├── LICENSE
├── README.md
├── config
└── inference
│ └── dice_talk.yaml
├── demo.py
├── demo.sh
├── dice_talk.py
├── examples
├── emo
│ ├── angry.npy
│ ├── contempt.npy
│ ├── disgusted.npy
│ ├── fear.npy
│ ├── happy.npy
│ ├── neutral.npy
│ ├── sad.npy
│ └── surprised.npy
├── img
│ ├── female.png
│ ├── hg.jpeg
│ ├── nazha.png
│ └── pyy.jpg
└── wav
│ ├── female-zh.wav
│ ├── female.wav
│ ├── male-zh.wav
│ └── male.wav
├── gradio_app.py
├── requirements.txt
└── src
├── dataset
└── test_preprocess.py
├── models
├── audio_adapter
│ ├── audio_proj.py
│ └── pose_guider.py
├── base
│ ├── __init__.py
│ ├── attention_processor.py
│ ├── unet_3d_blocks.py
│ └── unet_spatio_temporal_condition.py
└── emotion_adapter
│ └── emo.py
├── pipelines
└── pipeline_dicetalk.py
└── utils
├── RIFE
├── IFNet_HDv3.py
├── RIFE_HDv3.py
└── warplayer.py
├── face_align
├── align.py
└── yoloface.py
└── util.py
/LICENSE:
--------------------------------------------------------------------------------
1 | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
2 |
3 | Creative Commons Corporation ("Creative Commons") is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an "as-is" basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.
4 |
5 | Using Creative Commons Public Licenses
6 |
7 | Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.
8 |
9 | Considerations for licensors: Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. More considerations for licensors : wiki.creativecommons.org/Considerations_for_licensors
10 |
11 | Considerations for the public: By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor's permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. More considerations for the public : wiki.creativecommons.org/Considerations_for_licensees
12 |
13 | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
14 |
15 | By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.
16 |
17 | Section 1 – Definitions.
18 |
19 | a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
20 | b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
21 | c. BY-NC-SA Compatible License means a license listed at creativecommons.org/compatiblelicenses, approved by Creative Commons as essentially the equivalent of this Public License.
22 | d. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
23 | e. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
24 | f. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
25 | g. License Elements means the license attributes listed in the name of a Creative Commons Public License. The License Elements of this Public License are Attribution, NonCommercial, and ShareAlike.
26 | h. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
27 | i. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
28 | j. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
29 | k. NonCommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
30 | l. Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
31 | m. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
32 | n. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
33 | Section 2 – Scope.
34 |
35 | a. License grant.
36 | 1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
37 | A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
38 | B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
39 | 2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
40 | 3. Term. The term of this Public License is specified in Section 6(a).
41 | 4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
42 | 5. Downstream recipients.
43 | A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
44 | B. Additional offer from the Licensor – Adapted Material. Every recipient of Adapted Material from You automatically receives an offer from the Licensor to exercise the Licensed Rights in the Adapted Material under the conditions of the Adapter's License You apply.
45 | C. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
46 | 6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
47 | b. Other rights.
48 | 1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
49 | 2. Patent and trademark rights are not licensed under this Public License.
50 | 3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
51 | Section 3 – License Conditions.
52 |
53 | Your exercise of the Licensed Rights is expressly made subject to the following conditions.
54 |
55 | a. Attribution.
56 | 1. If You Share the Licensed Material (including in modified form), You must:
57 | A. retain the following if it is supplied by the Licensor with the Licensed Material:
58 | i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
59 | ii. a copyright notice;
60 | iii. a notice that refers to this Public License;
61 | iv. a notice that refers to the disclaimer of warranties;
62 | v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
63 |
64 | B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
65 | C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
66 | 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
67 | 3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
68 | b. ShareAlike.In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the following conditions also apply.
69 | 1. The Adapter's License You apply must be a Creative Commons license with the same License Elements, this version or later, or a BY-NC-SA Compatible License.
70 | 2. You must include the text of, or the URI or hyperlink to, the Adapter's License You apply. You may satisfy this condition in any reasonable manner based on the medium, means, and context in which You Share Adapted Material.
71 | 3. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, Adapted Material that restrict exercise of the rights granted under the Adapter's License You apply.
72 | Section 4 – Sui Generis Database Rights.
73 |
74 | Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
75 |
76 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
77 | b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material, including for purposes of Section 3(b); and
78 | c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
79 | For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
80 | Section 5 – Disclaimer of Warranties and Limitation of Liability.
81 |
82 | a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.
83 | b. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.
84 | c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
85 | Section 6 – Term and Termination.
86 |
87 | a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
88 | b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
89 | 1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
90 | 2. upon express reinstatement by the Licensor.
91 | For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
92 |
93 | c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
94 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
95 | Section 7 – Other Terms and Conditions.
96 |
97 | a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
98 | b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
99 | Section 8 – Interpretation.
100 |
101 | a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
102 | b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
103 | c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
104 | d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
105 | Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the "Licensor." The text of the Creative Commons public licenses is dedicated to the public domain under the CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies, Creative Commons does not authorize the use of the trademark "Creative Commons" or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.
106 |
107 | Creative Commons may be contacted at creativecommons.org.
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # DICE-Talk
2 | Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation.
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 | ## 🔥🔥🔥 NEWS
15 |
16 | **`2025/04/29`**: We released the initial version of the inference code and models. Stay tuned for continuous updates!
17 |
18 |
19 |
20 | ## 🎥 Demo
21 | | Input | Neutral | Happy | Angry | Surprised
22 | |----------------------|-----------------------|----------------------|-----------------------|-----------------------|
23 | |
|||||
24 | |
|||||
25 |
26 |
27 |
28 |
29 | For more visual demos, please visit our [**Page**](https://toto222.github.io/DICE-Talk/).
30 |
31 |
32 |
33 | ## 📜 Requirements
34 | * It is recommended to use a GPU with `20GB` or more VRAM and have an independent `Python 3.10`.
35 | * Tested operating system: `Linux`
36 |
37 | ## 🔑 Inference
38 |
39 | ### Installtion
40 | - `ffmpeg` requires to be installed.
41 | - `PyTorch`: make sure to select the appropriate CUDA version based on your hardware, for example,
42 | ```shell
43 | pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
44 | ```
45 | - `Dependencies`:
46 | ```shell
47 | pip install -r requirements.txt
48 | ```
49 | - All models are stored in `checkpoints` by default, and the file structure is as follows:
50 | ```shell
51 | DICE-Talk
52 | ├──checkpoints
53 | │ ├──DICE-Talk
54 | │ │ ├──audio_linear.pth
55 | │ │ ├──emo_model.pth
56 | │ │ ├──pose_guider.pth
57 | │ │ ├──unet.pth
58 | │ ├──stable-video-diffusion-img2vid-xt
59 | │ │ ├──...
60 | │ ├──whisper-tiny
61 | │ │ ├──...
62 | │ ├──RIFE
63 | │ │ ├──flownet.pkl
64 | │ ├──yoloface_v5m.pt
65 | ├──...
66 | ```
67 | Download by `huggingface-cli` follow
68 | ```shell
69 | python3 -m pip install "huggingface_hub[cli]"
70 |
71 | huggingface-cli download EEEELY/DICE-Talk --local-dir checkpoints
72 | huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt
73 | huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny
74 | ```
75 |
76 | or manully download [pretrain model](https://drive.google.com/drive/folders/1l1Ojt-4yMfYQCCnNs_NgkzQC2-OoAksN?usp=drive_link), [svd-xt](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt) and [whisper-tiny](https://huggingface.co/openai/whisper-tiny) to `checkpoints/`.
77 |
78 |
79 | ### Run demo
80 | ```shell
81 | python3 demo.py --image_path '/path/to/input_image' --audio_path '/path/to/input_audio'\
82 | --emotion_path '/path/to/input_emotion' --output_path '/path/to/output_video'
83 | ```
84 |
85 | ### Run GUI
86 | ```shell
87 | python3 gradio_app.py
88 | ```
89 |
90 |
91 |
92 |
93 |
94 | On the left you need to:
95 | * Upload an image or take a photo
96 | * Upload or record an audio clip
97 | * Select the type of emotion to generate
98 | * Set the strength for identity preservation and emotion generation
99 | * Choose whether to crop the input image
100 |
101 | On the right are the generated videos.
102 |
103 |
104 | ## 🔗 Citation
105 |
106 | If you find our work helpful for your research, please consider citing our work.
107 |
108 | ```bibtex
109 | @article{tan2025dicetalk,
110 | title={Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation},
111 | author={Tan, Weipeng and Lin, Chuming and Xu, Chengming and Xu, FeiFan and Hu, Xiaobin and Ji, Xiaozhong and Zhu, Junwei and Wang, Chengjie and Fu, Yanwei},
112 | journal={arXiv preprint arXiv:2504.18087},
113 | year={2025}
114 | }
115 |
116 | @article{ji2024sonic,
117 | title={Sonic: Shifting Focus to Global Audio Perception in Portrait Animation},
118 | author={Ji, Xiaozhong and Hu, Xiaobin and Xu, Zhihong and Zhu, Junwei and Lin, Chuming and He, Qingdong and Zhang, Jiangning and Luo, Donghao and Chen, Yi and Lin, Qin and others},
119 | journal={arXiv preprint arXiv:2411.16331},
120 | year={2024}
121 | }
122 |
123 | @article{ji2024realtalk,
124 | title={Realtalk: Real-time and realistic audio-driven face generation with 3d facial prior-guided identity alignment network},
125 | author={Ji, Xiaozhong and Lin, Chuming and Ding, Zhonggan and Tai, Ying and Zhu, Junwei and Hu, Xiaobin and Luo, Donghao and Ge, Yanhao and Wang, Chengjie},
126 | journal={arXiv preprint arXiv:2406.18284},
127 | year={2024}
128 | }
129 | ```
130 |
--------------------------------------------------------------------------------
/config/inference/dice_talk.yaml:
--------------------------------------------------------------------------------
1 | pretrained_model_name_or_path: "checkpoints/stable-video-diffusion-img2vid-xt"
2 | unet_checkpoint_path: "checkpoints/DICE-Talk/unet.pth"
3 | pose_guider_checkpoint_path: "checkpoints/DICE-Talk/pose_guider.pth"
4 | audio_linear_checkpoint_path: "checkpoints/DICE-Talk/audio_linear.pth"
5 | emo_model_checkpoint_path: "checkpoints/DICE-Talk/emo_model.pth"
6 |
7 | weight_dtype: 'fp16' # [fp16, fp32]
8 |
9 | num_inference_steps: 25
10 | n_sample_frames: 25
11 | fps: 12.5
12 | decode_chunk_size: 10
13 | motion_bucket_id: 8
14 | motion_bucket_id_exp: 16
15 | image_size: 512
16 | area: 1.1
17 | frame_num: 10000
18 | step: 2
19 | overlap: 0
20 | shift_offset: 7
21 | min_appearance_guidance_scale: 3.0
22 | max_appearance_guidance_scale: 3.0
23 | audio_guidance_scale: 6.0
24 | i2i_noise_strength: 1.0
25 | ip_audio_scale: 1.0
26 | ip_emo_scale: 1.0
27 | noise_aug_strength: 0.00
28 | retrieval: False
29 |
30 | use_interframe: True
31 |
32 | seed: 72589
33 |
--------------------------------------------------------------------------------
/demo.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | from dice_talk import DICE_Talk
4 | pipe = DICE_Talk(0)
5 |
6 |
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--image_path')
9 | parser.add_argument('--audio_path')
10 | parser.add_argument('--emotion_path')
11 | parser.add_argument('--output_path')
12 | parser.add_argument('--ref_scale', type=float, default=3.0)
13 | parser.add_argument('--emo_scale', type=float, default=6.0)
14 | parser.add_argument('--crop', action='store_true')
15 | parser.add_argument('--seed', type=int, default=None)
16 |
17 | args = parser.parse_args()
18 |
19 |
20 | face_info = pipe.preprocess(args.image_path, expand_ratio=0.5)
21 | print(face_info)
22 | if face_info['face_num'] >= 0:
23 | if args.crop:
24 | crop_image_path = args.image_path + '.crop.png'
25 | pipe.crop_image(args.image_path, crop_image_path, face_info['crop_bbox'])
26 | args.image_path = crop_image_path
27 | os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
28 | pipe.process(args.image_path, args.audio_path, args.emotion_path, args.output_path, min_resolution=512, inference_steps=25, ref_scale=args.ref_scale, emo_scale=args.emo_scale, seed=args.seed)
--------------------------------------------------------------------------------
/demo.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | image_path=examples/img/female.png
4 | audio_path=examples/wav/female.wav
5 | emotion_path=examples/emo/happy.npy
6 | output_path=results/output.mp4
7 |
8 | python3 demo.py --image_path $image_path --audio_path $audio_path --emotion_path $emotion_path --output_path $output_path
--------------------------------------------------------------------------------
/dice_talk.py:
--------------------------------------------------------------------------------
1 | import os
2 | import torch
3 | import torch.utils.checkpoint
4 | from PIL import Image
5 | import numpy as np
6 | from omegaconf import OmegaConf
7 | from tqdm import tqdm
8 | import cv2
9 |
10 | from diffusers import AutoencoderKLTemporalDecoder
11 | from diffusers.schedulers import EulerDiscreteScheduler
12 | from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
13 |
14 | from src.utils.util import save_videos_grid, seed_everything
15 | from src.dataset.test_preprocess import process_bbox, image_audio_emo_to_tensor
16 | from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
17 | from src.models.audio_adapter.pose_guider import PoseGuider
18 | from src.pipelines.pipeline_dicetalk import DicePipeline
19 | from src.models.audio_adapter.audio_proj import AudioProjModel
20 | from src.utils.RIFE.RIFE_HDv3 import RIFEModel
21 | from src.utils.face_align.align import AlignImage
22 | from src.models.emotion_adapter.emo import EmotionModel
23 |
24 |
25 | BASE_DIR = os.path.dirname(os.path.abspath(__file__))
26 |
27 | def test(
28 | pipe,
29 | config,
30 | wav_enc,
31 | audio_pe,
32 | emo_pe,
33 | width,
34 | height,
35 | batch=None,
36 | ):
37 | for k, v in batch.items():
38 | if isinstance(v, torch.Tensor):
39 | batch[k] = v.unsqueeze(0).to(device="cuda").float()
40 | print(batch[k].shape)
41 | ref_img = batch['ref_img']
42 | clip_img = batch['clip_images']
