├── Chapter2_Visualize_Multivariate_Data.ipynb ├── Chapter3_PCA.ipynb ├── Chapter_4_MDS.ipynb ├── Chapter_5_Factor_Analysis.ipynb ├── Chapter_6_Cluster_Analysis.ipynb ├── Exam01.MD ├── Function_Numpy_Pandas.ipynb ├── Intro_to_Multivariate.ipynb ├── KKUlogo.png ├── MVA001.ipynb ├── Python101.ipynb └── README.md /Chapter_5_Factor_Analysis.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Chapter 5 Factor Analysis.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyMoIGr/V0o7OZLNL+yP4qGe", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "markdown", 32 | "metadata": { 33 | "id": "paGuFRdZEbiq" 34 | }, 35 | "source": [ 36 | "https://www.datacamp.com/community/tutorials/introduction-factor-analysis\n", 37 | "\n" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "metadata": { 43 | "id": "ati_OmprDAN0" 44 | }, 45 | "source": [ 46 | "import pandas as pd" 47 | ], 48 | "execution_count": 1, 49 | "outputs": [] 50 | }, 51 | { 52 | "cell_type": "code", 53 | "metadata": { 54 | "colab": { 55 | "base_uri": "https://localhost:8080/", 56 | "height": 204 57 | }, 58 | "id": "eCzUN4fsGRnR", 59 | "outputId": "64b38739-01aa-4f66-9cdd-25d59d5d7ce6" 60 | }, 61 | "source": [ 62 | "BFI_data = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/psych/bfi.csv')\n", 63 | "BFI_data.head()" 64 | ], 65 | "execution_count": 2, 66 | "outputs": [ 67 | { 68 | "output_type": "execute_result", 69 | "data": { 70 | "text/html": [ 71 | "
\n", 72 | "\n", 85 | "\n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | "
Unnamed: 0A1A2A3A4A5C1C2C3C4C5E1E2E3E4E5N1N2N3N4N5O1O2O3O4O5gendereducationage
0616172.04.03.04.04.02.03.03.04.04.03.03.03.04.04.03.04.02.02.03.03.063.04.03.01NaN16
1616182.04.05.02.05.05.04.04.03.04.01.01.06.04.03.03.03.03.05.05.04.024.03.03.02NaN18
2616205.04.05.04.04.04.05.04.02.05.02.04.04.04.05.04.05.04.02.03.04.025.05.02.02NaN17
3616214.04.06.05.05.04.04.03.05.05.05.03.04.04.04.02.05.02.04.01.03.034.03.05.02NaN17
4616222.03.03.04.05.04.04.05.03.02.02.02.05.04.05.02.03.04.04.03.03.034.03.03.01NaN17
\n", 283 | "
" 284 | ], 285 | "text/plain": [ 286 | " Unnamed: 0 A1 A2 A3 A4 A5 ... O3 O4 O5 gender education age\n", 287 | "0 61617 2.0 4.0 3.0 4.0 4.0 ... 3.0 4.0 3.0 1 NaN 16\n", 288 | "1 61618 2.0 4.0 5.0 2.0 5.0 ... 4.0 3.0 3.0 2 NaN 18\n", 289 | "2 61620 5.0 4.0 5.0 4.0 4.0 ... 5.0 5.0 2.0 2 NaN 17\n", 290 | "3 61621 4.0 4.0 6.0 5.0 5.0 ... 4.0 3.0 5.0 2 NaN 17\n", 291 | "4 61622 2.0 3.0 3.0 4.0 5.0 ... 4.0 3.0 3.0 1 NaN 17\n", 292 | "\n", 293 | "[5 rows x 29 columns]" 294 | ] 295 | }, 296 | "metadata": { 297 | "tags": [] 298 | }, 299 | "execution_count": 2 300 | } 301 | ] 302 | }, 303 | { 304 | "cell_type": "markdown", 305 | "metadata": { 306 | "id": "6_QllhoJHoCp" 307 | }, 308 | "source": [ 309 | "## Factor Analysis'\n", 310 | "\n", 311 | "## Assumptions: \n", 312 | "\n", 313 | "ในข้อมูล multivariate ที่มีตัวแปร Observe Variables จำนวน n ตัว\n", 314 | "\n", 315 | "มีตัวแปร Factors (Latent Variables) จำนวน k ตัว ที่สามารถอธิบายข้อมูลทั้งหมดได้\n", 316 | "\n", 317 | "โดย k < n\n", 318 | "\n", 319 | "![1.png]()\n", 320 | "\n" 321 | ] 322 | }, 323 | { 324 | "cell_type": "markdown", 325 | "metadata": { 326 | "id": "E_y7DZ3hKxug" 327 | }, 328 | "source": [ 329 | "Assumptions ในการทำ Factor Analysis:\n", 330 | "\n", 331 | "* There are no outliers in data.\n", 332 | "* Sample size should be greater than the factor.\n", 333 | "* There should not be ***perfect multicollinearity***.\n", 334 | "* There should not be ***homoscedasticity*** between the variables." 335 | ] 336 | }, 337 | { 338 | "cell_type": "markdown", 339 | "metadata": { 340 | "id": "vQ3yJ_GVQmce" 341 | }, 342 | "source": [ 343 | "การทำ Factor Analysis มีประโยชน์หลัก 2 อันคือ\n", 344 | "1. Confirmatory\n", 345 | "2. Exploratory" 346 | ] 347 | }, 348 | { 349 | "cell_type": "markdown", 350 | "metadata": { 351 | "id": "74OT_UwMOrSa" 352 | }, 353 | "source": [ 354 | "## การทำ Factor Analysis" 355 | ] 356 | }, 357 | { 358 | "cell_type": "code", 359 | "metadata": { 360 | "colab": { 361 | "base_uri": "https://localhost:8080/", 362 | "height": 317 363 | }, 364 | "id": "fDhq_X1ROqsD", 365 | "outputId": "6799ed35-be89-4e23-91e0-9f695f7d677e" 366 | }, 367 | "source": [ 368 | "from factor_analyzer import FactorAnalyzer\n", 369 | "import matplotlib.pyplot as plt" 370 | ], 371 | "execution_count": null, 372 | "outputs": [ 373 | { 374 | "output_type": "error", 375 | "ename": "ModuleNotFoundError", 376 | "evalue": "ignored", 377 | "traceback": [ 378 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", 379 | "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", 380 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mfactor_analyzer\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mFactorAnalyzer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", 381 | "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'factor_analyzer'", 382 | "", 383 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n" 384 | ] 385 | } 386 | ] 387 | }, 388 | { 389 | "cell_type": "markdown", 390 | "metadata": { 391 | "id": "BGUXudnCPnBl" 392 | }, 393 | "source": [ 394 | "แก้ error ```ModuleNotFoundError: No module named 'factor_analyzer'``` โดย https://stackoverflow.com/questions/61830329/modulenotfounderror-no-module-named-factor-analyzer-python-notebook" 395 | ] 396 | }, 397 | { 398 | "cell_type": "markdown", 399 | "metadata": { 400 | "id": "s3DBAv08P7pD" 401 | }, 402 | "source": [ 403 | "วิธี install package อื่นๆ" 404 | ] 405 | }, 406 | { 407 | "cell_type": "code", 408 | "metadata": { 409 | "colab": { 410 | "base_uri": "https://localhost:8080/" 411 | }, 412 | "id": "fH4aukMnGi5E", 413 | "outputId": "82c53f8b-6bba-44cf-922e-fa1f3264e69f" 414 | }, 415 | "source": [ 416 | "!pip install factor_analyzer" 417 | ], 418 | "execution_count": 3, 419 | "outputs": [ 420 | { 421 | "output_type": "stream", 422 | "text": [ 423 | "Collecting factor_analyzer\n", 424 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/44/b5/cbd83484ca6dd4c6562c6d66a6a3a0ecf526e79b2b575b9fb4bf5ad172dd/factor_analyzer-0.3.2.tar.gz (40kB)\n", 425 | "\r\u001b[K |████████▏ | 10kB 13.3MB/s eta 0:00:01\r\u001b[K |████████████████▍ | 20kB 18.6MB/s eta 0:00:01\r\u001b[K |████████████████████████▌ | 30kB 22.3MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 40kB 4.4MB/s \n", 426 | "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from factor_analyzer) (1.1.5)\n", 427 | "Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from factor_analyzer) (1.4.1)\n", 428 | "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from factor_analyzer) (1.19.5)\n", 429 | "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from factor_analyzer) (0.22.2.post1)\n", 430 | "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->factor_analyzer) (2018.9)\n", 431 | "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->factor_analyzer) (2.8.1)\n", 432 | "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->factor_analyzer) (1.0.1)\n", 433 | "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->factor_analyzer) (1.15.0)\n", 434 | "Building wheels for collected packages: factor-analyzer\n", 435 | " Building wheel for factor-analyzer (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 436 | " Created wheel for factor-analyzer: filename=factor_analyzer-0.3.2-cp37-none-any.whl size=40383 sha256=1603bacfd5aa2442a19c69f7a467732f6084bb84bcdd8655d36675391b4d461b\n", 437 | " Stored in directory: /root/.cache/pip/wheels/4a/d0/57/f1330cb9c80e82d8d05391c74c94ed61ce3f03bf6157f3d6db\n", 438 | "Successfully built factor-analyzer\n", 439 | "Installing collected packages: factor-analyzer\n", 440 | "Successfully installed factor-analyzer-0.3.2\n" 441 | ], 442 | "name": "stdout" 443 | } 444 | ] 445 | }, 446 | { 447 | "cell_type": "code", 448 | "metadata": { 449 | "id": "WNZ6s6d7P6fg" 450 | }, 451 | "source": [ 452 | "from factor_analyzer import FactorAnalyzer\n", 453 | "import matplotlib.pyplot as plt # = from matplotlib import pyplot as plt" 454 | ], 455 | "execution_count": 4, 456 | "outputs": [] 457 | }, 458 | { 459 | "cell_type": "markdown", 460 | "metadata": { 461 | "id": "Qob7AoYJSqw0" 462 | }, 463 | "source": [ 464 | "## Quiz 5 เลือกข้อมูลมาเฉพาะ a1,a2,a3,...,o3,o4,o5 ด้วยคำสั่ง ```.iloc[]```" 465 | ] 466 | }, 467 | { 468 | "cell_type": "code", 469 | "metadata": { 470 | "id": "aHj2aVbJQVOf", 471 | "colab": { 472 | "base_uri": "https://localhost:8080/", 473 | "height": 419 474 | }, 475 | "outputId": "968521a4-5f6e-44c7-c2a8-a2bd4fe130ad" 476 | }, 477 | "source": [ 478 | "BFI_data_dropped = BFI_data.iloc[:,1:-3]\n", 479 | "BFI_data_dropped" 480 | ], 481 | "execution_count": 5, 482 | "outputs": [ 483 | { 484 | "output_type": "execute_result", 485 | "data": { 486 | "text/html": [ 487 | "
\n", 488 | "\n", 501 | "\n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | "
A1A2A3A4A5C1C2C3C4C5E1E2E3E4E5N1N2N3N4N5O1O2O3O4O5
02.04.03.04.04.02.03.03.04.04.03.03.03.04.04.03.04.02.02.03.03.063.04.03.0
12.04.05.02.05.05.04.04.03.04.01.01.06.04.03.03.03.03.05.05.04.024.03.03.0
25.04.05.04.04.04.05.04.02.05.02.04.04.04.05.04.05.04.02.03.04.025.05.02.0
34.04.06.05.05.04.04.03.05.05.05.03.04.04.04.02.05.02.04.01.03.034.03.05.0
42.03.03.04.05.04.04.05.03.02.02.02.05.04.05.02.03.04.04.03.03.034.03.03.0
..............................................................................
27956.01.03.03.03.06.06.06.01.01.01.04.05.05.06.01.01.01.0NaN1.06.016.06.01.0
27962.04.04.03.05.02.03.04.04.03.02.02.04.04.03.0NaN3.02.03.03.06.035.04.02.0
27972.03.05.02.05.05.05.05.01.01.02.02.06.03.06.03.04.03.03.01.05.016.04.03.0
27985.02.02.04.04.05.05.05.02.06.02.02.04.05.04.05.05.06.04.01.05.025.05.01.0
27992.03.01.04.02.05.05.03.03.03.03.03.01.02.02.01.02.02.01.01.03.013.05.01.0
\n", 843 | "

2800 rows × 25 columns

\n", 844 | "
" 845 | ], 846 | "text/plain": [ 847 | " A1 A2 A3 A4 A5 C1 C2 ... N4 N5 O1 O2 O3 O4 O5\n", 848 | "0 2.0 4.0 3.0 4.0 4.0 2.0 3.0 ... 2.0 3.0 3.0 6 3.0 4.0 3.0\n", 849 | "1 2.0 4.0 5.0 2.0 5.0 5.0 4.0 ... 5.0 5.0 4.0 2 4.0 3.0 3.0\n", 850 | "2 5.0 4.0 5.0 4.0 4.0 4.0 5.0 ... 2.0 3.0 4.0 2 5.0 5.0 2.0\n", 851 | "3 4.0 4.0 6.0 5.0 5.0 4.0 4.0 ... 4.0 1.0 3.0 3 4.0 3.0 5.0\n", 852 | "4 2.0 3.0 3.0 4.0 5.0 4.0 4.0 ... 4.0 3.0 3.0 3 4.0 3.0 3.0\n", 853 | "... ... ... ... ... ... ... ... ... ... ... ... .. ... ... ...\n", 854 | "2795 6.0 1.0 3.0 3.0 3.0 6.0 6.0 ... NaN 1.0 6.0 1 6.0 6.0 1.0\n", 855 | "2796 2.0 4.0 4.0 3.0 5.0 2.0 3.0 ... 3.0 3.0 6.0 3 5.0 4.0 2.0\n", 856 | "2797 2.0 3.0 5.0 2.0 5.0 5.0 5.0 ... 3.0 1.0 5.0 1 6.0 4.0 3.0\n", 857 | "2798 5.0 2.0 2.0 4.0 4.0 5.0 5.0 ... 4.0 1.0 5.0 2 5.0 5.0 1.0\n", 858 | "2799 2.0 3.0 1.0 4.0 2.0 5.0 5.0 ... 