40 25.4171483487 -3.95239396767e-14 -3.14159265359 0.032639008012 0.0 4.23250272464 77672.5631846 0.0 0.0 184 | EDGE2 40 41 54.9329555655 -1.92797876259 -3.10651011157 0.119068729558 0.0 39.6446976029 92655.3588133 0.0 0.0 185 | EDGE2 41 42 28.6595916498 -0.919221294056 -3.1095298702 0.0450077504493 0.0 7.52012252193 5742.0982721 0.0 0.0 186 | EDGE2 42 43 46.1979926398 -6.23514567979 -3.00743758498 0.0778781062086 0.0 0.430886993565 947.996542455 0.0 0.0 187 | EDGE2 43 44 36.4870259625 -12.2624219661 -2.81737553089 0.0920408243116 0.0 0.157053050969 1582.25899532 0.0 0.0 188 | EDGE2 44 45 41.7973000625 -10.8836653922 -2.88685783599 0.132342039729 0.0 0.0950999546243 2177.9273627 0.0 0.0 189 | EDGE2 45 46 43.5039259715 -9.3673443998 -2.92950891537 0.671384991615 0.0 0.338290398161 13562.3094443 0.0 0.0 190 | EDGE2 46 47 21.071482385 -1.80201911355 -3.05628089423 0.296108344471 0.0 0.149170908892 31991425301.0 0.0 0.0 191 | EDGE2 47 48 31.8201102209 -0.0014320205944 -3.14154764996 1.13016859906 0.0 0.569481139782 23171552865.9 0.0 0.0 192 | EDGE2 48 49 15.6105848632 0.000884510918868 3.14153599262 0.157366607787 0.0 0.25521277582 1207.14231341 0.0 0.0 193 | EDGE2 49 50 32.025776826 9.31045492132 2.85867348637 0.040714311142 0.0 0.172555328227 2193.64522416 0.0 0.0 194 | EDGE2 50 51 52.7133386101 11.6133126002 2.92474601029 0.131417941099 0.0 1.28210728042 4935.46241375 0.0 0.0 195 | EDGE2 51 52 29.9496216192 4.39155969569 2.99599864201 0.131417941099 0.0 1.28210728042 1e+12 0.0 0.0 196 | EDGE2 52 53 28.5545214294 2.6645352591e-15 -3.14159265359 0.0474482364671 0.0 0.46270888177 19879747206.0 0.0 0.0 197 | EDGE2 53 54 50.2612134525 -0.00311419533467 -3.14153069338 0.0657748303009 0.0 0.62383837889 6034811.2504 0.0 0.0 198 | EDGE2 54 55 43.0241053947 -0.175027817575 -3.13752454223 0.23409345781 0.0 2.16806132876 8070277.32247 0.0 0.0 199 | EDGE2 55 56 21.1316966834 -0.074402274913 -3.13807178309 0.0738034233694 0.0 0.615431817594 395386.489593 0.0 0.0 200 | EDGE2 56 57 40.3346680241 -0.629226324255 -3.12599378247 0.0911765962713 0.0 1.09410342444 36496.3145959 0.0 0.0 201 | EDGE2 57 58 34.5517888022 1.82916636656 3.08870218181 0.0845162786781 0.0 3.4204237495 6386.62976811 0.0 0.0 202 | EDGE2 58 59 36.1353890475 4.65562980005 3.01346000252 0.07369937548 0.0 18.9688531987 11396.1030222 0.0 0.0 203 | EDGE2 59 60 36.7443168402 3.44160498257 3.04820152069 0.101475005727 0.0 26.0552704359 6442.51176384 0.0 0.0 204 | EDGE2 60 61 29.8343191754 3.6740848283 3.01905999262 0.445417092167 0.0 12.3584425241 6369.67649573 0.0 0.0 205 | EDGE2 61 62 15.1219633176 1.92559686707 3.0149365352 0.105019717205 0.0 5.3058793449 43670.6532983 0.0 0.0 206 | EDGE2 62 63 29.7569646673 -1.42256646592 -3.09382285448 0.128908826612 0.0 6.41084885819 82245302.4641 0.0 0.0 207 | EDGE2 63 64 28.2663991437 0.0304765063312 3.14051446551 0.128908826612 0.0 6.41084885819 999999999645.0 0.0 0.0 208 | EDGE2 64 65 28.8818285608 -5.3290705182e-14 -3.14159265359 0.128908826612 0.0 6.41084885819 999999999645.0 0.0 0.0 209 | EDGE2 65 66 27.9286182067 7.01660951563e-14 3.14159265359 0.128908826612 0.0 6.41084885819 10.1320538615 0.0 0.0 210 | EDGE2 66 67 -27.5056215532 0.276280532768 0.0100441737438 0.128908826612 0.0 6.41084885819 999999999645.0 0.0 0.0 211 | EDGE2 67 68 27.6733232272 -4.35207425653e-14 -3.14159265359 0.128908826612 0.0 6.41084885819 999999999645.0 0.0 0.0 212 | EDGE2 68 69 28.4790807827 6.12843109593e-14 3.14159265359 0.105019717205 0.0 5.3058793449 82245302.4641 0.0 0.0 213 | EDGE2 69 70 31.5566701539 -0.0349786756238 -3.14048421404 0.445417092167 0.0 12.3584425241 43670.6532983 0.0 0.0 214 | EDGE2 70 71 15.7738649353 0.752313237163 3.09393511421 0.133728423019 0.0 1.85481327013 17911.1603027 0.0 0.0 215 | EDGE2 71 72 27.2177611778 1.99713589552 3.06834771698 0.0768639390948 0.0 9.17331719969 3417.84105368 0.0 0.0 216 | EDGE2 72 73 35.7225896704 -6.30120256262 -2.96699603168 0.233338791834 0.0 39.6470540519 3549.0550945 0.0 0.0 217 | EDGE2 73 74 20.548645324 -3.48896103873 -2.9734062952 0.047215155803 0.0 1.87610923355 15327.5842739 0.0 0.0 218 | EDGE2 74 75 44.8981790399 -3.57070707608 -3.06223069467 0.040251884194 0.0 0.536844542928 8271.60736571 0.0 0.0 219 | EDGE2 75 76 53.2057041455 -6.01678797143 -3.02898565195 0.166275487325 0.0 1.58797777127 47896.5439932 0.0 0.0 220 | EDGE2 76 77 25.9920957514 -1.21672675803 -3.09481538733 0.0399983766651 0.0 0.381518998231 2682301974.73 0.0 0.0 221 | EDGE2 77 78 51.808676719 -0.00936182113412 -3.14141195372 0.154060799801 0.0 1.46772088902 2883977308.63 0.0 0.0 222 | EDGE2 78 79 27.4822446658 -0.00479212886687 -3.14141828178 0.0462517788579 0.0 0.430905537129 9190738.96629 0.0 0.0 223 | EDGE2 79 80 49.1134720264 -0.160753162813 -3.13831956818 0.226307968274 0.0 2.05277958759 6293137.75617 0.0 0.0 224 | EDGE2 80 81 22.7926216515 -0.0911234123881 -3.13759474022 0.0739076917485 0.0 0.367276441199 9781.31256197 0.0 0.0 225 | EDGE2 81 82 41.4422128563 -4.21384545868 -3.04026088294 0.175307370809 0.0 0.458784911235 5740.04671901 0.0 0.0 226 | EDGE2 82 83 28.0506799328 -3.69149690875 -3.01074360201 0.64793059775 0.0 0.833210809433 3499.72417354 0.0 0.0 227 | EDGE2 83 84 16.5093744455 -2.77072761789 -2.97531469571 0.904592176241 0.0 0.605453028945 3790.240493 0.0 0.0 228 | EDGE2 84 85 15.6439393207 -2.55105332837 -2.97994570369 0.69184585668 0.0 0.41832395249 162964.406574 0.0 0.0 229 | EDGE2 85 86 19.6805228984 -0.492184540899 -3.11658915282 0.69056643899 0.0 0.336449617484 37626.5002826 0.0 0.0 230 | EDGE2 86 87 22.0112498564 -1.13916379454 -3.08988507813 1.11428822388 0.0 0.542209194298 1077702017.09 0.0 0.0 231 | EDGE2 87 88 16.278210961 -0.00478892641918 -3.14129846117 0.609654317315 0.0 0.364377984527 41580.4595856 0.0 0.0 232 | EDGE2 88 89 20.8106592923 1.00368656984 3.0934005506 0.273726303808 0.0 0.208447731863 28353.7619193 0.0 0.0 233 | EDGE2 89 90 30.1450699038 1.75160503963 3.08355206121 0.139749322629 0.0 0.305429447001 1495.57020976 0.0 0.0 234 | EDGE2 90 91 31.5856530678 8.15705094403 2.88886281991 0.0869470710732 0.0 0.76602359769 1374.01145536 0.0 0.0 235 | EDGE2 91 92 34.9642356257 9.70678180153 2.87079200054 0.0800011711359 0.0 17.6200221045 1505.92448897 0.0 0.0 236 | EDGE2 92 93 33.6026634104 8.95156741131 2.88124430172 0.0592337565472 0.0 12.2899838265 5358.97476825 0.0 0.0 237 | EDGE2 93 94 38.9523902378 5.42752581051 3.00314660787 0.0382695758728 0.0 12.2227391294 554806.51123 0.0 0.0 238 | EDGE2 94 95 52.0881425083 -0.683107619226 -3.12847895001 0.0380317828074 0.0 126.774534224 18649.8738702 0.0 0.0 239 | EDGE2 95 96 49.3105374972 -3.65736946573 -3.067558075 0.195566653096 0.0 29.4025985961 24363.1890162 0.0 0.0 240 | EDGE2 96 97 22.9300247551 -1.44421864923 -3.07869200336 0.204528071605 0.0 0.81290181109 679.720719859 0.0 0.0 241 | EDGE2 97 98 21.7730919242 -8.92266022007 -2.75266479865 25.612765125 0.0 0.0771239759592 25.4840657434 0.0 0.0 242 | EDGE2 98 99 -16.1825306785 34.0956225971 1.12765649534 45.9642240322 0.0 0.139630569353 1580631604.22 0.0 0.0 243 | EDGE2 99 100 27.1882708658 -0.00672129777788 -3.14134544046 45.9642240322 0.0 0.139630569353 1e+12 0.0 0.0 244 | EDGE2 100 101 25.7719646905 -1.22124532709e-15 -3.14159265359 0.123374665434 0.0 0.153523428637 124.835369928 0.0 0.0 245 | EDGE2 101 102 23.0377563418 28.735977503 2.24657560452 0.11151999153 0.0 65.0798666186 167.689209083 0.0 0.0 246 | EDGE2 102 103 21.3486902835 20.6522236319 2.37277514908 0.11151999153 0.0 65.0798666186 999999999822.0 0.0 0.0 247 | EDGE2 103 104 31.3307902881 -1.95399252334e-14 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 248 | EDGE2 104 105 28.5943119841 -1.33226762955e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 249 | EDGE2 105 106 30.2344681754 -1.33226762955e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 999999999822.0 0.0 0.0 250 | EDGE2 106 107 28.9140375934 2.30926389122e-14 3.14159265359 0.11151999153 0.0 65.0798666186 999999999822.0 0.0 0.0 251 | EDGE2 107 108 28.5006740927 -4.08562073062e-14 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 252 | EDGE2 108 109 30.9672544938 1.7763568394e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 253 | EDGE2 109 110 30.6282218672 -9.7699626167e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 999999999822.0 0.0 0.0 254 | EDGE2 110 111 31.2922241186 6.2172489379e-15 3.14159265359 0.0846532025231 0.0 23.1566013851 276225.350035 0.0 0.0 255 | EDGE2 111 112 36.0082162958 0.700138777682 3.12215124167 0.342930687408 0.0 97.8538718156 62093419.9197 0.0 0.0 256 | EDGE2 112 113 17.5374678183 -0.0216834244901 -3.14035624856 0.0633880902748 0.0 67.9981514423 122108.982139 0.0 0.0 257 | EDGE2 113 114 38.2528786372 -1.07348816051 -3.11353707892 0.136492475089 0.0 92.4034349175 1601498.72386 0.0 0.0 258 | EDGE2 114 115 27.3432205932 0.212051689592 3.13383762569 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 259 | EDGE2 115 116 28.0153347129 -3.01980662698e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 260 | EDGE2 116 117 26.6438555929 2.70894418009e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 261 | EDGE2 117 118 27.0800390656 3.99680288865e-15 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 262 | EDGE2 118 119 27.1427039235 1.33226762955e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 263 | EDGE2 119 120 28.1774673427 1.06581410364e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 10.1320538615 0.0 0.0 264 | EDGE2 120 121 -26.3964995261 -1.68083275123 -0.0635904967389 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 265 | EDGE2 121 122 26.1381701535 9.7699626167e-15 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 266 | EDGE2 122 123 28.4056930173 -3.19744231092e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 267 | EDGE2 123 124 26.5891509879 -1.24344978758e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 268 | EDGE2 124 125 26.5788995908 3.01980662698e-14 -3.14159265359 0.136492475089 0.0 92.4034349175 1e+12 0.0 0.0 269 | EDGE2 125 126 27.3248527808 -8.881784197e-16 -3.14159265359 0.0633880902748 0.0 67.9981514423 1601498.72385 0.0 0.0 270 | EDGE2 126 127 40.8218197961 -0.329131539641 -3.13353019068 0.342930687408 0.0 97.8538718156 122108.982139 0.0 0.0 271 | EDGE2 127 128 17.8222230674 0.520387673746 3.11240213912 0.0846532025231 0.0 23.1566013851 62093419.9197 0.0 0.0 272 | EDGE2 128 129 34.305252277 0.0432335845262 3.14033239288 0.11151999153 0.0 65.0798666186 276225.350035 0.0 0.0 273 | EDGE2 129 130 31.3987263992 -0.584196200988 -3.12298907087 0.11151999153 0.0 65.0798666186 999999999734.0 0.0 0.0 274 | EDGE2 130 131 28.7948864292 -4.35207425653e-14 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 275 | EDGE2 131 132 28.9294596197 -2.6645352591e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 276 | EDGE2 132 133 29.7121371009 4.4408920985e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 999999999734.0 0.0 0.0 277 | EDGE2 133 134 28.8103693237 3.90798504668e-14 3.14159265359 0.11151999153 0.0 65.0798666186 999999999734.0 0.0 0.0 278 | EDGE2 134 135 28.8048218232 -4.88498130835e-14 -3.14159265359 0.11151999153 0.0 65.0798666186 1e+12 0.0 0.0 279 | EDGE2 135 136 31.42860906 -8.881784197e-16 -3.14159265359 0.11151999153 0.0 65.0798666186 999999999911.0 0.0 0.0 280 | EDGE2 136 137 28.7259725931 4.4408920985e-15 -3.14159265359 0.11151999153 0.0 65.0798666186 999999999822.0 0.0 0.0 281 | EDGE2 137 138 30.7684587277 5.95079541199e-14 3.14159265359 0.103298418909 0.0 0.18322813062 275.312270299 0.0 0.0 282 | EDGE2 138 139 33.8391506365 22.6858627652 2.5510079253 35.8649193148 0.0 0.0997717343162 130.890389475 0.0 0.0 283 | EDGE2 139 140 20.6864039308 23.6884878319 2.28864466092 36.3479401575 0.0 0.0753886676383 1932252.45495 0.0 0.0 284 | EDGE2 140 141 34.8094543059 0.250056598677 3.13440919431 74.607656195 0.0 0.138363057918 16220499.9986 0.0 0.0 285 | EDGE2 141 142 27.5934901664 0.0668647393934 3.1391694513 1e+12 0.0 1e+12 1e+12 0.0 0.0 286 | EDGE2 127 113 0.0 0.0 -0.0352274870643 1e+12 0.0 1e+12 10.2523212109 0.0 0.0 287 | EDGE2 112 128 -0.0 -0.0 0.0631815965019 1e+12 0.0 1e+12 1e+12 0.0 0.0 288 | EDGE2 102 138 -0.0 -0.0 0.834097190914 1e+12 0.0 1e+12 1e+12 0.0 0.0 289 | EDGE2 98 36 0.0 0.0 0.806033263356 1e+12 0.0 1e+12 1.08171773878 0.0 0.0 290 | EDGE2 36 20 -0.0 -0.0 1.15065020038 1e+12 0.0 1e+12 4.11524558814 0.0 0.0 291 | EDGE2 20 8 0.0 0.0 0.003974761734 1e+12 0.0 1e+12 8.82397871316 0.0 0.0 292 | -------------------------------------------------------------------------------- /data/goalpointpath.b: -------------------------------------------------------------------------------- 1 | (lp0 2 | cnumpy.core.multiarray 3 | _reconstruct 4 | p1 5 | (cnumpy 6 | ndarray 7 | p2 8 | (I0 9 | tp3 10 | S'b' 11 | p4 12 | tp5 13 | Rp6 14 | (I1 15 | (L2L 16 | tp7 17 | cnumpy 18 | dtype 19 | p8 20 | (S'f8' 21 | p9 22 | I0 23 | I1 24 | tp10 25 | Rp11 26 | (I3 27 | S'<' 28 | p12 29 | NNNI-1 30 | I-1 31 | I0 32 | tp13 33 | bI00 34 | S'\x00\x00\xd95(\x85e@\x00\x00\x0e\x87\xe2\xa5I@' 35 | p14 36 | tp15 37 | bag1 38 | (g2 39 | (I0 40 | tp16 41 | g4 42 | tp17 43 | Rp18 44 | (I1 45 | (L2L 46 | tp19 47 | g11 48 | I00 49 | S'\x00\x00\x0e\xc3\x07\xc4e@\x00\x00+|\x1f6X@' 50 | p20 51 | tp21 52 | bag1 53 | (g2 54 | (I0 55 | tp22 56 | g4 57 | tp23 58 | Rp24 59 | (I1 60 | (L2L 61 | tp25 62 | g11 63 | I00 64 | S'\x00\x00\x8a\xd3\x13\xe9e@\x00\x00"\xc2\xae\xee^@' 65 | p26 66 | tp27 67 | bag1 68 | (g2 69 | (I0 70 | tp28 71 | g4 72 | tp29 73 | Rp30 74 | (I1 75 | (L2L 76 | tp31 77 | g11 78 | I00 79 | S"\x00\x80\x8a\x92'\x1ef@\x00\x80U\xc3\xcc\x04d@" 80 | p32 81 | tp33 82 | bag1 83 | (g2 84 | (I0 85 | tp34 86 | g4 87 | tp35 88 | Rp36 89 | (I1 90 | (L2L 91 | tp37 92 | g11 93 | I00 94 | S'\x00\x80\xee\x82\x96Sf@\x00\xc0\xbd\xa3\xe2\xf9g@' 95 | p38 96 | tp39 97 | bag1 98 | (g2 99 | (I0 100 | tp40 101 | g4 102 | tp41 103 | Rp42 104 | (I1 105 | (L2L 106 | tp43 107 | g11 108 | I00 109 | S'\x00\x00\xe2\xd40\xa8f@\x00\xe0\xcf\x89(\x16n@' 110 | p44 111 | tp45 112 | bag1 113 | (g2 114 | (I0 115 | tp46 116 | g4 117 | tp47 118 | Rp48 119 | (I1 120 | (L2L 121 | tp49 122 | g11 123 | I00 124 | S"\x00\x00\xf6\xe4c\xd7f@\x00`a'C\xb7p@" 125 | p50 126 | tp51 127 | bag1 128 | (g2 129 | (I0 130 | tp52 131 | g4 132 | tp53 133 | Rp54 134 | (I1 135 | (L2L 136 | tp55 137 | g11 138 | I00 139 | S'\x00\x00\n\xf5\x96\x06g@\x00\xd0\xda\trcr@' 140 | p56 141 | tp57 142 | bag1 143 | (g2 144 | (I0 145 | tp58 146 | g4 147 | tp59 148 | Rp60 149 | (I1 150 | (L2L 151 | tp61 152 | g11 153 | I00 154 | S'\x00\x00\xa3\xb3\xd1Eg@\x00 >\xe7\x94\xa3t@' 155 | p62 156 | tp63 157 | bag1 158 | (g2 159 | (I0 160 | tp64 161 | g4 162 | tp65 163 | Rp66 164 | (I1 165 | (L2L 166 | tp67 167 | g11 168 | I00 169 | S'\x92$\xc3v(\x84g@\x92\xe4\xdc\xa4x\xdcv@' 170 | p68 171 | tp69 172 | bag1 173 | (g2 174 | (I0 175 | tp70 176 | g4 177 | tp71 178 | Rp72 179 | (I1 180 | (L2L 181 | tp73 182 | g11 183 | I00 184 | S'%I^\x8bw\xb2g@%\xc9\x91gh\x81x@' 185 | p74 186 | tp75 187 | bag1 188 | (g2 189 | (I0 190 | tp76 191 | g4 192 | tp77 193 | Rp78 194 | (I1 195 | (L2L 196 | tp79 197 | g11 198 | I00 199 | S'\xb7m\xf9\x9f\xc6\xe0g@\xb7\xadF*X&z@' 200 | p80 201 | tp81 202 | bag1 203 | (g2 204 | (I0 205 | tp82 206 | g4 207 | tp83 208 | Rp84 209 | (I1 210 | (L2L 211 | tp85 212 | g11 213 | I00 214 | S'\xb7m\xf9\x9f\xc6\xe0g@I\x92\xfb\xecG\xcb{@' 215 | p86 216 | tp87 217 | bag1 218 | (g2 219 | (I0 220 | tp88 221 | g4 222 | tp89 223 | Rp90 224 | (I1 225 | (L2L 226 | tp91 227 | g11 228 | I00 229 | S'I\x92\x94\xb4\x15\x0fh@\xdcv\xb0\xaf7p}@' 230 | p92 231 | tp93 232 | bag1 233 | (g2 234 | (I0 235 | tp94 236 | g4 237 | tp95 238 | Rp96 239 | (I1 240 | (L2L 241 | tp97 242 | g11 243 | I00 244 | S"\xdb\xb6/\xc9d=h@n[er'\x15\x7f@" 245 | p98 246 | tp99 247 | bag1 248 | (g2 249 | (I0 250 | tp100 251 | g4 252 | tp101 253 | Rp102 254 | (I1 255 | (L2L 256 | tp103 257 | g11 258 | I00 259 | S'I\x92\x94\xb4\x15\x0fh@\xdcv\xb0\xaf7p}@' 260 | p104 261 | tp105 262 | bag1 263 | (g2 264 | (I0 265 | tp106 266 | g4 267 | tp107 268 | Rp108 269 | (I1 270 | (L2L 271 | tp109 272 | g11 273 | I00 274 | S'\xb7m\xf9\x9f\xc6\xe0g@I\x92\xfb\xecG\xcb{@' 275 | p110 276 | tp111 277 | bag1 278 | (g2 279 | (I0 280 | tp112 281 | g4 282 | tp113 283 | Rp114 284 | (I1 285 | (L2L 286 | tp115 287 | g11 288 | I00 289 | S'\xb7m\xf9\x9f\xc6\xe0g@\xb7\xadF*X&z@' 290 | p116 291 | tp117 292 | bag1 293 | (g2 294 | (I0 295 | tp118 296 | g4 297 | tp119 298 | Rp120 299 | (I1 300 | (L2L 301 | tp121 302 | g11 303 | I00 304 | S'%I^\x8bw\xb2g@%\xc9\x91gh\x81x@' 305 | p122 306 | tp123 307 | bag1 308 | (g2 309 | (I0 310 | tp124 311 | g4 312 | tp125 313 | Rp126 314 | (I1 315 | (L2L 316 | tp127 317 | g11 318 | I00 319 | S'\x92$\xc3v(\x84g@\x92\xe4\xdc\xa4x\xdcv@' 320 | p128 321 | tp129 322 | bag1 323 | (g2 324 | (I0 325 | tp130 326 | g4 327 | tp131 328 | Rp132 329 | (I1 330 | (L2L 331 | tp133 332 | g11 333 | I00 334 | S'\x00\x00\xa3\xb3\xd1Eg@\x00 >\xe7\x94\xa3t@' 335 | p134 336 | tp135 337 | bag1 338 | (g2 339 | (I0 340 | tp136 341 | g4 342 | tp137 343 | Rp138 344 | (I1 345 | (L2L 346 | tp139 347 | g11 348 | I00 349 | S'\x00\xe0\xeb\xab\x06\xdbc@\x00\xc0\x83w~\x0ct@' 350 | p140 351 | tp141 352 | bag1 353 | (g2 354 | (I0 355 | tp142 356 | g4 357 | tp143 358 | Rp144 359 | (I1 360 | (L2L 361 | tp145 362 | g11 363 | I00 364 | S'\x00\xc0\xb9RC\x80`@\x00@\xb3\x02\\\tt@' 365 | p146 366 | tp147 367 | bag1 368 | (g2 369 | (I0 370 | tp148 371 | g4 372 | tp149 