43 |
44 |
45 | audio_feature = batch['audio_feature']
46 | audio_len = batch['audio_len']
47 | emo_prior = batch['emo_feature']
48 |
49 | retrieval = config.retrieval
50 | step = int(config.step)
51 |
52 | window = 3000
53 | audio_prompts = []
54 | for i in range(0, audio_feature.shape[-1], window):
55 | audio_prompt = wav_enc.encoder(audio_feature[:,:,i:i+window], output_hidden_states=True).hidden_states
56 | audio_prompt = torch.stack(audio_prompt, dim=2)
57 | audio_prompts.append(audio_prompt)
58 | audio_prompts = torch.cat(audio_prompts, dim=1)
59 | audio_prompts = audio_prompts[:,:audio_len*2]
60 |
61 |
62 | audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:,:4]), audio_prompts, torch.zeros_like(audio_prompts[:,:6])], 1)
63 |
64 |
65 | pose_tensor_list = []
66 | ref_tensor_list = []
67 | audio_tensor_list = []
68 | uncond_audio_tensor_list = []
69 | emotion_tensor_list = []
70 | uncond_emotion_tensor_list = []
71 |
72 |
73 |
74 |
75 |
76 |
77 | for i in tqdm(range(audio_len//step)):
78 |
79 | pixel_values_pose = batch["face_mask"]
80 |
81 | audio_clip = audio_prompts[:,i*2*step:i*2*step+10].unsqueeze(0)
82 | cond_audio_clip = audio_pe(audio_clip).squeeze(0)
83 | uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
84 |
85 |
86 | new_emo_hidden_states = emo_pe(emo_prior, retrieval=retrieval)[0].squeeze(0)
87 | new_uncond_emo_hidden_states = emo_pe(torch.zeros_like(emo_prior), retrieval=retrieval)[0].squeeze(0)
88 |
89 |
90 | pose_tensor_list.append(pixel_values_pose[0])
91 | ref_tensor_list.append(ref_img[0])
92 | audio_tensor_list.append(cond_audio_clip[0])
93 | uncond_audio_tensor_list.append(uncond_audio_clip[0])
94 |
95 | emotion_tensor_list.append(new_emo_hidden_states[0])
96 | uncond_emotion_tensor_list.append(new_uncond_emo_hidden_states[0])
97 |
98 |
99 | video = pipe(
100 | ref_img,
101 | clip_img,
102 | pose_tensor_list,
103 | audio_tensor_list,
104 | uncond_audio_tensor_list,
105 | emotion_tensor_list,
106 | uncond_emotion_tensor_list,
107 | height=height,
108 | width=width,
109 | num_frames=len(pose_tensor_list),
110 | decode_chunk_size=config.decode_chunk_size,
111 | motion_bucket_id=config.motion_bucket_id,
112 | motion_bucket_id_exp=config.motion_bucket_id_exp,
113 | fps=config.fps,
114 | noise_aug_strength=config.noise_aug_strength,
115 | min_guidance_scale1=config.min_appearance_guidance_scale, # 1.0,
116 | max_guidance_scale1=config.max_appearance_guidance_scale,
117 | min_guidance_scale2=config.audio_guidance_scale, # 1.0,
118 | max_guidance_scale2=config.audio_guidance_scale,
119 | overlap=config.overlap,
120 | shift_offset=config.shift_offset,
121 | frames_per_batch=config.n_sample_frames,
122 | num_inference_steps=config.num_inference_steps,
123 | i2i_noise_strength=config.i2i_noise_strength,
124 | ).frames
125 |
126 | # Concat it with pose tensor
127 | # pose_tensor = torch.stack(pose_tensor_list,1).unsqueeze(0)
128 | video = (video*0.5 + 0.5).clamp(0, 1)
129 | video = torch.cat([video.to(device="cuda")], dim=0).cpu()
130 |
131 | return video
132 |
133 |
134 | class DICE_Talk():
135 | config_file = os.path.join(BASE_DIR, 'config/inference/dice_talk.yaml')
136 | config = OmegaConf.load(config_file)
137 |
138 | def __init__(self,
139 | device_id=0,
140 | enable_interpolate_frame=True,
141 | ):
142 |
143 | config = self.config
144 | config.use_interframe = enable_interpolate_frame
145 |
146 | device = 'cuda:{}'.format(device_id) if device_id > -1 else 'cpu'
147 |
148 | config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
149 |
150 | vae = AutoencoderKLTemporalDecoder.from_pretrained(
151 | config.pretrained_model_name_or_path,
152 | subfolder="vae",
153 | variant="fp16")
154 |
155 | val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
156 | config.pretrained_model_name_or_path,
157 | subfolder="scheduler")
158 |
159 | image_encoder = CLIPVisionModelWithProjection.from_pretrained(
160 | config.pretrained_model_name_or_path,
161 | subfolder="image_encoder",
162 | variant="fp16")
163 | unet = UNetSpatioTemporalConditionModel.from_pretrained(
164 | config.pretrained_model_name_or_path,
165 | subfolder="unet",
166 | variant="fp16")
167 | adapter_modules = add_ip_adapters(unet, [32, 32], [config.ip_audio_scale, config.ip_emo_scale])
168 | pose_guider = PoseGuider(
169 | conditioning_embedding_channels=320,
170 | block_out_channels=(16, 32, 96, 256)
171 | ).to(device)
172 | audio_linear = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024, context_tokens=32).to(device)
173 | emo_model = EmotionModel().to(device)
174 |
175 | pose_guider_checkpoint_path = os.path.join(BASE_DIR, config.pose_guider_checkpoint_path)
176 | unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
177 | audio_linear_checkpoint_path = os.path.join(BASE_DIR, config.audio_linear_checkpoint_path)
178 | emo_model_checkpoint_path = os.path.join(BASE_DIR, config.emo_model_checkpoint_path)
179 |
180 | pose_guider.load_state_dict(
181 | torch.load(pose_guider_checkpoint_path, map_location="cpu"),
182 | strict=True,
183 | )
184 |
185 |
186 | unet.load_state_dict(
187 | torch.load(unet_checkpoint_path, map_location="cpu"),
188 | strict=False,
189 | )
190 |
191 | audio_linear.load_state_dict(
192 | torch.load(audio_linear_checkpoint_path, map_location="cpu"),
193 | strict=True,
194 | )
195 |
196 | emo_model.load_state_dict(
197 | torch.load(emo_model_checkpoint_path, map_location="cpu"),
198 | strict=False,
199 | )
200 |
201 |
202 | if config.weight_dtype == "fp16":
203 | weight_dtype = torch.float16
204 | elif config.weight_dtype == "fp32":
205 | weight_dtype = torch.float32
206 | elif config.weight_dtype == "bf16":
207 | weight_dtype = torch.bfloat16
208 | else:
209 | raise ValueError(
210 | f"Do not support weight dtype: {config.weight_dtype} during training"
211 | )
212 |
213 | whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
214 |
215 | whisper.requires_grad_(False)
216 |
217 | self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
218 |
219 | det_path = os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt')
220 |
221 | self.face_det = AlignImage(device, det_path=det_path)
222 | if config.use_interframe:
223 | rife = RIFEModel(device=device)
224 | rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
225 | self.rife = rife
226 |
227 |
228 | image_encoder.to(weight_dtype)
229 | vae.to(weight_dtype)
230 | unet.to(weight_dtype)
231 |
232 | pipe = DicePipeline(
233 | unet=unet,
234 | image_encoder=image_encoder,
235 | vae=vae,
236 | pose_guider=pose_guider,
237 | scheduler=val_noise_scheduler,
238 | )
239 | pipe = pipe.to(device=device, dtype=weight_dtype)
240 |
241 |
242 | self.pipe = pipe
243 | self.whisper = whisper
244 | self.audio_linear = audio_linear
245 | self.emo_model = emo_model
246 | self.image_encoder = image_encoder
247 | self.device = device
248 |
249 | print('init done')
250 |
251 |
252 | def preprocess(self,
253 | image_path, expand_ratio=1.0):
254 | face_image = cv2.imread(image_path)
255 | h, w = face_image.shape[:2]
256 | _, _, bboxes = self.face_det(face_image, maxface=True)
257 | face_num = len(bboxes)
258 | bbox = []
259 | if face_num > 0:
260 | x1, y1, ww, hh = bboxes[0]
261 | x2, y2 = x1 + ww, y1 + hh
262 | bbox = x1, y1, x2, y2
263 | bbox_s = process_bbox(bbox, expand_radio=expand_ratio, height=h, width=w)
264 |
265 | return {
266 | 'face_num': face_num,
267 | 'crop_bbox': bbox_s,
268 | }
269 |
270 | def crop_image(self,
271 | input_image_path,
272 | output_image_path,
273 | crop_bbox):
274 | face_image = cv2.imread(input_image_path)
275 | crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
276 | cv2.imwrite(output_image_path, crop_image)
277 |
278 | @torch.no_grad()
279 | def process(self,
280 | image_path,
281 | audio_path,
282 | emotion_path,
283 | output_path,
284 | min_resolution=512,
285 | inference_steps=25,
286 | ref_scale=None,
287 | emo_scale=None,
288 | keep_resolution=False,
289 | seed=None):
290 |
291 | config = self.config
292 | device = self.device
293 | pipe = self.pipe
294 | whisper = self.whisper
295 | audio_linear = self.audio_linear
296 | emo_model = self.emo_model
297 | image_encoder = self.image_encoder
298 |
299 | # specific parameters
300 | if seed:
301 | config.seed = seed
302 |
303 | config.num_inference_steps = inference_steps
304 |
305 | if ref_scale is not None:
306 | config.min_appearance_guidance_scale = ref_scale
307 | config.max_appearance_guidance_scale = ref_scale
308 | if emo_scale is not None:
309 | config.audio_guidance_scale = emo_scale
310 |
311 |
312 | seed_everything(config.seed)
313 |
314 | video_path = output_path.replace('.mp4', '_noaudio.mp4')
315 | audio_video_path = output_path
316 |
317 | imSrc_ = Image.open(image_path).convert('RGB')
318 | raw_w, raw_h = imSrc_.size
319 |
320 | test_data = image_audio_emo_to_tensor(self.face_det, self.feature_extractor, image_path, audio_path, emotion_path, limit=config.frame_num, image_size=min_resolution, area=config.area)
321 | if test_data is None:
322 | return -1
323 | height, width = test_data['ref_img'].shape[-2:]
324 | if keep_resolution:
325 | resolution = f'{raw_w//2*2}x{raw_h//2*2}'
326 | else:
327 | resolution = f'{width}x{height}'
328 |
329 |
330 | video = test(
331 | pipe,
332 | config,
333 | wav_enc=whisper,
334 | audio_pe=audio_linear,
335 | emo_pe=emo_model,
336 | width=width,
337 | height=height,
338 | batch=test_data,
339 | )
340 |
341 | if config.use_interframe:
342 | rife = self.rife
343 | out = video.to(device)
344 | results = []
345 | video_len = out.shape[2]
346 | for idx in tqdm(range(video_len-1), ncols=0):
347 | I1 = out[:, :, idx]
348 | I2 = out[:, :, idx+1]
349 | middle = rife.inference(I1, I2).clamp(0, 1).detach()
350 | results.append(out[:, :, idx])
351 | results.append(middle)
352 | results.append(out[:, :, video_len-1])
353 | video = torch.stack(results, 2).cpu()
354 |
355 | save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * 2 if config.use_interframe else config.fps)
356 | ffmpeg_command = f'ffmpeg -i "{video_path}" -i "{audio_path}" -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest -y "{audio_video_path}"'
357 | os.system(ffmpeg_command)
358 | os.remove(video_path) # Use os.remove instead of rm for Windows compatibility
359 |
360 | return 0
361 |
--------------------------------------------------------------------------------
/examples/emo/angry.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/angry.npy
--------------------------------------------------------------------------------
/examples/emo/contempt.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/contempt.npy
--------------------------------------------------------------------------------
/examples/emo/disgusted.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/disgusted.npy
--------------------------------------------------------------------------------
/examples/emo/fear.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/fear.npy
--------------------------------------------------------------------------------
/examples/emo/happy.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/happy.npy
--------------------------------------------------------------------------------
/examples/emo/neutral.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/neutral.npy
--------------------------------------------------------------------------------
/examples/emo/sad.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/sad.npy
--------------------------------------------------------------------------------
/examples/emo/surprised.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/emo/surprised.npy
--------------------------------------------------------------------------------
/examples/img/female.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/img/female.png
--------------------------------------------------------------------------------
/examples/img/hg.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/img/hg.jpeg
--------------------------------------------------------------------------------
/examples/img/nazha.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/img/nazha.png
--------------------------------------------------------------------------------
/examples/img/pyy.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/img/pyy.jpg
--------------------------------------------------------------------------------
/examples/wav/female-zh.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/wav/female-zh.wav
--------------------------------------------------------------------------------
/examples/wav/female.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/wav/female.wav
--------------------------------------------------------------------------------
/examples/wav/male-zh.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/wav/male-zh.wav
--------------------------------------------------------------------------------
/examples/wav/male.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/examples/wav/male.wav
--------------------------------------------------------------------------------
/gradio_app.py:
--------------------------------------------------------------------------------
1 | import gradio as gr
2 | import os
3 | import numpy as np
4 | from pydub import AudioSegment
5 | import hashlib
6 | from dice_talk import DICE_Talk
7 | import shutil
8 |
9 | pipe = DICE_Talk(0)
10 |
11 |
12 | def get_md5(content):
13 | md5hash = hashlib.md5(content)
14 | md5 = md5hash.hexdigest()
15 | return md5
16 |
17 | def get_video_res(img_path, audio_path, emotion_path, res_video_path, ref_scale=None, emo_scale=None, crop=False):
18 |
19 | expand_ratio = 0.5
20 | min_resolution = 512
21 | inference_steps = 25
22 |
23 | face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
24 | print(face_info)
25 | if face_info['face_num'] > 0:
26 | if crop:
27 | crop_image_path = img_path + '.crop.png'
28 | pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
29 | img_path = crop_image_path
30 | os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
31 | pipe.process(img_path, audio_path, emotion_path, res_video_path, min_resolution=min_resolution, inference_steps=inference_steps, ref_scale=ref_scale, emo_scale=emo_scale)
32 | else:
33 | return -1
34 | tmp_path = './tmp_path/'
35 | res_path = './res_path/'
36 | os.makedirs(tmp_path,exist_ok=1)
37 | os.makedirs(res_path,exist_ok=1)
38 |
39 | def process_dice(image,audio, emotion, s0, s1, crop=False):
40 | img_md5= get_md5(np.array(image))
41 | audio_md5 = get_md5(audio[1])
42 |
43 | print(img_md5,audio_md5)
44 | sampling_rate, arr = audio[:2]
45 | if len(arr.shape)==1:
46 | arr = arr[:,None]
47 | audio = AudioSegment(
48 | arr.tobytes(),
49 | frame_rate=sampling_rate,
50 | sample_width=arr.dtype.itemsize,
51 | channels=arr.shape[1]
52 | )
53 | audio = audio.set_frame_rate(sampling_rate)
54 | image_path = os.path.abspath(tmp_path+'{0}.png'.format(img_md5))
55 | audio_path = os.path.abspath(tmp_path+'{0}.wav'.format(audio_md5))
56 | emotion_path = os.path.abspath(tmp_path+'{0}.npy'.format(emotion))
57 | if not os.path.exists(image_path):
58 | image.save(image_path)
59 | if not os.path.exists(audio_path):
60 | audio.export(audio_path, format="wav")
61 | if not os.path.exists(emotion_path):
62 | shutil.copy(f'examples/emo/{emotion}.npy', emotion_path)
63 | res_video_path = os.path.abspath(res_path+f'{img_md5}_{audio_md5}_{emotion}_{s0}_{s1}_{int(crop)}.mp4')
64 | if os.path.exists(res_video_path):
65 | return res_video_path
66 | else:
67 | get_video_res(image_path, audio_path, emotion_path, res_video_path, s0, s1, crop=crop)
68 | return res_video_path
69 |
70 | inputs = [
71 | gr.Image(type='pil',label="Upload Image"),
72 | gr.Audio(label="Upload Audio"),
73 | gr.Dropdown(
74 | choices=['contempt', 'sad', 'happy', 'surprised', 'angry', 'disgusted', 'fear', 'neutral'],
75 | label="Choose Emotion"
76 | ),
77 | gr.Slider(0.0, 10.0, value=3.0, step=0.1, label="Reference", info="Increase/decrease to obtain stronger/weaker identity preservation"),
78 | gr.Slider(0.0, 10.0, value=6.0, step=0.1, label="Emotion", info="Increase/decrease to obtain stronger/weaker emotions"),
79 | gr.Checkbox(label="Crop image", value=False)
80 | ]
81 | outputs = gr.Video(label="output.mp4")
82 |
83 |
84 | html_description = """
85 |
99 |
100 | The demo can only be used for Non-commercial Use.
101 |
If you like our work, please star DICE-Talk.