1.0 1.0 3.0 1 3.0 5.0 1.0\n", 859 | "\n", 860 | "[2800 rows x 25 columns]" 861 | ] 862 | }, 863 | "metadata": { 864 | "tags": [] 865 | }, 866 | "execution_count": 5 867 | } 868 | ] 869 | }, 870 | { 871 | "cell_type": "code", 872 | "metadata": { 873 | "id": "nbDb5e5yygwT" 874 | }, 875 | "source": [ 876 | "BFI_data_dropped = BFI_data_dropped.dropna()" 877 | ], 878 | "execution_count": 6, 879 | "outputs": [] 880 | }, 881 | { 882 | "cell_type": "code", 883 | "metadata": { 884 | "id": "tslCUQpn0WJI", 885 | "colab": { 886 | "base_uri": "https://localhost:8080/" 887 | }, 888 | "outputId": "607be4e3-9023-46e3-e1a0-001bb9f9af0e" 889 | }, 890 | "source": [ 891 | "BFI_data_dropped.shape" 892 | ], 893 | "execution_count": 7, 894 | "outputs": [ 895 | { 896 | "output_type": "execute_result", 897 | "data": { 898 | "text/plain": [ 899 | "(2436, 25)" 900 | ] 901 | }, 902 | "metadata": { 903 | "tags": [] 904 | }, 905 | "execution_count": 7 906 | } 907 | ] 908 | }, 909 | { 910 | "cell_type": "markdown", 911 | "metadata": { 912 | "id": "AwQkUuki06XL" 913 | }, 914 | "source": [ 915 | "## Bartlett’s test" 916 | ] 917 | }, 918 | { 919 | "cell_type": "markdown", 920 | "metadata": { 921 | "id": "BDKzTgeJIWjz" 922 | }, 923 | "source": [ 924 | "p value เข้าใกล้ 0 ดี" 925 | ] 926 | }, 927 | { 928 | "cell_type": "code", 929 | "metadata": { 930 | "id": "VAudD-dR0YnQ", 931 | "colab": { 932 | "base_uri": "https://localhost:8080/" 933 | }, 934 | "outputId": "a6c71c9e-8c41-4cb9-892e-6efa2c7d99d2" 935 | }, 936 | "source": [ 937 | "from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity\n", 938 | "\n", 939 | "chi_square_value,p_value = calculate_bartlett_sphericity(BFI_data_dropped)\n", 940 | "\n", 941 | "chi_square_value, p_value" 942 | ], 943 | "execution_count": 8, 944 | "outputs": [ 945 | { 946 | "output_type": "execute_result", 947 | "data": { 948 | "text/plain": [ 949 | "(18170.966350869243, 0.0)" 950 | ] 951 | }, 952 | "metadata": { 953 | "tags": [] 954 | }, 955 | "execution_count": 8 956 | } 957 | ] 958 | }, 959 | { 960 | "cell_type": "markdown", 961 | "metadata": { 962 | "id": "glVPufQp2QxU" 963 | }, 964 | "source": [ 965 | "## Kaiser-Meyer-Olkin (KMO) Test" 966 | ] 967 | }, 968 | { 969 | "cell_type": "markdown", 970 | "metadata": { 971 | "id": "LzY0HTZl28ru" 972 | }, 973 | "source": [ 974 | "ถ้าค่า KMO model มีค่ามากกว่า 0.6 แปลว่าข้อมูลเหมาะสมที่นำไปทำ Factor Analysis" 975 | ] 976 | }, 977 | { 978 | "cell_type": "code", 979 | "metadata": { 980 | "id": "g_aYnoxh1Iyn", 981 | "colab": { 982 | "base_uri": "https://localhost:8080/" 983 | }, 984 | "outputId": "2488b920-44ad-4834-a14e-449e9ff7d409" 985 | }, 986 | "source": [ 987 | "from factor_analyzer.factor_analyzer import calculate_kmo\n", 988 | "\n", 989 | "kmo_all,kmo_model=calculate_kmo(BFI_data_dropped)\n", 990 | "\n", 991 | "kmo_model" 992 | ], 993 | "execution_count": 9, 994 | "outputs": [ 995 | { 996 | "output_type": "execute_result", 997 | "data": { 998 | "text/plain": [ 999 | "0.8485397221949221" 1000 | ] 1001 | }, 1002 | "metadata": { 1003 | "tags": [] 1004 | }, 1005 | "execution_count": 9 1006 | } 1007 | ] 1008 | }, 1009 | { 1010 | "cell_type": "markdown", 1011 | "metadata": { 1012 | "id": "NNr12PVl4uoi" 1013 | }, 1014 | "source": [ 1015 | "## Factor Analysis" 1016 | ] 1017 | }, 1018 | { 1019 | "cell_type": "markdown", 1020 | "metadata": { 1021 | "id": "jtJGxEye6PN9" 1022 | }, 1023 | "source": [ 1024 | "### Import" 1025 | ] 1026 | }, 1027 | { 1028 | "cell_type": "code", 1029 | "metadata": { 1030 | "id": "HiIQ8zut6ROr" 1031 | }, 1032 | "source": [ 1033 | "from factor_analyzer import FactorAnalyzer" 1034 | ], 1035 | "execution_count": 10, 1036 | "outputs": [] 1037 | }, 1038 | { 1039 | "cell_type": "markdown", 1040 | "metadata": { 1041 | "id": "moQ2bWpo6Uzw" 1042 | }, 1043 | "source": [ 1044 | "### Define" 1045 | ] 1046 | }, 1047 | { 1048 | "cell_type": "code", 1049 | "metadata": { 1050 | "id": "kFKV5wyi6bgE" 1051 | }, 1052 | "source": [ 1053 | "fa = FactorAnalyzer(n_factors=20)" 1054 | ], 1055 | "execution_count": 11, 1056 | "outputs": [] 1057 | }, 1058 | { 1059 | "cell_type": "markdown", 1060 | "metadata": { 1061 | "id": "W8QsXN_l8V_9" 1062 | }, 1063 | "source": [ 1064 | "## Fit-transform" 1065 | ] 1066 | }, 1067 | { 1068 | "cell_type": "code", 1069 | "metadata": { 1070 | "id": "P6eu1THq8tup" 1071 | }, 1072 | "source": [ 1073 | "data_fa = fa.fit_transform(BFI_data_dropped)" 1074 | ], 1075 | "execution_count": 12, 1076 | "outputs": [] 1077 | }, 1078 | { 1079 | "cell_type": "code", 1080 | "metadata": { 1081 | "id": "N7Ki_fwm87qn", 1082 | "colab": { 1083 | "base_uri": "https://localhost:8080/" 1084 | }, 1085 | "outputId": "9e61ed08-2924-4377-c2fb-0e1c605c9da4" 1086 | }, 1087 | "source": [ 1088 | "data_fa.shape" 1089 | ], 1090 | "execution_count": 13, 1091 | "outputs": [ 1092 | { 1093 | "output_type": "execute_result", 1094 | "data": { 1095 | "text/plain": [ 1096 | "(2436, 20)" 1097 | ] 1098 | }, 1099 | "metadata": { 1100 | "tags": [] 1101 | }, 1102 | "execution_count": 13 1103 | } 1104 | ] 1105 | }, 1106 | { 1107 | "cell_type": "markdown", 1108 | "metadata": { 1109 | "id": "r0XYOQh8-dqR" 1110 | }, 1111 | "source": [ 1112 | "## วิธีตัดสินว่าเราจะลดเหลือกี่ dimension (มี factors ทั้งหมดกี่ตัว)" 1113 | ] 1114 | }, 1115 | { 1116 | "cell_type": "code", 1117 | "metadata": { 1118 | "id": "KbvyZKwP87mV" 1119 | }, 1120 | "source": [ 1121 | "ev,v = fa.get_eigenvalues()" 1122 | ], 1123 | "execution_count": 14, 1124 | "outputs": [] 1125 | }, 1126 | { 1127 | "cell_type": "markdown", 1128 | "metadata": { 1129 | "id": "iOfcouP4-uk0" 1130 | }, 1131 | "source": [ 1132 | "### ใช้ eigen values" 1133 | ] 1134 | }, 1135 | { 1136 | "cell_type": "code", 1137 | "metadata": { 1138 | "id": "RY-dg3JA9plt", 1139 | "colab": { 1140 | "base_uri": "https://localhost:8080/" 1141 | }, 1142 | "outputId": "d2e9871a-67d4-4bf7-b382-f9afdc4c2256" 1143 | }, 1144 | "source": [ 1145 | "ev" 1146 | ], 1147 | "execution_count": 15, 1148 | "outputs": [ 1149 | { 1150 | "output_type": "execute_result", 1151 | "data": { 1152 | "text/plain": [ 1153 | "array([5.13431118, 2.75188667, 2.14270195, 1.85232761, 1.54816285,\n", 1154 | " 1.07358247, 0.83953893, 0.79920618, 0.71898919, 0.68808879,\n", 1155 | " 0.67637336, 0.65179984, 0.62325295, 0.59656284, 0.56309083,\n", 1156 | " 0.54330533, 0.51451752, 0.49450315, 0.48263952, 0.448921 ,\n", 1157 | " 0.42336611, 0.40067145, 0.38780448, 0.38185679, 0.26253902])" 1158 | ] 1159 | }, 1160 | "metadata": { 1161 | "tags": [] 1162 | }, 1163 | "execution_count": 15 1164 | } 1165 | ] 1166 | }, 1167 | { 1168 | "cell_type": "markdown", 1169 | "metadata": { 1170 | "id": "lgFykNPq_A_R" 1171 | }, 1172 | "source": [ 1173 | "## scree plot" 1174 | ] 1175 | }, 1176 | { 1177 | "cell_type": "code", 1178 | "metadata": { 1179 | "id": "sm6haZqc8tkm", 1180 | "colab": { 1181 | "base_uri": "https://localhost:8080/", 1182 | "height": 295 1183 | }, 1184 | "outputId": "4e0c6f9c-7d62-4757-ad3b-ee438aa9d066" 1185 | }, 1186 | "source": [ 1187 | "# Create scree plot using matplotlib\n", 1188 | "plt.plot(range(1,BFI_data_dropped.shape[1]+1),ev,'bo-')\n", 1189 | "plt.plot([0,BFI_data_dropped.shape[1]+1],[1,1],'r--')\n", 1190 | "plt.title('Scree Plot')\n", 1191 | "plt.xlabel('Factors')\n", 1192 | "plt.ylabel('Eigenvalue')\n", 1193 | "plt.grid()\n", 1194 | "plt.show()" 1195 | ], 1196 | "execution_count": 16, 1197 | "outputs": [ 1198 | { 1199 | "output_type": "display_data", 1200 | "data": { 1201 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZgcVb3/8fc3C0kmk0DIMglM0hFQEJEbHFQEBYJcFkFFRQQDiApBMReCLBrD/Qk/DZuAgApXlO1CICC4YERFJRMEEUjYAiQEAskkJGQh62SALPO9f5xu0tPpnulZaqq7+vN6nnq6u6q665z05FPVp06dMndHRESSp0fcBRARkWgo4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIRM7PTzOzRuMshlUcBL2XHzD5pZv8ys3VmttrMHjOzj8ZcpovNbLOZNZrZ2nT5PtGBz6k3s9OjKKNUHgW8lBUzGwhMB34G7AzsClwCvNvOz+nV9aXjHnevBoYCjwK/NTOLYDsiRVHAS7n5AIC73+3uW939bXd/yN2fz6xgZmeY2Vwz22BmL5nZR9LzF5rZ98zseWCjmfUyswPSR9trzew5Mzs063N2NLObzWyZmb1hZj82s55tFdDdNwO3A8OBwbnLzexAM3sq/QvkKTM7MD1/CvAp4OfpXwI/79S/lFQ8BbyUm/nAVjO73cyONrNB2QvN7MvAxcCpwEDgc8BbWaucBBwD7ATUAH8Cfkz4NXA+cL+ZDU2vexuwBdgD2A84Amiz+cTM+gCnAYvdfVXOsp3T27yeEP7XAH8ys8HuPhn4JzDB3avdfUIR/x4iBSngpay4+3rgk4ADvwJWmtkDZlaTXuV04Ep3f8qDV919UdZHXO/ui939beBk4EF3f9Ddm939b8As4DPpz/sMMNHdN7r7CuCnwImtFO8EM1sLLAbqgC/kWecY4BV3v8Pdt7j73cA84LMd/CcRKSiKdkiRSLn7XMIRMma2F3AncC3h6HwksKCVty/Oep4Cvmxm2eHaG5iRXtYbWJbVjN4j5/257nX3k9so/i7Aopx5iwjnEkS6lAJeypq7zzOz24Az07MWA7u39pas54uBO9z9jNyVzGwE4cTtEHff0kXFBVhK2HlkGwX8JU/5RDpFTTRSVsxsLzM7z8xq069HEo7c/51e5dfA+WZWZ8EeZpYbqBl3Ap81syPNrKeZ9TWzQ82s1t2XAQ8BV5vZQDPrYWa7m9khnazCg8AHzOyr6ZO8XwH2JvQMAlgO7NbJbYgACngpPxuAjwNPmNlGQrC/AJwH4O6/AaYAd6XX/T3hBOp23H0x8HngB8BKwhH9BWz7f3EqsAPwErAGuA8Y0ZnCu/tbwLHp8r4FXAgcm3Uy9jrgeDNbY2bXd2ZbIqYbfoiIJJOO4EVEEkoBLyKSUAp4EZGEUsCLiCRUSfWDHzJkiI8ePbpD7924cSP9+/fv2gKVoEqpJ1ROXSulnlA5de3Oes6ePXuVuw/Nt6ykAn706NHMmjWrQ++tr6/n0EMP7doClaBKqSdUTl0rpZ5QOXXtznqaWe6V0e9RE42ISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCRURQX81KkwejT06BEep06Nu0QiItEpqW6SUZo6FcaPh6am8HrRovAaYNy4+MolIhKVijmCnzx5W7hnNDWF+SIiSVQxAd/Q0L75IiLlrmICftSo9s0XESl3FRPwU6ZAVVXLeVVVYb6ISBJFepLVzBYSbpu2Fdji7vtHub3WZE6kTp4cTrBWVcFNN+kEq4gkV3f0ohmbdb/JWI0bF6axY2HTJoW7iCRbxTTRZEulwlG8iEiSRXrTbTN7nXA3egd+6e435VlnPDAeoKampm7atGkd2lZjYyPV1dVFrXvrraO5444Uf/3rI/TuXV43HW9PPctdpdS1UuoJlVPX7qzn2LFjZxds/nb3yCZg1/TjMOA54ODW1q+rq/OOmjFjRtHr3nyzO7gvWNDhzcWmPfUsd5VS10qpp3vl1LU76wnM8gKZGmkTjbu/kX5cAfwO+FiU2ytWKhUe1UwjIkkWWcCbWX8zG5B5DhwBvBDV9tpDAS8ilSDKXjQ1wO/MLLOdu9z9LxFur2gjR4ZHBbyIJFlkAe/urwH/EdXnd0afPjBihAJeRJKtIrtJgrpKikjyKeBFRBKqogN+8WJobo67JCIi0ajogN+0Cd58M+6SiIhEo6IDHtRMIyLJpYBXwItIQingFfAiklAVG/ADBsCgQQp4EUmuig14UFdJEUk2BbwCXkQSSgG/CCIcEl9EJDYVH/CNjbBmTdwlERHpehUf8KBmGhFJJgU8CngRSSYFPAp4EUmmig74IUOgXz8FvIgkU0UHvJm6SopIclV0wIMCXkSSSwGvgBeRhFLAp2DVKti4Me6SiIh0LQV8uidNQ0O85RAR6WoKeHWVFJGEUsAr4EUkoSo+4HfZBXr1UsCLSPJUfMD37Am1tQp4EUmeig94UFdJEUkmBTwKeBFJJgU8IeCXLoXNm+MuiYhI11HAEwK+uRmWLIm7JCIiXUcBj7pKikgyKeBRwItIMkUe8GbW08yeMbPpUW+ro0aODI8KeBFJku44gj8HmNsN2+mwvn1h+HAFvIgkS6QBb2a1wDHAr6PcTldQV0kRSRpz9+g+3Ow+4DJgAHC+ux+bZ53xwHiAmpqaumnTpnVoW42NjVRXV3e4rJdcsjevvFLNnXc+2eHP6A6drWc5qZS6Vko9oXLq2p31HDt27Gx33z/vQnePZAKOBW5IPz8UmN7We+rq6ryjZsyY0eH3urtfcIH7Dju4b93aqY+JXGfrWU4qpa6VUk/3yqlrd9YTmOUFMjXKJpqDgM+Z2UJgGnCYmd0Z4fY6JZWCTZtg+fK4SyIi0jUiC3h3n+Tute4+GjgReNjdT45qe52lrpIikjTqB5+mgBeRpOnVHRtx93qgvju21VEKeBFJGh3Bpw0cCDvtpIAXkeRQwGdRX3gRSRIFfBYFvIgkiQI+SybgI7z2S0Sk2yjgs6RSsGEDrF0bd0lERDpPAZ9FPWlEJEkU8FkU8CKSJAr4LAp4EUkSBXyWoUOhXz8FvIgkgwI+ixmMGqWAF5FkUMDnUF94EUkKBXwOBbyIJIUCPkcqBStXQlNT3CUREekcBXyOTE+ahoZ4yyEi0lkK+BzqKikiSaGAz5EJ+IULYy2GiEinKeBz7LIL9OypI3gRKX8K+By9ekFtrQJeRMqfAj4PdZUUkSRQwOehgBeRJFDA55FKwdKlsHlz3CUREek4BXweqRQ0N8OSJXGXRESk4xTweagvvIgkQVEBb2Y1Znazmf05/XpvM/tmtEWLjwJeRJKg2CP424C/ArukX88HJkZRoFIwalR4VMCLSDkrNuCHuPu9QDOAu28BtkZWqpj17Qs1NQp4ESlvxQb8RjMbDDiAmR0ArIusVCVAXSVFpNz1KnK97wIPALub2WPAUOD4yEpVAlIpeOaZuEshItJxRQW8uz9tZocAewIGvOzuie4lnkrBH/4Qukv2UF8jESlDRQW8mZ2aM+sjZoa7/28EZSoJqRRs2gTLl8OIEXGXRkSk/Yptovlo1vO+wKeBp4FEBzyEdngFvIiUo2KbaP4r+7WZ7QRMi6REJSI74A84IN6yiIh0REdblzcC72ttBTPra2ZPmtlzZvaimV3SwW3FQhc7iUi5K7YN/o+ku0gSdgp7A/e28bZ3gcPcvdHMegOPmtmf3f3fHS5tN9pxxzAp4EWkXBXbBn9V1vMtwCJ3b3UoLnd3oDH9snd68sLvKD3qCy8i5cxCDkf04WY9gdnAHsAv3P17edYZD4wHqKmpqZs2rWNN+42NjVRXV3eitNubPHkfli3ryy23zOrSz+2MKOpZqiqlrpVST6icunZnPceOHTvb3ffPu9DdC07ABmB9nmkDsL619+Z8zk7ADGCf1tarq6vzjpoxY0aH31vIhAnuAwa4Nzd3+Ud3WBT1LFWVUtdKqad75dS1O+sJzPICmdpqE427D+iKPYy7rzWzGcBRwAtd8ZndIZWCDRtg7VoYNCju0oiItE+7etGY2TAzG5WZ2lh3aLo7JWbWD/hPYF7Hi9r91JNGRMpZsePBf87MXgFeB2YCC4E/t/G2EcAMM3seeAr4m7tP70RZu50CXkTKWbG9aH4EHAD83d33M7OxwMmtvcHdnwf262T5YqWAF5FyVmwTzWZ3fwvoYWY93H0GkP+sbYIMGxbGhlfAi0g5Kjbg15pZNfAIMNXMriNczZpod90FW7bANdfA6NEwdWrcJRIRKV6xAf95oAk4F/gLsAD4bFSFKgVTp8L48SHgIRzFjx+vkBeR8lFswJ8JjHD3Le5+u7tfn26ySazJk6GpqeW8pqYwX0SkHBQb8AOAh8zsn2Y2wcxqoixUKWhoaN98EZFSU1TAu/sl7v4h4DuE7o8zzezvkZYsZqMK9PIvNF9EpNS0d7jgFcCbwFvAsK4vTumYMgWqqlrO69MnzBcRKQfFXuh0lpnVA/8ABgNnuPu+URYsbuPGwU03hb7wZuG+rLvvHuaLiJSDYo/gRwIT3f1D7n6xu78UZaFKxbhxsHBhuPH2FVfASy/Bk0/GXSoRkeIU2wY/CZhjZrsUOxZN0px5Zhhw7LLL4i6JiEhxim2imQAsB/4G/Ck9ldW4Mp01YABMmAC//304khcRKXXFNtFMBPZMN9F8OD0lug0+n7PPDideL7887pKIiLSt2IBfDKyLsiDlYMiQcDXrXXeFtnkRkVJWbMC/BtSb2SQz+25mirJgpeq880KPmquuantdEZE4FRvwDYT29x0IV7VmpopTWwunnAI33wzLl8ddGhGRwooaD97dLwEwsyp3b2pr/aS78EK49Va47jq49NK4SyMikl+xvWg+YWYvkb7lnpn9h5ndEGnJStiee8Lxx8MvfgHrKv7MhIiUqmKbaK4FjiQMUYC7PwccHFWhysGkSbB+PdxQsbs5ESl1RY9F4+6Lc2Zt7eKylJX99oMjj4Rrr4W33467NCIi2yu6m6SZHQi4mfU2s/OBuRGWqyxMmgQrVsAtt8RdEhGR7RUb8N8iDBW8K/AGMCb9uqIdfDAceCBceSVs3hx3aUREWip2LJpV7j7O3WvcfZi7n5z0OzoVwywcxTc0wN13x10aEZGWiuomaWbX55m9Dpjl7n/o2iKVl2OOgQ9/OAxfcPLJ4SIoEZFSUGwc9SU0y7ySnvYFaoFvmtm1EZWtLJjB978Pc+fCAw/EXRoRkW2KDfh9gbHu/jN3/xlwOLAX8AXgiKgKVy5OOAF22y0MJewed2lERIJiA34QUJ31uj+ws7tvBd7t8lKVmV69wtWtTz4JDz8cd2lERIJiA/5K4Fkzu9XMbgOeAX5iZv2BRN98u1hf+xoMHAjHHhva