373 | Rp150 374 | (I1 375 | (L2L 376 | tp151 377 | g11 378 | I00 379 | S'\x00@\x0f\xf3\xffJZ@\x00\xc0\xe2\x8d9\x06t@' 380 | p152 381 | tp153 382 | bag1 383 | (g2 384 | (I0 385 | tp154 386 | g4 387 | tp155 388 | Rp156 389 | (I1 390 | (L2L 391 | tp157 392 | g11 393 | I00 394 | S'\x00\x00\xab@y\x95S@\x00@\x12\x19\x17\x03t@' 395 | p158 396 | tp159 397 | bag1 398 | (g2 399 | (I0 400 | tp160 401 | g4 402 | tp161 403 | Rp162 404 | (I1 405 | (L2L 406 | tp163 407 | g11 408 | I00 409 | S'\x00\x80\x8d\x1c\xe5\xbfI@\x00\xc0A\xa4\xf4\xffs@' 410 | p164 411 | tp165 412 | bag1 413 | (g2 414 | (I0 415 | tp166 416 | g4 417 | tp167 418 | Rp168 419 | (I1 420 | (L2L 421 | tp169 422 | g11 423 | I00 424 | S'\x00\x00\x8ao\xaf\xa98@\x00@q/\xd2\xfcs@' 425 | p170 426 | tp171 427 | bag1 428 | (g2 429 | (I0 430 | tp172 431 | g4 432 | tp173 433 | Rp174 434 | (I1 435 | (L2L 436 | tp175 437 | g11 438 | I00 439 | S'\x00\x008\xd0Zc\x01\xc0\x00\xc0\xa0\xba\xaf\xf9s@' 440 | p176 441 | tp177 442 | bag1 443 | (g2 444 | (I0 445 | tp178 446 | g4 447 | tp179 448 | Rp180 449 | (I1 450 | (L2L 451 | tp181 452 | g11 453 | I00 454 | S'\x00\x00n\x9dd\xfaA\xc0\x00`\xc0\x95\xac\xf5s@' 455 | p182 456 | tp183 457 | bag1 458 | (g2 459 | (I0 460 | tp184 461 | g4 462 | tp185 463 | Rp186 464 | (I1 465 | (L2L 466 | tp187 467 | g11 468 | I00 469 | S'\x00\x008\xd0Zc\x01\xc0\x00\xc0\xa0\xba\xaf\xf9s@' 470 | p188 471 | tp189 472 | bag1 473 | (g2 474 | (I0 475 | tp190 476 | g4 477 | tp191 478 | Rp192 479 | (I1 480 | (L2L 481 | tp193 482 | g11 483 | I00 484 | S'\x00\x00\x8ao\xaf\xa98@\x00@q/\xd2\xfcs@' 485 | p194 486 | tp195 487 | bag1 488 | (g2 489 | (I0 490 | tp196 491 | g4 492 | tp197 493 | Rp198 494 | (I1 495 | (L2L 496 | tp199 497 | g11 498 | I00 499 | S'\x00\x80\x8d\x1c\xe5\xbfI@\x00\xc0A\xa4\xf4\xffs@' 500 | p200 501 | tp201 502 | bag1 503 | (g2 504 | (I0 505 | tp202 506 | g4 507 | tp203 508 | Rp204 509 | (I1 510 | (L2L 511 | tp205 512 | g11 513 | I00 514 | S'\x00\x00\xab@y\x95S@\x00@\x12\x19\x17\x03t@' 515 | p206 516 | tp207 517 | bag1 518 | (g2 519 | (I0 520 | tp208 521 | g4 522 | tp209 523 | Rp210 524 | (I1 525 | (L2L 526 | tp211 527 | g11 528 | I00 529 | S'\x00@\x0f\xf3\xffJZ@\x00\xc0\xe2\x8d9\x06t@' 530 | p212 531 | tp213 532 | bag1 533 | (g2 534 | (I0 535 | tp214 536 | g4 537 | tp215 538 | Rp216 539 | (I1 540 | (L2L 541 | tp217 542 | g11 543 | I00 544 | S'\x00\xc0\xb9RC\x80`@\x00@\xb3\x02\\\tt@' 545 | p218 546 | tp219 547 | bag1 548 | (g2 549 | (I0 550 | tp220 551 | g4 552 | tp221 553 | Rp222 554 | (I1 555 | (L2L 556 | tp223 557 | g11 558 | I00 559 | S'\x00\xe0\xeb\xab\x06\xdbc@\x00\xc0\x83w~\x0ct@' 560 | p224 561 | tp225 562 | bag1 563 | (g2 564 | (I0 565 | tp226 566 | g4 567 | tp227 568 | Rp228 569 | (I1 570 | (L2L 571 | tp229 572 | g11 573 | I00 574 | S'\x00\x00\xa3\xb3\xd1Eg@\x00 >\xe7\x94\xa3t@' 575 | p230 576 | tp231 577 | bag1 578 | (g2 579 | (I0 580 | tp232 581 | g4 582 | tp233 583 | Rp234 584 | (I1 585 | (L2L 586 | tp235 587 | g11 588 | I00 589 | S'\xcd\xccO\x10\xae\x81j@\x9a\x19\xaf*\xfdCt@' 590 | p236 591 | tp237 592 | bag1 593 | (g2 594 | (I0 595 | tp238 596 | g4 597 | tp239 598 | Rp240 599 | (I1 600 | (L2L 601 | tp241 602 | g11 603 | I00 604 | S'\x9a\x99\x81\x1b\x92\xcdm@3\xf3\tiYxt@' 605 | p242 606 | tp243 607 | bag1 608 | (g2 609 | (I0 610 | tp244 611 | g4 612 | tp245 613 | Rp246 614 | (I1 615 | (L2L 616 | tp247 617 | g11 618 | I00 619 | S'3\xb3Y\x13\xbb\x8cp@\xcd\xccd\xa7\xb5\xact@' 620 | p248 621 | tp249 622 | bag1 623 | (g2 624 | (I0 625 | tp250 626 | g4 627 | tp251 628 | Rp252 629 | (I1 630 | (L2L 631 | tp253 632 | g11 633 | I00 634 | S'\x9a\x99\xf2\x18\xad2r@f\xa6\xbf\xe5\x11\xe1t@' 635 | p254 636 | tp255 637 | bag1 638 | (g2 639 | (I0 640 | tp256 641 | g4 642 | tp257 643 | Rp258 644 | (I1 645 | (L2L 646 | tp259 647 | g11 648 | I00 649 | S'U\xd5\x95\xe9M\xa8u@U\x95\xa9f\xd7.u@' 650 | p260 651 | tp261 652 | bag1 653 | (g2 654 | (I0 655 | tp262 656 | g4 657 | tp263 658 | Rp264 659 | (I1 660 | (L2L 661 | tp265 662 | g11 663 | I00 664 | S'\xab*\xa0\xb4\xfcww@\xab\xaa8\xa9@Hu@' 665 | p266 666 | tp267 667 | bag1 668 | (g2 669 | (I0 670 | tp268 671 | g4 672 | tp269 673 | Rp270 674 | (I1 675 | (L2L 676 | tp271 677 | g11 678 | I00 679 | S'\x00\xc0\x9eT+jz@\x00\xa0\x9f?\xe8\ru@' 680 | p272 681 | tp273 682 | bag1 683 | (g2 684 | (I0 685 | tp274 686 | g4 687 | tp275 688 | Rp276 689 | (I1 690 | (L2L 691 | tp277 692 | g11 693 | I00 694 | S'\x00\xc0\xa8X\x82\xa7|@\x00`\x183)\x1at@' 695 | p278 696 | tp279 697 | bag1 698 | (g2 699 | (I0 700 | tp280 701 | g4 702 | tp281 703 | Rp282 704 | (I1 705 | (L2L 706 | tp283 707 | g11 708 | I00 709 | S'\x00\x80{y\xe5\xb6~@\x00\x00\xa4\xfcl\x86r@' 710 | p284 711 | tp285 712 | bag1 713 | (g2 714 | (I0 715 | tp286 716 | g4 717 | tp287 718 | Rp288 719 | (I1 720 | (L2L 721 | tp289 722 | g11 723 | I00 724 | S'\x00\x80\xb8+[7\x80@\x00\xc0\x88\x18\x97\x7fp@' 725 | p290 726 | tp291 727 | bag1 728 | (g2 729 | (I0 730 | tp292 731 | g4 732 | tp293 733 | Rp294 734 | (I1 735 | (L2L 736 | tp295 737 | g11 738 | I00 739 | S'\x00\xc0\xd4\xa1\xfd\x98\x80@\x00\x80\x05\x15\x00\xd9n@' 740 | p296 741 | tp297 742 | bag1 743 | (g2 744 | (I0 745 | tp298 746 | g4 747 | tp299 748 | Rp300 749 | (I1 750 | (L2L 751 | tp301 752 | g11 753 | I00 754 | S'\x00\xc0\x87\xb6\x01,\x81@\x00\xc0\xe8\xa4x\x9ck@' 755 | p302 756 | tp303 757 | bag1 758 | (g2 759 | (I0 760 | tp304 761 | g4 762 | tp305 763 | Rp306 764 | (I1 765 | (L2L 766 | tp307 767 | g11 768 | I00 769 | S'\x00\xc0\x038Bw\x81@\x00\x80\xc7\x9dm\xf4i@' 770 | p308 771 | tp309 772 | bag1 773 | (g2 774 | (I0 775 | tp310 776 | g4 777 | tp311 778 | Rp312 779 | (I1 780 | (L2L 781 | tp313 782 | g11 783 | I00 784 | S'\x00\xc0\x84\xd0\xec@\x82@\x00\x00u\x90\xffzg@' 785 | p314 786 | tp315 787 | bag1 788 | (g2 789 | (I0 790 | tp316 791 | g4 792 | tp317 793 | Rp318 794 | (I1 795 | (L2L 796 | tp319 797 | g11 798 | I00 799 | S'\x00p\xc8\x8af\xcd\x83@\x00 \xb1\x16\xa7xd@' 800 | p320 801 | tp321 802 | bag1 803 | (g2 804 | (I0 805 | tp322 806 | g4 807 | tp323 808 | Rp324 809 | (I1 810 | (L2L 811 | tp325 812 | g11 813 | I00 814 | S'\x00`p\x8f\x14\xaa\x84@\x00@/\xf7\n^c@' 815 | p326 816 | tp327 817 | bag1 818 | (g2 819 | (I0 820 | tp328 821 | g4 822 | tp329 823 | Rp330 824 | (I1 825 | (L2L 826 | tp331 827 | g11 828 | I00 829 | S'\x00P\x18\x94\xc2\x86\x85@\x00`\xad\xd7nCb@' 830 | p332 831 | tp333 832 | bag1 833 | (g2 834 | (I0 835 | tp334 836 | g4 837 | tp335 838 | Rp336 839 | (I1 840 | (L2L 841 | tp337 842 | g11 843 | I00 844 | S'\x00 p|\x06\xf6\x86@\x00\x80\x92\x8d\x00m`@' 845 | p338 846 | tp339 847 | bag1 848 | (g2 849 | (I0 850 | tp340 851 | g4 852 | tp341 853 | Rp342 854 | (I1 855 | (L2L 856 | tp343 857 | g11 858 | I00 859 | S'\xab\xaa\xa5\x17\xf5-\x88@\x00\x00\xc8a\xb5\xaf]@' 860 | p344 861 | tp345 862 | bag1 863 | (g2 864 | (I0 865 | tp346 866 | g4 867 | tp347 868 | Rp348 869 | (I1 870 | (L2L 871 | tp349 872 | g11 873 | I00 874 | S'UU+\xcfM\xd3\x88@\x00\x00\x9d\xfd\r\xfd[@' 875 | p350 876 | tp351 877 | bag1 878 | (g2 879 | (I0 880 | tp352 881 | g4 882 | tp353 883 | Rp354 884 | (I1 885 | (L2L 886 | tp355 887 | g11 888 | I00 889 | S'\x00\xa0M\xf6\xc7\xf9\x89@\x00\x80$S>\xcdX@' 890 | p356 891 | tp357 892 | bag1 893 | (g2 894 | (I0 895 | tp358 896 | g4 897 | tp359 898 | Rp360 899 | (I1 900 | (L2L 901 | tp361 902 | g11 903 | I00 904 | S'\x00\xa0\x93\xb3\xb8\x02\x8b@\x00\x80\t\xcabiV@' 905 | p362 906 | tp363 907 | bag1 908 | (g2 909 | (I0 910 | tp364 911 | g4 912 | tp365 913 | Rp366 914 | (I1 915 | (L2L 916 | tp367 917 | g11 918 | I00 919 | S'\x00\xe0\xca<\xe7\x15\x8c@\x00\x80h\xeaU\x0fU@' 920 | p368 921 | tp369 922 | bag1 923 | (g2 924 | (I0 925 | tp370 926 | g4 927 | tp371 928 | Rp372 929 | (I1 930 | (L2L 931 | tp373 932 | g11 933 | I00 934 | S'\x00 \x12\x96\x96<\x8d@\x00\x80Q\xc2c|T@' 935 | p374 936 | tp375 937 | bag1 938 | (g2 939 | (I0 940 | tp376 941 | g4 942 | tp377 943 | Rp378 944 | (I1 945 | (L2L 946 | tp379 947 | g11 948 | I00 949 | S'\x00\xa0\x82\x99\xb97\x8e@\x00\x00%*\xc5\xf9T@' 950 | p380 951 | tp381 952 | bag1 953 | (g2 954 | (I0 955 | tp382 956 | g4 957 | tp383 958 | Rp384 959 | (I1 960 | (L2L 961 | tp385 962 | g11 963 | I00 964 | S'\x00`\x00\x05\x98\xaf\x8e@\x00\x80\xd5\x98\xd2\xafU@' 965 | p386 966 | tp387 967 | bag1 968 | (g2 969 | (I0 970 | tp388 971 | g4 972 | tp389 973 | Rp390 974 | (I1 975 | (L2L 976 | tp391 977 | g11 978 | I00 979 | S'f\xe6\xc4\xb7t\xa6\x8f@\xcd\xccp\x8a\xaa\xc5V@' 980 | p392 981 | tp393 982 | bag1 983 | (g2 984 | (I0 985 | tp394 986 | g4 987 | tp395 988 | Rp396 989 | (I1 990 | (L2L 991 | tp397 992 | g11 993 | I00 994 | S'ffa\xf2\xa2B\x90@\x9a\x99r\x00o\xc2W@' 995 | p398 996 | tp399 997 | bag1 998 | (g2 999 | (I0 1000 | tp400 1001 | g4 1002 | tp401 1003 | Rp402 1004 | (I1 1005 | (L2L 1006 | tp403 1007 | g11 1008 | I00 1009 | S'\x9aY\xe0\x88\x0b\xb2\x90@fftv3\xbfX@' 1010 | p404 1011 | tp405 1012 | bag1 1013 | (g2 1014 | (I0 1015 | tp406 1016 | g4 1017 | tp407 1018 | Rp408 1019 | (I1 1020 | (L2L 1021 | tp409 1022 | g11 1023 | I00 1024 | S'\xcdL_\x1ft!\x91@33v\xec\xf7\xbbY@' 1025 | p410 1026 | tp411 1027 | bag1 1028 | (g2 1029 | (I0 1030 | tp412 1031 | g4 1032 | tp413 1033 | Rp414 1034 | (I1 1035 | (L2L 1036 | tp415 1037 | g11 1038 | I00 1039 | S'\x9aY\xe0\x88\x0b\xb2\x90@fftv3\xbfX@' 1040 | p416 1041 | tp417 1042 | bag1 1043 | (g2 1044 | (I0 1045 | tp418 1046 | g4 1047 | tp419 1048 | Rp420 1049 | (I1 1050 | (L2L 1051 | tp421 1052 | g11 1053 | I00 1054 | S'ffa\xf2\xa2B\x90@\x9a\x99r\x00o\xc2W@' 1055 | p422 1056 | tp423 1057 | bag1 1058 | (g2 1059 | (I0 1060 | tp424 1061 | g4 1062 | tp425 1063 | Rp426 1064 | (I1 1065 | (L2L 1066 | tp427 1067 | g11 1068 | I00 1069 | S'f\xe6\xc4\xb7t\xa6\x8f@\xcd\xccp\x8a\xaa\xc5V@' 1070 | p428 1071 | tp429 1072 | bag1 1073 | (g2 1074 | (I0 1075 | tp430 1076 | g4 1077 | tp431 1078 | Rp432 1079 | (I1 1080 | (L2L 1081 | tp433 1082 | g11 1083 | I00 1084 | S'\x00`\x00\x05\x98\xaf\x8e@\x00\x80\xd5\x98\xd2\xafU@' 1085 | p434 1086 | tp435 1087 | bag1 1088 | (g2 1089 | (I0 1090 | tp436 1091 | g4 1092 | tp437 1093 | Rp438 1094 | (I1 1095 | (L2L 1096 | tp439 1097 | g11 1098 | I00 1099 | S'\x00\xa0\x82\x99\xb97\x8e@\x00\x00%*\xc5\xf9T@' 1100 | p440 1101 | tp441 1102 | bag1 1103 | (g2 1104 | (I0 1105 | tp442 1106 | g4 1107 | tp443 1108 | Rp444 1109 | (I1 1110 | (L2L 1111 | tp445 1112 | g11 1113 | I00 1114 | S'\x00@R\xbe\xf5\\\x8d@\x00\x005)\xd8#S@' 1115 | p446 1116 | tp447 1117 | bag1 1118 | (g2 1119 | (I0 1120 | tp448 1121 | g4 1122 | tp449 1123 | Rp450 1124 | (I1 1125 | (L2L 1126 | tp451 1127 | g11 1128 | I00 1129 | S'U\x95H\xacg<\x8c@\x00\x00\xa1_\x89PR@' 1130 | p452 1131 | tp453 1132 | bag1 1133 | (g2 1134 | (I0 1135 | tp454 1136 | g4 1137 | tp455 1138 | Rp456 1139 | (I1 1140 | (L2L 1141 | tp457 1142 | g11 1143 | I00 1144 | S'\xab*\xb8\x8f\xca\x96\x8b@\x00\x00\xe6\xa3-\xb6R@' 1145 | p458 1146 | tp459 1147 | bag1 1148 | (g2 1149 | (I0 1150 | tp460 1151 | g4 1152 | tp461 1153 | Rp462 1154 | (I1 1155 | (L2L 1156 | tp463 1157 | g11 1158 | I00 1159 | S'\x00\xc0-\xdf\x9e&\x8a@\x00\x00\x04\xebm\x89T@' 1160 | p464 1161 | tp465 1162 | bag1 1163 | (g2 1164 | (I0 1165 | tp466 1166 | g4 1167 | tp467 1168 | Rp468 1169 | (I1 1170 | (L2L 1171 | tp469 1172 | g11 1173 | I00 1174 | S'\x00\x00\x0f\xca\xdf\x97\x88@\x00\x00#\x0b\xea\xf2W@' 1175 | p470 1176 | tp471 1177 | bag1 1178 | (g2 1179 | (I0 1180 | tp472 1181 | g4 1182 | tp473 1183 | Rp474 1184 | (I1 1185 | (L2L 1186 | tp475 1187 | g11 1188 | I00 1189 | S'\x00@\xeaH\xaf\xd3\x87@\x00\x00i(\xca\xeeY@' 1190 | p476 1191 | tp477 1192 | bag1 1193 | (g2 1194 | (I0 1195 | tp478 1196 | g4 1197 | tp479 1198 | Rp480 1199 | (I1 1200 | (L2L 1201 | tp481 1202 | g11 1203 | I00 1204 | S'U\x155:\xadC\x86@\x00\x00\xde\xf0\xef\xfa]@' 1205 | p482 1206 | tp483 1207 | bag1 1208 | (g2 1209 | (I0 1210 | tp484 1211 | g4 1212 | tp485 1213 | Rp486 1214 | (I1 1215 | (L2L 1216 | tp487 1217 | g11 1218 | I00 1219 | S'\xab\xaa\xa4\xac\xdbw\x85@\x00\x80\x06\xce\x9a\x05`@' 1220 | p488 1221 | tp489 1222 | bag1 1223 | (g2 1224 | (I0 1225 | tp490 1226 | g4 1227 | tp491 1228 | Rp492 1229 | (I1 1230 | (L2L 1231 | tp493 1232 | g11 1233 | I00 1234 | S'UU\xe4u\xdf\x03\x84@\xab\xaa\xa47\x16\xeda@' 1235 | p494 1236 | tp495 1237 | bag1 1238 | (g2 1239 | (I0 1240 | tp496 1241 | g4 1242 | tp497 1243 | Rp498 1244 | (I1 1245 | (L2L 1246 | tp499 1247 | g11 1248 | I00 1249 | S'\xabj\xb4\xcc\xb4[\x83@UU\xab\xcbn\xccb@' 1250 | p500 1251 | tp501 1252 | bag1 1253 | (g2 1254 | (I0 1255 | tp502 1256 | g4 1257 | tp503 1258 | Rp504 1259 | (I1 1260 | (L2L 1261 | tp505 1262 | g11 1263 | I00 1264 | S'\x00\xe0\xb6\xd7o5\x82@\x00\xc0\x03\xcat\xdcd@' 1265 | p506 1266 | tp507 1267 | bag1 1268 | (g2 1269 | (I0 1270 | tp508 1271 | g4 1272 | tp509 1273 | Rp510 1274 | (I1 1275 | (L2L 1276 | tp511 1277 | g11 1278 | I00 1279 | S'\x00\xa0\x8a<^v\x81@\x00\x00\x15\x00\xe5\xb4f@' 1280 | p512 1281 | tp513 1282 | bag1 1283 | (g2 1284 | (I0 1285 | tp514 1286 | g4 1287 | tp515 1288 | Rp516 1289 | (I1 1290 | (L2L 1291 | tp517 1292 | g11 1293 | I00 1294 | S'\x00\x00\xefh\xfb\x12\x81@\x00\x80Jav\x13h@' 1295 | p518 1296 | tp519 1297 | bag1 1298 | (g2 1299 | (I0 1300 | tp520 1301 | g4 1302 | tp521 1303 | Rp522 1304 | (I1 1305 | (L2L 1306 | tp523 1307 | g11 1308 | I00 1309 | S'\x00 \xe4z\xde\xbe\x80@\x00@\x94:\xb7\xaei@' 1310 | p524 1311 | tp525 1312 | bag1 1313 | (g2 1314 | (I0 1315 | tp526 1316 | g4 1317 | tp527 1318 | Rp528 1319 | (I1 1320 | (L2L 1321 | tp529 1322 | g11 1323 | I00 1324 | S'\x00`\xc9c\xb0^\x80@\x00\x00\xa6ly\x9dk@' 1325 | p530 1326 | tp531 1327 | bag1 1328 | (g2 1329 | (I0 1330 | tp532 1331 | g4 1332 | tp533 1333 | Rp534 1334 | (I1 1335 | (L2L 1336 | tp535 1337 | g11 1338 | I00 1339 | S'\x00\x80\xab\x00\xd7\xfc\x7f@\x00\x00\x85N(\xc5m@' 1340 | p536 1341 | tp537 1342 | bag1 1343 | (g2 1344 | (I0 1345 | tp538 1346 | g4 1347 | tp539 1348 | Rp540 1349 | (I1 1350 | (L2L 1351 | tp541 1352 | g11 1353 | I00 1354 | S'\x00\x80\x88iDe\x7f@\x00\xc0\xd4\xe2\xbbwo@' 1355 | p542 1356 | tp543 1357 | bag1 1358 | (g2 1359 | (I0 1360 | tp544 1361 | g4 1362 | tp545 1363 | Rp546 1364 | (I1 1365 | (L2L 1366 | tp547 1367 | g11 1368 | I00 1369 | S'\x00@Z\xaeY\x98~@\x00\xa0\x108\xed\xc4p@' 1370 | p548 1371 | tp549 1372 | bag1 1373 | (g2 1374 | (I0 1375 | tp550 1376 | g4 1377 | tp551 1378 | Rp552 1379 | (I1 1380 | (L2L 1381 | tp553 1382 | g11 1383 | I00 1384 | S'\x00\xc0\xa8\x8d\x88f}@\x00 \xe3i_#r@' 1385 | p554 1386 | tp555 1387 | bag1 1388 | (g2 1389 | (I0 1390 | tp556 1391 | g4 1392 | tp557 1393 | Rp558 1394 | (I1 1395 | (L2L 1396 | tp559 1397 | g11 1398 | I00 1399 | S'\x00\xc0q@\x88\xba{@\x00\x00\xb8\x18\xe2Ds@' 1400 | p560 1401 | tp561 1402 | bag1 1403 | (g2 1404 | (I0 1405 | tp562 1406 | g4 1407 | tp563 1408 | Rp564 1409 | (I1 1410 | (L2L 1411 | tp565 1412 | g11 1413 | I00 1414 | S'\x00\x00;\xa0\xea\x9by@\x00`\xb2M\xb1\xfbs@' 1415 | p566 1416 | tp567 1417 | bag1 1418 | (g2 1419 | (I0 1420 | tp568 1421 | g4 1422 | tp569 1423 | Rp570 1424 | (I1 1425 | (L2L 1426 | tp571 1427 | g11 1428 | I00 1429 | S'\x00\xc0\x0fB\xe7\x94\xa3t@' 1505 | p602 1506 | tp603 1507 | bag1 1508 | (g2 1509 | (I0 1510 | tp604 1511 | g4 1512 | tp605 1513 | Rp606 1514 | (I1 1515 | (L2L 1516 | tp607 1517 | g11 1518 | I00 1519 | S'\x00\x00\n\xf5\x96\x06g@\x00\xd0\xda\trcr@' 1520 | p608 1521 | tp609 1522 | bag1 1523 | (g2 1524 | (I0 1525 | tp610 1526 | g4 1527 | tp611 1528 | Rp612 1529 | (I1 1530 | (L2L 1531 | tp613 1532 | g11 1533 | I00 1534 | S"\x00\x00\xf6\xe4c\xd7f@\x00`a'C\xb7p@" 1535 | p614 1536 | tp615 1537 | bag1 1538 | (g2 1539 | (I0 1540 | tp616 1541 | g4 1542 | tp617 1543 | Rp618 1544 | (I1 1545 | (L2L 1546 | tp619 1547 | g11 1548 | I00 1549 | S'\x00\x00\xe2\xd40\xa8f@\x00\xe0\xcf\x89(\x16n@' 1550 | p620 1551 | tp621 1552 | bag1 1553 | (g2 1554 | (I0 1555 | tp622 1556 | g4 1557 | tp623 1558 | Rp624 1559 | (I1 1560 | (L2L 1561 | tp625 1562 | g11 1563 | I00 1564 | S't\xd1\xf4\xbd:7j@\x17]6`u\xe5j@' 1565 | p626 1566 | tp627 1567 | bag1 1568 | (g2 1569 | (I0 1570 | tp628 1571 | g4 1572 | tp629 1573 | Rp630 1574 | (I1 1575 | (L2L 1576 | tp631 1577 | g11 1578 | I00 1579 | S'\xe9\xa2\x1b\xb7w\xf5m@/\xba\x8f\xfb\x1f\rk@' 1580 | p632 1581 | tp633 1582 | bag1 1583 | (g2 1584 | (I0 1585 | tp634 1586 | g4 1587 | tp635 1588 | Rp636 1589 | (I1 1590 | (L2L 1591 | tp637 1592 | g11 1593 | I00 1594 | S'.:!X\xda\xd9p@F\x17\xe9\x96\xca4k@' 1595 | p638 1596 | tp639 1597 | bag1 1598 | (g2 1599 | (I0 1600 | tp640 1601 | g4 1602 | tp641 1603 | Rp642 1604 | (I1 1605 | (L2L 1606 | tp643 1607 | g11 1608 | I00 1609 | S'\xe9\xa2\xb4\xd4\xf8\xb8r@]tB2u\\k@' 1610 | p644 1611 | tp645 1612 | bag1 1613 | (g2 1614 | (I0 1615 | tp646 1616 | g4 1617 | tp647 1618 | Rp648 1619 | (I1 1620 | (L2L 1621 | tp649 1622 | g11 1623 | I00 1624 | S'\xa3\x0bHQ\x17\x98t@t\xd1\x9b\xcd\x1f\x84k@' 1625 | p650 1626 | tp651 1627 | bag1 1628 | (g2 1629 | (I0 1630 | tp652 1631 | g4 1632 | tp653 1633 | Rp654 1634 | (I1 1635 | (L2L 1636 | tp655 1637 | g11 1638 | I00 1639 | S']t\xdb\xcd5wv@\x8c.