102 | """
103 |
104 | def get_example():
105 | return [
106 | ["examples/img/nazha.png", "examples/wav/female-zh.wav", "happy", 3.0, 6.0],
107 | ["examples/img/pyy.jpg", "examples/wav/male-zh.wav", "neutral", 4.0, 7.5],
108 | ["examples/img/female.png", "examples/wav/female.wav","happy", 3.0, 6.0],
109 | ["examples/img/hg.jpeg", "examples/wav/male.wav", "surprised", 3.0, 6.0],
110 |
111 | ]
112 |
113 | with gr.Blocks(title="DICE-Talk") as demo:
114 | gr.Interface(fn=process_dice, inputs=inputs, outputs=outputs, title="Disentangle Identity, Cooperate Emotion: Correlation-Aware\
115 | Emotional Talking Portrait Generation", description=html_description)
116 | gr.Examples(
117 | examples=get_example(),
118 | fn=process_dice,
119 | inputs=inputs,
120 | outputs=outputs,
121 | cache_examples=False,)
122 |
123 | demo.queue()
124 | demo.launch(server_name='0.0.0.0', server_port=8081, share=False)
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate==0.28.0
2 | av==11.0.0
3 | diffusers==0.29.0
4 | einops==0.7.0
5 | pydantic==2.10.6
6 | gradio==4.44.1
7 | imageio==2.31.1
8 | imageio-ffmpeg==0.5.1
9 | librosa==0.10.2.post1
10 | numpy==1.26.4
11 | omegaconf==2.3.0
12 | opencv-python==4.8.1.78
13 | sk-video==1.1.10
14 | tqdm==4.65.2
15 | transformers==4.43.2
16 |
--------------------------------------------------------------------------------
/src/dataset/test_preprocess.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from PIL import Image
4 | import torch
5 | import torchvision.transforms as transforms
6 | from transformers import CLIPImageProcessor
7 | import librosa
8 |
9 |
10 | def process_bbox(bbox, expand_radio, height, width):
11 | """
12 | raw_vid_path:
13 | bbox: format: x1, y1, x2, y2
14 | radio: expand radio against bbox size
15 | height,width: source image height and width
16 | """
17 |
18 | def expand(bbox, ratio, height, width):
19 |
20 | bbox_h = bbox[3] - bbox[1]
21 | bbox_w = bbox[2] - bbox[0]
22 |
23 | expand_x1 = max(bbox[0] - ratio * bbox_w, 0)
24 | expand_y1 = max(bbox[1] - ratio * bbox_h, 0)
25 | expand_x2 = min(bbox[2] + ratio * bbox_w, width)
26 | expand_y2 = min(bbox[3] + ratio * bbox_h, height)
27 |
28 | return [expand_x1,expand_y1,expand_x2,expand_y2]
29 |
30 | def to_square(bbox_src, bbox_expend, height, width):
31 |
32 | h = bbox_expend[3] - bbox_expend[1]
33 | w = bbox_expend[2] - bbox_expend[0]
34 | c_h = (bbox_expend[1] + bbox_expend[3]) / 2
35 | c_w = (bbox_expend[0] + bbox_expend[2]) / 2
36 |
37 | c = min(h, w) / 2
38 |
39 | c_src_h = (bbox_src[1] + bbox_src[3]) / 2
40 | c_src_w = (bbox_src[0] + bbox_src[2]) / 2
41 |
42 | s_h, s_w = 0, 0
43 | if w < h:
44 | d = abs((h - w) / 2)
45 | s_h = min(d, abs(c_src_h-c_h))
46 | s_h = s_h if c_src_h > c_h else s_h * (-1)
47 | else:
48 | d = abs((h - w) / 2)
49 | s_w = min(d, abs(c_src_w-c_w))
50 | s_w = s_w if c_src_w > c_w else s_w * (-1)
51 |
52 |
53 | c_h = (bbox_expend[1] + bbox_expend[3]) / 2 + s_h
54 | c_w = (bbox_expend[0] + bbox_expend[2]) / 2 + s_w
55 |
56 | square_x1 = c_w - c
57 | square_y1 = c_h - c
58 | square_x2 = c_w + c
59 | square_y2 = c_h + c
60 |
61 | x1, y1, x2, y2 = square_x1, square_y1, square_x2, square_y2
62 | ww = x2 - x1
63 | hh = y2 - y1
64 | cc_x = (x1 + x2)/2
65 | cc_y = (y1 + y2)/2
66 | # 1:1
67 | ww = hh = min(ww, hh)
68 | x1, x2 = round(cc_x - ww/2), round(cc_x + ww/2)
69 | y1, y2 = round(cc_y - hh/2), round(cc_y + hh/2)
70 |
71 | return [round(x1), round(y1), round(x2), round(y2)]
72 |
73 |
74 | bbox_expend = expand(bbox, expand_radio, height=height, width=width)
75 | processed_bbox = to_square(bbox, bbox_expend, height=height, width=width)
76 |
77 | return processed_bbox
78 |
79 |
80 | def get_audio_feature(audio_path, feature_extractor):
81 | audio_input, sampling_rate = librosa.load(audio_path, sr=16000)
82 | assert sampling_rate == 16000
83 |
84 | audio_features = []
85 | window = 750*640
86 | for i in range(0, len(audio_input), window):
87 | audio_feature = feature_extractor(audio_input[i:i+window],
88 | sampling_rate=sampling_rate,
89 | return_tensors="pt",
90 | ).input_features
91 | audio_features.append(audio_feature)
92 | audio_features = torch.cat(audio_features, dim=-1)
93 | return audio_features, len(audio_input) // 640
94 |
95 | def image_audio_emo_to_tensor(align_instance, feature_extractor, image_path, audio_path, emotion_path, limit=100, image_size=512, area=1.25):
96 |
97 | clip_processor = CLIPImageProcessor()
98 |
99 | to_tensor = transforms.Compose([
100 | transforms.ToTensor(),
101 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
102 | ])
103 | mask_to_tensor = transforms.Compose([
104 | transforms.ToTensor(),
105 | ])
106 |
107 |
108 | imSrc_ = Image.open(image_path).convert('RGB')
109 | w, h = imSrc_.size
110 |
111 | _, _, bboxes_list = align_instance(np.array(imSrc_)[:,:,[2,1,0]], maxface=True)
112 |
113 | if len(bboxes_list) == 0:
114 | return None
115 | bboxSrc = bboxes_list[0]
116 |
117 | x1, y1, ww, hh = bboxSrc
118 | x2, y2 = x1 + ww, y1 + hh
119 |
120 | mask_img = np.zeros_like(np.array(imSrc_))
121 | ww, hh = (x2-x1) * area, (y2-y1) * area
122 | center = [(x2+x1)//2, (y2+y1)//2]
123 | x1 = max(center[0] - ww//2, 0)
124 | y1 = max(center[1] - hh//2, 0)
125 | x2 = min(center[0] + ww//2, w)
126 | y2 = min(center[1] + hh//2, h)
127 | mask_img[int(y1):int(y2), int(x1):int(x2)] = 255
128 | mask_img = Image.fromarray(mask_img)
129 |
130 | w, h = imSrc_.size
131 | scale = image_size / min(w, h)
132 | new_w = round(w * scale / 64) * 64
133 | new_h = round(h * scale / 64) * 64
134 | if new_h != h or new_w != w:
135 | imSrc = imSrc_.resize((new_w, new_h), Image.LANCZOS)
136 | mask_img = mask_img.resize((new_w, new_h), Image.LANCZOS)
137 | else:
138 | imSrc = imSrc_
139 |
140 | clip_image = clip_processor(
141 | images=imSrc.resize((224, 224), Image.LANCZOS), return_tensors="pt"
142 | ).pixel_values[0]
143 | audio_input, audio_len = get_audio_feature(audio_path, feature_extractor)
144 |
145 | audio_len = min(limit, audio_len)
146 |
147 | emotion_prior = torch.from_numpy(np.load(emotion_path, allow_pickle=True).item()['mu']).unsqueeze(0).unsqueeze(0)
148 |
149 | sample = dict(
150 | face_mask=mask_to_tensor(mask_img),
151 | ref_img=to_tensor(imSrc),
152 | clip_images=clip_image,
153 | audio_feature=audio_input[0],
154 | audio_len=audio_len,
155 | emo_feature=emotion_prior,
156 | )
157 |
158 | return sample
--------------------------------------------------------------------------------
/src/models/audio_adapter/audio_proj.py:
--------------------------------------------------------------------------------
1 | """
2 | This module provides the implementation of an Audio Projection Model, which is designed for
3 | audio processing tasks. The model takes audio embeddings as input and outputs context tokens
4 | that can be used for various downstream applications, such as audio analysis or synthesis.
5 |
6 | The AudioProjModel class is based on the ModelMixin class from the diffusers library, which
7 | provides a foundation for building custom models. This implementation includes multiple linear
8 | layers with ReLU activation functions and a LayerNorm for normalization.
9 |
10 | Key Features:
11 | - Audio embedding input with flexible sequence length and block structure.
12 | - Multiple linear layers for feature transformation.
13 | - ReLU activation for non-linear transformation.
14 | - LayerNorm for stabilizing and speeding up training.
15 | - Rearrangement of input embeddings to match the model's expected input shape.
16 | - Customizable number of blocks, channels, and context tokens for adaptability.
17 |
18 | The module is structured to be easily integrated into larger systems or used as a standalone
19 | component for audio feature extraction and processing.
20 |
21 | Classes:
22 | - AudioProjModel: A class representing the audio projection model with configurable parameters.
23 |
24 | Functions:
25 | - (none)
26 |
27 | Dependencies:
28 | - torch: For tensor operations and neural network components.
29 | - diffusers: For the ModelMixin base class.
30 | - einops: For tensor rearrangement operations.
31 |
32 | """
33 |
34 | import torch
35 | from diffusers import ModelMixin
36 | from einops import rearrange
37 | from torch import nn
38 |
39 |
40 | class AudioProjModel(ModelMixin):
41 | """Audio Projection Model
42 |
43 | This class defines an audio projection model that takes audio embeddings as input
44 | and produces context tokens as output. The model is based on the ModelMixin class
45 | and consists of multiple linear layers and activation functions. It can be used
46 | for various audio processing tasks.
47 |
48 | Attributes:
49 | seq_len (int): The length of the audio sequence.
50 | blocks (int): The number of blocks in the audio projection model.
51 | channels (int): The number of channels in the audio projection model.
52 | intermediate_dim (int): The intermediate dimension of the model.
53 | context_tokens (int): The number of context tokens in the output.
54 | output_dim (int): The output dimension of the context tokens.
55 |
56 | Methods:
57 | __init__(self, seq_len=5, blocks=12, channels=768, intermediate_dim=512, context_tokens=32, output_dim=768):
58 | Initializes the AudioProjModel with the given parameters.
59 | forward(self, audio_embeds):
60 | Defines the forward pass for the AudioProjModel.
61 | Parameters:
62 | audio_embeds (torch.Tensor): The input audio embeddings with shape (batch_size, video_length, blocks, channels).
63 | Returns:
64 | context_tokens (torch.Tensor): The output context tokens with shape (batch_size, video_length, context_tokens, output_dim).
65 |
66 | """
67 |
68 | def __init__(
69 | self,
70 | seq_len=5,
71 | blocks=12, # add a new parameter blocks
72 | channels=768, # add a new parameter channels
73 | intermediate_dim=512,
74 | output_dim=768,
75 | context_tokens=32,
76 | ):
77 | super().__init__()
78 |
79 | self.seq_len = seq_len
80 | self.blocks = blocks
81 | self.channels = channels
82 | self.input_dim = (
83 | seq_len * blocks * channels
84 | ) # update input_dim to be the product of blocks and channels.
85 | self.intermediate_dim = intermediate_dim
86 | self.context_tokens = context_tokens
87 | self.output_dim = output_dim
88 |
89 | # define multiple linear layers
90 | self.proj1 = nn.Linear(self.input_dim, intermediate_dim)
91 | self.proj2 = nn.Linear(intermediate_dim, intermediate_dim)
92 | self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim)
93 |
94 | self.norm = nn.LayerNorm(output_dim)
95 |
96 | def forward(self, audio_embeds):
97 | """
98 | Defines the forward pass for the AudioProjModel.
99 |
100 | Parameters:
101 | audio_embeds (torch.Tensor): The input audio embeddings with shape (batch_size, video_length, blocks, channels).
102 |
103 | Returns:
104 | context_tokens (torch.Tensor): The output context tokens with shape (batch_size, video_length, context_tokens, output_dim).
105 | """
106 | # merge
107 | video_length = audio_embeds.shape[1]
108 | audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
109 | batch_size, window_size, blocks, channels = audio_embeds.shape
110 | audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
111 |
112 | audio_embeds = torch.relu(self.proj1(audio_embeds))
113 | audio_embeds = torch.relu(self.proj2(audio_embeds))
114 |
115 | context_tokens = self.proj3(audio_embeds).reshape(
116 | batch_size, self.context_tokens, self.output_dim
117 | )
118 |
119 | context_tokens = self.norm(context_tokens)
120 | context_tokens = rearrange(
121 | context_tokens, "(bz f) m c -> bz f m c", f=video_length
122 | )
123 |
124 | return context_tokens
--------------------------------------------------------------------------------
/src/models/audio_adapter/pose_guider.py:
--------------------------------------------------------------------------------
1 | from typing import Tuple
2 |
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | import torch.nn.init as init
6 | from einops import rearrange
7 | from diffusers.models.modeling_utils import ModelMixin
8 |
9 |
10 | def zero_module(module):
11 | # Zero out the parameters of a module and return it.
12 | for p in module.parameters():
13 | p.detach().zero_()
14 | return module
15 |
16 |
17 | class InflatedConv3d(nn.Conv2d):
18 | def forward(self, x):
19 | video_length = x.shape[2]
20 |
21 | x = rearrange(x, "b c f h w -> (b f) c h w")
22 | x = super().forward(x)
23 | x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
24 |
25 | return x
26 |
27 |
28 | class PoseGuider(ModelMixin):
29 | def __init__(
30 | self,
31 | conditioning_embedding_channels: int,
32 | conditioning_channels: int = 3,
33 | block_out_channels: Tuple[int] = (16, 32, 64, 128),
34 | ):
35 | super().__init__()
36 | self.conv_in = InflatedConv3d(
37 | conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
38 | )
39 |
40 | self.blocks = nn.ModuleList([])
41 |
42 | for i in range(len(block_out_channels) - 1):
43 | channel_in = block_out_channels[i]
44 | channel_out = block_out_channels[i + 1]
45 | self.blocks.append(
46 | InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
47 | )
48 | self.blocks.append(
49 | InflatedConv3d(
50 | channel_in, channel_out, kernel_size=3, padding=1, stride=2
51 | )
52 | )
53 |
54 | self.conv_out = zero_module(
55 | InflatedConv3d(
56 | block_out_channels[-1],
57 | conditioning_embedding_channels,
58 | kernel_size=3,
59 | padding=1,
60 | )
61 | )
62 |
63 | def forward(self, conditioning):
64 | embedding = self.conv_in(conditioning)
65 | embedding = F.silu(embedding)
66 |
67 | for block in self.blocks:
68 | embedding = block(embedding)
69 | embedding = F.silu(embedding)
70 |
71 | embedding = self.conv_out(embedding)
72 |
73 | return embedding
74 |
--------------------------------------------------------------------------------
/src/models/base/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/toto222/DICE-Talk/74679d4078ac32af01f44e09c2235b5bed7e0bcf/src/models/base/__init__.py
--------------------------------------------------------------------------------
/src/models/base/unet_spatio_temporal_condition.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import Dict, Optional, Tuple, Union, Any
3 |
4 | import torch
5 | import torch.nn as nn
6 |
7 | from diffusers.configuration_utils import ConfigMixin, register_to_config
8 | from diffusers.loaders import UNet2DConditionLoadersMixin
9 | from diffusers.utils import BaseOutput, logging
10 | # from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
11 |
12 | from diffusers.models.embeddings import TimestepEmbedding, Timesteps
13 | from diffusers.models.modeling_utils import ModelMixin
14 | from .unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
15 | from .attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor, AttnProcessor2_0, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0
16 |
17 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name
18 |
19 |
20 | @dataclass
21 | class UNetSpatioTemporalConditionOutput(BaseOutput):
22 | """
23 | The output of [`UNetSpatioTemporalConditionModel`].