4UePhqlT4y6ViFSyYseiudnMHgQ+lp71A3dfmn5+QSQlKzP33x8ueMp0l1y0KAwtDLqPq4jEo9UjeDPbK/34EWAEYVz4xcDw9DxJmzx5+77wTU1hvohIHNo6gj8POAO4Os8yBw7r8hKVqYaG9s0XEYlaqwHv7mekH8d2T3HK16hRoVkmV21t95dFRATabqK5MOv5l3OWtToSupmNNLMZZvaSmb1oZud0rqilbcqUcL/WXH36wIYN3V8eEZG2etGcmPV8Us6yo9p47xbgPHffGzgA+I6Z7d3O8pWNcePgppsglQoXP6VScM458PrrcNRRCnkR6X5tBbwVeJ7vdQvuvszdn04/30AYfXLXdpewjIwbF27G3dwcHq+9Fu65B554Ao4+WiEvIt3LvJVLL83saXf/SO7zfK9b3YjZaOARYB93X5+zbDwwHqCmpqZu2rRp7a0DAI2NjVRXV7e9Ygzq64fyox/tzT77rOPyy+fQr1/Hh9Iv5Xp2tUqpa6XUEyqnrt1Zz7Fjx8529/3zLnT3ghPhph7rgQ2EJpf1Wa83t/berM+oBmYDX2xr3bq6Ou+oGTNmdPi93eGee9x79nQ/+GD3DRs6/jmlXs+uVCl1rZR6uldOXbuznoRBH/Nmalu9aHp2Zs9iZr2B+4Gp7v7bznxWuTvhhDBOzVe/Gq52/dOfoH//uEslIkkW2eC2ZmbAzcBcd78mqu2Uk698Be68E/75zxDyt9wShjTQ0AYiEoWihirooIOAU4A5ZvZset4P3P3BCLdZ8k46KRzJjxsHjzwSTsiChjYQka4X2RG8uz/q7ubu+7r7mPRU0eGe8dWvwuDB28I9Q0MbiEhX0v2HYrJ6df75GtpARLqKAj4mo0a1b76ISHsp4GOSb2iDnj3hxz+OpzwikjwK+JjkDm2w446wdSs8/rhu+yciXUMBH6PsoQ3WrIELLoAbboBJkxTyItJ5UXaTlHYwgyuugMbG8DhggHrUiEjnKOBLiBn8/Och5C+6CKqrw4iUIiIdoYAvMT16hCtcGxth4sRwJP+Nb8RdKhEpR2qDL0G9esHdd8ORR8IZZ8C998ZdIhEpRwr4EtWnD/z2t3DQQeFk7PTpcZdIRMqNAr6EVVWFYB8zBo47Dmpq4LDDDtHAZCJSFAV8iRs4EE4/PXSlXLEC3O29gckU8iLSGgV8Gbjssu37xWtgMhFpiwK+DBQagEwDk4lIaxTwZUADk4lIRyjgy0C+gcnM4JJL4imPiJQHBXwZaDkwmTNsWGiTX7Ik7pKJSClTwJeJzMBkDz88k+XL4fjjw9DCr78ed8lEpFQp4MvUT38axo/XWDUiUogCvkzV1sLFF8Mf/wgPPBB3aUSkFCngy9g558CHPgRnnx36xYuIZFPAl7HevcMNQhYtCj1tRESyKeDL3MEHw6mnwk9+AvPmxV0aESklCvgEuPJK6N8fJkzQrf5EZBsFfALU1IQmmn/8A+65J+7SiEipUMAnxJlnQl0dfPe7sH593KURkVKggE+Inj3hxhvhzTfhhz+MuzQiUgoU8Any0Y+GI/nrr4fnnou7NCISNwV8wlx6KQweDGedFW4SIiKVSwGfMIMGhV41//oXDBsGPXqgW/yJVKhecRdAul6vXiHY33orvM7c4g/CoGUiUhl0BJ9AF120ffOMbvEnUnkiC3gzu8XMVpjZC1FtQ/LTLf5EBKI9gr8NOCrCz5cCCt3Kb/jw7i2HiMQrsjZ4d3/EzEZH9fm5xkycCDvt1HLmCSeE7iRNTfCZz2z/ptNOC9OqVeEOGrm+/W34yldg8WI45ZTtl593Hnz2s/Dyy6F/Yq6LLoLDD4dnn4WJE7dffumlcOCB4YzoD36w/fJrr4UxY+Dvfw939wDGrF27rZ6//CXsuWcYM/jqq9972xP94OUeMK75DpYwkhO4h29zI/YmrNg7nHwF4L77YMgQuO22MOV68MFwr8AbboB7791+eX19eLzqKpg+veWyfv3gz38Oz3/0o3CZbbbBg+H++8PzSZPg8cdbLq+thdNPD88nTgz/htk+8IFwmysIJxjmz2+5fMyY8O8HcPLJ29/+6hOfgMsuC8+/9KVtJywyPv1p+O//Ds+PPhrefrvl8mOPhfPPD88PPZTttONvL+/fbgn+7bVQ4G/vPXfcASNHhkurb7zxvdnv/f2W+t/enXeG5x392zvuuPC82L+9TH26WOwnWc1sPDAeoKamhvoOVvTDW7eydu3aFvNWzJ/P0vp6erzzDvvmLAN4c9483qyvp/e6dXwoz/I3XnyRlfX19Fmxgg/mWb54zhzeGjCAfg0N7Jln+aLnnmNNr15Uv/oqe+RZ/trTT7N+0yYGvvACu+VZ/uqsWTSuXcug554jlV6+NaueLz/xBG8vW8bgOXMYmfX+Pn1gZO0ODG16hzfecnYauIna6rdZs6Y3L83txaq33mHE8Hd46bHH2LzjjgyfN4/hebb//COP0Ny3L7vMn8+wPMufTX9XIxcsYHDO8q1vv82c9PLU668zKGf55uZmXkwvf19DAzvmLH+3d28aGxupr69njyVLqM5Z3rR0KfPT7//A0qVU5SxvXLKEV9PLP7h8OX1ylq9raOD19PIPrVxJ75zLf9e8/jqL0ss/vHo1Pd99t8XytxYsYHF6+Zg8/zbt+dvbK8/fbin+7WUr9LeXMffxx3l3wQKGvvgiu2Ytz/z9vljif3tz08s7+reX+dst9m/v2YgCHnePbAJGAy8Uu35dXZ131IwZMzr83nLSmXq++677GWe4g/sxx7ivXdt15YqCvtPkqZS6dmc9gVleIFPVi6aC7LBD+GV9ww3w17/Cxz8efuGLSDIp4CuMWWje/cc/YPVq+NjHQnOniCRPlN0k7wYeB/Y0syVm9s2otiXtd/DB8NRTsNtu4XzhiSdCKqUrX0WSJLKAd/eT3H2Eu/d291p3vzmqbUnHpFLw2GOhqeaee0I/efdtV74WCvmpU8NOQDsDkdIWey8aiVdVFSxduv38pqbQS/HRR2GPPcK0++7hqH/ChG03+dYwCCKlSwEvLF6cf/4774QuyKtXt/7+zDAICniR0qKTrFLwytdUKlyDsXp1OHK/++7Cn7FoUbgu6NFHYcuWlsvUpCMSDwW8MGVKaKrJVlUV5kMYgnj//bediM2nT59wceSnPhUuFPziF0OXzGuvDU04ixYV174vIl1HAS+MGxeuvE6lQjfKVCq8ztfkUmhncPPN4Wj/vvvCFfazZ8O3vgXnnrutvT6jqSn/1fEZmSP+ww47pKgjfv1CEMlPbfAChDAvpg09s87kyaHXzahRIfQz87/0pTC5w7x5sPfe+T+noQF23TVMtbXbHhcuhFtvhTAygLV5Enfq1LC82JO+U6cWLrtI0ijgpd2K2RmYwQc/GH4NLFq0/fIdd4SjjgrjMM2fDw8/DOvW5f+spqYw3ta554ZfC/37h8eqKnjyyXAyOHf9c8+F978/DKw2bFhYt707A9AOQcqbAl4iNWVKy1CFELa/+MX2QdnYCAMHhqP/XO7hl0FTU5g2bgyPueGesXJl6N+f0b9/WHfr1pbrZXYGe+wBI0aEIZV32CEs0w5Byp0CXiLVVpNOturqsDzfEX8q1WLU2feMHp1//eHD4Ve/ghUrwrRyJVxzTf4yrlwJBxyw7fWQISHsX3kl/6+DCy8MI/UOGBB+qWR0ZIcgEiUFvESu2PZ9KHzEn+nRU+z6V10VhmDIdv/9hXcGv/41LFsWLvrKPM6Zk3+bS5eGJqa+fcN7hw+Hmpowvk+hE8qtnw84REf7EgkFvJSUlkf8zqhR1mrwtecXQms7g2OO2X79Qr8OBg8O94l4881t02uvhSamfBoawsnmUaPCPTBGjQrnHm6/vfiTyaDmH2k/BbyUnMwRf339TA7Nd7ekAusXsx4UH5KFdgjXXZf/PYV2CAMGhBPODQ3wzDOhySifpib4+tdD09KgQbDzztseX301BPymTWFd7RCkGAp4qSjtaS7qqh3CjTe2fM8774T5+U4mb94c5r/6KqxZE64izr1bYEZTE3zta+Fisl12CecNMo8vvxxOZGfOIXT1DkE7j/KggBdpRRQ7hL59Wz+ZPHNmy3mt7RC2bg1NRgsXhturrlpVuHyZXwi33rrtl0HmV8L8+eE2pJk7Ey5aBGecAevXw6mnhtuc9khfFtm53kU639CtCt3qKY5Jt+xrW6XU0z3Zdb3zTveqqnD7xMxUVRXm55NKtVw3M6VSLdd79133RYvczfKvD+4HHui+117uw4a59+pVeL3cqV8/98GD3Xv2zL98553dH3rIfd48940bO17XzHtSqVCPVKr1dUuRbtknUsFaDg/hrQ4PAW2PF5Sxww7h10FrA8g99hjMnQvLl4c2/Q0bWnb3zHXFFfDDH8J3vhOGoci9liBj9Wo44gjYa69w3cHQoVBXF34J5Otd9P3v5/+szC+EYscv0lAVrSiU/HFMOoJvW6XU071y6lpsPdtzVBvVL4TW1t11V/eZM93vuMN9yhT3M890P/ro1n8V9OjhXlPjvu++7ocf7j5unPuAAfnXHTnSvbm5c/Vs779jR9Z3L50jeLXBi5SJOE4Q57v+oNC6V1wRbgWZq1DvokGDwq+C5ctDz6Lly2HBgvCLIp/Fi8MvlCFDwjR0KDzxRP5fB+eeG0449+8fpurq8Dh9ethme8YuKueL1xTwIgkV1Q6hq3YeP/tZ+7qbDhoURihdtWrblBvuGStXwmGHFaxuC01NcNppcNll0Lt32In07h2mf/87/9XM5XKDGwW8iADt3yF0bOfR9sVr7dkhtDZUxbRpYcyixsZtj2efnX+bW7bAnnuGbqqZadOmwmMdNTS0WuWSoYAXkci15+K1rro6+ZBDtl//6qsLd0+9//7t5xfagbjDQQfBWWfB8ceHG96UIvWiEZGSM25c6Nvf3BweWxuqotib1UDxvZFaW79fv/D5K1fCySeH+xhMmhTK2d6b1URNR/AiUtaiPPnc2vrNzeE+BjfcAFdeCZdfDj17Zrp+Fje+UNQU8CJSUdqzQ2ht/R494PDDw7RkCeyzz/Y3rYn7hKyaaEREOqm2NgzrkE+cJ2QV8CIiXaDQ1cOF5ncHBbyISBdo7wnc7qCAFxHpAu0dX6g7KOBFRLpIpnvnww/PbLV7Z3dRwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEJZuCFIaTCzlUCesduKMgRo5ZbDiVEp9YTKqWul1BMqp67dWc+Uuw/Nt6CkAr4zzGyWu+8fdzmiVin1hMqpa6XUEyqnrqVSTzXRiIgklAJeRCShkhTwN8VdgG5SKfWEyqlrpdQTKqeuJVHPxLTBi4hIS0k6ghcRkSwKeBGRhCr7gDezo8zsZTN71cy+H3d5omRmC81sjpk9a2az4i5PVzKzW8xshZm9kDVvZzP7m5m9kn4cFGcZu0KBel5sZm+kv9dnzewzcZaxK5jZSDObYWYvmdmLZnZOen4Sv9NCdY39ey3rNngz6wnMB/4TWAI8BZzk7i/FWrCImNlCYH93T9yFImZ2MNAI/K+775OedyWw2t0vT++8B7n79+IsZ2cVqOfFQKO7XxVn2bqSmY0ARrj702Y2AJgNHAecRvK+00J1PYGYv9dyP4L/GPCqu7/m7puAacDnYy6TdIC7PwKszpn9eeD29PPbCf9pylqBeiaOuy9z96fTzzcAc4FdSeZ3WvxQr84AAAOMSURBVKiusSv3gN8VWJz1egkl8g8bEQceMrPZZjY+7sJ0gxp3X5Z+/iZQE2dhIjbBzJ5PN+GUfbNFNjMbDewHPEHCv9OcukLM32u5B3yl+aS7fwQ4GvhO+ud+RfDQlli+7YmtuxHYHRgDLAOujrc4XcfMqoH7gYnuvj57WdK+0zx1jf17LfeAfwMYmfW6Nj0vkdz9jfTjCuB3hCaqJFuebt/MtHOuiLk8kXD35e6+1d2bgV+RkO/VzHoTAm+qu/82PTuR32m+upbC91ruAf8U8H4ze5+Z7QCcCDwQc5kiYWb90ydwMLP+wBHAC62/q+w9AHwt/fxrwB9iLEtkMoGX9gUS8L2amQE3A3Pd/ZqsRYn7TgvVtRS+17LuRQOQ7np0LdATuMXdp8RcpEiY2W6Eo3aAXsBdSaqrmd0NHEoYZnU58EPg98C9wCjCMNInuHtZn6AsUM9DCT/jHVgInJnVTl2WzOyTwD+BOUBzevYPCG3TSftOC9X1JGL+Xss+4EVEJL9yb6IREZECFPAiIgmlgBcRSSgFvIhIQingRUQSSgEviWdmW7NG9Hs2fTl5e95/nJntHU3pRKLTK+4CiHSDt919TCfefxwwHSh6lFIz6+XuWzqxTZFOUz94STwza3T36qzX1YQrKAcBvYGL3P0P6WWnAucTLk55njCeyHRgXXr6EjAA+B+gClgAfMPd15hZPfAs8EngbqCBcCHTVmCdu1fM2EFSGhTwknhmtpVwlSHA68CXgSp3X29mQ4B/A+8H9iZcLXygu68ys53dfbWZ3QZMd/f70p/3PPBf7j7TzP4/MNDdJ6YD/iV3Pyu93hzgKHd/w8x2cve13VdrETXRSGVo0USTHhjq0vRonM2EIaZrgMOA32RuqJLvEnoz2xHYyd1npmfdDvwma5V7sp4/BtxmZvcCv0Wkm+kkq1SiccBQoC4d/MuBvl302RszT9z9W8BFhBFPZ5vZ4C7ahkhRFPBSiXYEVrj7ZjMbC6TS8x8GvpwJYjPbOT1/A6HdHXdfB6wxs0+ll50CzCQPM9vd3Z9w9/8HrKTl0NYikVMTjVSiqcAf023ks4B5AO7+oplNAWam2+2fIdxDdBrwKzM7GzieMMzt/5hZFfAa8PUC2/mJmb0fMOAfwHPRVUlkezrJKiKSUGqiERFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCSh/g+2JFEhqbhynAAAAABJRU5ErkJggg==\n", 1202 | "text/plain": [ 1203 | "
" 1204 | ] 1205 | }, 1206 | "metadata": { 1207 | "tags": [], 1208 | "needs_background": "light" 1209 | } 1210 | } 1211 | ] 1212 | }, 1213 | { 1214 | "cell_type": "code", 1215 | "metadata": { 1216 | "id": "vv3Axn5s5gTJ", 1217 | "colab": { 1218 | "base_uri": "https://localhost:8080/" 1219 | }, 1220 | "outputId": "a1cdfd4b-57f0-4c71-9658-41bab1cc9d2b" 1221 | }, 1222 | "source": [ 1223 | "data_fa[:,:6]" 1224 | ], 1225 | "execution_count": 17, 1226 | "outputs": [ 1227 | { 1228 | "output_type": "execute_result", 1229 | "data": { 1230 | "text/plain": [ 1231 | "array([[-0.89749661, -0.12809666, -1.22649076, 1.08665889, 0.42476701,\n", 1232 | " 0.03981611],\n", 1233 | " [ 0.33679356, -0.15018138, -0.04332274, -0.10339328, 0.29665648,\n", 1234 | " -1.11019718],\n", 1235 | " [-0.24521029, 0.80409961, 0.39343377, -0.30106518, 0.82703928,\n", 1236 | " -0.2982022 ],\n", 1237 | " ...,\n", 1238 | " [ 0.38724631, -0.02183587, 1.19616826, -1.19357208, 0.79669501,\n", 1239 | " -0.95295109],\n", 1240 | " [-0.75695976, 0.94984758, 1.24363484, -1.15230215, 2.2534133 ,\n", 1241 | " -1.0218667 ],\n", 1242 | " [-2.35583952, -1.49829856, 0.49436981, -1.64734311, 0.94742323,\n", 1243 | " 0.43462495]])" 1244 | ] 1245 | }, 1246 | "metadata": { 1247 | "tags": [] 1248 | }, 1249 | "execution_count": 17 1250 | } 1251 | ] 1252 | }, 1253 | { 1254 | "cell_type": "markdown", 1255 | "metadata": { 1256 | "id": "YQCo4ZaOCW3w" 1257 | }, 1258 | "source": [ 1259 | "## รัน Factor Analyzer อีกรอบ ด้วย paremeters จำนวน factor เท่ากับ 6" 1260 | ] 1261 | }, 1262 | { 1263 | "cell_type": "code", 1264 | "metadata": { 1265 | "id": "hGV6ctdwCdSJ" 1266 | }, 1267 | "source": [ 1268 | "from factor_analyzer import FactorAnalyzer\n", 1269 | "fa2 = FactorAnalyzer(n_factors=6)\n", 1270 | "data_fa = fa2.fit_transform(BFI_data_dropped)" 1271 | ], 1272 | "execution_count": 19, 1273 | "outputs": [] 1274 | }, 1275 | { 1276 | "cell_type": "code", 1277 | "metadata": { 1278 | "id": "ogR_EpWyM33s", 1279 | "outputId": "9d427f3d-c381-48ec-c93d-d547ae96a70b", 1280 | "colab": { 1281 | "base_uri": "https://localhost:8080/" 1282 | } 1283 | }, 1284 | "source": [ 1285 | "fa2.loadings_.shape" 1286 | ], 1287 | "execution_count": 21, 1288 | "outputs": [ 1289 | { 1290 | "output_type": "execute_result", 1291 | "data": { 1292 | "text/plain": [ 1293 | "(25, 6)" 1294 | ] 1295 | }, 1296 | "metadata": { 1297 | "tags": [] 1298 | }, 1299 | "execution_count": 21 1300 | } 1301 | ] 1302 | }, 1303 | { 1304 | "cell_type": "markdown", 1305 | "metadata": { 1306 | "id": "IRjSUuKqOxNm" 1307 | }, 1308 | "source": [ 1309 | "#### Plot factor loadings" 1310 | ] 1311 | }, 1312 | { 1313 | "cell_type": "code", 1314 | "metadata": { 1315 | "id": "esNwFLArNLem" 1316 | }, 1317 | "source": [ 1318 | "from matplotlib import pyplot as plt\n", 1319 | "import numpy as np\n", 1320 | "import matplotlib" 1321 | ], 1322 | "execution_count": 27, 1323 | "outputs": [] 1324 | }, 1325 | { 1326 | "cell_type": "markdown", 1327 | "metadata": { 1328 | "id": "iK8lmO3CRpJU" 1329 | }, 1330 | "source": [ 1331 | "# matrix plot\n", 1332 | "confirmatory" 1333 | ] 1334 | }, 1335 | { 1336 | "cell_type": "code", 1337 | "metadata": { 1338 | "id": "6f4lU6LsPTWj", 1339 | "outputId": "83cd2518-ee3f-4011-b45c-3d771e95fef7", 1340 | "colab": { 1341 | "base_uri": "https://localhost:8080/", 1342 | "height": 880 1343 | } 1344 | }, 1345 | "source": [ 1346 | "matplotlib.rcParams['figure.figsize']=[15,15]\n", 1347 | "plt.imshow(np.absolute(fa2.loadings_))" 1348 | ], 1349 | "execution_count": 28, 1350 | "outputs": [ 1351 | { 1352 | "output_type": "execute_result", 1353 | "data": { 1354 | "text/plain": [ 1355 | "" 1356 | ] 1357 | }, 1358 | "metadata": { 1359 | "tags": [] 1360 | }, 1361 | "execution_count": 28 1362 | }, 1363 | { 1364 | "output_type": "display_data", 1365 | "data": { 1366 