\xf5h\xca\xabk@' 1640 | p656 1641 | tp657 1642 | bag1 1643 | (g2 1644 | (I0 1645 | tp658 1646 | g4 1647 | tp659 1648 | Rp660 1649 | (I1 1650 | (L2L 1651 | tp661 1652 | g11 1653 | I00 1654 | S'\x18\xddnJTVx@\xa3\x8bN\x04u\xd3k@' 1655 | p662 1656 | tp663 1657 | bag1 1658 | (g2 1659 | (I0 1660 | tp664 1661 | g4 1662 | tp665 1663 | Rp666 1664 | (I1 1665 | (L2L 1666 | tp667 1667 | g11 1668 | I00 1669 | S'\xd2E\x02\xc7r5z@\xba\xe8\xa7\x9f\x1f\xfbk@' 1670 | p668 1671 | tp669 1672 | bag1 1673 | (g2 1674 | (I0 1675 | tp670 1676 | g4 1677 | tp671 1678 | Rp672 1679 | (I1 1680 | (L2L 1681 | tp673 1682 | g11 1683 | I00 1684 | S'\x8c\xae\x95C\x91\x14|@\xd1E\x01;\xca"l@' 1685 | p674 1686 | tp675 1687 | bag1 1688 | (g2 1689 | (I0 1690 | tp676 1691 | g4 1692 | tp677 1693 | Rp678 1694 | (I1 1695 | (L2L 1696 | tp679 1697 | g11 1698 | I00 1699 | S'F\x17)\xc0\xaf\xf3}@\xe9\xa2Z\xd6tJl@' 1700 | p680 1701 | tp681 1702 | bag1 1703 | (g2 1704 | (I0 1705 | tp682 1706 | g4 1707 | tp683 1708 | Rp684 1709 | (I1 1710 | (L2L 1711 | tp685 1712 | g11 1713 | I00 1714 | S'\x00`mj\xcd\x0c\x80@\x00\x00Lf\xf4\x8cl@' 1715 | p686 1716 | tp687 1717 | bag1 1718 | (g2 1719 | (I0 1720 | tp688 1721 | g4 1722 | tp689 1723 | Rp690 1724 | (I1 1725 | (L2L 1726 | tp691 1727 | g11 1728 | I00 1729 | S'\x00\xc06\xe7i\x95\x80@\x00\xc0\xee\xa9M\xadl@' 1730 | p692 1731 | tp693 1732 | bag1 1733 | (g2 1734 | (I0 1735 | tp694 1736 | g4 1737 | tp695 1738 | Rp696 1739 | (I1 1740 | (L2L 1741 | tp697 1742 | g11 1743 | I00 1744 | S'\x00\x88r\xfe)\xd3\x81@\x00\x90\xe2\xf9\x1b\xd4l@' 1745 | p698 1746 | tp699 1747 | bag1 1748 | (g2 1749 | (I0 1750 | tp700 1751 | g4 1752 | tp701 1753 | Rp702 1754 | (I1 1755 | (L2L 1756 | tp703 1757 | g11 1758 | I00 1759 | S'\x00\x10\xf4\xe4\xb3\xab\x82@\x00\xa0\xcb\xfae\xf5l@' 1760 | p704 1761 | tp705 1762 | bag1 1763 | (g2 1764 | (I0 1765 | tp706 1766 | g4 1767 | tp707 1768 | Rp708 1769 | (I1 1770 | (L2L 1771 | tp709 1772 | g11 1773 | I00 1774 | S'\x00\x98u\xcb=\x84\x83@\x00\xb0\xb4\xfb\xaf\x16m@' 1775 | p710 1776 | tp711 1777 | bag1 1778 | (g2 1779 | (I0 1780 | tp712 1781 | g4 1782 | tp713 1783 | Rp714 1784 | (I1 1785 | (L2L 1786 | tp715 1787 | g11 1788 | I00 1789 | S'\x00 \xf7\xb1\xc7\\\x84@\x00\xc0\x9d\xfc\xf97m@' 1790 | p716 1791 | tp717 1792 | bag1 1793 | (g2 1794 | (I0 1795 | tp718 1796 | g4 1797 | tp719 1798 | Rp720 1799 | (I1 1800 | (L2L 1801 | tp721 1802 | g11 1803 | I00 1804 | S'\x00\xa8x\x98Q5\x85@\x00\xd0\x86\xfdCYm@' 1805 | p722 1806 | tp723 1807 | bag1 1808 | (g2 1809 | (I0 1810 | tp724 1811 | g4 1812 | tp725 1813 | Rp726 1814 | (I1 1815 | (L2L 1816 | tp727 1817 | g11 1818 | I00 1819 | S'\x000\xfa~\xdb\r\x86@\x00\xe0o\xfe\x8dzm@' 1820 | p728 1821 | tp729 1822 | bag1 1823 | (g2 1824 | (I0 1825 | tp730 1826 | g4 1827 | tp731 1828 | Rp732 1829 | (I1 1830 | (L2L 1831 | tp733 1832 | g11 1833 | I00 1834 | S'\x00\xb8{ee\xe6\x86@\x00\xf0X\xff\xd7\x9bm@' 1835 | p734 1836 | tp735 1837 | bag1 1838 | (g2 1839 | (I0 1840 | tp736 1841 | g4 1842 | tp737 1843 | Rp738 1844 | (I1 1845 | (L2L 1846 | tp739 1847 | g11 1848 | I00 1849 | S'\x000\xfa~\xdb\r\x86@\x00\xe0o\xfe\x8dzm@' 1850 | p740 1851 | tp741 1852 | bag1 1853 | (g2 1854 | (I0 1855 | tp742 1856 | g4 1857 | tp743 1858 | Rp744 1859 | (I1 1860 | (L2L 1861 | tp745 1862 | g11 1863 | I00 1864 | S'\x00\xa8x\x98Q5\x85@\x00\xd0\x86\xfdCYm@' 1865 | p746 1866 | tp747 1867 | bag1 1868 | (g2 1869 | (I0 1870 | tp748 1871 | g4 1872 | tp749 1873 | Rp750 1874 | (I1 1875 | (L2L 1876 | tp751 1877 | g11 1878 | I00 1879 | S'\x00 \xf7\xb1\xc7\\\x84@\x00\xc0\x9d\xfc\xf97m@' 1880 | p752 1881 | tp753 1882 | bag1 1883 | (g2 1884 | (I0 1885 | tp754 1886 | g4 1887 | tp755 1888 | Rp756 1889 | (I1 1890 | (L2L 1891 | tp757 1892 | g11 1893 | I00 1894 | S'\x00\x98u\xcb=\x84\x83@\x00\xb0\xb4\xfb\xaf\x16m@' 1895 | p758 1896 | tp759 1897 | bag1 1898 | (g2 1899 | (I0 1900 | tp760 1901 | g4 1902 | tp761 1903 | Rp762 1904 | (I1 1905 | (L2L 1906 | tp763 1907 | g11 1908 | I00 1909 | S'\x00\x10\xf4\xe4\xb3\xab\x82@\x00\xa0\xcb\xfae\xf5l@' 1910 | p764 1911 | tp765 1912 | bag1 1913 | (g2 1914 | (I0 1915 | tp766 1916 | g4 1917 | tp767 1918 | Rp768 1919 | (I1 1920 | (L2L 1921 | tp769 1922 | g11 1923 | I00 1924 | S'\x00\x88r\xfe)\xd3\x81@\x00\x90\xe2\xf9\x1b\xd4l@' 1925 | p770 1926 | tp771 1927 | bag1 1928 | (g2 1929 | (I0 1930 | tp772 1931 | g4 1932 | tp773 1933 | Rp774 1934 | (I1 1935 | (L2L 1936 | tp775 1937 | g11 1938 | I00 1939 | S'\x00\xc06\xe7i\x95\x80@\x00\xc0\xee\xa9M\xadl@' 1940 | p776 1941 | tp777 1942 | bag1 1943 | (g2 1944 | (I0 1945 | tp778 1946 | g4 1947 | tp779 1948 | Rp780 1949 | (I1 1950 | (L2L 1951 | tp781 1952 | g11 1953 | I00 1954 | S'\x00`mj\xcd\x0c\x80@\x00\x00Lf\xf4\x8cl@' 1955 | p782 1956 | tp783 1957 | bag1 1958 | (g2 1959 | (I0 1960 | tp784 1961 | g4 1962 | tp785 1963 | Rp786 1964 | (I1 1965 | (L2L 1966 | tp787 1967 | g11 1968 | I00 1969 | S'F\x17)\xc0\xaf\xf3}@\xe9\xa2Z\xd6tJl@' 1970 | p788 1971 | tp789 1972 | bag1 1973 | (g2 1974 | (I0 1975 | tp790 1976 | g4 1977 | tp791 1978 | Rp792 1979 | (I1 1980 | (L2L 1981 | tp793 1982 | g11 1983 | I00 1984 | S'\x8c\xae\x95C\x91\x14|@\xd1E\x01;\xca"l@' 1985 | p794 1986 | tp795 1987 | bag1 1988 | (g2 1989 | (I0 1990 | tp796 1991 | g4 1992 | tp797 1993 | Rp798 1994 | (I1 1995 | (L2L 1996 | tp799 1997 | g11 1998 | I00 1999 | S'\xd2E\x02\xc7r5z@\xba\xe8\xa7\x9f\x1f\xfbk@' 2000 | p800 2001 | tp801 2002 | bag1 2003 | (g2 2004 | (I0 2005 | tp802 2006 | g4 2007 | tp803 2008 | Rp804 2009 | (I1 2010 | (L2L 2011 | tp805 2012 | g11 2013 | I00 2014 | S'\x18\xddnJTVx@\xa3\x8bN\x04u\xd3k@' 2015 | p806 2016 | tp807 2017 | bag1 2018 | (g2 2019 | (I0 2020 | tp808 2021 | g4 2022 | tp809 2023 | Rp810 2024 | (I1 2025 | (L2L 2026 | tp811 2027 | g11 2028 | I00 2029 | S']t\xdb\xcd5wv@\x8c.\xf5h\xca\xabk@' 2030 | p812 2031 | tp813 2032 | bag1 2033 | (g2 2034 | (I0 2035 | tp814 2036 | g4 2037 | tp815 2038 | Rp816 2039 | (I1 2040 | (L2L 2041 | tp817 2042 | g11 2043 | I00 2044 | S'\xa3\x0bHQ\x17\x98t@t\xd1\x9b\xcd\x1f\x84k@' 2045 | p818 2046 | tp819 2047 | bag1 2048 | (g2 2049 | (I0 2050 | tp820 2051 | g4 2052 | tp821 2053 | Rp822 2054 | (I1 2055 | (L2L 2056 | tp823 2057 | g11 2058 | I00 2059 | S'\xe9\xa2\xb4\xd4\xf8\xb8r@]tB2u\\k@' 2060 | p824 2061 | tp825 2062 | bag1 2063 | (g2 2064 | (I0 2065 | tp826 2066 | g4 2067 | tp827 2068 | Rp828 2069 | (I1 2070 | (L2L 2071 | tp829 2072 | g11 2073 | I00 2074 | S'.:!X\xda\xd9p@F\x17\xe9\x96\xca4k@' 2075 | p830 2076 | tp831 2077 | bag1 2078 | (g2 2079 | (I0 2080 | tp832 2081 | g4 2082 | tp833 2083 | Rp834 2084 | (I1 2085 | (L2L 2086 | tp835 2087 | g11 2088 | I00 2089 | S'\xe9\xa2\x1b\xb7w\xf5m@/\xba\x8f\xfb\x1f\rk@' 2090 | p836 2091 | tp837 2092 | bag1 2093 | (g2 2094 | (I0 2095 | tp838 2096 | g4 2097 | tp839 2098 | Rp840 2099 | (I1 2100 | (L2L 2101 | tp841 2102 | g11 2103 | I00 2104 | S't\xd1\xf4\xbd:7j@\x17]6`u\xe5j@' 2105 | p842 2106 | tp843 2107 | bag1 2108 | (g2 2109 | (I0 2110 | tp844 2111 | g4 2112 | tp845 2113 | Rp846 2114 | (I1 2115 | (L2L 2116 | tp847 2117 | g11 2118 | I00 2119 | S'\x00\x80\xee\x82\x96Sf@\x00\xc0\xbd\xa3\xe2\xf9g@' 2120 | p848 2121 | tp849 2122 | bag1 2123 | (g2 2124 | (I0 2125 | tp850 2126 | g4 2127 | tp851 2128 | Rp852 2129 | (I1 2130 | (L2L 2131 | tp853 2132 | g11 2133 | I00 2134 | S"\x00\x80\x8a\x92'\x1ef@\x00\x80U\xc3\xcc\x04d@" 2135 | p854 2136 | tp855 2137 | bag1 2138 | (g2 2139 | (I0 2140 | tp856 2141 | g4 2142 | tp857 2143 | Rp858 2144 | (I1 2145 | (L2L 2146 | tp859 2147 | g11 2148 | I00 2149 | S'\x00\x00\x8a\xd3\x13\xe9e@\x00\x00"\xc2\xae\xee^@' 2150 | p860 2151 | tp861 2152 | bag1 2153 | (g2 2154 | (I0 2155 | tp862 2156 | g4 2157 | tp863 2158 | Rp864 2159 | (I1 2160 | (L2L 2161 | tp865 2162 | g11 2163 | I00 2164 | S'\x00\x00\x0e\xc3\x07\xc4e@\x00\x00+|\x1f6X@' 2165 | p866 2166 | tp867 2167 | ba. -------------------------------------------------------------------------------- /data/killian-v.dat: -------------------------------------------------------------------------------- 1 | VERTEX2 0 1.008240 -0.016781 0.005957 2 | VERTEX2 1 2.090063 0.008002 0.015650 3 | VERTEX2 2 3.117849 -0.027274 0.023100 4 | VERTEX2 3 4.198081 0.087164 0.035227 5 | VERTEX2 4 5.279355 0.111386 0.045086 6 | VERTEX2 5 6.263466 0.126602 -0.005163 7 | VERTEX2 6 7.283441 0.076036 -0.015700 8 | VERTEX2 7 8.357930 0.058120 -0.015358 9 | VERTEX2 8 9.390035 -0.012710 0.017520 10 | VERTEX2 9 10.408369 -0.056070 -0.208266 11 | VERTEX2 10 11.431652 -0.393503 -0.373306 12 | VERTEX2 11 12.421098 -0.716382 -0.409338 13 | VERTEX2 12 12.938025 -1.136982 -0.920065 14 | VERTEX2 13 13.179887 -1.862584 -1.469585 15 | VERTEX2 14 13.122046 -2.788254 -1.652690 16 | VERTEX2 15 13.051261 -3.758466 -1.687129 17 | VERTEX2 16 12.965443 -4.701408 -1.708143 18 | VERTEX2 17 12.831314 -5.844807 -1.648737 19 | VERTEX2 18 12.820085 -6.955505 -1.575464 20 | VERTEX2 19 12.747445 -7.921361 -1.591606 21 | VERTEX2 20 12.652820 -8.957570 -1.621075 22 | VERTEX2 21 12.563742 -10.037374 -1.610888 23 | VERTEX2 22 12.425200 -11.095818 -1.631360 24 | VERTEX2 23 12.387697 -12.208372 -1.474633 25 | VERTEX2 24 12.510614 -13.263473 -1.500328 26 | VERTEX2 25 12.547478 -14.384032 -1.511643 27 | VERTEX2 26 12.585983 -15.530428 -1.522659 28 | VERTEX2 27 12.620192 -16.542624 -1.541081 29 | VERTEX2 28 12.684799 -17.625564 -1.549389 30 | VERTEX2 29 12.773076 -18.773939 -1.567421 31 | VERTEX2 30 12.704193 -19.809580 -1.517939 32 | VERTEX2 31 12.724701 -20.841986 -1.462831 33 | VERTEX2 32 12.816564 -21.864708 -1.470615 34 | VERTEX2 33 12.894463 -22.846646 -1.457601 35 | VERTEX2 34 12.954367 -23.936482 -1.443297 36 | VERTEX2 35 13.063404 -24.967079 -1.445467 37 | VERTEX2 36 13.163316 -26.009839 -1.465642 38 | VERTEX2 37 13.251729 -27.182310 -1.500353 39 | VERTEX2 38 13.285664 -28.264933 -1.508484 40 | VERTEX2 39 13.169921 -29.271690 -1.511428 41 | VERTEX2 40 13.220708 -30.363185 -1.469856 42 | VERTEX2 41 13.244028 -31.361364 -1.480117 43 | VERTEX2 42 13.330487 -32.520368 -1.451720 44 | VERTEX2 43 13.428325 -33.524649 -1.354528 45 | VERTEX2 44 13.639648 -34.564084 -1.313412 46 | VERTEX2 45 13.869435 -35.270398 -1.294624 47 | VERTEX2 46 14.063414 -36.366230 -1.364240 48 | VERTEX2 47 14.251332 -37.523363 -1.430199 49 | VERTEX2 48 14.343207 -38.637434 -1.440433 50 | VERTEX2 49 14.447920 -39.716769 -1.448148 51 | VERTEX2 50 14.585242 -40.830508 -1.485941 52 | VERTEX2 51 14.724153 -41.866809 -1.501403 53 | VERTEX2 52 14.726488 -42.907917 -1.443042 54 | VERTEX2 53 14.823526 -43.927803 -1.367939 55 | VERTEX2 54 14.981288 -44.878699 -1.373292 56 | VERTEX2 55 15.138925 -46.001730 -1.361288 57 | VERTEX2 56 15.360413 -46.940584 -1.393816 58 | VERTEX2 57 15.490248 -47.914339 -1.391594 59 | VERTEX2 58 15.632656 -48.932275 -1.397703 60 | VERTEX2 59 15.809021 -49.985997 -1.809499 61 | VERTEX2 60 15.509627 -50.443970 -2.359617 62 | VERTEX2 61 14.576048 -50.811841 -2.776838 63 | VERTEX2 62 13.615460 -50.906042 -2.975414 64 | VERTEX2 63 12.567983 -51.065337 -2.960918 65 | VERTEX2 64 11.468120 -51.234896 -2.960536 66 | VERTEX2 65 10.472796 -51.509353 -2.964961 67 | VERTEX2 66 9.542766 -51.715317 -2.955000 68 | VERTEX2 67 8.497177 -51.798926 -2.992378 69 | VERTEX2 68 7.576233 -51.904089 -2.916409 70 | VERTEX2 69 6.502860 -52.066274 -2.715093 71 | VERTEX2 70 5.876391 -52.527963 -2.133180 72 | VERTEX2 71 5.698428 -53.030921 -1.599277 73 | VERTEX2 72 5.836598 -54.067286 -1.348954 74 | VERTEX2 73 6.153189 -55.069875 -1.245237 75 | VERTEX2 74 6.433631 -56.048897 -1.262576 76 | VERTEX2 75 6.574598 -57.073560 -1.541454 77 | VERTEX2 76 6.567743 -58.117504 -1.498989 78 | VERTEX2 77 6.704653 -59.162898 -1.406075 79 | VERTEX2 78 6.957326 -60.164197 -1.184749 80 | VERTEX2 79 7.393262 -61.031874 -1.181012 81 | VERTEX2 80 7.672845 -61.965672 -1.319956 82 | VERTEX2 81 7.862141 -63.102090 -1.315962 83 | VERTEX2 82 8.141905 -64.095752 -1.316535 84 | VERTEX2 83 8.442421 -65.110110 -0.966047 85 | VERTEX2 84 9.040948 -65.725306 -0.381081 86 | VERTEX2 85 9.932431 -65.947867 0.018307 87 | VERTEX2 86 11.026853 -65.658594 0.482614 88 | VERTEX2 87 12.099780 -65.185528 0.519458 89 | VERTEX2 88 13.217687 -64.707835 0.365286 90 | VERTEX2 89 14.185202 -64.468174 0.314768 91 | VERTEX2 90 15.255082 -64.186406 0.305942 92 | VERTEX2 91 16.374322 -63.863361 0.303244 93 | VERTEX2 92 17.288609 -63.648433 0.317155 94 | VERTEX2 93 18.387802 -63.383950 0.266784 95 | VERTEX2 94 19.367190 -63.145902 0.284683 96 | VERTEX2 95 20.453099 -62.960865 0.256754 97 | VERTEX2 96 21.480818 -62.790378 0.285499 98 | VERTEX2 97 22.483118 -62.589602 0.308919 99 | VERTEX2 98 23.557854 -62.260877 0.255520 100 | VERTEX2 99 24.559478 -62.156030 0.307987 101 | VERTEX2 100 25.542875 -61.837153 0.318215 102 | VERTEX2 101 26.575526 -61.540645 0.313647 103 | VERTEX2 102 27.616899 -61.286296 0.269309 104 | VERTEX2 103 28.573987 -60.896154 0.282736 105 | VERTEX2 104 29.344278 -60.715098 0.802537 106 | VERTEX2 105 29.551735 -60.421796 1.402466 107 | VERTEX2 106 29.288525 -59.363432 1.819818 108 | VERTEX2 107 28.966070 -58.270255 1.817081 109 | VERTEX2 108 28.754937 -57.368249 1.864675 110 | VERTEX2 109 28.507110 -56.242217 1.875264 111 | VERTEX2 110 28.237129 -55.266163 1.888845 112 | VERTEX2 111 27.829469 -54.311928 1.890472 113 | VERTEX2 112 27.462585 -53.382465 1.879860 114 | VERTEX2 113 27.192238 -52.407305 1.882016 115 | VERTEX2 114 26.911631 -51.378475 1.882295 116 | VERTEX2 115 26.581491 -50.239206 1.878990 117 | VERTEX2 116 26.366239 -49.283653 1.879661 118 | VERTEX2 117 25.978948 -48.326244 2.559307 119 | VERTEX2 118 25.608446 -48.221833 3.101474 120 | VERTEX2 119 24.534377 -48.164350 -3.028371 121 | VERTEX2 120 23.503318 -48.575211 -2.608228 122 | VERTEX2 121 22.481145 -48.988694 -2.667090 123 | VERTEX2 122 21.492852 -49.459712 -2.711562 124 | VERTEX2 123 20.403282 -49.843922 -2.751670 125 | VERTEX2 124 19.424624 -50.137600 -2.775336 126 | VERTEX2 125 18.424219 -50.472598 -2.814718 127 | VERTEX2 126 17.333376 -50.723360 -2.848980 128 | VERTEX2 127 16.188435 -50.987573 -2.859474 129 | VERTEX2 128 16.150214 -51.034416 2.774819 130 | VERTEX2 129 16.167405 -51.068062 2.109424 131 | VERTEX2 130 16.089502 -50.688858 2.695130 132 | VERTEX2 131 15.982641 -50.754879 -3.072390 133 | VERTEX2 132 15.999507 -50.750054 -2.553160 134 | VERTEX2 133 15.992195 -50.903820 -2.066507 135 | VERTEX2 134 15.832386 -51.471325 -1.802266 136 | VERTEX2 135 15.405456 -52.104880 -2.285996 137 | VERTEX2 136 14.781060 -52.520514 -2.775315 138 | VERTEX2 137 13.791840 -52.822041 -2.829657 139 | VERTEX2 138 12.761070 -53.100652 -2.872518 140 | VERTEX2 139 11.693490 -53.378296 -2.900971 141 | VERTEX2 140 10.599741 -53.683762 -2.867162 142 | VERTEX2 141 9.665815 -53.970688 -2.898514 143 | VERTEX2 142 8.645049 -54.235902 -2.765542 144 | VERTEX2 143 7.785350 -54.606957 -2.795521 145 | VERTEX2 144 6.826513 -54.997322 -2.821555 146 | VERTEX2 145 5.834286 -55.204012 -2.869487 147 | VERTEX2 146 4.756893 -55.460505 -2.700736 148 | VERTEX2 147 4.066131 -55.912177 -2.916603 149 | VERTEX2 148 3.080462 -55.936586 -3.063989 150 | VERTEX2 149 1.890546 -55.896695 2.995809 151 | VERTEX2 150 1.016470 -55.391388 2.601001 152 | VERTEX2 151 0.015376 -54.940734 2.933865 153 | VERTEX2 152 -1.063878 -54.985608 -2.955187 154 | VERTEX2 153 -2.153494 -55.222194 -2.821403 155 | VERTEX2 154 -3.194127 -55.527837 -2.838283 156 | VERTEX2 155 -4.317544 -55.767247 -2.853126 157 | VERTEX2 156 -5.382061 -56.211125 -2.758207 158 | VERTEX2 157 -6.263237 -56.587050 -2.759432 159 | VERTEX2 158 -7.343751 -56.971626 -2.785844 160 | VERTEX2 159 -8.307123 -57.358488 -2.838371 161 | VERTEX2 160 -9.250689 -57.547279 -2.846990 162 | VERTEX2 161 -10.254520 -57.794398 -2.872479 163 | VERTEX2 162 -11.276054 -58.063423 -3.021660 164 | VERTEX2 163 -11.835539 -58.027444 2.670329 165 | VERTEX2 164 -12.194630 -57.711566 2.061700 166 | VERTEX2 165 -12.499979 -56.709034 1.878335 167 | VERTEX2 166 -12.785593 -55.784677 1.865888 168 | VERTEX2 167 -13.003253 -54.684468 1.841270 169 | VERTEX2 168 -13.273789 -53.796647 1.824587 170 | VERTEX2 169 -13.536941 -52.815377 1.855737 171 | VERTEX2 170 -13.841870 -51.828197 1.834979 172 | VERTEX2 171 -14.123021 -50.633410 1.791524 173 | VERTEX2 172 -14.360512 -49.667636 1.797597 174 | VERTEX2 173 -14.669303 -48.574262 1.870169 175 | VERTEX2 174 -15.018924 -47.630526 2.302147 176 | VERTEX2 175 -15.553998 -47.348254 2.882151 177 | VERTEX2 176 -16.745220 -47.337385 -2.919785 178 | VERTEX2 177 -17.721507 -47.535555 -2.868577 179 | VERTEX2 178 -18.730949 -47.862912 -2.845349 180 | VERTEX2 179 -19.735254 -48.099349 -2.844935 181 | VERTEX2 180 -20.855164 -48.481322 -2.853469 182 | VERTEX2 181 -22.026535 -48.878493 -2.861011 183 | VERTEX2 182 -23.092013 -49.188546 -2.795976 184 | VERTEX2 183 -24.099955 -49.528785 -2.773702 185 | VERTEX2 184 -25.048721 -49.789481 -2.783216 186 | VERTEX2 185 -26.055363 -50.127794 -2.792660 187 | VERTEX2 186 -27.186338 -50.541496 -2.797316 188 | VERTEX2 187 -28.209293 -50.846528 -2.807702 189 | VERTEX2 188 -29.297332 -51.164863 -2.818369 190 | VERTEX2 189 -30.386741 -51.540572 -2.845861 191 | VERTEX2 190 -31.495528 -51.888010 -2.852081 192 | VERTEX2 191 -32.541539 -52.095374 -2.872906 193 | VERTEX2 192 -33.622688 -52.380996 -2.829846 194 | VERTEX2 193 -34.557039 -52.711533 -2.845908 195 | VERTEX2 194 -35.472800 -52.981530 -2.860645 196 | VERTEX2 195 -36.417938 -53.275704 -2.875574 197 | VERTEX2 196 -37.419389 -53.575711 -2.886566 198 | VERTEX2 197 -38.589294 -53.787176 -3.027585 199 | VERTEX2 198 -39.728524 -53.839826 -2.984433 200 | VERTEX2 199 -40.825682 -54.208842 -2.838286 201 | VERTEX2 200 -41.874836 -54.481910 -2.811836 202 | VERTEX2 201 -42.829134 -54.708449 -2.809857 203 | VERTEX2 202 -43.811986 -54.986384 -2.815980 204 | VERTEX2 203 -44.662164 -55.309274 -2.824075 205 | VERTEX2 204 -45.840173 -55.568451 -2.853925 206 | VERTEX2 205 -47.056529 -55.885263 -2.856867 207 | VERTEX2 206 -47.950783 -56.139023 -2.865900 208 | VERTEX2 207 -49.058728 -56.415536 -2.920628 209 | VERTEX2 208 -50.065981 -56.535160 -2.946878 210 | VERTEX2 209 -51.210229 -56.717534 -2.961929 211 | VERTEX2 210 -52.299182 -56.956183 -2.977034 212 | VERTEX2 211 -53.444712 -57.136053 -2.817289 213 | VERTEX2 212 -54.497455 -57.528783 -2.823305 214 | VERTEX2 213 -55.590814 -57.901049 -2.844889 215 | VERTEX2 214 -56.598647 -58.124950 -2.920992 216 | VERTEX2 215 -57.641972 -58.380614 -2.917396 217 | VERTEX2 216 -58.645819 -58.604480 -2.964229 218 | VERTEX2 217 -59.747160 -58.892478 -2.916627 219 | VERTEX2 218 -60.796508 -59.001085 -2.938724 220 | VERTEX2 219 -61.849414 -59.257590 -2.851686 221 | VERTEX2 220 -62.950748 -59.521447 -2.796376 222 | VERTEX2 221 -64.083350 -59.839055 -2.806865 223 | VERTEX2 222 -65.140193 -60.164452 -2.814055 224 | VERTEX2 223 -66.184464 -60.534842 -2.911880 225 | VERTEX2 224 -67.237302 -60.684503 -2.927984 226 | VERTEX2 225 -68.225498 -60.818688 -2.919470 227 | VERTEX2 226 -69.357122 -61.063118 -2.905971 228 | VERTEX2 227 -70.299440 -61.325921 -2.745101 229 | VERTEX2 228 -70.790886 -61.653650 -2.238237 230 | VERTEX2 229 -71.131143 -62.117773 -1.634401 231 | VERTEX2 230 -71.065283 -63.205377 -1.333323 232 | VERTEX2 231 -70.998665 -64.255091 -1.316285 233 | VERTEX2 232 -70.721976 -65.289205 -1.301794 234 | VERTEX2 233 -70.515124 -66.220646 -1.274295 235 | VERTEX2 234 -70.234954 -67.284594 -1.289044 236 | VERTEX2 235 -69.878178 -68.299236 -1.268940 237 | VERTEX2 236 -69.606727 -69.352210 -1.233475 238 | VERTEX2 237 -69.347937 -70.336372 -1.249105 239 | VERTEX2 238 -69.121069 -71.346886 -1.226283 240 | VERTEX2 239 -68.841309 -72.406592 -1.263046 241 | VERTEX2 240 -68.606205 -73.474217 -1.294494 242 | VERTEX2 241 -68.355459 -74.596213 -1.291691 243 | VERTEX2 242 -68.038471 -75.689552 -1.283756 244 | VERTEX2 243 -67.821668 -76.610779 -1.153053 245 | VERTEX2 244 -67.433754 -77.118924 -0.543026 246 | VERTEX2 245 -66.830584 -77.327144 0.041847 247 | VERTEX2 246 -65.761457 -77.324774 0.028550 248 | VERTEX2 247 -64.723742 -77.143462 0.232234 249 | VERTEX2 248 -63.684560 -76.923020 0.280020 250 | VERTEX2 249 -62.701744 -76.657904 0.314743 251 | VERTEX2 250 -61.565039 -76.258973 0.326626 252 | VERTEX2 251 -60.561923 -75.935818 0.321594 253 | VERTEX2 252 -59.539253 -75.652853 0.327023 254 | VERTEX2 253 -58.494777 -75.331023 0.312806 255 | VERTEX2 254 -57.496093 -75.051482 0.240034 256 | VERTEX2 255 -56.505694 -74.887113 0.205210 257 | VERTEX2 256 -55.430974 -74.656151 0.172897 258 | VERTEX2 257 -54.340802 -74.418258 0.166286 259 | VERTEX2 258 -53.221089 -74.234015 0.171115 260 | VERTEX2 259 -52.098294 -74.083722 0.178937 261 | VERTEX2 260 -51.006327 -73.910298 0.183623 262 | VERTEX2 261 -49.959604 -73.732055 0.202207 263 | VERTEX2 262 -48.938584 -73.479027 0.230777 264 | VERTEX2 263 -47.894684 -73.229898 0.243532 265 | VERTEX2 264 -46.787894 -72.974227 0.241713 266 | VERTEX2 265 -45.731104 -72.695732 0.215528 267 | VERTEX2 266 -44.513513 -72.374785 0.196031 268 | VERTEX2 267 -43.566280 -72.224871 0.219884 269 | VERTEX2 268 -42.440445 -72.015631 0.232328 270 | VERTEX2 269 -41.382079 -71.824369 0.201525 271 | VERTEX2 270 -40.295572 -71.529974 0.209240 272 | VERTEX2 271 -39.231567 -71.311401 0.223604 273 | VERTEX2 272 -38.149046 -71.039557 0.244408 274 | VERTEX2 273 -37.097962 -70.857044 0.250587 275 | VERTEX2 274 -35.965391 -70.569979 0.255983 276 | VERTEX2 275 -34.839719 -70.388848 0.150469 277 | VERTEX2 276 -33.697146 -70.286672 0.169535 278 | VERTEX2 277 -32.559602 -70.111882 0.170801 279 | VERTEX2 278 -31.463958 -69.925777 0.192641 280 | VERTEX2 279 -30.410324 -69.719843 0.239432 281 | VERTEX2 280 -29.382831 -69.477944 0.273413 282 | VERTEX2 281 -28.309068 -69.096219 0.306172 283 | VERTEX2 282 -27.357965 -68.851042 0.306112 284 | VERTEX2 283 -26.296107 -68.593551 0.312731 285 | VERTEX2 284 -25.164290 -68.270192 0.270328 286 | VERTEX2 285 -24.112405 -68.028145 0.266985 287 | VERTEX2 286 -23.102599 -67.804929 0.280495 288 | VERTEX2 287 -22.050913 -67.573333 0.247837 289 | VERTEX2 288 -21.002390 -67.217840 0.271110 290 | VERTEX2 289 -19.887187 -66.827350 0.297729 291 | VERTEX2 290 -18.791663 -66.504102 0.321893 292 | VERTEX2 291 -17.793220 -66.199801 0.346693 293 | VERTEX2 292 -16.818649 -65.798006 0.359026 294 | VERTEX2 293 -15.777252 -65.444128 0.242828 295 | VERTEX2 294 -14.751679 -65.248115 0.266346 296 | VERTEX2 295 -13.697321 -64.954706 0.327047 297 | VERTEX2 296 -12.682665 -64.458291 0.585299 298 | VERTEX2 297 -12.350531 -64.019553 1.204511 299 | VERTEX2 298 -12.307365 -63.501044 1.734248 300 | VERTEX2 299 -12.767132 -62.226472 2.038537 301 | VERTEX2 300 -13.107059 -61.264499 2.026086 302 | VERTEX2 301 -13.455645 -60.253312 1.934507 303 | VERTEX2 302 -13.826390 -59.213417 1.899089 304 | VERTEX2 303 -14.195723 -58.291045 1.889085 305 | VERTEX2 304 -14.384925 -57.420633 1.870683 306 | VERTEX2 305 -14.743250 -56.342969 1.874592 307 | VERTEX2 306 -15.050991 -55.380521 1.904069 308 | VERTEX2 307 -15.321971 -54.326206 1.877283 309 | VERTEX2 308 -15.641208 -53.235931 1.852019 310 | VERTEX2 309 -15.900098 -52.241939 1.869238 311 | VERTEX2 310 -16.218969 -51.189182 1.836397 312 | VERTEX2 311 -16.569162 -50.267910 1.914266 313 | VERTEX2 312 -16.939306 -49.260797 2.117135 314 | VERTEX2 313 -17.247160 -48.909631 2.737219 315 | VERTEX2 314 -18.045510 -48.794033 -3.069096 316 | VERTEX2 315 -19.010128 -48.861748 -2.739084 317 | VERTEX2 316 -19.966724 -49.311821 -2.771330 318 | VERTEX2 317 -20.954526 -49.658232 -2.777384 319 | VERTEX2 318 -21.960740 -50.030088 -2.782633 320 | VERTEX2 319 -22.914312 -50.390089 -2.791163 321 | VERTEX2 320 -23.949308 -50.767074 -2.785230 322 | VERTEX2 321 -24.968616 -51.016281 -2.809777 323 | VERTEX2 322 -25.857685 -51.249006 -2.840584 324 | VERTEX2 323 -26.811996 -51.573479 -2.855088 325 | VERTEX2 324 -27.734998 -51.903940 -2.793065 326 | VERTEX2 325 -28.669162 -52.291260 -2.827645 327 | VERTEX2 326 -29.606613 -52.581147 -2.829850 328 | VERTEX2 327 -30.636488 -52.940678 -2.836468 329 | VERTEX2 328 -31.685042 -53.281576 -2.791907 330 | VERTEX2 329 -32.683471 -53.623201 -2.751609 331 | VERTEX2 330 -33.647676 -53.995110 -2.802525 332 | VERTEX2 331 -34.763515 -54.419046 -2.824483 333 | VERTEX2 332 -35.744629 -54.758219 -2.827822 334 | VERTEX2 333 -36.625337 -55.035796 -2.815258 335 | VERTEX2 334 -37.645755 -55.379659 -2.813822 336 | VERTEX2 335 -38.601433 -55.764130 -2.824954 337 | VERTEX2 336 -39.592643 -56.059759 -2.840291 338 | VERTEX2 337 -40.568189 -56.446263 -2.738817 339 | VERTEX2 338 -41.605547 -56.799473 -2.780067 340 | VERTEX2 339 -42.565839 -57.082565 -2.778245 341 | VERTEX2 340 -43.740740 -57.361379 -2.787918 342 | VERTEX2 341 -44.643424 -57.591320 -2.805531 343 | VERTEX2 342 -45.671401 -57.941805 -2.811499 344 | VERTEX2 343 -46.615148 -58.211402 -2.780536 345 | VERTEX2 344 -47.542416 -58.477735 -2.773363 346 | VERTEX2 345 -48.717285 -58.880747 -2.796343 347 | VERTEX2 346 -49.797117 -59.238327 -2.812705 348 | VERTEX2 347 -50.654067 -59.557317 -2.686396 349 | VERTEX2 348 -51.464402 -59.897886 -2.666487 350 | VERTEX2 349 -52.467840 -60.294421 -2.747878 351 | VERTEX2 350 -53.501070 -60.774773 -2.757943 352 | VERTEX2 351 -54.520158 -61.121251 -2.761028 353 | VERTEX2 352 -55.357342 -61.407430 -2.806216 354 | VERTEX2 353 -56.404943 -61.748541 -2.812735 355 | VERTEX2 354 -57.367798 -62.069701 -2.824076 356 | VERTEX2 355 -58.418551 -62.342374 -2.826832 357 | VERTEX2 356 -59.421110 -62.757961 -2.846309 358 | VERTEX2 357 -60.311076 -63.105122 -2.862816 359 | VERTEX2 358 -61.285948 -63.381475 -2.820296 360 | VERTEX2 359 -62.349723 -63.819694 -2.701418 361 | VERTEX2 360 -63.347127 -64.138640 -2.788849 362 | VERTEX2 361 -64.290573 -64.489736 -2.789909 363 | VERTEX2 362 -65.373587 -64.783572 -2.789702 364 | VERTEX2 363 -66.363595 -65.093395 -2.804221 365 | VERTEX2 364 -67.461166 -65.429777 -2.815342 366 | VERTEX2 365 -68.477978 -65.761979 -2.847690 367 | VERTEX2 366 -69.477031 -66.081591 -2.881290 368 | VERTEX2 367 -70.466928 -66.302183 -2.882588 369 | VERTEX2 368 -71.401807 -66.538565 -2.888061 370 | VERTEX2 369 -72.396438 -66.721685 -2.900583 371 | VERTEX2 370 -73.354350 -66.974283 -2.907596 372 | VERTEX2 371 -74.366864 -67.299699 -2.899617 373 | VERTEX2 372 -75.394338 -67.581346 -2.906070 374 | VERTEX2 373 -76.289324 -67.780432 -2.878256 375 | VERTEX2 374 -77.319981 -67.997089 -2.902894 376 | VERTEX2 375 -78.354677 -68.264954 -2.858804 377 | VERTEX2 376 -79.463513 -68.560297 -2.859194 378 | VERTEX2 377 -80.309924 -68.865896 -2.869112 379 | VERTEX2 378 -81.376150 -69.196455 -2.868809 380 | VERTEX2 379 -82.431554 -69.430631 -2.868779 381 | VERTEX2 380 -83.363386 -69.702588 -2.868053 382 | VERTEX2 381 -84.394886 -70.028866 -2.845347 383 | VERTEX2 382 -85.363300 -70.243487 -2.839324 384 | VERTEX2 383 -86.263817 -70.464716 -2.842727 385 | VERTEX2 384 -87.256148 -70.813633 -2.841378 386 | VERTEX2 385 -88.209188 -71.074882 -2.858859 387 | VERTEX2 386 -89.280059 -71.316665 -2.863231 388 | VERTEX2 387 -90.279482 -71.611132 -2.858954 389 | VERTEX2 388 -91.316182 -71.831996 -2.860275 390 | VERTEX2 389 -92.299913 -72.132681 -2.864060 391 | VERTEX2 390 -93.322668 -72.430282 -2.859610 392 | VERTEX2 391 -94.551864 -72.746774 -2.828931 393 | VERTEX2 392 -95.494485 -73.022126 -2.833226 394 | VERTEX2 393 -96.471659 -73.323917 -2.838208 395 | VERTEX2 394 -97.587670 -73.703045 -2.834397 396 | VERTEX2 395 -98.506850 -74.007872 -2.816562 397 | VERTEX2 396 -99.464495 -74.360131 -2.810470 398 | VERTEX2 397 -100.401307 -74.643576 -2.808508 399 | VERTEX2 398 -101.475441 -74.916531 -2.819985 400 | VERTEX2 399 -102.449168 -75.150800 -2.841903 401 | VERTEX2 400 -103.393805 -75.423058 -2.761160 402 | VERTEX2 401 -104.306436 -75.775338 -2.738045 403 | VERTEX2 402 -105.269967 -76.239515 -2.656362 404 | VERTEX2 403 -106.207714 -76.754555 -2.672241 405 | VERTEX2 404 -107.185927 -77.158800 -2.765370 406 | VERTEX2 405 -108.334604 -77.504302 -2.829966 407 | VERTEX2 406 -109.165292 -77.767718 -2.826012 408 | VERTEX2 407 -110.133838 -78.001368 -2.817600 409 | VERTEX2 408 -111.152102 -78.342920 -2.819934 410 | VERTEX2 409 -112.096928 -78.625696 -2.828763 411 | VERTEX2 410 -113.073267 -78.893445 -2.853484 412 | VERTEX2 411 -113.935820 -79.042937 -2.956660 413 | VERTEX2 412 -114.955614 -79.291628 -2.777161 414 | VERTEX2 413 -115.954776 -79.545771 -2.775916 415 | VERTEX2 414 -116.840698 -79.864052 -2.783121 416 | VERTEX2 415 -117.735615 -80.200549 -2.791338 417 | VERTEX2 416 -118.785184 -80.516079 -2.789667 418 | VERTEX2 417 -119.799362 -80.866113 -2.783250 419 | VERTEX2 418 -120.853026 -81.160604 -2.793145 420 | VERTEX2 419 -121.806709 -81.477627 -2.676826 421 | VERTEX2 420 -122.404192 -81.979328 -2.160181 422 | VERTEX2 421 -122.525921 -82.393581 -1.505018 423 | VERTEX2 422 -122.100500 -83.335251 -1.092563 424 | VERTEX2 423 -121.634188 -84.272987 -1.075451 425 | VERTEX2 424 -121.238665 -85.155201 -1.066227 426 | VERTEX2 425 -120.769919 -86.116573 -1.134072 427 | VERTEX2 426 -120.277623 -87.014785 -1.143347 428 | VERTEX2 427 -119.860612 -88.046759 -1.207475 429 | VERTEX2 428 -119.488261 -89.036845 -1.201393 430 | VERTEX2 429 -119.141321 -89.999387 -1.187910 431 | VERTEX2 430 -118.690631 -90.972973 -1.183429 432 | VERTEX2 431 -118.305911 -91.898478 -1.148986 433 | VERTEX2 432 -117.812862 -92.937662 -1.188610 434 | VERTEX2 433 -117.486094 -93.909582 -1.283120 435 | VERTEX2 434 -117.251104 -94.949995 -1.271953 436 | VERTEX2 435 -117.010378 -95.978696 -1.261249 437 | VERTEX2 436 -116.659865 -97.050539 -1.238549 438 | VERTEX2 437 -116.530348 -97.519240 -0.636845 439 | VERTEX2 438 -116.271485 -97.609004 -0.140884 440 | VERTEX2 439 -116.033700 -97.619534 0.333524 441 | VERTEX2 440 -114.970547 -97.345580 0.316875 442 | VERTEX2 441 -113.982889 -97.077404 0.314081 443 | VERTEX2 442 -113.010190 -96.863703 0.307977 444 | VERTEX2 443 -111.828566 -96.571635 0.305587 445 | VERTEX2 444 -110.740313 -96.257205 0.299786 446 | VERTEX2 445 -109.912121 -95.988505 0.294562 447 | VERTEX2 446 -108.763914 -95.775156 0.269697 448 | VERTEX2 447 -107.778337 -95.659582 0.147659 449 | VERTEX2 448 -106.702039 -95.491727 0.056783 450 | VERTEX2 449 -105.625273 -95.274742 0.201571 451 | VERTEX2 450 -104.613708 -94.852696 0.282592 452 | VERTEX2 451 -103.630140 -94.552234 0.307289 453 | VERTEX2 452 -102.609098 -94.194334 0.299115 454 | VERTEX2 453 -101.533016 -93.850159 0.295830 455 | VERTEX2 454 -100.654150 -93.657524 0.292570 456 | VERTEX2 455 -99.654429 -93.302190 0.292456 457 | VERTEX2 456 -98.656555 -93.116380 0.288344 458 | VERTEX2 457 -97.560024 -92.852199 0.272574 459 | VERTEX2 458 -96.474108 -92.517907 0.281438 460 | VERTEX2 459 -95.554421 -92.261763 0.262333 461 | VERTEX2 460 -94.524320 -92.052250 0.251707 462 | VERTEX2 461 -93.520459 -91.823818 0.253978 463 | VERTEX2 462 -92.504607 -91.463767 0.249691 464 | VERTEX2 463 -91.552805 -91.298112 0.265374 465 | VERTEX2 464 -90.489136 -91.082643 0.295261 466 | VERTEX2 465 -89.461634 -90.783796 0.273007 467 | VERTEX2 466 -88.352773 -90.523144 0.335303 468 | VERTEX2 467 -87.383756 -90.155482 0.319717 469 | VERTEX2 468 -86.348674 -89.949180 0.304350 470 | VERTEX2 469 -85.405215 -89.692956 0.305295 471 | VERTEX2 470 -84.403289 -89.417853 0.275600 472 | VERTEX2 471 -83.287523 -89.090927 0.261866 473 | VERTEX2 472 -82.245317 -88.788002 0.240111 474 | VERTEX2 473 -81.091911 -88.584699 0.212399 475 | VERTEX2 474 -79.954916 -88.296884 0.223371 476 | VERTEX2 475 -78.902878 -88.010047 0.276296 477 | VERTEX2 476 -77.878425 -87.714523 0.260738 478 | VERTEX2 477 -76.839364 -87.469304 0.262543 479 | VERTEX2 478 -75.781851 -87.190568 0.246004 480 | VERTEX2 479 -74.810395 -87.009223 0.239643 481 | VERTEX2 480 -73.772177 -86.819963 0.229672 482 | VERTEX2 481 -72.660271 -86.556892 0.254016 483 | VERTEX2 482 -71.600055 -86.271103 0.338287 484 | VERTEX2 483 -70.554695 -85.956794 0.312668 485 | VERTEX2 484 -69.517694 -85.634982 0.283189 486 | VERTEX2 485 -68.445508 -85.370957 0.263992 487 | VERTEX2 486 -67.258261 -85.124540 0.254417 488 | VERTEX2 487 -66.254665 -84.914176 0.227185 489 | VERTEX2 488 -65.295153 -84.639537 0.446126 490 | VERTEX2 489 -64.416513 -84.086980 0.837882 491 | VERTEX2 490 -63.947808 -83.311818 1.332931 492 | VERTEX2 491 -63.967622 -82.382716 1.760926 493 | VERTEX2 492 -64.351218 -81.343636 2.149314 494 | VERTEX2 493 -64.812628 -80.387914 2.063290 495 | VERTEX2 494 -65.237382 -79.315906 1.916126 496 | VERTEX2 495 -65.539808 -78.280680 1.873054 497 | VERTEX2 496 -65.887575 -77.202503 1.842686 498 | VERTEX2 497 -66.179205 -76.115875 1.876578 499 | VERTEX2 498 -66.351393 -74.966689 1.846495 500 | VERTEX2 499 -66.611589 -73.997576 1.805227 501 | VERTEX2 500 -66.760863 -72.926542 1.771933 502 | VERTEX2 501 -67.003874 -71.914743 1.756479 503 | VERTEX2 502 -67.074995 -70.982801 1.765324 504 | VERTEX2 503 -67.352203 -69.968426 1.883117 505 | VERTEX2 504 -67.684963 -69.023235 2.158900 506 | VERTEX2 505 -68.233412 -68.638537 2.685893 507 | VERTEX2 506 -68.755230 -68.512729 -3.067849 508 | VERTEX2 507 -69.808973 -68.585665 -3.038018 509 | VERTEX2 508 -70.867326 -68.652298 -2.872126 510 | VERTEX2 509 -71.856746 -68.917940 -2.869189 511 | VERTEX2 510 -72.959057 -69.140685 -2.849472 512 | VERTEX2 511 -74.011049 -69.340544 -2.832776 513 | VERTEX2 512 -74.998957 -69.689818 -2.847269 514 | VERTEX2 513 -76.016406 -69.972757 -2.821392 515 | VERTEX2 514 -76.921881 -70.268314 -2.801662 516 | VERTEX2 515 -77.989918 -70.713739 -2.778695 517 | VERTEX2 516 -78.842617 -70.983022 -2.706869 518 | VERTEX2 517 -79.902111 -71.387415 -3.135365 519 | VERTEX2 518 -80.969278 -71.339046 -2.990904 520 | VERTEX2 519 -81.996331 -71.514366 -2.992369 521 | VERTEX2 520 -83.002764 -71.607539 -2.989518 522 | VERTEX2 521 -83.963072 -71.755488 -2.971855 523 | VERTEX2 522 -85.051528 -71.911363 -2.962141 524 | VERTEX2 523 -86.187892 -72.162016 -2.970519 525 | VERTEX2 524 -87.084952 -72.409509 -2.898577 526 | VERTEX2 525 -88.025612 -72.616575 -2.888932 527 | VERTEX2 526 -88.991999 -72.812411 -2.865426 528 | VERTEX2 527 -89.966629 -73.156086 -2.830986 529 | VERTEX2 528 -90.929668 -73.542939 -2.847589 530 | VERTEX2 529 -91.985701 -73.773976 -2.924275 531 | VERTEX2 530 -92.956889 -73.969245 -2.903332 532 | VERTEX2 531 -93.906909 -74.114183 -2.909689 533 | VERTEX2 532 -94.948700 -74.329242 -2.899005 534 | VERTEX2 533 -95.950209 -74.599380 -2.888248 535 | VERTEX2 534 -97.025433 -74.875535 -2.880659 536 | VERTEX2 535 -98.111343 -75.122055 -2.878848 537 | VERTEX2 536 -99.108147 -75.327683 -2.969054 538 | VERTEX2 537 -100.073240 -75.402257 3.078750 539 | VERTEX2 538 -101.129847 -75.284034 2.737425 540 | VERTEX2 539 -101.952366 -74.625707 2.384641 541 | VERTEX2 540 -102.604433 -73.813172 2.012275 542 | VERTEX2 541 -103.029329 -72.818571 1.920817 543 | VERTEX2 542 -103.401930 -71.693815 1.902164 544 | VERTEX2 543 -103.710438 -70.660711 1.878746 545 | VERTEX2 544 -103.908848 -69.524102 1.849152 546 | VERTEX2 545 -104.176412 -68.612237 1.968753 547 | VERTEX2 546 -104.429854 -67.588531 1.860674 548 | VERTEX2 547 -104.666129 -66.615013 1.890992 549 | VERTEX2 548 -104.882911 -65.476500 1.878909 550 | VERTEX2 549 -105.185364 -64.508857 1.855687 551 | VERTEX2 550 -105.428166 -63.577221 1.879636 552 | VERTEX2 551 -105.744978 -62.524033 1.857817 553 | VERTEX2 552 -106.048992 -61.528199 1.834538 554 | VERTEX2 553 -106.314721 -60.533577 1.803126 555 | VERTEX2 554 -106.552545 -59.506438 1.675303 556 | VERTEX2 555 -106.397934 -58.902067 1.148807 557 | VERTEX2 556 -105.596407 -58.372950 0.756911 558 | VERTEX2 557 -105.110043 -57.799544 1.433081 559 | VERTEX2 558 -105.177069 -56.906768 1.898152 560 | VERTEX2 