24 |
25 | Args:
26 | sample (`torch.Tensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
27 | The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
28 | """
29 |
30 | sample: torch.Tensor = None
31 |
32 |
33 | class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
34 | r"""
35 | A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
36 | returns a sample shaped output.
37 |
38 | This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
39 | for all models (such as downloading or saving).
40 |
41 | Parameters:
42 | sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
43 | Height and width of input/output sample.
44 | in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
45 | out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
46 | down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
47 | The tuple of downsample blocks to use.
48 | up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
49 | The tuple of upsample blocks to use.
50 | block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
51 | The tuple of output channels for each block.
52 | addition_time_embed_dim: (`int`, defaults to 256):
53 | Dimension to to encode the additional time ids.
54 | projection_class_embeddings_input_dim (`int`, defaults to 768):
55 | The dimension of the projection of encoded `added_time_ids`.
56 | layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
57 | cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
58 | The dimension of the cross attention features.
59 | transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
60 | The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
61 | [`~models.unets.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
62 | [`~models.unets.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
63 | [`~models.unets.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
64 | num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
65 | The number of attention heads.
66 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
67 | """
68 |
69 | _supports_gradient_checkpointing = True
70 |
71 | @register_to_config
72 | def __init__(
73 | self,
74 | sample_size: Optional[int] = None,
75 | in_channels: int = 8,
76 | out_channels: int = 4,
77 | down_block_types: Tuple[str] = (
78 | "CrossAttnDownBlockSpatioTemporal",
79 | "CrossAttnDownBlockSpatioTemporal",
80 | "CrossAttnDownBlockSpatioTemporal",
81 | "DownBlockSpatioTemporal",
82 | ),
83 | up_block_types: Tuple[str] = (
84 | "UpBlockSpatioTemporal",
85 | "CrossAttnUpBlockSpatioTemporal",
86 | "CrossAttnUpBlockSpatioTemporal",
87 | "CrossAttnUpBlockSpatioTemporal",
88 | ),
89 | block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
90 | addition_time_embed_dim: int = 256,
91 | projection_class_embeddings_input_dim: int = 768,
92 | layers_per_block: Union[int, Tuple[int]] = 2,
93 | cross_attention_dim: Union[int, Tuple[int]] = 1024,
94 | transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
95 | num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20),
96 | num_frames: int = 25,
97 | ):
98 | super().__init__()
99 |
100 | self.sample_size = sample_size
101 |
102 | # Check inputs
103 | if len(down_block_types) != len(up_block_types):
104 | raise ValueError(
105 | f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
106 | )
107 |
108 | if len(block_out_channels) != len(down_block_types):
109 | raise ValueError(
110 | f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
111 | )
112 |
113 | if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
114 | raise ValueError(
115 | f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
116 | )
117 |
118 | if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
119 | raise ValueError(
120 | f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
121 | )
122 |
123 | if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
124 | raise ValueError(
125 | f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
126 | )
127 |
128 | # input
129 | self.conv_in = nn.Conv2d(
130 | in_channels,
131 | block_out_channels[0],
132 | kernel_size=3,
133 | padding=1,
134 | )
135 |
136 | # time
137 | time_embed_dim = block_out_channels[0] * 4
138 |
139 | self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
140 | timestep_input_dim = block_out_channels[0]
141 |
142 | self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
143 |
144 | self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
145 | self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
146 |
147 | self.down_blocks = nn.ModuleList([])
148 | self.up_blocks = nn.ModuleList([])
149 |
150 | if isinstance(num_attention_heads, int):
151 | num_attention_heads = (num_attention_heads,) * len(down_block_types)
152 |
153 | if isinstance(cross_attention_dim, int):
154 | cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
155 |
156 | if isinstance(layers_per_block, int):
157 | layers_per_block = [layers_per_block] * len(down_block_types)
158 |
159 | if isinstance(transformer_layers_per_block, int):
160 | transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
161 |
162 | blocks_time_embed_dim = time_embed_dim
163 |
164 | # down
165 | output_channel = block_out_channels[0]
166 | for i, down_block_type in enumerate(down_block_types):
167 | input_channel = output_channel
168 | output_channel = block_out_channels[i]
169 | is_final_block = i == len(block_out_channels) - 1
170 |
171 | down_block = get_down_block(
172 | down_block_type,
173 | num_layers=layers_per_block[i],
174 | transformer_layers_per_block=transformer_layers_per_block[i],
175 | in_channels=input_channel,
176 | out_channels=output_channel,
177 | temb_channels=blocks_time_embed_dim,
178 | add_downsample=not is_final_block,
179 | resnet_eps=1e-5,
180 | cross_attention_dim=cross_attention_dim[i],
181 | num_attention_heads=num_attention_heads[i],
182 | resnet_act_fn="silu",
183 | )
184 | self.down_blocks.append(down_block)
185 |
186 | # mid
187 | self.mid_block = UNetMidBlockSpatioTemporal(
188 | block_out_channels[-1],
189 | temb_channels=blocks_time_embed_dim,
190 | transformer_layers_per_block=transformer_layers_per_block[-1],
191 | cross_attention_dim=cross_attention_dim[-1],
192 | num_attention_heads=num_attention_heads[-1],
193 | )
194 |
195 | # count how many layers upsample the images
196 | self.num_upsamplers = 0
197 |
198 | # up
199 | reversed_block_out_channels = list(reversed(block_out_channels))
200 | reversed_num_attention_heads = list(reversed(num_attention_heads))
201 | reversed_layers_per_block = list(reversed(layers_per_block))
202 | reversed_cross_attention_dim = list(reversed(cross_attention_dim))
203 | reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
204 |
205 | output_channel = reversed_block_out_channels[0]
206 | for i, up_block_type in enumerate(up_block_types):
207 | is_final_block = i == len(block_out_channels) - 1
208 |
209 | prev_output_channel = output_channel
210 | output_channel = reversed_block_out_channels[i]
211 | input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
212 |
213 | # add upsample block for all BUT final layer
214 | if not is_final_block:
215 | add_upsample = True
216 | self.num_upsamplers += 1
217 | else:
218 | add_upsample = False
219 |
220 | up_block = get_up_block(
221 | up_block_type,
222 | num_layers=reversed_layers_per_block[i] + 1,
223 | transformer_layers_per_block=reversed_transformer_layers_per_block[i],
224 | in_channels=input_channel,
225 | out_channels=output_channel,
226 | prev_output_channel=prev_output_channel,
227 | temb_channels=blocks_time_embed_dim,
228 | add_upsample=add_upsample,
229 | resnet_eps=1e-5,
230 | resolution_idx=i,
231 | cross_attention_dim=reversed_cross_attention_dim[i],
232 | num_attention_heads=reversed_num_attention_heads[i],
233 | resnet_act_fn="silu",
234 | )
235 | self.up_blocks.append(up_block)
236 | prev_output_channel = output_channel
237 |
238 | # out
239 | self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
240 | self.conv_act = nn.SiLU()
241 |
242 | self.conv_out = nn.Conv2d(
243 | block_out_channels[0],
244 | out_channels,
245 | kernel_size=3,
246 | padding=1,
247 | )
248 |
249 | @property
250 | def attn_processors(self) -> Dict[str, AttentionProcessor]:
251 | r"""
252 | Returns:
253 | `dict` of attention processors: A dictionary containing all attention processors used in the model with
254 | indexed by its weight name.
255 | """
256 | # set recursively
257 | processors = {}
258 |
259 | def fn_recursive_add_processors(
260 | name: str,
261 | module: torch.nn.Module,
262 | processors: Dict[str, AttentionProcessor],
263 | ):
264 | if hasattr(module, "get_processor"):
265 | processors[f"{name}.processor"] = module.get_processor()
266 |
267 | for sub_name, child in module.named_children():
268 | fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
269 |
270 | return processors
271 |
272 | for name, module in self.named_children():
273 | fn_recursive_add_processors(name, module, processors)
274 |
275 | return processors
276 |
277 | def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
278 | r"""
279 | Sets the attention processor to use to compute attention.
280 |
281 | Parameters:
282 | processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
283 | The instantiated processor class or a dictionary of processor classes that will be set as the processor
284 | for **all** `Attention` layers.
285 |
286 | If `processor` is a dict, the key needs to define the path to the corresponding cross attention
287 | processor. This is strongly recommended when setting trainable attention processors.
288 |
289 | """
290 | count = len(self.attn_processors.keys())
291 |
292 | if isinstance(processor, dict) and len(processor) != count:
293 | raise ValueError(
294 | f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
295 | f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
296 | )
297 |
298 | def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
299 | if hasattr(module, "set_processor"):
300 | if not isinstance(processor, dict):
301 | module.set_processor(processor)
302 | else:
303 | module.set_processor(processor.pop(f"{name}.processor"))
304 |
305 | for sub_name, child in module.named_children():
306 | fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
307 |
308 | for name, module in self.named_children():
309 | fn_recursive_attn_processor(name, module, processor)
310 |
311 | def set_default_attn_processor(self):
312 | """
313 | Disables custom attention processors and sets the default attention implementation.
314 | """
315 | if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
316 | processor = AttnProcessor()
317 | else:
318 | raise ValueError(
319 | f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
320 | )
321 |
322 | self.set_attn_processor(processor)
323 |
324 | def _set_gradient_checkpointing(self, module, value=False):
325 | if hasattr(module, "gradient_checkpointing"):
326 | module.gradient_checkpointing = value
327 |
328 | # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
329 | def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
330 | """
331 | Sets the attention processor to use [feed forward
332 | chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
333 |
334 | Parameters:
335 | chunk_size (`int`, *optional*):
336 | The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
337 | over each tensor of dim=`dim`.
338 | dim (`int`, *optional*, defaults to `0`):
339 | The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
340 | or dim=1 (sequence length).
341 | """
342 | if dim not in [0, 1]:
343 | raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
344 |
345 | # By default chunk size is 1
346 | chunk_size = chunk_size or 1
347 |
348 | def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
349 | if hasattr(module, "set_chunk_feed_forward"):
350 | module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
351 |
352 | for child in module.children():
353 | fn_recursive_feed_forward(child, chunk_size, dim)
354 |
355 | for module in self.children():
356 | fn_recursive_feed_forward(module, chunk_size, dim)
357 |
358 | def forward(
359 | self,
360 | sample: torch.Tensor,
361 | timestep: Union[torch.Tensor, float, int],
362 | encoder_hidden_states: torch.Tensor,
363 | added_time_ids: torch.Tensor,
364 | spatial_condition: Optional[torch.Tensor] = None,
365 | cross_attention_kwargs: Optional[Dict[str, Any]] = None,
366 | return_dict: bool = True,
367 | ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
368 | r"""
369 | The [`UNetSpatioTemporalConditionModel`] forward method.
370 |
371 | Args:
372 | sample (`torch.Tensor`):
373 | The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
374 | timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
375 | encoder_hidden_states (`torch.Tensor`):
376 | The encoder hidden states with shape `(batch*num_frames, sequence_length, cross_attention_dim)`.
377 | added_time_ids: (`torch.Tensor`):
378 | The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
379 | embeddings and added to the time embeddings.
380 | spatial_condition (`torch.Tensor`, *optional*, defaults to `None`):
381 | The spatial_condition embedding with shape `(batch, num_frames, channel_in(320), height, width)`.
382 | return_dict (`bool`, *optional*, defaults to `True`):
383 | Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead
384 | of a plain tuple.
385 | Returns:
386 | [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
387 | If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is
388 | returned, otherwise a `tuple` is returned where the first element is the sample tensor.
389 | """
390 | # 1. time
391 | timesteps = timestep
392 | if not torch.is_tensor(timesteps):
393 | # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
394 | # This would be a good case for the `match` statement (Python 3.10+)
395 | is_mps = sample.device.type == "mps"
396 | if isinstance(timestep, float):
397 | dtype = torch.float32 if is_mps else torch.float64
398 | else:
399 | dtype = torch.int32 if is_mps else torch.int64
400 | timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
401 | elif len(timesteps.shape) == 0:
402 | timesteps = timesteps[None].to(sample.device)
403 |
404 | # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
405 | batch_size, num_frames = sample.shape[:2]
406 | timesteps = timesteps.expand(batch_size)
407 |
408 | t_emb = self.time_proj(timesteps)
409 |
410 | # `Timesteps` does not contain any weights and will always return f32 tensors
411 | # but time_embedding might actually be running in fp16. so we need to cast here.
412 | # there might be better ways to encapsulate this.
413 | t_emb = t_emb.to(dtype=sample.dtype)
414 |
415 | emb = self.time_embedding(t_emb)
416 |
417 | time_embeds = self.add_time_proj(added_time_ids.flatten())
418 | time_embeds = time_embeds.reshape((batch_size, -1))
419 | time_embeds = time_embeds.to(emb.dtype)
420 | aug_emb = self.add_embedding(time_embeds)
421 | emb = emb + aug_emb
422 |
423 | # Flatten the batch and frames dimensions
424 | # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
425 | sample = sample.flatten(0, 1)
426 | # Repeat the embeddings num_video_frames times
427 | # emb: [batch, channels] -> [batch * frames, channels]
428 | emb = emb.repeat_interleave(num_frames, dim=0)
429 | # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
430 |
431 | ### 20240731 process encoder_hidden_states ###
432 | if isinstance(encoder_hidden_states, tuple):
433 | # ip_hidden_states is a list
434 | encoder_hidden_states, ip_hidden_states = encoder_hidden_states
435 | if encoder_hidden_states.shape[0]==batch_size:
436 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
437 | encoder_hidden_states = (encoder_hidden_states, ip_hidden_states)
438 | elif encoder_hidden_states.shape[0]==batch_size:
439 | ### if framewised feature is not provided, repeat_interleave
440 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
441 |
442 |
443 | # 2. pre-process
444 | sample = self.conv_in(sample)
445 |
446 | ### 20240731 add spatial_condition here ###
447 | if spatial_condition is not None:
448 | sample = sample + spatial_condition.flatten(0,1)
449 |
450 | image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
451 |
452 | down_block_res_samples = (sample,)
453 | for downsample_block in self.down_blocks:
454 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
455 | sample, res_samples = downsample_block(
456 | hidden_states=sample,
457 | temb=emb,
458 | encoder_hidden_states=encoder_hidden_states,
459 | cross_attention_kwargs=cross_attention_kwargs,
460 | image_only_indicator=image_only_indicator,
461 | )
462 | else:
463 | sample, res_samples = downsample_block(
464 | hidden_states=sample,
465 | temb=emb,
466 | image_only_indicator=image_only_indicator,
467 | )
468 |
469 | down_block_res_samples += res_samples
470 |
471 | # 4. mid
472 | sample = self.mid_block(
473 | hidden_states=sample,
474 | temb=emb,
475 | encoder_hidden_states=encoder_hidden_states,
476 | cross_attention_kwargs=cross_attention_kwargs,
477 | image_only_indicator=image_only_indicator,
478 | )
479 |
480 | # 5. up
481 | for i, upsample_block in enumerate(self.up_blocks):
482 | res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
483 | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
484 |
485 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
486 | sample = upsample_block(
487 | hidden_states=sample,
488 | temb=emb,
489 | res_hidden_states_tuple=res_samples,
490 | encoder_hidden_states=encoder_hidden_states,
491 | cross_attention_kwargs=cross_attention_kwargs,
492 | image_only_indicator=image_only_indicator,
493 | )
494 | else:
495 | sample = upsample_block(
496 | hidden_states=sample,
497 | temb=emb,
498 | res_hidden_states_tuple=res_samples,
499 | image_only_indicator=image_only_indicator,
500 | )
501 |
502 | # 6. post-process
503 | sample = self.conv_norm_out(sample)
504 | sample = self.conv_act(sample)
505 | sample = self.conv_out(sample)
506 |
507 | # 7. Reshape back to original shape
508 | sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
509 |
510 | if not return_dict:
511 | return (sample,)
512 |
513 | return UNetSpatioTemporalConditionOutput(sample=sample)
514 |
515 |
516 |
517 | def add_ip_adapters(unet, num_adapter_embeds=[32,], scale=[1.0,]):
518 |
519 | assert len(num_adapter_embeds)==len(scale)
520 |
521 |
522 | # init adapter modules
523 | attn_procs = {}
524 | unet_sd = unet.state_dict()
525 | for name in unet.attn_processors.keys():
526 | cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
527 | if name.startswith("mid_block"):
528 | hidden_size = unet.config.block_out_channels[-1]
529 | elif name.startswith("up_blocks"):
530 | block_id = int(name[len("up_blocks.")])