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOUAAANOCAYAAADu+sumAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVzklEQVR4nO3da4ymd33e8eu/J6/xicUntj6XGlIohUQbK2poRUtIIY0CVaQKV4l4gepWChUolSrSvuhJqqJKTfMmiuQUGrdNoFEBxU1RwKJWXaQkeE1MsDGOXWPjdXzmYJvU9h7+feFB2nj24OzMPve1zOcjrWaeex7P72d7vnvP88zhHnPOAD22Lb0A8GeJEsqIEsqIEsqIEsrsWOWwXWP3PHvbuascud6Olf4rr7dtLDs/yZErl3/GfRzYvuj8uWP5/w/PPfPIU3POi19+fKUfoWdvOzc/cu5PrXLkOtsu3LPo/HnWrkXnJ8kLv/Li0itk5y9csOj8F/ectej8JPnfn/3IQ8c67tNXKCNKKCNKKCNKKCNKKCNKKCNKKCNKKCNKKCNKKCNKKCNKKLOhKMcY7xpj3DvGuH+M8ZHNWgq2slOOcoyxPcmvJHl3kjcmuX6M8cbNWgy2qo2cKa9Lcv+c84E554tJPpHkPZuzFmxdG4nysiQPH3X7wNqxP2OMccMYY/8YY/+L8/kNjIOt4bQ/0TPnvHHOuW/OuW/X2H26x8EZbyNRPpLkiqNuX752DNiAjUR5e5JrxxjXjDF2JXlfkps3Zy3Yuk75d/TMOQ+NMT6Y5LNJtif52Jzz7k3bDLaoDf3irDnnZ5J8ZpN2AeI7eqCOKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKHMaq+gumtnxuWvXenIlzu451WLzt9x78Mnv9NpduHu5S+Y+uzXvrXo/N1j+f8Gx+NMCWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVECWVWen3K+fwLOXzvA6scuc53f3rfovPP++Izi85PkjsefPPSK+T1h+9ddP7BH3r9ovOTJP/n2IedKaGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKHMSi8aO3Zsz/ZXX7DKkeucf+93Fp3/wtvfsuj8JDn3jrOWXiGHfvgNi87fsf+PF51/Is6UUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUGal16ecu3fl0A9cucqR6zz9prMXnX/xf7pj0flJkjfvW3qD7PzyA4vOf/qn/+qi85MkNx37sDMllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllFnpRWPz3eezbf89Kx35cpfevXvR+Y9/6upF5yfJ5f/4wNIr5MiVexedf+HNX110/ok4U0IZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUKZDf2UyBjjwSTPJjmc5NCcc99mLAVb2Wb86NbfnHM+tQnvB4hPX6HORqOcST43xrhjjHHDse4wxrhhjLF/jLH/4Hx+g+Pg+99GP31925zzkTHGJUluGWN8bc5529F3mHPemOTGJDl/24Vzg/Pg+96GzpRzzkfWXj6R5NNJrtuMpWArO+UoxxjnjDHO+97rSX48yV2btRhsVRv59PXSJJ8eY3zv/fzmnPN3N2Ur2MJOOco55wNJ3rKJuwDxJRGoI0ooI0ooI0ooI0ooI0ooI0ooI0ooI0ooI0oos9KLxo6dO7L9tZescuQ689xXLTr/fdfsX3R+ktz63NVLr5AjD35j0fnbL7pw0fkn4kwJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZVZ6fcp58FAO/8njqxy5zvbLXrvo/E89/NZF5yfJnvmtpVfI9kuXvU5pLjhv2flJ8uSxDztTQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQpmVXjQ2mck8stqRL3PooYcXnf+6Cy5YdH6SPHX1ZUuvkGxb9nxw398/Z9H5SZIPH/uwMyWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUESWUWe1FY191do685U0rHflyOx//zqLzb3/4/EXnJ8k1X/7q0itk2549i87f+4W/uOj8JHnwOMedKaGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKGMKKHMaq9PWeCq//bYovP/3z+/aNH5SbLtdVcvvULGc3+66PwL7nh00fkn4kwJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZU4a5RjjY2OMJ8YYdx117DVjjFvGGPetvdxzeteEreOVnCl/Pcm7XnbsI0k+P+e8Nsnn124Dm+CkUc45b0vyzZcdfk+Sm9ZevynJezd5L9iyTvUx5aVzzu/9lOhjSS493h3HGDeMMfaPMfYfPPjdUxwHW8eGn+iZc84k8wRvv3HOuW/OuW/nznM2Og6+751qlI+PMfYmydrLJzZvJdjaTjXKm5O8f+319yf57c1ZB3glXxL5eJLfS/KGMcaBMcYHkvxikneOMe5L8mNrt4FNcNLfZjfnvP44b3rHJu8CxHf0QB1RQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQpmVXjR2vHAwO+7/k1WOXOfys7616PyHvnJg0flJMr+77AVbk+TIiy8uOn+c2/tjhM6UUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUEaUUGalF42dhw7l8JNPrnLkOr+2/68vOv8Hnrln0flJMl94YekVcuSH37To/APvKLho7L859mFnSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSigjSiiz0utTjp07s+PSv7DKkeu8/qrHFp2fw4eXnZ9k+xWXLb1CDu3evuj8S750cNH5SXLvcY47U0IZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUKZlV40du7akYNXXbzKkevc9/Wdi86//N3LX7D1nN/5w6VXyI6Lzl90/q47v77o/BNxpoQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyooQyK71o7Otf93Q+999vWuXIdf7az/+jReef85nlL9i67dqrl14h48CTi86fF79m0flJkm8e+7AzJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQ5aZRjjI+NMZ4YY9x11LF/OcZ4ZIxx59qfnzi9a8LW8UrOlL+e5F3HOP4f5pxvXfvzmc1dC7auk0Y557wtx/0hE2CzbeQx5QfHGH+09untnuPdaYxxwxhj/xhj/5NPH97AONgaTjXKX03yuiRvTfJokn9/vDvOOW+cc+6bc+67+MLtpzgOto5TinLO+fic8/Cc80iSX0ty3eauBVvXKUU5xth71M2/m+Su490X+PM56e/oGWN8PMnbk1w0xjiQ5F8kefsY461JZpIHk/zD07gjbCknjXLOef0xDn/0NOwCxHf0QB1RQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQpmVXp9yZubwPLLKkeuc9e1lf6Zz7Nq16PwkydPfXnqDHPnOM8vOv+LiReefiDMllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllFnpRWMfPXR2/vVTb17lyHV233b3ovOPPP/CovOTZBTskG1j0fHbH3p80fkn4kwJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZVZ6fcqnnz0v/+W2t61y5Dqvfv+yfw/t/R/fWHR+ksznn196hYwdK/3QW+fgNa9ddH6S5LFjH3amhDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKihDKrvXLnyOJ/DVxy+7OLzm+4YGsuuXDpDfLCJecuOv+s//vEovNPxJkSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyogSyqz0orG7H30xf/nfPrzKkescvOriRedv27590flJkjmX3iAPv/OsRefvfsuVi85PkvzysQ87U0IZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUIZUUKZk0Y5xrhijHHrGOOrY4y7xxgfWjv+mjHGLWOM+9Ze7jn968L3v1dypjyU5J/MOd+Y5EeS/NwY441JPpLk83POa5N8fu02sEEnjXLO+eic80trrz+b5J4klyV5T5Kb1u52U5L3nq4lYSv5c/085Rjj6iQ/mOQPklw653x07U2PJbn0OP/MDUluSJLd28871T1hy3jFT/SMMc5N8skkH55zPnP02+acM8kxf3J2znnjnHPfnHPfrm1nb2hZ2ApeUZRjjJ15KcjfmHN+au3w42OMvWtv35vkidOzImwtr+TZ15Hko0numXP+0lFvujnJ+9def3+S39789WDreSWPKX80yc8m+coY4861Y/8syS8m+a0xxgeSPJTk752eFWFrOWmUc84vJBnHefM7NncdwHf0QBlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQhlRQpmVXp8y27dlnn/OSke+3Pj9uxadnwvOX3Z+kiP3fX3pFfLi3gsWnf+XfvXRk9/pNDveR6IzJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZQRJZRZ6UVj5wsv5sj9D61y5Drf/pnrFp2/5zdvX3R+kmx71auWXiE5PBYd/43rr1p0fpLk3x37sDMllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllBEllFnpRWPHWbuy7eorVzlynZ1/emTR+fPQoUXnJ8m85rKlV8irv7xz0fnnPnJ40fkn4kwJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZUQJZVZ6fcr5/As5fN/XVzlynXMWnp8xlp2fZDx/cOkVsu1vP7Xo/PP/wXcWnX8izpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQRpRQZsw5VzdsjCeTPLSBd3FRkmWvNrr8DkvPt8Pmzb9qznnxyw+uNMqNGmPsn3Pu28o7LD3fDqd/vk9foYwoocyZFuWNSy+Q5XdYen5ih9M6/4x6TAlbwZl2poTve6KEMmdMlGOMd40x7h1j3D/G+MgC8z82xnhijHHXqmevzb9ijHHrGOOrY4y7xxgfWmCH3WOML44xvry2w79a9Q5re2wfY/zhGON3Fpr/4BjjK2OMO8cY+zf9/Z8JjynHGNuT/HGSdyY5kOT2JNfPOb+6wh3+RpLnkvznOedfWdXco+bvTbJ3zvmlMcZ5Se5I8t4V/zcYSc6Zcz43xtiZ5AtJPjTn/P1V7bC2x88n2Zfk/DnnT65y9tr8B5Psm3Oelm9eOFPOlNcluX/O+cCc88Ukn0jynlUuMOe8Lck3VznzZfMfnXN+ae31Z5Pck+SyFe8w55zPrd3cufZnpX+rjzEuT/J3kvzHVc5dpTMlysuSPHzU7QNZ8QdkkzHG1Ul+MMkfLDB7+xjjziRPJLllzrnqHX45yT9NcmTFc482k3xujHHHGOOGzX7nZ0qUrBljnJvkk0k+POd8ZtXz55yH55xvTXJ5kuvGGCv7VH6M8ZNJnphz3rGqmcfxtjnnDyV5d5KfW3tos2nOlCgfSXLFUbcvXzu2paw9jvtkkt+Yc35qyV3mnN9OcmuSd61w7I8m+am1x3SfSPK3xhj/dYXzkyRzzkfWXj6R5NN56eHVpjlTorw9ybVjjGvGGLuSvC/JzQvvtFJrT7J8NMk9c85fWmiHi8cYr157/ey89MTb11Y1f875C3POy+ecV+elj4H/Nef8mVXNT5IxxjlrT7RljHFOkh9PsqnPyJ8RUc45DyX5YJLP5qUnOH5rznn3KncYY3w8ye8lecMY48AY4wOrnJ+XzhI/m5fODneu/fmJFe+wN8mtY4w/ykt/Ud4y51zkyxILujTJF8YYX07yxST/c875u5s54Iz4kghsJWfEmRK2ElFCGVFCGVFCGVFCGVFCGVFCmf8PZJ1Bfys2Ss4AAAAASUVORK5CYII=\n", 1367 | "text/plain": [ 1368 | "
" 1369 | ] 1370 | }, 1371 | "metadata": { 1372 | "tags": [], 1373 | "needs_background": "light" 1374 | } 1375 | } 1376 | ] 1377 | }, 1378 | { 1379 | "cell_type": "markdown", 1380 | "metadata": { 1381 | "id": "rX-Yj2qsRtvO" 1382 | }, 1383 | "source": [ 1384 | "## กราฟแท่ง\n", 1385 | "Exploratory" 1386 | ] 1387 | }, 1388 | { 1389 | "cell_type": "code", 1390 | "metadata": { 1391 | "id": "N7y8c1NmUIGh", 1392 | "outputId": "09dfa509-fc12-4c40-90eb-852990a3d336", 1393 | "colab": { 1394 | "base_uri": "https://localhost:8080/" 1395 | } 1396 | }, 1397 | "source": [ 1398 | "BFI_data_dropped.columns" 1399 | ], 1400 | "execution_count": 33, 1401 | "outputs": [ 1402 | { 1403 | "output_type": "execute_result", 1404 | "data": { 1405 | "text/plain": [ 1406 | "Index(['A1', 'A2', 'A3', 'A4', 'A5', 'C1', 'C2', 'C3', 'C4', 'C5', 'E1', 'E2',\n", 1407 | " 'E3', 'E4', 'E5', 'N1', 'N2', 'N3', 'N4', 'N5', 'O1', 'O2', 'O3', 'O4',\n", 1408 | " 'O5'],\n", 1409 | " dtype='object')" 1410 | ] 1411 | }, 1412 | "metadata": { 1413 | "tags": [] 1414 | }, 1415 | "execution_count": 33 1416 | } 1417 | ] 1418 | }, 1419 | { 1420 | "cell_type": "code", 1421 | "metadata": { 1422 | "id": "ZMtY6O_3PqWX", 1423 | "outputId": "962b8944-91eb-4530-b73a-50ae419d61c6", 1424 | "colab": { 1425 | "base_uri": "https://localhost:8080/", 1426 | "height": 880 1427 | } 1428 | }, 1429 | "source": [ 1430 | "plt.bar(range(25),np.absolute(fa2.loadings_[:,0]),tick_label=BFI_data_dropped.columns)" 1431 | ], 1432 | "execution_count": 34, 1433 | "outputs": [ 1434 | { 1435 | "output_type": "execute_result", 1436 | "data": { 1437 | "text/plain": [ 1438 | "" 1439 | ] 1440 | }, 1441 | "metadata": { 1442 | "tags": [] 1443 | }, 1444 | "execution_count": 34 1445 | }, 1446 | { 1447 | "output_type": "display_data", 1448 | "data": { 1449 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAANOCAYAAABgFv8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df7Dld13f8debbMPvH22z8is/bjqEYqCU2DXWQQwq1kDGhA60khYEG4loUztFrOtgacSpDTiCFGKFqiBUCTEz0q0boFMIigyh2QCB/GhgCVuTYCUEKo38DH76xzkLh+29e2+y55z73j2Px8zOnnPud877+z33u3fv83y/93trjBEAAAD6uM92rwAAAADfSqgBAAA0I9QAAACaEWoAAADNCDUAAIBmdmzX4BNOOGGsra1t13gAAIBtde211352jLFzvY9tW6itra1l37592zUeAABgW1XV/9roY059BAAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmdmz3CgAAR5+13XsXPuPAJecsfAZAV46oAQAANCPUAAAAmhFqAAAAzQg1AACAZlxMBAA4qriQCbAKHFEDAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJrZUqhV1dlVdXNV7a+q3et8/OSquqqqPlxVH62qZ8x/VQEAAFbDpqFWVccluTTJ05OcnuT8qjr9kMV+IcnlY4wzkjwnya/Pe0UBAABWxVaOqJ2ZZP8Y45YxxleTXJbkvEOWGUkeMr390CSfnt8qAgAArJathNqjk9w6c/+26WOzLk7y3Kq6LcmVSf7Fek9UVRdW1b6q2nfHHXfci9UFAAA49s3rYiLnJ3nTGOPEJM9I8paq+v+ee4zxhjHGrjHGrp07d85pNAAAwLFlK6F2e5KTZu6fOH1s1gVJLk+SMcYHktwvyQnzWEEAAIBVs5VQuybJaVV1alUdn8nFQvYcssyfJvmBJKmqb88k1JzbCAAAcC9sGmpjjLuTXJTkXUluyuTqjjdU1cur6tzpYj+T5IVVdV2StyZ5wRhjLGqlAQAAjmU7trLQGOPKTC4SMvvYy2Zu35jkyfNdNQAAgNU0r4uJAAAAMCdCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZnZs9woAABwt1nbvXejzH7jknIU+P3D0cEQNAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKCZLYVaVZ1dVTdX1f6q2r3BMv+4qm6sqhuq6vfmu5oAAACrY8dmC1TVcUkuTfKDSW5Lck1V7Rlj3DizzGlJfj7Jk8cYn6+qb1vUCgMAABzrtnJE7cwk+8cYt4wxvprksiTnHbLMC5NcOsb4fJKMMT4z39UEAABYHVsJtUcnuXXm/m3Tx2Y9Nsljq+r9VXV1VZ293hNV1YVVta+q9t1xxx33bo0BAACOcfO6mMiOJKcleWqS85P8p6p62KELjTHeMMbYNcbYtXPnzjmNBgAAOLZsJdRuT3LSzP0Tp4/Nui3JnjHG18YYn0ry8UzCDQAAgHtoK6F2TZLTqurUqjo+yXOS7DlkmbdncjQtVXVCJqdC3jLH9QQAAFgZm4baGOPuJBcleVeSm5JcPsa4oapeXlXnThd7V5I7q+rGJFcl+dkxxp2LWmkAAIBj2aaX50+SMcaVSa485LGXzdweSV48/QMAAMARmNfFRAAAAJgToQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADSzY7tXAACAvtZ27134jAOXnLPwGXC0cUQNAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACacdVHAIDmXHkRVo8jagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANLOlUKuqs6vq5qraX1W7D7Pcs6pqVNWu+a0iAADAatk01KrquCSXJnl6ktOTnF9Vp6+z3IOT/MskH5z3SgIAAKySrRxROzPJ/jHGLWOMrya5LMl56yz3S0lekeTLc1w/AACAlbOVUHt0kltn7t82fewbquo7kpw0xth7uCeqqgural9V7bvjjjvu8coCAACsgiO+mEhV3SfJq5L8zGbLjjHeMMbYNcbYtXPnziMdDQAAcEzaSqjdnuSkmfsnTh876MFJnpDkvVV1IMnfT7LHBUUAAADuna2E2jVJTquqU6vq+CTPSbLn4AfHGH8xxjhhjLE2xlhLcnWSc8cY+xayxgAAAMe4TUNtjHF3kouSvCvJTUkuH2PcUFUvr6pzF72CAAAAq2bHVhYaY1yZ5MpDHnvZBss+9chXCwAAYHUd8cVEAAAAmC+hBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANDMlkKtqs6uqpuran9V7V7n4y+uqhur6qNV9e6qOmX+qwoAALAaNg21qjouyaVJnp7k9CTnV9Xphyz24SS7xhhPTHJFklfOe0UBAABWxVaOqJ2ZZP8Y45YxxleTXJbkvNkFxhhXjTG+OL17dZIT57uaAAAAq2MrofboJLfO3L9t+thGLkjyjiNZKQAAgFW2Y55PVlXPTbIryVkbfPzCJBcmycknnzzP0QAAAMeMrRxRuz3JSTP3T5w+9i2q6mlJXprk3DHGV9Z7ojHGG8YYu8YYu3bu3Hlv1hcAAOCYt5VQuybJaVV1alUdn+Q5SfbMLlBVZyR5fSaR9pn5ryYAAMDq2DTUxhh3J7koybuS3JTk8jHGDVX18qo6d7rYryR5UJLfr6qPVNWeDZ4OAACATWzpZ9TGGFcmufKQx142c/tpc14vAACAlbWlX3gNAADA8gg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZnZs9wrAdlnbvXehz3/gknMW+vwAABy7HFEDAABoRqgBAAA049RHADiKOY0b4NjkiBoAAEAzQg0AAKAZoQYAANCMUAMAAGjGxUQAFmTRF3lINr7QgwtMAMDRzRE1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhmx3avAN+0tnvvQp//wCXnLPT5AQCA+RBqAAAwY9FvnifeQGdzTn0EAABoxhE1AADAj+E044gaAABAM0INAACgGaEGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANLNju1cAWJ613XsXPuPAJecsfAYAwLHOETUAAIBmhBoAAEAzQg0AAKAZoQYAANCMUAMAAGhGqAEAADQj1AAAAJrxe9QA4Aj5HYUAzJsjagAAAM04ogYAQEuLPlrtSDWdOaIGAADQjFADAABoRqgBAAA0I9QAAACaEWoAAADNCDUAAIBmhBoAAEAzQg0AAKAZoQYAANDMju1eAQCOLWu79y70+Q9ccs5Cnx8AOnBEDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzbg8P9tq0ZfxTlzKGwCAo48jagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZoQaAABAM0INAACgmR3bvQLdrO3eu/AZBy45Z+EzAACAo5cjagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0IxQAwAAaEaoAQAANCPUAAAAmhFqAAAAzQg1AACAZnZs9wrAKlrbvXehz3/gknMW+vwAACyWI2oAAADNCDUAAIBmnPoILIXTPQEAtk6oAQBAE4t+YzPx5ubRQqgBxzxH8wCAo42fUQMAAGhGqAEAADQj1AAAAJrxM2r4oVUAAGhGqAEAANvGQYP1OfURAACgGaEGAADQjFADAABoRqgBAAA0s6VQq6qzq+rmqtpfVbvX+fh9q+pt049/sKrW5r2iAAAAq2LTUKuq45JcmuTpSU5Pcn5VnX7IYhck+fwY4zFJXp3kFfNeUQAAgFWxlcvzn5lk/xjjliSpqsuSnJfkxpllzkty8fT2FUleV1U1xhhzXFcA2JDLOwNwLKnNWqqqnp3k7DHGj0/vPy/Jd40xLppZ5vrpMrdN739yusxnD3muC5NcOL37t5PcPK8N2UYnJPnspkuZfbTPXdXZq7jNqzp7Fbd5O2ev4jZv5+xV3ObtnL2K27yds1dxm7d79jydMsbYud4HlvoLr8cYb0jyhmXOXLSq2jfG2GX2sT13VWev4jav