559 -105.568282 -55.970256 1.940126 561 | VERTEX2 560 -105.865081 -54.983479 1.934070 562 | VERTEX2 561 -106.233284 -53.937320 1.887215 563 | VERTEX2 562 -106.487323 -52.974296 1.875360 564 | VERTEX2 563 -106.743953 -51.865478 1.862810 565 | VERTEX2 564 -107.003911 -50.868726 1.872531 566 | VERTEX2 565 -107.309615 -49.926669 1.908013 567 | VERTEX2 566 -107.600218 -48.963449 1.894498 568 | VERTEX2 567 -107.788954 -48.044644 1.873391 569 | VERTEX2 568 -108.081633 -46.951901 1.843183 570 | VERTEX2 569 -108.319113 -45.898072 1.902168 571 | VERTEX2 570 -108.630981 -44.856381 1.889333 572 | VERTEX2 571 -108.974921 -43.866933 1.880496 573 | VERTEX2 572 -109.314267 -42.947803 1.895430 574 | VERTEX2 573 -109.701262 -41.899061 1.882194 575 | VERTEX2 574 -110.079134 -40.947382 1.885853 576 | VERTEX2 575 -110.346825 -39.937017 1.863635 577 | VERTEX2 576 -110.633357 -38.953478 1.838944 578 | VERTEX2 577 -110.836683 -37.985728 1.848779 579 | VERTEX2 578 -111.148772 -37.051086 1.901337 580 | VERTEX2 579 -111.404324 -36.002684 1.726155 581 | VERTEX2 580 -111.319936 -35.559247 1.166188 582 | VERTEX2 581 -111.077026 -35.143342 0.520643 583 | VERTEX2 582 -110.052920 -34.599052 0.460843 584 | VERTEX2 583 -109.084563 -34.220492 0.444239 585 | VERTEX2 584 -108.294499 -33.787602 0.458626 586 | VERTEX2 585 -107.711043 -33.497807 1.120686 587 | VERTEX2 586 -107.664564 -33.201528 1.680261 588 | VERTEX2 587 -107.970290 -32.538280 2.104497 589 | VERTEX2 588 -108.475139 -31.618843 1.984801 590 | VERTEX2 589 -108.898674 -30.589889 1.871449 591 | VERTEX2 590 -109.108419 -29.685800 1.839961 592 | VERTEX2 591 -109.468562 -28.850533 2.532727 593 | VERTEX2 592 -109.762195 -28.735937 3.127220 594 | VERTEX2 593 -110.222247 -28.820095 -2.558082 595 | VERTEX2 594 -110.510896 -28.995300 -2.000138 596 | VERTEX2 595 -110.841526 -29.887642 -2.084611 597 | VERTEX2 596 -111.122638 -30.181460 -2.788179 598 | VERTEX2 597 -111.568507 -30.148903 2.996387 599 | VERTEX2 598 -111.651673 -30.001401 2.472655 600 | VERTEX2 599 -111.815031 -29.862034 1.947609 601 | VERTEX2 600 -111.854984 -29.647703 1.430593 602 | VERTEX2 601 -111.832530 -29.528429 0.923593 603 | VERTEX2 602 -110.965531 -28.912671 0.485813 604 | VERTEX2 603 -110.028603 -28.389575 0.435080 605 | VERTEX2 604 -109.166882 -27.973504 0.400372 606 | VERTEX2 605 -108.140426 -27.478618 0.381822 607 | VERTEX2 606 -107.108782 -27.166123 0.359235 608 | VERTEX2 607 -106.037706 -26.857676 0.312218 609 | VERTEX2 608 -105.102787 -26.594767 0.278640 610 | VERTEX2 609 -103.982409 -26.444375 0.240721 611 | VERTEX2 610 -103.125598 -26.211697 0.318973 612 | VERTEX2 611 -102.163147 -26.015194 0.288089 613 | VERTEX2 612 -101.087298 -25.701239 0.338070 614 | VERTEX2 613 -100.101429 -25.404698 0.327750 615 | VERTEX2 614 -99.104659 -25.168220 0.285805 616 | VERTEX2 615 -98.124757 -24.843206 0.381403 617 | VERTEX2 616 -97.046619 -24.473080 0.345336 618 | VERTEX2 617 -96.157123 -24.166004 0.329151 619 | VERTEX2 618 -95.106203 -23.862626 0.308324 620 | VERTEX2 619 -94.275751 -23.611608 0.307317 621 | VERTEX2 620 -93.259952 -23.354988 0.274329 622 | VERTEX2 621 -92.135857 -23.069997 0.231365 623 | VERTEX2 622 -91.081499 -22.821736 0.200989 624 | VERTEX2 623 -90.126321 -22.412047 0.631742 625 | VERTEX2 624 -89.228267 -21.897857 0.604240 626 | VERTEX2 625 -88.304561 -21.325576 0.599738 627 | VERTEX2 626 -87.410055 -20.746368 0.569630 628 | VERTEX2 627 -86.489654 -20.131088 0.548060 629 | VERTEX2 628 -85.505729 -19.557210 0.525367 630 | VERTEX2 629 -84.633418 -19.185174 0.515931 631 | VERTEX2 630 -83.678141 -18.643114 0.509814 632 | VERTEX2 631 -82.701141 -18.225433 0.361358 633 | VERTEX2 632 -81.665417 -17.854734 0.352621 634 | VERTEX2 633 -80.656813 -17.536604 0.323348 635 | VERTEX2 634 -79.755351 -17.292909 0.373979 636 | VERTEX2 635 -78.790119 -16.945118 0.363213 637 | VERTEX2 636 -77.839006 -16.567066 0.445756 638 | VERTEX2 637 -76.852276 -16.105896 0.463497 639 | VERTEX2 638 -75.803326 -15.653064 0.435638 640 | VERTEX2 639 -74.753014 -15.237590 0.421462 641 | VERTEX2 640 -73.775488 -14.802358 0.382056 642 | VERTEX2 641 -72.759074 -14.452834 0.359852 643 | VERTEX2 642 -71.967813 -14.239521 0.315512 644 | VERTEX2 643 -70.902478 -13.956313 0.396024 645 | VERTEX2 644 -70.003909 -13.573342 0.392040 646 | VERTEX2 645 -69.045851 -13.294735 0.374075 647 | VERTEX2 646 -68.016651 -12.924330 0.431343 648 | VERTEX2 647 -67.188457 -12.515408 0.407105 649 | VERTEX2 648 -66.296011 -12.055641 0.379763 650 | VERTEX2 649 -65.261689 -11.711285 0.435254 651 | VERTEX2 650 -64.350136 -11.270179 0.475965 652 | VERTEX2 651 -63.398817 -10.917403 0.463267 653 | VERTEX2 652 -62.529620 -10.386244 0.453433 654 | VERTEX2 653 -61.554106 -9.999061 0.440119 655 | VERTEX2 654 -60.579618 -9.587226 0.426824 656 | VERTEX2 655 -59.680856 -9.182081 0.491746 657 | VERTEX2 656 -58.686904 -8.793215 0.487355 658 | VERTEX2 657 -57.800438 -8.393581 0.460693 659 | VERTEX2 658 -56.683020 -7.843101 0.443449 660 | VERTEX2 659 -55.750795 -7.446201 0.417142 661 | VERTEX2 660 -54.825190 -7.068476 0.414108 662 | VERTEX2 661 -53.884711 -6.707555 0.408105 663 | VERTEX2 662 -52.897798 -6.316469 0.397160 664 | VERTEX2 663 -51.796771 -5.901225 0.439595 665 | VERTEX2 664 -50.866984 -5.548376 0.373425 666 | VERTEX2 665 -49.923106 -5.182480 0.470981 667 | VERTEX2 666 -49.050733 -4.858071 0.473040 668 | VERTEX2 667 -47.970537 -4.227156 0.457692 669 | VERTEX2 668 -46.996670 -3.804165 0.451184 670 | VERTEX2 669 -46.174304 -3.395310 0.450266 671 | VERTEX2 670 -45.310984 -3.097879 0.431272 672 | VERTEX2 671 -44.315055 -2.662630 0.411587 673 | VERTEX2 672 -43.327833 -2.272489 0.283900 674 | VERTEX2 673 -42.811669 -2.224422 0.613759 675 | VERTEX2 674 -41.817559 -1.518084 0.684466 676 | VERTEX2 675 -41.065164 -0.923368 0.521682 677 | VERTEX2 676 -40.070200 -0.456129 0.501458 678 | VERTEX2 677 -39.141200 -0.047370 0.553041 679 | VERTEX2 678 -38.118484 0.571249 0.548286 680 | VERTEX2 679 -37.355088 1.136513 0.584394 681 | VERTEX2 680 -36.515583 1.724321 0.578423 682 | VERTEX2 681 -35.680713 2.224792 0.411873 683 | VERTEX2 682 -34.673200 2.711955 0.422368 684 | VERTEX2 683 -33.645753 3.152159 0.409265 685 | VERTEX2 684 -32.778581 3.456995 0.427245 686 | VERTEX2 685 -31.757561 4.010273 0.485273 687 | VERTEX2 686 -30.846757 4.482206 0.483396 688 | VERTEX2 687 -29.872637 4.926649 0.470360 689 | VERTEX2 688 -28.853373 5.317735 0.456389 690 | VERTEX2 689 -27.971623 5.832271 0.528129 691 | VERTEX2 690 -26.971383 6.225382 0.510023 692 | VERTEX2 691 -26.126650 6.727704 0.569899 693 | VERTEX2 692 -25.257615 7.297352 0.577179 694 | VERTEX2 693 -24.441648 7.778022 0.563690 695 | VERTEX2 694 -23.550347 8.308159 0.524783 696 | VERTEX2 695 -22.552085 8.758487 0.293424 697 | VERTEX2 696 -22.189434 8.687772 -0.212522 698 | VERTEX2 697 -21.782485 8.559746 -0.777155 699 | VERTEX2 698 -21.219945 7.637630 -1.054431 700 | VERTEX2 699 -20.734626 6.727793 -1.097394 701 | VERTEX2 700 -20.368218 5.749727 -1.134107 702 | VERTEX2 701 -19.950066 4.827813 -1.168915 703 | VERTEX2 702 -19.557526 3.834601 -1.193655 704 | VERTEX2 703 -19.249352 2.688149 -1.208006 705 | VERTEX2 704 -18.866008 1.754947 -1.122535 706 | VERTEX2 705 -18.484742 0.795002 -1.056407 707 | VERTEX2 706 -17.938993 -0.022524 -0.789348 708 | VERTEX2 707 -17.198693 -0.759250 -0.776826 709 | VERTEX2 708 -16.378434 -1.417847 -0.486710 710 | VERTEX2 709 -15.421314 -1.718888 -0.088855 711 | VERTEX2 710 -14.319095 -1.786181 -0.087073 712 | VERTEX2 711 -13.314771 -1.770520 0.326239 713 | VERTEX2 712 -12.458286 -1.255326 0.797255 714 | VERTEX2 713 -11.812364 -0.501557 0.939701 715 | VERTEX2 714 -10.927888 0.144840 0.572651 716 | VERTEX2 715 -9.944920 0.576655 0.495011 717 | VERTEX2 716 -8.973795 1.005967 0.485189 718 | VERTEX2 717 -8.085445 1.462267 0.461218 719 | VERTEX2 718 -7.217548 1.827593 0.460865 720 | VERTEX2 719 -6.365436 2.288586 0.468044 721 | VERTEX2 720 -5.383691 2.787576 0.476460 722 | VERTEX2 721 -4.453776 3.286768 0.486655 723 | VERTEX2 722 -3.491320 3.726062 0.492256 724 | VERTEX2 723 -2.541684 4.155684 0.483398 725 | VERTEX2 724 -1.705996 4.373351 -0.172852 726 | VERTEX2 725 -1.447211 4.271539 -0.773921 727 | VERTEX2 726 -0.811860 3.562916 -0.874747 728 | VERTEX2 727 -0.283408 2.627357 -1.147143 729 | VERTEX2 728 0.185530 1.761043 -1.159123 730 | VERTEX2 729 0.606469 0.685242 -1.190632 731 | VERTEX2 730 0.968776 -0.268902 -1.216110 732 | VERTEX2 731 1.212882 -1.259252 -1.177476 733 | VERTEX2 732 1.632965 -2.201782 -1.119937 734 | VERTEX2 733 2.045327 -3.118735 -1.066650 735 | VERTEX2 734 2.524432 -3.952661 -1.065459 736 | VERTEX2 735 2.951064 -4.842543 -1.090504 737 | VERTEX2 736 3.396455 -5.807293 -0.996971 738 | VERTEX2 737 4.005359 -6.811348 -1.036576 739 | VERTEX2 738 4.507774 -7.658014 -1.051568 740 | VERTEX2 739 5.011099 -8.599866 -1.072978 741 | VERTEX2 740 5.467110 -9.556987 -1.099400 742 | VERTEX2 741 5.925610 -10.466247 -1.091965 743 | VERTEX2 742 6.348505 -11.406837 -1.093282 744 | VERTEX2 743 6.818450 -12.404328 -1.120436 745 | VERTEX2 744 7.169369 -13.294367 -1.069367 746 | VERTEX2 745 7.638252 -14.335852 -1.086525 747 | VERTEX2 746 8.062189 -15.173614 -1.088559 748 | VERTEX2 747 8.513022 -16.061276 -1.130711 749 | VERTEX2 748 8.929249 -17.203375 -1.141100 750 | VERTEX2 749 9.296888 -18.222661 -1.154784 751 | VERTEX2 750 9.740918 -19.183007 -1.128882 752 | VERTEX2 751 10.044635 -20.198984 -1.154525 753 | VERTEX2 752 10.510465 -20.992261 -1.169729 754 | VERTEX2 753 10.826988 -21.937892 -1.145905 755 | VERTEX2 754 11.318861 -23.029909 -1.179778 756 | VERTEX2 755 11.683275 -23.849937 -1.140554 757 | VERTEX2 756 12.055945 -24.827353 -1.175322 758 | VERTEX2 757 12.576836 -25.854005 -1.199057 759 | VERTEX2 758 12.925771 -26.904804 -1.106526 760 | VERTEX2 759 13.384546 -27.808906 -1.057045 761 | VERTEX2 760 13.848898 -28.705783 -1.055641 762 | VERTEX2 761 14.281456 -29.458175 -1.064876 763 | VERTEX2 762 14.729941 -30.464058 -1.089387 764 | VERTEX2 763 15.327283 -31.515181 -1.098943 765 | VERTEX2 764 15.741869 -32.439606 -1.108561 766 | VERTEX2 765 16.146131 -33.454788 -1.052516 767 | VERTEX2 766 16.641985 -34.402668 -1.100241 768 | VERTEX2 767 17.066336 -35.300430 -1.120158 769 | VERTEX2 768 17.473492 -36.247261 -1.112094 770 | VERTEX2 769 17.944936 -37.234178 -1.123777 771 | VERTEX2 770 18.363571 -38.138326 -1.123265 772 | VERTEX2 771 18.747752 -39.152808 -1.124384 773 | VERTEX2 772 19.291662 -40.109767 -1.050114 774 | VERTEX2 773 19.640831 -40.718428 -1.617973 775 | VERTEX2 774 19.537131 -41.018139 -2.162860 776 | VERTEX2 775 18.750140 -41.582134 -2.559061 777 | VERTEX2 776 17.835831 -42.106142 -2.599522 778 | VERTEX2 777 16.879144 -42.462374 -2.778435 779 | VERTEX2 778 15.936466 -42.883720 -2.817129 780 | VERTEX2 779 14.877790 -43.226130 -2.791989 781 | VERTEX2 780 13.996095 -43.438214 -2.831797 782 | VERTEX2 781 12.979602 -43.718964 -2.860836 783 | VERTEX2 782 11.935909 -43.931873 -2.898337 784 | VERTEX2 783 10.939856 -44.249941 -2.801934 785 | VERTEX2 784 9.947140 -44.586437 -2.847040 786 | VERTEX2 785 8.967427 -44.870618 -2.806426 787 | VERTEX2 786 7.923985 -45.198071 -2.866464 788 | VERTEX2 787 6.849836 -45.585675 -2.907209 789 | VERTEX2 788 5.894695 -45.650119 2.768152 790 | VERTEX2 789 5.688715 -45.592271 2.205952 791 | VERTEX2 790 5.607919 -45.444992 1.611997 792 | VERTEX2 791 5.786098 -44.706961 1.600640 793 | VERTEX2 792 5.630210 -44.450801 2.151285 794 | VERTEX2 793 5.461889 -44.256325 2.963387 795 | VERTEX2 794 5.124760 -44.253473 -2.727019 796 | VERTEX2 795 4.944484 -44.443694 -2.068051 797 | VERTEX2 796 4.998977 -44.595563 -1.364575 798 | VERTEX2 797 5.449370 -45.206989 -0.928455 799 | VERTEX2 798 5.827265 -45.883001 -1.026469 800 | VERTEX2 799 5.943369 -46.060328 -0.430101 801 | VERTEX2 800 6.169236 -46.147640 0.250950 802 | VERTEX2 801 7.122424 -45.743814 0.331225 803 | VERTEX2 802 8.144669 -45.523534 0.209232 804 | VERTEX2 803 9.130019 -45.221806 0.224335 805 | VERTEX2 804 10.069618 -45.254480 -0.374940 806 | VERTEX2 805 10.356856 -45.425749 -0.980225 807 | VERTEX2 806 10.437160 -45.822298 -1.573649 808 | VERTEX2 807 10.360942 -46.382483 -1.288699 809 | VERTEX2 808 10.777828 -47.425253 -1.177600 810 | VERTEX2 809 11.134366 -48.389276 -1.179777 811 | VERTEX2 810 11.462050 -49.306445 -1.229629 812 | VERTEX2 811 11.830209 -50.370802 -1.237418 813 | VERTEX2 812 12.128135 -51.271544 -1.219833 814 | VERTEX2 813 12.492008 -52.300605 -1.219328 815 | VERTEX2 814 12.642317 -53.363986 -1.418919 816 | VERTEX2 815 12.838250 -54.430023 -1.284315 817 | VERTEX2 816 13.119712 -55.436655 -1.265238 818 | VERTEX2 817 13.377569 -56.383606 -1.258136 819 | VERTEX2 818 13.760895 -57.249105 -1.224672 820 | VERTEX2 819 14.077886 -57.836516 -0.546752 821 | VERTEX2 820 14.332954 -57.952482 0.150566 822 | VERTEX2 821 15.307246 -57.799498 0.157393 823 | VERTEX2 822 16.341858 -57.533678 0.295936 824 | VERTEX2 823 17.271065 -57.317391 0.326615 825 | VERTEX2 824 18.182750 -57.006414 0.323216 826 | VERTEX2 825 19.223871 -56.788052 0.254628 827 | VERTEX2 826 20.279076 -56.502109 0.269024 828 | VERTEX2 827 21.257419 -56.187679 0.386444 829 | VERTEX2 828 22.227110 -55.859091 0.419157 830 | VERTEX2 829 23.222713 -55.285575 0.457027 831 | VERTEX2 830 24.228600 -54.925252 0.313156 832 | VERTEX2 831 25.200817 -54.650402 0.341220 833 | VERTEX2 832 26.204626 -54.303954 0.344306 834 | VERTEX2 833 27.183480 -53.960582 0.369962 835 | VERTEX2 834 28.165407 -53.548729 0.289874 836 | VERTEX2 835 29.190664 -53.228397 0.282363 837 | VERTEX2 836 30.107979 -52.929679 0.307685 838 | VERTEX2 837 31.041040 -52.551175 0.314767 839 | VERTEX2 838 31.958542 -52.184897 0.297063 840 | VERTEX2 839 32.908485 -51.956040 0.312139 841 | VERTEX2 840 33.916711 -51.534564 0.754835 842 | VERTEX2 841 34.046040 -51.277476 1.403099 843 | VERTEX2 842 34.015555 -51.065587 2.093642 844 | VERTEX2 843 33.575675 -50.108243 1.862024 845 | VERTEX2 844 33.262949 -49.140277 1.853157 846 | VERTEX2 845 33.090561 -47.987251 1.779603 847 | VERTEX2 846 32.933591 -47.039269 1.752036 848 | VERTEX2 847 32.835633 -45.936983 1.756328 849 | VERTEX2 848 32.740798 -44.799405 1.757304 850 | VERTEX2 849 32.616613 -43.877984 1.743434 851 | VERTEX2 850 32.360095 -42.826519 1.849266 852 | VERTEX2 851 32.021743 -41.768567 1.840338 853 | VERTEX2 852 31.827693 -40.701953 1.847123 854 | VERTEX2 853 31.610466 -39.692694 1.823526 855 | VERTEX2 854 31.525194 -39.050372 2.399674 856 | VERTEX2 855 31.222914 -38.967948 3.054561 857 | VERTEX2 856 30.193841 -39.116811 -2.927786 858 | VERTEX2 857 29.243233 -39.253916 -2.944297 859 | VERTEX2 858 28.115913 -39.427968 -2.944044 860 | VERTEX2 859 27.171272 -39.568219 -2.961479 861 | VERTEX2 860 26.189022 -39.748217 -2.996831 862 | VERTEX2 861 25.184917 -39.933838 -2.941597 863 | VERTEX2 862 24.240487 -40.129709 -2.966714 864 | VERTEX2 863 23.181214 -40.275713 -2.782117 865 | VERTEX2 864 22.155443 -40.701105 -2.781931 866 | VERTEX2 865 21.347872 -40.894255 2.983378 867 | VERTEX2 866 21.234361 -40.723880 2.387985 868 | VERTEX2 867 21.074506 -40.458459 1.785964 869 | VERTEX2 868 20.847222 -39.472089 1.891497 870 | VERTEX2 869 20.573175 -38.470074 1.795151 871 | VERTEX2 870 20.270137 -37.595919 1.987924 872 | VERTEX2 871 19.830341 -36.690614 1.926972 873 | VERTEX2 872 19.506657 -35.648927 1.902051 874 | VERTEX2 873 19.226346 -34.674540 1.889643 875 | VERTEX2 874 18.858371 -33.635050 1.858227 876 | VERTEX2 875 18.598882 -32.563017 1.860551 877 | VERTEX2 876 18.289747 -31.474978 1.842094 878 | VERTEX2 877 18.045627 -30.276582 1.849678 879 | VERTEX2 878 17.911874 -29.488163 1.809213 880 | VERTEX2 879 17.639473 -28.488843 1.779384 881 | VERTEX2 880 17.376502 -27.574492 1.814367 882 | VERTEX2 881 17.093783 -26.651800 1.803557 883 | VERTEX2 882 16.768877 -25.602048 1.840457 884 | VERTEX2 883 16.498222 -24.661964 1.820856 885 | VERTEX2 884 16.184712 -23.671118 1.792262 886 | VERTEX2 885 16.022827 -22.576902 1.769776 887 | VERTEX2 886 15.730187 -21.579912 1.824583 888 | VERTEX2 887 15.441709 -20.602338 1.929090 889 | VERTEX2 888 15.108095 -19.603239 1.890715 890 | VERTEX2 889 14.769923 -18.570380 1.837150 891 | VERTEX2 890 14.548097 -17.526556 1.823625 892 | VERTEX2 891 14.326613 -16.572367 1.790793 893 | VERTEX2 892 13.995306 -15.407476 1.770434 894 | VERTEX2 893 13.842391 -14.466947 1.870411 895 | VERTEX2 894 13.508077 -13.415279 1.862701 896 | VERTEX2 895 13.189558 -12.448695 1.854285 897 | VERTEX2 896 12.943536 -11.453953 1.851105 898 | VERTEX2 897 12.826828 -10.375176 1.807489 899 | VERTEX2 898 12.466025 -9.105165 2.006027 900 | VERTEX2 899 12.138744 -8.247482 1.967578 901 | VERTEX2 900 11.799192 -7.322278 1.740761 902 | VERTEX2 901 11.767240 -6.458497 1.713103 903 | VERTEX2 902 11.617196 -6.031952 2.236776 904 | VERTEX2 903 11.337365 -5.808904 2.765123 905 | VERTEX2 904 11.049457 -5.732454 -2.973478 906 | VERTEX2 905 10.710275 -5.835707 -2.458054 907 | VERTEX2 906 10.328555 -6.328244 -1.940967 908 | VERTEX2 907 10.215747 -6.625746 -1.386622 909 | VERTEX2 908 10.410027 -7.229467 -0.826145 910 | VERTEX2 909 10.691902 -7.550665 -0.288539 911 | VERTEX2 910 11.047339 -7.657900 0.237066 912 | VERTEX2 911 11.401544 -7.497388 0.781544 913 | VERTEX2 912 11.624291 -7.083253 1.377170 914 | VERTEX2 913 11.628558 -6.794081 1.908955 915 | VERTEX2 914 11.314203 -6.391258 2.365578 916 | VERTEX2 915 10.538520 -5.797522 2.452131 917 | VERTEX2 916 10.037958 -5.016738 1.980252 918 | VERTEX2 917 9.874723 -3.976920 1.603182 919 | VERTEX2 918 9.762112 -2.924157 1.700292 920 | VERTEX2 919 9.537763 -1.814071 1.887701 921 | VERTEX2 920 9.260552 -0.789992 1.848260 922 | VERTEX2 921 9.017917 0.038960 1.824955 923 | VERTEX2 922 8.770520 1.002706 1.955158 924 | VERTEX2 923 8.355792 1.998094 1.942264 925 | VERTEX2 924 7.818028 2.925625 2.152752 926 | VERTEX2 925 7.365577 3.926398 1.964424 927 | VERTEX2 926 6.957535 4.894045 1.942004 928 | VERTEX2 927 6.572909 5.812353 2.389206 929 | VERTEX2 928 6.366747 6.018779 2.982606 930 | VERTEX2 929 5.874523 5.979527 -2.817885 931 | VERTEX2 930 4.905972 5.737518 -2.821163 932 | VERTEX2 931 3.978530 5.442234 -2.823458 933 | VERTEX2 932 3.059499 5.214363 -2.833339 934 | VERTEX2 933 2.125379 4.887542 -2.847395 935 | VERTEX2 934 1.086683 4.666774 -2.810571 936 | VERTEX2 935 0.089157 4.309178 -2.676197 937 | VERTEX2 936 -0.692631 3.882178 -2.704922 938 | VERTEX2 937 -1.640625 3.511432 -2.662882 939 | VERTEX2 938 -2.501364 3.007616 -2.640380 940 | VERTEX2 939 -3.557662 2.404287 -2.655211 941 | VERTEX2 940 -4.499287 1.952039 -2.670864 942 | VERTEX2 941 -5.455754 1.454198 -2.607059 943 | VERTEX2 942 -6.347579 0.950799 -2.603373 944 | VERTEX2 943 -7.337974 0.525728 -2.785958 945 | VERTEX2 944 -7.725044 0.446618 3.000490 946 | VERTEX2 945 -8.831563 0.623225 2.891560 947 | VERTEX2 946 -9.635375 1.111672 2.322818 948 | VERTEX2 947 -10.202500 1.957791 2.164150 949 | VERTEX2 948 -10.700863 2.826521 2.117414 950 | VERTEX2 949 -11.093832 3.819091 1.995883 951 | VERTEX2 950 -11.506849 4.827906 1.973593 952 | VERTEX2 951 -11.954524 5.669608 2.015571 953 | VERTEX2 952 -12.301900 6.513464 1.986005 954 | VERTEX2 953 -12.724617 7.430392 2.015901 955 | VERTEX2 954 -13.177916 8.316496 2.017274 956 | VERTEX2 955 -13.687522 9.197918 2.149674 957 | VERTEX2 956 -14.260878 10.091345 2.103036 958 | VERTEX2 957 -14.758709 10.881951 2.082076 959 | VERTEX2 958 -15.224537 11.816852 2.041826 960 | VERTEX2 959 -15.685922 12.728904 1.998046 961 | VERTEX2 960 -16.047475 13.668611 1.900640 962 | VERTEX2 961 -16.426683 14.638792 2.026097 963 | VERTEX2 962 -16.820505 15.621409 2.018174 964 | VERTEX2 963 -17.249213 16.561832 1.977608 965 | VERTEX2 964 -17.675635 17.554233 1.937436 966 | VERTEX2 965 -18.064695 18.604608 1.569098 967 | VERTEX2 966 -17.867612 19.600624 1.334269 968 | VERTEX2 967 -17.580105 20.637099 1.307593 969 | VERTEX2 968 -17.372341 21.711126 1.292724 970 | VERTEX2 969 -17.096180 22.803929 1.179156 971 | VERTEX2 970 -16.570328 23.640285 1.076787 972 | VERTEX2 971 -15.928560 24.518248 0.590199 973 | VERTEX2 972 -14.857016 24.918112 0.264754 974 | VERTEX2 973 -13.832273 25.158291 0.242519 975 | VERTEX2 974 -12.653131 25.379296 0.230371 976 | VERTEX2 975 -11.632195 25.689841 0.543659 977 | VERTEX2 976 -10.650228 26.214261 0.540982 978 | VERTEX2 977 -9.627430 26.696872 0.512193 979 | VERTEX2 978 -8.604595 27.257678 0.472758 980 | VERTEX2 979 -7.695458 27.706929 0.434596 981 | VERTEX2 980 -6.729587 28.144883 0.423763 982 | VERTEX2 981 -5.847336 28.534149 0.399525 983 | VERTEX2 982 -5.411524 28.767556 0.920800 984 | VERTEX2 983 -5.229821 29.081980 1.510847 985 | VERTEX2 984 -5.416699 30.061758 1.997364 986 | VERTEX2 985 -5.803625 31.008944 1.827384 987 | VERTEX2 986 -6.273948 32.539996 1.810853 988 | VERTEX2 987 -6.605560 33.264615 2.106543 989 | VERTEX2 988 -7.024798 34.199694 1.973091 990 | VERTEX2 989 -7.294046 35.023475 1.955598 991 | VERTEX2 990 -7.692316 36.084622 1.940789 992 | VERTEX2 991 -8.089086 37.117146 1.946995 993 | VERTEX2 992 -8.532466 38.148100 1.956177 994 | VERTEX2 993 -8.918437 39.115103 1.946284 995 | VERTEX2 994 -9.278693 40.097094 1.938543 996 | VERTEX2 995 -9.639592 41.135376 1.949090 997 | VERTEX2 996 -10.067404 42.239250 2.032140 998 | VERTEX2 997 -10.565370 43.291580 2.006754 999 | VERTEX2 998 -10.962801 44.237287 2.036893 1000 | VERTEX2 999 -11.454667 45.187178 2.016306 1001 | VERTEX2 1000 -11.847811 46.085056 1.966131 1002 | VERTEX2 1001 -12.331706 47.089836 1.954851 1003 | VERTEX2 1002 -12.648076 47.825923 1.942343 1004 | VERTEX2 1003 -13.008559 48.775388 1.966320 1005 | VERTEX2 1004 -13.425564 49.762603 1.945580 1006 | VERTEX2 1005 -13.780507 50.788126 1.949102 1007 | VERTEX2 1006 -14.110084 51.645687 1.919460 1008 | VERTEX2 1007 -14.527918 52.694868 2.038122 1009 | VERTEX2 1008 -15.021920 53.646588 2.037063 1010 | VERTEX2 1009 -15.400400 54.547564 2.021402 1011 | VERTEX2 1010 -15.742122 55.520356 1.717783 1012 | VERTEX2 1011 -15.953325 56.486835 1.940145 1013 | VERTEX2 1012 -16.356335 57.393700 1.985451 1014 | VERTEX2 1013 -16.765672 58.310783 1.968080 1015 | VERTEX2 1014 -17.064131 59.317438 1.970180 1016 | VERTEX2 1015 -17.529794 60.544712 1.954119 1017 | VERTEX2 1016 -17.820822 61.430267 1.954023 1018 | VERTEX2 1017 -18.180066 62.260635 1.941742 1019 | VERTEX2 1018 -18.589569 63.420748 1.944746 1020 | VERTEX2 1019 -18.948467 64.500146 1.930335 1021 | VERTEX2 1020 -19.276762 65.486368 1.950711 1022 | VERTEX2 1021 -19.619527 66.592325 1.931619 1023 | VERTEX2 1022 -19.978944 67.461043 1.927867 1024 | VERTEX2 1023 -20.316204 68.520431 1.902544 1025 | VERTEX2 1024 -20.646223 69.445223 1.892662 1026 | VERTEX2 1025 -20.962935 70.566064 1.889259 1027 | VERTEX2 1026 -21.187161 71.592070 1.794035 1028 | VERTEX2 1027 -21.623042 72.677838 2.024902 1029 | VERTEX2 1028 -21.987120 73.623739 2.042299 1030 | VERTEX2 1029 -22.423894 74.582956 2.004787 1031 | VERTEX2 1030 -22.790913 75.524710 1.992352 1032 | VERTEX2 1031 -23.191623 76.472900 1.973783 1033 | VERTEX2 1032 -23.553992 77.425574 1.964460 1034 | VERTEX2 1033 -23.929125 78.544173 1.963692 1035 | VERTEX2 1034 -24.264038 79.457993 1.985476 1036 | VERTEX2 1035 -24.660779 80.484953 1.966639 1037 | VERTEX2 1036 -25.088135 81.525625 1.962145 1038 | VERTEX2 1037 -25.434869 82.425345 1.948874 1039 | VERTEX2 1038 -25.769139 83.352200 1.927372 1040 | VERTEX2 1039 -26.121357 84.325153 1.924494 1041 | VERTEX2 1040 -26.419813 85.234626 1.906503 1042 | VERTEX2 1041 -26.756720 86.271541 1.898345 1043 | VERTEX2 1042 -26.973187 87.278571 1.894068 1044 | VERTEX2 1043 -27.240824 88.288858 1.894550 1045 | VERTEX2 1044 -27.526470 89.381912 1.897295 1046 | VERTEX2 1045 -27.864168 90.271641 1.846584 1047 | VERTEX2 1046 -28.160915 91.250847 2.043719 1048 | VERTEX2 1047 -28.626187 92.094351 2.050906 1049 | VERTEX2 1048 -29.081921 92.934070 2.026245 1050 | VERTEX2 1049 -29.542465 94.045304 1.936116 1051 | VERTEX2 1050 -30.009870 95.082392 1.928048 1052 | VERTEX2 1051 -30.310723 96.064997 1.940592 1053 | VERTEX2 1052 -30.579954 96.953159 1.935424 1054 | VERTEX2 1053 -30.887061 97.943262 1.987327 1055 | VERTEX2 1054 -31.223929 98.310803 2.653710 1056 | VERTEX2 1055 -31.659574 98.335215 -2.883936 1057 | VERTEX2 1056 -32.626689 98.002176 -2.869536 1058 | VERTEX2 1057 -33.637580 97.712524 -2.826093 1059 | VERTEX2 1058 -34.574819 97.454953 -2.839632 1060 | VERTEX2 1059 -35.049464 97.331199 2.900532 1061 | VERTEX2 1060 -35.397942 97.556540 2.208816 1062 | VERTEX2 1061 -35.870796 98.408915 2.072980 1063 | VERTEX2 1062 -36.297326 99.274043 2.068580 1064 | VERTEX2 1063 -36.683967 100.204882 2.071153 1065 | VERTEX2 1064 -37.212466 101.172889 2.164530 1066 | VERTEX2 1065 -37.625718 102.089676 1.914936 1067 | VERTEX2 1066 -37.940360 103.067945 1.985856 1068 | VERTEX2 1067 -38.323161 104.017864 1.993000 1069 | VERTEX2 1068 -38.726004 105.006767 1.996469 1070 | VERTEX2 1069 -39.086972 105.959174 2.000283 1071 | VERTEX2 1070 -39.494232 106.890603 1.788362 1072 | VERTEX2 1071 -39.319719 107.912990 1.424471 1073 | VERTEX2 1072 -39.123318 108.895817 1.405892 1074 | VERTEX2 1073 -39.108845 109.837872 1.830495 1075 | VERTEX2 1074 -39.324658 110.831941 1.828206 1076 | VERTEX2 1075 -39.682475 111.930761 2.007835 1077 | VERTEX2 1076 -40.204783 113.120336 2.025194 1078 | VERTEX2 1077 -40.688636 114.070848 2.272601 1079 | VERTEX2 1078 -41.204401 114.470795 2.776903 1080 | VERTEX2 1079 -41.800698 114.555349 -2.975282 1081 | VERTEX2 1080 -42.956086 114.113374 -2.670005 1082 | VERTEX2 1081 -43.955945 113.494478 -2.657713 1083 | VERTEX2 1082 -44.908845 113.049845 -2.665400 1084 | VERTEX2 1083 -45.896084 112.607264 -2.653994 1085 | VERTEX2 1084 -46.701447 112.082364 -2.619164 1086 | VERTEX2 1085 -47.669411 111.613951 -2.800366 1087 | VERTEX2 1086 -48.733927 111.228152 -2.771516 1088 | VERTEX2 1087 -49.701990 110.929434 -2.802699 1089 | VERTEX2 1088 -50.754755 110.571283 -2.764876 1090 | VERTEX2 1089 -51.707414 110.276639 -2.732224 1091 | VERTEX2 1090 -52.632316 109.893526 -2.720419 1092 | VERTEX2 1091 -53.711410 109.495071 -2.680542 1093 | VERTEX2 1092 -54.609122 109.047326 -2.633067 1094 | VERTEX2 1093 -55.488943 108.567775 -2.610133 1095 | VERTEX2 1094 -56.385156 108.113595 -2.591509 1096 | VERTEX2 1095 -57.289250 107.585857 -2.576412 1097 | VERTEX2 1096 -58.045455 107.110013 -2.623392 1098 | VERTEX2 1097 -58.992338 106.647443 -2.626362 1099 | VERTEX2 1098 -59.790945 106.191078 -2.605258 1100 | VERTEX2 1099 -60.670421 105.614944 -2.643042 1101 | VERTEX2 1100 -61.694317 105.114509 -2.632703 1102 | VERTEX2 1101 -62.489848 104.650379 -2.616696 1103 | VERTEX2 1102 -63.488722 104.190435 -2.668015 1104 | VERTEX2 1103 -64.495715 103.647961 -2.679017 1105 | VERTEX2 1104 -65.366746 103.139910 -2.653564 1106 | VERTEX2 1105 -66.400191 102.632543 -2.630064 1107 | VERTEX2 1106 -67.447570 102.039094 -2.606624 1108 | VERTEX2 1107 -68.386976 101.486468 -2.611035 1109 | VERTEX2 1108 -69.363619 100.983255 -2.713806 1110 | VERTEX2 1109 -70.253142 100.671780 -2.708073 1111 | VERTEX2 1110 -71.212442 100.351206 -2.650639 1112 | VERTEX2 1111 -72.139548 99.847287 -2.621973 1113 | VERTEX2 1112 -73.019635 99.363101 -2.622701 1114 | VERTEX2 1113 -73.935766 98.951237 -2.606720 1115 | VERTEX2 1114 -74.940495 98.407311 -2.593503 1116 | VERTEX2 1115 -75.750570 97.787341 -2.356434 1117 | VERTEX2 1116 -76.509888 97.074037 -2.157007 1118 | VERTEX2 1117 -76.993707 96.122730 -1.911177 1119 | VERTEX2 1118 -77.313797 95.149629 -1.716622 1120 | VERTEX2 1119 -77.479689 94.085595 -1.598273 1121 | VERTEX2 1120 -77.512538 93.056909 -1.692812 1122 | VERTEX2 1121 -77.602104 92.026017 -1.725182 1123 | VERTEX2 1122 -77.869322 91.047892 -1.765628 1124 | VERTEX2 1123 -78.102325 90.036529 -1.734897 1125 | VERTEX2 1124 -78.345399 88.976600 -1.705912 1126 | VERTEX2 1125 -78.432474 88.046684 -1.331722 1127 | VERTEX2 1126 -78.165849 87.013443 -1.146575 1128 | VERTEX2 1127 -77.844390 86.341241 -0.599874 1129 | VERTEX2 1128 -77.348419 85.912679 -1.203014 1130 | VERTEX2 1129 -76.866587 85.121502 -1.011353 1131 | VERTEX2 1130 -76.756069 84.888313 -1.557190 1132 | VERTEX2 1131 -76.762478 84.804302 -2.186756 1133 | VERTEX2 1132 -76.916294 84.748197 -2.864291 1134 | VERTEX2 1133 -77.079382 84.856196 2.730831 1135 | VERTEX2 1134 -77.226053 84.894878 2.056645 1136 | VERTEX2 1135 -77.633667 85.712297 2.073238 1137 | VERTEX2 1136 -77.878640 86.112089 1.848636 1138 | VERTEX2 1137 -77.932302 86.043018 1.303583 1139 | VERTEX2 1138 -77.922681 85.988794 0.794102 1140 | VERTEX2 1139 -77.902176 85.934951 0.208011 1141 | VERTEX2 1140 -77.871942 85.935937 -0.397860 1142 | VERTEX2 1141 -77.919788 85.902911 -0.905355 1143 | VERTEX2 1142 -77.165178 84.949654 -0.891659 1144 | VERTEX2 1143 -76.610999 84.133170 -1.009487 1145 | VERTEX2 1144 -76.195549 83.282356 -1.180583 1146 | VERTEX2 1145 -75.690210 82.325987 -1.154935 1147 | VERTEX2 1146 -75.227534 81.332724 -1.129768 1148 | VERTEX2 1147 -74.801352 80.395299 -1.109178 1149 | VERTEX2 1148 -74.464185 79.478807 -1.089582 1150 | VERTEX2 1149 -74.001938 78.614361 -1.063598 1151 | VERTEX2 1150 -73.555630 77.772436 -1.053786 1152 | VERTEX2 1151 -72.941197 76.907931 -0.999808 1153 | VERTEX2 1152 -72.389484 76.009165 -0.964804 1154 | VERTEX2 1153 -71.709462 75.007622 -0.948763 1155 | VERTEX2 1154 -71.079222 74.245132 -0.916780 1156 | VERTEX2 1155 -70.487545 73.523253 -0.897133 1157 | VERTEX2 1156 -69.814640 72.618879 -0.893509 1158 | VERTEX2 1157 -69.203802 71.804787 -0.885769 1159 | VERTEX2 1158 -68.431167 70.765385 -0.877034 1160 | VERTEX2 1159 -67.896133 69.911283 -1.117065 1161 | VERTEX2 1160 -67.344040 68.909563 -1.091951 1162 | VERTEX2 1161 -66.881282 67.999411 -1.069604 1163 | VERTEX2 1162 -66.439132 67.189632 -1.041393 1164 | VERTEX2 1163 -65.904254 66.343898 -1.035375 1165 | VERTEX2 1164 -65.223994 65.344030 -1.015966 1166 | VERTEX2 1165 -64.729542 64.492958 -0.999959 1167 | VERTEX2 1166 -64.184394 63.540264 -1.057690 1168 | VERTEX2 1167 -63.735058 62.537297 -1.099630 1169 | VERTEX2 1168 -63.282810 61.633177 -1.091796 1170 | VERTEX2 1169 -62.935543 60.676823 -1.073878 1171 | VERTEX2 1170 -62.400644 59.847854 -1.076156 1172 | VERTEX2 1171 -61.796167 58.917557 -1.048551 1173 | VERTEX2 1172 -61.362808 58.034078 -1.012541 1174 | VERTEX2 1173 -60.923851 57.173545 -0.986639 1175 | VERTEX2 1174 -60.406017 56.419023 -0.976803 1176 | VERTEX2 1175 -59.890114 55.529542 -1.174151 1177 | VERTEX2 1176 -59.538645 54.586310 -1.155309 1178 | VERTEX2 1177 -59.187799 53.668701 -1.155074 1179 | VERTEX2 1178 -58.707836 52.672059 -1.152603 1180 | VERTEX2 1179 -58.232657 51.793855 -1.102238 1181 | VERTEX2 1180 -57.768575 50.892410 -1.086823 1182 | VERTEX2 1181 -57.230592 49.805656 -1.075582 1183 | VERTEX2 1182 -56.714984 48.866386 -1.066700 1184 | VERTEX2 1183 -56.141406 47.975694 -0.915022 1185 | VERTEX2 1184 -55.433039 47.230133 -0.732731 1186 | VERTEX2 1185 -54.804729 46.619403 -0.695779 1187 | VERTEX2 1186 -54.092361 46.058136 -0.736036 1188 | VERTEX2 1187 -53.295051 45.240644 -0.799436 1189 | VERTEX2 1188 -52.555455 44.391104 -0.961885 1190 | VERTEX2 1189 -51.895747 43.468636 -1.038905 1191 | VERTEX2 1190 -51.428338 42.637667 -1.090263 1192 | VERTEX2 1191 -50.817719 41.652381 -1.084503 1193 | VERTEX2 1192 -50.322234 40.787544 -1.112403 1194 | VERTEX2 1193 -49.827750 39.873380 -1.114946 1195 | VERTEX2 1194 -49.387105 38.776935 -1.091368 1196 | VERTEX2 1195 -48.860537 37.828237 -1.086499 1197 | VERTEX2 1196 -48.354369 36.670738 -1.085412 1198 | VERTEX2 1197 -47.823934 35.789631 -1.058629 1199 | VERTEX2 1198 -47.317407 34.916251 -1.057711 1200 | VERTEX2 1199 -46.738452 33.938531 -1.069306 1201 | VERTEX2 1200 -46.323929 32.960159 -1.037538 1202 | VERTEX2 1201 -45.848184 32.157731 -1.007036 1203 | VERTEX2 1202 -45.265620 31.296420 -0.998428 1204 | VERTEX2 1203 -44.738023 30.410923 -0.994090 1205 | VERTEX2 1204 -44.202187 29.609112 -1.087880 1206 | VERTEX2 1205 -43.825309 28.690556 -1.158778 1207 | VERTEX2 1206 -43.529132 27.665231 -1.122035 1208 | VERTEX2 1207 -43.049767 26.695482 -1.117584 1209 | VERTEX2 1208 -42.697155 25.756562 -1.116587 1210 | VERTEX2 1209 -42.263465 24.864075 -1.116785 1211 | VERTEX2 1210 -41.736764 23.941684 -1.103969 1212 | VERTEX2 1211 -41.385819 23.040570 -1.096252 1213 | VERTEX2 1212 -40.942170 22.109163 -1.075091 1214 | VERTEX2 1213 -40.380648 21.153188 -1.069990 1215 | VERTEX2 1214 -39.865694 20.197175 -1.045685 1216 | VERTEX2 1215 -39.400092 19.221694 -1.035953 1217 | VERTEX2 1216 -38.930259 18.286918 -1.056762 1218 | VERTEX2 1217 -38.577628 17.363136 -1.106438 1219 | VERTEX2 1218 -38.055739 16.332881 -1.075786 1220 | VERTEX2 1219 -37.592388 15.420447 -1.069700 1221 | VERTEX2 1220 -37.143609 14.419074 -1.064591 1222 | VERTEX2 1221 -36.668586 13.496328 -1.063171 1223 | VERTEX2 1222 -36.223529 12.596629 -1.044696 1224 | VERTEX2 1223 -35.745074 11.776528 -1.044185 1225 | VERTEX2 1224 -35.239460 10.891114 -1.038954 1226 | VERTEX2 1225 -34.813395 10.091433 -1.032470 1227 | VERTEX2 1226 -34.339375 9.296534 -1.008972 1228 | VERTEX2 1227 -33.767707 8.406526 -0.996268 1229 | VERTEX2 1228 -33.283747 7.543401 -0.996150 1230 | VERTEX2 1229 -32.680443 6.671050 -0.978514 1231 | VERTEX2 1230 -32.112898 5.822569 -1.013635 1232 | VERTEX2 1231 -31.721756 4.838754 -1.296047 1233 | VERTEX2 1232 -31.621115 3.809074 -1.673717 1234 | VERTEX2 1233 -31.929750 2.875186 -2.189049 1235 | VERTEX2 1234 -32.692479 2.171450 -2.516951 1236 | VERTEX2 1235 -33.626457 1.523158 -2.557060 1237 | VERTEX2 1236 -34.548041 1.020852 -2.560727 1238 | VERTEX2 1237 -35.529472 0.419930 -2.580511 1239 | VERTEX2 1238 -36.421363 -0.148752 -2.609105 1240 | VERTEX2 1239 -37.349579 -0.699631 -2.655636 1241 | VERTEX2 1240 -38.280580 -1.112926 -2.663505 1242 | VERTEX2 1241 -39.173834 -1.522014 -2.687389 1243 | VERTEX2 1242 -40.097297 -1.876009 -2.741603 1244 | VERTEX2 1243 -41.196841 -2.050123 -2.821765 1245 | VERTEX2 1244 -41.688299 -2.321536 -2.287879 1246 | VERTEX2 1245 -41.920476 -2.828360 -1.756028 1247 | VERTEX2 1246 -42.010240 -3.351674 -1.208966 1248 | VERTEX2 1247 -41.553281 -3.706106 -0.522952 1249 | VERTEX2 1248 -41.662707 -3.797995 0.664663 1250 | VERTEX2 1249 -40.821409 -3.226438 0.694578 1251 | VERTEX2 1250 -39.908925 -2.572720 0.707531 1252 | VERTEX2 1251 -39.124160 -1.965375 0.732246 1253 | VERTEX2 1252 -38.326942 -1.275206 0.751629 1254 | VERTEX2 1253 -37.527486 -0.670700 0.638617 1255 | VERTEX2 1254 -36.677248 -0.045702 0.521950 1256 | VERTEX2 1255 -35.800800 0.419110 0.427960 1257 | VERTEX2 1256 -34.831425 0.773889 0.392515 1258 | VERTEX2 1257 -33.872361 1.184893 0.614221 1259 | VERTEX2 1258 -33.112423 1.836543 0.658918 1260 | VERTEX2 1259 -32.363025 2.515438 0.662420 1261 | VERTEX2 1260 -31.611034 3.100233 0.684526 1262 | VERTEX2 1261 -30.855429 3.743664 0.681272 1263 | VERTEX2 1262 -30.045831 4.172545 0.255995 1264 | VERTEX2 1263 -29.098996 4.132149 -0.115963 1265 | VERTEX2 1264 -27.929680 4.180320 0.356468 1266 | VERTEX2 1265 -26.958897 4.670306 0.562214 1267 | VERTEX2 1266 -25.996742 5.334610 0.573222 1268 | VERTEX2 