531 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
532 | elif name.startswith("down_blocks"):
533 | block_id = int(name[len("down_blocks.")])
534 | hidden_size = unet.config.block_out_channels[block_id]
535 | # if cross_attention_dim is None or "temporal_transformer_blocks" in name:
536 | if cross_attention_dim is None:
537 | attn_processor_class = (
538 | AttnProcessor2_0 if hasattr(torch.nn.functional, "scaled_dot_product_attention") else AttnProcessor
539 | )
540 | attn_procs[name] = attn_processor_class()
541 | else:
542 | attn_processor_class = (
543 | IPAdapterAttnProcessor2_0 if hasattr(torch.nn.functional, "scaled_dot_product_attention") else IPAdapterAttnProcessor
544 | )
545 |
546 | attn_procs[name] = attn_processor_class(
547 | hidden_size=hidden_size,
548 | cross_attention_dim=cross_attention_dim,
549 | num_tokens=num_adapter_embeds,
550 | scale=scale
551 | ).to(device=unet.device, dtype=unet.dtype)
552 |
553 | layer_name = name.split(".processor")[0]
554 | weights = {}
555 |
556 | for i in range(len(num_adapter_embeds)):
557 | weights.update({f"to_k_ip.{i}.weight": unet_sd[layer_name + ".to_k.weight"]})
558 | weights.update({f"to_v_ip.{i}.weight": unet_sd[layer_name + ".to_v.weight"]})
559 |
560 |
561 | attn_procs[name].load_state_dict(weights)
562 |
563 | unet.set_attn_processor(attn_procs)
564 |
565 | adapter_modules = torch.nn.ModuleList([m for m in unet.attn_processors.values() if isinstance(m, IPAdapterAttnProcessor) or isinstance(m, IPAdapterAttnProcessor2_0)])
566 | return adapter_modules
567 |
568 |
569 | def load_adapter_states(adapter_modules, state_dict_list):
570 | assert len(state_dict_list)>0
571 |
572 | merged_stete_dict = {}
573 | for state_dict in state_dict_list:
574 | for k, v in state_dict.items():
575 | if k in merged_stete_dict.keys():
576 | k_split = k.split('.')
577 | adapter_idx = int(k_split[2])
578 | adapter_idx += 1
579 | k_split[2] = str(adapter_idx)
580 | new_k = '.'.join(k_split)
581 | while(new_k in merged_stete_dict.keys()):
582 | adapter_idx += 1
583 | k_split[2] = str(adapter_idx)
584 | new_k = '.'.join(k_split)
585 | merged_stete_dict[new_k] = v
586 | else:
587 | merged_stete_dict[k] = v
588 |
589 | info = adapter_modules.load_state_dict(merged_stete_dict, strict=True)
590 | return info
591 |
592 |
593 |
594 |
595 |
596 |
597 |
598 |
--------------------------------------------------------------------------------
/src/models/emotion_adapter/emo.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from src.models.audio_adapter.audio_proj import AudioProjModel as FeatureProjModel
5 |
6 | class EmotionModel(nn.Module):
7 | def __init__(self):
8 | super(EmotionModel, self).__init__()
9 | self.emo_linear = FeatureProjModel(seq_len=1, blocks=1, channels=256, intermediate_dim=1024, output_dim=1024, context_tokens=32)
10 | self.kv_tokens_linear = FeatureProjModel(seq_len=1, blocks=1, channels=1024, intermediate_dim=1024, output_dim=1024, context_tokens=32)
11 |
12 | self.codebook = emotion_bank(src_dim=1024, codebook_size=64)
13 |
14 | self.attention = QKVAttention(input_dim=1024, output_dim=1024, num_heads=8)
15 | self.classifier = Classifier(input_dim=1280, num_classes=22)
16 |
17 |
18 |
19 |
20 | def forward(self, emo_prompts, emo_prompt_mask=None, retrieval=True):
21 |
22 | emo_retrieval, vq_loss, encoding_indices = self.codebook(emo_prompts)
23 |
24 | if emo_prompt_mask is not None:
25 | emo_prompts = torch.where(
26 | emo_prompt_mask, torch.zeros_like(emo_prompts), emo_prompts)
27 |
28 | emo_retrieval = torch.where(
29 | emo_prompt_mask, torch.zeros_like(emo_retrieval), emo_retrieval)
30 |
31 | emo_prompts_q = self.emo_linear(emo_prompts)
32 |
33 | if retrieval:
34 | kv_tokens = self.kv_tokens_linear(emo_retrieval)
35 | else:
36 | f = emo_prompts.shape[1]
37 | num, d = self.codebook.codebook.weight.data.shape
38 | emo_retrieval = self.codebook.codebook.weight.data.view(1,num,1,1,d)
39 | kv_tokens = self.kv_tokens_linear(emo_retrieval)
40 | kv_tokens = kv_tokens.view(1,1,-1,1024).expand(1, f, -1, 1024)
41 | vq_loss = torch.zeros_like(vq_loss)
42 |
43 | final_emo_prompts , attn_weights = self.attention(emo_prompts_q, kv_tokens)
44 |
45 | return final_emo_prompts, vq_loss
46 |
47 | class QKVAttention(nn.Module):
48 | def __init__(self, input_dim, output_dim, num_heads=8):
49 | super(QKVAttention, self).__init__()
50 | self.num_heads = num_heads
51 | self.output_dim = output_dim
52 |
53 | self.fc_q = nn.Linear(input_dim, output_dim)
54 | self.fc_k = nn.Linear(input_dim, output_dim)
55 | self.fc_v = nn.Linear(input_dim, output_dim)
56 |
57 |
58 |
59 | def forward(self, x, y):
60 |
61 | Q = self.fc_q(x)
62 | K = self.fc_k(y)
63 | V = self.fc_v(y)
64 |
65 |
66 | Q = Q.view(Q.size(0), Q.size(1), Q.size(2), self.num_heads, -1).transpose(2, 3)
67 | K = K.view(K.size(0), K.size(1), K.size(2), self.num_heads, -1).transpose(2, 3)
68 | V = V.view(V.size(0), V.size(1), V.size(2), self.num_heads, -1).transpose(2, 3)
69 |
70 |
71 | attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / (K.size(-1) ** 0.5)
72 | attn_weights = F.softmax(attn_scores, dim=-1)
73 |
74 |
75 | attn_output = torch.matmul(attn_weights, V)
76 |
77 |
78 | attn_output = attn_output.transpose(2, 3).contiguous().view(attn_output.size(0), attn_output.size(1), attn_output.size(3), -1)
79 |
80 |
81 |
82 | return attn_output, attn_weights
83 |
84 | class emotion_bank(nn.Module):
85 | def __init__(self, src_dim=1024, codebook_size=512):
86 | super(emotion_bank, self).__init__()
87 | self.src_dim = src_dim
88 | self._commitment_cost = 0.25
89 |
90 | self.fc = nn.Linear(256, src_dim)
91 | self.codebook = nn.Embedding(codebook_size, src_dim)
92 | self.codebook_size = codebook_size
93 | self.codebook.weight.data.uniform_(-1/self.codebook_size, 1/self.codebook_size)
94 |
95 |
96 |
97 | def quantize(self, z):
98 |
99 | z = self.fc(z)
100 | b, l, d1, d2, c = z.shape
101 | flat_z = z.reshape(-1, c)
102 | # Calculate distances
103 | distances = (torch.sum(flat_z**2, dim=1, keepdim=True)
104 | + torch.sum(self.codebook.weight**2, dim=1)
105 | - 2 * torch.matmul(flat_z, self.codebook.weight.t()))
106 |
107 |
108 | encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
109 |
110 | encodings = torch.zeros(encoding_indices.shape[0], self.codebook_size, device=z.device)
111 | encodings.scatter_(1, encoding_indices, 1)
112 |
113 | # Quantize and unflatten
114 | quantized = torch.matmul(encodings, self.codebook.weight).view(b, l, d1, d2, c)
115 | # Loss
116 | e_latent_loss = F.mse_loss(quantized.detach(), z)
117 | q_latent_loss = F.mse_loss(quantized, z.detach())
118 | loss = q_latent_loss + self._commitment_cost * e_latent_loss
119 |
120 | quantized = z + (quantized - z).detach()
121 |
122 |
123 |
124 | return quantized, loss, encoding_indices
125 |
126 | def forward(self, z):
127 |
128 | z, loss, encoding_indices= self.quantize(z)
129 |
130 | return z, loss, encoding_indices
131 |
132 |
133 | class Classifier(nn.Module):
134 | def __init__(self, input_dim, num_classes):
135 | super(Classifier, self).__init__()
136 | self.fc1 = nn.Linear(input_dim, 512)
137 | self.fc2 = nn.Linear(512, 256)
138 | self.fc3 = nn.Linear(256, num_classes)
139 | self.relu = nn.ReLU()
140 | self.dropout = nn.Dropout(0.1)
141 | self.adaptive_pool = nn.AdaptiveAvgPool2d(1)
142 |
143 | def forward(self, x):
144 | x = self.adaptive_pool(x)
145 | x = x.view(x.shape[0],-1)
146 | x = self.relu(self.fc1(x))
147 | x = self.dropout(x)
148 | x = self.relu(self.fc2(x))
149 | x = self.dropout(x)
150 | x = self.fc3(x)
151 | return x
152 |
153 |
154 |
155 |
--------------------------------------------------------------------------------
/src/pipelines/pipeline_dicetalk.py:
--------------------------------------------------------------------------------
1 | import inspect
2 | from dataclasses import dataclass
3 | from typing import Callable, Dict, List, Optional, Union
4 |
5 | import numpy as np
6 | import PIL.Image
7 | import torch
8 | from transformers import CLIPVisionModelWithProjection
9 |
10 | from diffusers.image_processor import VaeImageProcessor
11 | from diffusers.utils import BaseOutput, logging
12 | from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
13 | from diffusers.pipelines.pipeline_utils import DiffusionPipeline
14 | from diffusers import (
15 | AutoencoderKLTemporalDecoder,
16 | EulerDiscreteScheduler,
17 | )
18 |
19 | from src.models.audio_adapter.pose_guider import PoseGuider
20 | from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
21 |
22 | logger = logging.get_logger(__name__)
23 |
24 |
25 | @dataclass
26 | class Pose2VideoSVDPipelineOutput(BaseOutput):
27 | r"""
28 | Output class for zero-shot text-to-video pipeline.
29 |
30 | Args:
31 | frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
32 | List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
33 | num_channels)`.
34 | """
35 |
36 | frames: Union[List[PIL.Image.Image], np.ndarray]
37 |
38 |
39 | class DicePipeline(DiffusionPipeline):
40 | r"""
41 | Pipeline to generate video from an input image using Stable Video Diffusion.
42 |
43 | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
44 | implemented for all pipelines (downloading, saving, running on a particular device, etc.).
45 |
46 | Args:
47 | vae ([`AutoencoderKL`]):
48 | Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
49 | image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
50 | Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
51 | unet ([`UNetSpatioTemporalConditionModel`]):
52 | A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
53 | scheduler ([`EulerDiscreteScheduler`]):
54 | A scheduler to be used in combination with `unet` to denoise the encoded image latents.
55 | feature_extractor ([`~transformers.CLIPImageProcessor`]):
56 | A `CLIPImageProcessor` to extract features from generated images.
57 | """
58 |
59 | model_cpu_offload_seq = "image_encoder->unet->vae"
60 | _callback_tensor_inputs = ["latents"]
61 |
62 | def __init__(
63 | self,
64 | vae: AutoencoderKLTemporalDecoder,
65 | image_encoder: CLIPVisionModelWithProjection,
66 | unet: UNetSpatioTemporalConditionModel,
67 | pose_guider: PoseGuider,
68 | scheduler: EulerDiscreteScheduler,
69 | ):
70 | super().__init__()
71 | self.register_modules(
72 | vae=vae,
73 | image_encoder=image_encoder,
74 | unet=unet,
75 | pose_guider=pose_guider,
76 | scheduler=scheduler,
77 | )
78 |
79 | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
80 |
81 | self.image_processor = VaeImageProcessor(
82 | vae_scale_factor=self.vae_scale_factor,
83 | do_convert_rgb=True)
84 |
85 | self.pose_image_processor = VaeImageProcessor(
86 | vae_scale_factor=self.vae_scale_factor,
87 | do_convert_rgb=True,
88 | do_normalize=False,
89 | )
90 |
91 |
92 | def _clip_encode_image(self, image, audio_prompts, uncond_audio_prompts, emo_prompts, uncond_emo_prompts,
93 | num_frames, device, num_videos_per_prompt, do_classifier_free_guidance, frames_per_batch):
94 | dtype = next(self.image_encoder.parameters()).dtype
95 |
96 | image = image.to(device=device, dtype=dtype)
97 | image_embeddings = self.image_encoder(image).image_embeds
98 | image_embeddings = image_embeddings.unsqueeze(1)
99 |
100 | # duplicate image embeddings for each generation per prompt, using mps friendly method
101 | bs_embed, seq_len, _ = image_embeddings.shape
102 | image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
103 | image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
104 |
105 | image_embeddings = image_embeddings.unsqueeze(1).repeat((1, num_frames, 1, 1))
106 |
107 | if do_classifier_free_guidance:
108 | negative_image_embeddings = torch.zeros_like(image_embeddings)
109 |
110 |
111 | audio_prompts = torch.stack(audio_prompts, dim=0).to(device=device, dtype=dtype)
112 | audio_prompts = audio_prompts.unsqueeze(0)
113 | image_embeddings = torch.cat([negative_image_embeddings, image_embeddings, image_embeddings])
114 |
115 |
116 | uncond_audio_prompts = torch.stack(uncond_audio_prompts, dim=0).to(device=device, dtype=dtype)
117 | uncond_audio_prompts = uncond_audio_prompts.unsqueeze(0)
118 |
119 | pad_uncond_audio_prompt = uncond_audio_prompts[:,:1].repeat(1, frames_per_batch, 1, 1)
120 | audio_prompts = torch.cat([audio_prompts, pad_uncond_audio_prompt], dim=1)
121 | uncond_audio_prompts = torch.cat([uncond_audio_prompts, pad_uncond_audio_prompt], dim=1)
122 |
123 | emo_prompts = torch.stack(emo_prompts, dim=0).to(device=device, dtype=dtype)
124 | emo_prompts = emo_prompts.unsqueeze(0)
125 |
126 |
127 | uncond_emo_prompts = torch.stack(uncond_emo_prompts, dim=0).to(device=device, dtype=dtype)
128 | uncond_emo_prompts = uncond_emo_prompts.unsqueeze(0)
129 |
130 | pad_uncond_emo_prompt = uncond_emo_prompts[:,:1].repeat(1, frames_per_batch, 1, 1)
131 | emo_prompts = torch.cat([emo_prompts, pad_uncond_emo_prompt], dim=1)
132 | uncond_emo_prompts = torch.cat([uncond_emo_prompts, pad_uncond_emo_prompt], dim=1)
133 |
134 |
135 | # For classifier free guidance, we need to do two forward passes.