6uxV3ObtnL2K27yds1dxm7dz9ipu83bOXsVt3u7Zy7KVi4ncnuSkmfsnTh9bd5mq2pHkoUnunMcKAgAArJqthNo1SU6rqlOr6vgkz0my55Bl9iR5/vT2s5O8x8+nAQAA3Dubnvo4xri7qi5K8q4kxyX57THGDVX18iT7xhh7kvxWkrdU1f4kn8sk5lbFdp7KuYqzV3Gbt3P2Km7zqs5exW3eztmruM3bOXsVt3k7Z6/iNm/n7FXc5u2evRSbXkwEAACA5drSL7wGAABgeYQaAABAM0LtHqqqZ1bVqKrHzTz2zqr6P1X1h8ucXVVPqqoPVNUNVfXRqvqRJc09pao+VFUfmc5+0SLmrjd75vGHVNVtVfW6Zc6uqq9Pt/sjVXXoRXXmNfcRVXVZVX2yqq6tqiur6rGL3s82mHvmkvax9WaftYz9bKPXe/qxhe1nh/k8L2Mfm53xkaraPX38oqraP93vT1jy7N+tqpur6vqq+u2q+mtLmvtbVXXddP++oqoeNM+5h5s98/H/UFV3zXvu4WZX1Zuq6lMzjz9pznNHVf3qzP2XVNXF09vfO/23fXdNflfrsua+uKpunH6u311Vpyxx9ouq6mPT1/pPqur0Zc2eeexZ0+XmdjnzTbb5BVV1x8w+9uPzmjt9/hOr6r9U1SemX0dfU1XHV9XfrKqrququRXzt3mT2D06/nn9s+vf3L3H2mTOv9XVV9Q+XNXvm4ydPX/eXLGNuVa1V1Zdmtvs35jm3hTGGP/fgT5K3JXlfkl+ceewHkvxwkj9c5uwkj01y2vT2o5L8WZKHLWHu8UnuO739oCQHkjxqWa/39PHXJPm9JK9b8uf6rgV/jivJB5K8aOaxv5vkKYvczw4z96xF72ObzF7ofna413uR+9kmn+eF7mPTWevOSHJGkrXpa33Ckmc/Y/q6VJK3JvnJJc19yMztVyXZvaxtnn5sV5K3LOrzfpjtflOSZy9i5vT5v5zkUwf3oyQvSXLx9PZakicmefO812GTud+X5AHT2z+Z5G1LnD27n52b5J3Lmj29/+Akf5zk6iS7lrTNL5j3186ZuZXkfyT5sen94zK5sN2vJHlgku9J8qJFzN9k9hmZ/j+V5AlJbl/i7Ack2TF9/JFJPnPw/qJnzyxzRZLfT/KSJW3zWpLrF7GPdfnjiNo9MH2n9XuSXJCZK1uOMd6d5P8ue/YY4+NjjE9Mb386k3+U6/5m8znP/eoY4yvTRe6bBR2Z3ej1rqq/l+ThSf7bIuYebvYSfF+Sr40xvvGu0BjjujHG+xa8n200948WvY9tMnvR+9mGr/eC97MN5y5g1paNMT48xjiwTbOvHFOZ/Kd84pLmfiFJqqqS3D/J0q6wVVXHZfLNxr9e1swlujuTK7L9q0M/MMY4MMb4aJK/WvLcq8YYX5zevTrz38cON/sLM3cfmPnvZxvOnvqlJK/IJKyWOXdRvj/Jl8cYb0ySMcbXp+vwzyZ3x59k/tu6ldk3T/+vTJIbkty/qu67pNkZY9w9Xe5+mf8+tuHsqnpAVT0zk2i/YVlzM4nTY5pQu2fOy+RdsI8nuXP6jVyL2VV1ZiZHuj65jLlVdVJVfTTJrUleMfOFaaGzq+o+SX41k3ftFmmj1/t+VbWvqq6eflGatyckuXYBz3vEcxe4j204ewn72bqzl7CfHe71XvQ+lky+eZg9HW4hp7Tem9k1OeXxeUneuay5VfXGJP87yeOSvHbOcw83+6Ike8YYf7aAmZvNTpJ/V5PTAF89528mD7o0yT+tqocu4LmPdO4FSd6xzNlV9c+r6pNJXpnkp5c1u6q+I8lJY4y9C5i54dypZ9U3Tys+aY4zH59DvoZOY/hPkzxmjnOOZPazknxo5g3Hhc+uqu+qqhuSfCyTMzbuXuc5FjI7yc8l+cU5ztvK3B1JTq2qD1fVH1XVUxYwf1tt+nvU+BbnZ3IqVJJcNr2/rG+qN5xdVY/M5NSZ548x5v0O5bpzxxi3JnliVT0qydur6ooxxp8vYfZ3J7lyjHHb5A3whdno9T5ljHF7Vf2tJO+pqo+NMeYdLu0seB/b0JL2s/X8VJazn61nGTpp0NMAAATqSURBVPvYl8YYc/2ZpDnO/vUkf7yAo4sbzh1j/Nj06NZrk/xIkjcuevZ0n/5HSZ4651mbzp76+Uzi9PhMjoj8XJKXz3PwGOMLVfXmTKLkS/N87iOZW1XPzeSU07OWOXuMcWmSS6vqnyT5hSTPX/Ts6ZtOr8rkNMSFOMw2/9ckbx1jfKWqfiLJ72RydOSYV1WPz+QI5j9Y5twxxgeTPL6qvj3J71TVO8YYizqyOOviJK8eY9y15P8zK8nJY4yDb6i/vaoef8gR7KOaUNuiqvobmXyB+TtVNTI5R3ZU1c9OT9XZltmZnHe+N8lLxxhXL2vuwW0eY3y6qq7P5Gdrrlj07Ex+ZuwpVfVTmfzc0vFVddcYY/fGzzaf2dPtvj1Jxhi3VNV7MzkffZ7fRN+QZK4/XH+kc6vqIVnQPrbZ7IMWtZ8dZvZ3Z7H72YbbvIR9rK2q+reZnFr7E8uePcb4elVdlslpiPMOtfWckcm70Pun39g8oKr2jzEWfTQgSTJzFO8r0yOKizp6/GtJPpTlvKabzq2qpyV5aZKz5nykY9PZMy5L8h+XNPvBmRzBf+90P3tEkj1Vde4YY98C52aMcefMx38zkyOJ83JjDvkaOv2/6uQk++c45x7PrqoTk/xBkh9dwJtsW9ruMcZNNblA0ROSzOvzfLjZdyd5ZVW9MsnDkvxVVX15jDGPi7kcbu4nDp7OPMa4dnrE+rGZ3zZvO6c+bt2zk7xljHHKGGNtjHFSJufiLuMw6+Fm/0GSN48x5vnN66Zzq+r+SVJVfz2Tn+W6eUmzXz/GOHmMsZbJNxZvnmekbTL7ew+eHlSTK+I9OZMvIPP0niT3raoLDz5QVU9cwuH8jeaelcXuY4ebvYz9bN3ZSX5jwfvZ4bZ50ftYSzW5ItwPJTl/WUdta+IxB29ncpGH/7mM2WOMvWOMR0y/xqwl+eKyIi35xlHyg9v9zCTXL2LOGONzSS7P5FTDpVlvblWdkeT1Sc4dY3xmybNPm1nknCSfWMbsMcZfjDFOmNnPrs5k++f6jewG2/zImUXOTXLTHEe+O5M3N350Ouu4TE5Xf9P45s8hLsqGszM5Qr03k4sSvX/Jsx9eVTumj5+SyancB5Yxe4zxnTP72K8l+eU5Rdph5yZ54PR+pmehnJbkljnN7WE0uKLJ0fAnyVVJzj7ksZ/O5F2x9yW5I5ND/rcl+aElzf5Ukq8l+cjMnyctYe5NST6a5Lrp3xcu8/Weuf+CLOaKThvNviqT876vm/59wYL2tUdl8h/eJzM58rI3ky8+i97P1pv7bxa5j20y+4WL3s8O93ovYT9bb+5ZS9rHvn7I5/SSmf38tkzeHf10kt9c4uy7p6/Fwcdftui5mbxZ+f7pa319kt/NzNX5Fr3NhyyzqKs+bvR6v2dmu/9zkgfNee5dM7cfnuSL+ebVAL9zup/9ZZI7k9ywpLn/Pcmfz7wWe5a4za+Z/jv/SCb/lzx+WbMPWe69me9VHw+3zf9+us3XTbf5cXPe5pMyOb3yE9OvHa/NN68UfCDJ55LcNd3XTl/G7ExOaf3LQ/7NfduSZj9vZh/7UJJnznPuZq/5zDIXZ45Xfdxkm591yDb/8Ly3ebv/1PQFAAAAoAmnPgIAADQj1AAAAJoRagAAAM0INQAAgGaEGgAAQDNCDQAAoBmhBgAA0Mz/A74kWAbuMVUcAAAAAElFTkSuQmCC\n", 1450 | "text/plain": [ 1451 | "
" 1452 | ] 1453 | }, 1454 | "metadata": { 1455 | "tags": [], 1456 | "needs_background": "light" 1457 | } 1458 | } 1459 | ] 1460 | }, 1461 | { 1462 | "cell_type": "markdown", 1463 | "metadata": { 1464 | "id": "u1WEMOxrVMgK" 1465 | }, 1466 | "source": [ 1467 | "# Exam 3\n", 1468 | "\n", 1469 | "ทำ Factor Analysis ข้อมูล Fifa 2018 \n", 1470 | "https://drive.google.com/file/d/1UORRKWMb8GCN455eJE_n9MvBHupnSVwv/view?usp=sharing" 1471 | ] 1472 | }, 1473 | { 1474 | "cell_type": "code", 1475 | "metadata": { 1476 | "id": "bwydAqqATIcl" 1477 | }, 1478 | "source": [ 1479 | "" 1480 | ], 1481 | "execution_count": null, 1482 | "outputs": [] 1483 | } 1484 | ] 1485 | } -------------------------------------------------------------------------------- /Exam01.MD: -------------------------------------------------------------------------------- 1 | ### วิเคราะห์ข้อมูล nndb_flat.csv และ pizza.csv ด้วยความรู้ที่เรียนมาในบทที่ 1-3 2 | ### ส่ง ก่อน 10.30 วันจันทร์ที่ 22 มีนาคม 2564 3 | ### commit ว่า exam01 4 | -------------------------------------------------------------------------------- /Intro_to_Multivariate.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Intro to Multivariate.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyPjkg4pXeOmRhgt/QUdLBPf", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "view-in-github", 21 | "colab_type": "text" 22 | }, 23 | "source": [ 24 | "\"Open" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": { 30 | "id": "q1pc93ZTiCWi" 31 | }, 32 | "source": [ 33 | "ธนพงศ์ อินทระ ID xxxxxxxxx\r\n", 34 | "\r\n", 35 | "\r\n", 36 | "\r\n", 37 | "0. เรียนในห้อง (ยังไง)\r\n", 38 | "1. เรียนออนไลน์ปกติ\r\n", 39 | "2. อัด วิดีโอ ลงกลุ่ม facebook แล้วมาตอบคอมเม้น\r\n", 40 | "3. ..... \r\n", 41 | "\r\n" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "metadata": { 47 | "colab": { 48 | "base_uri": "https://localhost:8080/" 49 | }, 50 | "id": "t-MjNqwdhUTo", 51 | "outputId": "45c02c0f-84cb-4ca0-8250-bf7ce33a6791" 52 | }, 53 | "source": [ 54 | "print('ธนพงศ์') #single quote (') ใช้ล้อมรอบข้อความ" 55 | ], 56 | "execution_count": 3, 57 | "outputs": [ 58 | { 59 | "output_type": "stream", 60 | "text": [ 61 | "ธนพงศ์\n" 62 | ], 63 | "name": "stdout" 64 | } 65 | ] 66 | } 67 | ] 68 | } -------------------------------------------------------------------------------- /KKUlogo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/tohnperfect/multivariate/e000cad90a7716bdec45fce7aa5e4b807bac6467/KKUlogo.png -------------------------------------------------------------------------------- /Python101.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "kernelspec": { 6 | "display_name": "Python 3", 7 | "language": "python", 8 | "name": "python3" 9 | }, 10 | "language_info": { 11 | "codemirror_mode": { 12 | "name": "ipython", 13 | "version": 3 14 | }, 15 | "file_extension": ".py", 16 | "mimetype": "text/x-python", 17 | "name": "python", 18 | "nbconvert_exporter": "python", 19 | "pygments_lexer": "ipython3", 20 | "version": "3.7.4" 21 | }, 22 | "colab": { 23 | "name": "Python101.ipynb", 24 | "provenance": [], 25 | "include_colab_link": true 26 | } 27 | }, 28 | "cells": [ 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "view-in-github", 33 | "colab_type": "text" 34 | }, 35 | "source": [ 36 | "\"Open" 37 | ] 38 | }, 39 | { 40 | "cell_type": "markdown", 41 | "metadata": { 42 | "id": "FnRGDLEhLd-j" 43 | }, 44 | "source": [ 45 | "ตัวแปร variable" 46 | ] 47 | }, 48 | { 49 | "cell_type": "markdown", 50 | "metadata": { 51 | "id": "Jka8R_HUL60h" 52 | }, 53 | "source": [ 54 | "หลักการตั้งชื่อตัวแปรเบื้องต้น\r\n", 55 | "\r\n", 56 | "1. ตั้งให้สื่อ\r\n", 57 | "2. ภาษาอังกฤษ\r\n", 58 | "3. ใช้ตัวเลขได้แต่ห้ามขึ้นต้นด้วยตัวเลข\r\n", 59 | "4. ห้ามเว้นวรรค\r\n", 60 | "5. ตัวเล็กกับตัวใหญ่ไม่เหมือนกัน" 61 | ] 62 | }, 63 | { 64 | "cell_type": "markdown", 65 | "metadata": { 66 | "id": "DOHWPXgvMn4E" 67 | }, 68 | "source": [ 69 | "มี output 2 mode : ออกหน้าจอ กับ เข้าไปเก็บในตัวแปร" 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "metadata": { 75 | "colab": { 76 | "base_uri": "https://localhost:8080/" 77 | }, 78 | "id": "JPYmzwcoMiDq", 79 | "outputId": "3defd6f2-df73-4546-de8d-be68a4f424d8" 80 | }, 81 | "source": [ 82 | "3.14159 # hashtag หรือ sharp # คือ comment >>> อันนี้คือ output ที่ออกหน้าจอ" 83 | ], 84 | "execution_count": null, 85 | "outputs": [ 86 | { 87 | "output_type": "execute_result", 88 | "data": { 89 | "text/plain": [ 90 | "3.14159" 91 | ] 92 | }, 93 | "metadata": { 94 | "tags": [] 95 | }, 96 | "execution_count": 34 97 | } 98 | ] 99 | }, 100 | { 101 | "cell_type": "code", 102 | "metadata": { 103 | "id": "XFI5uFHvLrCT" 104 | }, 105 | "source": [ 106 | "Pi = 3.14159 # อันนี้คือ output ที่เข้าไปอยู่ในตัวแปร" 107 | ], 108 | "execution_count": null, 109 | "outputs": [] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "metadata": { 114 | "colab": { 115 | "base_uri": "https://localhost:8080/" 116 | }, 117 | "id": "-NdBQY0TJ5ES", 118 | "outputId": "816738f1-a2fb-4092-c38a-a9f26de3648d" 119 | }, 120 | "source": [ 121 | "Pi" 122 | ], 123 | "execution_count": null, 124 | "outputs": [ 125 | { 126 | "output_type": "execute_result", 127 | "data": { 128 | "text/plain": [ 129 | "3.14159" 130 | ] 131 | }, 132 | "metadata": { 133 | "tags": [] 134 | }, 135 | "execution_count": 36 136 | } 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "metadata": { 142 | "colab": { 143 | "base_uri": "https://localhost:8080/" 144 | }, 145 | "id": "WoYN4BS8J470", 146 | "outputId": "8fb6aab7-e7f7-4e56-ddcd-df656c7fc7b2" 147 | }, 148 | "source": [ 149 | "a = 1234567\r\n", 150 | "print(a)" 151 | ], 152 | "execution_count": null, 153 | "outputs": [ 154 | { 155 | "output_type": "stream", 156 | "text": [ 157 | "1234567\n" 158 | ], 159 | "name": "stdout" 160 | } 161 | ] 162 | }, 163 | { 164 | "cell_type": "markdown", 165 | "metadata": { 166 | "id": "WZDJ9zooNl_P" 167 | }, 168 | "source": [ 169 | "# ชนิดของตัวแปร 3 ชนิด" 170 | ] 171 | }, 172 | { 173 | "cell_type": "markdown", 174 | "metadata": { 175 | "id": "4tWQGxlJOerF" 176 | }, 177 | "source": [ 178 | "### จำนวนเต็ม (integer, int)" 179 | ] 180 | }, 181 | { 182 | "cell_type": "code", 183 | "metadata": { 184 | "colab": { 185 | "base_uri": "https://localhost:8080/" 186 | }, 187 | "id": "S_u3f_SRJ44N", 188 | "outputId": "65fa70d1-560a-40e2-a475-67945ff31231" 189 | }, 190 | "source": [ 191 | "aaa = 1092\r\n", 192 | "print(aaa)" 193 | ], 194 | "execution_count": null, 195 | "outputs": [ 196 | { 197 | "output_type": "stream", 198 | "text": [ 199 | "1092\n" 200 | ], 201 | "name": "stdout" 202 | } 203 | ] 204 | }, 205 | { 206 | "cell_type": "markdown", 207 | "metadata": { 208 | "id": "dI0sDRyiOw8M" 209 | }, 210 | "source": [ 211 | "### จำนวนจริง (float)" 212 | ] 213 | }, 214 | { 215 | "cell_type": "code", 216 | "metadata": { 217 | "colab": { 218 | "base_uri": "https://localhost:8080/" 219 | }, 220 | "id": "EFQ7VrQPJ41R", 221 | "outputId": "0a2c85d4-3b0a-4ffe-bd3f-c3bb45476855" 222 | }, 223 | "source": [ 224 | "bbb = 11.