1267 -25.316329 5.836888 1.143346 1269 | VERTEX2 1268 -25.169815 6.051737 1.680257 1270 | VERTEX2 1269 -25.318314 6.295087 2.311728 1271 | VERTEX2 1270 -25.611655 6.419800 2.988764 1272 | VERTEX2 1271 -25.858258 6.382728 -2.635779 1273 | VERTEX2 1272 -26.167113 6.181433 -2.079772 1274 | VERTEX2 1273 -26.619932 5.562665 -2.576769 1275 | VERTEX2 1274 -27.547800 4.992724 -2.638749 1276 | VERTEX2 1275 -28.501829 4.569638 -2.668784 1277 | VERTEX2 1276 -29.371075 4.183982 -2.699515 1278 | VERTEX2 1277 -30.408544 3.685885 -2.736803 1279 | VERTEX2 1278 -31.410899 3.257421 -2.771572 1280 | VERTEX2 1279 -32.379072 2.907652 -2.797424 1281 | VERTEX2 1280 -33.401708 2.686572 -2.777505 1282 | VERTEX2 1281 -34.322862 2.316881 -2.727944 1283 | VERTEX2 1282 -35.363799 2.009636 -2.752994 1284 | VERTEX2 1283 -36.233045 1.696091 -2.756273 1285 | VERTEX2 1284 -37.243733 1.185493 -2.571136 1286 | VERTEX2 1285 -38.058777 0.564665 -2.503117 1287 | VERTEX2 1286 -39.014421 -0.129981 -2.524062 1288 | VERTEX2 1287 -39.772522 -0.544198 -2.602443 1289 | VERTEX2 1288 -40.621856 -1.129070 -2.431230 1290 | VERTEX2 1289 -41.635977 -1.756835 -2.466491 1291 | VERTEX2 1290 -42.518640 -2.322133 -2.606100 1292 | VERTEX2 1291 -43.430323 -2.818793 -2.653941 1293 | VERTEX2 1292 -44.401588 -3.272261 -2.677972 1294 | VERTEX2 1293 -45.372025 -3.675733 -2.693620 1295 | VERTEX2 1294 -46.494836 -4.035218 -2.702834 1296 | VERTEX2 1295 -47.537776 -4.343470 -2.713916 1297 | VERTEX2 1296 -48.610529 -4.746151 -2.729727 1298 | VERTEX2 1297 -49.613031 -5.137489 -2.755726 1299 | VERTEX2 1298 -50.551696 -5.557308 -2.696260 1300 | VERTEX2 1299 -51.419682 -5.990968 -2.620345 1301 | VERTEX2 1300 -52.429442 -6.473561 -2.635066 1302 | VERTEX2 1301 -53.275715 -7.019392 -2.637211 1303 | VERTEX2 1302 -54.311388 -7.554112 -2.670133 1304 | VERTEX2 1303 -55.407773 -8.068503 -2.591832 1305 | VERTEX2 1304 -56.136204 -8.567367 -2.611926 1306 | VERTEX2 1305 -57.035769 -9.150153 -2.633065 1307 | VERTEX2 1306 -57.963805 -9.618961 -2.634361 1308 | VERTEX2 1307 -59.015157 -10.120009 -2.622865 1309 | VERTEX2 1308 -60.024353 -10.585172 -2.639014 1310 | VERTEX2 1309 -60.971093 -11.100348 -2.677845 1311 | VERTEX2 1310 -61.870077 -11.527868 -2.681376 1312 | VERTEX2 1311 -62.811475 -11.894565 -2.690354 1313 | VERTEX2 1312 -63.728002 -12.284698 -2.704568 1314 | VERTEX2 1313 -64.666753 -12.646429 -2.734554 1315 | VERTEX2 1314 -65.658349 -13.060851 -2.739075 1316 | VERTEX2 1315 -66.602747 -13.428881 -2.746258 1317 | VERTEX2 1316 -67.482748 -13.699328 -2.762586 1318 | VERTEX2 1317 -68.425288 -14.038723 -2.767628 1319 | VERTEX2 1318 -69.497506 -14.292225 -2.771424 1320 | VERTEX2 1319 -70.403568 -14.510027 -2.788802 1321 | VERTEX2 1320 -71.240065 -14.961084 -2.695422 1322 | VERTEX2 1321 -72.153615 -15.357080 -2.682367 1323 | VERTEX2 1322 -73.236697 -15.825817 -2.700876 1324 | VERTEX2 1323 -74.077333 -16.221997 -2.740418 1325 | VERTEX2 1324 -75.031762 -16.540815 -2.751240 1326 | VERTEX2 1325 -76.142140 -16.958585 -2.753734 1327 | VERTEX2 1326 -77.171249 -17.362045 -2.757262 1328 | VERTEX2 1327 -77.945354 -17.658796 -2.772885 1329 | VERTEX2 1328 -78.911894 -18.251858 -2.645004 1330 | VERTEX2 1329 -79.641019 -18.781217 -2.571973 1331 | VERTEX2 1330 -80.811444 -19.312691 -2.787855 1332 | VERTEX2 1331 -81.926290 -19.703201 -2.797196 1333 | VERTEX2 1332 -82.950770 -20.067464 -2.798263 1334 | VERTEX2 1333 -83.982155 -20.355093 -2.804463 1335 | VERTEX2 1334 -84.959965 -20.696906 -2.820245 1336 | VERTEX2 1335 -86.004621 -21.057972 -2.832725 1337 | VERTEX2 1336 -87.065192 -21.398542 -2.831226 1338 | VERTEX2 1337 -88.005368 -21.670261 -2.846203 1339 | VERTEX2 1338 -88.961451 -22.139718 -2.244199 1340 | VERTEX2 1339 -89.188156 -22.488134 -1.707720 1341 | VERTEX2 1340 -89.265680 -23.090763 -1.199507 1342 | VERTEX2 1341 -88.890349 -24.001640 -1.176712 1343 | VERTEX2 1342 -88.408124 -25.040257 -1.145467 1344 | VERTEX2 1343 -87.936187 -26.032029 -1.138309 1345 | VERTEX2 1344 -87.705891 -27.004042 -1.595903 1346 | VERTEX2 1345 -88.061582 -28.019277 -2.008831 1347 | VERTEX2 1346 -88.582720 -28.798396 -2.394467 1348 | VERTEX2 1347 -89.384635 -29.215154 -2.645371 1349 | VERTEX2 1348 -90.336934 -29.658079 -2.668527 1350 | VERTEX2 1349 -91.047775 -30.180475 -1.962527 1351 | VERTEX2 1350 -91.178201 -30.509641 -1.345667 1352 | VERTEX2 1351 -90.942596 -31.589572 -1.339649 1353 | VERTEX2 1352 -90.700651 -32.617789 -1.130279 1354 | VERTEX2 1353 -90.392418 -33.447632 -1.099869 1355 | VERTEX2 1354 -89.911606 -34.489042 -1.125453 1356 | VERTEX2 1355 -89.409630 -35.459936 -1.100250 1357 | VERTEX2 1356 -88.923901 -36.416667 -1.088002 1358 | VERTEX2 1357 -88.487113 -37.229101 -1.158032 1359 | VERTEX2 1358 -88.346072 -37.606591 -1.773282 1360 | VERTEX2 1359 -88.445003 -37.771905 -2.303096 1361 | VERTEX2 1360 -88.684161 -37.942437 -2.837301 1362 | VERTEX2 1361 -88.883743 -37.980466 2.910520 1363 | VERTEX2 1362 -89.147157 -37.765221 2.354019 1364 | VERTEX2 1363 -89.321558 -37.504678 1.804788 1365 | VERTEX2 1364 -89.337731 -36.534839 1.604230 1366 | VERTEX2 1365 -89.495963 -35.630521 2.111619 1367 | VERTEX2 1366 -89.928324 -34.679715 2.061857 1368 | VERTEX2 1367 -90.404189 -33.734498 2.025270 1369 | VERTEX2 1368 -90.733558 -32.781082 2.023382 1370 | VERTEX2 1369 -91.069698 -31.801918 1.971802 1371 | VERTEX2 1370 -91.311152 -30.846037 1.807676 1372 | VERTEX2 1371 -91.283429 -30.391956 1.270500 1373 | VERTEX2 1372 -91.067636 -29.931837 0.698402 1374 | VERTEX2 1373 -90.096221 -29.272418 0.621001 1375 | VERTEX2 1374 -89.270783 -28.798406 0.615398 1376 | VERTEX2 1375 -88.453486 -28.196771 0.753647 1377 | VERTEX2 1376 -88.149136 -27.793116 1.342140 1378 | VERTEX2 1377 -88.150473 -26.800954 1.664623 1379 | VERTEX2 1378 -88.265202 -25.820926 1.753941 1380 | VERTEX2 1379 -88.552334 -24.833081 1.858409 1381 | VERTEX2 1380 -88.809765 -23.898715 2.327049 1382 | VERTEX2 1381 -89.086098 -23.687760 2.852903 1383 | VERTEX2 1382 -90.045200 -23.526148 3.104518 1384 | VERTEX2 1383 -91.174396 -23.644967 -2.810512 1385 | VERTEX2 1384 -92.278208 -23.986424 -2.828961 1386 | VERTEX2 1385 -93.211426 -24.182488 -2.842373 1387 | VERTEX2 1386 -94.219398 -24.437207 -2.834120 1388 | VERTEX2 1387 -95.215179 -24.744394 -2.820784 1389 | VERTEX2 1388 -96.213775 -25.199553 -2.845697 1390 | VERTEX2 1389 -97.198671 -25.444201 -2.752709 1391 | VERTEX2 1390 -98.120815 -25.863870 -2.699649 1392 | VERTEX2 1391 -99.060549 -26.168420 -2.640237 1393 | VERTEX2 1392 -99.964357 -26.748594 -2.637686 1394 | VERTEX2 1393 -100.855459 -27.210903 -2.637695 1395 | VERTEX2 1394 -101.813415 -27.657341 -2.632523 1396 | VERTEX2 1395 -102.698497 -28.052268 -2.619884 1397 | VERTEX2 1396 -103.609779 -28.473368 -2.621384 1398 | VERTEX2 1397 -104.560687 -28.934702 -2.618760 1399 | VERTEX2 1398 -105.461593 -29.473037 -2.626182 1400 | VERTEX2 1399 -106.422946 -29.941309 -2.612419 1401 | VERTEX2 1400 -107.325482 -30.430446 -2.636123 1402 | VERTEX2 1401 -108.192924 -30.967906 -2.651271 1403 | VERTEX2 1402 -109.141463 -31.372170 -2.634954 1404 | VERTEX2 1403 -110.082624 -31.858902 -2.579498 1405 | VERTEX2 1404 -110.955513 -32.449452 -2.500915 1406 | VERTEX2 1405 -112.029713 -33.081303 -2.657421 1407 | VERTEX2 1406 -113.013898 -33.489230 -2.799675 1408 | VERTEX2 1407 -114.006361 -33.747426 -2.828509 1409 | VERTEX2 1408 -114.991637 -33.996474 -2.821547 1410 | VERTEX2 1409 -116.176723 -34.374557 -2.755396 1411 | VERTEX2 1410 -117.068784 -34.752931 -2.692511 1412 | VERTEX2 1411 -118.087361 -35.207427 -2.688548 1413 | VERTEX2 1412 -119.043234 -35.639033 -2.684200 1414 | VERTEX2 1413 -119.965256 -36.031571 -2.669519 1415 | VERTEX2 1414 -120.785487 -36.482693 -2.537070 1416 | VERTEX2 1415 -121.685073 -37.173913 -2.454421 1417 | VERTEX2 1416 -122.379844 -37.777584 -2.448951 1418 | VERTEX2 1417 -123.226316 -38.511434 -2.448029 1419 | VERTEX2 1418 -124.012201 -39.086838 -2.460547 1420 | VERTEX2 1419 -124.751973 -39.688194 -2.501879 1421 | VERTEX2 1420 -125.662584 -40.284005 -2.501366 1422 | VERTEX2 1421 -126.733494 -41.019127 -2.498046 1423 | VERTEX2 1422 -127.567466 -41.555608 -2.663400 1424 | VERTEX2 1423 -128.491973 -42.024945 -2.645278 1425 | VERTEX2 1424 -129.436083 -42.499142 -2.654654 1426 | VERTEX2 1425 -130.463525 -43.085418 -2.668494 1427 | VERTEX2 1426 -131.396844 -43.536033 -2.679499 1428 | VERTEX2 1427 -132.360441 -43.935312 -2.691796 1429 | VERTEX2 1428 -133.304235 -44.446637 -2.712669 1430 | VERTEX2 1429 -134.329493 -44.821418 -2.704023 1431 | VERTEX2 1430 -135.225760 -45.199058 -2.708934 1432 | VERTEX2 1431 -136.165972 -45.612894 -2.723339 1433 | VERTEX2 1432 -137.187095 -46.024483 -2.724730 1434 | VERTEX2 1433 -138.047580 -46.413493 -2.723808 1435 | VERTEX2 1434 -139.012460 -46.757779 -2.723791 1436 | VERTEX2 1435 -140.016117 -47.166308 -2.730810 1437 | VERTEX2 1436 -140.958662 -47.540619 -2.730371 1438 | VERTEX2 1437 -142.030263 -47.987830 -2.697112 1439 | VERTEX2 1438 -143.069741 -48.336253 -2.701413 1440 | VERTEX2 1439 -144.034341 -48.841205 -2.588789 1441 | VERTEX2 1440 -144.823309 -49.348887 -2.489560 1442 | VERTEX2 1441 -145.737312 -49.887186 -2.781538 1443 | VERTEX2 1442 -146.734328 -49.998284 2.874825 1444 | VERTEX2 1443 -147.364179 -49.607997 2.394865 1445 | VERTEX2 1444 -147.607896 -49.146156 1.792182 1446 | VERTEX2 1445 -147.527350 -48.672372 1.196678 1447 | VERTEX2 1446 -147.176753 -48.102322 1.768889 1448 | VERTEX2 1447 -147.421300 -47.134051 1.745814 1449 | VERTEX2 1448 -147.627357 -46.163451 1.971394 1450 | VERTEX2 1449 -148.015130 -45.096146 1.933795 1451 | VERTEX2 1450 -148.320675 -44.077436 1.905157 1452 | VERTEX2 1451 -148.741853 -43.109464 2.173190 1453 | VERTEX2 1452 -149.365549 -42.226121 2.239989 1454 | VERTEX2 1453 -150.039301 -41.417270 2.208659 1455 | VERTEX2 1454 -150.563282 -40.447836 2.083939 1456 | VERTEX2 1455 -151.115217 -39.484294 2.049579 1457 | VERTEX2 1456 -151.646534 -38.475362 2.033910 1458 | VERTEX2 1457 -152.078621 -37.473784 2.016509 1459 | VERTEX2 1458 -152.424834 -36.645424 1.990631 1460 | VERTEX2 1459 -152.764428 -35.652296 1.976748 1461 | VERTEX2 1460 -153.040464 -34.723010 1.951969 1462 | VERTEX2 1461 -153.429095 -33.768700 1.946001 1463 | VERTEX2 1462 -153.755848 -32.785578 1.921978 1464 | VERTEX2 1463 -154.043796 -31.897661 1.917029 1465 | VERTEX2 1464 -154.367792 -30.766924 1.986796 1466 | VERTEX2 1465 -154.768809 -29.886424 2.010309 1467 | VERTEX2 1466 -155.262068 -28.922092 1.988659 1468 | VERTEX2 1467 -155.653724 -27.980603 1.963586 1469 | VERTEX2 1468 -155.908429 -27.059875 1.937479 1470 | VERTEX2 1469 -156.216505 -26.021442 1.920116 1471 | VERTEX2 1470 -156.687741 -25.024792 1.982334 1472 | VERTEX2 1471 -157.110880 -24.154991 2.079998 1473 | VERTEX2 1472 -157.589739 -23.206399 2.063127 1474 | VERTEX2 1473 -158.034050 -22.208583 2.044516 1475 | VERTEX2 1474 -158.576443 -21.047695 2.015003 1476 | VERTEX2 1475 -158.989624 -20.045475 1.993858 1477 | VERTEX2 1476 -159.333712 -19.159840 1.971887 1478 | VERTEX2 1477 -159.707364 -18.151032 1.949104 1479 | VERTEX2 1478 -160.072321 -17.262737 1.928402 1480 | VERTEX2 1479 -160.360170 -16.215204 1.912617 1481 | VERTEX2 1480 -160.743152 -15.051215 1.908465 1482 | VERTEX2 1481 -161.016281 -13.975144 1.900466 1483 | VERTEX2 1482 -161.257540 -12.903094 1.902493 1484 | VERTEX2 1483 -161.551252 -11.834037 1.962505 1485 | VERTEX2 1484 -162.054775 -10.845348 2.093503 1486 | VERTEX2 1485 -162.605420 -9.899221 2.112883 1487 | VERTEX2 1486 -163.143375 -9.049752 2.106556 1488 | VERTEX2 1487 -163.675283 -8.200518 2.093950 1489 | VERTEX2 1488 -164.168314 -7.313009 2.087401 1490 | VERTEX2 1489 -164.688556 -6.363052 2.057203 1491 | VERTEX2 1490 -165.093423 -5.480854 2.039797 1492 | VERTEX2 1491 -165.608380 -4.374167 2.040851 1493 | VERTEX2 1492 -166.027768 -3.553389 2.038239 1494 | VERTEX2 1493 -166.441096 -2.681316 2.020403 1495 | VERTEX2 1494 -166.895611 -1.628453 1.996127 1496 | VERTEX2 1495 -167.254710 -0.730416 2.006564 1497 | VERTEX2 1496 -167.675527 0.269152 1.967948 1498 | VERTEX2 1497 -168.034406 1.146275 1.956351 1499 | VERTEX2 1498 -168.386292 2.189360 1.966787 1500 | VERTEX2 1499 -168.738655 3.114637 1.947773 1501 | VERTEX2 1500 -169.184432 4.139788 1.954365 1502 | VERTEX2 1501 -169.559576 5.050152 2.030914 1503 | VERTEX2 1502 -170.000987 6.005079 2.024321 1504 | VERTEX2 1503 -170.387530 6.883169 1.986497 1505 | VERTEX2 1504 -170.732087 7.827824 1.973469 1506 | VERTEX2 1505 -171.102538 8.841845 1.974294 1507 | VERTEX2 1506 -171.532975 9.706042 1.948418 1508 | VERTEX2 1507 -171.790308 10.633357 1.925778 1509 | VERTEX2 1508 -171.985845 11.635615 1.929668 1510 | VERTEX2 1509 -172.386469 12.616250 1.949900 1511 | VERTEX2 1510 -172.818822 13.581686 2.031811 1512 | VERTEX2 1511 -173.245091 14.508196 2.035376 1513 | VERTEX2 1512 -173.746693 15.421402 2.025845 1514 | VERTEX2 1513 -174.146767 16.477099 2.010200 1515 | VERTEX2 1514 -174.531317 17.384068 2.018023 1516 | VERTEX2 1515 -174.964212 18.287525 1.999181 1517 | VERTEX2 1516 -175.347566 19.290668 1.993053 1518 | VERTEX2 1517 -175.799866 20.371487 1.994443 1519 | VERTEX2 1518 -176.143637 21.265590 1.998073 1520 | VERTEX2 1519 -176.648785 22.273476 1.980958 1521 | VERTEX2 1520 -177.154284 23.207124 2.059245 1522 | VERTEX2 1521 -177.649681 24.190887 2.121972 1523 | VERTEX2 1522 -178.171864 25.070403 2.120353 1524 | VERTEX2 1523 -178.714759 26.088509 2.125035 1525 | VERTEX2 1524 -179.264092 26.952251 2.130779 1526 | VERTEX2 1525 -179.757828 27.807902 1.872337 1527 | VERTEX2 1526 -180.061139 28.750499 1.821373 1528 | VERTEX2 1527 -180.280045 29.751581 1.811073 1529 | VERTEX2 1528 -180.477525 30.786515 1.791535 1530 | VERTEX2 1529 -180.782882 31.946044 1.906238 1531 | VERTEX2 1530 -181.170774 32.960440 1.948246 1532 | VERTEX2 1531 -181.465934 34.062144 1.959554 1533 | VERTEX2 1532 -181.810334 34.940685 2.002175 1534 | VERTEX2 1533 -182.299127 35.832546 2.038136 1535 | VERTEX2 1534 -182.741547 36.723255 2.035538 1536 | VERTEX2 1535 -183.211557 37.730175 2.033224 1537 | VERTEX2 1536 -183.662233 38.711836 2.045454 1538 | VERTEX2 1537 -184.069286 39.656279 2.061626 1539 | VERTEX2 1538 -184.596765 40.537164 2.064803 1540 | VERTEX2 1539 -185.117918 41.366482 2.600861 1541 | VERTEX2 1540 -186.037217 41.740477 2.833729 1542 | VERTEX2 1541 -186.978760 42.104828 2.819936 1543 | VERTEX2 1542 -187.972408 42.395943 2.984538 1544 | VERTEX2 1543 -188.988807 42.670724 2.892233 1545 | VERTEX2 1544 -190.016832 42.922297 2.904861 1546 | VERTEX2 1545 -191.060647 43.164008 2.941805 1547 | VERTEX2 1546 -192.219588 43.384430 3.021109 1548 | VERTEX2 1547 -193.325004 43.526302 3.091393 1549 | VERTEX2 1548 -194.446839 43.285802 -2.796652 1550 | VERTEX2 1549 -195.410117 42.841170 -2.582323 1551 | VERTEX2 1550 -196.291539 42.367371 -2.608167 1552 | VERTEX2 1551 -197.179009 41.794858 -2.601137 1553 | VERTEX2 1552 -198.046112 41.303747 -2.571718 1554 | VERTEX2 1553 -199.004854 40.837204 -2.557576 1555 | VERTEX2 1554 -199.884447 40.261907 -2.528920 1556 | VERTEX2 1555 -200.857343 39.637394 -2.498619 1557 | VERTEX2 1556 -201.716662 38.977298 -2.459205 1558 | VERTEX2 1557 -202.441997 38.328036 -2.425886 1559 | VERTEX2 1558 -203.268190 37.613601 -2.433059 1560 | VERTEX2 1559 -204.171516 36.957705 -2.493720 1561 | VERTEX2 1560 -205.018113 36.327911 -2.455392 1562 | VERTEX2 1561 -205.760421 35.784367 -2.440534 1563 | VERTEX2 1562 -206.621786 35.085788 -2.408374 1564 | VERTEX2 1563 -207.441764 34.388996 -2.447479 1565 | VERTEX2 1564 -208.331720 33.778268 -2.487791 1566 | VERTEX2 1565 -209.248173 33.264482 -2.708431 1567 | VERTEX2 1566 -210.157119 32.776643 -2.581244 1568 | VERTEX2 1567 -211.031109 32.223084 -2.581781 1569 | VERTEX2 1568 -212.013548 31.714941 -2.563620 1570 | VERTEX2 1569 -212.908759 31.119643 -2.524258 1571 | VERTEX2 1570 -213.914600 30.523317 -2.496916 1572 | VERTEX2 1571 -214.766643 29.874874 -2.419025 1573 | VERTEX2 1572 -215.499071 29.104063 -2.152530 1574 | VERTEX2 1573 -216.297520 28.343605 -2.424362 1575 | VERTEX2 1574 -216.873857 27.751072 -2.411120 1576 | VERTEX2 1575 -217.573171 27.039984 -2.376939 1577 | VERTEX2 1576 -218.403545 26.341822 -2.351156 1578 | VERTEX2 1577 -219.188306 25.636039 -2.556863 1579 | VERTEX2 1578 -220.286059 24.865227 -2.552414 1580 | VERTEX2 1579 -221.106195 24.347185 -2.531418 1581 | VERTEX2 1580 -221.928494 23.777674 -2.539558 1582 | VERTEX2 1581 -222.823515 23.154783 -2.540114 1583 | VERTEX2 1582 -223.700638 22.529179 -2.532956 1584 | VERTEX2 1583 -224.575956 21.854791 -2.517652 1585 | VERTEX2 1584 -225.520992 21.237662 -2.508811 1586 | VERTEX2 1585 -226.370866 20.660109 -2.494104 1587 | VERTEX2 1586 -227.196857 19.969027 -2.456473 1588 | VERTEX2 1587 -227.994946 19.414834 -2.417807 1589 | VERTEX2 1588 -228.706026 18.637177 -2.411368 1590 | VERTEX2 1589 -228.982699 18.244250 -1.871203 1591 | VERTEX2 1590 -229.117657 17.359358 -1.285778 1592 | VERTEX2 1591 -228.750827 16.558837 -0.901554 1593 | VERTEX2 1592 -228.069999 15.628839 -0.887462 1594 | VERTEX2 1593 -227.502415 14.935754 -0.878841 1595 | VERTEX2 1594 -226.787295 14.113446 -0.753366 1596 | VERTEX2 1595 -225.826748 13.553123 -0.513312 1597 | VERTEX2 1596 -225.165449 12.891396 -0.835948 1598 | VERTEX2 1597 -224.450472 12.191032 -0.808254 1599 | VERTEX2 1598 -223.781314 11.433298 -0.788431 1600 | VERTEX2 1599 -223.100248 10.714634 -0.768070 1601 | VERTEX2 1600 -222.468423 9.868712 -1.061116 1602 | VERTEX2 1601 -222.156878 8.912765 -1.376737 1603 | VERTEX2 1602 -221.795632 7.889185 -0.908208 1604 | VERTEX2 1603 -221.233386 