136 | # Here we concatenate the unconditional and text embeddings into a single batch
137 | # to avoid doing two forward passes
138 | audio_prompts = torch.cat([uncond_audio_prompts, uncond_audio_prompts, audio_prompts])
139 | emo_prompts = torch.cat([uncond_emo_prompts, uncond_emo_prompts, emo_prompts])
140 | # import pdb;pdb.set_trace()
141 |
142 | return image_embeddings, audio_prompts, emo_prompts
143 |
144 | def _encode_vae_image(
145 | self,
146 | image: torch.Tensor,
147 | device,
148 | num_videos_per_prompt,
149 | do_classifier_free_guidance,
150 | ):
151 | image = image.to(device=device)
152 | image_latents = self.vae.encode(image).latent_dist.mode()
153 |
154 | if do_classifier_free_guidance:
155 | negative_image_latents = torch.zeros_like(image_latents)
156 |
157 | # For classifier free guidance, we need to do two forward passes.
158 | # Here we concatenate the unconditional and text embeddings into a single batch
159 | # to avoid doing two forward passes
160 | image_latents = torch.cat([negative_image_latents, image_latents, image_latents])
161 |
162 | # duplicate image_latents for each generation per prompt, using mps friendly method
163 | image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
164 |
165 | return image_latents
166 |
167 | def _get_add_time_ids(
168 | self,
169 | fps,
170 | motion_bucket_id,
171 | noise_aug_strength,
172 | dtype,
173 | batch_size,
174 | num_videos_per_prompt,
175 | do_classifier_free_guidance,
176 | ):
177 | add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
178 |
179 | passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
180 | expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
181 |
182 | if expected_add_embed_dim != passed_add_embed_dim:
183 | raise ValueError(
184 | f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
185 | )
186 |
187 | add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
188 | add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
189 |
190 | if do_classifier_free_guidance:
191 | add_time_ids = torch.cat([add_time_ids, add_time_ids, add_time_ids])
192 |
193 | return add_time_ids
194 |
195 | def decode_latents(self, latents, num_frames, decode_chunk_size=14):
196 | # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
197 | latents = latents.flatten(0, 1)
198 |
199 | latents = 1 / self.vae.config.scaling_factor * latents
200 |
201 | forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
202 | accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
203 |
204 | # decode decode_chunk_size frames at a time to avoid OOM
205 | frames = []
206 | for i in range(0, latents.shape[0], decode_chunk_size):
207 | num_frames_in = latents[i : i + decode_chunk_size].shape[0]
208 | decode_kwargs = {}
209 | if accepts_num_frames:
210 | # we only pass num_frames_in if it's expected
211 | decode_kwargs["num_frames"] = num_frames_in
212 |
213 | frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
214 | frames.append(frame)
215 | frames = torch.cat(frames, dim=0)
216 |
217 | # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
218 | frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
219 |
220 | # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
221 | frames = frames.float()
222 | return frames
223 |
224 | def check_inputs(self, image, height, width):
225 | if (
226 | not isinstance(image, torch.Tensor)
227 | and not isinstance(image, PIL.Image.Image)
228 | and not isinstance(image, list)
229 | ):
230 | raise ValueError(
231 | "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
232 | f" {type(image)}"
233 | )
234 |
235 | if height % 8 != 0 or width % 8 != 0:
236 | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
237 |
238 | def prepare_latents(
239 | self,
240 | batch_size,
241 | num_frames,
242 | num_channels_latents,
243 | height,
244 | width,
245 | dtype,
246 | device,
247 | generator,
248 | latents=None,
249 | ref_image_latents=None,
250 | timestep=None
251 | ):
252 | shape = (
253 | batch_size,
254 | num_frames,
255 | num_channels_latents // 2,
256 | height // self.vae_scale_factor,
257 | width // self.vae_scale_factor,
258 | )
259 | if isinstance(generator, list) and len(generator) != batch_size:
260 | raise ValueError(
261 | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
262 | f" size of {batch_size}. Make sure the batch size matches the length of the generators."
263 | )
264 |
265 | if latents is None:
266 | noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
267 | else:
268 | noise = latents.to(device)
269 |
270 | # scale the initial noise by the standard deviation required by the scheduler
271 | if timestep is not None:
272 | init_latents = ref_image_latents.unsqueeze(1)
273 | latents = self.scheduler.add_noise(init_latents, noise, timestep)
274 | else:
275 | latents = noise * self.scheduler.init_noise_sigma
276 | return latents
277 |
278 | def get_timesteps(self, num_inference_steps, strength, device):
279 | # get the original timestep using init_timestep
280 | init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
281 |
282 | t_start = max(num_inference_steps - init_timestep, 0)
283 | timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
284 |
285 | return timesteps, num_inference_steps - t_start
286 |
287 | @property
288 | def guidance_scale1(self):
289 | return self._guidance_scale1
290 |
291 | @property
292 | def guidance_scale2(self):
293 | return self._guidance_scale2
294 |
295 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
296 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
297 | # corresponds to doing no classifier free guidance.
298 | @property
299 | def do_classifier_free_guidance(self):
300 | return True
301 |
302 | @property
303 | def num_timesteps(self):
304 | return self._num_timesteps
305 |
306 | @torch.no_grad()
307 | def __call__(
308 | self,
309 | ref_image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
310 | clip_image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
311 | pose_images: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
312 | audio_prompts: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
313 | uncond_audio_prompts: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
314 | emo_prompts: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
315 | uncond_emo_prompts: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
316 | height: int = 576,
317 | width: int = 1024,
318 | num_frames: Optional[int] = None,
319 | num_inference_steps: int = 25,
320 | min_guidance_scale1=1.0, # 1.0,
321 | max_guidance_scale1=3.0,
322 | min_guidance_scale2=1.0, # 1.0,
323 | max_guidance_scale2=3.0,
324 | fps: int = 7,
325 | motion_bucket_id: int = 127,
326 | motion_bucket_id_exp: int = 127,
327 | noise_aug_strength: int = 0.02,
328 | decode_chunk_size: Optional[int] = None,
329 | num_videos_per_prompt: Optional[int] = 1,
330 | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
331 | latents: Optional[torch.FloatTensor] = None,
332 | output_type: Optional[str] = "pil",
333 | callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
334 | callback_on_step_end_tensor_inputs: List[str] = ["latents"],
335 | return_dict: bool = True,
336 | overlap=7,
337 | shift_offset=3,
338 | frames_per_batch=14,
339 | i2i_noise_strength=1.0,
340 | ):
341 | r"""
342 | The call function to the pipeline for generation.
343 |
344 | Args:
345 | image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
346 | Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
347 | [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
348 | height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
349 | The height in pixels of the generated image.
350 | width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
351 | The width in pixels of the generated image.
352 | num_frames (`int`, *optional*):
353 | The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
354 | num_inference_steps (`int`, *optional*, defaults to 25):
355 | The number of denoising steps. More denoising steps usually lead to a higher quality image at the
356 | expense of slower inference. This parameter is modulated by `strength`.
357 | min_guidance_scale (`float`, *optional*, defaults to 1.0):
358 | The minimum guidance scale. Used for the classifier free guidance with first frame.
359 | max_guidance_scale (`float`, *optional*, defaults to 3.0):
360 | The maximum guidance scale. Used for the classifier free guidance with last frame.
361 | fps (`int`, *optional*, defaults to 7):
362 | Frames per second. The rate at which the generated images shall be exported to a video after generation.
363 | Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
364 | motion_bucket_id (`int`, *optional*, defaults to 127):
365 | The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
366 | noise_aug_strength (`int`, *optional*, defaults to 0.02):
367 | The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
368 | decode_chunk_size (`int`, *optional*):
369 | The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
370 | between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
371 | for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
372 | num_videos_per_prompt (`int`, *optional*, defaults to 1):
373 | The number of images to generate per prompt.
374 | generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
375 | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
376 | generation deterministic.
377 | latents (`torch.FloatTensor`, *optional*):
378 | Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
379 | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
380 | tensor is generated by sampling using the supplied random `generator`.
381 | output_type (`str`, *optional*, defaults to `"pil"`):
382 | The output format of the generated image. Choose between `PIL.Image` or `np.array`.
383 | callback_on_step_end (`Callable`, *optional*):
384 | A function that calls at the end of each denoising steps during the inference. The function is called
385 | with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
386 | callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
387 | `callback_on_step_end_tensor_inputs`.
388 | callback_on_step_end_tensor_inputs (`List`, *optional*):
389 | The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
390 | will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
391 | `._callback_tensor_inputs` attribute of your pipeline class.
392 | return_dict (`bool`, *optional*, defaults to `True`):
393 | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
394 | plain tuple.
395 |
396 | Returns:
397 | [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
398 | If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
399 | otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
400 |
401 | Examples:
402 |
403 | ```py
404 | from diffusers import StableVideoDiffusionPipeline
405 | from diffusers.utils import load_image, export_to_video
406 |
407 | pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
408 | pipe.to("cuda")
409 |
410 | image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
411 | image = image.resize((1024, 576))
412 |
413 | frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
414 | export_to_video(frames, "generated.mp4", fps=7)
415 | ```
416 | """
417 | # 0. Default height and width to unet
418 | height = height or self.unet.config.sample_size * self.vae_scale_factor
419 | width = width or self.unet.config.sample_size * self.vae_scale_factor
420 |
421 |
422 | num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
423 | decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
424 |
425 | # 1. Check inputs. Raise error if not correct
426 | self.check_inputs(ref_image, height, width)
427 |
428 | # 2. Define call parameters
429 | if isinstance(ref_image, PIL.Image.Image):
430 | batch_size = 1
431 | elif isinstance(ref_image, list):
432 | batch_size = len(ref_image)
433 | else:
434 | batch_size = ref_image.shape[0]
435 |
436 | device = self._execution_device
437 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
438 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
439 | # corresponds to doing no classifier free guidance.
440 | do_classifier_free_guidance = True
441 |
442 | # 3. Prepare clip image embeds
443 | image_embeddings, audio_prompts, emo_prompts = self._clip_encode_image(
444 | clip_image,
445 | audio_prompts,
446 | uncond_audio_prompts,
447 | emo_prompts,
448 | uncond_emo_prompts,
449 | num_frames + frames_per_batch,
450 | device,
451 | num_videos_per_prompt,
452 | do_classifier_free_guidance,
453 | frames_per_batch)
454 |
455 | # NOTE: Stable Diffusion Video was conditioned on fps - 1, which
456 | # is why it is reduced here.
457 | # See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
458 | # fps = fps - 1
459 |
460 | # 4. Encode input image using VAE
461 | needs_upcasting = (self.vae.dtype == torch.float16 or self.vae.dtype == torch.bfloat16) and self.vae.config.force_upcast
462 | vae_dtype = self.vae.dtype
463 | if needs_upcasting:
464 | self.vae.to(dtype=torch.float32)
465 |
466 | # Prepare ref image latents
467 | ref_image_tensor = ref_image.to(
468 | dtype=self.vae.dtype, device=self.vae.device
469 | )
470 |
471 | ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
472 | ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
473 |
474 | noise = randn_tensor(
475 | ref_image_tensor.shape,
476 | generator=generator,
477 | device=self.vae.device,
478 | dtype=self.vae.dtype)
479 |
480 | ref_image_tensor = ref_image_tensor + noise_aug_strength * noise
481 |
482 | image_latents = self._encode_vae_image(
483 | ref_image_tensor,
484 | device=device,
485 | num_videos_per_prompt=num_videos_per_prompt,
486 | do_classifier_free_guidance=do_classifier_free_guidance,
487 | )
488 | image_latents = image_latents.to(image_embeddings.dtype)
489 | ref_image_latents = ref_image_latents.to(image_embeddings.dtype)
490 |
491 | # cast back to fp16 if needed
492 | if needs_upcasting:
493 | self.vae.to(dtype=vae_dtype)
494 |
495 | # Repeat the image latents for each frame so we can concatenate them with the noise
496 | # image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
497 | image_latents = image_latents.unsqueeze(1).repeat(1, num_frames + frames_per_batch, 1, 1, 1)
498 |
499 |
500 | # 5. Get Added Time IDs
501 | added_time_ids = self._get_add_time_ids(
502 | fps,
503 | motion_bucket_id,
504 | motion_bucket_id_exp,
505 | image_embeddings.dtype,
506 | batch_size,
507 | num_videos_per_prompt,
508 | do_classifier_free_guidance,
509 | )
510 | added_time_ids = added_time_ids.to(device, dtype=self.unet.dtype)
511 | # import pdb;pdb.set_trace()
512 |
513 | # 4. Prepare timesteps
514 | self.scheduler.set_timesteps(num_inference_steps, device=device)
515 | timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, i2i_noise_strength, device)