\r\n", 225 | "print(bbb)" 226 | ], 227 | "execution_count": null, 228 | "outputs": [ 229 | { 230 | "output_type": "stream", 231 | "text": [ 232 | "11.0\n" 233 | ], 234 | "name": "stdout" 235 | } 236 | ] 237 | }, 238 | { 239 | "cell_type": "markdown", 240 | "metadata": { 241 | "id": "kXwYOj2QPBXV" 242 | }, 243 | "source": [ 244 | "### ตัวอักษร-ข้อความ (character และ text, string)" 245 | ] 246 | }, 247 | { 248 | "cell_type": "code", 249 | "metadata": { 250 | "colab": { 251 | "base_uri": "https://localhost:8080/" 252 | }, 253 | "id": "-e_-y70PJ4yZ", 254 | "outputId": "439527cd-7b4d-4987-8da3-0c13b5cb550e" 255 | }, 256 | "source": [ 257 | "ccc = '123456' # เราใช้ single quote ' หรือ double quote \" ล้อมรอบตัวหนังสือเพื่อระบุว่าเป็น character-string\r\n", 258 | "print(ccc)" 259 | ], 260 | "execution_count": null, 261 | "outputs": [ 262 | { 263 | "output_type": "stream", 264 | "text": [ 265 | "123456\n" 266 | ], 267 | "name": "stdout" 268 | } 269 | ] 270 | }, 271 | { 272 | "cell_type": "code", 273 | "metadata": { 274 | "colab": { 275 | "base_uri": "https://localhost:8080/" 276 | }, 277 | "id": "gBTUH9_SP8sL", 278 | "outputId": "4f5782b1-689c-44bf-81ba-cac5ef76642e" 279 | }, 280 | "source": [ 281 | "aaa + bbb # float + int = float" 282 | ], 283 | "execution_count": null, 284 | "outputs": [ 285 | { 286 | "output_type": "execute_result", 287 | "data": { 288 | "text/plain": [ 289 | "1103.0" 290 | ] 291 | }, 292 | "metadata": { 293 | "tags": [] 294 | }, 295 | "execution_count": 41 296 | } 297 | ] 298 | }, 299 | { 300 | "cell_type": "code", 301 | "metadata": { 302 | "colab": { 303 | "base_uri": "https://localhost:8080/", 304 | "height": 162 305 | }, 306 | "id": "wbtPo5IUJ4vb", 307 | "outputId": "916df717-a464-4660-b6a6-625cabd6a76c" 308 | }, 309 | "source": [ 310 | "bbb + ccc" 311 | ], 312 | "execution_count": null, 313 | "outputs": [ 314 | { 315 | "output_type": "error", 316 | "ename": "TypeError", 317 | "evalue": "ignored", 318 | "traceback": [ 319 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", 320 | "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", 321 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbbb\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mccc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", 322 | "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'float' and 'str'" 323 | ] 324 | } 325 | ] 326 | }, 327 | { 328 | "cell_type": "code", 329 | "metadata": { 330 | "colab": { 331 | "base_uri": "https://localhost:8080/" 332 | }, 333 | "id": "FuRXqjsUJ4sf", 334 | "outputId": "18699193-bc6f-4769-ffba-1bc26355f4e5" 335 | }, 336 | "source": [ 337 | "ddd = 'ธนพงศ์'\r\n", 338 | "print(ddd)" 339 | ], 340 | "execution_count": null, 341 | "outputs": [ 342 | { 343 | "output_type": "stream", 344 | "text": [ 345 | "ธนพงศ์\n" 346 | ], 347 | "name": "stdout" 348 | } 349 | ] 350 | }, 351 | { 352 | "cell_type": "markdown", 353 | "metadata": { 354 | "id": "LRazcoUwQtzX" 355 | }, 356 | "source": [ 357 | "# การเปลี่ยนชนิดของตัวแปร variable casting" 358 | ] 359 | }, 360 | { 361 | "cell_type": "code", 362 | "metadata": { 363 | "colab": { 364 | "base_uri": "https://localhost:8080/" 365 | }, 366 | "id": "CUC8ln5TJ4pl", 367 | "outputId": "09176a10-7f15-4bdb-eee5-2a51679a962f" 368 | }, 369 | "source": [ 370 | "aaa + int(ccc)" 371 | ], 372 | "execution_count": null, 373 | "outputs": [ 374 | { 375 | "output_type": "execute_result", 376 | "data": { 377 | "text/plain": [ 378 | "124548" 379 | ] 380 | }, 381 | "metadata": { 382 | "tags": [] 383 | }, 384 | "execution_count": 44 385 | } 386 | ] 387 | }, 388 | { 389 | "cell_type": "code", 390 | "metadata": { 391 | "colab": { 392 | "base_uri": "https://localhost:8080/" 393 | }, 394 | "id": "JJ6b0GEtJ4mr", 395 | "outputId": "52018032-75d3-4f4f-9bb4-3870e264a495" 396 | }, 397 | "source": [ 398 | "aaa + float(ccc)" 399 | ], 400 | "execution_count": null, 401 | "outputs": [ 402 | { 403 | "output_type": "execute_result", 404 | "data": { 405 | "text/plain": [ 406 | "124548.0" 407 | ] 408 | }, 409 | "metadata": { 410 | "tags": [] 411 | }, 412 | "execution_count": 45 413 | } 414 | ] 415 | }, 416 | { 417 | "cell_type": "code", 418 | "metadata": { 419 | "colab": { 420 | "base_uri": "https://localhost:8080/", 421 | "height": 35 422 | }, 423 | "id": "NBHziWE5J4jM", 424 | "outputId": "306431d9-a404-4d86-c547-215228a55d46" 425 | }, 426 | "source": [ 427 | "str(aaa)" 428 | ], 429 | "execution_count": null, 430 | "outputs": [ 431 | { 432 | "output_type": "execute_result", 433 | "data": { 434 | "application/vnd.google.colaboratory.intrinsic+json": { 435 | "type": "string" 436 | }, 437 | "text/plain": [ 438 | "'1092'" 439 | ] 440 | }, 441 | "metadata": { 442 | "tags": [] 443 | }, 444 | "execution_count": 46 445 | } 446 | ] 447 | }, 448 | { 449 | "cell_type": "markdown", 450 | "metadata": { 451 | "id": "DCsc4R9KJ3Gu" 452 | }, 453 | "source": [ 454 | "# การดำเนินการ Operation (Operators +,-,*,/,%)" 455 | ] 456 | }, 457 | { 458 | "cell_type": "code", 459 | "metadata": { 460 | "colab": { 461 | "base_uri": "https://localhost:8080/", 462 | "height": 162 463 | }, 464 | "id": "FahcgJdhJ3Gu", 465 | "outputId": "7f24263a-e17c-4a77-dee9-3e9576e0d0fa" 466 | }, 467 | "source": [ 468 | "a+b" 469 | ], 470 | "execution_count": null, 471 | "outputs": [ 472 | { 473 | "output_type": "error", 474 | "ename": "NameError", 475 | "evalue": "ignored", 476 | "traceback": [ 477 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", 478 | "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", 479 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", 480 | "\u001b[0;31mNameError\u001b[0m: name 'b' is not defined" 481 | ] 482 | } 483 | ] 484 | }, 485 | { 486 | "cell_type": "code", 487 | "metadata": { 488 | "colab": { 489 | "base_uri": "https://localhost:8080/" 490 | }, 491 | "id": "QY7ckaXeJ4gN", 492 | "outputId": "c7d9c1f3-2330-4ed9-a0a3-81d31953b3e9" 493 | }, 494 | "source": [ 495 | "aaa + bbb" 496 | ], 497 | "execution_count": null, 498 | "outputs": [ 499 | { 500 | "output_type": "execute_result", 501 | "data": { 502 | "text/plain": [ 503 | "1103.0" 504 | ] 505 | }, 506 | "metadata": { 507 | "tags": [] 508 | }, 509 | "execution_count": 48 510 | } 511 | ] 512 | }, 513 | { 514 | "cell_type": "code", 515 | "metadata": { 516 | "colab": { 517 | "base_uri": "https://localhost:8080/" 518 | }, 519 | "id": "2tNThbPGJ4VY", 520 | "outputId": "897cd6c1-650c-4801-a17c-569ee7d0567d" 521 | }, 522 | "source": [ 523 | "aaa - bbb" 524 | ], 525 | "execution_count": null, 526 | "outputs": [ 527 | { 528 | "output_type": "execute_result", 529 | "data": { 530 | "text/plain": [ 531 | "1081.0" 532 | ] 533 | }, 534 | "metadata": { 535 | "tags": [] 536 | }, 537 | "execution_count": 49 538 | } 539 | ] 540 | }, 541 | { 542 | "cell_type": "code", 543 | "metadata": { 544 | "colab": { 545 | "base_uri": "https://localhost:8080/" 546 | }, 547 | "id": "VvE9t0j9J3Gu", 548 | "outputId": "3257b1b6-a508-489c-aa67-1804d48762d9" 549 | }, 550 | "source": [ 551 | "ab = aaa*bbb\r\n", 552 | "print(ab)" 553 | ], 554 | "execution_count": null, 555 | "outputs": [ 556 | { 557 | "output_type": "stream", 558 | "text": [ 559 | "12012.0\n" 560 | ], 561 | "name": "stdout" 562 | } 563 | ] 564 | }, 565 | { 566 | "cell_type": "code", 567 | "metadata": { 568 | "colab": { 569 | "base_uri": "https://localhost:8080/" 570 | }, 571 | "id": "JW5-lnz7S5a8", 572 | "outputId": "09e2a481-fe1a-4730-f119-b0e68273bcad" 573 | }, 574 | "source": [ 575 | "ab + int(ccc)" 576 | ], 577 | "execution_count": null, 578 | "outputs": [ 579 | { 580 | "output_type": "execute_result", 581 | "data": { 582 | "text/plain": [ 583 | "135468.0" 584 | ] 585 | }, 586 | "metadata": { 587 | "tags": [] 588 | }, 589 | "execution_count": 51 590 | } 591 | ] 592 | }, 593 | { 594 | "cell_type": "markdown", 595 | "metadata": { 596 | "id": "u9KXbMyeJ3Gu" 597 | }, 598 | "source": [ 599 | "#### % คือหมาย modulo" 600 | ] 601 | }, 602 | { 603 | "cell_type": "code", 604 | "metadata": { 605 | "colab": { 606 | "base_uri": "https://localhost:8080/" 607 | }, 608 | "id": "lw9DDEhtJ3Gv", 609 | "outputId": "3d46f92e-6f93-42ef-d0f1-c072c6002ffc" 610 | }, 611 | "source": [ 612 | "5%3" 613 | ], 614 | "execution_count": null, 615 | "outputs": [ 616 | { 617 | "output_type": "execute_result", 618 | "data": { 619 | "text/plain": [ 620 | "2" 621 | ] 622 | }, 623 | "metadata": { 624 | "tags": [] 625 | }, 626 | "execution_count": 52 627 | } 628 | ] 629 | }, 630 | { 631 | "cell_type": "code", 632 | "metadata": { 633 | "colab": { 634 | "base_uri": "https://localhost:8080/" 635 | }, 636 | "id": "MQU5WHmTTCjM", 637 | "outputId": "039353e7-bc95-4d36-f5f6-5a1c920095b7" 638 | }, 639 | "source": [ 640 | "7%3" 641 | ], 642 | "execution_count": null, 643 | "outputs": [ 644 | { 645 | "output_type": "execute_result", 646 | "data": { 647 | "text/plain": [ 648 | "1" 649 | ] 650 | }, 651 | "metadata": { 652 | "tags": [] 653 | }, 654 | "execution_count": 53 655 | } 656 | ] 657 | }, 658 | { 659 | "cell_type": "markdown", 660 | "metadata": { 661 | "id": "fa8Cy421TQyv" 662 | }, 663 | "source": [ 664 | "### คำสั่ง print แบบพิเศษ (การ format string)" 665 | ] 666 | }, 667 | { 668 | "cell_type": "code", 669 | "metadata": { 670 | "colab": { 671 | "base_uri": "https://localhost:8080/" 672 | }, 673 | "id": "hUsMNU5MTMBZ", 674 | "outputId": "88af2b72-aaee-4f96-e837-e0f2588952e6" 675 | }, 676 | "source": [ 677 | "print('ตัวแปร') #สิ่งที่อยู่ข้างในวงเล็บคือ ตัวแปร และ string" 678 | ], 679 | "execution_count": null, 680 | "outputs": [ 681 | { 682 | "output_type": "stream", 683 | "text": [ 684 | "ตัวแปร\n" 685 | ], 686 | "name": "stdout" 687 | } 688 | ] 689 | }, 690 | { 691 | "cell_type": "code", 692 | "metadata": { 693 | "colab": { 694 | "base_uri": "https://localhost:8080/" 695 | }, 696 | "id": "N9TJUqyYTiaS", 697 | "outputId": "c823324f-6425-479f-c13e-eba91d688506" 698 | }, 699 | "source": [ 700 | "print(f'% คือการหารเอาเศษ เช่น 7%3 = {7%3}') # เพิ่ม f หน้า 'string' และใช้ {} ใส่ code" 701 | ], 702 | "execution_count": null, 703 | "outputs": [ 704 | { 705 | "output_type": "stream", 706 | "text": [ 707 | "% คือการหารเอาเศษ เช่น 7%3 = 1\n" 708 | ], 709 | "name": "stdout" 710 | } 711 | ] 712 | }, 713 | { 714 | "cell_type": "code", 715 | "metadata": { 716 | "colab": { 717 | "base_uri": "https://localhost:8080/" 718 | }, 719 | "id": "FiTszVZXTiW4", 720 | "outputId": "e439f800-3f3b-429b-c711-4e134880d024" 721 | }, 722 | "source": [ 723 | "print(f'% คือการหารเอาเศษ เช่น 7%3 = {7%3} \\\r\n", 724 | " แต่\\n/ คือการหารปกติ เช่น 7/3 = {7/3} \\\r\n", 725 | " และ\\n// คือการหารเอาส่วน เช่น 7//3 = {7//3} \\\r\n", 726 | " หรือ\\nใช้ int() เพื่อหารเอาส่วน เช่น int(7/3) = {int(7/3)}') # \\n คือการขึ้นบรรทัดใหม่ \\ ใช้ในการตัด code แต่ com จะไม่เห็น" 727 | ], 728 | "execution_count": null, 729 | "outputs": [ 730 | { 731 | "output_type": "stream", 732 | "text": [ 733 | "% คือการหารเอาเศษ เช่น 7%3 = 1 แต่\n", 734 | "/ คือการหารปกติ เช่น 7/3 = 2.3333333333333335 และ\n", 735 | "// คือการหารเอาส่วน เช่น 7//3 = 2 หรือ\n", 736 | "ใช้ int() เพื่อหารเอาส่วน เช่น int(7/3) = 2\n" 737 | ], 738 | "name": "stdout" 739 | } 740 | ] 741 | }, 742 | { 743 | "cell_type": "markdown", 744 | "metadata": { 745 | "id": "FHzvVDaWJ3Gw" 746 | }, 747 | "source": [ 748 | "## DATA STRUCTURE (โครงสร้างข้อมูล)" 749 | ] 750 | }, 751 | { 752 | "cell_type": "code", 753 | "metadata": { 754 | "colab": { 755 | "base_uri": "https://localhost:8080/" 756 | }, 757 | "id": "QP2rmfqvXOzx", 758 | "outputId": "1503eeb4-3748-4be8-c24b-95b1b10a22d9" 759 | }, 760 | "source": [ 761 | "[111,'c','งง',aaa]" 762 | ], 763 | "execution_count": null, 764 | "outputs": [ 765 | { 766 | "output_type": "execute_result", 767 | "data": { 768 | "text/plain": [ 769 | "[111, 'c', 'งง', 1092]" 770 | ] 771 | }, 772 | "metadata": { 773 | "tags": [] 774 | }, 775 | "execution_count": 57 776 | } 777 | ] 778 | }, 779 | { 780 | "cell_type": "markdown", 781 | "metadata": { 782 | "id": "e5kIU3W-J3Gw" 783 | }, 784 | "source": [ 785 | "### List คือ การเอาข้อมูลหลายๆตัวมาเรียงต่อกัน \n", 786 | "#### list สามารถสร้างได้ 2 แบบ ดังนี้" 787 | ] 788 | }, 789 | { 790 | "cell_type": "markdown", 791 | "metadata": { 792 | "id": "hq7h4tj2J3Gw" 793 | }, 794 | "source": [ 795 | "#### แบบที่1 > square brackets" 796 | ] 797 | }, 798 | { 799 | "cell_type": "code", 800 | "metadata": { 801 | "colab": { 802 | "base_uri": "https://localhost:8080/" 803 | }, 804 | "id": "8Fnk8-I9J3Gw", 805 | "outputId": "2cc791b1-365e-4865-be97-bbf899d28959" 806 | }, 807 | "source": [ 808 | "list_a = []\r\n", 809 | "print(list_a)" 810 | ], 811 | "execution_count": null, 812 | "outputs": [ 