7.058803 -0.855114 1605 | VERTEX2 1604 -220.620393 6.144171 -0.844054 1606 | VERTEX2 1605 -219.934448 5.227842 -0.821542 1607 | VERTEX2 1606 -219.201194 4.413948 -0.810069 1608 | VERTEX2 1607 -218.455658 3.692951 -0.794676 1609 | VERTEX2 1608 -217.769646 2.953421 -0.767087 1610 | VERTEX2 1609 -217.052000 2.241155 -0.792793 1611 | VERTEX2 1610 -216.360446 1.504374 -0.791105 1612 | VERTEX2 1611 -215.679375 0.816011 -0.778235 1613 | VERTEX2 1612 -215.041621 0.139292 -0.777312 1614 | VERTEX2 1613 -214.334082 -0.607898 -0.884444 1615 | VERTEX2 1614 -213.764777 -1.436648 -0.922180 1616 | VERTEX2 1615 -213.168008 -2.214514 -0.905922 1617 | VERTEX2 1616 -212.457511 -3.040546 -0.907175 1618 | VERTEX2 1617 -211.763255 -3.759924 -0.889689 1619 | VERTEX2 1618 -211.094541 -4.572079 -0.858101 1620 | VERTEX2 1619 -210.493060 -5.462197 -1.067104 1621 | VERTEX2 1620 -210.014135 -6.311282 -1.034153 1622 | VERTEX2 1621 -209.459667 -7.251210 -1.030028 1623 | VERTEX2 1622 -208.908563 -8.168918 -0.983974 1624 | VERTEX2 1623 -208.295240 -8.913055 -0.938477 1625 | VERTEX2 1624 -207.727075 -9.739207 -0.910701 1626 | VERTEX2 1625 -207.278832 -10.561615 -1.025508 1627 | VERTEX2 1626 -206.861710 -11.444274 -1.047012 1628 | VERTEX2 1627 -206.344056 -12.250793 -1.019438 1629 | VERTEX2 1628 -205.728400 -13.048300 -0.752371 1630 | VERTEX2 1629 -204.991823 -13.806496 -0.709538 1631 | VERTEX2 1630 -204.312556 -14.492707 -0.673369 1632 | VERTEX2 1631 -203.526584 -15.188507 -0.673799 1633 | VERTEX2 1632 -202.758813 -15.967991 -1.019104 1634 | VERTEX2 1633 -202.254729 -16.987646 -1.171543 1635 | VERTEX2 1634 -201.837834 -17.885745 -0.857293 1636 | VERTEX2 1635 -201.253022 -18.669993 -0.859701 1637 | VERTEX2 1636 -200.821061 -19.642639 -1.254279 1638 | VERTEX2 1637 -200.551692 -20.073240 -0.711181 1639 | VERTEX2 1638 -199.805458 -20.645595 -0.415695 1640 | VERTEX2 1639 -198.820304 -20.972325 -0.219184 1641 | VERTEX2 1640 -197.969575 -21.043830 0.264808 1642 | VERTEX2 1641 -196.967738 -20.800979 0.078120 1643 | VERTEX2 1642 -195.985117 -21.070231 -0.460489 1644 | VERTEX2 1643 -195.571688 -21.415847 -1.205021 1645 | VERTEX2 1644 -195.518888 -21.607903 -1.719720 1646 | VERTEX2 1645 -195.544582 -21.754807 -2.222485 1647 | VERTEX2 1646 -195.788145 -21.936746 -1.691106 1648 | VERTEX2 1647 -195.967819 -22.878991 -1.682937 1649 | VERTEX2 1648 -196.127190 -23.938106 -1.682640 1650 | VERTEX2 1649 -196.135781 -24.882134 -1.075201 1651 | VERTEX2 1650 -195.591457 -25.677244 -0.967323 1652 | VERTEX2 1651 -194.927014 -26.543039 -0.891822 1653 | VERTEX2 1652 -194.274960 -27.466334 -0.863229 1654 | VERTEX2 1653 -193.760101 -28.247152 -0.825404 1655 | VERTEX2 1654 -193.094341 -28.953449 -0.807225 1656 | VERTEX2 1655 -192.361501 -29.714976 -0.789669 1657 | VERTEX2 1656 -191.665540 -30.400126 -0.752811 1658 | VERTEX2 1657 -190.921913 -31.080602 -0.798740 1659 | VERTEX2 1658 -190.280866 -31.843228 -0.897094 1660 | VERTEX2 1659 -189.618970 -32.655571 -0.884422 1661 | VERTEX2 1660 -188.965926 -33.366654 -0.860430 1662 | VERTEX2 1661 -188.314719 -34.276550 -0.849113 1663 | VERTEX2 1662 -187.687151 -35.027920 -0.888494 1664 | VERTEX2 1663 -187.144654 -35.877179 -0.974088 1665 | VERTEX2 1664 -186.721354 -36.769258 -0.993334 1666 | VERTEX2 1665 -186.151812 -37.518098 -0.751325 1667 | VERTEX2 1666 -185.452056 -38.328315 -1.003839 1668 | VERTEX2 1667 -184.981675 -39.192102 -1.063459 1669 | VERTEX2 1668 -184.399964 -40.077438 -0.906764 1670 | VERTEX2 1669 -183.826020 -40.864582 -0.892909 1671 | VERTEX2 1670 -183.224442 -41.691397 -0.859589 1672 | VERTEX2 1671 -182.566273 -42.506227 -0.861934 1673 | VERTEX2 1672 -181.844934 -43.254129 -0.868024 1674 | VERTEX2 1673 -181.189734 -44.053537 -0.867237 1675 | VERTEX2 1674 -180.411358 -44.914399 -0.691885 1676 | VERTEX2 1675 -179.703963 -45.581785 -0.686639 1677 | VERTEX2 1676 -178.868584 -46.245732 -0.685721 1678 | VERTEX2 1677 -178.196764 -46.926694 -0.667153 1679 | VERTEX2 1678 -177.434037 -47.591438 -0.658866 1680 | VERTEX2 1679 -176.718487 -48.223625 -0.680012 1681 | VERTEX2 1680 -175.970495 -48.972250 -0.811910 1682 | VERTEX2 1681 -175.198548 -49.755918 -0.794240 1683 | VERTEX2 1682 -174.506493 -50.566989 -0.777812 1684 | VERTEX2 1683 -173.822500 -51.353007 -0.991522 1685 | VERTEX2 1684 -173.266286 -52.271169 -0.981034 1686 | VERTEX2 1685 -172.687239 -53.174484 -0.989512 1687 | VERTEX2 1686 -172.185093 -54.074407 -0.998281 1688 | VERTEX2 1687 -171.636880 -54.915480 -0.990107 1689 | VERTEX2 1688 -171.120204 -55.800494 -0.964808 1690 | VERTEX2 1689 -170.443902 -56.457780 -0.720098 1691 | VERTEX2 1690 -169.688346 -57.227248 -0.940566 1692 | VERTEX2 1691 -169.096427 -58.086124 -1.052267 1693 | VERTEX2 1692 -168.560231 -59.051969 -0.898233 1694 | VERTEX2 1693 -167.812897 -59.883786 -0.628137 1695 | VERTEX2 1694 -167.058680 -60.467997 -0.834518 1696 | VERTEX2 1695 -166.386352 -61.221034 -0.855014 1697 | VERTEX2 1696 -165.758527 -62.112688 -1.039902 1698 | VERTEX2 1697 -165.299707 -63.056107 -0.880379 1699 | VERTEX2 1698 -164.481427 -63.644971 -0.529978 1700 | VERTEX2 1699 -164.104302 -63.952417 -0.006361 1701 | VERTEX2 1700 -163.872543 -63.859730 0.531976 1702 | VERTEX2 1701 -162.967738 -63.152446 0.790002 1703 | VERTEX2 1702 -162.178543 -62.414828 0.809663 1704 | VERTEX2 1703 -161.400500 -61.637033 0.821176 1705 | VERTEX2 1704 -160.735576 -60.947982 0.828751 1706 | VERTEX2 1705 -159.900483 -60.102521 0.790795 1707 | VERTEX2 1706 -159.144089 -59.372876 0.741892 1708 | VERTEX2 1707 -158.358538 -58.756014 0.761543 1709 | VERTEX2 1708 -157.606319 -58.062394 0.788155 1710 | VERTEX2 1709 -156.837540 -57.374571 0.812296 1711 | VERTEX2 1710 -156.132061 -56.633266 0.830617 1712 | VERTEX2 1711 -155.339591 -56.057686 0.692837 1713 | VERTEX2 1712 -154.522546 -55.425207 0.714168 1714 | VERTEX2 1713 -153.669492 -54.749930 0.627568 1715 | VERTEX2 1714 -152.823830 -54.202889 0.529408 1716 | VERTEX2 1715 -151.899049 -53.621593 0.548310 1717 | VERTEX2 1716 -151.036415 -53.085849 0.574550 1718 | VERTEX2 1717 -150.003507 -52.557957 0.593201 1719 | VERTEX2 1718 -149.105044 -51.905153 0.610092 1720 | VERTEX2 1719 -148.205217 -51.164958 0.638865 1721 | VERTEX2 1720 -147.315100 -50.551922 0.662601 1722 | VERTEX2 1721 -146.478343 -49.980621 0.680843 1723 | VERTEX2 1722 -145.742455 -49.429482 0.697985 1724 | VERTEX2 1723 -144.992869 -48.733593 0.715565 1725 | VERTEX2 1724 -144.262280 -48.091709 0.713245 1726 | VERTEX2 1725 -143.402169 -47.454293 0.734753 1727 | VERTEX2 1726 -142.618099 -46.775681 0.753563 1728 | VERTEX2 1727 -141.705844 -46.009704 0.713100 1729 | VERTEX2 1728 -140.876990 -45.371595 0.657182 1730 | VERTEX2 1729 -140.087428 -44.772184 0.666413 1731 | VERTEX2 1730 -139.284411 -44.149787 0.689484 1732 | VERTEX2 1731 -138.516326 -43.487944 0.727704 1733 | VERTEX2 1732 -137.690844 -42.892168 0.595246 1734 | VERTEX2 1733 -136.911107 -42.385443 0.627418 1735 | VERTEX2 1734 -136.010532 -41.784133 0.652348 1736 | VERTEX2 1735 -135.222974 -41.136543 0.651384 1737 | VERTEX2 1736 -134.343886 -40.547954 0.655178 1738 | VERTEX2 1737 -133.589462 -39.975652 0.678118 1739 | VERTEX2 1738 -132.623734 -39.346837 0.487085 1740 | VERTEX2 1739 -131.717902 -38.825173 0.505033 1741 | VERTEX2 1740 -130.881233 -38.385232 0.528892 1742 | VERTEX2 1741 -130.044794 -37.871037 0.557130 1743 | VERTEX2 1742 -129.192544 -37.310923 0.585298 1744 | VERTEX2 1743 -128.378410 -36.722074 0.606776 1745 | VERTEX2 1744 -127.485471 -36.225896 0.626974 1746 | VERTEX2 1745 -126.831737 -35.515079 1.029949 1747 | VERTEX2 1746 -126.292606 -34.661445 1.118863 1748 | VERTEX2 1747 -125.974987 -33.752429 1.371061 1749 | VERTEX2 1748 -125.955343 -32.964411 1.936092 1750 | VERTEX2 1749 -126.326604 -32.028211 1.993611 1751 | VERTEX2 1750 -126.701864 -31.653795 2.533010 1752 | VERTEX2 1751 -127.132822 -31.536055 3.054605 1753 | VERTEX2 1752 -127.550143 -31.523685 -2.659845 1754 | VERTEX2 1753 -127.674479 -31.706942 -2.049790 1755 | VERTEX2 1754 -127.727626 -32.026432 -1.379035 1756 | VERTEX2 1755 -127.547720 -32.204261 -0.848738 1757 | VERTEX2 1756 -127.126351 -32.400225 -0.277420 1758 | VERTEX2 1757 -126.412509 -32.319535 -0.069399 1759 | VERTEX2 1758 -126.053367 -32.445123 -0.572528 1760 | VERTEX2 1759 -125.329663 -33.103730 -0.829788 1761 | VERTEX2 1760 -124.819532 -33.390281 -0.273176 1762 | VERTEX2 1761 -124.554164 -33.551316 0.271736 1763 | VERTEX2 1762 -123.473762 -32.730274 0.619121 1764 | VERTEX2 1763 -122.482156 -32.002787 0.665600 1765 | VERTEX2 1764 -121.611948 -31.330420 0.799908 1766 | VERTEX2 1765 -120.820398 -30.543992 0.882082 1767 | VERTEX2 1766 -120.095877 -29.777517 0.896535 1768 | VERTEX2 1767 -119.431346 -29.037847 0.900166 1769 | VERTEX2 1768 -118.755559 -28.152330 0.941819 1770 | VERTEX2 1769 -118.137112 -27.331273 0.971238 1771 | VERTEX2 1770 -117.454700 -26.608604 0.675735 1772 | VERTEX2 1771 -116.528963 -25.936468 0.653529 1773 | VERTEX2 1772 -115.627295 -25.371060 0.679866 1774 | VERTEX2 1773 -114.803756 -24.674560 0.687138 1775 | VERTEX2 1774 -113.921836 -23.942111 0.638798 1776 | VERTEX2 1775 -112.881404 -23.298372 0.598004 1777 | VERTEX2 1776 -112.084167 -22.721959 0.581273 1778 | VERTEX2 1777 -111.116102 -22.136000 0.589552 1779 | VERTEX2 1778 -110.127665 -21.430903 0.614169 1780 | VERTEX2 1779 -109.210227 -20.846396 0.626629 1781 | VERTEX2 1780 -108.386336 -20.304859 0.658449 1782 | VERTEX2 1781 -107.513738 -19.550173 0.676643 1783 | VERTEX2 1782 -106.701784 -18.862802 0.710378 1784 | VERTEX2 1783 -106.032436 -18.264862 0.718302 1785 | VERTEX2 1784 -105.136377 -17.473474 0.749233 1786 | VERTEX2 1785 -104.261811 -16.670623 0.774250 1787 | VERTEX2 1786 -103.577159 -15.930040 0.792665 1788 | VERTEX2 1787 -102.597503 -15.005411 0.753685 1789 | VERTEX2 1788 -101.821958 -14.351032 0.740379 1790 | VERTEX2 1789 -100.944209 -13.762318 0.596842 1791 | VERTEX2 1790 -99.933686 -13.106516 0.619615 1792 | VERTEX2 1791 -99.076435 -12.578213 0.644047 1793 | VERTEX2 1792 -98.258393 -11.975754 0.677128 1794 | VERTEX2 1793 -97.321018 -11.309771 0.672429 1795 | VERTEX2 1794 -96.447165 -10.699001 0.671530 1796 | VERTEX2 1795 -95.549748 -10.090321 0.696015 1797 | VERTEX2 1796 -94.730870 -9.349958 0.696753 1798 | VERTEX2 1797 -93.964293 -8.714498 0.713327 1799 | VERTEX2 1798 -93.115209 -8.124579 0.717135 1800 | VERTEX2 1799 -92.376548 -7.377688 0.740308 1801 | VERTEX2 1800 -91.629073 -6.609999 0.762760 1802 | VERTEX2 1801 -90.809716 -5.793871 0.747548 1803 | VERTEX2 1802 -89.959670 -5.157872 0.741079 1804 | VERTEX2 1803 -89.111975 -4.461479 0.739662 1805 | VERTEX2 1804 -88.197423 -3.722356 0.761718 1806 | VERTEX2 1805 -87.455867 -2.985281 0.690520 1807 | VERTEX2 1806 -86.590880 -2.340556 0.682226 1808 | VERTEX2 1807 -85.813375 -1.687480 0.710056 1809 | VERTEX2 1808 -84.990393 -0.980697 0.743708 1810 | VERTEX2 1809 -84.364370 -0.301795 0.749948 1811 | VERTEX2 1810 -83.563976 0.403948 0.768176 1812 | VERTEX2 1811 -82.760904 1.157948 0.780976 1813 | VERTEX2 1812 -82.115160 1.765571 0.788204 1814 | VERTEX2 1813 -81.328030 2.560781 0.790120 1815 | VERTEX2 1814 -80.654727 3.204268 0.818740 1816 | VERTEX2 1815 -79.934076 3.900908 0.747011 1817 | VERTEX2 1816 -79.163055 4.554308 0.752587 1818 | VERTEX2 1817 -78.360113 5.225527 0.775949 1819 | VERTEX2 1818 -77.635780 5.986962 0.783205 1820 | VERTEX2 1819 -76.891162 6.634930 0.789557 1821 | VERTEX2 1820 -76.179423 7.257807 0.770790 1822 | VERTEX2 1821 -75.246700 8.091800 0.781854 1823 | VERTEX2 1822 -74.557375 8.785785 0.790911 1824 | VERTEX2 1823 -73.871339 9.438419 0.752521 1825 | VERTEX2 1824 -73.045517 10.136467 0.767444 1826 | VERTEX2 1825 -72.345279 10.931627 0.784830 1827 | VERTEX2 1826 -71.546478 11.533263 0.785759 1828 | VERTEX2 1827 -70.769696 12.142186 0.800808 1829 | VERTEX2 1828 -70.049486 12.824979 0.823639 1830 | VERTEX2 1829 -69.510068 13.623639 0.818183 1831 | VERTEX2 1830 -68.743664 14.451563 0.811546 1832 | VERTEX2 1831 -67.953779 15.241271 0.850706 1833 | VERTEX2 1832 -67.252154 15.960955 0.877595 1834 | VERTEX2 1833 -66.547977 16.711223 0.827051 1835 | VERTEX2 1834 -65.883144 17.415248 0.833165 1836 | VERTEX2 1835 -65.156353 18.170255 0.829685 1837 | VERTEX2 1836 -64.369299 18.932493 0.838634 1838 | VERTEX2 1837 -63.614269 19.768666 0.839841 1839 | VERTEX2 1838 -62.899492 20.485068 0.851236 1840 | VERTEX2 1839 -62.245156 21.351583 0.845293 1841 | VERTEX2 1840 -61.545828 22.170911 0.854284 1842 | VERTEX2 1841 -60.872686 22.903209 0.782918 1843 | VERTEX2 1842 -60.038800 23.709205 0.785088 1844 | VERTEX2 1843 -59.209578 24.373047 0.792068 1845 | VERTEX2 1844 -58.385697 25.165834 0.820690 1846 | VERTEX2 1845 -57.770223 25.874945 0.841284 1847 | VERTEX2 1846 -56.964031 26.745719 0.862673 1848 | VERTEX2 1847 -56.211010 27.538170 0.874695 1849 | VERTEX2 1848 -55.615196 28.203065 0.898239 1850 | VERTEX2 1849 -54.978383 29.119337 0.906852 1851 | VERTEX2 1850 -54.379090 29.926483 0.907105 1852 | VERTEX2 1851 -53.748420 30.684453 0.916783 1853 | VERTEX2 1852 -53.103715 31.462429 0.898570 1854 | VERTEX2 1853 -52.329071 32.263212 0.910075 1855 | VERTEX2 1854 -51.615385 33.065716 0.912235 1856 | VERTEX2 1855 -51.041841 33.837462 0.909308 1857 | VERTEX2 1856 -50.416198 34.557563 0.918009 1858 | VERTEX2 1857 -49.775068 35.288747 0.925479 1859 | VERTEX2 1858 -49.053546 36.264634 0.937635 1860 | VERTEX2 1859 -48.340492 37.099336 0.922162 1861 | VERTEX2 1860 -47.672680 37.865318 0.834424 1862 | VERTEX2 1861 -46.957339 38.610575 0.847275 1863 | VERTEX2 1862 -46.156671 39.330790 0.856773 1864 | VERTEX2 1863 -45.488172 40.184206 0.884076 1865 | VERTEX2 1864 -44.786607 40.957214 0.891523 1866 | VERTEX2 1865 -44.141266 41.842442 0.878797 1867 | VERTEX2 1866 -43.409001 42.652439 0.875852 1868 | VERTEX2 1867 -42.667915 43.372089 0.877219 1869 | VERTEX2 1868 -42.021711 44.117235 0.877228 1870 | VERTEX2 1869 -41.345484 44.926083 0.880185 1871 | VERTEX2 1870 -40.717802 45.791670 0.878471 1872 | VERTEX2 1871 -40.017029 46.570772 0.878093 1873 | VERTEX2 1872 -39.257142 47.376775 0.878098 1874 | VERTEX2 1873 -38.465621 48.223307 0.884010 1875 | VERTEX2 1874 -37.887580 48.919755 0.871730 1876 | VERTEX2 1875 -37.174241 49.689579 0.864415 1877 | VERTEX2 1876 -36.517846 50.441813 0.864835 1878 | VERTEX2 1877 -35.778416 51.156511 0.874948 1879 | VERTEX2 1878 -35.083386 52.002104 0.857026 1880 | VERTEX2 1879 -34.380345 52.881161 0.997225 1881 | VERTEX2 1880 -33.812069 53.570000 0.867943 1882 | VERTEX2 1881 -33.065884 54.271455 0.880562 1883 | VERTEX2 1882 -32.373445 55.178374 0.887331 1884 | VERTEX2 1883 -31.611293 56.042796 0.881895 1885 | VERTEX2 1884 -31.012230 56.824071 0.885776 1886 | VERTEX2 1885 -30.220140 57.806129 0.858597 1887 | VERTEX2 1886 -29.456041 58.620197 0.869141 1888 | VERTEX2 1887 -28.755907 59.281547 0.862349 1889 | VERTEX2 1888 -27.948915 60.130287 0.882078 1890 | VERTEX2 1889 -27.390965 60.880110 0.861701 1891 | VERTEX2 1890 -26.725720 61.711918 0.874863 1892 | VERTEX2 1891 -26.085439 62.448906 0.868574 1893 | VERTEX2 1892 -25.275566 63.359538 0.885337 1894 | VERTEX2 1893 -24.607158 64.177987 0.875441 1895 | VERTEX2 1894 -23.958571 64.841522 0.871731 1896 | VERTEX2 1895 -23.223540 65.755959 0.851995 1897 | VERTEX2 1896 -22.488045 66.533010 0.851226 1898 | VERTEX2 1897 -21.805721 67.320744 0.851158 1899 | VERTEX2 1898 -21.242896 67.995723 0.855991 1900 | VERTEX2 1899 -20.544706 68.751668 0.851431 1901 | VERTEX2 1900 -19.892519 69.501948 0.885628 1902 | VERTEX2 1901 -19.332882 70.185192 0.824875 1903 | VERTEX2 1902 -18.533119 70.978393 0.716597 1904 | VERTEX2 1903 -17.787824 71.672129 0.881982 1905 | VERTEX2 1904 -16.970554 72.504366 0.886753 1906 | VERTEX2 1905 -16.185508 73.325233 0.940578 1907 | VERTEX2 1906 -15.664086 74.138584 1.047379 1908 | VERTEX2 1907 -15.021794 74.981652 0.995243 1909 | VERTEX2 1908 -14.418862 75.859817 0.991668 1910 | VERTEX2 1909 -13.808126 76.761051 0.972181 1911 | VERTEX2 1910 -13.594527 77.015346 0.272135 1912 | VERTEX2 1911 -12.590876 77.167821 0.078766 1913 | VERTEX2 1912 -11.634216 76.933159 -0.397429 1914 | VERTEX2 1913 -10.756385 76.377669 -0.653850 1915 | VERTEX2 1914 -10.056049 75.742543 -0.640529 1916 | VERTEX2 1915 -9.207855 75.101497 -0.669171 1917 | VERTEX2 1916 -8.476963 74.495341 -0.714495 1918 | VERTEX2 1917 -7.695078 73.766603 -0.744177 1919 | VERTEX2 1918 -6.860317 72.941637 -0.745820 1920 | VERTEX2 1919 -6.125468 72.102848 -0.762132 1921 | VERTEX2 1920 -5.391937 71.201072 -0.791151 1922 | VERTEX2 1921 -4.642195 70.478652 -0.644188 1923 | VERTEX2 1922 -3.587205 69.913927 -0.306668 1924 | VERTEX2 1923 -2.931521 69.923850 0.275238 1925 | VERTEX2 1924 -2.453348 70.180281 0.880499 1926 | VERTEX2 1925 -2.229814 70.724935 1.488603 1927 | VERTEX2 1926 -2.331446 71.249965 2.070389 1928 | VERTEX2 1927 -2.708269 71.744495 2.687066 1929 | VERTEX2 1928 -3.140225 71.848391 -2.978301 1930 | VERTEX2 1929 -3.464513 71.642590 -2.395755 1931 | VERTEX2 1930 -3.667261 71.281925 -1.786109 1932 | VERTEX2 1931 -3.585509 70.793069 -1.197585 1933 | VERTEX2 1932 -3.367998 70.426235 -0.623926 1934 | VERTEX2 1933 -2.847449 70.216380 -0.048966 1935 | VERTEX2 1934 -2.559896 70.270348 0.520491 1936 | VERTEX2 1935 -2.410522 70.466670 1.286527 1937 | VERTEX2 1936 -2.380860 70.602682 1.924344 1938 | VERTEX2 1937 -2.737149 71.255891 1.914662 1939 | VERTEX2 1938 -2.917004 71.728943 2.314550 1940 | VERTEX2 1939 -3.236598 72.093704 1.908741 1941 | VERTEX2 1940 -3.210199 73.094617 1.548734 1942 | --------------------------------------------------------------------------------