516 | latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
517 |
518 |
519 | # 5. Prepare latent variables
520 | num_channels_latents = self.unet.config.in_channels
521 | latents = self.prepare_latents(
522 | batch_size * num_videos_per_prompt,
523 | num_frames + frames_per_batch,
524 | num_channels_latents,
525 | height,
526 | width,
527 | image_embeddings.dtype,
528 | device,
529 | generator,
530 | latents,
531 | ref_image_latents,
532 | timestep=latent_timestep
533 | )
534 |
535 | # Prepare a list of pose condition images
536 | pose_cond_tensor_list = []
537 | for pose_image in pose_images:
538 | pose_cond_tensor = pose_image.unsqueeze(0)
539 | pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
540 | pose_cond_tensor_list.append(pose_cond_tensor)
541 |
542 | for _ in range(frames_per_batch):
543 | pose_cond_tensor_list.append(pose_cond_tensor)
544 |
545 | pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=2) # (bs, c, t, h, w)
546 | pose_cond_tensor = pose_cond_tensor.to(
547 | device=device, dtype=self.pose_guider.dtype
548 | )
549 | face_mask = pose_cond_tensor[0, :1, :1]
550 | # print(pose_cond_tensor.shape)
551 |
552 | pose_fea = self.pose_guider(pose_cond_tensor).transpose(
553 | 1, 2
554 | ) # (bs, f, c, H, W)
555 |
556 | # 7. Prepare guidance scale
557 | guidance_scale = torch.linspace(
558 | min_guidance_scale1,
559 | max_guidance_scale1,
560 | num_inference_steps)
561 | guidance_scale1 = guidance_scale.to(device, latents.dtype)
562 |
563 | guidance_scale = torch.linspace(
564 | min_guidance_scale2,
565 | max_guidance_scale2,
566 | num_inference_steps)
567 | guidance_scale2 = guidance_scale.to(device, latents.dtype)
568 |
569 | # print(guidance_scale)
570 |
571 | self._guidance_scale1 = guidance_scale1
572 | self._guidance_scale2 = guidance_scale2
573 |
574 | # 8. Denoising loop
575 | latents_all = latents # for any-frame generation
576 |
577 | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
578 | self._num_timesteps = len(timesteps)
579 | shift = 0
580 | with self.progress_bar(total=num_inference_steps) as progress_bar:
581 | for i, t in enumerate(timesteps):
582 |
583 | # init
584 | pred_latents = torch.zeros_like(
585 | latents_all,
586 | dtype=self.unet.dtype,
587 | )
588 | counter = torch.zeros(
589 | (latents_all.shape[0], num_frames+frames_per_batch, 1, 1, 1),
590 | dtype=self.unet.dtype,
591 | ).to(device=latents_all.device)
592 | # print(t)
593 |
594 | for batch, index_start in enumerate(range(0, num_frames+frames_per_batch, frames_per_batch - overlap)):
595 | self.scheduler._step_index = None
596 | index_start -= shift
597 | # print(index_start)
598 | def indice_slice(tensor, idx_list):
599 | tensor_list = []
600 | for idx in idx_list:
601 | idx = idx % tensor.shape[1]
602 | tensor_list.append(tensor[:,idx])
603 | return torch.stack(tensor_list, 1)
604 | idx_list = list(range(index_start, index_start+frames_per_batch))
605 | latents = indice_slice(latents_all, idx_list)
606 | pose_cond_fea = indice_slice(pose_fea, idx_list)
607 | image_latents_input = indice_slice(image_latents, idx_list)
608 | batch_image_embeddings = indice_slice(image_embeddings, idx_list)
609 | batch_audio_prompts = indice_slice(audio_prompts, idx_list)
610 | # import pdb;pdb.set_trace()
611 |
612 | batch_emo_prompts = indice_slice(emo_prompts, idx_list)
613 | # import pdb;pdb.set_trace()
614 |
615 | cross_attention_kwargs = {'ip_adapter_masks': [face_mask]*2}
616 | latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
617 | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
618 | pose_cond_fea = pose_cond_fea.repeat(3 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
619 | # latent_model_input = torch.cat([latents] * 4) if do_classifier_free_guidance else latents
620 | # latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
621 | # pose_cond_fea = pose_cond_fea.repeat(4 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
622 | # import ipdb;ipdb.set_trace()
623 | # Concatenate image_latents over channels dimention
624 | latent_model_input = torch.cat([
625 | latent_model_input,
626 | image_latents_input], dim=2)
627 | # predict the noise residual
628 | noise_pred = self.unet(
629 | latent_model_input,
630 | t,
631 | encoder_hidden_states=(batch_image_embeddings.flatten(0,1), [batch_audio_prompts.flatten(0,1)] + [batch_emo_prompts.flatten(0,1)]),
632 | spatial_condition=pose_cond_fea,
633 | cross_attention_kwargs=cross_attention_kwargs,
634 | added_time_ids=added_time_ids,
635 | return_dict=False,
636 | )[0]
637 | # perform guidance
638 | # import ipdb;ipdb.set_trace()
639 | if do_classifier_free_guidance:
640 | noise_pred_uncond, noise_pred_drop_audio, noise_pred_cond = noise_pred.chunk(3)
641 | noise_pred = noise_pred_uncond + self.guidance_scale1[i] * (noise_pred_drop_audio - noise_pred_uncond) \
642 | + self.guidance_scale2[i] * (noise_pred_cond - noise_pred_drop_audio)
643 |
644 | # compute the previous noisy sample x_t -> x_t-1
645 | latents = self.scheduler.step(noise_pred, t.to(self.unet.dtype), latents).prev_sample
646 |
647 | if callback_on_step_end is not None:
648 | callback_kwargs = {}
649 | for k in callback_on_step_end_tensor_inputs:
650 | callback_kwargs[k] = locals()[k]
651 | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
652 |
653 | latents = callback_outputs.pop("latents", latents)
654 |
655 | # if batch == 0:
656 | for iii in range(frames_per_batch):
657 | p = (index_start + iii) % pred_latents.shape[1]
658 | pred_latents[:, p] += latents[:, iii]
659 | counter[:, p] += 1
660 | shift += shift_offset
661 | shift = shift % frames_per_batch
662 |
663 | pred_latents = pred_latents / counter
664 | latents_all = pred_latents
665 |
666 | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
667 | progress_bar.update()
668 |
669 | latents = latents_all
670 | if not output_type == "latent":
671 | # cast back to fp16 if needed
672 | if needs_upcasting:
673 | self.vae.to(dtype=vae_dtype)
674 | frames = self.decode_latents(latents, num_frames + frames_per_batch, decode_chunk_size)[:,:,:num_frames]
675 | else:
676 | frames = latents
677 |
678 | self.maybe_free_model_hooks()
679 |
680 | if not return_dict:
681 | return frames
682 | return Pose2VideoSVDPipelineOutput(frames=frames)
683 |
684 |
685 |
--------------------------------------------------------------------------------
/src/utils/RIFE/IFNet_HDv3.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from .warplayer import warp
5 |
6 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7 |
8 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
9 | return nn.Sequential(
10 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
11 | padding=padding, dilation=dilation, bias=True),
12 | nn.PReLU(out_planes)
13 | )
14 |
15 | def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
16 | return nn.Sequential(
17 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
18 | padding=padding, dilation=dilation, bias=False),
19 | nn.BatchNorm2d(out_planes),
20 | nn.PReLU(out_planes)
21 | )
22 |
23 | class IFBlock(nn.Module):
24 | def __init__(self, in_planes, c=64):
25 | super(IFBlock, self).__init__()
26 | self.conv0 = nn.Sequential(
27 | conv(in_planes, c//2, 3, 2, 1),
28 | conv(c//2, c, 3, 2, 1),
29 | )
30 | self.convblock0 = nn.Sequential(
31 | conv(c, c),
32 | conv(c, c)
33 | )
34 | self.convblock1 = nn.Sequential(
35 | conv(c, c),
36 | conv(c, c)
37 | )
38 | self.convblock2 = nn.Sequential(
39 | conv(c, c),
40 | conv(c, c)
41 | )
42 | self.convblock3 = nn.Sequential(
43 | conv(c, c),
44 | conv(c, c)
45 | )
46 | self.conv1 = nn.Sequential(
47 | nn.ConvTranspose2d(c, c//2, 4, 2, 1),
48 | nn.PReLU(c//2),
49 | nn.ConvTranspose2d(c//2, 4, 4, 2, 1),
50 | )
51 | self.conv2 = nn.Sequential(
52 | nn.ConvTranspose2d(c, c//2, 4, 2, 1),
53 | nn.PReLU(c//2),
54 | nn.ConvTranspose2d(c//2, 1, 4, 2, 1),
55 | )
56 |
57 | def forward(self, x, flow, scale=1):
58 | x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
59 | flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 1. / scale
60 | feat = self.conv0(torch.cat((x, flow), 1))
61 | feat = self.convblock0(feat) + feat
62 | feat = self.convblock1(feat) + feat
63 | feat = self.convblock2(feat) + feat
64 | feat = self.convblock3(feat) + feat
65 | flow = self.conv1(feat)
66 | mask = self.conv2(feat)
67 | flow = F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * scale
68 | mask = F.interpolate(mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
69 | return flow, mask
70 |
71 | class IFNet(nn.Module):
72 | def __init__(self):
73 | super(IFNet, self).__init__()
74 | self.block0 = IFBlock(7+4, c=90)
75 | self.block1 = IFBlock(7+4, c=90)
76 | self.block2 = IFBlock(7+4, c=90)
77 | self.block_tea = IFBlock(10+4, c=90)
78 | # self.contextnet = Contextnet()
79 | # self.unet = Unet()
80 |
81 | def forward(self, x, scale_list=[4, 2, 1], training=False):
82 | if training == False:
83 | channel = x.shape[1] // 2
84 | img0 = x[:, :channel]
85 | img1 = x[:, channel:]
86 | flow_list = []
87 | merged = []
88 | mask_list = []
89 | warped_img0 = img0
90 | warped_img1 = img1
91 | flow = (x[:, :4]).detach() * 0
92 | mask = (x[:, :1]).detach() * 0
93 | loss_cons = 0
94 | block = [self.block0, self.block1, self.block2]
95 | for i in range(3):
96 | f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i])
97 | f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i])
98 | flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
99 | mask = mask + (m0 + (-m1)) / 2
100 | mask_list.append(mask)
101 | flow_list.append(flow)
102 | warped_img0 = warp(img0, flow[:, :2])
103 | warped_img1 = warp(img1, flow[:, 2:4])
104 | merged.append((warped_img0, warped_img1))
105 | '''
106 | c0 = self.contextnet(img0, flow[:, :2])
107 | c1 = self.contextnet(img1, flow[:, 2:4])
108 | tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
109 | res = tmp[:, 1:4] * 2 - 1
110 | '''
111 | for i in range(3):
112 | mask_list[i] = torch.sigmoid(mask_list[i])
113 | merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
114 | # merged[i] = torch.clamp(merged[i] + res, 0, 1)
115 | return flow_list, mask_list[2], merged
116 |
--------------------------------------------------------------------------------
/src/utils/RIFE/RIFE_HDv3.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from .IFNet_HDv3 import *
3 | import torch.nn.functional as F
4 |
5 | class RIFEModel:
6 | def __init__(self, device=None):
7 | if device is None:
8 | self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9 | else:
10 | self.device = device
11 | self.flownet = IFNet().to(self.device).eval()
12 |
13 | def train(self):
14 | self.flownet.train()
15 |
16 | def eval(self):
17 | self.flownet.eval()
18 |
19 |
20 | def load_model(self, path, rank=-1):
21 | def convert(param):
22 | if rank == -1:
23 | return {
24 | k.replace("module.", ""): v
25 | for k, v in param.items()
26 | if "module." in k
27 | }
28 | else:
29 | return param
30 | self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path), map_location ='cpu')))
31 |
32 |
33 | def inference(self, img0, img1, scale=1.0):
34 | imgs = torch.cat((img0, img1), 1)
35 | scale_list = [4/scale, 2/scale, 1/scale]
36 | flow, mask, merged = self.flownet(imgs, scale_list)
37 | return merged[2]
--------------------------------------------------------------------------------
/src/utils/RIFE/warplayer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | backwarp_tenGrid = {}
5 |
6 |
7 | def warp(tenInput, tenFlow):
8 | device = tenFlow.device
9 | k = (str(tenFlow.device), str(tenFlow.size()))
10 | if k not in backwarp_tenGrid:
11 | tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view(
12 | 1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
13 | tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view(
14 | 1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
15 | backwarp_tenGrid[k] = torch.cat(
16 | [tenHorizontal, tenVertical], 1).to(device)
17 |
18 | tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
19 | tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
20 |
21 | g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
22 | return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)
23 |
--------------------------------------------------------------------------------
/src/utils/face_align/align.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | BASE_DIR = os.path.dirname(os.path.abspath(__file__))
4 | sys.path.append(BASE_DIR)
5 | import torch
6 | from src.utils.face_align.yoloface import YoloFace
7 |
8 | class AlignImage(object):
9 | def __init__(self, device='cuda', det_path='checkpoints/yoloface_v5m.pt'):
10 | self.facedet = YoloFace(pt_path=det_path, confThreshold=0.5, nmsThreshold=0.45, device=device)
11 |
12 | @torch.no_grad()
13 | def __call__(self, im, maxface=False):
14 | bboxes, kpss, scores = self.facedet.detect(im)
15 | face_num = bboxes.shape[0]
16 |
17 | five_pts_list = []
18 | scores_list = []
19 | bboxes_list = []
20 | for i in range(face_num):
21 | five_pts_list.append(kpss[i].reshape(5,2))
22 | scores_list.append(scores[i])
23 | bboxes_list.append(bboxes[i])
24 |
25 | if maxface and face_num>1:
26 | max_idx = 0
27 | max_area = (bboxes[0, 2])*(bboxes[0, 3])
28 | for i in range(1, face_num):
29 | area = (bboxes[i,2])*(bboxes[i,3])
30 | if area>max_area:
31 | max_idx = i
32 | five_pts_list = [five_pts_list[max_idx]]
33 | scores_list = [scores_list[max_idx]]
34 | bboxes_list = [bboxes_list[max_idx]]
35 |
36 | return five_pts_list, scores_list, bboxes_list
--------------------------------------------------------------------------------
/src/utils/face_align/yoloface.py:
--------------------------------------------------------------------------------
1 | # -*- coding: UTF-8 -*-
2 | import os
3 | import cv2
4 | import numpy as np
5 | import torch
6 | import torchvision
7 |
8 |
9 | def xyxy2xywh(x):
10 | # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
11 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
12 | y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
13 | y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
14 | y[:, 2] = x[:, 2] - x[:, 0] # width
15 | y[:, 3] = x[:, 3] - x[:, 1] # height
16 | return y
17 |
18 |
19 | def xywh2xyxy(x):
20 | # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
21 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
22 | y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
23 | y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
24 | y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
25 | y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
26 | return y
27 |
28 |
29 | def box_iou(box1, box2):
30 | # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
31 | """
32 | Return intersection-over-union (Jaccard index) of boxes.