813 | { 814 | "output_type": "stream", 815 | "text": [ 816 | "[]\n" 817 | ], 818 | "name": "stdout" 819 | } 820 | ] 821 | }, 822 | { 823 | "cell_type": "code", 824 | "metadata": { 825 | "colab": { 826 | "base_uri": "https://localhost:8080/" 827 | }, 828 | "id": "9R2jTTTQJ3Gw", 829 | "outputId": "4962c168-5eac-4d36-b569-9f3709c2f35f" 830 | }, 831 | "source": [ 832 | "list_b = [111,'c','งง',aaa]\r\n", 833 | "print(list_b)" 834 | ], 835 | "execution_count": null, 836 | "outputs": [ 837 | { 838 | "output_type": "stream", 839 | "text": [ 840 | "[111, 'c', 'งง', 1092]\n" 841 | ], 842 | "name": "stdout" 843 | } 844 | ] 845 | }, 846 | { 847 | "cell_type": "markdown", 848 | "metadata": { 849 | "id": "L7bQ_1JJbU0l" 850 | }, 851 | "source": [ 852 | "### ลำดับที่อยู่ใน list มีความสำคัญ (ลำดับใน list เริ่มจาก 0,1,2,...) " 853 | ] 854 | }, 855 | { 856 | "cell_type": "code", 857 | "metadata": { 858 | "colab": { 859 | "base_uri": "https://localhost:8080/", 860 | "height": 35 861 | }, 862 | "id": "Fy2Ju92hbTJe", 863 | "outputId": "513ed232-c012-44c5-fca7-89b3f780d1dc" 864 | }, 865 | "source": [ 866 | "list_b[2]" 867 | ], 868 | "execution_count": null, 869 | "outputs": [ 870 | { 871 | "output_type": "execute_result", 872 | "data": { 873 | "application/vnd.google.colaboratory.intrinsic+json": { 874 | "type": "string" 875 | }, 876 | "text/plain": [ 877 | "'งง'" 878 | ] 879 | }, 880 | "metadata": { 881 | "tags": [] 882 | }, 883 | "execution_count": 84 884 | } 885 | ] 886 | }, 887 | { 888 | "cell_type": "markdown", 889 | "metadata": { 890 | "id": "f_DgmUApJ3Gw" 891 | }, 892 | "source": [ 893 | "#### แบบที่2" 894 | ] 895 | }, 896 | { 897 | "cell_type": "code", 898 | "metadata": { 899 | "colab": { 900 | "base_uri": "https://localhost:8080/" 901 | }, 902 | "id": "pmBmmx92J3Gx", 903 | "outputId": "b0768371-c4b1-43fa-fd4e-826c15f207f8" 904 | }, 905 | "source": [ 906 | "list_c = list()\r\n", 907 | "print(list_c)" 908 | ], 909 | "execution_count": null, 910 | "outputs": [ 911 | { 912 | "output_type": "stream", 913 | "text": [ 914 | "[]\n" 915 | ], 916 | "name": "stdout" 917 | } 918 | ] 919 | }, 920 | { 921 | "cell_type": "markdown", 922 | "metadata": { 923 | "id": "oVe1jDU1J3Gx" 924 | }, 925 | "source": [ 926 | "## append() เพิ่มสมาชิกใน list" 927 | ] 928 | }, 929 | { 930 | "cell_type": "code", 931 | "metadata": { 932 | "colab": { 933 | "base_uri": "https://localhost:8080/" 934 | }, 935 | "id": "fLqpVjZzJ3Gx", 936 | "outputId": "ed757539-e28a-4096-dba0-cd9e3fdc930a" 937 | }, 938 | "source": [ 939 | "list_b.append('u')\n", 940 | "print(list_b)" 941 | ], 942 | "execution_count": null, 943 | "outputs": [ 944 | { 945 | "output_type": "stream", 946 | "text": [ 947 | "[111, 'c', 'งง', 1092, 'u']\n" 948 | ], 949 | "name": "stdout" 950 | } 951 | ] 952 | }, 953 | { 954 | "cell_type": "markdown", 955 | "metadata": { 956 | "id": "kHW9ylc2ZFfD" 957 | }, 958 | "source": [ 959 | "ตัวที่อยู่ในวงเล็บหลังจากตัวแปร list เรียกว่า index ใช้สำหรับชี้ข้อมูลใน list \r\n", 960 | "\r\n", 961 | "(ชี้จากข้างหน้า,ชี้จากข้างหลัง)\r\n", 962 | "\r\n", 963 | "0 คือสมาชิกตัวแรก , -1 คือสมาชิกตัวสุดท้าย" 964 | ] 965 | }, 966 | { 967 | "cell_type": "code", 968 | "metadata": { 969 | "colab": { 970 | "base_uri": "https://localhost:8080/", 971 | "height": 35 972 | }, 973 | "id": "gCFo2oDSYfwZ", 974 | "outputId": "65a3911a-3905-4b24-82d4-5e5691d32200" 975 | }, 976 | "source": [ 977 | "list_b[-1] " 978 | ], 979 | "execution_count": null, 980 | "outputs": [ 981 | { 982 | "output_type": "execute_result", 983 | "data": { 984 | "application/vnd.google.colaboratory.intrinsic+json": { 985 | "type": "string" 986 | }, 987 | "text/plain": [ 988 | "'u'" 989 | ] 990 | }, 991 | "metadata": { 992 | "tags": [] 993 | }, 994 | "execution_count": 63 995 | } 996 | ] 997 | }, 998 | { 999 | "cell_type": "markdown", 1000 | "metadata": { 1001 | "id": "i-HVllkVJ3Gy" 1002 | }, 1003 | "source": [ 1004 | "## String > list of characters" 1005 | ] 1006 | }, 1007 | { 1008 | "cell_type": "code", 1009 | "metadata": { 1010 | "colab": { 1011 | "base_uri": "https://localhost:8080/" 1012 | }, 1013 | "id": "DNNnCnrUJ3Gy", 1014 | "outputId": "ce1df72e-e925-41c0-8e11-e1f2f31854b5" 1015 | }, 1016 | "source": [ 1017 | "t = 'python is easy'\n", 1018 | "print(t)" 1019 | ], 1020 | "execution_count": null, 1021 | "outputs": [ 1022 | { 1023 | "output_type": "stream", 1024 | "text": [ 1025 | "python is easy\n" 1026 | ], 1027 | "name": "stdout" 1028 | } 1029 | ] 1030 | }, 1031 | { 1032 | "cell_type": "code", 1033 | "metadata": { 1034 | "colab": { 1035 | "base_uri": "https://localhost:8080/", 1036 | "height": 35 1037 | }, 1038 | "id": "h1gP1q5lJ3Gz", 1039 | "outputId": "bfeebd6e-a0d7-47df-b662-84319f479c95" 1040 | }, 1041 | "source": [ 1042 | "t[1]" 1043 | ], 1044 | "execution_count": null, 1045 | "outputs": [ 1046 | { 1047 | "output_type": "execute_result", 1048 | "data": { 1049 | "application/vnd.google.colaboratory.intrinsic+json": { 1050 | "type": "string" 1051 | }, 1052 | "text/plain": [ 1053 | "'y'" 1054 | ] 1055 | }, 1056 | "metadata": { 1057 | "tags": [] 1058 | }, 1059 | "execution_count": 65 1060 | } 1061 | ] 1062 | }, 1063 | { 1064 | "cell_type": "code", 1065 | "metadata": { 1066 | "colab": { 1067 | "base_uri": "https://localhost:8080/", 1068 | "height": 35 1069 | }, 1070 | "id": "7I6FHLuwJ3Gz", 1071 | "outputId": "d41f72cf-7709-454e-d948-8fc3ef12b4f7" 1072 | }, 1073 | "source": [ 1074 | "t[-4]" 1075 | ], 1076 | "execution_count": null, 1077 | "outputs": [ 1078 | { 1079 | "output_type": "execute_result", 1080 | "data": { 1081 | "application/vnd.google.colaboratory.intrinsic+json": { 1082 | "type": "string" 1083 | }, 1084 | "text/plain": [ 1085 | "'e'" 1086 | ] 1087 | }, 1088 | "metadata": { 1089 | "tags": [] 1090 | }, 1091 | "execution_count": 66 1092 | } 1093 | ] 1094 | }, 1095 | { 1096 | "cell_type": "code", 1097 | "metadata": { 1098 | "colab": { 1099 | "base_uri": "https://localhost:8080/", 1100 | "height": 35 1101 | }, 1102 | "id": "wAzxi-U7aGoa", 1103 | "outputId": "91c05836-6aa7-477c-be9b-65679b250ae0" 1104 | }, 1105 | "source": [ 1106 | "t[6]" 1107 | ], 1108 | "execution_count": null, 1109 | "outputs": [ 1110 | { 1111 | "output_type": "execute_result", 1112 | "data": { 1113 | "application/vnd.google.colaboratory.intrinsic+json": { 1114 | "type": "string" 1115 | }, 1116 | "text/plain": [ 1117 | "' '" 1118 | ] 1119 | }, 1120 | "metadata": { 1121 | "tags": [] 1122 | }, 1123 | "execution_count": 67 1124 | } 1125 | ] 1126 | }, 1127 | { 1128 | "cell_type": "markdown", 1129 | "metadata": { 1130 | "id": "678ayzRbaVYs" 1131 | }, 1132 | "source": [ 1133 | "## จบ 5 มค 2021" 1134 | ] 1135 | }, 1136 | { 1137 | "cell_type": "markdown", 1138 | "metadata": { 1139 | "id": "z_s_nQ4VhbqL" 1140 | }, 1141 | "source": [ 1142 | "# คาบ 3 11 มค 2021" 1143 | ] 1144 | }, 1145 | { 1146 | "cell_type": "code", 1147 | "metadata": { 1148 | "id": "Sb7qn8lEJ3Gy", 1149 | "colab": { 1150 | "base_uri": "https://localhost:8080/" 1151 | }, 1152 | "outputId": "cbb3bd19-2021-45e3-fbb2-8a7bcfe486c7" 1153 | }, 1154 | "source": [ 1155 | "len(t)" 1156 | ], 1157 | "execution_count": null, 1158 | "outputs": [ 1159 | { 1160 | "output_type": "execute_result", 1161 | "data": { 1162 | "text/plain": [ 1163 | "14" 1164 | ] 1165 | }, 1166 | "metadata": { 1167 | "tags": [] 1168 | }, 1169 | "execution_count": 68 1170 | } 1171 | ] 1172 | }, 1173 | { 1174 | "cell_type": "code", 1175 | "metadata": { 1176 | "id": "ZijhE00ak3f3", 1177 | "colab": { 1178 | "base_uri": "https://localhost:8080/" 1179 | }, 1180 | "outputId": "a35a17fa-196c-4651-bcb9-9f0e50e179d3" 1181 | }, 1182 | "source": [ 1183 | "list_b" 1184 | ], 1185 | "execution_count": null, 1186 | "outputs": [ 1187 | { 1188 | "output_type": "execute_result", 1189 | "data": { 1190 | "text/plain": [ 1191 | "[111, 'c', 'งง', 1092, 'u']" 1192 | ] 1193 | }, 1194 | "metadata": { 1195 | "tags": [] 1196 | }, 1197 | "execution_count": 69 1198 | } 1199 | ] 1200 | }, 1201 | { 1202 | "cell_type": "code", 1203 | "metadata": { 1204 | "colab": { 1205 | "base_uri": "https://localhost:8080/" 1206 | }, 1207 | "id": "MT4PMgvSJ3Gy", 1208 | "outputId": "17c8526b-a560-4fab-ae15-50d59c4bb103" 1209 | }, 1210 | "source": [ 1211 | "len(list_b) # len คือคำสั่งตรวจสอบความยาวของ list (จำนวนสมาชิก)" 1212 | ], 1213 | "execution_count": null, 1214 | "outputs": [ 1215 | { 1216 | "output_type": "execute_result", 1217 | "data": { 1218 | "text/plain": [ 1219 | "5" 1220 | ] 1221 | }, 1222 | "metadata": { 1223 | "tags": [] 1224 | }, 1225 | "execution_count": 70 1226 | } 1227 | ] 1228 | }, 1229 | { 1230 | "cell_type": "code", 1231 | "metadata": { 1232 | "colab": { 1233 | "base_uri": "https://localhost:8080/" 1234 | }, 1235 | "id": "_cTxNpRVewFq", 1236 | "outputId": "8ce89ed9-2697-4523-bc2f-e7db71ed2211" 1237 | }, 1238 | "source": [ 1239 | "list_b.append(t)\r\n", 1240 | "print(list_b)" 1241 | ], 1242 | "execution_count": null, 1243 | "outputs": [ 1244 | { 1245 | "output_type": "stream", 1246 | "text": [ 1247 | "[111, 'c', 'งง', 1092, 'u', 'python is easy']\n" 1248 | ], 1249 | "name": "stdout" 1250 | } 1251 | ] 1252 | }, 1253 | { 1254 | "cell_type": "markdown", 1255 | "metadata": { 1256 | "id": "gFt8MOOZef3M" 1257 | }, 1258 | "source": [ 1259 | "### ตัวที่อยู่ข้างใน [ ] เราเรียกว่า index (ตัวชี้)" 1260 | ] 1261 | }, 1262 | { 1263 | "cell_type": "markdown", 1264 | "metadata": { 1265 | "id": "sQt-ldH5J3Gz" 1266 | }, 1267 | "source": [ 1268 | "### List slicing สามารถทำได้โดยใช้ colon :\n", 1269 | "[a:b] -> [a,b) \n", 1270 | "![9.gif]() \n" 1271 | ] 1272 | }, 1273 | { 1274 | "cell_type": "code", 1275 | "metadata": { 1276 | "colab": { 1277 | "base_uri": "https://localhost:8080/" 1278 | }, 1279 | "id": "Q33VSRhhJ3Gz", 1280 | "outputId": "daa8a38f-3987-4e73-bebf-f0533f627237" 1281 | }, 1282 | "source": [ 1283 | "print(t)\r\n", 1284 | "print(t[7:9])\r\n", 1285 | "print(len(t[7:9]))" 1286 | ], 1287 | "execution_count": null, 1288 | "outputs": [ 1289 | { 1290 | "output_type": "stream", 1291 | "text": [ 1292 | "python is easy\n", 1293 | "is\n", 1294 | "2\n" 1295 | ], 1296 | "name": "stdout" 1297 | } 1298 | ] 1299 | }, 1300 | { 1301 | "cell_type": "code", 1302 | "metadata": { 1303 | "id": "nN4MEDa1niH-", 1304 | "colab": { 1305 | "base_uri": "https://localhost:8080/", 1306 | "height": 35 1307 | }, 1308 | "outputId": "0e39b6b8-8f74-4038-a90d-ce022d2170da" 1309 | }, 1310 | "source": [ 1311 | "t[0:14:2]" 1312 | ], 1313 | "execution_count": null, 1314 | "outputs": [ 1315 | { 1316 | "output_type": "execute_result", 1317 | "data": { 1318 | "application/vnd.google.colaboratory.intrinsic+json": { 1319 | "type": "string" 1320 | }, 1321 | "text/plain": [ 1322 | "'pto ses'" 1323 | ] 1324 | }, 1325 | "metadata": { 1326 | "tags": [] 1327 | }, 1328 | "execution_count": 74 1329 | } 1330 | ] 1331 | }, 1332 | { 1333 | "cell_type": "code", 1334 | "metadata": { 1335 | "id": "tMOobKP5oHSY" 1336 | }, 1337 | "source": [ 1338 | "Z = [1,2,3,4,5,6,7,8,9,10]" 1339 | ], 1340 | "execution_count": null, 1341 | "outputs": [] 1342 | }, 1343 | { 1344 | "cell_type": "markdown", 1345 | "metadata": { 1346 | "id": "FEy4xM4MoQAV" 1347 | }, 1348 | "source": [ 1349 | "### quiz\r\n", 1350 | "ให้ใช้ list slicing เลือกมาเฉพาะเลขคู่" 1351 | ] 1352 | }, 1353 | { 1354 | "cell_type": "code", 1355 | "metadata": { 1356 | "id": "yYCOv4SooaWO", 1357 | "colab": { 1358 | "base_uri": "https://localhost:8080/" 1359 | }, 1360 | "outputId": "43ab1cc0-ffc6-46ed-92f3-9a1a3cd1924c" 1361 | }, 1362 | "source": [ 1363 | "Z[1:10:2]" 1364 | ], 1365 | "execution_count": null, 1366 | "outputs": [ 1367 | { 1368 | "output_type": "execute_result", 1369 | "data": { 1370 | "text/plain": [ 1371 | "[2, 4, 6, 8, 10]" 1372 | ] 1373 | }, 1374 | "metadata": { 1375 | "tags": [] 