33 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
34 | Arguments:
35 | box1 (Tensor[N, 4])
36 | box2 (Tensor[M, 4])
37 | Returns:
38 | iou (Tensor[N, M]): the NxM matrix containing the pairwise
39 | IoU values for every element in boxes1 and boxes2
40 | """
41 |
42 | def box_area(box):
43 | # box = 4xn
44 | return (box[2] - box[0]) * (box[3] - box[1])
45 |
46 | area1 = box_area(box1.T)
47 | area2 = box_area(box2.T)
48 |
49 | # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
50 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
51 | torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
52 | # iou = inter / (area1 + area2 - inter)
53 | return inter / (area1[:, None] + area2 - inter)
54 |
55 |
56 | def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
57 | # Rescale coords (xyxy) from img1_shape to img0_shape
58 | if ratio_pad is None: # calculate from img0_shape
59 | gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
60 | pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
61 | else:
62 | gain = ratio_pad[0][0]
63 | pad = ratio_pad[1]
64 |
65 | coords[:, [0, 2]] -= pad[0] # x padding
66 | coords[:, [1, 3]] -= pad[1] # y padding
67 | coords[:, :4] /= gain
68 | clip_coords(coords, img0_shape)
69 | return coords
70 |
71 |
72 | def clip_coords(boxes, img_shape):
73 | # Clip bounding xyxy bounding boxes to image shape (height, width)
74 | boxes[:, 0].clamp_(0, img_shape[1]) # x1
75 | boxes[:, 1].clamp_(0, img_shape[0]) # y1
76 | boxes[:, 2].clamp_(0, img_shape[1]) # x2
77 | boxes[:, 3].clamp_(0, img_shape[0]) # y2
78 |
79 |
80 | def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
81 | # Rescale coords (xyxy) from img1_shape to img0_shape
82 | if ratio_pad is None: # calculate from img0_shape
83 | gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
84 | pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
85 | else:
86 | gain = ratio_pad[0][0]
87 | pad = ratio_pad[1]
88 |
89 | coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
90 | coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
91 | coords[:, :10] /= gain
92 | #clip_coords(coords, img0_shape)
93 | coords[:, 0].clamp_(0, img0_shape[1]) # x1
94 | coords[:, 1].clamp_(0, img0_shape[0]) # y1
95 | coords[:, 2].clamp_(0, img0_shape[1]) # x2
96 | coords[:, 3].clamp_(0, img0_shape[0]) # y2
97 | coords[:, 4].clamp_(0, img0_shape[1]) # x3
98 | coords[:, 5].clamp_(0, img0_shape[0]) # y3
99 | coords[:, 6].clamp_(0, img0_shape[1]) # x4
100 | coords[:, 7].clamp_(0, img0_shape[0]) # y4
101 | coords[:, 8].clamp_(0, img0_shape[1]) # x5
102 | coords[:, 9].clamp_(0, img0_shape[0]) # y5
103 | return coords
104 |
105 |
106 | def show_results(img, xywh, conf, landmarks, class_num):
107 | h,w,c = img.shape
108 | tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
109 | x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
110 | y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
111 | x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
112 | y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
113 | cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
114 |
115 | clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
116 |
117 | for i in range(5):
118 | point_x = int(landmarks[2 * i] * w)
119 | point_y = int(landmarks[2 * i + 1] * h)
120 | cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
121 |
122 | tf = max(tl - 1, 1) # font thickness
123 | label = str(conf)[:5]
124 | cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
125 | return img
126 |
127 |
128 | def make_divisible(x, divisor):
129 | # Returns x evenly divisible by divisor
130 | return (x // divisor) * divisor
131 |
132 |
133 | def non_max_suppression_face(prediction, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, labels=()):
134 | """Performs Non-Maximum Suppression (NMS) on inference results
135 | Returns:
136 | detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
137 | """
138 |
139 | nc = prediction.shape[2] - 15 # number of classes
140 | xc = prediction[..., 4] > conf_thres # candidates
141 |
142 | # Settings
143 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
144 | # time_limit = 10.0 # seconds to quit after
145 | redundant = True # require redundant detections
146 | multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
147 | merge = False # use merge-NMS
148 |
149 | # t = time.time()
150 | output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
151 | for xi, x in enumerate(prediction): # image index, image inference
152 | # Apply constraints
153 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
154 | x = x[xc[xi]] # confidence
155 |
156 | # Cat apriori labels if autolabelling
157 | if labels and len(labels[xi]):
158 | l = labels[xi]
159 | v = torch.zeros((len(l), nc + 15), device=x.device)
160 | v[:, :4] = l[:, 1:5] # box
161 | v[:, 4] = 1.0 # conf
162 | v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
163 | x = torch.cat((x, v), 0)
164 |
165 | # If none remain process next image
166 | if not x.shape[0]:
167 | continue
168 |
169 | # Compute conf
170 | x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
171 |
172 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
173 | box = xywh2xyxy(x[:, :4])
174 |
175 | # Detections matrix nx6 (xyxy, conf, landmarks, cls)
176 | if multi_label:
177 | i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
178 | x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1)
179 | else: # best class only
180 | conf, j = x[:, 15:].max(1, keepdim=True)
181 | x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
182 |
183 | # Filter by class
184 | if classes is not None:
185 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
186 |
187 | # If none remain process next image
188 | n = x.shape[0] # number of boxes
189 | if not n:
190 | continue
191 |
192 | # Batched NMS
193 | c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
194 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
195 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
196 | #if i.shape[0] > max_det: # limit detections
197 | # i = i[:max_det]
198 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
199 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
200 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
201 | weights = iou * scores[None] # box weights
202 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
203 | if redundant:
204 | i = i[iou.sum(1) > 1] # require redundancy
205 |
206 | output[xi] = x[i]
207 | # if (time.time() - t) > time_limit:
208 | # break # time limit exceeded
209 |
210 | return output
211 |
212 |
213 | class YoloFace():
214 | def __init__(self, pt_path='checkpoints/yolov5m-face.pt', confThreshold=0.5, nmsThreshold=0.45, device='cuda'):
215 | assert os.path.exists(pt_path)
216 |
217 | self.inpSize = 416
218 | self.conf_thres = confThreshold
219 | self.iou_thres = nmsThreshold
220 | self.test_device = torch.device(device if torch.cuda.is_available() else "cpu")
221 | self.model = torch.jit.load(pt_path).to(self.test_device)
222 | self.last_w = 416
223 | self.last_h = 416
224 | self.grids = None
225 |
226 | @torch.no_grad()
227 | def detect(self, srcimg):
228 | # t0=time.time()
229 |
230 | h0, w0 = srcimg.shape[:2] # orig hw
231 | r = self.inpSize / min(h0, w0) # resize image to img_size
232 | h1 = int(h0*r+31)//32*32
233 | w1 = int(w0*r+31)//32*32
234 |
235 | img = cv2.resize(srcimg, (w1,h1), interpolation=cv2.INTER_LINEAR)
236 |
237 | # Convert
238 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR to RGB
239 |
240 | # Run inference
241 | img = torch.from_numpy(img).to(self.test_device).permute(2,0,1)
242 | img = img.float()/255 # uint8 to fp16/32 0-1
243 | if img.ndimension() == 3:
244 | img = img.unsqueeze(0)
245 |
246 | # Inference
247 | if h1 != self.last_h or w1 != self.last_w or self.grids is None:
248 | grids = []
249 | for scale in [8,16,32]:
250 | ny = h1//scale
251 | nx = w1//scale
252 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
253 | grid = torch.stack((xv, yv), 2).view((1,1,ny, nx, 2)).float()
254 | grids.append(grid.to(self.test_device))
255 | self.grids = grids
256 | self.last_w = w1
257 | self.last_h = h1
258 |
259 | pred = self.model(img, self.grids).cpu()
260 |
261 | # Apply NMS
262 | det = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)[0]
263 | # Process detections
264 | # det = pred[0]
265 | bboxes = np.zeros((det.shape[0], 4))
266 | kpss = np.zeros((det.shape[0], 5, 2))
267 | scores = np.zeros((det.shape[0]))
268 | # gn = torch.tensor([w0, h0, w0, h0]).to(pred) # normalization gain whwh
269 | # gn_lks = torch.tensor([w0, h0, w0, h0, w0, h0, w0, h0, w0, h0]).to(pred) # normalization gain landmarks
270 | det = det.cpu().numpy()
271 |
272 | for j in range(det.shape[0]):
273 | # xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(4).cpu().numpy()
274 | bboxes[j, 0] = det[j, 0] * w0/w1
275 | bboxes[j, 1] = det[j, 1] * h0/h1
276 | bboxes[j, 2] = det[j, 2] * w0/w1 - bboxes[j, 0]
277 | bboxes[j, 3] = det[j, 3] * h0/h1 - bboxes[j, 1]
278 | scores[j] = det[j, 4]
279 | # landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(5,2).cpu().numpy()
280 | kpss[j, :, :] = det[j, 5:15].reshape(5, 2) * np.array([[w0/w1,h0/h1]])
281 | # class_num = det[j, 15].cpu().numpy()
282 | # orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
283 | return bboxes, kpss, scores
284 |
285 |
286 |
287 | if __name__ == '__main__':
288 | import time
289 |
290 | imgpath = 'test.png'
291 |
292 | yoloface = YoloFace(pt_path='../checkpoints/yoloface_v5m.pt')
293 | srcimg = cv2.imread(imgpath)
294 |
295 | #warpup
296 | bboxes, kpss, scores = yoloface.detect(srcimg)
297 | bboxes, kpss, scores = yoloface.detect(srcimg)
298 | bboxes, kpss, scores = yoloface.detect(srcimg)
299 |
300 | t1 = time.time()
301 | for _ in range(10):
302 | bboxes, kpss, scores = yoloface.detect(srcimg)
303 | t2 = time.time()
304 | print('total time: {} ms'.format((t2 - t1) * 1000))
305 | for i in range(bboxes.shape[0]):
306 | xmin, ymin, xamx, ymax = int(bboxes[i, 0]), int(bboxes[i, 1]), int(bboxes[i, 0] + bboxes[i, 2]), int(bboxes[i, 1] + bboxes[i, 3])
307 | cv2.rectangle(srcimg, (xmin, ymin), (xamx, ymax), (0, 0, 255), thickness=2)
308 | for j in range(5):
309 | cv2.circle(srcimg, (int(kpss[i, j, 0]), int(kpss[i, j, 1])), 1, (0, 255, 0), thickness=5)
310 | cv2.imwrite('test_yoloface.jpg', srcimg)
--------------------------------------------------------------------------------
/src/utils/util.py:
--------------------------------------------------------------------------------
1 | import importlib
2 | import os
3 | import os.path as osp
4 | import shutil
5 | import sys
6 | from pathlib import Path
7 |
8 | import av
9 | import numpy as np
10 | import torch
11 | import torchvision
12 | from einops import rearrange
13 | from PIL import Image
14 | import skvideo
15 | import skvideo.io
16 | import cv2
17 |
18 |
19 | class VideoUtils(object):
20 | def __init__(self, video_path=None, output_video_path=None, bit_rate='origin', fps=25):
21 | if video_path is not None:
22 | meta_data = skvideo.io.ffprobe(video_path)
23 | # avg_frame_rate = meta_data['video']['@r_frame_rate']
24 | # a, b = avg_frame_rate.split('/')
25 | # fps = float(a) / float(b)
26 | # fps = 25
27 | codec_name = 'libx264'
28 | # codec_name = meta_data['video'].get('@codec_name')
29 | # if codec_name=='hevc':
30 | # codec_name='h264'
31 | # profile = meta_data['video'].get('@profile')
32 | color_space = meta_data['video'].get('@color_space')
33 | color_transfer = meta_data['video'].get('@color_transfer')
34 | color_primaries = meta_data['video'].get('@color_primaries')
35 | color_range = meta_data['video'].get('@color_range')
36 | pix_fmt = meta_data['video'].get('@pix_fmt')
37 | if bit_rate=='origin':
38 | bit_rate = meta_data['video'].get('@bit_rate')
39 | else:
40 | bit_rate=None
41 | if pix_fmt is None:
42 | pix_fmt = 'yuv420p'
43 |
44 | reader_output_dict = {'-r': str(fps)}
45 | writer_input_dict = {'-r': str(fps)}
46 | writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
47 | # if bit_rate is not None:
48 | # writer_output_dict['-b:v'] = bit_rate
49 | writer_output_dict['-crf'] = '17'
50 |
51 | # if video has alpha channel, convert to bgra, uint16 to process
52 | if pix_fmt.startswith('yuva'):
53 | writer_input_dict['-pix_fmt'] = 'bgra64le'
54 | reader_output_dict['-pix_fmt'] = 'bgra64le'
55 | elif pix_fmt.endswith('le'):
56 | writer_input_dict['-pix_fmt'] = 'bgr48le'
57 | reader_output_dict['-pix_fmt'] = 'bgr48le'
58 | else:
59 | writer_input_dict['-pix_fmt'] = 'bgr24'
60 | reader_output_dict['-pix_fmt'] = 'bgr24'
61 |
62 | if color_range is not None:
63 | writer_output_dict['-color_range'] = color_range
64 | writer_input_dict['-color_range'] = color_range
65 | if color_space is not None:
66 | writer_output_dict['-colorspace'] = color_space
67 | writer_input_dict['-colorspace'] = color_space
68 | if color_primaries is not None:
69 | writer_output_dict['-color_primaries'] = color_primaries
70 | writer_input_dict['-color_primaries'] = color_primaries
71 | if color_transfer is not None:
72 | writer_output_dict['-color_trc'] = color_transfer
73 | writer_input_dict['-color_trc'] = color_transfer
74 |
75 | writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
76 | reader_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
77 | # writer_input_dict['-pix_fmt'] = 'bgr48le'
78 | # reader_output_dict = {'-pix_fmt': 'bgr48le'}
79 |
80 | # -s 1920x1080
81 | # writer_input_dict['-s'] = '1920x1080'
82 | # writer_output_dict['-s'] = '1920x1080'
83 | # writer_input_dict['-s'] = '1080x1920'
84 | # writer_output_dict['-s'] = '1080x1920'
85 |
86 | print(writer_input_dict)
87 | print(writer_output_dict)
88 |
89 | self.reader = skvideo.io.FFmpegReader(video_path, outputdict=reader_output_dict)
90 | else:
91 |
92 | # fps = 25
93 | codec_name = 'libx264'
94 | bit_rate=None
95 | pix_fmt = 'yuv420p'
96 |
97 | reader_output_dict = {'-r': str(fps)}
98 | writer_input_dict = {'-r': str(fps)}
99 | writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
100 | # if bit_rate is not None:
101 | # writer_output_dict['-b:v'] = bit_rate
102 | writer_output_dict['-crf'] = '17'
103 |
104 | # if video has alpha channel, convert to bgra, uint16 to process
105 | if pix_fmt.startswith('yuva'):
106 | writer_input_dict['-pix_fmt'] = 'bgra64le'
107 | reader_output_dict['-pix_fmt'] = 'bgra64le'
108 | elif pix_fmt.endswith('le'):
109 | writer_input_dict['-pix_fmt'] = 'bgr48le'
110 | reader_output_dict['-pix_fmt'] = 'bgr48le'
111 | else:
112 | writer_input_dict['-pix_fmt'] = 'bgr24'
113 | reader_output_dict['-pix_fmt'] = 'bgr24'
114 |
115 | writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
116 | print(writer_input_dict)
117 | print(writer_output_dict)
118 |
119 | if output_video_path is not None:
120 | self.writer = skvideo.io.FFmpegWriter(output_video_path, inputdict=writer_input_dict, outputdict=writer_output_dict, verbosity=1)
121 |
122 | def getframes(self):
123 | return self.reader.nextFrame()
124 |
125 | def writeframe(self, frame):
126 | if frame is None:
127 | self.writer.close()
128 | else:
129 | self.writer.writeFrame(frame)
130 |
131 | def seed_everything(seed):
132 | import random
133 |
134 | import numpy as np
135 |
136 | torch.manual_seed(seed)
137 | torch.cuda.manual_seed_all(seed)
138 | np.random.seed(seed % (2**32))
139 | random.seed(seed)
140 |
141 |
142 | def import_filename(filename):
143 | spec = importlib.util.spec_from_file_location("mymodule", filename)
144 | module = importlib.util.module_from_spec(spec)
145 | sys.modules[spec.name] = module
146 | spec.loader.exec_module(module)
147 | return module
148 |
149 |
150 | def delete_additional_ckpt(base_path, num_keep):
151 | dirs = []
152 | for d in os.listdir(base_path):
153 | if d.startswith("checkpoint-"):
154 | dirs.append(d)
155 | num_tot = len(dirs)
156 | if num_tot <= num_keep:
157 | return
158 | # ensure ckpt is sorted and delete the ealier!
159 | del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
160 | for d in del_dirs:
161 | path_to_dir = osp.join(base_path, d)
162 | if osp.exists(path_to_dir):
163 | shutil.rmtree(path_to_dir)
164 |
165 |
166 | def save_videos_from_pil(pil_images, path, fps=8):
167 | save_fmt = Path(path).suffix
168 | os.makedirs(os.path.dirname(path), exist_ok=True)
169 | width, height = pil_images[0].size
170 |
171 | if save_fmt == ".mp4":
172 | video_cap = VideoUtils(output_video_path=path, fps=fps)
173 | for pil_image in pil_images:
174 | image_cv2 = np.array(pil_image)[:,:,[2,1,0]]
175 | video_cap.writeframe(image_cv2)
176 | video_cap.writeframe(None)
177 |
178 | elif save_fmt == ".gif":
179 | pil_images[0].save(
180 | fp=path,
181 | format="GIF",
182 | append_images=pil_images[1:],
183 | save_all=True,
184 | duration=(1 / fps * 1000),
185 | loop=0,
186 | optimize=False,
187 | lossless=True
188 | )
189 | else:
190 | raise ValueError("Unsupported file type. Use .mp4 or .gif.")
191 |
192 |
193 | def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
194 | videos = rearrange(videos, "b c t h w -> t b c h w")
195 | height, width = videos.shape[-2:]
196 | outputs = []
197 |
198 | for x in videos:
199 | x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
200 | x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
201 | if rescale:
202 | x = (x + 1.0) / 2.0 # -1,1 -> 0,1
203 | x = (x * 255).numpy().astype(np.uint8)
204 | x = Image.fromarray(x)
205 |
206 | outputs.append(x)
207 |
208 | os.makedirs(os.path.dirname(path), exist_ok=True)
209 |
210 | save_videos_from_pil(outputs, path, fps)
211 |
212 |
213 | def read_frames(video_path):
214 | container = av.open(video_path)
215 |
216 | video_stream = next(s for s in container.streams if s.type == "video")
217 | frames = []
218 | for packet in container.demux(video_stream):
219 | for frame in packet.decode():
220 | image = Image.frombytes(
221 | "RGB",
222 | (frame.width, frame.height),
223 | frame.to_rgb().to_ndarray(),
224 | )
225 | frames.append(image)
226 |
227 | return frames
228 |
229 |
230 | def get_fps(video_path):
231 | container = av.open(video_path)
232 | video_stream = next(s for s in container.streams if s.type == "video")
233 | fps = video_stream.average_rate
234 | container.close()
235 | return fps
236 |
--------------------------------------------------------------------------------