1376 | }, 1377 | "execution_count": 76 1378 | } 1379 | ] 1380 | }, 1381 | { 1382 | "cell_type": "markdown", 1383 | "metadata": { 1384 | "id": "SoaWuAvGhBzx" 1385 | }, 1386 | "source": [ 1387 | "ถ้าเว้นว่างหน้า : หมายความว่า เริ่มตั้งแต่ตัวแรก (0)\r\n", 1388 | "\r\n", 1389 | "ถ้าเว้นว่างหลัง : หมายความว่า ไปจนถึงตัวสุดท้าย (len(list))" 1390 | ] 1391 | }, 1392 | { 1393 | "cell_type": "code", 1394 | "metadata": { 1395 | "colab": { 1396 | "base_uri": "https://localhost:8080/" 1397 | }, 1398 | "id": "-xBD4-1-g4lp", 1399 | "outputId": "8a4da4be-90f8-4c26-8a9f-baff52e63a2b" 1400 | }, 1401 | "source": [ 1402 | "print(t)\r\n", 1403 | "print(t[:6])\r\n", 1404 | "print(t[10:])\r\n", 1405 | "print(t[-4:])\r\n", 1406 | "print(t[:])" 1407 | ], 1408 | "execution_count": null, 1409 | "outputs": [ 1410 | { 1411 | "output_type": "stream", 1412 | "text": [ 1413 | "python is easy\n", 1414 | "python\n", 1415 | "easy\n", 1416 | "easy\n", 1417 | "python is easy\n" 1418 | ], 1419 | "name": "stdout" 1420 | } 1421 | ] 1422 | }, 1423 | { 1424 | "cell_type": "code", 1425 | "metadata": { 1426 | "id": "TgS8KJKApz6Y", 1427 | "colab": { 1428 | "base_uri": "https://localhost:8080/" 1429 | }, 1430 | "outputId": "289bef45-4308-4339-c0d1-478e5ea2d8e1" 1431 | }, 1432 | "source": [ 1433 | "print(Z[::2])" 1434 | ], 1435 | "execution_count": null, 1436 | "outputs": [ 1437 | { 1438 | "output_type": "stream", 1439 | "text": [ 1440 | "[1, 3, 5, 7, 9]\n" 1441 | ], 1442 | "name": "stdout" 1443 | } 1444 | ] 1445 | }, 1446 | { 1447 | "cell_type": "markdown", 1448 | "metadata": { 1449 | "id": "YSoN7fl9J3G1" 1450 | }, 1451 | "source": [ 1452 | "#### เราสามารถเอา list มาต่อกันได้ด้วย +" 1453 | ] 1454 | }, 1455 | { 1456 | "cell_type": "code", 1457 | "metadata": { 1458 | "colab": { 1459 | "base_uri": "https://localhost:8080/", 1460 | "height": 35 1461 | }, 1462 | "id": "OoUZt83iJ3G1", 1463 | "outputId": "d8dab7d9-e891-46c0-97df-dcd213641d6a" 1464 | }, 1465 | "source": [ 1466 | " t + '??'" 1467 | ], 1468 | "execution_count": null, 1469 | "outputs": [ 1470 | { 1471 | "output_type": "execute_result", 1472 | "data": { 1473 | "application/vnd.google.colaboratory.intrinsic+json": { 1474 | "type": "string" 1475 | }, 1476 | "text/plain": [ 1477 | "'python is easy??'" 1478 | ] 1479 | }, 1480 | "metadata": { 1481 | "tags": [] 1482 | }, 1483 | "execution_count": 79 1484 | } 1485 | ] 1486 | }, 1487 | { 1488 | "cell_type": "code", 1489 | "metadata": { 1490 | "colab": { 1491 | "base_uri": "https://localhost:8080/", 1492 | "height": 162 1493 | }, 1494 | "id": "Ik9WmOZoisKD", 1495 | "outputId": "c94b8d31-3536-4fba-e90a-6a243fbd5ba4" 1496 | }, 1497 | "source": [ 1498 | "t + list_b ## ไม่สามารถเอา list ปกติมาต่อกับ string ได้" 1499 | ], 1500 | "execution_count": null, 1501 | "outputs": [ 1502 | { 1503 | "output_type": "error", 1504 | "ename": "TypeError", 1505 | "evalue": "ignored", 1506 | "traceback": [ 1507 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", 1508 | "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", 1509 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mlist_b\u001b[0m \u001b[0;31m## ไม่สามารถเอา list ปกติมาต่อกับ string ได้\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", 1510 | "\u001b[0;31mTypeError\u001b[0m: must be str, not list" 1511 | ] 1512 | } 1513 | ] 1514 | }, 1515 | { 1516 | "cell_type": "code", 1517 | "metadata": { 1518 | "colab": { 1519 | "base_uri": "https://localhost:8080/" 1520 | }, 1521 | "id": "z56m7Q29iWXI", 1522 | "outputId": "e4b9b5b7-5097-41d7-99f6-3828da1c9f4c" 1523 | }, 1524 | "source": [ 1525 | "print(list_a)\r\n", 1526 | "list_b = [111,'c','งง',aaa]\r\n", 1527 | "print(list_b)\r\n", 1528 | "print(list_b + list_a) # + คือเอาสมาชิกมารวมกัน" 1529 | ], 1530 | "execution_count": null, 1531 | "outputs": [ 1532 | { 1533 | "output_type": "stream", 1534 | "text": [ 1535 | "[]\n", 1536 | "[111, 'c', 'งง', 1092]\n", 1537 | "[111, 'c', 'งง', 1092]\n" 1538 | ], 1539 | "name": "stdout" 1540 | } 1541 | ] 1542 | }, 1543 | { 1544 | "cell_type": "code", 1545 | "metadata": { 1546 | "id": "uexH7aYFs76-", 1547 | "colab": { 1548 | "base_uri": "https://localhost:8080/" 1549 | }, 1550 | "outputId": "551a1b6d-347a-4ddf-902a-379325f49fa9" 1551 | }, 1552 | "source": [ 1553 | "list_b.append(list_a)\r\n", 1554 | "print(list_b)" 1555 | ], 1556 | "execution_count": null, 1557 | "outputs": [ 1558 | { 1559 | "output_type": "stream", 1560 | "text": [ 1561 | "[111, 'c', 'งง', 1092, []]\n" 1562 | ], 1563 | "name": "stdout" 1564 | } 1565 | ] 1566 | }, 1567 | { 1568 | "cell_type": "markdown", 1569 | "metadata": { 1570 | "id": "GWJi8kGLJ3G1" 1571 | }, 1572 | "source": [ 1573 | "#### การแบ่ง string ตามสัญลักษณ์ที่กำหนด -> split string" 1574 | ] 1575 | }, 1576 | { 1577 | "cell_type": "code", 1578 | "metadata": { 1579 | "id": "TW6Tuxsst2xv", 1580 | "colab": { 1581 | "base_uri": "https://localhost:8080/", 1582 | "height": 35 1583 | }, 1584 | "outputId": "2f03ffe4-6c79-4410-a3c2-f1bfe770eee0" 1585 | }, 1586 | "source": [ 1587 | "t" 1588 | ], 1589 | "execution_count": null, 1590 | "outputs": [ 1591 | { 1592 | "output_type": "execute_result", 1593 | "data": { 1594 | "application/vnd.google.colaboratory.intrinsic+json": { 1595 | "type": "string" 1596 | }, 1597 | "text/plain": [ 1598 | "'python is easy'" 1599 | ] 1600 | }, 1601 | "metadata": { 1602 | "tags": [] 1603 | }, 1604 | "execution_count": 92 1605 | } 1606 | ] 1607 | }, 1608 | { 1609 | "cell_type": "code", 1610 | "metadata": { 1611 | "colab": { 1612 | "base_uri": "https://localhost:8080/" 1613 | }, 1614 | "id": "AnpBykIoJ3G1", 1615 | "outputId": "6f772e5a-fe72-4acf-a903-b79219e5082f" 1616 | }, 1617 | "source": [ 1618 | "t.split(' ')" 1619 | ], 1620 | "execution_count": null, 1621 | "outputs": [ 1622 | { 1623 | "output_type": "execute_result", 1624 | "data": { 1625 | "text/plain": [ 1626 | "['python', 'is', 'easy']" 1627 | ] 1628 | }, 1629 | "metadata": { 1630 | "tags": [] 1631 | }, 1632 | "execution_count": 93 1633 | } 1634 | ] 1635 | }, 1636 | { 1637 | "cell_type": "code", 1638 | "metadata": { 1639 | "id": "iAXvmowYJ3G2" 1640 | }, 1641 | "source": [ 1642 | "time = '12:30:15'" 1643 | ], 1644 | "execution_count": null, 1645 | "outputs": [] 1646 | }, 1647 | { 1648 | "cell_type": "code", 1649 | "metadata": { 1650 | "colab": { 1651 | "base_uri": "https://localhost:8080/" 1652 | }, 1653 | "id": "KlYa6JHiJ3G2", 1654 | "outputId": "b31f4a73-ee12-4d38-f3ae-f74ae62830d4" 1655 | }, 1656 | "source": [ 1657 | "time.split(':')" 1658 | ], 1659 | "execution_count": null, 1660 | "outputs": [ 1661 | { 1662 | "output_type": "execute_result", 1663 | "data": { 1664 | "text/plain": [ 1665 | "['12', '30', '15']" 1666 | ] 1667 | }, 1668 | "metadata": { 1669 | "tags": [] 1670 | }, 1671 | "execution_count": 95 1672 | } 1673 | ] 1674 | }, 1675 | { 1676 | "cell_type": "code", 1677 | "metadata": { 1678 | "colab": { 1679 | "base_uri": "https://localhost:8080/" 1680 | }, 1681 | "id": "nfVAyjasj4dq", 1682 | "outputId": "aaa3039c-01f8-45dc-f982-9e3e8dae1897" 1683 | }, 1684 | "source": [ 1685 | "t_sp = t.split(' ')\r\n", 1686 | "print(t_sp)" 1687 | ], 1688 | "execution_count": null, 1689 | "outputs": [ 1690 | { 1691 | "output_type": "stream", 1692 | "text": [ 1693 | "['python', 'is', 'easy']\n" 1694 | ], 1695 | "name": "stdout" 1696 | } 1697 | ] 1698 | }, 1699 | { 1700 | "cell_type": "code", 1701 | "metadata": { 1702 | "id": "4qslOwNCu6Sl", 1703 | "colab": { 1704 | "base_uri": "https://localhost:8080/" 1705 | }, 1706 | "outputId": "82b7f90b-0d7c-4105-8f7b-5ed4416683c3" 1707 | }, 1708 | "source": [ 1709 | "## วิธีรวมกลับ\r\n", 1710 | "print(':'.join(t_sp))\r\n" 1711 | ], 1712 | "execution_count": null, 1713 | "outputs": [ 1714 | { 1715 | "output_type": "stream", 1716 | "text": [ 1717 | "python:is:easy\n" 1718 | ], 1719 | "name": "stdout" 1720 | } 1721 | ] 1722 | }, 1723 | { 1724 | "cell_type": "markdown", 1725 | "metadata": { 1726 | "id": "ZbO2O78tJ3G7" 1727 | }, 1728 | "source": [ 1729 | "### HW คำนวณเวลาเป็นวินาทีของเวลาต่อไปนี้โดยใช้คำสั่ง split() ช่วย (print ออกมาให้สวยงาม)\n", 1730 | "12:30:15\n", 1731 | "\n", 1732 | "13:41:07\n", 1733 | "\n", 1734 | "12:53:15\n", 1735 | "\n", 1736 | "00:59:25\n", 1737 | "\n", 1738 | "11:11:11\n", 1739 | "\n", 1740 | "16:06:09\n", 1741 | "\n", 1742 | "21:12:30\n", 1743 | "\n", 1744 | "10:06:15\n", 1745 | "\n", 1746 | "ตัวอย่าง > 00:01:10 = 70 วินาที\n", 1747 | "\n", 1748 | "ตัวอย่าง > 01:00:01 = 3601 วินาที " 1749 | ] 1750 | }, 1751 | { 1752 | "cell_type": "code", 1753 | "metadata": { 1754 | "id": "F5SleBYkkzKw" 1755 | }, 1756 | "source": [ 1757 | "q1 = '12:30:15'" 1758 | ], 1759 | "execution_count": 1, 1760 | "outputs": [] 1761 | }, 1762 | { 1763 | "cell_type": "code", 1764 | "metadata": { 1765 | "id": "xNX3RwOIOLDw", 1766 | "outputId": "afd93ee7-85df-48a0-a4bc-8b968530fdd0", 1767 | "colab": { 1768 | "base_uri": "https://localhost:8080/" 1769 | } 1770 | }, 1771 | "source": [ 1772 | "q1_sp = q1.split(':')\r\n", 1773 | "print(q1_sp)" 1774 | ], 1775 | "execution_count": 3, 1776 | "outputs": [ 1777 | { 1778 | "output_type": "stream", 1779 | "text": [ 1780 | "['12', '30', '15']\n" 1781 | ], 1782 | "name": "stdout" 1783 | } 1784 | ] 1785 | }, 1786 | { 1787 | "cell_type": "code", 1788 | "metadata": { 1789 | "id": "ZqzJSw9xOTbq", 1790 | "outputId": "5bcef6d5-b0ff-4686-d000-3f35eec7869b", 1791 | "colab": { 1792 | "base_uri": "https://localhost:8080/" 1793 | } 1794 | }, 1795 | "source": [ 1796 | "answer1 = int(q1_sp[0])*3600 + int(q1_sp[1])*60 + int(q1_sp[2])\r\n", 1797 | "print(answer1)" 1798 | ], 1799 | "execution_count": 13, 1800 | "outputs": [ 1801 | { 1802 | "output_type": "stream", 1803 | "text": [ 1804 | "45015\n" 1805 | ], 1806 | "name": "stdout" 1807 | } 1808 | ] 1809 | }, 1810 | { 1811 | "cell_type": "code", 1812 | "metadata": { 1813 | "id": "kBpKbRCOPOQ0", 1814 | "outputId": "47e5c3fd-bc89-48c5-9f35-b7a3ff54c693", 1815 | "colab": { 1816 | "base_uri": "https://localhost:8080/" 1817 | } 1818 | }, 1819 | "source": [ 1820 | "print(f'เวลา {q1} คำนวณเป็นจำนวนวินาทีได้เท่ากับ {answer1}')" 1821 | ], 1822 | "execution_count": 14, 1823 | "outputs": [ 1824 | { 1825 | "output_type": "stream", 1826 | "text": [ 1827 | "เวลา 12:30:15 คำนวณเป็นจำนวนวินาทีได้เท่ากับ 45015\n" 1828 | ], 1829 | "name": "stdout" 1830 | } 1831 | ] 1832 | }, 1833 | { 1834 | "cell_type": "code", 1835 | "metadata": { 1836 | "id": "-0UoDoigRVwE", 1837 | "outputId": "70a91525-4bea-4b03-d83c-7166aa183323", 1838 | "colab": { 1839 | "base_uri": "https://localhost:8080/" 1840 | } 1841 | }, 1842 | "source": [ 1843 | "q1 = '12:30:15'\r\n", 1844 | "q1_sp = q1.split(':')\r\n", 1845 | "answer1 = int(q1_sp[0])*3600 + int(q1_sp[1])*60 + int(q1_sp[2])\r\n", 1846 | "print(f'เวลา {q1} คำนวณเป็นจำนวนวินาทีได้เท่ากับ {answer1}')" 1847 | ], 1848 | "execution_count": 15, 1849 | "outputs": [ 1850 | { 1851 | "output_type": "stream", 1852 | "text": [ 1853 | "เวลา 12:30:15 คำนวณเป็นจำนวนวินาทีได้เท่ากับ 45015\n" 1854 | ], 1855 | "name": "stdout" 1856 | } 1857 | ] 1858 | }, 1859 | { 1860 | "cell_type": "code", 1861 | "metadata": { 1862 | "id": "Fmf7Vxp9RcPL" 1863 | }, 1864 | "source": [ 1865 | "" 1866 | ], 1867 | "execution_count": null, 1868 | "outputs": [] 1869 | } 1870 | ] 1871 | } -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Multivariate 2 | 3 | ### ธนพงศ์ ID xxxxxx 4 | 5 | .md => Markdown 6 | 7 | [ ] square brackets 8 | 9 | ( ) parentheses 10 | 11 | ![kku_logo](KKUlogo.png) 12 | 13 | อธิบายการใช้งาน Github และ Google Colab ว่าหน้าที่ของแต่ละอันคืออะไร และอธิบายวิธีเซพไฟล์จาก Google Colab ลงใน Github 14 | 15 | 16 | Midterm 35% (แบ่งตามจำนวนครั้งที่สอบ) 17 | HW 40% 18 | Final 25% 19 | 20 | 21 | 22 | --------------------------------------------------------------------------------